

C
++

Programming
Abstractions in

Eric S. Roberts
Stanford University
Spring Quarter 2012

 i

Foreword
This text represents a major revision of the course reader that we’ve been using at
Stanford for the last several years. The primary goal of the revision was to bring the
approach more closely in line with the way C++ is used in industry, which will in
turn make it easier to export Stanford’s approach to teaching data structures to a
larger fraction of schools. Even though this quarter’s draft is reasonably complete,
the text remains somewhat rough. In particular, these chapters have not yet had the
benefit of the wonderful copyediting service that my wife Lauren Rusk has provided
for all my books.

This textbook has had an interesting evolutionary history that in some ways
mirrors the genesis of the C++ language itself. Just as Bjarne Stroustrup’s first
version of C++ was implemented on top of a C language base, this reader began its
life as my textbook Programming Abstractions in C (Addison-Wesley, 1998). In
2002-03, Julie Zelenski updated it for use with the C++ programming language,
which we began using in CS106 B and CS106 X during that year. Although the
revised text worked fairly well at the outset, CS106 B and CS106 X have evolved in
recent years so that their structure no longer tracks the organization of the book. In
2009, I embarked on a comprehensive process of rewriting the book so that students
in these courses can use it as both a tutorial and a reference. As always, that process
takes a considerable amount of time, and there are almost certainly some sections of
the book that need a substantial rewrite.

I want to thank my colleagues at Stanford over the last several years, starting
with Julie Zelenski for her extensive work on the initial C++ revision. My
colleagues Keith Schwarz, Jerry Cain, Stephen Cooper, and Mehran Sahami have
all made important contributions to the revision. I also need to express my thanks to
several generations of section leaders and so many students over the years, all of
whom have helped make it so exciting to teach this wonderful material. Finally, I
want to thank the students in CS106 B in winter quarter 2011-12 who put up with a
partially finished reader and contributed many error reports and suggestions.

I’ve always believed that programming is one of the most challenging and
exciting intellectual activities that humans have ever discovered. By staying close
to the machine, C++ gives you all the freedom you need to build applications that
take advantage of the full power of modern computing. I hope you all enjoy the
ride.

ii

Contents
1 Overview of C++ 1
 1.1 Your first C++ program 2
 1.2 The history of C++ 3
 1.3 The structure of a C++ program 6
 1.4 Variables 14
 1.5 Data types 19
 1.6 Expressions 26
 1.7 Statements 36
 1.8 The Stanford C++ libraries 48
 Summary 49
 Review questions 50
 Exercises 52

2 Functions and Libraries 57
 2.1 The idea of a function 58
 2.2 Libraries 61
 2.3 Defining functions in C++ 63
 2.4 The mechanics of function calls 67
 2.5 Reference parameters 75
 2.6 Interfaces and implementations 80
 2.7 Principles of interface design 87
 2.8 Designing a random number library 92
 2.9 A brief tour of the graphics library 110
 Summary 113
 Review questions 114
 Exercises 116

3 Strings 125
 3.1 Using strings as abstract values 126
 3.2 String operations 129
 3.3 The <cctype> library 137
 3.4 Modifying the contents of a string 138
 3.5 The legacy of C-style strings 139
 3.6 Writing string applications 140
 3.7 The strlib.h library 146
 Summary 147
 Review questions 148
 Exercises 149

 iii

4 Streams 159
 4.1 Using strings as abstract values 160
 4.2 Formatted input 165
 4.3 Data files 167
 4.4 Class hierarchies 180
 4.5 Exploring the Stanford libraries 187
 Summary 189
 Review questions 190
 Exercises 191

5 Collections 197
 5.1 The Vector class 199
 5.2 The Stack class 213
 5.3 The Queue class 219
 5.4 The Map class 228
 5.5 The Set class 234
 5.6 Iterating over a collection 238
 Summary 245
 Review questions 247
 Exercises 248

6 Designing Classes 263
 6.1 Representing points 264
 6.2 Operator overloading 273
 6.3 Rational numbers 284
 6.4 Designing a token scanner class 295
 6.5 Encapsulating programs as classes 305
 Summary 307
 Review questions 308
 Exercises 310

iv

7 Introduction to Recursion 319
 7.1 A simple example of recursion 320
 7.2 The factorial function 322
 7.3 The Fibonacci function 329
 7.4 Checking palindromes 336
 7.5 The binary search algorithm 339
 7.6 Mutual recursion 340
 7.7 Thinking recursively 342
 Summary 344
 Review questions 346
 Exercises 348

8 Recursive Strategies 353
 8.1 The Towers of Hanoi 354
 8.2 The subset-sum problem 365
 8.3 Generating permutations 368
 8.4 Graphical recursion 372
 Summary 379
 Review questions 379
 Exercises 380

9 Backtracking Algorithms 393
 9.1 Recursive backtracking in a maze 394
 9.2 Backtracking and games 404
 9.3 The minimax algorithm 413
 Summary 419
 Review questions 420
 Exercises 421

10 Algorithmic Analysis 433
 10.1 The sorting problem 434
 10.2 Computational complexity 439
 10.3 Recursion to the rescue 447
 10.4 Standard complexity classes 453
 10.5 The Quicksort algorithm 456
 10.6 Mathematical induction 462
 Summary 466
 Review questions 467
 Exercises 470

 v

11 Pointers and Arrays 477
 11.1 The structure of memory 478
 11.2 Pointers 488
 11.3 Arrays 498
 11.4 Using functions as data values 508
 Summary 515
 Review questions 517
 Exercises 520

12 Dynamic Memory Management 527
 12.1 Dynamic allocation and the heap 528
 12.2 Defining a CharStack class 533
 12.3 Heap-stack diagrams 544
 12.4 Copying objects 550
 Summary 556
 Review questions 557
 Exercises 559

13 Efficiency and Representation 563
 13.1 The concept of an editor buffer 564
 13.2 Defining the buffer abstraction 566
 13.3 An array-based implementation 570
 13.4 A stack-based implementation 578
 13.5 A list-based implementation 583
 Summary 601
 Review questions 602
 Exercises 604

14 Linear Structures 611
 14.1 Templates 612
 14.2 Defining stacks as a template class 615
 14.3 Implementing stacks as linked lists 622
 14.4 Implementing queues 626
 14.5 Implementing vectors 640
 Summary 648
 Review questions 649
 Exercises 650

vi

15 Maps and Hashing 653
 15.1 Implementing maps using arrays 654
 15.2 Lookup tables 660
 15.3 Hashing 663
 Summary 675
 Review questions 675
 Exercises 677

16 Trees 681
 16.1 Family trees 683
 16.2 Binary search trees 685
 16.3 Balanced trees 698
 16.4 Implementing maps using BSTs 709
 Summary 711
 Review questions 712
 Exercises 715

17 Expression Trees 725
 17.1 Overview of the interpreter 726
 17.2 The structure of expressions 731
 17.3 Defining the expression hierarchy 736
 17.4 Parsing an expression 750
 Summary 756
 Review questions 757
 Exercises 759

18 Sets 765
 18.1 Sets as a mathematical abstraction 766
 18.2 Expanding the set interface 770
 18.3 Implementation strategies for sets 778
 18.4 Optimizing sets of small integers 780
 Summary 786
 Review questions 787
 Exercises 790

 vii

19 Graphs 793
 19.1 The structure of a graph 794
 19.2 Representation strategies 798
 19.3 A low-level graph abstraction 802
 19.4 Graph traversals 809
 19.5 Defining a Graph class 815
 19.6 Finding shortest paths 824
 19.7 Implementing priority queues 828
 Summary 831
 Review questions 833
 Exercises 835

viii

A Library Interfaces 847
 A-1 cmpfn.h 848
 A-2 console.h 849
 A-3 direction.h 850
 A-4 error.h 852
 A-5 filelib.h 853
 A-6 foreach.h 859
 A-7 gevents.h 860
 A-8 graph.h 874
 A-9 graphics.h 879
 A-10 grid.h 887
 A-11 gtypes.h 890
 A-12 gwindow.h 895
 A-13 hashmap.h 904
 A-14 hashset.h 907
 A-15 lexicon.h 913
 A-16 map.h 916
 A-17 point.h 919
 A-18 pqueue.h 921
 A-19 queue.h 924
 A-20 random.h 927
 A-21 set.h 928
 A-22 simpio.h 933
 A-23 sound.h 934
 A-24 stack.h 936
 A-25 strlib.h 938
 A-26 thread.h 941
 A-27 tokenscanner.h 945
 A-28 vector.h 951

Index 955

Chapter 1
An Overview of C++

Out of these various experiments come programs. This is our
experience: programs do not come out of the minds of one person
or two people such as ourselves, but out of day-to-day work.

— Stokely Carmichael and Charles V. Hamilton,
Black Power, 1967

2 Overview of C++

In Lewis Carroll’s Alice’s Adventures in Wonderland, the King asks the White
Rabbit to “begin at the beginning and go on till you come to the end: then stop.”
Good advice, but only if you’re starting from the beginning. This book is designed
for a second course in computer science and therefore assumes that you have
already begun your study of programming. At the same time, because first courses
vary considerably in what they cover, it is difficult to rely on any specific material.
Some of you, for example, will already understand C++ control structures from
prior experience with closely related languages such as C or Java. For others,
however, the structure of C++ will seem unfamiliar. Because of this disparity in
background, the best approach is to adopt the King’s advice. This chapter therefore
“begins at the beginning” and introduces you to those parts of the C++ language
you will need to write simple programs.

 1.1 Your first C++ program
As you will learn in more detail in the following section, C++ is an extension of an
extremely successful programming language called C, which appeared in the early
1970s. In the book that serves as C’s defining document, The C Programming
Language, Brian Kernighan and Dennis Ritchie offer the following advice on the
first page of Chapter 1.

The only way to learn a new programming language is by
writing programs in it. The first program to write is the same
for all languages:

Print the words
hello, world

This is the big hurdle; to leap over it you have to be able to
create the program text somewhere, compile it successfully,
load it, run it, and find out where the output went. With these
mechanical details mastered, everything else is comparatively
easy.

If you were to rewrite it in C++, the “Hello World” program would end up looking
something like the code in Figure 1-1.

At this point, the important thing is not to understand exactly what all of the
lines in this program mean. There is plenty of time to master those details later.
Your mission—and you should decide to accept it—is to get the HelloWorld
program running. Type in the program exactly as it appears in Figure 1-1 and then
figure out what you need to do to make it work. The exact steps you need to use
depend on the programming environment you’re using to create and run C++
programs. If you are using this textbook for a class, your instructor will presumably
provide some reference material on the programming environments you are

 1.1 Your first C++ program 3

expected to use. If you are reading this book on your own, you’ll need to refer to
the documentation that comes with whatever programming environment you’re
using for C++.

When you get all of these details worked out, you should see the output from the
HelloWorld program on a window somewhere on your computer screen. On the
Apple Macintosh on which I prepared this book, that window looks like this:

On your computer, the window will probably have a somewhat different appearance
and may include additional status messages along with your program’s cheery
“hello, world” greeting. But the message will be there. And although it may not be
true that “everything else is comparatively easy” as Kernighan and Ritchie suggest,
you will have achieved a significant milestone.

 1.2 The history of C++
In the early days of computing, programs were written in machine language, which
consists of the primitive instructions that can be executed directly by the machine.
Programs written in machine language are difficult to understand, mostly because
the structure of machine language reflects the design of the hardware rather than the
needs of programmers. Worse still, each type of computing hardware has its own

HelloWorld
hello, world

F I G U R E 1 - 1 The “Hello World” program

/*
 * File: HelloWorld.cpp
 * --------------------
 * This file is adapted from the example
 * on page 1 of Kernighan and Ritchie's
 * book The C Programming Language.
 */

#include <iostream>
using namespace std;

int main() {
 cout << "hello, world" << endl;
 return 0;
}

4 Overview of C++

machine language, which means that a program written for one machine will not run
on other types of hardware.

In the mid-1950s, a group of programmers under the direction of John Backus at
IBM had an idea that profoundly changed the nature of computing. Would it be
possible, Backus and his colleagues wondered, to write programs that resembled the
mathematical formulas they were trying to compute and have the computer itself
translate those formulas into machine language? In 1955, this team produced the
initial version of FORTRAN (whose name is a contraction of formula translation),
which was the first example of a higher-level programming language.

Since that time, many new programming languages have been invented, most of
which build on previous languages in an evolutionary way. C++ represents the
joining of two branches in that evolution. One of its ancestors is a language called
C, which was designed at Bell Laboratories by Dennis Ritchie in 1972 and then
later revised and standardized by the American National Standards Institute (ANSI)
in 1989. But C++ also descends from a family of languages designed to support a
different style of programming that has dramatically changed the nature of software
development in recent years.

The object-oriented paradigm
Over the last two decades, computer science and programming have gone through
something of a revolution. Like most revolutions—whether political upheavals or
the conceptual restructurings that Thomas Kuhn describes in his 1962 book The
Structure of Scientific Revolutions—this change has been driven by the emergence
of an idea that challenges an existing orthodoxy. Initially, the two ideas compete,
and, at least for a while, the old order maintains its dominance. Over time,
however, the strength and popularity of the new idea grows, until it begins to
displace the older idea in what Kuhn calls a paradigm shift. In programming, the
old order is represented by the procedural paradigm, in which programs consist of
a collection of procedures and functions that operate on data. The new model is
called the object-oriented paradigm, in which programs are viewed instead as a
collection of data objects that embody particular characteristics and behavior.

The idea of object-oriented programming is not really all that new. The first
object-oriented language was SIMULA, a language for coding simulations designed
by the Scandinavian computer scientists Ole-Johan Dahl and Kristen Nygaard in
1967. With a design that was far ahead of its time, SIMULA anticipated many of
the concepts that later became commonplace in programming, including the concept
of abstract data types and much of the modern object-oriented paradigm. In fact,
much of the terminology used to describe object-oriented languages comes from the
original 1967 report on SIMULA.

 1.2 The history of C++ 5

Unfortunately, SIMULA did not generate a great deal of interest in the years
after its introduction. The first object-oriented language to gain any significant
following within the computing profession was Smalltalk, which was developed at
the Xerox Palo Alto Research Center in the late 1970s. The purpose of Smalltalk,
which is described in the book Smalltalk-80: The Language and Its Implementation
by Adele Goldberg and David Robson, was to make programming accessible to a
wider audience. As such, Smalltalk was part of a larger effort at Xerox PARC that
gave rise to much of the modern user-interface technology that is now standard on
personal computers.

Despite many attractive features and a highly interactive user environment that
simplifies the programming process, Smalltalk never achieved much commercial
success. The profession as a whole took an interest in object-oriented programming
only when the central ideas were incorporated into variants of C, which had already
become an industry standard. Although there were several parallel efforts to design
an object-oriented language based on C, the most successful was the language C++,
which was developed by Bjarne Stroustrup at AT&T Bell Laboratories in the early
1980s. C++ includes standard C as a subset, which makes it possible to integrate
C++ code into existing C programs in a gradual, evolutionary way.

Although object-oriented languages have gained some of their popularity at the
expense of procedural ones, it would be a mistake to regard the object-oriented and
procedural paradigms as mutually exclusive. Programming paradigms are not so
much competitive as they are complementary. The object-oriented and the
procedural paradigm—along with other important paradigms such as the functional
programming style embodied in LISP—all have important applications in practice.
Even within the context of a single application, you are likely to find a use for more
than one approach. As a programmer, you must master many different paradigms,
so that you can use the conceptual model that is most appropriate to the task at
hand.

The compilation process
When you write a program in C++, your first step is to create a file that contains the
text of the program, which is called a source file. Before you can run your
program, you need to translate the source file into an executable form. The first
step in that process is to invoke a program called a compiler, which translates the
source file into an object file containing the corresponding machine-language
instructions. This object file is then combined with other object files to produce an
executable file that can be run on the system. The other object files typically
include predefined object files called libraries that contain the machine-language
instructions for various operations commonly required by programs. The process of

6 Overview of C++

combining all the individual object files into an executable file is called linking.
The steps in the compilation process are illustrated in Figure 1-2.

As noted in the discussion of the HelloWorld program earlier in this chapter,
the specific details of the compilation process vary from one machine to another.
There is no way that a general textbook like this can tell you exactly what
commands you should use to run a program on your system. The good news is that
the C++ programs themselves will look the same. One of the advantages of
programming in a higher-level language like C++ is that doing so allows you to
ignore the particular characteristics of the hardware and create programs that will
run on many different machines.

 1.3 The structure of a C++ program
The best way to get a feeling for the C++ programming language is to look at some
sample programs, even before you understand the details of the language. The
HelloWorld program is a start, but it is so simple that it doesn’t include many of
the features you’d expect to see in a program. Since this book is designed for a
second course in computer science, you’ve almost certainly written programs that
read input from the user, store values in variables, use loops to perform repeated
calculations, and make use of subsidiary functions to simplify the structure of the

F I G U R E 1 - 2 The compilation process

source file object file

library file

executable file

compiler

linker

/*
 * File: HelloWorld.cpp
 * --------------------
 * This file is adapted from the example
 * on page 1 of Kernighan and Ritchie’s
 * book The C Programming Language.
 */

using namespace std;
#include <iostream>

int main() {
 cout << "hello, world" << endl;
 return 0;
}

10011111111000111100111011110100111101100
11010011011100101110111000111001111010100
11100000010000111000000110111110001010111
10001010111010010001000110011011100010010
11000100101011101001011011000101101111101
10110111110111011111101100110110111001110
11100111000111111101000111110001110111010
11110011111010111101110100001111011101010
11011101000011111101010011100101111011111
10111101111101011101111110100010101000000
11011110011011101000011100011111001010010
10101000011110011100101000100110111010111
10110101110111011101011110001001111110010
11111111110011111100100111011011010000100
11010111001111110001101010010111101000010

10001100111001011101000000111110110100000
10111011111101011111111101001110100000111
10100111101011001110101100000101111010000
10010011011000111011010100010000110101101
10111010110111010111010110111011111110001
11000010011100111110010000100000101110110
10001100011111101010111000101011101011100
11010011011100101011010001001111100000110
11111110111001111000001001010010000100100
11000111110110110000101100110011010010100
10011111010010011100010101000010010010111
11111000000000101100110101111111011010100
10100000011000001100001000001101111000011
10101101110001001010110111000100110010111
11010101111011111111011110011100111101001

10011111111000111100111011110100111101100
11010011011100101110111000111001111010100
11100000010000111000000110111110001010111
10001010111010010001000110011011100010010
11000100101011101001011011000101101111101
10110111110111011111101100110110111001110
11100111000111111101000111110001110111010
11110011111010111101110100001111011101010
11011101000011111101010011100101111011111
10111101111101011101111110100010101000000
11011110011011101000011100011111001010010
10101000011110011100101000100110111010111
10110101110111011101011110001001111110010
11111111110011111100100111011011010000100
11010111001111110001101010010111101000010
10001100111001011101000000111110110100000
10111011111101011111111101001110100000111
10100111101011001110101100000101111010000
10010011011000111011010100010000110101101
10111010110111010111010110111011111110001
11000010011100111110010000100000101110110
10001100011111101010111000101011101011100
11010011011100101011010001001111100000110
11111110111001111000001001010010000100100
11000111110110110000101100110011010010100
10011111010010011100010101000010010010111
11111000000000101100110101111111011010100
10100000011000001100001000001101111000011
10101101110001001010110111000100110010111
11010101111011111111011110011100111101001

 1.3 The structure of a C++ program 7

program. The HelloWorld program does none of these things. To illustrate more
of the features of C++, Figure 1-3 shows the code for a program that lists powers of
two along with some annotations that describe the various parts of the program.

F I G U R E 1 - 3 The structure of a C++ program

/*
 * File: PowersOfTwo.cpp
 * ---------------------
 * This program generates a list of the powers of
 * two up to an exponent limit entered by the user.
 */

#include <iostream>
using namespace std;

/* Function prototypes */

int raiseToPower(int n, int k);

/* Main program */

int main() {
 int limit;
 cout << "This program lists powers of two." << endl;
 cout << "Enter exponent limit: ";
 cin >> limit;
 for (int i = 0; i <= limit; i++) {
 cout << "2 to the " << i << " = "
 << raiseToPower(2, i) << endl;
 }
 return 0;
}

/*
 * Function: raiseToPower
 * Usage: int p = raiseToPower(n, k);
 * ----------------------------------
 * Returns the integer n raised to the kth power.
 */

int raiseToPower(int n, int k) {
 int result = 1;
 for (int i = 0; i < k; i++) {
 result *= n;
 }
 return result;
}

Program comments

Library inclusions

Function prototype

Main program

Function comment

Function definition

8 Overview of C++

When you run the PowersOfTwo program shown in Figure 1-3, the computer
begins by asking you for an exponent limit, which specifies how many powers of
two the program should generate. If you type in 8, for example, the program will
generate a list of the powers of two up to 28, as follows:

This screen image shows what happens if you execute the PowersOfTwo program.
Such images are called sample runs. In each sample run, input from the user
appears in blue so that it is easy to distinguish input data from the output generated
by the program.

As the annotations in Figure 1-3 indicate, the PowersOfTwo program is divided
into several components, which are discussed in the next few sections.

Comments
Much of the text in Figure 1-3 consists of English-language comments. A comment
is text that is ignored by the compiler but which nonetheless conveys information to
other programmers. A comment consists of text enclosed between the markers
/* and */ and may continue over several lines. Alternatively, you can also specify
single-line comments, which begin with the characters // and extend through the
end of the line. This book uses the multiline /* . . . */ comment form except when
the comment marks some part of a program that is not yet complete. Adopting that
strategy makes it easier to find unfinished parts of a program.

Modern programming environments typically use colors to make it easier to
distinguish the various parts of a program. On a color monitor, it is easy to display
many colors, so that a programming environment might, for example, display
keywords in one color, strings in another, and comments in yet some other shade.
Because this text is typeset using only two colors, program listings must be more
economical in their use of color. The only visual distinction that survives the
restricted color palette is between comments, which appear in blue, and the code
actually executed by the computer, which appears in black.

PowersOfTwo
This program lists powers of two.
Enter exponent limit: 8
2 to the 0 = 1
2 to the 1 = 2
2 to the 2 = 4
2 to the 3 = 8
2 to the 4 = 16
2 to the 5 = 32
2 to the 6 = 64
2 to the 7 = 128
2 to the 8 = 256

 1.3 The structure of a C++ program 9

As you can see from Figure 1-3, the PowersOfTwo program includes a comment
at the beginning that describes the program as a whole and one before the definition
of raiseToPower that describes the operation of that function at a lower level of
detail. In addition, the program includes a couple of one-line comments that act like
section headings in English text.

Library inclusions
Modern programs are never written without using libraries, which are collections of
previously written tools that perform useful operations. C++ defines a number of
standard libraries, of which one of the most important is iostream. This library
defines a set of simple input and output operations based on a data structure called a
stream, which is a data structure used to manage the flow of information to or from
some data source, such as the console or a file.

To gain access to the iostream library, your program must contain the line

#include <iostream>

This line instructs the C++ compiler to read the relevant definitions from what is
called a header file. The angle brackets in this line indicate that the header file is a
system library that is part of standard C++. Beginning in Chapter 2, you will also
have occasion to use header files that you have written yourself or that come from
other libraries. Those header files typically end with the suffix .h and are enclosed
in quotation marks instead of angle brackets.

In C++, reading in a header file using #include is often not sufficient by itself
to use a system library. To ensure that the names defined in different parts of a
large system do not interfere with one another, the designers of C++ made it
possible to segment code into structures called namespaces, each of which keeps
track of its own set of names. The standard C++ libraries use a namespace called
std, which means that you cannot refer to the names defined in standard header
files like iostream unless you let the compiler know to which namespace those
definitions belong.

Increasingly, professional C++ programmers specify the namespace explicitly by
adding the prefix std:: before each name to which it applies. Using this approach,
the first line of the HelloWorld program becomes

std::cout << "hello, world" << std::endl;

If you want to write code that looks like that of a professional, you can adopt this
style. For someone just learning the language, all those std:: tags make programs
harder to read, so this book instead adopts the convention of adding the line

using namespace std;

10 Overview of C++

at the end of the library inclusion section. At times—most importantly when you
start to define your own library interfaces in Chapter 2—you will need to remember
that the complete name of anything in the standard library namespace includes the
std:: prefix. For the moment, however, it is probably easiest to think of the

using namespace std;

as one of the incantations that the C++ compiler requires to work its magic on your
code.

Function prototypes
Computation in a C++ program is carried out in the context of functions. A
function is a named section of code that performs a specific operation. The
PowersOfTwo program contains two functions—main and raiseToPower—each
of which is described in more detail in one of the sections that follow. Although the
definitions of these functions appear toward the end of the file, the PowersOfTwo
program provides a concise description of the raiseToPower function just after the
library inclusions. This concise form is called a prototype and makes it possible to
make calls to that function before its actual definition appears.

A C++ prototype consists of the first line of the function definition followed by a
semicolon, as illustrated by the prototype

int raiseToPower(int n, int k);

This prototype tells the compiler everything it needs to know about how to call that
function when it appears in the code. As you will see in the expanded discussion of
functions in Chapter 2, the prototype for raiseToPower indicates that the function
takes two integers as arguments and returns an integer as its result.

You must provide the declaration or definition of each function before making
any calls to that function. C++ requires such prototype declarations so the compiler
can check whether calls to functions are compatible with the function definitions. If
you accidentally supply the wrong number of arguments or if the arguments are of
the wrong type, the compiler reports an error, which makes it easier to find such
problems in your code.

The main program
Every C++ program must contain a function with the name main. This function
specifies the starting point for the computation and is called when the program starts
up. When main has finished its work and returns, execution of the program ends.

 1.3 The structure of a C++ program 11

The first line of the main function in the PowersOfTwo program is an example
of a variable declaration, which reserves space for a value used by the program. In
this case, the line

int limit;

introduces a new variable named limit capable of holding a value of type int, the
standard type used to represent integers. The syntax of variable declarations is
discussed in more detail in the section on “Variables” later in this chapter. For now,
all you need to know is that this declaration creates space for an integer variable that
you can then use in the body of the main function.

The next line of the main function is

cout << "This program lists powers of two." << endl;

This line has the same effect of the single statement in HelloWorld and sends a
message to the user indicating what the program does. The identifier cout refers to
the console output stream, which is one of the facilities defined by the iostream
interface. The effect of this statement is to take the characters enclosed in quotation
marks and send them to the cout stream, followed by the end-of-line sequence
endl, which ensures that next output operation will begin on a new line.

The next two lines are concerned with asking the user to provide a value for the
variable limit. The line

cout << "Enter exponent limit: ";

also prints a message to the cout stream, just as the first line did. The purpose of
this line is to let the user know what kind of input value is required. Such messages
are generally known as prompts.

When you print a prompt requesting input from the user, it is conventional to
omit the endl value so that the prompt appears on the same line as the user input.
When the computer executes this line of the program, it will display the prompt but
leaves the console cursor—the blinking vertical bar or square that marks the current
input position—at the end of the line, waiting for the user’s value, as follows:

PowersOfTwo
This program lists powers of two.
Enter exponent limit: |

12 Overview of C++

The actual request for the input value is the line

cin >> limit;

The identifier cin represents the console input stream, which is the counterpart to
cout for reading input from the user. This statement indicates that the next value
from the cin stream should be stored in the variable limit. Moreover, because
limit is declared as an integer variable, the >> operator automatically converts the
characters typed by the user into the appropriate integer. Thus, when the user types
8 and hits the RETURN key, the effect is to set limit to 8.

The next line of the main function is a for statement, which is used to repeat a
block of code. Like all control statements in C++, the for statement is divided into
a header line, which defines the nature of the control operation, and a body, which
indicates which statements are affected by the control operation. In this case, the
division looks like this:

The header line—which you will have a chance to understand in more detail in the
section on “The for statement” later in this chapter—indicates that the statements
in the body, whatever they are, should be repeated for each value of i beginning
with 0 and continuing up to and including the value of limit. Each execution of
the body of the loop prints a single line showing the value of 2i for the current value
of the variable i.

The single statement in the body of the loop is

cout << "2 to the " << i << " = "
 << raiseToPower(2, i) << endl;

This statement illustrates a couple of points. First, statements can be split across
more than one line; it is the semicolon that marks the end of the statement, and not
simply the end of the line. Second, this statement showcases the ability of the cout
stream to chain different output values together and to convert numeric quantities
into a printable form. The first part of the output is the character sequence

2 to the

This output is then followed by the value of the variable i, an equal sign surrounded
by spaces, the value of the function call

raiseToPower(2, i)

for (int i = 0; i <= limit; i++) {

 cout << "2 to the " << i << " = "

 << raiseToPower(2, i) << endl;

}

header line

loop body

 1.3 The structure of a C++ program 13

and finally the end of line marker. The spaces in the strings ensure that the numeric
values do not run together.

Before the program can print the output line, however, it must invoke the
raiseToPower function to see what the value should be. Calling raiseToPower
suspends the execution of the main function, which then waits until the desired
value is returned.

As is typically the case with functions, raiseToPower needs some information
from the main program in order to do its work. If you think about what raising a
number to a power involves, you quickly realize that raiseToPower needs to know
the base, which in this case is the constant 2, and the exponent, which is currently
stored in the variable i. That variable, however, is declared within the body of the
main function and is accessible only within the main program. If raiseToPower
is to have access to the value of the base and exponent, the main program must pass
them as arguments to the function by including them in parentheses after the
function name. Doing so copies those values into the corresponding parameters, as
described in the following section.

As was true in the HelloWorld program as well, the final statement in main is

return 0;

This statement indicates that the value of the main function is 0. By convention,
C++ uses the value of the main function to report the status of the entire program.
A value of 0 indicates success; any other value is taken as an indication of failure.

Function definit ions
Because large programs are difficult to understand in their entirety, most programs
are broken down into several smaller functions, each of which is easier to
understand. In the PowersOfTwo program, the raiseToPower function is used to
raise an integer to a power—an operation that is not built into C++ and must
therefore be defined explicitly.

The first line of raiseToPower is the variable declaration

int result = 1;

This declaration introduces a new variable named result capable of holding
values of type int and initializes it to have the value 1.

The next statement in the function is a for loop—similar to the one you’ve
already seen in the main program—that executes its body k times. The body of the
for loop consists of the line

14 Overview of C++

result *= n;

which is C++ shorthand for the English sentence “Multiply result by n.” Because
the function initializes the value of result to 1 and then multiplies result by n a
total of k times, the variable result ends up with the value nk.

The last statement in raiseToPower is

return result;

which indicates that the function should return result as the value of the function.

 1.4 Variables
Data values in a program are usually stored in variables, which are named locations
in memory capable of holding a particular data type. You have already seen
examples of variables in the PowersOfTwo program and are almost certainly
familiar with the basic concept from your earlier programming experience. The
purpose of this section is to outline the rules for using variables in C++.

Variable declarations
In C++, you must declare each variable before you use it. The primary function of
declaring a variable is to make an association between the name of the variable and
the type of value that variable contains. The placement of the declaration in a
program also determines the scope of the variable, which is the region in which that
variable is accessible.

The usual syntax for declaring a variable is

type namelist;

where type indicates the data type and namelist is a list of variable names separated
by commas. In most cases, each declaration introduces a single variable name. For
example, the function main in PowersOfTwo begins with the line

int limit;

which declares the variable limit to be of type int. You can, however, declare
several variable names at once, as in the following declaration, which declares three
variables named n1, n2, and n3:

double n1, n2, n3;

In this case, the variables are each declared to be of type double, which is the type
C++ uses to represent numbers that can have fractional parts. The name double is

 1.4 Variables 15

short for double-precision floating-point, but there is no reason to worry about what
all those terms mean. This declaration appears in the AddThreeNumbers program
in Figure 1-4, which reads in three numbers and writes out their sum.

It is important to remember that both the name and the type of a variable remain
fixed throughout its lifetime but that the value of that variable will typically change
as the program runs. To emphasize the dynamic nature of the value of a variable, it
often helps to diagram variables as boxes in which the name appears outside as a
label on the box and the value appears on the inside. For example, you might
diagram the declaration of limit like this:

Assigning a value to limit overwrites any previous contents of the box, but does
not change the name or the type.

In C++, the initial contents of a variable are undefined. If you want a variable to
have a particular value, you need to initialize it explicitly. To do so, all you need to
do is include an equal sign and a value after a variable name. Thus, the declaration

int result = 1;

limit

F I G U R E 1 - 4 Program to add three numbers

/*
 * File: AddThreeNumbers.cpp
 * -------------------------
 * This program adds three floating-point numbers and prints their sum.
 */

#include <iostream>
using namespace std;

int main() {
 double n1, n2, n3;
 cout << "This program adds three numbers." << endl;
 cout << "1st number: ";
 cin >> n1;
 cout << "2nd number: ";
 cin >> n2;
 cout << "3rd number: ";
 cin >> n3;
 double sum = n1 + n2 + n3;
 cout << "The sum is " << sum << endl;
 return 0;
}

16 Overview of C++

is a shorthand for the following code, in which the declaration and assignment are
separate:

int result;

result = 1;

An initial value specified as part of a declaration is called an initializer.

Naming conventions
The names used for variables, functions, types, constants, and so forth are
collectively known as identifiers. In C++, the rules for identifier formation are

1. The name must start with a letter or the underscore character (_).

2. All other characters in the name must be letters, digits, or the underscore. No
spaces or other special characters are permitted in names.

3. The name must not be one of the reserved keywords listed in Table 1-1.

Uppercase and lowercase letters appearing in an identifier are considered to be
different. Thus, the name ABC is not the same as the name abc. Identifiers can be
of any length, but C++ compilers are not required to consider any more than the
first 31 characters in determining whether two names are identical.

You can improve your programming style by adopting conventions for
identifiers that help readers identify their function. In this text, names of variables
and functions begin with a lowercase letter, such as limit or raiseToPower. The
names of classes and other programmer-defined data types begin with an uppercase
letter, as in Direction or TokenScanner. Constant values are written entirely in
uppercase, as in PI or HALF_DOLLAR. Whenever an identifier consists of several
English words run together, the usual convention is to capitalize the first letter of

T A B L E 1 - 1 Reserved words in C++

asm
auto
bool
break
case
catch
char
class
const
const_cast
continue
default
delete

do
double
dynamic_cast
else
enum
explicit
extern
false
float
for
friend
goto
if

inline
int
long
mutable
namespace
new
operator
private
protected
public
register
reinterpret_cast
return

short
signed
sizeof
static
static_cast
struct
switch
template
this
throw
true
try
typedef

typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

 1.4 Variables 17

each word to make the name easier to read. Because that strategy doesn’t work for
constants, programmers use the underscore character to mark the word boundaries.

Local and global variables
Most variables are declared with the body of a function. Such variables are called
local variables. The scope of a local variable extends to the end of the block in
which it is declared. When the function is called, space for each local variable is
allocated for the duration of that function call. When the function returns, all its
local variables disappear.

If a variable declaration appears outside any function definition, that declaration
introduces a global variable. The scope of a global variable is the remainder of the
file in which it is declared, and it exists throughout the execution of a program.
Global variables are therefore able to store values that persist across function calls.
While that property may seem useful, the disadvantages of global variables easily
outweigh their advantages. For one thing, global variables can be manipulated by
any function in a program, and it is difficult to keep those functions from interfering
with one another. Because of the problems they so often cause, global variables are
not used in this text except to declare constants, as discussed in the following
section. Although global variables may sometimes seem tempting, you will find it
easier to manage the complexity of your programs if you avoid them as well.

Constants
As you write your programs, you will find that you often use the same constant
many times in a program. If, for example, you are performing geometrical
calculations that involve circles, the constant π comes up frequently. Moreover, if
those calculations require high precision, you might actually need all the digits that
fit into a value of type double, which means you would be working with the value
3.14159265358979323846. Writing that constant over and over again is tedious at
best, and likely to introduce errors if you type it in by hand each time instead of
cutting and pasting the value. It would be better if you could give this constant a
name and then refer to it by that name everywhere in the program. You could, of
course, simply declare it as a local variable by writing

double pi = 3.14159265358979323846;

but you would then be able to use it only within the method in which it was defined.
A better strategy is to declare it as a global constant like this:

const double PI = 3.14159265358979323846;

The keyword const at the beginning of this declaration indicates that the value will
not change after the variable is initialized, thereby ensuring that the value remains

18 Overview of C++

constant. It would not be appropriate, after all, to change the value of π (despite the
fact that a bill was introduced in 1897 into the Indiana State Legislature attempting
to do just that). The rest of the declaration consists of the type, the name, and the
value, as before. The only difference is that the name is written entirely in
uppercase to be consistent with the C++ naming conventions for constants.

Using named constants offers several advantages. First, descriptive constant
names make the program easier to read. More importantly, using constants can
dramatically simplify the problem of maintaining the code for a program as it
evolves. Even if the value of PI is unlikely to change, some “constants” in a
program specify values that might change as the program evolves, even though they
will be constant for a particular version of that program.

The importance of this principle is easiest to illustrate by historical example.
Imagine for the moment that you are a programmer in the late 1960s working on the
initial design of the ARPANET, the first large-scale computer network and the
ancestor of today’s Internet. Because resource constraints were quite serious at that
time, you would need to impose a limit—as the actual designers of the ARPANET
did in 1969—on the number of host computers that could be connected. In the early
years of the ARPANET, that limit was 127 hosts. If C++ had existed in those days,
you might have declared a constant that looked like this:

const int MAXIMUM_NUMBER_OF_HOSTS = 127;

At some later point, however, the explosive growth of networking would force you
to raise this bound. That process would be relatively easy if you used named
constants in your programs. To raise the limit on the number of hosts to 1023, it
might well be sufficient to change this declaration so that it read

const int MAXIMUM_NUMBER_OF_HOSTS = 1023;

If you used MAXIMUM_NUMBER_OF_HOSTS everywhere in your program to refer to
that maximum value, making this change would automatically propagate to every
part of the program in which the name was used.

Note that the situation would be entirely different if you had used the numeric
constant 127 instead. In that case, you would need to search through the entire
program and change all instances of 127 used for this purpose to the larger value.
Some instances of 127 might well refer to other things than the limit on the number
of hosts, and it would be just as important not to change any of those values. In the
likely event that you made a mistake, you would have a very hard time tracking
down the bug.

 1.5 Data types 19

 1.5 Data types
Each variable in a C++ program contains a value constrained to be of a particular
type. You set the type of the variable as part of the declaration. So far, you have
seen variables of type int and double, but these types merely scratch the surface
of the types available in C++. Programs today work with many different data types,
some of which are built into the language and some of which are defined as part of a
particular application. Learning how to manipulate data of various types is an
essential part of mastering the basics of any language, including C++.

The concept of a data type
In C++ , every data value has an associated data type. From a formal perspective, a
data type is defined by two properties: a domain, which is the set of values that
belong to that type, and a set of operations, which defines the behavior of that type.
For example, the domain of the type int includes all integers

. . . −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5 . . .

and so on, up to the limits established by the hardware of the machine. The set of
operations applicable to values of type int includes, for example, the standard
arithmetic operations like addition and multiplication. Other types have a different
domain and set of operations.

As you will learn in the later chapters in this book, much of the power of modern
programming languages like C++ comes from the fact that you can define new data
types from existing ones. To get that process started, C++ includes several
fundamental types that are defined as part of the language. These types, which act
as the building blocks for the type system as a whole, are called atomic or
primitive types. These predefined types are grouped into five categories—integer,
floating-point, Boolean, character, and enumerated types—which are discussed in
the sections that follow.

Integer types
Although the concept of an integer seems like a simple one, C++ actually includes
several different data types for representing integer values. In most cases, all you
need to know is the type int, which corresponds to the standard representation of
an integer on the computer system you are using. In certain cases, however, you
need to be more careful. Like all data, values of type int are stored internally in
storage units that have a limited capacity. Those values therefore have a maximum
size, which limits the range of integers you can use. To get around this problem,
C++ defines three integer types—short, int, and long—distinguished from each
other by the size of their domains.

20 Overview of C++

Unfortunately, the language definition for C++ does not specify an exact range
for these three types. As a result, the range for the different integer types depends
on the machine and the compiler you’re using. In the early years of computing, the
maximum value of type int was typically 32,767, which is very small by today’s
standards. If you had wanted, for example, to perform a calculation involving the
number of seconds in a year, you could not use type int on those machines,
because that value (31,536,000) is considerably larger than 32,767. Modern
machines tend to support larger integers, but the only properties you can count on
are the following:

• The internal size of an integer cannot decrease as you move from short to int

to long. A compiler designer for C++ could, for example, decide to make
short and int the same size but could not make int smaller than short.

• The maximum value of type int must be at least 32,767 (215–1).

• The maximum value of type long must be at least 2,147,483,647 (231–1).

The designers of C++ could have chosen to define the allowable range of type
int more precisely. For example, they could have declared—as the designers of
Java did—that the maximum value of type int would be 231–1 on every machine.
Had they done so, it would be easier to move a program from one system to another
and have it behave in the same way. The ability to move a program between
different machines is called portability, which is an important consideration in the
design of a programming language.

In C++, each of the integer types int, long, and short may be preceded by the
keyword unsigned. Adding unsigned creates a new data type in which no
negative values are allowed. Unsigned values also offer twice the range of positive
values when compared to their signed counterparts. On modern machines, for
example, the maximum value of type int is typically 2,147,483,647, but the
maximum value of type unsigned int is 4,294,967,295. C++ allows the type
unsigned int to be abbreviated to unsigned, and most programmers who use
this type tend to follow this practice.

An integer constant is ordinarily written as a string of decimal digits. If the
number begins with the digit 0, however, the compiler interprets the value as an
octal (base 8) integer. Thus, the constant 040 is taken to be in octal and represents
the decimal number 32. If you prefix a numeric constant with the characters 0x, the
compiler interprets that number as hexadecimal (base 16). Thus, the constant 0xFF
is equivalent to the decimal constant 255. You can explicitly indicate that an
integer constant is of type long by adding the letter L at the end of the digit string.
Thus, the constant 0L is equal to 0, but the value is explicitly of type long.
Similarly, if you use the letter U as a suffix, the constant is taken to be unsigned.

 1.5 Data types 21

Floating-point types
Numbers that include a decimal fraction are called floating-point numbers, which
are used to approximate real numbers in mathematics. C++ defines three different
floating-point types: float, double, and long double. Although ANSI C++
does not specify the exact representation of these types, the way to think about the
difference is that the longer types—where long double is longer than double,
which is in turn longer than float—allow numbers to be represented with greater
precision at the cost of occupying more memory space. Unless you are doing
exacting scientific calculation, however, the differences between these types will
not make a great deal of difference. In keeping with a common convention among
C++ programmers, this text uses the type double as its standard floating-point
type.

Floating-point constants in C++ are written with a decimal point. Thus, if 2.0
appears in a program, the number is represented internally as a floating-point value;
if the programmer had written 2, this value would be an integer. Floating-point
values can also be written in a special programmer’s style of scientific notation, in
which the value is represented as a floating-point number multiplied by an integral
power of 10. To write a number using this style, you write a floating-point number
in standard notation, followed immediately by the letter E and an integer exponent,
optionally preceded by a + or - sign. For example, the speed of light in meters per
second can be written in C++ as

2.9979E+8

where the E stands for the words times 10 to the power.

Boolean type
In the programs you write, it is often necessary to test a particular condition that
affects the subsequent behavior of your code. Typically, that condition is specified
using an expression whose value is either true or false. This data type—for which
the only legal values are the constants true and false—is called Boolean data,
after the mathematician George Boole, who developed an algebraic approach for
working with such values.

In C++, the Boolean type is called bool. You can declare variables of type
bool and manipulate them in the same way as other data objects. The operations
that apply to the type bool are described in detail in the section entitled “Boolean
operators” on page 34.

22 Overview of C++

Characters
In the early days, computers were designed to work only with numeric data and
were sometimes called number crunchers as a result. Modern computers, however,
work less with numeric data than they do with text data, that is, any information
composed of individual characters that appear on the keyboard and the screen. The
ability of modern computers to process text data has led to the development of word
processing systems, online reference libraries, electronic mail, social networks, and
a seemingly infinite supply of exciting applications.

The most primitive elements of text data are individual characters, which are
represented in C++ using the predefined data type char. The domain of type char
is the set of symbols that can be displayed on the screen or typed on the keyboard:
the letters, digits, punctuation marks, spacebar, RETURN key, and so forth.
Internally, these values are represented inside the computer by assigning each
character a numeric code. In most implementations of C++, the coding system used
to represent characters is called ASCII, which stands for the American Standard
Code for Information Interchange. The decimal values of the characters in the
ASCII set are shown in Table 1-2, where the ASCII code for any character is the
sum of the numbers at the beginning of its row and column.

Although it is important to know that characters are represented internally using
a numeric code, it is not generally useful to know what numeric value corresponds

T A B L E 1 - 2 ASCII character codes

0 1 2 3 4 5 6 7 8 9

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

11x

12x

\000 \001 \002 \003 \004 \005 \006 \a \b \t

\n \v \f \r \016 \017 \020 \021 \022 \023

\024 \025 \026 \027 \030 \031 \032 \033 \034 \035

\036 \037 space ! " # $ % & '

() * + , - . / 0 1

2 3 4 5 6 7 8 9 : ;

< = > ? @ A B C D E

F G H I J K L M N O

P Q R S T U V W X Y

Z [\] ^ _ ‘ a b c

d e f g h i j k l m

n o p q r s t u v w

x y z { | } ~ \177

 1.5 Data types 23

to a particular character. When you type the letter A, the hardware logic built into
the keyboard automatically translates that character into the ASCII code 65, which
is then sent to the computer. Similarly, when the computer sends the ASCII code
65 to the screen, the letter A appears.

You can write a character constant in C++ by enclosing the character in single
quotes. Thus, the constant 'A' represents the internal code of the uppercase letter
A. In addition to the standard characters, C++ allows you to write special characters
in a multicharacter form beginning with a backward slash (\). This form is called
an escape sequence. Table 1-3 shows the escape sequences that C++ supports.

Strings
Characters are most useful when they are collected together into sequential units. In
programming, a sequence of characters is called a string. So far, the strings you’ve
seen in the HelloWorld and PowersOfTwo programs have been used simply to
display messages on the screen, but they have many more applications than that.

You write string constants in C++ by enclosing the characters contained within
the string in double quotes. As with character, C++ uses the escape sequences from
Table 1-3 to represent special characters. If two or more string constants appear
consecutively in a program, the compiler concatenates them together. The most
important implication of this rule is that you can break a long string over several
lines so that it doesn’t end up running past the right margin of your program.

T A B L E 1 - 3 Escape sequences

\a Audible alert (beeps or rings a bell)

\b Backspace

\f Formfeed (starts a new page)

\n Newline (moves to the beginning of the next line)

\r Return (returns to the beginning of the current line without advancing)

\t Tab (moves horizontally to the next tab stop)

\v Vertical tab (moves vertically to the next tab stop)

\0 Null character (the character whose ASCII code is 0)

\\ The character \ itself

\' The character ' (requires the backslash only in character constants)

\" The character " (requires the backslash only in string constants)

\ddd The character whose ASCII code is the octal number ddd

24 Overview of C++

Given that they are essential to so many applications, all modern programming
languages include special features for working with strings. Unfortunately, C++
complicates the issue by defining two different string types: an older style inherited
from C and a more sophisticated string library that supports the object-oriented
paradigm. To minimize confusion, this text uses the string library wherever
possible, and you should—for the most part—feel free to ignore the fact that two
string models exist. The times when that complexity raises its ugly head are
outlined in Chapter 3, which covers the string library in more detail. For the
moment, you can simply imagine that C++ offers a built-in data type called string
whose domain is the set of all sequences of characters. You can declare variables of
type string and pass string values back and forth between functions as arguments
and results.

The fact that string is a library type and not a built-in feature does have a few
implications. If you use the type name string in a program, you need to add the
string library to the list of #include lines, like this:

#include <string>

Moreover, because the string type is part of the standard library namespace, the
compiler will recognize the type name only if you have included the line

using namespace std;

at the beginning of the file, as the programs in this book invariably do.

Enumerated types
As the discussion of ASCII codes in the preceding section makes clear, computers
store character data in integer by assigning a number to each character. This idea of
encoding data as integers by numbering the elements of the domain is actually a
much more general principle. C++ allows you to define new types simply by listing
the elements in their domain. Such types are called enumerated types.

The syntax for defining an enumerated type is

enum typename { namelist };

where typename is the name of the new type and namelist is a list of the constants in
the domain, separated by commas. In this book, all type names start with an
uppercase letter, and the names of the enumeration constants are written entirely in
uppercase. For example, the following definition introduces a new Direction
type whose values are the four compass directions:

enum Direction { NORTH, EAST, SOUTH, WEST };

 1.5 Data types 25

When the C++ compiler encounters this definition, it assigns values to the constant
names by numbering them consecutively starting with 0. Thus, NORTH is assigned
the value 0, EAST is assigned the value 1, SOUTH is assigned the value 2, and WEST
is assigned the value 3.

C++ allows you to assign explicit underlying values to each of the constants of
an enumerated type. For example, the type declaration

enum Coin {
 PENNY = 1,
 NICKEL = 5,
 DIME = 10,
 QUARTER = 25,
 HALF_DOLLAR = 50,
 DOLLAR = 100
};

introduces an enumerated type for U.S. coinage in which each constant is defined to
equal the monetary value of that coin. If you supply values for some of the
constants but not others, the C++ compiler will automatically choose values for the
unassigned constants by numbering them consecutively after the last value you
supplied. Thus, the type declaration

enum Month {
 JANUARY = 1,
 FEBRUARY,
 MARCH,
 APRIL,
 MAY,
 JUNE,
 JULY,
 AUGUST,
 SEPTEMBER,
 OCTOBER,
 NOVEMBER,
 DECEMBER
};

introduces a type for the months of the year in which JANUARY has the value 1,
FEBRUARY has the value 2, and so forth up to DECEMBER, which has the value 12.

Compound types
The atomic types described in the preceding sections form the basis of a very rich
type system that allows you to create new types from existing ones. Moreover,
because C++ represents a synthesis of the object-oriented and procedural

26 Overview of C++

paradigms, the type system includes both objects and more traditional structures.
Learning how to define and manipulate these types is, to a large extent, the theme of
this entire book. It therefore does not make sense to squeeze a complete description
of these types into Chapter 1. That’s what the rest of the chapters are for.

Over the years of teaching this material at Stanford, we have discovered that you
are much more likely to master the concepts of object-oriented programming if the
details of defining classes and objects are presented after you have had a chance to
use them in a high-level way. This book adopts that strategy and postpones any
discussion of how to create your own objects until Chapter 6, at which point you
will have had plenty of time to discover just how useful objects can be.

 1.6 Expressions
Whenever you want a program to perform calculations, you need to write an
expression that specifies the necessary operations in a form similar to that used for
expressions in mathematics. For example, suppose that you wanted to solve the
quadratic equation

ax2 + bx + c = 0

As you know from high-school mathematics, this equation has two solutions given
by the formula

x =

The first solution is obtained by using + in place of the ± symbol; the second is
obtained by using – instead. In C++, you could compute the first of these solutions
by writing the following expression:

(-b + sqrt(b * b - 4 * a * c)) / (2 * a)

There are a few differences in form: multiplication is represented explicitly by a *,
division is represented by a /, and the square root function (which comes from a
library called <cmath> described in detail in Chapter 2) is written using the name
sqrt rather than a mathematical symbol. Even so, the C++ form of the expression
captures the intent of its mathematical counterpart in a way that is quite readable,
particularly if you’ve written programs in any modern programming language.

In C++, an expression is composed of terms and operators. A term, such as the
variables a, b, and c or the constants 2 and 4 in the preceding expression, represents
a single data value and must be either a constant, a variable, or a function call. An
operator is a character (or sometimes a short sequence of characters) that indicates a

-b + b
2
 - 4ac

2a

 1.6 Expressions 27

computational operation. A list of the operators available in C++ appears in
Table 1-4. The table includes familiar arithmetic operators like + and - along with
several others that pertain only to types introduced in later chapters.

Precedence and associativity
The point of listing all the operators in a single table is to establish how they relate
to one another in terms of precedence, which is a measure of how tightly an
operator binds to its operands in the absence of parentheses. If two operators
compete for the same operand, the one that appears higher in the precedence table is
applied first. Thus, in the expression

(-b + sqrt(b * b - 4 * a * c)) / (2 * a)

the multiplications b * b and 4 * a * c are performed before the subtraction
because * has a higher precedence than -. It is, however, important to note that
the - operator occurs in two forms. Operators that connect two operands are called
binary operators; operators that take just one operand are called unary operators.
When a minus sign is written in front of a single operand, as in -b, it is interpreted
as a unary operator signifying negation. When it appears between two operands, as
it does inside the argument to sqrt, the minus sign is a binary operator signifying

T A B L E 1 - 4 Operators available in C++

Operators organized into precedence groups Associativity

left() [] -> .

rightunary operators: - ++ -- ! & * ~ (type) sizeof

left* / %

left+ -

left<< >>

left< <= > >=

left== !=

left&

left^

left|

left&&

left||

right?:

right= op=

T A B L E 1 - 4 Operators available in C++

Operators organized into precedence groups Associativity

left() [] -> .

rightunary operators: - ++ -- ! & * ~ (type) sizeof

left* / %

left+ -

left<< >>

left< <= > >=

left== !=

left&

left^

left|

left&&

left||

right?:

right= op=

28 Overview of C++

subtraction. The precedence of the unary and binary versions of an operator are
different and are listed separately in the precedence table.

If two operators have the same precedence, they are applied in the order
specified by their associativity, which indicates whether that operator groups to the
left or to the right. Most operators in C++ are left-associative, which means that the
leftmost operator is evaluated first. A few operators—most notably the assignment
operator discussed in its own section later in this chapter—are right-associative,
which mean that they group from right to left. The associativity for each operator
appears in Table 1-4.

The quadratic formula illustrates the importance of paying attention to
precedence and associativity rules. Consider what would happen if you wrote the
expression without the parentheses around 2 * a, as follows:

(-b + sqrt(b * b - 4 * a * c)) / 2 * a

Without the parentheses, the division operator would be performed first because /
and * have the same precedence and associate to the left. This example illustrates
the use of the bug icon to mark code that is intentionally incorrect to make sure that
you don’t copy it into your own programs.

Mixing types in an expression
In C++, you can write an expression that includes values of different numeric types.
If C++ encounters an operator whose operands are of different types, the compiler
automatically converts the operands to a common type by choosing the type that
appears closest to the top of the hierarchy in Table 1-5. The result of applying the
operation is always that of the arguments after any conversions are applied. This
convention ensures that the result of the computation is as precise as possible.

T A B L E 1 - 5 Type conversion hierarchy for numeric types

long double
double
float
unsigned long
long
unsigned int
int
unsigned short
short
char

most precise

least precise

 1.6 Expressions 29

As an example, suppose that n is declared as an int, and x is declared as a
double. The expression

n + 1

is evaluated using integer arithmetic and produces a result of type int. The
expression

x + 1

however, is evaluated by converting the integer 1 to the floating-point value 1.0 and
adding the results together using double-precision floating-point arithmetic, which
results in a value of type double.

Integer division and the remainder operator
The fact that applying an operator to two integer operands generates an integer
result leads to an interesting situation with respect to the division operator. If you
write an expression like

9 / 4

C++’s rules specify that the result of this operation must be an integer, because both
operands are of type int. When C++ evaluates this expression, it divides 9 by 4
and discards any remainder. Thus, the value of this expression in C++ is 2, not
2.25.

If you want to compute the mathematically correct result of 9 divided by 4, at
least one of the operands must be a floating-point number. For example, the three
expressions

9.0 / 4
9 / 4.0
9.0 / 4.0

each produce the floating-point value 2.25. The decimal fraction is thrown away
only if both operands are of type int. The operation of discarding a decimal
fraction is called truncation.

The / operator in C++ is closely associated with the % operator, which returns
the remainder left over when the first operand is divided by the second. For
example, the value of

9 % 4

30 Overview of C++

is 1, since 4 goes into 9 twice, with 1 left over. The following are some other
examples of the % operator:

0 % 4 = 0 19 % 4 = 3
1 % 4 = 1 20 % 4 = 0
4 % 4 = 0 2001 % 4 = 1

The / and % operators turn out to be extremely useful in a wide variety of

programming applications. You can, for example, use the % operator to test whether
one number is divisible by another; to determine whether an integer n is divisible by
3, you just check whether the result of the expression n % 3 is 0.

It is, however, important to use caution if either or both of the operands to / and
% might be negative, because the results may differ from machine to machine. On
most machines, division truncates its result toward 0, but this behavior is not
actually guaranteed by the ANSI standard. In general, it is good programming
practice to avoid—as this book does—using these operators with negative values.

Type casts
In C++, you can specify explicit conversion by using what is called a type cast,
which specifies an explicit conversion from one type to another. In C++, type casts
are usually written by specifying the name of the desired type followed by the value
you wish to convert in parentheses. For example, if num and den are declared as
integers, you can compute the floating-point quotient by writing

quotient = double(num) / den;

The first step in evaluating the expression is to convert num to a double, after
which the division is performed using floating-point arithmetic as described in the
section on “Mixing types in an expression” earlier in this chapter.

As long as the conversion moves upward in the hierarchy shown in Table 1-5,
the conversion involves no loss of information. If, however, you convert a value of
a more precise type to a less precise one, some information may be lost. For
example, if you use a type cast to convert a value of type double to type int, any
decimal fraction is simply dropped. Thus, the value of the expression

int(1.9999)

is the integer 1.

The assignment operator
In C++, assignment of values to variables is built into the expression structure.
The = operator takes two operands, just like + or *. The left operand must indicate
a value that can change, which is typically a variable name. When the assignment

 1.6 Expressions 31

operator is executed, the expression on the right-hand side is evaluated, and the
resulting value is then stored in the variable that appears on the left-hand side.
Thus, if you evaluate an expression like

result = 1

the effect is that the value 1 is assigned to the variable result. In most cases,
assignment expressions of this sort appear in the context of simple statements,
which are formed by adding a semicolon after the expression, as in the line

result = 1;

Such statements are often called assignment statements.

The assignment operator converts the type of the value on the right-hand side so
that it matches the declared type of the variable. Thus, if the variable total is
declared to be of type double, and you write the assignment statement

total = 0;

the integer 0 is converted into a double as part of making the assignment. If n is
declared to be of type int, the assignment

n = 3.14159265;

has the effect of setting n to 3, because the value is truncated to fit in the integer
variable.

Even though assignment operators usually occur in the context of simple
statements, they can also be incorporated into larger expressions, in which case the
result of applying the assignment operator is simply the value assigned. For
example, the expression

z = (x = 6) + (y = 7)

has the effect of setting x to 6, y to 7, and z to 13. The parentheses are required in
this example because the = operator has a lower precedence than +. Assignments
that are written as part of larger expressions are called embedded assignments.

Although there are contexts in which embedded assignments are convenient,
they often make programs more difficult to read because the assignment is easily
overlooked in the middle of a complex expression. For this reason, this text limits
the use of embedded assignments to a few special circumstances in which they seem
to make the most sense. Of these, the most important is when you want to set
several variables to the same value. C++’s definition of assignment as an operator

32 Overview of C++

makes it possible, instead of writing separate assignment statements, to write a
single statement like

n1 = n2 = n3 = 0;

which has the effect of setting all three variables to 0. This statement works
because C++ evaluates assignment operators from right to left. The entire statement
is therefore equivalent to

n1 = (n2 = (n3 = 0));

The expression n3 = 0 is evaluated, which sets n3 to 0 and then passes 0 along as
the value of the assignment expression. That value is assigned to n2, and the result
is then assigned to n1. Statements of this sort are called multiple assignments.

As a programming convenience, C++ allows you to combine assignment with a
binary operator to produce a form called a shorthand assignment. For any binary
operator op, the statement

variable op= expression;

is equivalent to

variable = variable op (expression);

where the parentheses are included to emphasize that the entire expression is
evaluated before op is applied. Thus, the statement

balance += deposit;

is a shorthand for

balance = balance + deposit;

which adds deposit to balance.

Because this same shorthand applies to any binary operator in C++, you can
subtract the value of surcharge from balance by writing

balance -= surcharge;

Similarly, you can divide the value of x by 10 using

x /= 10;

 1.6 Expressions 33

Increment and decrement operators
Beyond the shorthand assignment operators, C++ offers a further level of
abbreviation for the particularly common programming operations of adding or
subtracting 1 from a variable. Adding 1 to a variable is called incrementing it;
subtracting 1 is called decrementing it. To indicate these operations in an
extremely compact form, C++ uses the operators ++ and --. For example, the
statement

x++;

in C++ has the same effect on the variable x as

x += 1;

which is itself short for

x = x + 1;

Similarly,

y--;

has the same effect as

y -= 1;

or

y = y - 1;

As it happens, these operators are more intricate than the previous examples
would suggest. To begin with, each of these operators can be written in two ways.
The operator can come after the operand to which it applies, as in

x++

or before the operand, as in

++x

The first form, in which the operator follows the operand, is called the postfix form,
the second, the prefix form.

If all you do is execute the ++ operator in isolation—as you do in the context of
a separate statement or the standard for loop patterns—the prefix and postfix
operators have precisely the same effect. You notice the difference only if you use

34 Overview of C++

these operators as part of a larger expression. Then, like all operators, the ++
operator returns a value, but the value depends on where the operator is written
relative to the operand. The two cases are as follows:

x++ Calculates the value of x first, and then increments it. The value
returned to the surrounding expression is the original value before the
increment operation is performed.

++x Increments the value of x first, and then uses the new value as the
value of the ++ operation as a whole.

The -- operator behaves similarly, except that the value is decremented rather than
incremented.

You may wonder why would anyone use such an arcane feature. The ++ and --
operators are certainly not essential. Moreover, there are not many circumstances in
which programs that embed these operators in larger expressions are demonstrably
better than those that use a simpler approach. On the other hand, ++ and -- are
firmly entrenched in the historical tradition shared by the languages C, C++, and
Java. Programmers use them so frequently that they have become essential idioms
in these languages. In light of their widespread use in programs, you need to
understand these operators so that you can make sense of existing code.

Boolean operators
C++ defines three classes of operators that manipulate Boolean data: the relational
operators, the logical operators, and the ?: operator. The relational operators are
used to compare two values. C++ defines six relational operators, as follows:

== Equal
!= Not equal
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

When you write programs that test for equality, be careful to use the == operator,

which is composed of two equal signs. A single equal sign is the assignment
operator. Since the double equal sign violates conventional mathematical usage,
replacing it with a single equal sign is a particularly common mistake. This mistake
can also be very difficult to track down because the C++ compiler does not usually
catch it as an error. A single equal sign turns the expression into an embedded
assignment, which is perfectly legal in C++; it just isn’t at all what you want.

 1.6 Expressions 35

The relational operators can be used to compare atomic data values like integers,
floating-point numbers, Boolean values, and characters, but those operators can also
be applied to many of the types supplied by libraries, such as string.

In addition to the relational operators, C++ defines three logical operators that
take Boolean operands and combine them to form other Boolean values:

! Logical not (true if the following operand is false)
&& Logical and (true if both operands are true)
|| Logical or (true if either or both operands are true)

These operators are listed in decreasing order of precedence.

Although the operators &&, ||, and ! closely resemble the English words and,
or, and not, it is important to remember that English can be somewhat imprecise
when it comes to logic. To avoid that imprecision, it is often helpful to think of
these operators in a more formal, mathematical way. Logicians define these
operators using truth tables, which show how the value of a Boolean expression
changes as the values of its operands change. The truth table in Table 1-6 illustrates
the result for each of the logical operators, given all possible values of the variables
p and q.

Whenever a C++ program evaluates an expression of the form

exp1 && exp2

or

exp1 || exp2

the individual subexpressions are always evaluated from left to right, and evaluation
ends as soon as the result can be determined. For example, if exp1 is false in the
expression involving &&, there is no need to evaluate exp2 since the final result will
always be false. Similarly, in the example using ||, there is no need to evaluate
the second operand if the first operand is true. This style of evaluation, which
stops as soon as the result is known, is called short-circuit evaluation.

T A B L E 1 - 6 Truth table for the logical operators

p q p && q p || q !p

false false false false true

false true false true true

true false false true false

true true true true false

36 Overview of C++

The C++ programming language includes another Boolean operator called ?:
that can be extremely useful in certain situations. In programming parlance, the
name of this operator is always pronounced as question-mark colon, even though
the two characters do not appear adjacent to each other in the code. Unlike the
other operators in C++, ?: is written in two parts and requires three operands. The
general form of the operation is

(condition) ? exp1 : exp2

The parentheses are not technically required, but C++ programmers often include
them to emphasize the boundaries of the conditional test.

When a C++ program encounters the ?: operator, it first evaluates the condition.
If the condition turns out to be true, exp1 is evaluated and used as the value of the
entire expression; if the condition is false, the value is the result of evaluating
exp2. For example, you can use the ?: operator to assign to max either the value of
x or the value of y, whichever is greater, as follows:

max = (x > y) ? x : y;

 1.7 Statements
Programs in C++ are composed of functions, which are made up in turn of
statements. As in most languages, statements in C++ fall into one of two principal
classifications: simple statements that perform some action and control statements
that affect the way in which other statements are executed. The sections that follow
review the principal statement forms available in C++, giving you the tools you
need to write your own programs.

Simple statements
The most common statement in C++ is the simple statement, which consists of an
expression followed by a semicolon:

expression;

In most cases, the expression is a function call, an assignment, or a variable
followed by the increment or decrement operator.

Blocks
As C++ is defined, control statements typically apply to a single statement. When
you are writing a program, you often want a particular control statement to apply to
a whole group of statements. To indicate that a sequence of statements is part of a
coherent unit, you can assemble those statements into a block, which is a collection
of statements enclosed in curly braces, as follows:

 1.7 Statements 37

{
 statement1
 statement2
 . . .
 statementn
}

When the C++ compiler encounters a block, it treats the entire block as a single
statement. Thus, whenever the notation statement appears in a pattern for one of the
control forms, you can substitute for it either a single statement or a block. To
emphasize that they are statements as far as the compiler is concerned, blocks are
sometimes referred to as compound statements. In C++, the statements in any
block may be preceded by declarations of variables.

The statements in the interior of a block are usually indented relative to the
enclosing context. The compiler ignores the indentation, but the visual effect is
extremely helpful to the human reader, because it makes the structure of the
program jump out at you from the format of the page. Empirical research has
shown that indenting three or four spaces at each new level makes the program
structure easiest to see; the programs in this text use three spaces for each new level.
Indentation is critical to good programming, so you should strive to develop a
consistent indentation style in your programs.

The if statement
In writing a program, you will often want to check whether some condition applies
and use the result of that check to control the subsequent execution of the program.
This type of program control is called conditional execution. The easiest way to
express conditional execution in C++ is by using the if statement, which comes in
two forms:

if (condition) statement

if (condition) statement else statement

You use the first form of the if statement when your solution strategy calls for a set
of statements to be executed only if a particular Boolean condition is true. If the
condition is false, the statements that form the body of the if statement are
simply skipped. You use the second form of the if statement for situations in
which the program must choose between two independent sets of actions based on
the result of a test. This statement form is illustrated by the following code, which
reports whether an integer n is even or odd.

38 Overview of C++

if (n % 2 == 0) {
 cout << "That number is even." << endl;
} else {
 cout << "That number is odd." << endl;
}

As with any control statement, the statements controlled by the if statement can

be either a single statement or a block. Even if the body of a control form is a single
statement, you are free to enclose it in a block if you decide that doing so improves
the readability of your code. The programs in this book enclose the body of every
control statement in a block unless the entire statement—both the control form and
its body—is so short that it fits on a single line.

The switch statement
The if statement is ideal for those applications in which the program logic calls for
a two-way decision point: some condition is either true or false, and the program
acts accordingly. Some applications, however, call for more complicated decision
structures involving several mutually exclusive cases: in one case, the program
should do x; in another case, it should do y; in a third, it should do z; and so forth.
In many applications, the most appropriate statement to use for such situations is the
switch statement, which has the following syntactic form:

switch (e) {
 case c1:
 statements
 break;
 case c2:
 statements
 break;
 . . . more case clauses . . .
 default:
 statements
 break;
}

The expression e is called the control expression. When the program executes a

switch statement, it evaluates the control expression and compares it against the
values c1, c2, and so forth, each of which must be a constant. If one of the constants
matches the value of the control expression, the statements in the associated case
clause are executed. When the program reaches the break statement at the end of
the clause, the operations specified by that clause are complete, and the program
continues with the statement that follows the entire switch statement.

 1.7 Statements 39

The default clause is used to specify what action occurs if none of the
constants match the value of the control expression. The default clause, however,
is optional. If none of the cases match and there is no default clause, the program
simply continues on with the next statement after the switch statement without
taking any action at all. To avoid the possibility that the program might ignore an
unexpected case, it is good programming practice to include a default clause in
every switch statement unless you are certain you have enumerated all the
possibilities.

The code pattern I’ve used to illustrate the syntax of the switch statement
deliberately suggests that break statements are required at the end of each clause.
In fact, C++ is defined so that if the break statement is missing, the program starts
executing statements from the next clause after it finishes the selected one. While
this design can be useful in some cases, it causes many more problems than it
solves. To reinforce the importance of remembering to exit at the end of each case
clause, the programs in this text include a break or return statement in each such
clause.

The one exception to this rule is that multiple case lines specifying different
constants can appear together, one after another, before the same statement group.
For example, a switch statement might include the following code:

case 1:
case 2:
 statements
 break;

which indicates that the specified statements should be executed if the select
expression is either 1 or 2. The C++ compiler treats this construction as two case
clauses, the first of which is empty. Because the empty clause contains no break
statement, a program that selects the first path simply continues on with the second
clause. From a conceptual point of view, however, you are better off if you think of
this construction as a single case clause representing two possibilities.

The constants in a switch statement must be a scalar type, which is defined in
C++ as a type that uses an integer as its underlying representation. In particular,
characters are often used as case constants, as illustrated by the following function,
which tests to see if its argument is a vowel:

40 Overview of C++

bool isVowel(char ch) {
 switch (ch) {
 case 'A': case 'E': case 'I': case 'O': case 'U':
 case 'a': case 'e': case 'i': case 'o': case 'u':
 return true;
 default:
 return false;
 }
}

Enumerated types also qualify as scalar types, as illustrated by the function

string directionToString(Direction dir) {
 switch (dir) {
 case NORTH: return "NORTH";
 case EAST: return "EAST";
 case SOUTH: return "SOUTH";
 case WEST: return "WEST";
 default: return "???";
 }
}

which converts a Direction value to a string. The default clause returns "???"
if the internal value of dir does not match any of the Direction constants.

As a second example of using switch with enumerated types, the following
function returns the number of days for a given month and year:

int daysInMonth(Month month, int year) {
 switch (month) {
 case APRIL:
 case JUNE:
 case SEPTEMBER:
 case NOVEMBER:
 return 30;
 case FEBRUARY:
 return (isLeapYear(year)) ? 29 : 28;
 default:
 return 31;
 }
}

This code assumes the existence of a function isLeapYear(year) that tests
whether year is a leap year. You can implement isLeapYear using the logical
operators && and ||, as follows:

 1.7 Statements 41

bool isLeapYear(int year) {
 return ((year % 4 == 0) && (year % 100 != 0))
 || (year % 400 == 0);
}

This function simply encodes the rule for determining leap years: a leap year is any
year divisible by 4, except for years ending in 00, in which case the year must be
divisible by 400.

Functions that return Boolean values—like isVowel and isLeapYear in this
section—are called predicate functions. Predicate functions play a useful role in
programming, and you will encounter many of them in this text.

The while statement
In addition to the conditional statements if and switch, C++ includes several
control statements that allow you to execute some part of the program multiple
times to form a loop. Such control statements are called iterative statements. The
simplest iterative statement in C++ is the while statement, which executes a
statement repeatedly until a conditional expression becomes false. The general
form for the while statement looks like this:

while (conditional-expression) {
 statements
}

When a program encounters a while statement, it first evaluates the conditional

expression to see whether it is true or false. If it is false, the loop terminates
and the program continues with the next statement after the entire loop. If the
condition is true, the entire body is executed, after which the program goes back to
the beginning of the loop to check the condition again. A single pass through the
statements in the body constitutes a cycle of the loop.

There are two important principles about the operation of a while loop:

1. The conditional test is performed before every cycle of the loop, including the

first. If the test is false initially, the body of the loop is not executed at all.

2. The conditional test is performed only at the beginning of a loop cycle. If that
condition becomes false at some point during the loop, the program won’t
notice that fact until it completes the entire cycle. At that point, the program
evaluates the test condition again. If it is still false, the loop terminates.

The operation of the while loop is illustrated by the following function, which

computes the sum of the digits in an integer:

42 Overview of C++

int digitSum(int n) {
 int sum = 0;
 while (n > 0) {
 sum += n % 10;
 n /= 10;
 }
 return sum;
}

The function depends on the following observations:

• The expression n % 10 always returns the last digit in a positive integer n.

• The expression n / 10 returns a number without its final digit.

The while loop is designed for situations in which there is some test condition
that can be applied at the beginning of a repeated operation, before any of the
statements in the body of the loop are executed. If the problem you are trying to
solve fits this structure, the while loop is the perfect tool. Unfortunately, many
programming problems do not fit easily into the standard while loop structure.
Instead of allowing a convenient test at the beginning of the operation, some
problems are structured in such a way that the test you want to write to determine
whether the loop is complete falls most naturally somewhere in the middle of the
loop.

The most common example of such loops are those that read in data from the
user until some special value, or sentinel, is entered to signal the end of the input.
When expressed in English, the structure of the sentinel-based loop consists of
repeating the following steps:

1. Read in a value.
2. If the value is equal to the sentinel, exit from the loop.
3. Perform whatever processing is required for that value.

Unfortunately, there is no test you can perform at the beginning of the loop to
determine whether the loop is finished. The termination condition for the loop is
reached when the input value is equal to the sentinel; in order to check this
condition, the program must first read in some value. If the program has not yet
read in a value, the termination condition doesn’t make sense.

When some operations must be performed before you can check the termination
condition, you have a situation that programmers call the loop-and-a-half problem.
One strategy for solving the loop-and-a-half problem in C++ is to use the break
statement, which, in addition to its use in the switch statement, has the effect of
immediately terminating the innermost enclosing loop. Using break, it is possible

 1.7 Statements 43

to code the loop structure in a form that follows the natural structure of the problem,
which is called the read-until-sentinel pattern:

while (true) {
 Prompt user and read in a value.
 if (value == sentinel) break;
 Process the data value.
}

Note that the

while (true)

line itself seems to introduce an infinite loop because the value of the constant true
can never become false. The only way this program can exit from the loop is by
executing the break statement inside it. The AddIntegerList program in
Figure 1-5 uses the read-until-sentinel pattern to compute the sum of a list of
integers terminated by the sentinel value 0.

There are other strategies for solving the loop-and-a-half problem, most of which
involve copying part of the code outside the loop or introducing additional Boolean
variables. Empirical studies have demonstrated that students are more likely to
write correct programs if they use a break statement to exit from the middle of the
loop than if they are forced to use some other strategy. This evidence and my own
experience have convinced me that using the read-until-sentinel pattern is the best
solution to the loop-and-a-half problem.

The for statement
One of the most important control statements in C++ is the for statement, which is
used in situations in which you want to repeat an operation a particular number of
times. All modern programming languages have a statement that serves that
purpose, but the for statement in the C family of languages is especially powerful
and is useful in a wide variety of applications.

You have already seen two examples of the for loop in the PowersOfTwo
program earlier in this chapter. The first appeared in the main program, when it
cycled through the desired values of the exponent. That loop looked like this:

for (int i = 0; i <= limit; i++) {
 cout << "2 to the " << i << " = "
 << raiseToPower(2, i) << endl;
}

44 Overview of C++

The second example appeared in the implementation of raiseToPower and had the
following form:

for (int i = 0; i < k; i++) {
 result *= n;
}

Each of these examples represents an idiomatic pattern that will come up often as
you write your programs.

F I G U R E 1 - 5 Program to add a list of integers

/*
 * File: AddIntegerList.cpp
 * ------------------------
 * This program adds a list of integers. The end of the
 * input is indicated by entering a sentinel value, which
 * is defined by setting the value of the constant SENTINEL.
 */

#include <iostream>
using namespace std;

/*
 * Constant: SENTINEL
 * ------------------
 * This constant defines the value used to terminate the input
 * list and should therefore not be a value one would want to
 * include as a data value. The value 0 therefore makes sense
 * for a program that adds a series of numbers because the
 * user can simply skip any 0 values in the input.
 */

const int SENTINEL = 0;

/* Main program */

int main() {
 cout << "This program adds a list of numbers." << endl;
 cout << "Use " << SENTINEL << " to signal the end." << endl;
 int total = 0;
 while (true) {
 int value;
 cout << " ? ";
 cin >> value;
 if (value == SENTINEL) break;
 total += value;
 }
 cout << "The total is " << total << endl;
 return 0;
}

 1.7 Statements 45

Of these two patterns, the second is more common. The general form of this
pattern is

for (int var = 0; var < n; var++)

and has the effect of executing the body of the loop n times. You can substitute any
variable name you want into this pattern, but that variable is often not used inside
the body of the for loop at all, as is the case in raiseToPower.

The pattern from the main program counts from one value to another and has the
following general form:

for (int var = start; var <= finish; var++)

In this pattern, the body of the for loop is executed with the variable var set to each
value between start and finish, inclusive. Thus, you could use a for loop to have
the variable i count from 1 to 100 like this:

for (int i = 1; i <= 100; i++)

You can also use the for loop pattern to implement the factorial function, which
is defined as the product of the integers between 1 and n and is usually written in
mathematics as n! The code is similar to the implementation of raiseToPower:

int fact(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {
 result *= i;
 }
 return result;
}

In this implementation, the for loop ensures that the variable i counts from 1 to n.
The body of the loop then updates the value of result by multiplying it by i,
which takes on each of the desired values in turn.

The variable used in these for loop patterns is called an index variable. The
convention of using single-letter names such as i and j for index variables dates
back at least as far as the early versions of FORTRAN (which required integer
variables to start with a predefined set of letters in the middle of the alphabet) but
also fits with similar conventions in mathematics. Although short variable names
are usually poor choices because they convey very little about the purpose of that
variable, the fact that this naming convention exists makes such names appropriate
in this context. Whenever you see the variable i or j in a for loop, you can be
reasonably confident that the variable is counting through some range of values.

46 Overview of C++

The for loop in C++, however, is considerably more general than the earlier
examples suggest. The general form of the for loop pattern is

for (init; test; step) {
 statements
}

This code is equivalent to the following while statement

init;
while (test) {
 statements
 step;
}

The code fragment specified by init, which is typically a variable declaration, runs
before the loop begins and is most often used to initialize an index variable. For
example, if you write

for (int i = 0; . . .

the loop will begin by setting the index variable i to 0. If the loop begins

for (int i = -7; . . .

the variable i will start as −7, and so on.

The test expression is a conditional test written exactly like the test in a while
statement. As long as the test expression is true, the loop continues. Thus, the
loop

for (int i = 0; i < n; i++)

begins with i equal to 0 and continues as long as i is less than n, which turns out to
represent a total of n cycles, with i taking on the values 0, 1, 2, and so forth, up to
the final value n–1. The loop

for (int i = 1; i <= n; i++)

begins with i equal to 1 and continues as long as i is less than or equal to n. This
loop also runs for n cycles, with i taking on the values 1, 2, and so forth, up to n.

The step expression indicates how the value of the index variable changes from
cycle to cycle. The most common form of step specification is to increment the
index variable using the ++ operator, but this is not the only possibility. For

 1.7 Statements 47

example, one can count backward using the -- operator, or count by twos using +=
2 instead of ++.

As an illustration of counting in the reverse direction, the program

int main() {
 for (int t = 10; t >= 0; t--) {
 cout << t << endl;
 }
 return 0;
}

generates the following sample run:

Each of the expressions in a for statement is optional, but the semicolons must
appear. If init is missing, no initialization is performed. If test is missing, it is
assumed to be true. If step is missing, no action occurs between loop cycles.

The return statement
The one other control statement you have seen in this chapter is the return
statement, which appears in each of the functions defined in this chapter. When it is
used to return a value, the return statement has the following form:

return expression;

Executing the return statement causes the current function to return immediately
to its caller, passing back the value of the expression to the caller as the value of the
function.

Although this chapter offers several examples that should enable you to write
simple functions of your own, the topic of functions in C++ is both complex enough
and important enough to be worth a chapter of its own. In Chapter 2, you’ll have
the chance to explore functions in much more detail.

48 Overview of C++

 1.8 The Stanford C++ libraries
The programs in this chapter use only features of C++ that are completely standard.
For that reason, these programs should work with any C++ compiler on any type of
hardware. The standard libraries, however, do not include all the features that you
would want as a programmer. Even though almost all modern applications use
graphical displays, the standard libraries offer no graphical capabilities. Every
modern operating system will provide libraries that support drawing pictures on the
screen, but those libraries are different for each machine. In order to create
applications that are as interesting as those you are used to using, you will certainly
need to use nonstandard libraries somewhere along the way.

As part of the supporting material for this textbook, Stanford University provides
a set of libraries that make learning to program in C++ both easier and more
enjoyable. Those libraries include a sophisticated graphics package that works in
exactly the same way on the various platforms that most people use. The Stanford
libraries, however, provide several tools that it makes sense to use even at this point
in your exploration of C++.

One library package that you might want to use for the exercises in this chapter
is the console library, which creates a console window on the screen as soon as your
program starts up. Having this window appear automatically solves the problem
that Dennis Ritchie identified in The C Programming Language when he wrote that
one of the harder challenges in running a program is to “find out where the output
went.” To use this library, all you have to do is add the line

#include "console.h"

at the beginning of your program. If this line appears, the program creates the
console. If it’s missing, the program works the way it always did.

The other Stanford library that you might want to begin using right away is the
simpio.h library, which simplifies getting input from the user. Instead of the lines

int limit;
cout << "Enter exponent limit: ";
cin >> limit;

using simpio.h allows you to collapse this idea into the following single line:

int limit = getInteger("Enter exponent limit: ");

This library also includes a getReal function for reading a floating-point value and
a getLine function for reading an entire line as a string. You will learn how to
write these functions in Chapter 4, but you can use them now to get in the habit.

 Summary 49

 Summary
This chapter is itself a summary, which makes it hard to condense it to a few central
points. Its purpose was to introduce you to the C++ programming language and
give you a crash course in how to write simple programs in that language. This
chapter focused on the low-level structure of the language, focusing on the concepts
of expressions and statements, which together make it possible to define functions.

Important points in this chapter include:

• In the 30+ years of its existence, the C++ programming language has become

one of the most widely used languages in the world.

• A typical C++ program consists of comments, library inclusions, program-level
definitions, function prototypes, a function named main that is called when the
program is started, and a set of auxiliary functions that work together with the
main program to accomplish the required task.

• Variables in a C++ program must be declared before they are used. Most
variables in C++ are local variables, which are declared within a function and
can only be used inside the body of that function.

• A data type is defined by a domain of values and a set of operations. C++
includes several primitive types that allow programs to store common data values
including integers, floating-point numbers, Booleans, and characters. As you
will learn in later chapters, C++ also allows programmers to define new types
from existing ones.

• The easiest way to perform input and output operations in C++ is to use the
iostream library. This library defines three standard streams that refer to the
console: cin for reading input data, cout for writing normal program output,
and cerr for reporting error messages. Console input is traditionally performed
using the >> operator, as in the statement

cin >> limit;

which reads a value from the console into the variable limit. Console output
uses the << operator, as illustrated by the line

cout << "The answer is " << answer << endl;

which would display the value of answer on the console along with an
identifying label. The endl value ensures that the next console output appears
on a new line.

• Expressions in C++ are written in a form similar to that in most programming
languages, with individual terms connected by operators. A list of the C++
operators appears in Table 1-4 along with their precedence and associativity.

50 Overview of C++

• Statements in C++ fall into two general categories: simple statements and control
statements. A simple statement consists of an expression—typically an
assignment or a function call—followed by a semicolon. The control statements
described in this chapter are the if, switch, while, and for statements. The
first two are used to express conditional execution, while the last two are used to
specify repetition.

• C++ programs are typically subdivided into several functions. You can use the
examples in this chapter as models for writing your own functions, or you can
wait until functions are covered in more detail in Chapter 2.

• The materials associated with this book include the Stanford C++ libraries which
provide tools to make learning programming more fun and exciting. You will
learn more about the features of the Stanford C++ libraries as you read this text.
Although it is by no means necessary to use them, two libraries that might make
your life easier are console.h and simpio.h.

 Review questions
1. When you write a C program, do you prepare a source file or an object file?

2. What characters are used to mark comments in a C++ program?

3. In an #include line, the name of the library header file can be enclosed in

either angle brackets or double quotation marks. What is the difference
between the two forms of punctuation?

4. How would you define a constant called CENTIMETERS_PER_INCH with the

value 2.54?

5. What is the name of the function that must be defined in every C++ program?

What statement typically appears at the end of that function?

6. What is the purpose of endl when you are writing to the cout output stream?

7. Define each of the following terms as it applies to a variable: name, type, value,

and scope.

8. Indicate which of the following are legal variable names in C++:

a. x g. total output
b. formula1 h. aVeryLongVariableName
c. average_rainfall i. 12MonthTotal
d. %correct j. marginal-cost
e. short k. b4hand
f. tiny l. _stk_depth

 Review questions 51

9. What are the two attributes that define a data type?

10. What is the difference between the types short, int, and long?

11. What does ASCII stand for?

12. List all possible values of type bool.

13. What statements would you include in a program to read a value from the user

and store it in the variable x, which is declared as a double?

14. Suppose that a function contains the following declarations:

int i;
double d;
char c;
string s;

Write a statement that displays the values of each of these variables on the
screen, along with the name of the variable so that you can tell which value is
which.

15. Indicate the values and types of the following expressions:

a. 2 + 3 d. 3 * 6.0
b. 19 / 5 e. 19 % 5
c. 19.0 / 5 f. 2 % 7

16. What is the difference between the unary minus and the binary subtraction

operator?

17. What does the term truncation mean?

18. Calculate the result of each of the following expressions:

a. 6 + 5 / 4 - 3
b. 2 + 2 * (2 * 2 - 2) % 2 / 2
c. 10 + 9 * ((8 + 7) % 6) + 5 * 4 % 3 * 2 + 1
d. 1 + 2 + (3 + 4) * ((5 * 6 % 7 * 8) - 9) - 10

19. How do you specify a shorthand assignment operation?

20. What is the difference between the expressions ++x and x++?

21. What is meant by short-circuit evaluation?

52 Overview of C++

22. Write out the general syntactic form for each of the following control
statements: if, switch, while, for.

23. Describe in English the operation of the switch statement, including the role

of the break statement at the end of each case clause.

24. What is a sentinel?

25. What for loop control line would you use in each of the following situations?

a. Counting from 1 to 100
b. Counting by sevens starting at 0 until the number has more than two digits
c. Counting backward by twos from 100 to 0

 Exercises
1. Write a program that reads in a temperature in degrees Celsius and displays the

corresponding temperature in degrees Fahrenheit. The conversion formula is

F = C + 32

2. Write a program that converts a distance in meters to the corresponding English

distance in feet and inches. The conversion factors you need are

1 inch = 0.0254 meters
1 foot = 12 inches

3. As mathematical historians have told the story, the German mathematician Carl

Friedrich Gauss (1777-1855) began to show his mathematical talent at a very
early age. When he was in elementary school, Gauss was asked by his teacher
to compute the sum of the numbers between 1 and 100. Gauss is said to have
given the answer instantly: 5050. Write a program that computes the answer to
the question Gauss’s teacher posed.

4. Write a program that reads in a positive integer N and then calculates and

displays the sum of the first N odd integers. For example, if N is 4, your
program should display the value 16, which is 1 + 3 + 5 + 7.

5. Write a program that reads in a list of integers from the user until the user

enters the value 0 as a sentinel. When the sentinel appears, your program
should display the largest value in the list, as illustrated in the following sample
run:

 Exercises 53

Be sure to define the sentinel value as a constant in a way that makes it easy to
change. You should also make sure that the program works correctly if all the
input values are negative.

6. For a slightly more interesting challenge, write a program that finds both the

largest and the second-largest number in a list, prior to the entry of a sentinel.
Once again using 0 as the sentinel, a sample run of this program might look like
this:

The values in this sample run are the number of pages in the British hardcover
editions of J. K. Rowling’s Harry Potter series. The output therefore tells us
that the longest book (Harry Potter and the Order of the Phoenix) has 766
pages and the second-longest book (Harry Potter and the Goblet of Fire)
weighs in at a mere 636 pages.

7. Using the AddIntegerList program from Figure 1-5 as a model, write a

program AverageList that reads in a list of integers representing exam scores
and then prints out the average. Because some unprepared student might
actually get a score of 0, your program should use −1 as the sentinel to mark the
end of the input.

8. Using the digitSum function from the section entitled “The while statement”

as a model, write a program that reads in an integer and then displays the

FindSecondLargest
This program finds the largest integer in a list.
Enter 0 to signal the end of the list.
 ? 223
 ? 251
 ? 317
 ? 636
 ? 766
 ? 607
 ? 607
 ? 0
The largest value was 766.
The second largest value was 636.

54 Overview of C++

number that has the same digits in the reverse order, as illustrated by this
sample run:

9. Every positive integer greater than 1 can be expressed as a product of prime

numbers. This factorization is unique and is called the prime factorization.
For example, the number 60 can be decomposed into the factors 2 x 2 x 3 x 5,
each of which is prime. Note that the same prime can appear more than once in
the factorization.

Write a program to display the prime factorization of a number n, as
illustrated by the following sample run:

10. In 1979, Douglas Hofstadter, Professor of Cognitive Science at the University

of Indiana, wrote Gödel, Escher, Bach, which he described as “a metaphorical
fugue on minds and machines in the spirit of Lewis Carroll.” The book won
the Pulitzer Prize for Literature and has over the years become one of the
classics of computer science. Much of its charm comes from the mathematical
oddities and puzzles it contains, many of which can be expressed in the form of
computer programs. Of these, one of the most interesting concerns the
sequence of numbers formed by repeatedly executing the following rules for
some positive integer n:

• If n is equal to 1, you’ve reached the end of the sequence and can stop.

• If n is even, divide it by two.

• If n is odd, multiply it by three and add one.

Although it also goes by several other names, this sequence is often called the
hailstone sequence because the values tend to go up and down before coming
back to 1, much as hailstones do in the clouds in which they form.

 Exercises 55

Write a program that reads in a number from the user and then generates the
hailstone sequence from that point, as in the following sample run:

As you can see, this program offers a narrative account of the process as it goes
along, much as Hofstadter does in his book.

One of the fascinating things about the hailstone sequence is that no one has

yet been able to prove that the process always stops. The number of steps in
the process can get very large, but somehow, it always seems to climb back
down to one.

11. The German mathematician Leibniz (1646–1716) discovered the rather

remarkable fact that the mathematical constant π can be computed using the
following mathematical relationship:

 ≅ 1 – + – + – + . . .

The formula to the right of the equal sign represents an infinite series; each
fraction represents a term in that series. If you start with 1, subtract one-third,
add one-fifth, and so on, for each of the odd integers, you get a number that
gets closer and closer to the value of π/4 as you go along.

Write a program that calculates an approximation of π consisting of the first
10,000 terms in Leibniz’s series.

12. You can also compute π by approximating the area bounded by a circular arc.

Consider the following quarter circle:

Hailstone
Enter a number: 15
15 is odd, so I multiply by 3 and add 1 to get 46
46 is even, so I divide it by 2 to get 23
23 is odd, so I multiply by 3 and add 1 to get 70
70 is even, so I divide it by 2 to get 35
35 is odd, so I multiply by 3 and add 1 to get 106
106 is even, so I divide it by 2 to get 53
53 is odd, so I multiply by 3 and add 1 to get 160
160 is even, so I divide it by 2 to get 80
80 is even, so I divide it by 2 to get 40
40 is even, so I divide it by 2 to get 20
20 is even, so I divide it by 2 to get 10
10 is even, so I divide it by 2 to get 5
5 is odd, so I multiply by 3 and add 1 to get 16
16 is even, so I divide it by 2 to get 8
8 is even, so I divide it by 2 to get 4
4 is even, so I divide it by 2 to get 2
2 is even, so I divide it by 2 to get 1

π
4

1

3

1

5

1

7

1

9

1

11

56 Overview of C++

which has a radius r equal to two inches. From the formula for the area of a
circle, you can easily determine that the area of the quarter circle should be π
square inches. You can also approximate the area computationally by adding
up the areas of a series of rectangles, where each rectangle has a fixed width
and the height is chosen so that the circle passes through the midpoint of the top
of the rectangle. For example, if you divide the area into 10 rectangles from
left to right, you get the following diagram:

The sum of the areas of the rectangles approximates the area of the quarter
circle. The more rectangles there are, the closer the approximation.

For each rectangle, the width w is a constant derived by dividing the radius

by the number of rectangles. The height h, on the other hand, varies depending
on the position of the rectangle. If the midpoint of the rectangle in the
horizontal direction is given by x, the height of the rectangle can be computed
using the sqrt function to express the distance formula

h =

The area of each rectangle is then simply h × w.

Write a program to compute the area of the quarter circle by dividing it into
10,000 rectangles.

r
2
 – x

2

Chapter 2
Functions and Libraries

I have always imagined Paradise as a kind of library.
— Jorge Luis Borges, “Poem of the Gifts,” 1960

58 Functions and Libraries

As you know from the examples from Chapter 1, programs in C++ typically consist
of a sequence of functions. This chapter looks more expansively at the idea of a
function and the realization of that concept in C++. In addition, this chapter
explores how functions can be stored in libraries, which makes it easier to use those
functions in a variety of applications.

 2.1 The idea of a function
When you are in the early stages of your study of programming, your most
important responsibility is learning how to use functions effectively in programs.
Fortunately, the concept of a function is likely to be familiar from mathematics, so
that you’re not learning a new concept completely from scratch. At the same time,
functions in C++ are much more general than their counterparts in mathematics,
which means that you’ll have to move beyond the mathematical conception and
think more expansively about how you might use functions as a programmer. The
sections that follow begin with the mathematical notion of a function and then
generalize that concept to encompass the applications of functions in the
programming domain.

Functions in mathematics
When you studied mathematics in high school, you almost certainly encountered the
concept of a function. For example, you might have seen a function definition like

ƒ(x) = x 2 + 1

which states that the function ƒ transforms a number x into the square of x plus one.
For any value of x, you can compute the value of the function simply by evaluating
the formula that appears in the definition. Thus, the value of ƒ(3) is 32 + 1, or 10.

Ever since the development of FORTRAN in the 1950s, programming languages
have incorporated this mathematical approach to functions into their computational
framework. For example, building on the examples of functions you saw in
Chapter 1, you know that you can implement the function ƒ in C++ like this:

double f(double x) {
 return x * x + 1;
}

This definition includes various bits of syntax that are absent from the mathematical
formulation, but the basic idea is the same. The function f takes an input value
represented by the variable x and returns as its output the value of the expression
x * x + 1.

 2.1 The idea of a function 59

Functions in programming
In programming languages, the concept of a function is more general than it is in
mathematics. Like their mathematical counterparts, functions in C++ can specify
input values, but don’t need to do so. Similarly, functions in C++ aren’t required to
return results. The essential characteristic of a C++ function is that it associates a
computational operation—specified by a block of code that forms the body of the
function—with a particular name. Once a function has been defined, other parts of
the program can trigger the associated operations using only the function name.
There is no need to repeat the code for the underlying operation, because the steps
required to implement that operation are specified in the function body.

This model of functions in the context of programming makes it possible to
define several terms that are essential to understanding how functions work in C++.
First of all, a function is a block of code that has been organized into a separate unit
and given a name. The act of using the name to invoke that code is known as
calling that function. To specify a function call in C++, you write the name of the
function, followed by a list of expressions enclosed in parentheses. These
expressions, called arguments, allow the calling program to pass information to the
function. If a function requires no information from its caller, it need not have any
arguments, but an empty set of parentheses must appear in both the function
definition and any calls to that function.

Once called, the function takes the data supplied as arguments, does its work,
and then returns to the program at the point in the code from which the call was
made. Remembering what the calling program was doing so that the program can
get back to the precise location of the call is one of the essential characteristics of
the function-calling mechanism. The operation of going back to the calling
program is called returning from the function. As it returns, a function often passes
a value back to its caller. This operation is called returning a value.

The advantages of using functions
Functions play several important roles in a programming language. First, defining
functions makes it possible to write the code for an operation once but then use it
many times. The ability to invoke the same sequence of instructions from many
parts of a program can dramatically reduce its size. Having the code for a function
appear in just one place also makes a program easier to maintain. If you need to
make a change in the way a function operates, it is far easier to do so if the code
appears only once than if the same operations are repeated throughout the code.

Defining a function, however, is valuable even if you use that function only once
in a particular program. The most important role that functions play is that they
make it possible to divide a large program into smaller, more manageable pieces.

60 Functions and Libraries

This process is called decomposition. As you almost certainly know from your
prior experience with programming, writing a program as one monolithic block of
code is a sure-fire recipe for disaster. What you want to do instead is subdivide the
high-level problem into a set of lower-level functions, each of which makes sense
on its own. Finding the right decomposition, however, turns out to be a challenging
task that requires considerable practice. If you choose the individual pieces well,
each one will have integrity as a unit and make the program as a whole much
simpler to understand. If you choose unwisely, the decomposition can easily get in
your way. There are no hard-and-fast rules for selecting a particular decomposition.
Programming is an art, and you will learn to choose good decomposition strategies
mostly through experience.

As a general rule, however, it makes sense to begin the decomposition process
starting with the main program. At this level, you think about the problem as a
whole and try to identify the major pieces of the entire task. Once you figure out
what the big pieces of the program are, you can define them as independent
functions. Since some of these functions may themselves be complicated, it is often
appropriate to decompose them into still smaller ones. You can continue this
process until every piece of the problem is simple enough to be solved on its own.
This process is called top-down design or stepwise refinement.

Functions and algorithms
In addition to their role as a tool for managing complexity, functions are important
in programming because they provide a basis for the implementation of algorithms,
which are precisely specified strategies for solving computational problems. The
term comes from the name of the ninth-century Persian mathematician Abu Ja‘far
Mohammed ibn Mûsâ al-Khowârizmî, whose treatise on mathematics entitled Kitab
al jabr w’al-muqabala gave rise to the English word algebra. Mathematical
algorithms, however, go back much further in history, and certainly extend at least
as far as the early Greek, Chinese, and Indian civilizations.

One of the earliest known algorithms worthy of that distinction is named for the
Greek mathematician Euclid, who lived in Alexandria during the reign of Ptolemy I
(323-283 BCE). In his great mathematical treatise called Elements, Euclid outlines a
procedure for finding the greatest common divisor (or gcd for short) of two integers
x and y, which is defined to be the largest integer that divides evenly into both. For
example, the gcd of 49 and 35 is 7, the gcd of 6 and 18 is 6, and the gcd of 32 and
33 is 1. In modern English, Euclid’s algorithm can be described as follows:

1. Divide x by y and compute the remainder; call that remainder r.

2. If r is zero, the algorithm is complete, and the answer is y.

3. If r is not zero, set x to the old value of y, set y equal to r, and repeat the process.

 2.1 The idea of a function 61

You can easily translate this algorithmic description into the following code in C++:

int gcd(int x, int y) {
 int r = x % y;
 while (r != 0) {
 x = y;
 y = r;
 r = x % y;
 }
 return y;
}

Euclid’s algorithm is considerably more efficient than any strategy you would be
likely to discover on your own, and is still used today in a variety of practical
applications, including the implementation of the cryptographic protocols that
enable secure communication on the Internet.

At the same time, it is not easy to see exactly why the algorithm gives the correct
result. Fortunately for those who rely on it in modern-day applications, Euclid was
able to prove the correctness of his algorithm in Elements, Book VII, proposition 2.
While it is not always necessary to have formal proofs of the algorithms that drive
computer-based applications, having such proofs makes it possible to have more
confidence in the correctness of those programs.

 2.2 Libraries
When you write a C++ program, most of the code the computer executes is not the
code you have written yourself, but the library code that you have loaded along with
your application. In a way, programs today are like icebergs, in which most of the
bulk lies hidden beneath the surface. If you want to become an effective C++
programmer, you need to spend at least as much time learning about the standard
libraries as you do learning the language itself.

Every program you have seen in this book—all the way back to the tiny
HelloWorld example at the beginning of Chapter 1—includes the <iostream>
library, which gives the program access to the cin and cout streams. The details
of how those streams are implemented aren’t important to you when you are writing
HelloWorld or PowersOfTwo. Those implementations, in fact, are not simply
beyond your reach at the moment, but entirely beyond the scope of this book. In
your role as a programmer, all that matters is that you know how to use these
libraries and that the library implementations do what they’re supposed to do.

For some reason, beginning programmers are sometimes uncomfortable with the
idea of calling a function without understanding its underlying implementation. In

62 Functions and Libraries

fact, you’ve probably been doing precisely that in mathematics for a long time. In
high school, you presumably encountered several functions that turned out to be
useful even if you had no idea—and probably no interest—in how the values of that
function are computed. In your algebra classes, for example, you learned about
functions like logarithms and square root. If you took a trigonometry course, you
worked with functions like sine and cosine. If you needed to know the value of one
of these functions, you didn’t compute the result by hand, but instead looked up the
answer in a table or, more likely, typed the appropriate values into a calculator.

When you’re writing programs, you want to follow that same strategy. If you
need to invoke some mathematical function, what you want to have is a library
function that computes it with no more conceptual effort than it takes to press the
right key on a calculator. Fortunately, C++ has an extensive mathematical library
called <cmath> that includes all the functions you are ever likely to need. The most
common functions in the <cmath> library appear in Table 2-1. Don’t worry if you

T A B L E 2 - 1 Selected functions in the <cmath> library

General mathematical functions

abs(x) Returns the absolute value of x

sqrt(x) Returns the square root of x.

floor(x) Returns the largest integer less than or equal to x as a floating-point value.

ceil(x) Returns the smallest integer greater than or equal to x as a floating-point value.

Logarithmic and exponential functions

exp(x) Returns the exponential function of x (ex).

log(x) Returns the natural logarithm (base e) of x.

log10(x) Returns the common logarithm (base 10) of x.

pow(x, y) Returns xy.

Trigonometric functions

cos(theta) Returns the cosine of the angle theta, measured in radians counterclockwise from
the +x axis. You can convert from degrees to radians by multiplying by π/180.

sin(theta) Returns the sine of the radian angle theta.

tan(theta) Returns the tangent of the radian angle theta.

atan(x) Returns the principal arctangent of x. The result is an angle expressed in radians
between –π/2 and +π/2.

atan2(y, x) Returns the radian angle formed between the x-axis and the line extending from the
origin through the point (x, y).

 2.2 Libraries 63

have no idea what some of those functions mean. This book requires very little
mathematics and will explain any concepts beyond basic algebra as they come up.

Whenever a library makes some service available to the programs that include it,
computer scientists say that the library exports that service. The <iostream>
library, for example, exports the cin and cout streams; the <cmath> library
exports the sqrt function, along with the other functions in Table 2-1.

One of the design goals of any library is to hide the complexity involved in the
underlying implementation. By exporting the sqrt function, the designers of the
<cmath> library make it far easier to write programs that use it. When you call the
sqrt function, you don’t need to have any idea how sqrt works internally. Those
details are relevant only to the programmers who implement the <cmath> library in
the first place.

Knowing how to call the sqrt function and knowing how to implement it are
both important skills. It is important to recognize, however, that those two skills—
calling a function and implementing one—are to a large extent independent.
Successful programmers often use functions that they wouldn’t have a clue how to
write. Conversely, programmers who implement a library function can never
anticipate all the potential uses for that function.

To emphasize the difference in perspective between programmers who
implement a library and those who use it, computer scientists have assigned names
to programmers working in each of these roles. Naturally enough, a programmer
who implements a library is called an implementer. Conversely, a programmer who
calls functions provided by a library is called a client of that library. As you go
through the chapters in this book, you will have a chance to look at several libraries
from both of these perspectives, first as a client and later as an implementer.

 2.3 Defining functions in C++
Although you saw several functions in Chapter 1 and even had a chance to write a
few of your own in the exercises, it makes sense to review the rules for writing
functions in C++ before going on to investigate how to use them most effectively.
In C++, a function definition has the following syntactic form:

type name(parameters) {
 . . . body . . .
}

In this example, type is the type returned by the function, name is the function name,
and parameters is a list of declarations separated by commas, giving the type and
name of each parameter to the function. A parameter is a placeholder for one of the

64 Functions and Libraries

arguments supplied in the function call and acts in most respects like a local
variable. The only difference is that each parameter is initialized automatically to
hold the value of the corresponding argument. If a function takes no parameters, the
entire parameter list in the function header line is empty.

The body of the function is a block consisting of the statements that implement
the function, along with the declarations of any local variables the function requires.
For functions that return a value to their caller, at least one of those statements must
be a return statement, which usually has the form

return expression;

Executing the return statement causes the function to return immediately to its
caller, passing back the value of the expression as the value of the function.

Functions can return values of any type. The following function, for example,
returns a Boolean value indicating whether the argument n is an even integer:

bool isEven(int n) {
 return n % 2 == 0;
}

Once you have defined this function, you can use it in an if statement like this:

if (isEven(i)) . . .

As noted in Chapter 1, functions that return Boolean results play an important role
in programming and are called predicate functions.

Functions, however, do not need to return a value at all. A function that does not
return a value and is instead executed for its effect is often called a procedure.
Procedures are indicated in the definition of a function by using the reserved word
void as the result type. Procedures ordinarily finish by reaching the end of the
statements in the body. You can, however, signal early completion of a procedure
by executing a return statement without a value expression, as follows:

return;

Function prototypes
When the C++ compiler encounters a function call in your program, it needs to have
some information about that function in order to generate the correct code. In most
cases, the compiler doesn’t need to know all the steps that form the body of the
function. All it really needs to know is what arguments the function requires and
what type of value it returns. That information is usually provided by a prototype,
which is simply the header line of the function followed by a semicolon.

 2.3 Defining functions in C++ 65

You have already seen examples of prototypes in Chapter 1. The PowersOfTwo
program from Figure 1-3, for example, provides the following prototype for the
raiseToPower function:

int raiseToPower(int n, int k);

which tells the compiler that raiseToPower takes two integers as arguments and
returns an integer as its result. The names of the parameters are optional in a
prototype, but supplying them usually helps the reader.

If you always define functions before you call them, prototypes are not required.
Some programmers organize their source files so that the low-level functions come
at the beginning, followed by the intermediate-level functions that call them, with
the main program coming at the very bottom. While this strategy can save a few
prototype lines, it forces an order on the source file that often makes it harder for the
reader to figure out what is going on. In particular, programs organized in this way
end up reflecting the opposite of top-down design, since the most general functions
appear at the end. In this text, every function other than main has an explicit
prototype, which makes it possible to define those functions in any order.

Overloading
In C++, it is legal to give the same name to more than one function as long as the
pattern of arguments is different. When the compiler encounters a call to a function
with that name, it checks to see what arguments have been provided and chooses the
version of the function that fits those arguments. Using the same name for more
than one version of a function is called overloading. The pattern of arguments
taken by a function—which refers only to the number and types of the arguments
and not the parameter names—is called its signature.

As an example of overloading, the <cmath> library includes several versions of
the function abs, one for each of the built-in arithmetic types. For example, the
library includes the function

int abs(int x) {
 return (x < 0) ? -x : x;
}

as well as the identically named function

double abs(double x) {
 return (x < 0) ? -x : x;
}

66 Functions and Libraries

The only difference between these functions is that the first version takes an int as
its argument and the second takes a double. The compiler chooses which of these
versions to invoke by looking at the types of the arguments the caller provides.
Thus, if abs is called with an int, the compiler invokes the integer-valued version
of the functions and returns a value of type int. If, by contrast, the argument is of
type double, the compiler will choose the version that takes a double.

The primary advantage of using overloading is that doing so makes it easier for
you as a programmer to keep track of different function names for the same
operation when it is applied in slightly different contexts. If, for example, you need
to call the absolute value function in C, which does not support overloading, you
have to remember to call fabs for floating-point numbers and abs for integers. In
C++, all you need to remember is the single function name abs.

Default parameters
In addition to overloading, C++ makes it possible to specify that certain parameters
are optional. The parameter variables still appear in the function header line, but the
prototype for the function specifies the values that those parameters should have if
they do not appear in the call. Such parameters are called default parameters.

To indicate that a parameter is optional, all you need to do is include an initial
value in the declaration of that parameter in the function prototype. For example, if
you were designing a set of functions to implement a word processor, you might
define a procedure with the following prototype:

void formatInColumns(int nColumns = 2);

The formatInColumns procedure takes the number of columns as an argument,
but the = 2 in the prototype declaration means that this argument may be omitted. If
you leave it out and call

formatInColumns();

the parameter variable nColumns will automatically be initialized to 2.

When you use default parameters, it helps to keep the following rules in mind:

• The specification of the default value appears only in the function prototype and

not in the function definition.

• Any default parameters must appear at the end of the parameter list.

Default parameters tend to be overused in C++. It is always possible—and
usually preferable—to achieve the same effect through overloading. Suppose, for

 2.3 Defining functions in C++ 67

example, that you want to define a procedure setInitialLocation that takes an
x and a y coordinate as arguments. The prototype presumably looks like this:

void setInitialLocation(double x, double y);

Now suppose that you want to change this definition so that the initial location
defaults to the origin (0, 0). One way to accomplish that goal is to add initializers to
the prototype, like this:

void setInitialLocation(double x = 0, double y = 0);

While this definition has the desired effect, having it in place makes it possible to
call setInitialLocation with one argument, which would almost certainly be
confusing to anyone reading the code. It is almost certainly better to define an
overloaded version of the function with the following implementation:

void setInitialLocation() {
 setInitialLocation(0, 0);
}

 2.4 The mechanics of function calls
Although you can certainly get by with an intuitive understanding of how the
function-calling process works, it sometimes helps—particularly when you start to
work with recursive functions in Chapter 7—to understand precisely what happens
when one function calls another in C++. The sections that follow define the process
in detail and then walk you through a simple example designed to help you visualize
exactly what is going on.

The steps in calling a function
Whenever a function call occurs, the C++ compiler generates code to implement the
following operations:

1. The calling function computes values for each argument using the bindings of

local variables in its own context. Because the arguments are expressions, this
computation can involve operators and other functions, all of which are
evaluated before execution of the new function actually begins.

2. The system creates new space for all the local variables required by the new
function, including any parameters. These variables are allocated together in a
block, which is called a stack frame.

3. The value of each argument is copied into the corresponding parameter
variable. If there is more than one argument, the arguments are copied into the
parameters in order; the first argument is copied into the first parameter, and so

68 Functions and Libraries

forth. If necessary, type conversions are performed between the argument
values and the parameter variables, as in an assignment statement. For
example, if you pass a value of type int to a function that expects a parameter
of type double, the integer is converted into the equivalent floating-point value
before it is copied into the parameter variable.

4. The statements in the function body are executed until the program encounters
a return statement or there are no more statements to execute.

5. The value of the return expression, if any, is evaluated and returned as the
value of the function. If the value being returned does not precisely match the
result type declared for the function, a type conversion is performed. Thus, if a
return statement specifies a floating-point value in a function defined to
return an int, the result is truncated to an integer.

6. The stack frame created for this function call is discarded. In the process, all
local variables disappear.

7. The calling program continues, with the returned value substituted in place of
the call.

Although this process may seem to make sense, you probably need to work

through an example or two before you understand it thoroughly. Reading through
the example in the next section will give you some insight into the process, but it is
probably even more helpful to take one of your own programs and walk through it
at the same level of detail. And while you can trace through a program on paper or
a whiteboard, it may be better to get yourself a supply of 3×5 index cards and then
use a card to represent each stack frame. The advantage of the index-card model is
that you can create a stack of index cards that closely models the operation of the
computer. Calling a function adds a card; returning from the function removes it.

The combinations function
Suppose that you have a collection of six coins, which in the United States might be
a penny, a nickel, a dime, a quarter, a half-dollar, and a dollar. Given those six
coins, how many ways are there to choose two of them? As you can see from the
full enumeration of the possibilities in Figure 2-1, the answer is 15. As a computer
scientist, you should immediately think about the more general question: Given a
set containing n distinct elements, how many ways can you choose a subset with k
elements? The answer to that question is well known in mathematics and is
computed by the combinations function C(n, k), which is defined as follows:

C(n, k) =

where the exclamation point indicates the factorial function, which is simply the
product of the integers between 1 and the specified number, inclusive.

k! × (n – k)!
n!

 2.4 The mechanics of function calls 69

The code to compute the combinations function in C++ appears in Figure 2-2, along
with a main program that requests values of n and k from the user and then displays
the value of the function C(n, k). A sample run of the program might look like this:

As you can see from Figure 2-2, the Combinations program is divided into
three functions. The main function handles the interaction with the user. The
combinations function computes C(n, k). Finally, the fact function, which is
borrowed from Chapter 1, computes the factorials required for the computation.

Combinations
Enter the number of objects (n): 6
Enter the number to be chosen (k): 2
C(n, k) = 15

F I G U R E 2 - 1 Illustration of the combinations function

If you start with six coins

There are 15 ways to choose two coins:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

70 Functions and Libraries

Figure 2-2.
F I G U R E 2 - 2 Program to compute the combinations function

/*
 * File: Combinations.cpp
 * ----------------------
 * This program computes the mathematical function C(n, k) from
 * its mathematical definition in terms of factorials.
 */

#include <iostream>
using namespace std;

/* Function prototypes */

int combinations(int n, int k);
int fact(int n);

/* Main program */

int main() {
 int n, k;
 cout << "Enter the number of objects (n): ";
 cin >> n;
 cout << "Enter the number to be chosen (k): ";
 cin >> k;
 cout << "C(n, k) = " << combinations(n, k) << endl;
 return 0;
}

/*
 * Function: combinations(n, k)
 * Usage: int nWays = combinations(n, k);
 * --------------------------------------
 * Returns the mathematical combinations function C(n, k), which is
 * the number of ways one can choose k elements from a set of size n.
 */

int combinations(int n, int k) {
 return fact(n) / (fact(k) * fact(n - k));
}

/*
 * Function: fact(n)
 * Usage: int result = fact(n);
 * ----------------------------
 * Returns the factorial of n, which is the product of all the
 * integers between 1 and n, inclusive.
 */

int fact(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {
 result *= i;
 }
 return result;
}

 2.4 The mechanics of function calls 71

Tracing the combinations function
While the Combinations program can be interesting in its own right, the purpose
of this example is to illustrate the steps involved in executing functions. In C++, all
programs begin by making a call to the function main. To implement a function
call, the system—which encompasses both the operating system you’re using and
the hardware on which it runs—creates a new stack frame to keep track of the local
variables that function declares. In the Combinations program, the main function
declares two integers, n and k, so the stack frame must include space for these
variables.

In the diagrams in this book, each stack frame appears as a rectangle surrounded
by a double line. The frame rectangle shows the code for the function along with a
pointing-hand icon that makes it easy to keep track of the current execution point. It
also contains labeled boxes for each of the local variables. The stack frame for
main therefore looks like this when execution begins:

From this point, the system executes the statements in order, printing out the
prompts on the console, reading in the associated values from the user, and storing
those values in the variables in that frame. If the user enters the values shown in the
earlier sample run, the frame will look like this when it reaches the statement that
displays the result:

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

} nk

☞

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

} n

6

k

2

☞

72 Functions and Libraries

Before the program can complete the output line, it has to evaluate the call to
combinations(n, k). At this point, the function main is calling the function
combinations, which means that the computer has to go through all the steps that
are required in making a function call.

The first step is to evaluate the arguments in the context of the current frame.
The variable n has the value 6, and the variable k has the value 2. These two
arguments are then copied into the parameter variables n and k when the computer
creates the combinations stack frame. The new frame gets stacked on top of the
old one, which allows the computer to remember the values of the local variables in
main, even though they are not currently accessible. The situation after creating the
new frame and initializing the parameter variables looks like this:

To compute the value of the combinations function, the program must make
three calls to the function fact. In C++, those function calls can happen in any
order, but it’s easiest to process them from left to right. The first call, therefore, is
the call to fact(n). To evaluate this function, the system must create yet another
stack frame, this time for the function fact with an argument value of 6:

Unlike the earlier stack frames, the frame for fact includes both parameters and
local variable. The parameter n is initialized to the value of the calling argument

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}

n

6

k

2

☞

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}
int fact(int n) {

 int result = 1;

 for (int i = 1; i <= n; i++) {

 result *= i;

 }

 return result;

}

n

6

resulti

☞

 2.4 The mechanics of function calls 73

and therefore has the value 6. The two local variables, i and result, have not yet
been initialized, but the system nonetheless needs to reserve space in the frame for
those variables. Until you assign a new value to those variables, they will contain
whatever data happened to be left over in the memory cells assigned to that stack
frame, which is completely unpredictable. It is therefore important to initialize all
local variables before you use them, ideally as part of the declaration.

The system then executes the statements in the function fact. In this instance,
the body of the for loop will be executed six times. On each cycle, the value of
result is multiplied by the loop index i, which means that it will eventually hold
the value 720 (1×2×3×4×5×6 or 6!). When the program reaches the return
statement, the stack frame looks like this:

In this diagram, the box for the variable i is empty, because the value of i is no
longer defined at this point in the program. In C++, index variables declared in a
for loop header are accessible only inside the loop body. Showing an empty box
emphasizes the fact that the value of i is no longer available.

Returning from a function involves copying the value of the return expression
(in this case the local variable result), into the point at which the call occurred.
The frame for fact is then discarded, which leads to the following configuration:

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}
int fact(int n) {

 int result = 1;

 for (int i = 1; i <= n; i++) {

 result *= i;

 }

 return result;

}

n

6

result

720

i

☞

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}

n

6

k

2

720

74 Functions and Libraries

The next step in the process is to make a second call to fact, this time with the
argument k. In the calling frame, k has the value 2. That value is then used to
initialize the parameter n in the new stack frame, as follows:

The computation of fact(2) is a bit easier to perform in one’s head than the
earlier call to fact(6). This time around, the value of result will be 2, which is
then returned to the calling frame, like this:

The code for combinations makes one more call to fact, this time with the
argument n - k. As before, this call creates a new frame with n equal to 4:

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}
int fact(int n) {

 int result = 1;

 for (int i = 1; i <= n; i++) {

 result *= i;

 }

 return result;

}

n

2

resulti

☞

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}

n

6

k

2

720 2

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}
int fact(int n) {

 int result = 1;

 for (int i = 1; i <= n; i++) {

 result *= i;

 }

 return result;

}

n

4

resulti

☞

 2.4 The mechanics of function calls 75

The value of fact(4) is 1×2×3×4, or 24. When this call returns, the system is
able to fill in the last of the missing values in the calculation, as follows:

The computer then divides 720 by the product of 2 and 24 to get the answer 15.
This value is then returned to the main function, which leads to the following state:

From here, all that remains is to generate the output line and return from the
main function, which completes the execution of the program.

 2.5 Reference parameters
In C++, whenever you pass a simple variable from one function to another, the
function gets a copy of the calling value. Assigning a new value to the parameter as
part of the function changes the local copy but has no effect on the calling
argument. For example, if you try to implement a procedure that initializes a
variable to zero using the code

void setToZero(int var) {
 var = 0;
}

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

}

int combinations(int n, int k) {

 return fact(n) / (fact(k) * fact(n - k));

}

n

6

k

2

720 2 24

int main() {

 int n, k;

 cout << "Enter the number of objects (n): ";

 cin >> n;

 cout << "Enter the number to be chosen (k): ";

 cin >> k;

 cout << "C(n, k) = " << combinations(n, k) << endl;

 return 0;

} n

6

k

2

15

76 Functions and Libraries

that procedure ends up having no effect whatever. If you call

setToZero(x);

the parameter var is initialized to a copy of whatever value is stored in x. The
assignment statement

var = 0;

inside the function sets the local copy to 0 but leaves x unchanged in the calling
program.

If you want to change the value of the calling argument—and there are often
compelling reasons for doing so—you can change the parameter from the usual kind
of C++ parameter (which is called a value parameter) into a reference parameter
by adding an ampersand between the type and the name in the function header.
Unlike value parameters, reference parameters are not copied. What happens
instead is that the function receives a reference to the original variable, which means
that the memory used for that variable is shared between the function and its caller.
The new version of setToZero looks like this:

void setToZero(int & var) {
 var = 0;
}

This style of parameter passing is known as call by reference. When you use

call by reference, the argument corresponding to the reference parameter must be an
assignable value, such as a variable name. Although calling setToZero(x) would
correctly set the integer variable x to 0, it would be illegal to call setToZero(3)
because 3 is not assignable.

In C++, one of the most common uses of call by reference occurs when a
function needs to return more than one value to the calling program. A single result
can easily be returned as the value of the function itself. If you need to return more
than one result from a function, the return value is no longer appropriate. The
standard approach to solving the problem is to turn that function into a procedure
and pass values back and forth through the argument list.

As an example, suppose that you are writing a program to solve the quadratic
equation

ax2 + bx + c = 0

Because of your commitment to good programming style, you want to structure that
program into three phases as illustrated in the following flowchart:

 2.5 Reference parameters 77

The Quadratic program in Figure 2-3 shows how call by reference makes it
possible to decompose the quadratic equation problem in this way. Each of the
functions in Figure 2-3 corresponds to one of the phases in the flowchart. The main
program provides information to the function using conventional parameters.
Whenever a function needs to get information back to the main program, it uses
reference parameters. The solveQuadratic function uses parameters of each
type. The parameters a, b, and c are used as input to the function and give it access
to the three coefficients. The parameters x1 and x2 are output parameters and allow
the program to pass back the two roots of the quadratic equation.

The Quadratic program also introduces a new strategy for reporting errors.
Whenever the code encounters a condition that makes further progress impossible, it
calls a function named error that prints a message indicating the nature of the
problem and then terminates the execution of the program. The code for error
looks like this:

void error(string msg) {
 cerr << msg << endl;
 exit(EXIT_FAILURE);
}

The code for error uses two features of C++ that have not yet made their
appearance in this book: the cerr output stream and the exit function. The cerr
stream is similar to cout, but is reserved for reporting errors. The exit function
terminates the execution of the main program immediately, using the value of the
parameter to report the program status. The constant EXIT_FAILURE is defined in
the <cstdlib> library and is used to indicate that some kind of failure occurred.

from the user.

the coefficients

Accept values of

Input phase:

coefficients.

equation for those

Solve the quadratic

Computation phase:

on the screen.

of the equation

Display the roots

Output phase:

78 Functions and Libraries

page 1 of figure.
F I G U R E 2 - 3 Program to solve the quadratic equation

/*
 * File: Quadratic.cpp
 * -------------------
 * This program finds roots of the quadratic equation
 *
 * 2
 * a x + b x + c = 0
 *
 * If a is 0 or if the equation has no real roots, the
 * program prints an error message and exits.
 */

#include <iostream>
#include <cstdlib>
#include <cmath>
using namespace std;

/* Function prototypes */

void getCoefficients(double & a, double & b, double & c);
void solveQuadratic(double a, double b, double c,
 double & x1, double & x2);
void printRoots(double x1, double x2);
void error(string msg);

/* Main program */

int main() {
 double a, b, c, r1, r2;
 getCoefficients(a, b, c);
 solveQuadratic(a, b, c, r1, r2);
 printRoots(r1, r2);
 return 0;
}

/*
 * Function: getCoefficients
 * Usage: getCoefficients(a, b, c);
 * --------------------------------
 * Reads in the coefficients of a quadratic equation into the
 * reference parameters a, b, and c.
 */

void getCoefficients(double & a, double & b, double & c) {
 cout << "Enter coefficients for the quadratic equation:" << endl;
 cout << "a: ";
 cin >> a;
 cout << "b: ";
 cin >> b;
 cout << "c: ";
 cin >> c;
}

 2.5 Reference parameters 79

The error function, of course, would be useful in many applications beyond the
one that solves quadratic equations. Although you could easily copy the code into
another program, it would make much more sense to save the error function in a
library. In the following section, you’ll have a chance to do precisely that.

F I G U R E 2 - 3 Program to solve the quadratic equation (continued)

/*
 * Function: solveQuadratic
 * Usage: solveQuadratic(a, b, c, x1, x2);
 * ---------------------------------------
 * Solves a quadratic equation for the coefficients a, b, and c. The
 * roots are returned in the reference parameters x1 and x2.
 */

void solveQuadratic(double a, double b, double c,
 double & x1, double & x2) {
 if (a == 0) error("The coefficient a must be nonzero.");
 double disc = b * b - 4 * a * c;
 if (disc < 0) error("This equation has no real roots.");
 double sqrtDisc = sqrt(disc);
 x1 = (-b + sqrtDisc) / (2 * a);
 x2 = (-b - sqrtDisc) / (2 * a);
}

/*
 * Function: printRoots
 * Usage: printRoots(x1, x2);
 * --------------------------
 * Displays x1 and x2, which are the roots of the quadratic equation.
 */

void printRoots(double x1, double x2) {
 if (x1 == x2) {
 cout << "There is a double root at " << x1 << endl;
 } else {
 cout << "The roots are " << x1 << " and " << x2 << endl;
 }
}

/*
 * Function: error
 * Usage: error(msg);
 * ------------------
 * Writes the string msg to the cerr stream and then exits the program
 * with a standard status value indicating that a failure has occurred.
 */

void error(string msg) {
 cerr << msg << endl;
 exit(EXIT_FAILURE);
}

80 Functions and Libraries

 2.6 Interfaces and implementations
When you define a library in C++, you need to supply two parts. First, you must
define the interface, which provides the information clients need to use the library
but leaves out the details about how the library works. Second, you need to provide
the implementation, which specifies the underlying details. A typical interface will
export several definitions, which are typically functions, types, or constants. Each
individual definition is called an interface entry.

In C++, the interface and implementation are usually written as two separate
files. The name of the interface file ends with .h, which marks it as a header file.
The implementation appears in a file with the same root, but with the suffix .cpp.
Following this convention, the error library is defined in the file error.h and
implemented in the file error.cpp.

Defining the error library
The contents of the error.h interface appear in Figure 2-4. As you can see, the
file consists mostly of comments. The only other parts of the interface are the
prototype for the error function and three additional lines that are often referred to

F I G U R E 2 - 4 Interface for the error library

/*
 * File: error.h
 * -------------
 * This file defines a simple function for reporting errors.
 */

#ifndef _error_h
#define _error_h

/*
 * Function: error
 * Usage: error(msg);
 * ------------------
 * Writes the string msg to the cerr stream and then exits the program
 * with a standard status code indicating failure. The usual pattern for
 * using error is to enclose the call to error inside an if statement that
 * checks for a particular condition, which might look something like this:
 *
 * if (divisor == 0) error("Division by zero");
 */

void error(std::string msg);

#endif

 2.6 Interfaces and implementations 81

as interface boilerplate, which is a patterned set of lines that appears in every
interface. In this interface, the boilerplate consists of the #ifndef and #define
lines at the beginning of the interface and the matching #endif line at the end.
These lines make sure that the compiler doesn’t compile the same interface twice.
The #ifndef directive checks whether the _error_h symbol has been defined.
When the compiler reads this interface for the first time, the answer is no. The next
line, however, defines that symbol. Thus, if the compiler is later asked to read the
same interface, the _error_h symbol will already be defined, and the compiler will
skip over the contents of the interface this time around. This book uses the
convention of checking for a symbol that begins with an underscore followed by the
name of the interface file after replacing the dot with a second underscore.

The prototype for error, however, looks slightly different when it appears in
interface form. The parameter declaration now uses the type name std::string
to indicate that string comes from the std namespace. Interfaces are typically
read before the using namespace std line and therefore cannot use identifiers
from that namespace without explicitly including the std:: qualifier.

The error.cpp implementation appears in Figure 2-5. Comments in the
implementation are intended for programmers responsible for maintaining the

F I G U R E 2 - 5 Implementation of the error library

/*
 * File: error.cpp
 * ---------------
 * This file implements the error.h interface.
 */

#include <iostream>
#include <cstdlib>
#include "error.h"
using namespace std;

/*
 * Implementation notes: error
 * ---------------------------
 * This function writes out the error message to the cerr stream and
 * then exits the program. The EXIT_FAILURE constant is defined in
 * <cstdlib> to represent a standard failure code.
 */

void error(string msg) {
 cerr << msg << endl;
 exit(EXIT_FAILURE);
}

82 Functions and Libraries

library and are often less extensive than those in the interface. Here, the body of the
error function is all of two lines long, and the purpose of each of those lines is
instantly recognizable to any C++ programmer.

Exporting types
The error.h interface described in the preceding section exports a single function
and nothing else. Most of the interfaces you will use in C++ also export data types.
Most of these types will be classes, which are the foundation of the object-oriented
type system that C++ provides. Given that you won’t learn how to define your own
classes until Chapter 6, it is premature to introduce class-based examples at this
point in the text. What does make sense is to create an interface that exports one of
the enumerated types introduced in Chapter 1, such as the Direction type used to
encode the four standard compass points:

enum Direction { NORTH, EAST, SOUTH, WEST };

The simplest approach to making this type accessible through a library interface
would be to write a direction.h interface that contained only this line along with
the usual interface boilerplate. If you were to adopt that strategy, you wouldn’t
need to supply an implementation at all.

It is more useful, however, to have this interface export some simple functions
for working with Direction values. For example, it would be useful to export the
directionToString function defined on page 40, which returns the name of a
direction given the enumerated value. For some of the programs that appear later in
this book, it will be useful to have functions leftFrom and rightFrom that return
the Direction value that results from turning 90 degrees in the specified direction,
so that, for example, leftFrom(NORTH) would return WEST. If you add these
functions to the direction.h interface, you will also need to supply a
direction.cpp file to implement those functions. Those files appear in
Figures 2-6 and 2-7.

The implementations of leftFrom and rightFrom require some subtlety that is
worth a little explanation. While C++ lets you freely convert an enumerated value
to an integer, conversions in the opposite direction—from an integer to the
corresponding value of an enumerated type—require a type cast. This fact is
illustrated by the implementation of rightFrom, which looks like this:

Direction rightFrom(Direction dir) {
 return Direction((dir + 1) % 4);
}

 2.6 Interfaces and implementations 83

direction.h
F I G U R E 2 - 6 Interface for the direction library

/*
 * File: direction.h
 * -----------------
 * This interface exports an enumerated type called Direction whose
 * elements are the four compass points: NORTH, EAST, SOUTH, and WEST.
 */

#ifndef _direction_h
#define _direction_h

#include <string>

/*
 * Type: Direction
 * ---------------
 * This enumerated type is used to represent the four compass directions.
 */

enum Direction { NORTH, EAST, SOUTH, WEST };

/*
 * Function: leftFrom
 * Usage: Direction newdir = leftFrom(dir);
 * --
 * Returns the direction that is to the left of the argument.
 * For example, leftFrom(NORTH) returns WEST.
 */

Direction leftFrom(Direction dir);

/*
 * Function: rightFrom
 * Usage: Direction newdir = rightFrom(dir);
 * ---
 * Returns the direction that is to the right of the argument.
 * For example, rightFrom(NORTH) returns EAST.
 */

Direction rightFrom(Direction dir);

/*
 * Function: directionToString
 * Usage: string str = directionToString(dir);
 * ---
 * Returns the name of the direction as a string.
 */

std::string directionToString(Direction dir);

#endif

84 Functions and Libraries

The arithmetic operators in the expression

(dir + 1) % 4

automatically convert the Direction value to its underlying representation as an

F I G U R E 2 - 7 Implementation of the direction library

/*
 * File: direction.cpp
 * -------------------
 * This file implements the direction.h interface.
 */

#include <string>
#include "direction.h"
using namespace std;

/*
 * Implementation notes: leftFrom, rightFrom
 * ---
 * These functions use the remainder operator to cycle through the
 * internal values of the enumeration type. Note that the leftFrom
 * function cannot subtract 1 from the direction because the result
 * might then be negative; adding 3 achieves the same effect but
 * ensures that the values remain positive.
 */

Direction leftFrom(Direction dir) {
 return Direction((dir + 3) % 4);
}

Direction rightFrom(Direction dir) {
 return Direction((dir + 1) % 4);
}

/*
 * Implementation notes: directionToString
 * ---------------------------------------
 * Most C++ compilers require the default clause to make sure that this
 * function always returns a string, even if the direction is not one
 * of the legal values.
 */

string directionToString(Direction dir) {
 switch (dir) {
 case NORTH: return "NORTH";
 case EAST: return "EAST";
 case SOUTH: return "SOUTH";
 case WEST: return "WEST";
 default: return "???";
 }
}

 2.6 Interfaces and implementations 85

integer: 0 for NORTH, 1 for EAST, 2 for SOUTH, and 3 for WEST. Turning right from
one of these compass points corresponds to adding one to the underlying value, with
the exception to turning right from WEST, when it is necessary to cycle back to the
value 0 to indicate the direction NORTH. As is so often the case in situations that
involve cyclical structures, using the % operator eliminates the need for special-case
testing. Before it returns, however, the function must use a type cast to convert the
result of the arithmetic expression to the Direction value that rightFrom is
defined to return.

As a cautionary reminder about the dangers of using % with negative numbers,
the leftFrom function cannot be defined as

Direction leftFrom(Direction dir) {
 return Direction((dir - 1) % 4);
}

The problem with this implementation arises when you call leftFrom(NORTH).
When dir has the value NORTH, the expression

(dir - 1) % 4

has the value –1 on most machines, which is not a legal Direction. Fortunately, it
is easy to fix the problem by coding leftFrom like this:

Direction leftFrom(Direction dir) {
 return Direction((dir + 3) % 4);
}

Exporting constant definit ions
In addition to functions and types, interfaces often export constant definitions so
that several clients can share that constant without redefining it in every source file.
If, for example, you are writing programs that involve geometrical calculations, it is
useful to have a definition of the mathematical constant π, which, given the usual
conventions for constants, would presumably be named PI. If you declare PI as a
constant in the fashion introduced in Chapter 1, you would write

const double PI = 3.14159265358979323846;

In C++, constants written in this form are private to the source file that contains
them and cannot be exported through an interface. To export the constant PI, you
need to add the keyword extern to both its definition and the prototype declaration
in the interface. This strategy is illustrated by the gmath.h interface in Figure 2-8,
which exports PI along with some simple functions that simplify working with
angles in degrees. The corresponding implementation appears in Figure 2-9.

86 Functions and Libraries

the gmath.h interface
 F I G U R E 2 - 8 Simplified interface for the gmath library

/*
 * File: gmath.h
 * -------------
 * This file exports the constant PI along with a few degree-based
 * trigonometric functions, which are typically easier to use.
 */

#ifndef _gmath_h
#define _gmath_h

/* Constants */

extern const double PI; /* The mathematical constant pi */

/*
 * Function: sinDegrees
 * Usage: double sine = sinDegrees(angle);
 * ---------------------------------------
 * Returns the trigonometric sine of angle expressed in degrees.
 */

double sinDegrees(double angle);

/*
 * Function: cosDegrees
 * Usage: double cosine = cosDegrees(angle);
 * ---
 * Returns the trigonometric cosine of angle expressed in degrees.
 */

double cosDegrees(double angle);

/*
 * Function: toDegrees
 * Usage: double degrees = toDegrees(radians);
 * ---
 * Converts an angle from radians to degrees.
 */

double toDegrees(double radians);

/*
 * Function: toRadians
 * Usage: double radians = toRadians(degrees);
 * ---
 * Converts an angle from degrees to radians.
 */

double toRadians(double degrees);

#endif

 2.6 Interfaces and implementations 87

The Stanford library collection
From time to time, this book introduces new library interfaces like error.h,
direction.h, and gmath.h that are worth keeping around for future use. These
interfaces appear in Appendix A, often in a form that includes more features than
those described explicitly in the text. Those interfaces are also available for
downloading from the web site associated with this book, along with a compiled
version of the libraries you can use to create new applications. It can take a little
time to figure out how to use the Stanford libraries in the programming environment
you’re using, but that effort will quickly repay itself many times over.

 2.7 Principles of interface design
One of the reasons that programming is difficult is that programs reflect the
complexity of the underlying application. As long as computers are used to solve
problems of ever-increasing sophistication, the process of programming will of
necessity become more sophisticated as well.

F I G U R E 2 - 9 Implementation of the gmath library

/*
 * File: gmath.cpp
 * ---------------
 * This file implements the gmath.h interface. In all cases, the
 * implementation for each function requires only one line of code,
 * which makes detailed documentation unnecessary.
 */

#include <cmath>
#include "gmath.h"

extern const double PI = 3.14159265358979323846;

double sinDegrees(double angle) {
 return sin(toRadians(angle));
}

double cosDegrees(double angle) {
 return cos(toRadians(angle));
}

double toDegrees(double radians) {
 return radians * 180 / PI;
}

double toRadians(double degrees) {
 return degrees * PI / 180;
}

88 Functions and Libraries

Writing a program to solve a large or difficult problem forces you to manage a
staggering amount of complexity. There are algorithms to design, special cases to
consider, user requirements to meet, and innumerable details to get right. To make
programming manageable, you must reduce the complexity of the programming
process as much as possible. Functions reduce some of the complexity; libraries
offer a similar reduction in programming complexity but at a higher level of detail.
A function gives its caller access to a set of steps that together implement a single
operation. A library gives its client access to a set of functions and types that
implement what computer scientists describe as a programming abstraction. The
extent to which a particular abstraction simplifies the programming process,
however, depends on how well you have designed its interface.

To design an effective interface, you must balance several criteria. In general,
you should try to develop interfaces that are

• Unified. A single interface should define a consistent abstraction with a clear

unifying theme. If a function does not fit within that theme, it should be defined
in a separate interface.

• Simple. To the extent that the underlying implementation is itself complex, the
interface must seek to hide that complexity from the client.

• Sufficient. When clients use an abstraction, the interface must provide sufficient
functionality to meet their needs. If some critical operation is missing from an
interface, clients may decide to abandon it and develop their own, more powerful
abstraction. As important as simplicity is, the designer must avoid simplifying
an interface to the point that it becomes useless.

• General. A well-designed interface should be flexible enough to meet the needs
of many different clients. An interface that performs a narrowly defined set of
operations for one client is not as useful as one that can be used in many
different situations.

• Stable. The functions defined in an interface should continue to have precisely
the same structure and effect, even if the underlying implementation changes.
Making changes in the behavior of an interface forces clients to change their
programs, which compromises the value of interface.

The sections that follow discuss each of these criteria in detail.

The importance of a unifying theme

Unity gives strength.
—Aesop, The Bundle of Sticks, ~600 BCE

A central feature of a well-designed interface is that it presents a unified and
consistent abstraction. In part, this criterion implies that the functions within a

 2.7 Principles of interface design 89

library should be chosen so that they reflect a coherent theme. Thus, the <cmath>
library exports mathematical functions, the <iostream> library exports the cin,
cout, and cerr streams along with the operators that perform input and output, and
the error.h interface introduced in section 2.6 exports a function for reporting
errors. Each interface entry exported by these libraries fits the purpose of that
interface. For example, you would not expect to find sqrt in the <string> library
since it fits much more naturally into the framework of the <cmath> library.

The principle of a unifying theme also influences the design of the functions
within a library interface. The functions within an interface should behave in as
consistent a way as possible. For example, all the functions in the <cmath> library
measure angles in radians. If the implementer of the library had decided to add a
function that required a different unit of measurement, clients would have to
remember what units to use for each function.

Simplicity and the principle of information hiding

Embrace simplicity.
—Lao-tzu, The Way of Lao-tzu, ~550 BCE

Because a primary goal of using interfaces is to reduce the complexity of the
programming process, it makes sense that simplicity is a desirable criterion in the
design of an interface. In general, an interface should be as easy to use as possible.
The underlying implementation may perform extremely intricate operations, but the
client should be able to think about those operations in a simple, more abstract way.

To a certain extent, an interface acts as a reference guide to a particular library
abstraction. When you want to know how to use the error function, you consult
the error.h interface to find out how to do so. The interface contains precisely the
information that you, as a client, need to know—and no more. For clients, getting
too much information can be as bad as getting too little, because additional detail is
likely to make the interface more difficult to understand. Often, the real value of an
interface lies not in the information it reveals but rather in the information it hides.

When you design an interface, you should try to protect the client from as many
of the complicating details of the implementation as possible. In that respect, it is
perhaps best to think of an interface not primarily as a communication channel
between the client and the implementation, but instead as a wall that divides them.

client implementation

interface

90 Functions and Libraries

Like the wall that divided the lovers Pyramus and Thisbe in Greek mythology,
the wall representing an interface contains a chink that allows the client and the
implementation to communicate. The main purpose of the wall, however, is to keep
the two sides apart. Because we conceive of it as lying at the border of the
abstraction represented by the library, an interface is sometimes called an
abstraction boundary. Ideally, all the complexity involved in the realization of a
library lies on the implementation side of the wall. The interface is successful if it
keeps that complexity away from the client side. Keeping details confined to the
implementation domain is called information hiding.

The principle of information hiding has important practical implications for
interface design. When you write an interface, you should be sure you don’t reveal
details of implementation, even in the commentary. Especially if you are writing an
interface and an implementation at the same time, you may be tempted to describe
in your interface all the clever ideas you used in the implementation. Try to resist
that temptation. The interface is written for the benefit of the client and should
contain only what the client needs to know.

Similarly, you should design the functions in an interface so that they are as
simple as possible. If you can reduce the number of arguments or find a way to
eliminate confusing special cases, it will be easier for the client to understand how
to use those functions. Moreover, it is good practice to limit the total number of
functions exported by interface, so that the client does not become lost in a mass of
functions, unable to make sense of the whole.

Meeting the needs of your clients

Everything should be as simple as possible, but no simpler.
—attributed to Albert Einstein

Simplicity is only part of the story. You can easily make an interface simple just by
throwing away any parts of it that are hard or complicated. There is a good chance
you will also make the interface useless. Sometimes clients need to perform tasks
that have some inherent complexity. Denying your clients the tools they require just
to make the interface simpler is not an effective strategy. Your interface must
provide sufficient functionality to serve the clients’ needs. Learning to strike the
right balance between simplicity and completeness in interface design is one of the
fundamental challenges in programming.

In many cases, the clients of an interface are concerned not only with whether a
particular function is available but also with the efficiency of its implementation.
For example, if you are developing a system for air-traffic control and need to call
functions provided by a library interface, those functions must return the correct
answer quickly. Late answers may be just as devastating as wrong answers.

 2.7 Principles of interface design 91

For the most part, efficiency is a concern for the implementation rather than the
interface. Even so, you will often find it valuable to think about implementation
strategies while you are designing the interface itself. Suppose, for example, that
you are faced with a choice of two designs. If you determine that one of them
would be much easier to implement efficiently, it makes sense—assuming there are
no compelling reasons to the contrary—to choose that design.

The advantages of general tools

Give us the tools and we will finish the job.
— Winston Churchill, BBC broadcast, 1941

An interface that is perfectly adapted to a particular client’s needs may not be useful
to others. A good library abstraction serves the needs of many different clients. To
do so, it must be general enough to solve a wide range of problems and not be
limited to one highly specific purpose. By choosing a design that offers flexibility,
you can create interfaces that are widely used.

The desire to ensure that an interface remains general has an important practical
implication. When you are writing a program, you will often discover that you need
a particular tool. If you decide that the tool is important enough to go into a library,
you then need to change your mode of thought. When you design the interface for
that library, you have to forget about the original application and instead design
your interface for a more general audience.

The value of stabili ty

People change and forget to tell each other. Too bad—
causes so many mistakes.

—Lillian Hellman, Toys in the Attic, 1959

Interfaces have another property that makes them critically important to
programming: they tend to be stable over long periods of time. Stable interfaces
can dramatically simplify the problem of maintaining large programming systems
by establishing clear boundaries of responsibility. As long as the interface does not
change, both implementers and clients are relatively free to make changes on their
own side of the abstraction boundary.

For example, suppose that you are the implementer of the math library. In the
course of your work, you discover a clever new algorithm for calculating the sqrt
function that cuts in half the time required to calculate a square root. If you can say
to your clients that you have a new implementation of sqrt that works just as it did
before, only faster, they will probably be pleased. If, on the other hand, you were to
say that the name of the function had changed or that its use involved certain new
restrictions, your clients would be justifiably annoyed. To use your “improved”

92 Functions and Libraries

implementation of square root, they would be forced to change their programs.
Changing programs is a time-consuming, error-prone activity, and many clients
would happily give up the extra efficiency for the convenience of being able to
leave their programs alone.

Interfaces, however, simplify the task of program maintenance only if they
remain stable. Programs change frequently as new algorithms are discovered or as
the requirements of applications change. Throughout such evolution, however, the
interfaces must remain as constant as possible. In a well-designed system, changing
the details of an implementation is a straightforward process. The complexity
involved in making that change is localized on the implementation side of the
abstraction boundary. On the other hand, changing an interface often produces a
global upheaval that requires changing every program that depends on it. Thus,
interface changes should be undertaken very rarely and then only with the active
participation of clients.

Some interface changes, however, are more drastic than others. For example,
adding an entirely new function to an interface is usually a relatively
straightforward process, since no clients already depend on that function. Changing
an interface in such a way that existing programs will continue to run without
modification is called extending the interface. If you find that you need to make
evolutionary changes over the lifetime of an interface, it is usually best to make
those changes by extension.

 2.8 Designing a random number library
The easiest way to illustrate the principles of interface design is to go through a
simple design exercise. To this end, this section goes through the design process
leading up to the creation of the random.h interface in the Stanford libraries, which
makes it possible to write programs that make seemingly random choices. Being
able to simulate random behavior is necessary, for example, if you want to write a
computer game that involves flipping a coin or rolling a die, but is also useful in
more practical contexts, as well. Programs that simulate such random events are
called nondeterministic programs.

Getting a computer to behave in a random way involves a certain amount of
complexity. For the benefit of client programmers, you want to hide this
complexity behind an interface. In this section, you will have the opportunity to
focus your attention on that interface from several different perspectives: that of the
interface designer, the implementer, and the client.

 2.8 Designing a random number library 93

Random versus pseudorandom numbers
Partly because early computers were used primarily for numerical applications, the
idea of generating randomness using a computer is often expressed in terms of
being able to generate a random number in a particular range. From a theoretical
perspective, a number is random if there is no way to determine in advance what
value it will have among a set of equally probable possibilities. For example,
rolling a die generates a random number between 1 and 6. If the die is fair, there is
no way to predict which number will come up. The six possible values are equally
likely.

Although the idea of a random number makes intuitive sense, it is a difficult
notion to represent inside a computer. Computers operate by following a sequence
of instructions in memory and therefore function in a deterministic mode. How is it
possible to generate unpredictable results by following a deterministic set of rules?
If a number is the result of a deterministic process, any user should be able to work
through that same set of rules and anticipate the computer’s response.

Yet computers do in fact use a deterministic procedure to generate what we call
random numbers. This strategy works because, even though the user could, in
theory, follow the same set of rules and anticipate the computer’s response, no one
actually bothers to do so. In most practical applications, it doesn’t matter if the
numbers are truly random; all that matters is that the numbers appear to be random.
For numbers to appear random, they should (1) behave like random numbers from a
statistical point of view and (2) be sufficiently difficult to predict in advance that no
user would bother. “Random” numbers generated by an algorithmic process inside
a computer are referred to as pseudorandom numbers to underscore the fact that no
truly random activity is involved.

Pseudorandom numbers in the standard libraries
The <cstdlib> library exports a low-level function called rand that produces
pseudorandom numbers. The prototype for rand is

int rand();

which indicates that rand takes no arguments and returns an integer. Each call to
rand produces a different value that is difficult for clients to predict and therefore
appear to be random. The result of rand is guaranteed to be nonnegative and no
larger than the constant RAND_MAX, which is also defined in <cstdlib>. Thus,
each time you call rand, it returns a different integer between 0 and RAND_MAX,
inclusive.

If you want to get a feel for how the rand function works, one strategy is to
write a simple program to test it. The RandTest program in Figure 2-10 displays

94 Functions and Libraries

the value of RAND_MAX and then prints out the result of calling rand ten times. A
sample run of this program looks like this:

As you can see, the value of rand is always positive, and never larger than the
value of RAND_MAX. The values, moreover, appear to jump around unpredictably
within that range, which is exactly what you want from a pseudorandom process.

Given that the C++ libraries include a function for generating pseudorandom
numbers, it is reasonable to ask why one would bother to develop a new interface to
support this process. The answer, in part, is that the rand function itself does not

RandTest
On this computer, RAND_MAX is 2147483647
The first 10 calls to rand:
1103527590
 377401575
 662824084
1147902781
2035015474
 368800899
1508029952
 486256185
1062517886
 267834847

F I G U R E 2 - 1 0 Program to test the rand function

/*
 * File: RandTest.cpp
 * ------------------
 * This program tests the random number generator in C++ and produces
 * the values used in the examples in the text.
 */

#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

const int N_TRIALS = 10;

int main() {
 cout << "On this computer, RAND_MAX is " << RAND_MAX << endl;
 cout << "The first " << N_TRIALS << " calls to rand:" << endl;
 for (int i = 0; i < N_TRIALS; i++) {
 cout << setw(10) << rand() << endl;
 }
 return 0;
}

 2.8 Designing a random number library 95

return a value that clients are likely to use directly. For one thing, the value of
RAND_MAX depends on the hardware and software environment. On most systems,
it is defined to be the largest positive integer, which is typically 2,147,483,647, but
it may have different values on different systems. Moreover, even if you could
count on RAND_MAX having that particular value, there are few (if any) applications
where what you need is a random number between 0 and 2,147,483,647. As a
client, you are much more likely to want values that fall into some other range,
usually much smaller. For example, if you are trying to simulate flipping a coin,
you want a function that has only two outcomes: heads and tails. Similarly, if you
are trying to represent rolling a die, you need to produce a random integer between
1 and 6. If you are trying to simulate processes in the physical world, you will often
need to produce random values over continuous range, where the result needs to be
represented as a double rather than an int. If you could design an interface that
was better suited to the needs of such clients, that interface would be much more
flexible and easy to use.

Another reason to design a higher-level interface is that using the low-level
functions from <cstdlib> introduces several complexities—as you will discover
when you turn your attention to the implementation—that clients would be happy to
ignore. Part of your job as an interface designer is to hide that complexity from
clients as much as possible. Defining a higher-level random.h interface makes that
possible, because all the complexity can be localized within the implementation.

Choosing the right set of functions
As an interface designer, one of your primary challenges is choosing what functions
to export. Although interface design turns out to be more of an art than a science,
there are some general principles you can apply, including those outlined in
section 2.7. In particular, the functions you export through random.h should be
simple and should hide as much of the underlying complexity as possible. They
should also provide the functionality necessary to meet the needs of a wide range of
clients, which means that you need to have some idea of what operations clients are
likely to need. Understanding those needs depends in part on your own experience,
but often requires interacting with potential clients to get a better sense of their
requirements.

From my own experience with programming, I know that the operations clients
expect from an interface like random.h include the following:

• The ability to select a random integer in a specified range. If you want, for

example, to simulate the process of rolling a standard six-sided die, you need to
choose a random integer between 1 and 6.

• The ability to choose a random real number in a specified range. If you want to

96 Functions and Libraries

position an object at a random point in space, you would need to choose random
x and y coordinates within whatever limits are appropriate to the application.

• The ability to simulate a random event with a specific probability. If you want
to simulate flipping a coin, you want to generate the value heads with probability
0.5, which corresponds to 50 percent of the time.

Translating these conceptual operations into a set of function prototypes is a
relatively straightforward task. The first three functions—randomInteger,
randomReal, and randomChance—in the random.h interface correspond to these
three operations. The complete interface, which also exports a function called
setRandomSeed that will be described later in the chapter, appears in Figure 2-11.

As you can see from either the comments or the prototype in Figure 2-11, the
randomInteger function takes two integer arguments and returns an integer in that
range. If you want to simulate a die roll, you would call

randomInteger(1, 6)

To simulate a spin on a European roulette wheel (American wheels have both a 0
and a 00 slot in addition to the numbers from 1 to 36), you would call

randomInteger(0, 36)

The function randomReal is conceptually similar to randomInteger. It takes
two floating-point values, low and high, and returns a floating-point value r subject
to the condition that low ≤ r < high. For example, calling randomReal(0, 1)
returns a random number that can be as small as 0 but is always strictly less than 1.
In mathematics, a range of real numbers that can be equal to one endpoint but not
the other is called a half-open interval. On a number line, a half-open interval is
marked using an open circle to show that the endpoint is excluded, like this:

In mathematics, the standard convention is to use square brackets to indicate closed
ends of intervals and parentheses to indicate open ones, so that the notation [0, 1)
indicates the half-open interval corresponding to this diagram.

The function randomChance is used to simulate random events that occur with
some fixed probability. To be consistent with the conventions of statistics, a
probability is represented as a number between 0 and 1, where 0 means that the
event never occurs and 1 means that it always does. Calling randomChance(p)
returns true with probability p. Thus, calling randomChance(0.75) returns
true 75 percent of the time.

0 1

 2.8 Designing a random number library 97

random.h
F I G U R E 2 - 1 1 Interface for the random number library

/*
 * File: random.h
 * --------------
 * This interface exports functions for generating pseudorandom numbers.
 */

#ifndef _random_h
#define _random_h

/*
 * Function: randomInteger
 * Usage: int n = randomInteger(low, high);
 * --
 * Returns a random integer in the range low to high, inclusive.
 */

int randomInteger(int low, int high);

/*
 * Function: randomReal
 * Usage: double d = randomReal(low, high);
 * --
 * Returns a random real number in the half-open interval [low .. high). A
 * half-open interval includes the first endpoint but not the second, which
 * means that the result is always greater than or equal to low but
 * strictly less than high.
 */

double randomReal(double low, double high);

/*
 * Function: randomChance
 * Usage: if (randomChance(p)) . . .
 * ---------------------------------
 * Returns true with the probability indicated by p. The argument p must
 * be a floating-point number between 0 (never) and 1 (always). For
 * example, calling randomChance(.30) returns true 30 percent of the time.
 */

bool randomChance(double p);

/*
 * Function: setRandomSeed
 * Usage: setRandomSeed(seed);
 * ---------------------------
 * Sets the internal random number seed to the specified value. You can
 * use this function to set a specific starting point for the pseudorandom
 * sequence or to ensure that program behavior is repeatable during the
 * debugging phase.
 */

void setRandomSeed(int seed);

#endif

98 Functions and Libraries

You can use randomChance to simulate flipping a coin, as illustrated by the
following function, which returns "heads" or "tails" with equal probability:

string flipCoin() {
 if (randomChance(0.50)) {
 return "heads";
 } else {
 return "tails";
 }
}

Constructing a client program
One of the best ways to validate the design of an interface is to write applications
that use it. The program in Figure 2-12, for example, uses the randomInteger
function to play the casino game called craps. The rules for craps appear in the
comments at the beginning of the program, although you would probably want the
program to explain the rules to the user as well. In this example, the printed
instructions have been omitted to save space.

Although the Craps.cpp program is nondeterministic and will produce
different outcomes each time, one possible sample run looks like this:

Implementing the random number library
Up to now, this chapter has looked only at the design of the random.h interface.
Before you can actually use that interface in a program, it is necessary to write the
corresponding random.cpp implementation. All you know at this point is that you
have a function rand in the <cstdlib> library that generates a random integer
between 0 and a positive constant called RAND_MAX, which is some point on a
number line that looks like this:

Craps
This program plays a game of craps.
Rolling the dice . . .
You rolled 5 and 5 - that's 10
Your point is 10.
Rolling the dice . . .
You rolled 4 and 1 - that's 5
Rolling the dice . . .
You rolled 4 and 6 - that's 10
You made your point. You win.

0 RAND_MAX

 2.8 Designing a random number library 99

craps.cpp
F I G U R E 2 - 1 2 Program to play the casino game of craps

/*
 * File: Craps.cpp
 * ---------------
 * This program plays the casino game called craps, which is
 * played using a pair of dice. At the beginning of the game,
 * you roll the dice and compute the total. If your first roll
 * is 7 or 11, you win with what gamblers call a "natural."
 * If your first roll is 2, 3, or 12, you lose by "crapping
 * out." In any other case, the total from the first roll
 * becomes your "point," after which you continue to roll
 * the dice until one of the following conditions occurs:
 *
 * a) You roll your point again, in which case you win.
 * b) You roll a 7, in which case you lose.
 *
 * Other rolls, including 2, 3, 11, and 12, have no effect
 * during this phase of the game.
 */

#include <iostream>
#include "random.h"
using namespace std;

/* Function prototypes */

bool tryToMakePoint(int point);
int rollTwoDice();

/* Main program */

int main() {
 cout << "This program plays a game of craps." << endl;
 int point = rollTwoDice();
 switch (point) {
 case 7: case 11:
 cout << "That's a natural. You win." << endl;
 break;
 case 2: case 3: case 12:
 cout << "That's craps. You lose." << endl;
 break;
 default:
 cout << "Your point is " << point << "." << endl;
 if (tryToMakePoint(point)) {
 cout << "You made your point. You win." << endl;
 } else {
 cout << "You rolled a seven. You lose." << endl;
 }
 }
 return 0;
}

100 Functions and Libraries

To simulate the die roll, for example, what you need to do is transform that random
integer into one of the following discrete outcomes:

As it happens, there are many bad strategies for performing this transformation.
A surprising number of textbooks, for example, suggest code that looks like this:

int die = rand() % 6 + 1;

This code looks reasonable on the surface. The rand function always returns a

1 2 3 4 5 6

F I G U R E 2 - 1 2 Program to play the casino game of craps (continued)

/*
 * Function: tryToMakePoint
 * Usage: flag = tryToMakePoint(point);
 * ------------------------------------
 * Rolls the dice repeatedly until you either make your point or roll a 7.
 * The function returns true if you make your point and false if a 7 comes
 * up first.
 */

bool tryToMakePoint(int point) {
 while (true) {
 int total = rollTwoDice();
 if (total == point) return true;
 if (total == 7) return false;
 }
}

/*
 * Function: rollTwoDice
 * Usage: total = rollTwoDice();
 * -----------------------------
 * Simulates the process of rolling two dice. The individual values of the
 * dice are printed on cout along with the sum, which is returned as the
 * value of the function.
 */

int rollTwoDice() {
 cout << "Rolling the dice . . ." << endl;
 int d1 = randomInteger(1, 6);
 int d2 = randomInteger(1, 6);
 int total = d1 + d2;
 cout << "You rolled " << d1 << " and " << d2
 << " - that's " << total << endl;
 return total;
}

 2.8 Designing a random number library 101

positive integer, so the remainder on division by six must be an integer between
0 and 5. Adding one to that value gives an integer in the desired range of 1 to 6.

The problem here is that rand guarantees only that the value it produces is
uniformly distributed over the range from 0 to RAND_MAX. There is, however, no
guarantee that the remainders on division by six will be at all random. In fact, early
versions of rand distributed with the Unix operating system generated values that
alternated between odd and even values, despite the fact that those values did fall
uniformly over the range. Taking the remainder on division by six would also
alternate between even and odd values, which hardly fits any reasonable definition
of random behavior. If nothing else, it would be impossible to roll doubles on
successive die rolls, given that one die would always be even and the other would
always be odd.

What you want to do instead is divide the integers between 0 and RAND_MAX into
six equal-sized segments that correspond to the different outcomes, as follows:

In the more general case, you need to divide the number line between 0 and
RAND_MAX into k equal intervals, where k is the number of possible outcomes in the
desired range. Once you’ve done that, all you need to do is map the interval number
into the value the client wants.

The process of transforming the result of the rand function into an integer in a
finite range can be understood most easily if you decompose it into the following
four-step process:

1. Normalize the integer result from rand by converting it into a floating-point

number d in the range 0 ≤ d < 1.

2. Scale the value d by multiplying it by the size of the desired range, so that it
spans the correct number of integers.

3. Translate the value by adding in the lower bound so that the range begins at the
desired point.

4. Convert the number to an integer by calling the function floor from <cmath>
library, which returns the largest integer that is smaller than its argument.

These phases are illustrated in Figure 2-13, which also traces one possible path
through the process. If the initial call to rand returns 848,256,064 and the value of
RAND_MAX has its most common value of 2,147,483,647, the normalization process
produces a value close to 0.4 (the values in Figure 2-13 have been rounded to a
single digit after the decimal point to make them fit in the diagram). Multiplying

0 RAND_MAX

1 2 3 4 5 6

102 Functions and Libraries

this value by 6 in the scaling step gives 2.4, which is then shifted to 3.4 in the
translation step. In the conversion step, calling floor on 3.4 yields the value 3.

Writing the code to implement this process is not as easy as it might appear,
because there are several pitfalls that can easily trap the insufficiently careful
programmer. Consider, for example, just the normalization step. You can’t convert
the result of rand to a floating-point value in the half-open interval [0, 1) by calling

double d = double(rand()) / RAND_MAX;

The problem here is that rand might return the value RAND_MAX, which would
mean that the variable d would be assigned the value 1.0, which is specifically
excluded from the half-open interval. What’s worse is that you also can’t write

double d = double(rand()) / (RAND_MAX + 1);

although the problem in this case is more subtle. As noted earlier, RAND_MAX is
typically chosen to be the largest positive value of type int. If that is indeed the

F I G U R E 2 - 1 3 Steps required to generate a random integer in the range 1 to 6

Initial call to rand
0 RAND_MAX 848256064

Normalization
0 10.4

Scaling
0 62.4

Translation
1 2 3 4 5 6 73.4

Conversion to an integer
1 2 3 4 5 63

 2.8 Designing a random number library 103

case, adding one to it cannot possibly produce the correct result because that value
is outside the integer range. To fix these problems, what you need to do instead is
perform the addition using type double instead of int, as follows:

double d = rand() / (double(RAND_MAX) + 1);

A similar problem arises in the scaling step. Mathematically, the number of
integer values in the inclusive range from low to high is given by the expression

high - low + 1

That value, however, can overflow the range of an integer if high is a large positive
number and low is a negative number with a large absolute magnitude. Thus, to
calculate a scaled value s from the normalized value d, you need to perform this
calculation in double-precision as well:

double s = d * (double(high) - low + 1);

Fortunately, the last two steps in the transformation process are relatively
straightforward. Given the scaled value s, you can combine the translation and
conversion steps in a single statement:

return int(floor(low + s));

The implementation of randomInteger, at least for the moment, therefore looks
like this:

int randomInteger(int low, int high) {
 double d = rand() / (double(RAND_MAX) + 1);
 double s = d * (double(high) - low + 1);
 return int(floor(low + s));
}

The implementations of randomReal and randomChance are relatively simple,

given that you’ve already had to work out the complexities for randomInteger:

double randomReal(double low, double high) {
 double d = rand() / (double(RAND_MAX) + 1);
 double s = d * (high - low);
 return low + s;
}

bool randomChance(double p) {
 return randomReal(0, 1) < p;
}

104 Functions and Libraries

Init ializing the random number seed
Unfortunately, the implementations of the randomInteger, randomReal, and
randomChance functions from the preceding section don’t quite work in exactly
the way clients would want. The problem is that—far from producing unpredictable
results—programs that use them always produce exactly the same results. If, for
example, you were to run the Craps program twenty times in succession, you
would see exactly the same output each time. So much for randomness.

To figure out why the implementation is behaving in this way, it helps to go
back to the RandTest program and run it again. This time, the output is

The output is the same as the first time around. In fact, the RandTest program
produces the same output every time because the designers of the C++ library (and
the earlier C libraries on which these libraries are based) decided that rand should
return the same random sequence each time a program is run.

At first, it may be hard to understand why a function that is supposed to return a
random number would always return the same sequence of values. After all,
deterministic behavior of this sort seems to run counter to the whole idea of
randomness. There is, however, a good reason behind this behavior: programs that
behave deterministically are easier to debug.

To get a sense of why such repeatability is important, suppose you have written a
program to play an intricate game, such as Monopoly. As is always the case with
newly written programs, the odds are good that your program will have a few bugs.
In a complex program, bugs can be relatively obscure, in the sense that they only
occur in rare situations. Suppose you are playing the game and discover that the
program is starting to behave in a bizarre way. As you begin to debug the program,
it would be very convenient if you could regenerate the same state and take a closer
look at what is going on. Unfortunately, if the program is running in a random way,
a second run of the program will behave differently from the first. Bugs that
showed up the first time may not occur on the second pass. The designers of the

RandTest
On this computer, RAND_MAX is 2147483647
The first 10 calls to rand:
1103527590
 377401575
 662824084
1147902781
2035015474
 368800899
1508029952
 486256185
1062517886
 267834847

 2.8 Designing a random number library 105

original C libraries therefore concluded that it had to be possible to use rand in a
deterministic way in order to support debugging.

At the same time, it also has to be possible to use rand so that it doesn’t always
deliver the same results. To understand how to implement this behavior, it helps to
understand how rand works internally. The rand function generates each new
random value by applying a set of mathematical calculations to the last value it
produced. Because you don’t know what those calculations are, it is best to think of
the entire operation as a black box where old numbers go in on one side and new
pseudorandom numbers pop out on the other. Since the first call to rand produces
the value 1103527590, the second call to rand corresponds to putting 1103527590
into one end of the black box and having 377401575 pop out on the other side:

On the next call to rand, the implementation puts 377401575 into the black box,
which returns 662824084:

This same process is repeated on each call to rand. The computation inside the
black box is designed so that (1) the numbers are uniformly distributed over the
legal range, and (2) the sequence goes on for a long time before it begins to repeat.

But what about the first call to rand—the one that returns 1103527590? The
implementation must have a starting point. There must be an integer s0 that goes
into the black box and produces 1103527590:

This initial value—the value that is used to get the entire process started—is called
the seed for the random number generator. In the <cstdlib> library, you can set
that seed explicitly by calling srand(seed).

As you know from the multiple runs of the RandTest program, the C++ library
sets the initial seed to a constant value every time a program is started, which is why
rand always generates the same sequence of values. That behavior, however,
makes sense only during the debugging phase. Most modern languages change the
default behavior so that the functions in the random-number library return different
results on each run unless the programmer specifies otherwise. That design is
considerably simpler for clients, and it makes sense to incorporate that design
change into the random.h interface. It is still necessary to allow clients to generate
a repeatable sequence of values, because doing so simplifies the debugging process.

rand 3774015751103527590

rand 662824084377401575

rand 1103527590s0

106 Functions and Libraries

The need to provide that option is the reason for the inclusion in the interface of the
setRandomSeed function. During the debugging phase, you can add the line

setRandomSeed(1);

at the beginning of the main program. The calls to the other entries exported by the
random.h interface will then produce the repeatable sequence of values generated
by using 1 as the initial seed. When you are convinced that the program is working,
you can remove this line to restore unpredictable behavior.

To implement this change, the functions randomInteger, randomReal, and
randomChance must first check to see whether the random number seed has
already been initialized and, if not, set it to some starting value that would be
difficult for users to predict, which is usually taken from the value of the system
clock. Because that value is different each time you run a program, the random
number sequence changes as well. In C++, you can retrieve the current value of the
system clock by calling the function time and then converting the result to an
integer. This technique allows you to write the following statement, which has the
effect of initializing the pseudorandom number generator to an unpredictable point:

srand(int(time(NULL)));

Although it requires only a single line, the operation to set the random seed to an
unpredictable value based on the system clock is quite obscure. If this line were to
appear in the client program, the client would have to understand the concept of a
random number seed, along with the functions srand and time and the constant
NULL (which you won’t learn about until Chapter 11). To make things as easy as
possible for the client, you need to hide this complexity away.

The situation becomes even more complicated, however, when you realize that
this initialization step must be performed once—and only once—before delivering
up the results of any of the other functions. To ensure that the initialization code is
not executed more than once, you need to declare a variable to keep track of
whether that initialization has been performed. The most difficult implementation
decision in the random library is figuring out where to declare that variable.
Declaring it as a global leads to significant problems, primarily because C++ does
not specify the order in which global variables are initialized. If you declare other
global values whose initial values were produced by the random-library library,
there would be no way to ensure that the initialization flag had been set correctly.

In C++, the strategy that guarantees the initialization flag is set correctly is to
declare the initialization flag inside the context of the function that checks to see
whether the necessary initialization has already been performed. That variable,
however, can’t be declared as a traditional local variable, because doing so would

 2.8 Designing a random number library 107

mean that a new variable was created on every call. To make this strategy work,
you need to mark the flag as static, as shown in the following implementation of
initRandomSeed:

void initRandomSeed() {
 static bool initialized = false;
 if (!initialized) {
 srand(int(time(NULL)));
 initialized = true;
 }
}

When it is marked with the keyword static, the variable initialized becomes
a static local variable, which means that it is accessible only within the body of the
function (just like any local variable) but that a single copy of the variable is
allocated outside of the stack frame that is shared by all calls to initRandomSeed.
The rules of C++ ensure that static local variables are initialized exactly once and,
moreover, that the initialization occurs before the function containing them is called
for the first time. Defining the initRandomSeed function represents the final step
in coding the random.cpp implementation, which appears in Figure 2-14.

My primary goal in going through the code for the random.cpp implementation
is not for you to master all of its intricacies. What I hope to do instead is convince
you why it is important for you as a client of random.h not to have to understand
all those details. The code in random.cpp is subtle and contains many potential
pitfalls that are likely to ensnare the casual programmer who tries to implement
these functions from scratch. The primary purpose of library interfaces is to hide
precisely this sort of complexity. The interface wall protects the client from all
sorts of dangers, of the sort that might have been marked with “Here Be Dragons”
on medieval maps. These dangers are illustrated in the following diagram, in which
the interface wall divides the frontispiece from Thomas More’s Utopia (1516) from
the seafaring dragon in Charles Gould’s Mythical Monsters (1886):

108 Functions and Libraries

Figure 2-8
F I G U R E 2 - 1 4 Implementation of the random number library

/*
 * File: random.cpp
 * ----------------
 * This file implements the random.h interface.
 */

#include <cstdlib>
#include <cmath>
#include <ctime>
#include "random.h"
using namespace std;

/* Private function prototype */

void initRandomSeed();

/*
 * Implementation notes: randomInteger
 * -----------------------------------
 * The code for randomInteger produces the number in four steps:
 *
 * 1. Generate a random real number d in the range [0 .. 1).
 * 2. Scale the number to the range [0 .. N) where N is the number of values.
 * 3. Translate the number so that the range starts at the appropriate value.
 * 4. Convert the result to the next lower integer.
 *
 * The implementation is complicated by the fact that both the expression
 *
 * RAND_MAX + 1
 *
 * and the expression for the number of values
 *
 * high - low + 1
 *
 * can overflow the integer range. These calculations must therefore be
 * performed using doubles instead of ints.
 */

int randomInteger(int low, int high) {
 initRandomSeed();
 double d = rand() / (double(RAND_MAX) + 1);
 double s = d * (double(high) - low + 1);
 return int(floor(low + s));
}

 2.8 Designing a random number library 109

Figure 2-8
F I G U R E 2 - 1 4 Implementation of the random number library (continued)

/*
 * Implementation notes: randomReal
 * --------------------------------
 * The code for randomReal is similar to that for randomInteger,
 * without the final conversion step.
 */

double randomReal(double low, double high) {
 initRandomSeed();
 double d = rand() / (double(RAND_MAX) + 1);
 double s = d * (high - low);
 return low + s;
}

/*
 * Implementation notes: randomChance
 * ----------------------------------
 * The code for randomChance calls randomReal(0, 1) and then checks
 * whether the result is less than the requested probability.
 */

bool randomChance(double p) {
 initRandomSeed();
 return randomReal(0, 1) < p;
}

/*
 * Implementation notes: setRandomSeed
 * -----------------------------------
 * The setRandomSeed function simply forwards its argument to srand.
 * The call to initRandomSeed is required to set the initialized flag.
 */

void setRandomSeed(int seed) {
 initRandomSeed();
 srand(seed);
}

/*
 * Implementation notes: initRandomSeed
 * ------------------------------------
 * The initRandomSeed function declares a static variable that keeps track
 * of whether the seed has been initialized. The first time initRandomSeed
 * is called, initialized is false, so the seed is set to the current time.
 */

void initRandomSeed() {
 static bool initialized = false;
 if (!initialized) {
 srand(int(time(NULL)));
 initialized = true;
 }
}

110 Functions and Libraries

 2.9 A brief tour of the graphics l ibrary
One of the challenges of using C++ as a teaching language is that C++ doesn’t offer
a standard graphics library. Although it is perfectly possible to learn about data
structures and algorithms without using graphics, having a graphics library makes
the process a lot more fun. And because you’re likely to learn things more easily if
you can have a little fun along the way, the Stanford libraries include an interface
called graphics.h that supports simple two-dimensional graphics on the platforms
you’re most likely to be using.

Before looking at the contents of the graphics.h interface, it makes sense to
consider a simple example that illustrates the capabilities of the graphics library.
Just as the first program in Chapter 1 was the classic “hello, world” program, it is
appropriate to begin this section with the GraphicHelloWorld program shown in
Figure 2-15, which draws “hello, world” in big letters across the graphics window.
And just to give the output some color, the program draws the string in white letters
on top of a large blue rectangle. The output of the program, which includes several
annotations to illustrate the coordinate system used in the graphics library, appears
at the top of the next page in Figure 2-16.

The first line in the main program for GraphicHelloWorld is a call to the
function initGraphics, which has the effect of initializing the graphics window
and displaying it on the screen. Inside the graphics window, coordinates are
measured in units called pixels, which are the individual dots that cover the surface

 2.9 A brief tour of the graphics library 111

of the display screen. By default, the initGraphics function creates a relatively
small window. You can, however, specify an explicit window size by calling

initGraphics(width, height);

where width and height are the desired number of pixels in each dimension.

Coordinates in the graphics window are represented using a pair of values (x, y)
where the x and y values represent the distance in that dimension from the origin,
which is the point (0, 0) in the upper left corner of the window. As in traditional
Cartesian coordinates, the value for x increases as you move rightward across the
window. Having the location of the origin in the upper left corner, however, means
that the y value increases as you move downward, which is precisely opposite to the
usual Cartesian plane. Computer-based graphics packages invert the y coordinate
because text moves downward on the page. By having y values increase as you
move downward, successive lines of text appear at increasing values of y.

The rest of the code for GraphicHelloWorld consists of calls to functions in
the graphics.h interface, which is summarized in Table 2-2. The descriptions of
those functions are somewhat cursory, and may not be sufficient in themselves for
you to understand the intricacies of the graphics library. Given that the graphics
library is only an optional component of this textbook, however, it isn’t appropriate
to go through every one of those functions in complete detail.

F I G U R E 2 - 1 6 Annotated output of GraphicHelloWorld

GraphicHelloWorld

300 pixels

15
0

pi
xe

ls

(0, 0)

(50, 50)

hello, world(60, 140)

 in
cr

ea
sin

g
va

lu
es

 o
f y

increasing values of x

112 Functions and Libraries

Table 2-2
 T A B L E 2 - 2 Selected functions exported by the graphics.h interface

initGraphics()

initGraphics(width, height)

Initializes the graphics window. If width and height are omitted,
this function creates a window with a default size.

drawLine(x0, y0, x1, y1) Draws a line from the point (x0, y0) to the point (x1, y1).

drawPolarLine(x, y, r, theta) Draws a line from the point (x, y) that extends r r pixel units at
angle theta relative to the +x axis. This function returns the
endpoint of the line as a GPoint.

drawRect(x, y, width, height) Draws the frame of the rectangle with the specified bounds.

fillRect(x, y, width, height) Fills the rectangle with the specified bounds.

drawOval(x, y, width, height) Draws the frame of the oval inscribed in the specified rectangle.

fillOval(x, y, width, height) Fills the oval inscribed in the specified rectangle.

drawArc(x, y, width, height,

 start, sweep)

Draws an elliptical arc. The x, y, width, and height parameters
specify the bounding rectangle of the complete ellipse. The start
parameter indicates the angle at which the arc begins; the sweep
parameter indicates how far the arc extends. Both angles are
measured in degrees counterclockwise from the +x axis.

fillArc(x, y, width, height,

 start, sweep)

Fills the wedge-shaped area bounded by the elliptical arc that
would be produced by drawArc and the radial lines connecting
the endpoints of the arc to the center of the ellipse.

drawImage(filename, x, y) Draws the image from the specified file with its upper left corner
at the point (x, y). The graphics library looks for the image file in
the current directory and then in a subdirectory called images.

drawString(str, x, y) Draws the string str so that its baseline origin appears at the point
(x, y). The string appears in the current font and color.

getStringWidth(str) Returns the width of the string str in the current font.

setFont(font) Sets the font, where font is in the form "family-style-size".

getFont() Returns the current font in the form "family-style-size".

setColor(color) Sets the current color The color parameter is either one of the
standard color names or a string in the form "#rrggbb".

getColor() Returns the current color in the form "#rrggbb".

saveGraphicsState() Saves the state of the graphics context.

restoreGraphicsState() Restores the graphics state from the most recent save.

getWindowWidth() Returns the width of the graphics window in pixels.

getWindowHeight() Returns the height of the graphics window in pixels.

repaint() Initiates an immediate update of the graphics window.

pause(milliseconds) Repaints the window and then pauses for the specified time.

 Summary 113

Fortunately, providing a complete description of the graphics library in the
textbook seems to be unnecessary. Graphics is exciting enough that most students
figure out how it works through some combination of the abbreviated descriptions
in Table 2-2, the examples in the text, the complete listing of the interface in
Appendix A, and their own experimentation. If you want to enjoy the process of
learning this material to the utmost, I suggest you do the same.

 Summary
In this chapter, you learned about functions, which enable you to refer to an entire
set of operations by using a simple name. By allowing the programmer to ignore
the internal details and concentrate only on the effect of a function as a whole,
functions are an essential tool for reducing the conceptual complexity of programs.

The important points introduced in this chapter include:

• A function is a block of code that has been organized into a separate unit and

given a name. Other parts of the program can then call that function, possibly
passing it information in the form of arguments and receiving a result returned
by that function.

• Functions serve several useful purposes in programming. Allowing the same set
of instructions to be shared by many parts of a program reduces both its size and
its complexity. More importantly, functions make it possible to decompose large
programs into smaller, more manageable pieces. Functions also serve as the
basis for implementing algorithms, which are precisely specified strategies for
solving computational problems.

• Functions become even more useful when they are collected into a library,
which can then be shared by many different applications. Each library typically
defines several functions that share a single conceptual framework. In computer
science, the process of making a function available through a library is called
exporting that function.

• The <cmath> library exports several functions that are likely to be familiar from
mathematics, including functions like sqrt, sin, and cos. As a client of the
<cmath> library, you need to know how to call these functions, but do not need
to know the details of how they work.

• In C++, functions must be declared before they are used. A function declaration
is called a prototype. In addition to the prototype, functions have an
implementation, which specifies the individual steps that function contains.

• A function that returns a value must have a return statement that specifies the
result. Functions may return values of any type. Functions that return Boolean
values are called predicate functions and play an important role in programming.

114 Functions and Libraries

• A function that returns no result and is executed only for its effect is called a
procedure.

• C++ allows you to define several functions with the same name as long as the
compiler can use the number and types of the arguments to determine which
function is required. This process is called overloading. The argument pattern
that distinguishes each of the overloaded variants is called a signature. C++ also
makes it possible to specify default parameters, which are used if the client
omits them from the call.

• Variables declared with a function are local to that function and cannot be used
outside of it. Internally, all the variables declared within a function are stored
together in a stack frame.

• When you call a function, the arguments are evaluated in the context of the caller
and then copied into the parameter variables specified in the function prototype.
The association of arguments and parameters always follows the order in which
the variables appear in each of the lists.

• C++ makes it possible for a function and its caller to share the value of a
parameter variable by marking it with the ampersand character (&). This style of
parameter transmission is referred to as call by reference.

• When a function returns, it continues from precisely the point at which the call
was made. The computer refers to this point as the return address and keeps
track of it in the stack frame.

• Programmers who create a library are its implementers; programmers who make
use of one are called its clients. The connection between the implementer and
the client is called an interface. Interfaces typically export functions, types, and
constants, which are collectively known as interface entries.

• In C++, interfaces are stored in header files, which typically end with a .h
suffix. Every interface should include several lines of interface boilerplate to
ensure that the compiler reads it only once.

• When you design an interface, you must balance several criteria. Well-designed
interfaces are unified, simple, sufficient, general, and stable.

• The random.h interface exports several functions that make it easy to simulate
random behavior.

 Review questions
1. Explain in your own words the difference between a function and a program.

2. Define the following terms as they apply to functions: call, argument, return.

 Review questions 115

3. True or false: Every function in a C++ program requires a prototype.

4. What is the prototype of the function sqrt in the <cmath> library?

5. Can there be more than one return statement in the body of a function?

6. What is a predicate function?

7. What is meant by the term overloading? How does the C++ compiler use

signatures to implement overloading?

8. How do you specify a default value for a parameter?

9. True or false: It is possible to specify a default value for the first parameter to a

function without specifying a default value for the second.

10. What is a stack frame?

11. Describe the process by which arguments are associated with parameters.

12. Variables declared within a function are said to be local variables. What is the

significance of the word local in this context?

13. What does the term call by reference mean?

14. How do you indicate call by reference in a C++ program?

15. Define the following terms in the context of libraries: client, implementation,

interface.

16. If you were writing an interface called mylib.h, what lines would you include

as the interface boilerplate?

17. Describe the process used to export a constant definition as part of an interface.

18. What criteria does this chapter list as important in the process of interface

design?

19. Why is it important for an interface to be stable?

20. What is meant by the term pseudorandom number?

21. On most computers, how is the value of RAND_MAX chosen?

116 Functions and Libraries

22. What four steps are necessary to convert the result of rand into an integer
value with a different range?

23. How would you use the randomInteger function to generate a pseudorandom

number between 1 and 100?

24. By executing each of the statements in the implementation by hand, determine

whether the randomInteger function works with negative arguments. What
are the possible results of calling the function randomInteger(-5, 5)?

25. Assuming that d1 and d2 have already been declared as variables of type int,

could you use the multiple assignment statement

d1 = d2 = RandomInteger(1, 6);

to simulate the process of rolling two dice?

26. True or false: The rand function ordinarily generates the same sequence of

random numbers every time a program is run.

27. What is meant by the term seed in the context of random numbers?

28. What suggestion does this chapter offer for debugging a program involving

random numbers?

29. What functions are defined in the final version of the random.h interface? In

what context would you use each function?

 Exercises
1. If you did not do so the first time around, rewrite the Celsius-to-Fahrenheit

program from exercise 1 in Chapter 1 so that it uses a function to perform the
conversion.

2. Reimplement the distance-conversion program from exercise 2 in Chapter 1 so

that it uses a function. In this case, the function must produce both the number
of feet and the number of inches, which means that you need to use call by
reference to return these values.

3. When a floating-point number is converted to an integer in C++, the value is

truncated by throwing away any fraction. Thus, when 4.99999 is converted to
an integer, the result is 4. In many cases, it would be useful to have the option
of rounding a floating-point value to the nearest integer. Given a positive

 Exercises 117

floating-point number x, you can round it to the closest integer by adding 0.5
and then truncating the result to an integer. Because truncation always moves
toward zero, rounding negative numbers requires you to subtract 0.5, rather
than adding it.

Write a function roundToNearestInt(x) that rounds the floating-point
number x to the nearest integer. Show that your function works by writing a
suitable main program to test it.

4. If you are unfortunate enough to be outside in winter weather, you know that

your perception of the cold is dependent on the wind speed as well as the
temperature. The faster the wind blows, the colder you feel. To quantify the
how wind affects temperature perception, the National Weather Service reports
the wind chill, which is illustrated on their website as shown in Figure 2-15. At
the bottom of the figure, you can see that the formula for wind chill is

35.74 + 0.6215 t – 35.75 v 0.16 + 0.4275 t v 0.16

where t is the Fahrenheit temperature and v is the wind speed in miles per hour.

F I G U R E 2 - 1 7 Wind chill as a function of temperature and wind speed

Source: National Weather Service

118 Functions and Libraries

Write a function windChill that takes the values of t and v and returns the
wind chill. In doing so, your function should take account of two special cases:

• If there is no wind, windChill should return the original temperature t.

• If the temperature is greater than 40° F, the wind chill is undefined, and
your function should call error with an appropriate message.

Although it will be easier to do so once you learn how to format numeric

data in Chapter 4, you already know enough to generate a table that presents the
wind-chill data in columns as shown in Figure 2-15. If you’re up for more of a
challenge, write a main program that uses windChill to produce that table.

5. Greek mathematicians took a special interest in numbers that are equal to the

sum of their proper divisors (a proper divisor of n is any divisor less than n
itself). They called such numbers perfect numbers. For example, 6 is a perfect
number because it is the sum of 1, 2, and 3, which are the integers less than 6
that divide evenly into 6. Similarly, 28 is a perfect number because it is the
sum of 1, 2, 4, 7, and 14.

Write a predicate function isPerfect that takes an integer n and returns
true if n is perfect, and false otherwise. Test your implementation by
writing a main program that uses the isPerfect function to check for perfect
numbers in the range 1 to 9999 by testing each number in turn. When a perfect
number is found, your program should display it on the screen. The first two
lines of output should be 6 and 28. Your program should find two other perfect
numbers in the range as well.

6. An integer greater than 1 is said to be prime if it has no divisors other than

itself and one. The number 17, for example, is prime, because there are no
numbers other than 1 and 17 that divide evenly into it. The number 91,
however, is not prime because it is divisible by 7 and 13. Write a predicate
method isPrime(n) that returns true if the integer n is prime, and false
otherwise. To test your algorithm, write a main program that lists the prime
numbers between 1 and 100.

7. Even though clients of the <cmath> library typically don’t need to understand

how functions like sqrt work internally, the implementers of that library have
to be able to design an effective algorithm and write the necessary code. If you
were asked to implement the sqrt function without using the library version,
there are many strategies you could adopt. One of the easiest strategies to
understand is successive approximation in which you make a guess at the
solution and then refine that guess by choosing new values that move closer to
the solution.

 Exercises 119

You can use successive approximation to determine the square root of x by
adopting the following strategy:

1. Begin by guessing that the square root is x / 2. Call that guess g.

2. The actual square root must lie between g and x / g. At each step in the
successive approximation, generate a new guess by averaging g and x / g.

3. Repeat step 2 until the values g and x / g are as close together as the
machine precision allows. In C++, the best way to check for this condition
is to test whether the average is equal to either of the values used to
generate it.

Use this strategy to write your own implementation of the sqrt function.

8. Although Euclid’s algorithm for calculating the greatest common divisor is one

of the oldest to be dignified with that term, there are other algorithms that date
back many centuries. In the Middle Ages, one of the problems that required
sophisticated algorithmic thinking was determining the date of Easter, which
falls on the first Sunday after the first full moon following the vernal equinox.
Given this definition, the calculation involves interacting cycles of the day of
the week, the orbit of the moon, and the passage of the sun through the zodiac.
Early algorithms for solving this problem date back to the third century and are
fully described in the writings of the eighth-century scholar now known as the
Venerable Bede.

In 1800, the German mathematician Carl Friedrich Gauss published an

algorithm for determining the date of Easter that was purely computational in
the sense that it relied on arithmetic rather than looking up values in tables. His
algorithm—translated directly from the German—appears in Figure 2-15.

F I G U R E 2 - 1 8 Gauss’s algorithm for computing the date of Easter

Translated from Karl Friedrich Gauss, “Berechnung des Osterfestes,” August 1800
http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=137484

I. Divide the number of the year for which one wishes to calculate Easter by 19, by 4, and by 7,
and call the remainders of these divisions a, b, and c, respectively. If the division is even, set
the remainder to 0; the quotients are not taken into account. Precisely the same is true of the
following divisions.

II. Divide the value 19a + 23 by 30 and call the remainder d.

III. Finally, divide 2b + 4c + 6d + 3, or 2b + 4c + 6d + 4, choosing the former for years between
1700 and 1799 and the latter for years between 1800 and 1899, by 7 and call the remainder e.

Then Easter falls on March 22 + d + e, or when d + e is greater than 9, on April d + e – 9.

120 Functions and Libraries

Write a procedure

void findEaster(int year, string & month, int & day);

that takes a year and returns the Easter date in the reference parameters month
and day.

Unfortunately, the simple algorithm in Figure 2-15 only works for years in
the 18th and 19th centuries. It is easy, however, to search the web for extensions
that work for all years. Once you have coded and tested your implementation
of Gauss’s original algorithm, undertake the necessary research to find a more
general approach.

9. The combinations function C(n, k) described in this chapter determines the

number of ways you can choose k values from a set of n elements, ignoring the
order of the elements. If the order of the value matters—so that, in the case of
the coin example, choosing a quarter first and then a dime is seen as distinct
from choosing a dime and then a quarter—you need to use a different function,
which computes the number of permutations. This function is denoted as
P(n, k), and has the following mathematical formulation:

P(n, k) =

Although this definition is mathematically correct, it is not well suited to

implementation in practice because the factorials involved can get much too
large to store in an integer variable, even when the answer is small. For
example, if you tried to use this formula to calculate the number of ways to
select two cards from a standard 52-card deck, you would end up trying to
evaluate the following fraction:

even though the answer is the much more manageable 2652 (52 × 51).

Write a function permutations(n, k) that computes the P(n, k) function
without calling the fact function. Part of your job in this problem is to figure
out how to compute this value efficiently. To do so, you will probably find it
useful to play around with some relatively small values to get a sense of how
the factorials in the numerator and denominator of the formula behave.

10. The C(n, k) function from the text and the P(n, k) function from the preceding

exercise come up often in computational mathematics, particularly in an area
called combinatorics, which is concerned with counting the ways objects can

 (n – k)!
n!

80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000

30,414,093,201,713,378,043,612,608,166,064,768,844,377,641,568,960,512,000,000,000,000

 Exercises 121

be combined. Now that you have C++ implementations for each of these
functions, it might be worth putting them in a library so that you can use them
in many different applications.

Write the files combinatorics.h and combinatorics.cpp for a library
that exports the functions permutations and combinations. When you
write the implementation, make sure to rewrite the code for the combinations
function so that it uses the efficiency enhancements suggested for permutations
in exercise 9.

11. Using the direction.h interface as an example, design and implement a

calendar.h interface that exports the Month type from Chapter 1, along with
the functions daysInMonth and isLeapYear, which also appear in that
chapter. Your interface should also export a monthToString function that
returns the constant name for a value of type Month. Test your implementation
by writing a main program that asks the user to enter a year and then writes out
the number of days in each month of that year, as in the following sample run:

12. Write a program RandomAverage that repeatedly generates a random real

number between 0 and 1 and then displays the average after a specified number
of trials entered by the user.

13. I shall never believe that God plays dice with the world.

—Albert Einstein, 1947

Despite Einstein’s metaphysical objections, the current models of physics, and
particularly of quantum theory, are based on the idea that nature does indeed
involve random processes. A radioactive atom, for example, does not decay for
any specific reason that we mortals understand. Instead, that atom has a
random probability of decaying within a period of time. Sometimes it does,
sometimes it doesn’t, and there is no way to know for sure.

TestCalendar
Enter a year: 2012
JANUARY has 31 days.
FEBRUARY has 29 days.
MARCH has 31 days.
APRIL has 30 days.
MAY has 31 days.
JUNE has 30 days.
JULY has 31 days.
AUGUST has 31 days.
SEPTEMBER has 30 days.
OCTOBER has 31 days.
NOVEMBER has 30 days.
DECEMBER has 31 days.

122 Functions and Libraries

Because physicists consider radioactive decay a random process, it is not
surprising that random numbers can be used to simulate it. Suppose you start
with a collection of atoms, each of which has a certain probability of decaying
in any unit of time. You can then approximate the decay process by taking
each atom in turn and deciding randomly whether it decays, considering the
probability.

Write a program that simulates the decay of a sample that contains 10,000
atoms of radioactive material, where each atom has a 50 percent chance of
decaying in a year. The output of your program should show the number of
atoms remaining at the end of each year, which might look something like this:

As the numbers indicate, roughly half the atoms in the sample decay each
year. In physics, the conventional way to express this observation is to say that
the sample has a half-life of one year.

14. Random numbers offer yet another strategy for approximating the value of π.

Imagine that you have a dartboard hanging on your wall that consists of a circle
painted on a square backdrop, as in the following diagram:

What happens if you throw a whole bunch of darts completely randomly,
ignoring any darts that miss the board altogether? Some of the darts will fall
inside the gray circle, but some will be outside the circle in the white corners of
the square. If the darts are random, the ratio of the number of darts landing

RadioactiveDecay
There are 10000 atoms initially.
There are 4957 atoms at the end of year 1.
There are 2484 atoms at the end of year 2.
There are 1215 atoms at the end of year 3.
There are 612 atoms at the end of year 4.
There are 296 atoms at the end of year 5.
There are 143 atoms at the end of year 6.
There are 66 atoms at the end of year 7.
There are 37 atoms at the end of year 8.
There are 15 atoms at the end of year 9.
There are 8 atoms at the end of year 10.
There are 2 atoms at the end of year 11.
There are 0 atoms at the end of year 12.

 Exercises 123

inside the circle to the total number of darts hitting the square should be
approximately equal to the ratio between the two areas. The ratio of the areas
is independent of the actual size of the dartboard, as illustrated by the following
formula:

 ≅ = =

To simulate this process in a program, imagine that the dart board is drawn

on the standard Cartesian coordinate plane with its center at the origin and a
radius of 1 unit. The process of throwing a dart randomly at the square can be
modeled by generating two random numbers, x and y, each of which lies
between –1 and +1. This (x, y) point always lies somewhere inside the square.
The point (x, y) lies inside the circle if

 < 1

This condition, however, can be simplified considerably by squaring each side
of the inequality, which gives the following more efficient test:

x2 + y2 < 1

If you perform this simulation many times and compute the fraction of darts
that fall within the circle, the result will be an approximation of π/4.

Write a program that simulates throwing 10,000 darts and then uses the
simulation technique described in this exercise to generate and display an
approximate value of π. Don’t worry if your answer is correct only in the first
few digits. The strategy used in this problem is not particularly accurate, even
though it occasionally proves useful as an approximation technique. In
mathematics, this technique is called Monte Carlo integration, after the capital
city of Monaco.

15. Heads. . . .

Heads. . . .
Heads. . . .
A weaker man might be moved to re-examine his faith, if in
nothing else at least in the law of probability.

—Tom Stoppard, Rosencrantz and Guildenstern Are Dead, 1967

Write a program that simulates flipping a coin repeatedly and continues until
three consecutive heads are tossed. At that point, your program should display
the total number of coin flips that were made. The following is one possible
sample run of the program:

darts falling inside the circle

darts falling inside the square

area inside the circle

area inside the square

πr
2

4r
2

π
4

x2 + y2

124 Functions and Libraries

16. Use the graphics library to draw a rainbow that looks something like this:

Starting at the top, the six stripes in the rainbow are red, orange, yellow, green,
blue, and magenta, respectively; cyan makes a lovely color for the sky.

17. Use the graphics library to write a program that draws a checkerboard on the

graphics window. Your picture should include the red and black pieces, as they
exist at the beginning of the game, like this:

ConsecutiveHeads
heads
tails
heads
tails
tails
heads
heads
heads
It took 8 flips to get 3 consecutive heads.

Rainbow

Checkerboard

Chapter 3
Strings

Whisper music on those strings.
— T. S. Eliot, The Waste Land, 1922

126 Strings

Up to now, most of the programming examples you have seen in this book have
used numbers as their basic data type. These days, computers work less with
numeric data than with text data, which is a generic term for information composed
of individual characters. The ability of modern computers to process text data has
led to the development of text messaging, electronic mail, word processing systems,
online reference libraries, and a wide variety of other useful applications.

This chapter introduces the C++ <string> library, which provides a convenient
abstraction for working with strings of characters. Having this library in your
toolbox will make it much easier to write interesting applications. This chapter,
however, also introduces the notion of a class, which is the term computer scientists
have adopted for data types that support the object-oriented programming paradigm.
Although C++ also defines a more primitive string type, most text-processing
applications work instead with objects of a class called string. By working with
the string class in this chapter, you will have a better sense of what classes are
when you begin to define your own classes in Chapter 7.

 3.1 Using strings as abstract values
Conceptually, a string is simply a sequence of characters. For example, the string
"hello, world" is a sequence of 12 characters including ten letters, a comma, and
a space. In C++, the string class and its associated operations are defined in the
<string> library, and you must therefore include this library in any source file that
manipulates string data.

In Chapter 1, you learned that data types are defined by two properties: a domain
and a set of operations. For strings, the domain is easy to identify: the domain of
type string is the set of all sequences of characters. The more interesting problem
is to identify the appropriate set of operations. Early versions of C++ followed the
lead of the older C language and offered little support for manipulating strings. The
only facilities were low-level operations that required you to understand the
underlying representation. The designers of C++ soon solved that problem by
introducing a string class that enables clients to work at a more abstract level.

For the most part, you can use string as a primitive data type in much the same
way that you use types like int and double. You can, for example, declare a
variable of type string and assign it an initial value, much as you would with a
numeric variable. When you declare a string variable, you typically specify its
initial value as a string literal, which is a sequence of characters enclosed in double
quotes. For example, the declaration

const string ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

sets the constant ALPHABET to a 26-character string containing the uppercase letters.

 3.1 Using strings as abstract values 127

You can also use the operators >> and << to read and write data values of type
string, although doing so requires some caution. For example, you could make
the Hello program more conversational by rewriting the main function like this:

int main() {
 string name;
 cout << "Enter your name: ";
 cin >> name;
 cout << "Hello, " << name << "!" << endl;
 return 0;
}

This program reads a string from the user into the variable name and then includes
that name as part of the greeting, as shown in the following sample run:

This program, however, behaves in a somewhat surprising way if you enter a
user’s full name instead of the first name alone. For example, if I had typed my full
name in response to the prompt, the sample run would look like this:

Even though the program contains no code to take the two pieces of my name apart,
it somehow still uses only my first name when it prints its greeting. How does the
program know to be so colloquial?

Answering this question requires you to understand in more detail how the >>
operator behaves when you use it to read a string value. Although you might expect
it to read an entire line of input, the >> operator stops as soon as it hits the first
whitespace character, which is defined to be any character that appears as blank
space on the display screen. The most common whitespace character is the space
character itself, but the set of whitespace characters also includes tabs and the
characters that mark the end of a line.

HelloName
Enter your name: Eric
Hello, Eric!

HelloName
Enter your name: Eric Roberts
Hello, Eric!

128 Strings

If you want to read a string that contains whitespace characters, you can’t use the
>> operator. The standard approach is to call the function

getline(cin, str);

which reads an entire line from the console input stream cin into the variable str,
which is passed by reference. It is, however, often more convenient use the
getLine function introduced at the end of Chapter 1, which displays a prompt on
the console, waits for the user to enter a line, and then returns the entire input line to
the caller. Incorporating the getLine function into the HelloName program gives
rise to the code shown in Figure 3-1 and enables the program to display the full
name of the user, as follows:

In practice, reading a complete line is a much more common operation than
reading a substring bounded by whitespace characters. As a result, programs that
need to read a string from the user are far more likely to use the getLine function
than the >> operator.

HelloName
Enter your full name: Eric Roberts
Hello, Eric Roberts!

F I G U R E 3 - 1 An interactive version of the “Hello World” program

/*
 * File: HelloName.cpp
 * -------------------
 * This program extends the classic "Hello world" program by asking
 * the user for a name, which is then used as part of the greeting.
 * This version of the program reads a complete line into name and
 * not just the first word.
 */

#include <iostream>
#include <string>
#include "simpio.h"
using namespace std;

int main() {
 string name = getLine("Enter your full name: ");
 cout << "Hello, " << name << "!" << endl;
 return 0;
}

 3.2 String operations 129

 3.2 String operations
If you need to perform more complex operations using the <string> library, you
will discover that the data type string doesn’t behave in precisely the same way
that more traditional types do. One of the major differences is in the syntax used to
invoke function calls. For example, if you were assured that the <string> library
exports a function named length, you might imagine that the way to determine the
length of a string str would be to use a statement like this:

int nChars = length(str);

As the bug icon emphasizes, this statement is incorrect in C++. The problem with
this expression is that the data type string is not a traditional type but is instead an
example of a class, which is probably easiest to define informally as a template that
describes a set of values together with an associated set of operations. In the
language of object-oriented programming, the values that belong to a class are
called objects. A single class can give rise to many different objects; each such
object is said to be an instance of that class.

The operations that apply to instances of a class are called methods. In C++,
methods look and behave much like traditional functions, although it helps to give
them a new name to emphasize that there are differences. Unlike functions,
methods are tightly coupled to the class to which they belong. In cases where it is
useful to emphasize the distinction, traditional functions are sometimes called
free functions because they are not bound to a particular class.

In the object-oriented world, objects communicate by sending information and
requests from one object to another. Collectively, these transmissions are called
messages. The act of sending a message corresponds to having one object invoke a
method that belongs to a different object. For consistency with the conceptual
model of sending messages, the object that initiates the method is called the sender,
and the object that is the target of that transmission is called the receiver. In C++,
sending a message is specified using the following syntax:

receiver.name(arguments)

The object-oriented version of the statement that sets nChars to the length of the
string object str is therefore

int nChars = str.length();

Table 3-1 lists the most common methods exported by the <string> library, all of
which use the receiver syntax.

130 Strings

<string> methods
T A B L E 3 - 1 Common methods in the <string> library

String operators

str1 + str2 Concatenates str1 and str2 end to end and returns a new string
containing the combined characters. Either string can be replaced by a
character, but numeric types are not allowed.

str += str2 Appends a copy of str2 to the end of str. C++ overloads this operator
so that str2 can be a character value as well.

str1 == str2 str1 != str2

str1 < str2 str1 <= str2

str1 > str2 str1 >= str2

C++ overloads the relational operators so that they compare strings
using lexicographic order, which is based on the underlying character
codes.

str[k] Returns the character at index position k in str as an assignable value.
The [] operator does not check to see if k is in range.

Methods that leave the receiver string unchanged

str.length() Returns the number of characters in str.

str.at(k) Return the character at index position k in str. In contrast to the []
operator, at generates an exception if k is out of range.

str.substr(pos, n) Returns a new string made of characters starting at pos in str and
extending for n characters or up to the end of the string. The second
parameter is optional. If n is missing, the substring always extends
through the end of the string.

str.compare(str2) Compares the receiver string str with str2 and returns an integer that is
0 if the two strings are equal, negative if str precedes str2, and positive
if str follows str2 in lexicographic order. Because C++ overloads the
relational operators, programmers rarely call compare explicitly.

str.find(pattern, pos) Searches the receiver string str for pattern, starting at position pos.
The function returns the first index at which pattern (which can be
either a character or a string) appears; if pattern does not appear, find
returns the constant string::npos. The second argument is
optional; if it is missing, find starts at the beginning of the string.

Methods that destructively modify the receiver string

str.erase(pos, n) Deletes n characters from str starting at pos.

str.insert(pos, str2) Inserts a copy of str2 into str starting at pos.

str.replace(pos, n, str2) Replaces the n characters in str starting at pos with a copy of str2.

Methods for creating C++ and C-style strings

string(carray) Returns a C++ string containing the same characters as carray.

string(n, ch) Returns a C++ string containing n copies of the character ch.

str.c_str() Returns a C-style character array containing the same characters as str.

 3.2 String operations 131

Operator overloading
As you can see from the first section of Table 3-1, the <string> library redefines
several of the standard operators using an extremely powerful C++ feature called
operator overloading, which redefines the behavior of operators depending on the
types of their operands. In the <string> library, the most important overloaded
operator is the + sign. When + is applied to numbers, it performs addition. When +
is applied to strings, it performs concatenation, which is just a fancy word for
joining the two strings together end to end.

You can also use the shorthand += form to concatenate new text to the end of an
existing string. Both the + and += operators allow concatenation of strings or single
characters, as illustrated by the following example, which sets the string variable
str to the string "abcd":

string str = "abc";
str += 'd';

Those of you who are familiar with Java may expect the + operator to support
values of other types by converting those values to strings and then concatenating
them together. That feature is not available in C++, which treats any attempt to use
the + operator with incompatible operands as an error.

C++ also overloads the relational operators so that you can compare string
values much more conveniently than you can in many other languages, including C
and Java. For example, you can check to see whether the value of str is equal to
"quit" like this:

if (str == "quit") . . .

The relational operators compare strings using lexicographic order, which is the
order defined by the underlying ASCII codes. Lexicographic order means that case
is significant, so "abc" is not equal to "ABC".

Selecting characters from a string
In C++, positions within a string are numbered starting from 0. For example, the
characters in the string "hello, world" are numbered as in the following diagram:

The position number written underneath each character is called its index.

The <string> library offers two different mechanisms for selecting individual
characters from a string. One approach is to supply the index inside square brackets

h

0

e

1

l

2

l

3

o

4

,

5

6

w

7

o

8

r

9

l

10

d

11

132 Strings

after the string. For example, if the string variable str contains "hello, world",
the expression

str[0]

selects the character 'h' at the beginning of the string. Although C++ programmers
tend to use the square-bracket syntax for its expressiveness, it is arguably better to
call the at method instead. The expressions str[i] and str.at(i) have almost
the same meaning in C++; the only difference is that at checks to make sure the
index is in range.

No matter which syntax you use, selecting an individual character in a string
returns a direct reference to the character in the string, which allows you to assign a
new value to that character. For example, you can use either the statement

str[0] = 'H';

or the statement

str.at(0) = 'H';

to change the value of the string from "hello, world" to "Hello, world".
Partly because the second form generates confusion by suggesting that it is possible
to assign a value to the result of any function and partly because experience has
shown that students have more trouble understanding examples written using at, I
have chosen to use bracket selection for the programming examples in this book,
despite the lack of range-checking.

Although index positions in strings are conceptually integers, the string class
complicates matters by using the type size_t to represent both index positions and
lengths in a string. If you want to be slavishly correct in your coding, you should
use that type (which is automatically defined when you include the <string>
header file) every time you store a string index in a variable. At Stanford, we have
found that the additional conceptual complexity of using size_t gets in the way of
student understanding and have chosen to use int for this purpose. Using int
works just fine unless your strings are longer than 2,147,483,647 characters long,
although you may get a warning message from some compilers.

String assignment
C++ does take some steps to mitigate the conceptual problems that follow from
allowing the client to change individual characters in an existing string. In
particular, C++ redefines assignment for strings so that assigning one string to
another copies the underlying characters. For example, the assignment statement

 3.2 String operations 133

str2 = str1;

overwrites any previous contents of str2 with a copy of the characters contained in
str1. The variables str1 and str2 therefore remain independent, which means
that changing the characters in str1 does not affect str2. Similarly, C++ copies
the characters in any string passed as a value parameter. Thus, if a function makes
changes to an argument that happens to be a string, those changes are not reflected
in the calling function unless the string parameter is passed by reference.

Extracting parts of a string
Concatenation makes longer strings from shorter pieces. You often need to do the
reverse: separate a string into the shorter pieces it contains. A string that is part of a
longer string is called a substring. The string class exports a method called
substr that takes two parameters: the index of the first character you want to select
and the desired number of characters. Calling str.substr(start, n) creates a
new string by extracting n characters from str starting at the index position
specified by start. For example, if str contains the string "hello, world", the
method call

str.substr(1, 3)

returns the three-character substring "ell". Because indices in C++ begin at 0, the
character at index position 1 is the character 'e'.

The second argument in the substr method is optional. If it is missing, substr
returns the substring that starts at the specified position and continues through the
end of the string. Thus, calling

str.substr(7)

returns the string "world". Similarly, if n is supplied but fewer than n characters
follow the specified starting position, substr returns characters only up to the end
of the original string.

The following function uses substr to return the second half of the parameter
str, which is defined to include the middle character if the length of str is odd:

string secondHalf(string str) {
 return str.substr(str.length() / 2);
}

Searching within a string
From time to time, you will find it useful to search a string to see whether it
contains a particular character or substring. To make such search operations

134 Strings

possible, the string class exports a method called find, which comes in several
forms. The simplest form of the call is

str.find(search);

where search is the content you’re looking for, which can be either a string or a
character. When called, the find method searches through str looking for the first
occurrence of the search value. If the search value is found, find returns the index
position at which the match begins. If the character does not appear before the end
of the string, find returns the constant string::npos. Unlike the constants that
you saw in Chapter 1, the identifier npos is defined as part of the string class and
therefore requires the string:: qualifier whenever it appears.

The find method also takes an optional second argument that indicates the
index position at which to start the search. The effect of both styles of the find
method is illustrated by the following examples, which assume that the variable str
contains the string "hello, world":

str.find('o') → 4
str.find('o', 5) → 8
str.find('x') → str::npos

As with string comparison, the methods for searching a string consider uppercase
and lowercase characters to be different.

Iterating through the characters in a string
Even though the methods exported by the string class give you the tools you need
to implement string applications from scratch, it is usually easier to write programs
by adapting existing code examples that implement particularly common operations.
In programming terminology, such illustrative examples are called patterns. When
you work with strings, one of the most important patterns involves iterating through
the characters in a string, which requires the following code:

for (int i = 0; i < str.length(); i++) {
 . . . body of loop that manipulates str[i] . . .
}

On each loop cycle, the selection expression str[i] refers to the ith character in
the string. Because the purpose of the loop is to process every character, the loop
continues until i reaches the length of the string. Thus, you can count the number
of spaces in a string using the following function:

 3.2 String operations 135

int countSpaces(string str) {
 int nSpaces = 0;
 for (int i = 0; i < str.length(); i++) {
 if (str[i] == ' ') nSpaces++;
 }
 return nSpaces;
}

For some applications, you will find it useful to iterate through a string in the

opposite direction, starting with the last character and continuing backward until
you reach the first. This style of iteration uses the following for loop:

for (int i = str.length() - 1; i >= 0; i--)

Here, the index i begins at the last index position, which is one less than the length
of the string, and then decreases by one on each cycle, down to and including the
index position 0.

Assuming that you understand the syntax and semantics of the for statement,
you could work out the patterns for each iteration direction from first principles
each time this pattern comes up in an application. Doing so, however, will slow you
down enormously. These iteration patterns are worth memorizing so that you don’t
have to waste any time thinking about them. Whenever you recognize that you
need to cycle through the characters in a string, some part of your nervous system
between your brain and your fingers should be able to translate that idea effortlessly
into the following line:

for (int i = 0; i < str.length(); i++)

For some applications, you will need to modify the basic iteration pattern to start
or end the iteration at a different index position. For example, the following
function checks to see whether a string begins with a particular prefix:

bool startsWith(string str, string prefix) {
 if (str.length() < prefix.length()) return false;
 for (int i = 0; i < prefix.length(); i++) {
 if (str[i] != prefix[i]) return false;
 }
 return true;
}

This code begins by checking to make sure that str is not shorter than prefix (in
which case, the result must certainly be false) and then iterates only through the
characters in prefix rather than the string as a whole.

136 Strings

As you read through the code for the startsWith function, it is useful to pay
attention to the placement of the two return statements. The code returns false
from inside the loop, as soon as it discovers the first difference between the string
and the prefix. The code returns true from outside the loop, after it has checked
every character in the prefix without finding any differences. You will encounter
examples of this basic pattern over and over again as you read through this book.

The startsWith function and the similar endsWith function you will have a
chance to write in exercise 1 turn out to be very useful, even though they are not
part of the standard <string> library in C++. They are thus ideal candidates for
inclusion in a library of string functions that you create for yourself by applying the
same techniques used in Chapter 2 to define the error library. The Stanford
libraries include an interface called strlib.h that exports several useful string
functions. The contents of that interface are described in more detail later in this
chapter and appear in full in Appendix A.

Growing a string through concatenation
The other important pattern to memorize as you learn how to work with strings
involves creating a new string one character at a time. The loop structure itself will
depend on the application, but the general pattern for creating a string by
concatenation looks like this:

string str = "";
for (whatever loop header line fits the application) {
 str += the next substring or character;
}

As a simple example, the following method returns a string consisting of n copies of
the character ch:

string repeatChar(int n, char ch) {
 string str = "";
 for (int i = 0; i < n; i++) {
 str += ch;
 }
 return str;
}

The repeatChar function is useful, for example, if you need to generate some kind
of section separator in console output. One strategy to accomplish this goal would
be to use the statement

cout << repeatChar(72, '-') << endl;

which prints a line of 72 hyphens.

 3.3 The <cctype> library 137

Many string-processing functions use the iteration and concatenation patterns
together. For example, the following function reverses the argument string so that,
for example, calling reverse("desserts") returns "stressed":

string reverse(string str) {
 string rev = "";
 for (int i = str.length() - 1; i >= 0; i--) {
 rev += str[i];
 }
 return rev;
}

 3.3 The <cctype> l ibrary
Given that strings are composed of characters, it is often useful to have tools for
working with those individual characters, and not just the string as a whole. The
<cctype> library exports a variety of functions that work with characters, the most
common of which appear in Table 3-2.

The first section of Table 3-2 defines a set of predicate functions to test whether
a character belongs to a particular category. Calling isdigit(ch), for example,
returns true if ch is one of the digit characters in the range between '0' and '9'.

T A B L E 3 - 2 Selected functions in the <cctype> library

Predicate functions for testing character type

isalpha(ch) Returns true if ch is an alphabetic character.

isupper(ch) Returns true if ch is an uppercase alphabetic character.

islower(ch) Returns true if ch is a lowercase alphabetic character.

isdigit(ch) Returns true if ch is a digit ('0'-'9').

isxdigit(ch) Returns true if ch is a hexadecimal digit ('0'-'9', 'A'-'F', 'a'-'f')

isalnum(ch) Returns true if ch is alphanumeric, which means that it is either a letter or a digit.

ispunct(ch) Returns true if ch is a punctuation symbol.

isspace(ch) Returns true if ch is a whitespace character. These characters are ' ' (the space
character), '\t', '\n', '\f', '\v', or '\r', all of which appear as blank space.

isprint(ch) Returns true if ch is any printable character.

Functions for case conversion

toupper(ch) Returns ch converted to upper case (or ch itself if ch is not a letter).

tolower(ch) Returns ch converted to lower case (or ch itself if ch is not a letter).

138 Strings

Similarly, calling isspace(ch) returns true if ch is any of the characters that
appear as white space on a display screen, such as spaces and tabs. The functions in
the second section of Table 3-2 make it easy to convert between uppercase and
lowercase letters. Calling toupper('a'), for example, returns the character 'A'.
If the argument to either the toupper or tolower function is not a letter, the
function returns its argument unchanged, so that tolower('7') returns '7'.

The functions in the <cctype> library often come in handy when you are
working with strings. The following function, for example, returns true if the
argument str is a nonempty string of digits, which means that it represents an
integer:

bool isDigitString(string str) {
 if (str.length() == 0) return false;
 for (int i = 0; i < str.length(); i++) {
 if (!isdigit(str[i])) return false;
 }
 return true;
}

Similarly, the following function returns true if the strings s1 and s2 are equal,

ignoring differences in case:

bool equalsIgnoreCase(string s1, string s2) {
 if (s1.length() != s2.length()) return false;
 for (int i = 0; i < s1.length(); i++) {
 if (tolower(s1[i]) != tolower(s2[i])) return false;
 }
 return true;
}

The implementation of equalsIgnoreCase returns false as soon as it finds the
first character position that doesn’t match, but must wait until it reaches the end of
the loop to return true.

 3.4 Modifying the contents of a string
Unlike other languages such as Java, C++ allows you to change the characters in a
string by assigning new values to a particular index position. That fact makes it
possible to design your own string functions that change the content of a string in
much the same way that the erase, insert, and replace functions do. In most
cases, however, it is better to write functions so that they return a transformed
version of a string without changing the original.

 3.4 Modifying the contents of a string 139

As an illustration of how these two approaches differ, suppose that you want to
design a string counterpart to the toupper function in the <cctype> library that
converts every lowercase character in a string to its uppercase equivalent. One
approach is to implement a procedure that changes the contents of the argument
string, as follows:

void toUpperCaseInPlace(string & str) {
 for (int i = 0; i < str.length(); i++) {
 str[i] = toupper(str[i]);
 }
}

An alternative strategy is to write a function that returns an uppercase copy of its
argument without changing the original. If you use the iteration and concatenation
patterns, such a function might look like this:

string toUpperCase(string str) {
 string result = "";
 for (int i = 0; i < str.length(); i++) {
 result += toupper(str[i]);
 }
 return result;
}

The strategy that modifies the string in place is more efficient, but the second is

more flexible and less likely to cause unexpected results. Having the first version,
however, makes it possible to code the second in a more efficient way:

string toUpperCase(string str) {
 toUpperCaseInPlace(str);
 return str;
}

In this implementation, C++ automatically copies the argument string because it is
passed by value. Given that str is no longer connected to the argument string in
the caller’s domain, it is perfectly acceptable to modify it in place and then return a
copy back to the caller.

 3.5 The legacy of C-style strings
In its early years, C++ succeeded in part because it includes all of C as a subset,
thereby making it possible to evolve gradually from one language to the other. That
design decision, however, means that C++ includes some aspects of C that no
longer make sense in a modern object-oriented language, but nonetheless need to be
maintained for compatibility.

140 Strings

In C, strings are implemented as low-level arrays of characters, which offer none
of the high-level facilities that make the string class so useful. Unfortunately, the
decision to keep C++ compatible with C means that C++ must support both styles.
String literals, for example, are implemented using the older C-based style. For the
most part, you can ignore this historical detail because C++ automatically converts a
string literal to a C++ string whenever the compiler can determine that what you
want is a C++ string. If you initialize a string using the line

string str = "hello, world";

C++ automatically converts the C-style string literal "hello, world" to a C++
string object, because you’ve told the compiler that str is a string variable. By
contrast, C++ does not allow you to write the declaration

string str = "hello" + ", " + "world";

even though it seems as if this statement would have the same ultimate effect. The
problem here is that this version of the code tries to apply the + operator to string
literals, which are not C++ string objects.

If you need to get around this problem, you can explicitly convert a string literal
to a string object by calling string on the literal. The following line, for example,
correctly converts "hello" to a C++ string object and then uses concatenation to
complete the calculation of the initial value:

string str = string("hello") + ", " + "world";

Another problem that arises from having two different representations for strings
is that some C++ libraries require the use of C-style strings instead of the more
modern C++ string class. If you use these library abstractions in the context of an
application that uses C++ strings, you must at some point convert the C++ string
objects into their older, C-style counterparts. Specifying that conversion is simple
enough: all you have to do is apply the c_str method to the C++ version of a string
to obtain its C-style equivalent. The more important problem, however, is that
having to master two different representations for strings increases the conceptual
complexity of C++, thereby making it harder to learn.

 3.6 Writing string applications
Although they are useful to illustrate how particular string functions work, the string
examples you have seen so far are too simple to give you much insight into writing
a significant string-processing application. This section addresses that deficiency
by developing two applications that manipulate string data.

 3.6 Writing string applications 141

Recognizing palindromes
A palindrome is a word that reads identically backward and forward, such as level
or noon. The goal of this section is to write a predicate function isPalindrome
that checks whether a string is a palindrome. Calling isPalindrome("level")
should return true; calling isPalindrome("xyz") should return false.

As with most programming problems, there are several reasonable strategies for
solving this problem. In my experience, the approach that most students are likely
to try first uses a for loop to run through each index position in the first half of the
string. At each position, the code then checks to see whether that character matches
the one that appears in the symmetric position relative to the end of the string.
Adopting that strategy leads to the following code:

bool isPalindrome(string str) {
 int n = str.length();
 for (int i = 0; i < n / 2; i++) {
 if (str[i] != str[n - i - 1]) return false;
 }
 return true;
}

Given the string functions you’ve already encountered in this chapter, you can also
code isPalindrome in the following, much simpler form:

bool isPalindrome(string str) {
 return str == reverse(str);
}

Of these two implementations, the first is more efficient. The second version has

to construct a new string that is the reverse of the original; worse still, it does so by
concatenating the characters together one at a time, which means that the program
creates as many intermediate string values as there are characters in the original
string. The first version doesn’t have to create any strings at all. It does its work by
selecting and comparing characters, which turn out to be less costly operations.

Despite this difference in efficiency, I believe that the second coding is much
better, particularly as an example for new programmers. For one thing, it takes
advantage of existing code by making use of the reverse function. For another, it
hides the complexity involved in calculating index positions required by the first
version. It takes at least a minute or two for most students to figure out why the
code includes the selection expression str[n - i - 1] or why it is appropriate to
use the < operator in the for loop test, as opposed to <=. By contrast, the line

return str == reverse(str);

142 Strings

reads almost as fluidly as English: a string is a palindrome if it is equal to the same
string in reverse order.

Particularly as you are learning about programming, it is much more important
to work toward the clarity of the second implementation than the efficiency of the
first. Given the speed of modern computers, it is almost always worth sacrificing a
few machine cycles to make a program easier to understand.

Translating English to Pig Latin
To give you more of a sense of how to implement string-processing applications,
this section describes a C++ program that reads a line of text from the user and then
translates each word in that line from English to Pig Latin, a made-up language
familiar to most children in the English-speaking world. In Pig Latin, words are
formed from their English counterparts by applying the following rules:

1. If the word contains no vowels, no translation is done, which means that the

translated word is the same as the original.

2. If the word begins with a vowel, the function adds the string "way" to the end
of the original word.

3. If the word begins with a consonant, the function extracts the string of
consonants up to the first vowel, moves that collection of consonants to the end
of the word, and adds the string "ay".

As an example, suppose that the English word is scram. Because the word begins
with a consonant, you divide it into two parts: one consisting of the letters before
the first vowel and one consisting of that vowel and the remaining letters:

You then interchange these two parts and add ay at the end, as follows:

Thus the Pig Latin word for scram is amscray. For a word that begins with a vowel,
such as apple, you simply add way to the end, which leaves you with appleway.

The code for the PigLatin program appears in Figure 3-2. The main program
reads a line of text from the user and then calls lineToPigLatin to convert that
line to Pig Latin. The lineToPigLatin function then calls wordToPigLatin to
convert each word to its Pig Latin equivalent. Characters that are not part of a word
are copied directly to the output line so that punctuation and spacing remain
unaffected.

s c r a m

a m s c r a y

 3.6 Writing string applications 143

page 1 of figure.
F I G U R E 3 - 2 Program to translate English to Pig Latin

/*
 * File: PigLatin.cpp
 * ------------------
 * This program converts lines from English to Pig Latin.
 * This dialect of Pig Latin applies the following rules:
 *
 * 1. If the word contains no vowels, return the original
 * word unchanged.
 *
 * 2. If the word begins with a consonant, extract the set
 * of consonants up to the first vowel, move that set
 * of consonants to the end of the word, and add "ay".
 *
 * 3. If the word begins with a vowel, add "way" to the
 * end of the word.
 */

#include <iostream>
#include <string>
#include <cctype>
using namespace std;

/* Function prototypes */

string lineToPigLatin(string line);
string wordToPigLatin(string word);
int findFirstVowel(string word);
bool isVowel(char ch);

/* Main program */

int main() {
 cout << "This program translates English to Pig Latin." << endl;
 string line;
 cout << "Enter English text: ";
 getline(cin, line);
 string translation = lineToPigLatin(line);
 cout << "Pig Latin output: " << translation << endl;
 return 0;
}

144 Strings

Page 2 of figure.
F I G U R E 3 - 2 Program to translate English to Pig Latin (continued)

/*
 * Function: lineToPigLatin
 * Usage: string translation = lineToPigLatin(line);
 * ---
 * Translates each word in the line to Pig Latin, leaving all other
 * characters unchanged. The variable start keeps track of the index
 * position at which the current word begins. As a special case,
 * the code sets start to -1 to indicate that the beginning of the
 * current word has not yet been encountered.
 */

string lineToPigLatin(string line) {
 string result;
 int start = -1;
 for (int i = 0; i < line.length(); i++) {
 char ch = line[i];
 if (isalpha(ch)) {
 if (start == -1) start = i;
 } else {
 if (start >= 0) {
 result += wordToPigLatin(line.substr(start, i - start));
 start = -1;
 }
 result += ch;
 }
 }
 if (start >= 0) result += wordToPigLatin(line.substr(start));
 return result;
}

/*
 * Function: wordToPigLatin
 * Usage: string translation = wordToPigLatin(word);
 * ---
 * This function translates a word from English to Pig Latin using
 * the rules specified in the text. The translated word is
 * returned as the value of the function.
 */

string wordToPigLatin(string word) {
 int vp = findFirstVowel(word);
 if (vp == -1) {
 return word;
 } else if (vp == 0) {
 return word + "way";
 } else {
 string head = word.substr(0, vp);
 string tail = word.substr(vp);
 return tail + head + "ay";
 }
}

 3.6 Writing string applications 145

A sample run of the program might look like this:

It is worth taking a careful look at the implementations of lineToPigLatin
and wordToPigLatin in Figure 3-2. The lineToPigLatin function finds the
word boundaries in the input and provides a useful pattern for separating a string
into individual words. You will see much the same strategy in the implementation
of the token scanner in Chapter 6. The wordToPigLatin function uses substr to
extract pieces of the English word and then uses concatenation to put them back
together in their Pig Latin form.

PigLatin
This program translates English to Pig Latin.
Enter English text: this is pig latin.
Pig Latin output: isthay isway igpay atinlay.

F I G U R E 3 - 2 Program to translate English to Pig Latin (continued)

/*
 * Function: findFirstVowel
 * Usage: int k = findFirstVowel(word);
 * ------------------------------------
 * Returns the index position of the first vowel in word. If
 * word does not contain a vowel, findFirstVowel returns -1.
 */

int findFirstVowel(string word) {
 for (int i = 0; i < word.length(); i++) {
 if (isVowel(word[i])) return i;
 }
 return -1;
}

/*
 * Function: isVowel
 * Usage: if (isVowel(ch)) . . .
 * -----------------------------
 * Returns true if the character ch is a vowel.
 */

bool isVowel(char ch) {
 switch (ch) {
 case 'A': case 'E': case 'I': case 'O': case 'U':
 case 'a': case 'e': case 'i': case 'o': case 'u':
 return true;
 default:
 return false;
 }
}

146 Strings

 3.7 The strl ib.h l ibrary
As I’ve noted from time to time in the text, several of the functions in this chapter
seem ideal for inclusion in a library. Once you have written these functions as part
of one application, it would be silly not to use them in other applications that need
to perform the same operations. While functions like wordToPigLatin are
unlikely to show up anywhere else, you will often have occasion to use functions
like toUpperCase and startsWith. To avoid having to rewrite them or to
cut-and-paste the code, it makes sense to put those functions into a library so that
you always have them available.

The Stanford libraries distributed with the book include an interface called
strlib.h that exports the functions shown in Table 3-6. You can see on this list
several functions whose definitions appear in this chapter. In the exercises, you will
have a chance to fill in the definitions of some of the others, including endsWith
and trim. The first four functions in Table 3-6, all of which are concerned with
converting numeric values to string form, require techniques that are beyond the
limits of your knowledge of C++, but only for the moment. In Chapter 4, you will
learn how to use a new data type called a stream, which will make it easy to
implement these functions.

T A B L E 3 - 6 Functions exported by the strlib.h interface

integerToString(n) Converts an integer into the corresponding string of digits.

stringToInteger(str) Converts a string of digits into an integer.

realToString(d) Converts a floating-point number into the corresponding string form.

stringToReal(str) Converts a string representing a real number into its corresponding
value.

toUpperCase(str) Returns a new string in which all lowercase characters have been
converted into their uppercase equivalents.

toLowerCase(str) Returns a new string in which all uppercase characters have been
converted into their lowercase equivalents.

equalsIgnoreCase(s1, s2) Returns true if s1 and s2 are equal discounting differences in case.

startsWith(str, prefix) Returns true if the string str starts with the specified prefix, which
may be either a string or a character.

endsWith(str, suffix) Returns true if the string str ends with the specified suffix, which
may be either a string or a character.

trim(str) Returns a new string after removing any whitespace characters from
the beginning and end of the argument.

 Summary 147

 Summary
In this chapter, you have learned how to use the <string> library, which makes it
possible to write string-processing functions without worrying about the details of
the underlying representation. The important points in this chapter include:

• The <string> library exports a class called string that represents a sequence

of characters. Although C++ also includes a more primitive string type to
maintain compatibility with the C programming language, it is best to use the
string class in any programs that you write.

• If you use the >> extraction operator to read string data, the input stops at the
first whitespace character. If you want to read an entire line of text from the
user, it is usually better to use the getLine function exported by the simpio.h
interface.

• The most common methods exported by the string class appear in Table 3-1
on page 128. Because string is a class, the methods use the receiver syntax
instead of the traditional functional form. Thus, to obtain the length of a string
stored in the variable str, you need to invoke str.length().

• Several of the methods exported by the string class destructively modify the
receiver string. Giving clients free access to methods that change the internal
state of an object makes it harder to protect that object’s integrity. The programs
in this book therefore minimize the use of these methods.

• The string class uses operator overloading to simplify many common string
operations. For strings, the most important operators are + (for concatenation),
[] (for selection), and the relational operators.

• The standard pattern for iterating through the characters in a string is

for (int i = 0; i < str.length(); i++) {
 . . . body of loop that manipulates str[i] . . .
}

• The standard pattern for growing a string by concatenation is

string str = "";
for (whatever loop header line fits the application) {
 str += the next substring or character;
}

• The <cctype> library exports several functions for working with individual

characters. The most important of these functions appear in Table 3-2.

148 Strings

 Review questions
1. What is the difference between a character and a string?

2. True or false: If you execute the lines

string line;
cin >> line;

the program will read an entire line of data from the user and store it in the
variable line.

3. Which arguments to the getline function are passed by reference?

4. What is the difference between a method and a free function?

5. True or false: In C++, you can determine the length of the string stored in the

variable str by calling length(str).

6. If you call s1.replace(0, 1, s2), which string is the receiver?

7. What is the effect of the + operator when it is used with two string operands?

8. When C++ evaluates the expression s1 < s2, what rule does the string class

use to compare the string values?

9. What two syntactic forms does this chapter describe for selecting an individual

character from a string? How do these two syntactic forms differ in their
implementation?

10. When you select an individual character from a C++ string, you can use either

the at method or the standard subscript notation using square brackets. From
the client’s perspective, what is the difference between these two options?

11. True or false: If you assign the value of the string variable s1 to the string

variable s2, the string class copies the characters so that subsequent changes
to the characters in one string will not affect the characters in the other.

12. True or false: The index positions in a string begin at 0 and extend up to the

length of the string minus 1.

13. What are the arguments to the substr method? What happens if you omit the

second argument?

 Review questions 149

14. What value does the find method return to indicate that the search string does
not appear?

15. What are the arguments to the substr method? What happens if you omit the

second argument?

16. What is the significance of the optional second argument to the find method?

17. What is the effect of each of the following calls to the <string> library:

string s = "ABCDE"
string t = "";

a. s.length() f. s.replace(0, 2, "Z")
b. t.length() g. s.substr(0, 3)
c. s[2] h. s.substr(4)
d. s + t i. s.substr(3, 9)
e. t += 'a' j. s.substr(3, 3)

18. What is the pattern for iterating through each character in a string?

19. How does this pattern change if you want to iterate through the characters in

reverse order, starting with the last character and ending with the first?

20. What is the pattern for growing a string through concatenation?

21. What is the result of each of the following calls to the <cctype> library:

a. isdigit(7) d. toupper(7)
b. isdigit('7') e. toupper('A')
c. isalnum(7) f. tolower('A')

22. Why does C++ support both a string class and a more primitive string type?

23. How can you convert a primitive string value to a C++ string? How can you

specify a conversion in the opposite direction?

 Exercises
1. Implement the function endsWith(str, suffix), which returns true if

str ends with suffix. Like its startsWith counterpart, the endsWith
function should allow the second argument to be either a string or a character.

150 Strings

2. The strlib.h function exports a function trim(str) that returns a new
string formed by removing all whitespace characters from the beginning and
end of str. Write the corresponding implementation.

3. Without using the built-in string method substr, implement a free function

substr(str, pos, n) that returns the substring of str beginning at position
pos and containing at most n characters. Make sure that your function
correctly applies the following rules:

• If n is missing or greater than the length of the string, the substring should

extend through the end of the original string.

• If pos is greater than the length of the string, substr should call error
with an appropriate message.

4. Implement a function capitalize(str) that returns a string in which the

initial character is capitalized (if it is a letter) and all other letters are converted
to lowercase. Characters other than letters are not affected. For example, both
capitalize("BOOLEAN") and capitalize("boolean") should return
the string "Boolean".

5. In most word games, each letter in a word is scored according to its point

value, which is inversely proportional to its frequency in English words. In
Scrabble™, the points are allocated as follows:

Points Letters

1 A, E, I, L, N, O, R, S, T, U
2 D, G
3 B, C, M, P
4 F, H, V, W, Y
5 K
8 J, X

10 Q, Z

For example, the word "FARM" is worth 9 points in Scrabble: 4 for the F, 1
each for the A and the R, and 3 for the M. Write a program that reads in words
and prints out their score in Scrabble, not counting any of the other bonuses
that occur in the game. You should ignore any characters other than uppercase
letters in computing the score. In particular, lowercase letters are assumed to
represent blank tiles, which can stand for any letter but have a score of 0.

6. An acronym is a new word formed by combining, in order, the initial letters of

a series of words. For example, the word scuba is an acronym formed from
the first letters in self-contained underwater breathing apparatus. Similarly,
AIDS is an acronym for Acquired Immune Deficiency Syndrome. Write a

 Exercises 151

function acronym that takes a string and returns the acronym formed from
that string. To ensure that your function treats hyphenated compounds like
self-contained as two words, it should define the beginning of a word as any
alphabetic character that appears either at the beginning of the string or after a
nonalphabetic character.

7. Write a function

string removeCharacters(string str, string remove);

that returns a new string consisting of the characters in str after removing all
instances of the characters in remove. For example, if you call

removeCharacters("counterrevolutionaries", "aeiou")

the function should return "cntrrvltnrs", which is the original string after
removing all of its vowels.

8. Modify your solution to exercise 7 so that, instead of using a function that

returns a new string, you define a function removeCharactersInPlace that
removes the letters from the string passed as the first argument.

9. The waste of time in spelling imaginary sounds and their history

(or etymology as it is called) is monstrous in English . . .
—George Bernard Shaw, 1941

In the early part of the 20th century, there was considerable interest in both
England and the United States in simplifying the rules used for spelling
English words, which has always been a difficult proposition. One suggestion
advanced as part of this movement was to eliminate all doubled letters, so that
bookkeeper would be written as bokeper and committee would become comite.
Write a function removeDoubledLetters(str) that returns a new string in
which any duplicated characters in str have been replaced by a single copy.

10. Write a function

string replaceAll(string str, char c1, char c2);

that returns a copy of str with every occurrence of c1 replaced by c2. For
example, calling

replaceAll("nannies", 'n', 'd');

should return "daddies".

152 Strings

Once you have coded and tested this function, write an overloaded version

string replaceAll(string str, string s1, string s2);

that replaces all instances of the string s1 with the replacement string s2.

11. The concept of a palindrome is often extended to full sentences by ignoring

punctuation and differences in the case of letters. For example, the sentence

Madam, I’m Adam.

is a sentence palindrome, because if you only look at the letters and ignore any
distinction between uppercase and lowercase letters, it reads identically
backward and forward.

Write a predicate function isSentencePalindrome(str) that returns
true if the string str fits this definition of a sentence palindrome. For
example, you should be able to use your function to write a main program
capable of producing the following sample run:

12. Write a function createRegularPlural(word) that returns the plural of

word formed by following these standard English rules:

a. If the word ends in s, x, z, ch, or sh, add es to the word.

b. If the word ends in a y preceded by a consonant, change the y to ies.

c. In all other cases, add just an s.

Write a test program and design a set of test cases to verify that your program
works.

13. Like most other languages, English include two types of numbers. The

cardinal numbers (such as one, two, three, and four) are used in counting; the
ordinal numbers (such as first, second, third, and fourth) are used to indicate a
position in a sequence. In text, ordinals are usually indicated by writing the

SentencePalindrome
This program tests for sentence palindromes.
Indicate the end of the input with a blank line.
Enter a sentence: Madam, I'm Adam.
That sentence is a palindrome.
Enter a sentence: A man, a plan, a canal -- Panama!
That sentence is a palindrome.
Enter a sentence: Not a palindrome.
That sentence is not a palindrome.
Enter a sentence:

 Exercises 153

digits in the number, followed by the last two letters of the English word that
names the corresponding ordinal. Thus, the ordinal numbers first, second,
third, and fourth often appear in print as 1st, 2nd, 3rd, and 4th. The ordinals
for 11, 12, and 13, however, are 11th, 12th, and 13th. Devise a rule that
determines what suffix should be added to each number, and then use this rule
to write a function createOrdinalForm(n) that returns the ordinal form of
the number n as a string.

14. When large numbers are written out on paper, it is traditional—at least in the

United States—to use commas to separate the digits into groups of three. For
example, the number one million is usually written in the following form:

1,000,000

To make it easier for programmers to display numbers in this fashion,
implement a function

string addCommas(string digits);

that takes a string of decimal digits representing a number and returns the
string formed by inserting commas at every third position, starting on the
right. For example, if you were to execute the main program

int main() {
 while (true) {
 string digits = getLine("Enter a number: ");
 if (digits == "") break;
 cout << addCommas(digits) << endl;
 }
 return 0;
}

your implementation of the addCommas function should be able to produce the
following sample run:

AddCommas
Enter a number: 17
17
Enter a number: 1001
1,001
Enter a number: 12345678
12,345,678
Enter a number: 999999999
999,999,999
Enter a number:

154 Strings

15. As written, the PigLatin program in Figure 3-2 behaves oddly if you enter a
string that includes words beginning with an uppercase letter. For example, if
you were to capitalize the first word in the sentence and the name of the Pig
Latin language, you would see the following output:

Rewrite the wordToPigLatin function so that any word that begins with a
capital letter in the English line still begins with a capital letter in Pig Latin.
Thus, after making your changes in the program, the output should look like
this:

16. Most people—at least those in English-speaking countries—have played the

Pig Latin game at some point in their lives. There are, however, other
invented “languages” in which words are created using some simple
transformation of English. One such language is called Obenglobish, in which
words are created by adding the letters ob before the vowels (a, e, i, o, and u)
in an English word. For example, under this rule, the word english gets the
letters ob added before the e and the i to form obenglobish, which is how the
language gets its name.

In official Obenglobish, the ob characters are added only before vowels
that are pronounced, which means that a word like game would become
gobame rather than gobamobe because the final e is silent. While it is
impossible to implement this rule perfectly, you can do a pretty good job by
adopting the rule that the ob should be added before every vowel in the
English word except

• Vowels that follow other vowels

• An e that occurs at the end of the word

PigLatin
This program translates English to Pig Latin.
Enter English text: This is Pig Latin.
Pig Latin output: isThay isway igPay atinLay.

PigLatin
This program translates English to Pig Latin.
Enter English text: This is Pig Latin.
Pig Latin output: Isthay isway Igpay Atinlay.

 Exercises 155

Write a function obenglobish that takes an English word and returns its
Obenglobish equivalent, using the translation rule given above. For example,
if you used your function with the main program

int main() {
 while (true) {
 string word = getLine("Enter a word: ");
 if (word == "") break;
 string trans = obenglobish(word);
 cout << word << " -> " << trans << endl;
 }
 return 0;
}

you should be able to generate the following sample run:

17. If you played around with codes and ciphers as a child, the odds are good that

you at some point used a cyclic cipher—which is often called a Caesar cipher
because the Roman historian Suetonius records that Julius Caesar used this
technique—in which you replace each letter in the original message by the
letter that appears a fixed distance ahead in the alphabet. As an example,
suppose that you wanted to encode a message by shifting every letter ahead
three places. In this cipher, each A becomes an D, B becomes E, and so on. If
you reach the end of the alphabet, the process cycles around to the beginning,
so that X becomes A, Y becomes B, and Z becomes C.

To implement a Caesar cipher, you should first define a function

string encodeCaesarCipher(string str, int shift);

that returns a new string formed by shifting every letter in str forward the
number of letters indicated by shift, cycling back to the beginning of the

Obenglobish
Enter a word: english
english -> obenglobish
Enter a word: hobnob
hobnob -> hobobnobob
Enter a word: gooiest
gooiest -> gobooiest
Enter a word: amaze
amaze -> obamobaze
Enter a word: rot
rot -> robot
Enter a word:

156 Strings

alphabet if necessary. After you have implemented encodeCaesarCipher,
write a program that generates the following sample run:

Note that the transformation applies only to letters; any other characters are
copied unchanged to the output. Moreover, the case of letters is unaffected:
lowercase letters come out as lowercase, and uppercase letters come out as
uppercase. You should also write your program so that a negative value of
shift means that letters are shifted toward the beginning of the alphabet
instead of toward the end, as illustrated by the following sample run:

18. Although they are certainly simple, Caesar ciphers are also extremely easy to

break. There are, after all, only 25 values for the number of characters to shift.
If you want to break a Caesar cipher, all you have to do is try each of the 25
possibilities and see which one translates the original message into something
readable. A better scheme is to allow each letter in the original message to be
represented by an arbitrary letter instead of one a fixed distance from the
original. In this case, the key for the encoding operation is a translation table
that shows what each of the 26 letters becomes in the encrypted form. Such a
coding scheme is called a letter-substitution cipher.

The key in a letter-substitution cipher is a 26-character string that indicates
the translation for each character in the alphabet in order. For example, the
key "QWERTYUIOPASDFGHJKLZXCVBNM" indicates that the encoding process
should use the following translation rule:

Write a program that implements encryption using a letter-substitution
cipher. Your program should be able to duplicate the following sample run:

CaesarCipher
This program encodes a message using a Caesar cipher.
Enter the number of character positions to shift: 13
Enter a message: This is a secret message.
Encoded message: Guvf vf n frperg zrffntr.

CaesarCipher
This program encodes a message using a Caesar cipher.
Enter the number of character positions to shift: -1
Enter a message: IBM 9000
Encoded message: HAL 9000

A

Q

B

W

C

E

D

R

E

T

F

Y

G

U

H

I

I

O

J

P

K

A

L

S

M

D

N

F

O

G

P

H

Q

J

R

K

S

L

T

Z

U

X

V

C

W

V

X

B

Y

N

Z

M

 Exercises 157

19. Using the definition of keys for letter-substitution ciphers as described in the

preceding problem, write a function invertKey that takes an encryption key
and returns the 26-letter key necessary to decrypt a message encoded with that
encryption key.

20. There is no gene for the human spirit.

—Error! Bookmark not defined.Tagline for the 1997 film GATTACA

The genetic code for all living organisms is carried in its DNA—a molecule
with the remarkable capacity to replicate its own structure. The DNA
molecule itself consists of a long strand of chemical bases wound together
with a similar strand in a double helix. DNA’s ability to replicate comes from
the fact that its four constituent bases—adenosine, cytosine, guanine, and
thymine—combine with each other only in the following ways:

• Cytosine on one strand links only with guanine on the other, and vice versa.

• Adenosine links only with thymine, and vice versa.

Biologists abbreviate the names of the bases by writing only the initial letter:
A, C, G, or T.

Inside the cell, a DNA strand acts as a template to which other DNA
strands can attach themselves. As an example, suppose that you have the
following DNA strand, in which the position of each base has been numbered
as it would be in a C++ string:

Your mission in this exercise is to determine where a shorter DNA strand can
attach itself to the longer one. If, for example, you were trying to find a match
for the strand

LetterSubstitutionCipher
Letter substitution cipher.
Enter a 26-letter key: QWERTYUIOPASDFGHJKLZXCVBNM
Enter a message: WORKERS OF THE WORLD UNITE!
Encoded message: VGKATKL GY ZIT VGKSR XFOZT!

T A A C G G T A C G T C

0 1 2 3 4 5 6 7 8 9 10 11

T T G C C

158 Strings

the rules for DNA dictate that this strand can bind to the longer one only at
position 1:

By contrast, the strand

matches at either position 2 or position 7.

Write a function

int findDNAMatch(string s1, string s2, int start = 0);

that returns the first position at which the DNA strand s1 can attach to the
strand s2. As in the find method for the string class, the optional start
parameter indicates the index position at which the search should start. If
there is no match, findDNAMatch should return –1.

T A A C G G T A C G T C

0 1 2 3 4 5 6 7 8 9 10 11

T T G C C

T G C

Chapter 4
Streams

We will not be satisfied until justice rolls down like waters and
righteousness like a mighty stream.

— Reverend Martin Luther King, Jr.
“I Have a Dream,” August 28, 1963
(paraphrasing Amos 5:24)

160 Streams

Ever since HelloWorld back in Chapter 1, the programs in this book have made
use of an important data structure called a stream, which C++ uses to manage the
flow of information to or from some data source. In the earlier chapters, you have
used the << and >> operators and have already had occasion to use the three
standard streams exported by the <iostream> library: cin, cout, and cerr. You
have, however, only scratched the surface of what you can do even with the
standard streams. To write C++ programs that move beyond the simple examples
you have seen up to now, you will have to learn more about streams and how to use
them to create more sophisticated applications. This chapter begins by giving you
more insight into the features provided by the << and >> operators. It then moves
on to introduce the notion of data files and shows you how to implement
file-processing applications. The chapter then concludes by exploring the structure
of the C++ stream classes as a representative example of inheritance hierarchies in
an object-oriented language.

 4.1 Formatted output
The easiest way to generate formatted output in C++ is to use the << operator. This
operator is called the insertion operator because it has the effect of inserting data
into a stream. The operand on the left is the output stream; the operand on the right
is the data you want to insert into that stream. The << operator is overloaded so that
the operand on the right can be a string or any primitive value. If this operand is not
a string, the << operator converts it to string form before sending it to the output
stream. This feature makes it easy to display the values of variables, because C++
handles the output conversion automatically.

C++ makes generating output even more convenient by having the << operator
return the value of the stream. This design decision makes it possible to chain
several output operations together, as you have already seen in several examples in
this text. Suppose, for example, that you want to display the value of the variable
total on an output line that begins with some text telling the user what that value
represents. In C++, you would start with the expression

cout << "The total is "

which copies the characters in the string "The total is " to the cout stream. To
insert the decimal representation of the value in total, all you need to do is chain
on another instance of the << operator like this:

cout << "The total is " << total

This expression has the intended effect because the << operator returns the stream.
Thus, the left operand of the second << is simply cout, which means that the value

 4.1 Formatted output 161

of total is displayed there. Finally, you can signal the end of an output line by
inserting the value endl using yet another instance of the << operator:

cout << "The total is " << total << endl;

If total contains the value 42, the resulting output would look like this on the
console:

Even though you have been using statements like this one since the very
beginning, knowing that the << operator propagates the value of cout through the
expression as it moves along the chain of insertion operators may help you to
appreciate how output works in C++.

Although it seems as if it might be a simple string constant, the endl value used
to signal the end of an output line is actually an example of something that C++
calls a manipulator, which is just a fancy name for a special type of value used to
control formatting. The C++ libraries export a variety of manipulators that you can
use to specify the format for output values, the most common of which appear in
Table 4-1. For the most part, these manipulators are automatically available when
you include the <iostream> library. The only exceptions are the manipulators that
take parameters, such as setw(n), setprecision(digits), and setfill(ch). To
use these manipulators, you need to include <iomanip> as well.

Manipulators typically have the effect of setting properties of the output stream
in a way that changes the formatting of subsequent output. As the individual entries
in Table 4-1 make clear, some manipulators are transient, which means that they
affect only the next data value that appears. Most, however, are persistent, which
means that they take effect for that stream until they are explicitly changed.

One of the most common applications of manipulators involves specifying a
field width to support tabular output. Suppose, for example, that you want to
rewrite the PowersOfTwo program from Chapter 1 so that the numbers in the table
are aligned in columns. To do so, all you would need to do is add the appropriate
manipulators in the output statement, which will look something like this:

cout << right << setw(2) << i
 << setw(8) << raiseToPower(2, i) << endl;

Total
The total is 42

162 Streams

Output manipulator table
T A B L E 4 - 1 Output manipulators

endl Inserts an end-of-line sequence into the output stream and ensures that the
characters in the output are written to the destination stream.

setw(n) Sets the width of the next field to n characters. If the value requires fewer
characters, extra space is added to fill the field. This property is transient,
which means that it affects only the next value inserted into the stream.

setprecision(digits) Sets the precision for the stream to digits. The interpretation of the
precision specification depends on other stream settings. If you have set
the mode to fixed or scientific, digits specifies the number of digits
after the decimal point. If neither of these modes are set, digits indicates
the number of significant digits, irrespective of where those digits appear.
This property is persistent, which means that it remains in effect for the
stream until it is explicitly changed.

setfill(ch) Sets the fill character for the stream to ch. By default, spaces are added to
the output if additional characters are necessary to fill the field width
established by setw. Calling setfill makes it possible to change that
character. For example, calling setfill('0') means that fields will be
filled with zeroes. This property is persistent.

left Specifies that fields should be aligned on the left, which means that any
fill characters are inserted after the value. This property is persistent.

right Specifies that fields should be aligned on the right, which means that any
fill characters are inserted before the value. This property is persistent.

fixed Specifies that subsequent floating-point output should be displayed in full,
without using scientific notation. By default, floating point values are
displayed in the most compact form. This property is persistent.

scientific Specifies that subsequent floating-point output should always appear in
scientific notation. This property is persistent.

showpoint

noshowpoint

These manipulators control whether a decimal point should appear in
floating-point numbers, even if the value is equal to an integer. You can
use showpoint to force inclusion of the decimal point and later restore
the default behavior with noshowpoint. This property is persistent.

showpos

noshowpos

These manipulators control whether a plus sign is printed before positive
values. By default, positive values are printed without a sign. This
property is persistent.

uppercase

nouppercase

These manipulators control the case of any letters generated as part of
numeric conversion, such as the E in scientific notation. By default, these
characters appear in lower case. This property is persistent.

boolalpha

noboolalpha

These manipulators control the format of bool values, which are
ordinarily displayed (for historical reasons) using their internal numeric
representation. Using the boolalpha manipulator causes them to appear
instead as true and false. This property is persistent.

 4.1 Formatted output 163

This statement prints the value of i in a field of width 2 and the value of the
function raiseToPower(2, i) in a field of width 8. Both fields are justified on
the right because the effect of the right manipulator is persistent. If you used this
line to display the powers of two between 0 and 16, the output would look like this:

Understanding the use of the setprecision(digits) manipulator is complicated
by the fact that the interpretation of the argument depends on other mode settings
for the stream. In the absence of any specifications to the contrary, C++ represents
floating-point numbers using either decimal or scientific notation, choosing the
representation that is more compact. The fact that C++ can choose either of these
representations makes sense if all you care about is seeing the value. If, however,
you want to control the output more precisely, you need to indicate which of these
formats you would like C++ to use. The fixed manipulator specifies that
floating-point values should always appear as a string of digits with a decimal point
in the appropriate position. Conversely, the scientific manipulator specifies that
values should always use the programming form of scientific notation in which the
exponent is separated from the value by the letter E. Each of these formats
interprets the setprecision manipulator in a slightly different way, which makes
it harder to provide a concise description of how setprecision works.

As is often the case in programming, one of the best ways to understand how
some highly detailed aspect of a library works is to write simple test programs that
allow you to see what happens on the screen. The PrecisionExample program in
Figure 4-1 shows how three constants—the mathematical constant π, the speed of
light in meters per second, and the fine-structure constant that characterizes the
strength of electrical interaction—appear using different floating-point modes and
precision. The output of the program is shown in Figure 4-2.

PowersOfTwo
This program lists powers of two.
Enter exponent limit: 16
 0 1
 1 2
 2 4
 3 8
 4 16
 5 32
 6 64
 7 128
 8 256
 9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536

164 Streams

Program listing for PrecisionExample.
F I G U R E 4 - 1 Program to explore the behavior of setprecision

/*
 * File: PrecisionExample.cpp
 * --------------------------
 * This program demonstrates various options for floating-point output
 * by displaying three different constants (pi, the speed of light in
 * meters/second, and the fine-structure constant). These constants
 * are chosen because they illustrate a range of exponent scales.
 */

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

/* Constants */

const double PI = 3.14159265358979323846;
const double SPEED_OF_LIGHT = 2.99792458E+8;
const double FINE_STRUCTURE = 7.2573525E-3;

/* Function prototypes */

void printPrecisionTable();

/* Main program */

int main() {
 cout << uppercase << right;
 cout << "Default format:" << endl << endl;
 printPrecisionTable();
 cout << endl << "Fixed format:" << fixed << endl << endl;
 printPrecisionTable();
 cout << endl << "Scientific format:" << scientific << endl << endl;
 printPrecisionTable();
 return 0;
}

/*
 * Function: printPrecisionTable
 * -----------------------------
 * Generates a simple precision table for the current cout settings.
 */

void printPrecisionTable() {
 cout << " prec | pi | speed of light | fine-structure" << endl;
 cout << "------+--------------+------------------+----------------" << endl;
 for (int prec = 0; prec <= 6; prec += 2) {
 cout << setw(4) << prec << " |";
 cout << " " << setw(12) << setprecision(prec) << PI << " |";
 cout << " " << setw(16) << setprecision(prec) << SPEED_OF_LIGHT << " |";
 cout << " " << setw(14) << setprecision(prec) << FINE_STRUCTURE << endl;
 }
}

 4.2 Formatted input 165

Although the mechanisms for formatted input and output (which computer
scientists often abbreviate as I/O) in any programming language can be quite useful,
they also tend to be detail-ridden. In general, it makes sense to learn how to
perform a few of the most common formatting tasks but to look up the details of
other, less common operations only when you need to use them.

 4.2 Formatted input
Formatted input in C++ is enabled by the operator >>, which you have already used
in a variety of programs. This operator is called the extraction operator, because it
is used to extract formatted data from an input stream. Up to now, you have used
the >> operator to request input values from the console, typically using a sequence
of statements such as the following lines from the PowersOfTwo program from
Chapter 1:

int limit;
cout << "Enter exponent limit: ";
cin >> limit;

F I G U R E 4 - 2 Sample run illustrating floating-point output

PrecisionExample
Default format:

 prec | pi | speed of light | fine-structure
------+--------------+------------------+----------------
 0 | 3 | 3E+08 | 0.007
 2 | 3.1 | 3E+08 | 0.0073
 4 | 3.142 | 2.998E+08 | 0.007257
 6 | 3.14159 | 2.99792E+08 | 0.00725735

Fixed format:

 prec | pi | speed of light | fine-structure
------+--------------+------------------+----------------
 0 | 3 | 299792458 | 0
 2 | 3.14 | 299792458.00 | 0.01
 4 | 3.1416 | 299792458.0000 | 0.0073
 6 | 3.141593 | 299792458.000000 | 0.007257

Scientific format:

 prec | pi | speed of light | fine-structure
------+--------------+------------------+----------------
 0 | 3E+00 | 3E+08 | 7E-03
 2 | 3.14E+00 | 3.00E+08 | 7.26E-03
 4 | 3.1416E+00 | 2.9979E+08 | 7.2574E-03
 6 | 3.141593E+00 | 2.997925E+08 | 7.257352E-03

166 Streams

By default, the >> operator skips over whitespace characters before trying to
read the input data. If necessary, you can change this behavior by using the skipws
and noskipws manipulators, which appear in the list of input manipulators in
Table 4-2. For example, if you execute the lines

char ch;
cout << "Enter a single character: ";
cin >> noskipws >> ch;

it would be possible to enter a space or tab character in response to the prompt. Had
you left out the noskipws manipulator, the program would have skipped over the
whitespace characters before storing the next input character in ch.

Although the extraction operator makes it easy to write simple test programs that
read input data from the console, it is not widely used in practice. The primary
problem with the >> operator is that it offers little support for checking whether user
input is valid. Users are notoriously sloppy when entering data into a computer.
They make typographical errors or, worse still, fail to understand exactly what input
the program requires. Well-designed programs check the user’s input to make sure
that it is well-formed and that it makes sense in the context.

Unfortunately, the >> operator is simply not up to this task, which is the reason
behind the existence of the simpio.h library introduced at the end of Chapter 1. If
you use the facilities provided by this library, the code to read a value from the user
shrinks from three lines to one:

int limit = getInteger("Enter exponent limit: ");

The real advantage, however, is that getInteger implements the necessary error
checking internally, making it much safer to use as well. You’ll have a chance to
see how getInteger is implemented later in this chapter, after which it won’t
seem so mysterious.

T A B L E 4 - 2 Input manipulators

skipws

noskipws

These manipulators control whether the extraction operator skips over whitespace
characters before reading a value. If you specify noskipws, the extraction operator
treats all characters (including whitespace characters) as part of the input field. You
can later use skipws to restore the default behavior. This property is persistent.

ws Reads characters from the input stream until some character appears that is not in the
whitespace category. The effect of this manipulator is therefore to skip over any
spaces, tabs, and newlines in the input. Unlike skipws and noskipws, which change
the behavior of the stream for subsequent input operations, the ws manipulator takes
effect immediately.

 4.3 Data files 167

 4.3 Data fi les
Whenever you want to store information on the computer for longer than the
running time of a program, the usual approach is to collect the data into a logically
cohesive whole and store it on a permanent storage medium as a file. Ordinarily, a
file is stored using magnetic or optical media, such as the hard disk installed inside
your computer or a portable flash drive or memory stick. The specific details of the
medium, however, are not critical; the important point is that the permanent data
objects you store on the computer—documents, games, executable programs, source
code, and the like—are all stored in the form of files.

On most systems, files come in a variety of types. For example, in the
programming domain, you work with source files, object files, and executable files,
each of which has a distinct representation. When you use a file to store data for
use by a program, that file usually consists of text and is therefore called a text file.
You can think of a text file as a sequence of characters stored in a permanent
medium and identified by a file name. The name of the file and the characters it
contains have the same relationship as the name of a variable and its contents.

As an example, the following text file contains the first stanza of Lewis Carroll’s
nonsense poem “Jabberwocky,” which appears in Through the Looking Glass:

The name of the file is Jabberwocky.txt, and the contents of the file consist of
the four lines of characters that comprise the first stanza of the poem.

When you look at a file, it is often convenient to regard it as a two-dimensional
structure: a sequence of lines composed of individual characters. Internally,
however, text files are represented as a one-dimensional sequence of characters. In
addition to the printing characters you can see, files also contain a newline character
that marks the end of each line.

In many respects, text files are similar to strings. Each consists of an ordered
collection of characters with a specified endpoint. On the other hand, strings and
files differ in several important respects. The most important difference is the
permanence of the data. A string is stored temporarily in the computer’s memory
during the time that a program runs; a file is stored permanently on a long-term
storage device until it is explicitly deleted. There is also a difference in how you
refer to individual characters in strings and files. Because each character in a string

Jabberwocky.txt

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

168 Streams

has an index, you can process those characters in any order simply by choosing the
appropriate sequence of index values. By contrast, characters in a text file tend to
be processed sequentially. Programs that work with file data typically start at the
beginning of the file and then work their way—either reading existing characters
from an input file or writing new ones to an output file—to the end of the file.

Using fi le streams
As you will discover in section 4.4, the C++ stream library exports several classes
that form a hierarchical structure. To help you make sense of that structure as a
whole, it is useful to start with two stream classes—ifstream and ofstream—
exported by the <fstream> library. Once you are familiar with those examples, it
will be easier to generalize from that experience to understand the stream hierarchy
as a whole.

The most common methods that apply to file streams appear in Table 4-3.
Studying this table, however, is not likely to be as helpful to you as learning a few
simple patterns for working with files. File processing in any language tends to be
idiomatic in the sense that you need to learn a general strategy and then apply that
strategy in the applications you write. C++ is no exception to this rule.

Reading or writing a file in C++ requires the following steps:

1. Declare a stream variable to refer to the file. Programs that work with files

typically declare a stream variable for each file that is simultaneously active.
Thus, if you are writing a program that reads an input file and uses that data to
write an output file, you need to declare two variables, as follows:

ifstream infile;
ofstream outfile;

2. Open the file. Before you can use a stream variable, you need to establish an

association between that variable and an actual file. This operation is called
opening the file and is performed by calling the stream method open. For
example, if you want to read the text contained in the Jabberwocky.txt file,
you open the file by executing the method call

infile.open("Jabberwocky.txt");

 Because the stream libraries predate the introduction of the string class, the

open method expects a C-style string as the file name. A string literal is
therefore acceptable as is. If, however, the name of the file is stored in a
string variable named filename, you will need to open the file like this:

infile.open(filename.c_str());

 4.3 Data files 169

 If the requested file is missing, the stream will record that error and let you
check for it by calling the predicate method fail. It is your responsibility as a
programmer to recover from such failures, and you will see various strategies
for doing so later in this chapter.

T A B L E 4 - 3 Useful methods in the stream classes

Methods supported by all streams

stream.fail() Returns true if the stream is in a failure state. This condition usually
occurs when you try to read data past the end of the file, but may also
indicate an integrity error in the data.

stream.eof() Returns true if the stream is positioned at the end of the file. Given the
semantics of the C++ stream library, the eof method is useful only after
a call to fail. At that point, calling eof allows you to test whether the
failure indication was caused by the end of file or some other data error.

stream.clear() Resets the status bits associated with the stream. You need to call this
method whenever you need to reuse a stream after a failure has occurred.

Methods supported by all file streams

stream.open(filename) Attempts to open the named file and attach it to the stream. The direction
of file transfer is determined by the stream type: input streams are
opened for input, output streams are opened for output. The filename
parameter is a C-style string, which means that you will need to call c_str
on any C++ string. You can check whether the open method fails by
calling the fail method.

stream.close() Closes the file attached to the stream.

Methods supported by all input streams

stream >> variable Reads formatted data into a variable. The data format is controlled by
the variable type and whatever input manipulators are in effect.

stream.get() Returns the next character in the stream. The return value is an integer,
which makes it possible to identify the end-of-file character, which is
represented by the constant EOF.

stream.unget() Backs up the internal pointer of the stream so that the last character read
will be read again by the next call to get.

getline(stream, str) Reads the next line of input from stream into the string str.

Methods supported by all output streams

stream << expression Writes formatted data to an output stream. The data format is controlled
by the expression type and whatever output manipulators are in effect.

stream.put(ch) Writes the character ch to the output stream.

170 Streams

3. Transfer the data. Once you have opened the data files, you then use the
appropriate stream operations to perform the actual I/O operations. Depending
on the application, you can choose any of several strategies to transfer the file
data. At the simplest level, you can read or write files character by character.
In some cases, however, it is more convenient to process files line by line. At a
still higher level, you can choose to read and write formatted data, which allows
you to intermix numeric data with strings and other data types. The details of
each of these strategies appear in the sections that follow.

4. Close the file. When you have finished all data transfers, you need to indicate
that fact to the file system by calling the stream method close, as follows:

infile.close();

 This operation, which is called closing the file, breaks the association between
a stream and the actual file.

Single character I/O
In many applications, the best way to process the data in a text file is to go through
the contents of the file one character at a time. Input streams in the C++ library
support reading a single character using a method called get, which returns the next
character from the stream.

Although the idea of the get method is simple enough, there is one confusing
aspect in its design. If you look at the prototype for get, you’ll discover that it
looks like this:

int get();

At first glance, the result type seems odd. The prototype indicates that get returns
an int, even though it would seem more appropriate for the method to return a
char. The reason for this design decision is that returning a character would make
it harder for a program to detect the end-of-file mark. There are only 256 possible
character codes, and a data file might contain any of those values. There is no
value—or at least no value of type char—that you could use as a sentinel to
indicate the end-of-file condition. By extending the definition so that get returns
an integer, the implementation can return a value outside the range of legal
character codes to indicate the end-of-file condition. That value has the symbolic
name of EOF.

For output streams, the stream method put takes a char value as its argument
and writes that character to the stream. A typical call to the put method therefore
looks like this:

outfile.put(ch);

 4.3 Data files 171

As an example of the use of get and put, the ShowFileContents program in
Figure 4-3 displays the contents of a text file on the console. Assuming that the
Jabberwocky.txt file exists, a sample run of this program might look like this:

This implementation uses the read-until-sentinel pattern that was introduced in
the AddList program from Chapter 1. The body of the while loop reads the next
character into the integer variable ch and then exits the loop if ch is the end-of-file
sentinel; if it is not, the program writes that character to the output file stream and
loops back to read the next character.

Many C++ programmers—mostly because the style reflects a common coding
convention that dates back to the C programming language—will implement this
loop in the following slightly shorter but decidedly more cryptic form:

int ch;
while ((ch = infile.get()) != EOF) {
 cout.put(ch);
}

In this style, the test expression for the while loop uses embedded assignment to
combine the operations of reading in a character and testing for the end-of-file
condition. When C++ evaluates this test, it begins by evaluating the subexpression

ch = infile.get()

which reads a character and assigns it to ch. Before executing the loop body, the
program then goes on to make sure the result of the assignment is not EOF. The
parentheses around the assignment are required; without them, the expression would
incorrectly assign to ch the result of comparing the character against EOF.

The code in Figure 4-3 also includes the function promptUserForFile, which
asks the user to enter a file name and then opens that file for input. If the file does
not exist or cannot be opened for some reason, promptUserForFile asks the user
for a new file name, continuing that process until the open call succeeds. This
design allows the program to recover gracefully if the user enters an invalid file
name. For example, if the user forgot to include the .txt extension the first time
around, the first few lines of the console output would appear as shown at the top of
the page following the figure.

ShowFileContents
Input file: Jabberwocky.txt
'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

172 Streams

Figure
F I G U R E 4 - 3 Program to show the contents of a file

/*
 * File: ShowFileContents.cpp
 * --------------------------
 * This program displays the contents of a file chosen by the user.
 */

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

/* Function prototypes */

string promptUserForFile(ifstream & infile, string prompt = "");

/* Main program */

int main() {
 ifstream infile;
 promptUserForFile(infile, "Input file: ");
 while (true) {
 int ch = infile.get();
 if (ch == EOF) break;
 cout.put(ch);
 }
 infile.close();
 return 0;
}

/*
 * Function: promptUserForFile
 * Usage: string filename = promptUserForFile(infile, prompt);
 * ---
 * Asks the user for the name of an input file and opens the reference
 * parameter infile using that name, which is returned as the result of
 * the function. If the requested file does not exist, the user is
 * given additional chances to enter a valid file name. The optional
 * prompt argument is used to give the user more information about the
 * desired input file.
 */

string promptUserForFile(ifstream & infile, string prompt) {
 while (true) {
 cout << prompt;
 string filename;
 getline(cin, filename);
 infile.open(filename.c_str());
 if (!infile.fail()) return filename;
 infile.clear();
 cout << "Unable to open that file. Try again." << endl;
 if (prompt == "") prompt = "Input file: ";
 }
}

 4.3 Data files 173

Although the logic behind the implementation of promptUserForFile is easy
to follow, there are a few important details that are worth mentioning. The open
call, for example, needs to use c_str to convert the C++ string stored in filename
to the old-style C string that the stream library requires. Similarly, the call to clear
inside the while loop is necessary to ensure that the failure status indicator in the
stream is reset before the user enters a new file name.

When you are reading character data from an input file, you will sometimes find
yourself in the position of not knowing that you should stop reading characters until
you have already read more than you need. Consider, for example, what happens
when the C++ extraction operator tries to read an integer, which is represented as a
string of decimal digits. The library implementation cannot know that the number is
finished until it reads a character that is not a digit. That character, however, may
be part of some subsequent input, and it is essential not to lose that information.

C++ solves this problem for input streams by exporting a method called unget
that has the following form:

infile.unget();

The effect of this call is to “push” the most recent character back into the input
stream so that it is returned on the next call to get. The specifications for the C++
library guarantees that it will always be possible to push one character back into the
input file, but you should not rely on being able to read several characters ahead and
then push them all back. Fortunately, being able to push back one character is
sufficient in the vast majority of cases.

Line-oriented I/O
Because files are usually subdivided into individual lines, it is often useful to read
an entire line of data at a time. The stream function that performs this operation is
called getline, which is not the same as the getLine function from simpio.h
even though they serve a similar purpose. The getline function—which is
defined as a free function rather than a method—takes two references parameters:
the input stream from which the line is read and a string variable into which the
result is written. Calling

ShowFileContents
Input file: jabberwocky
Unable to open that file. Try again.
Input file: jabberwocky.txt

174 Streams

getline(infile, str);

copies the next line of the file into the variable str, up to but not including the
newline character that signals the end of the line.

The getline function makes it possible to rewrite the ShowFileContents
program so that the program reads the file one line at a time. Using this approach,
the while loop in the main program looks like this:

while (true) {
 string line;
 getline(infile, line);
 if (infile.fail()) break;
 cout << line << endl;
}

The body of this loop uses getline to read the next line of data from the file and
then calls the fail method to check whether the input stream has reached the end
of the file. If so, the break statement exits from the loop, following the structure of
the read-until-sentinel pattern introduced in Chapter 1. If not, the code uses the <<
operator to send the contents of the line to cout, followed by a newline character.

Formatted I/O
In addition to the character-by-character and line-by-line approaches to processing
files, it is also possible to use the << and >> operators on file streams, just as you
have already had occasion to do with the console streams. Suppose, for example,
that you want to revise the AddIntegerList program from Figure 1-4 so that it
takes its input from a data file instead of from the console. The simplest approach is
to open a data file for input and use the resulting ifstream instead of cin to read
the input values.

The only other change you need to make is in the code that exits the loop when
the input is complete. The console version of the program used a sentinel value to
indicate the end of the input. For the version that reads from a file, the loop should
continue until there are no more data values to read. The usual way to test for that
condition is to try to read a value and then to call fail to check whether that
operation succeeds.

If you make these changes to the original code, the program looks like this:

 4.3 Data files 175

int main() {
 ifstream infile;
 promptUserForFile(infile, "Input file: ");
 int total = 0;
 while (true) {
 int value;
 infile >> value;
 if (infile.fail()) break;
 total += value;
 }
 infile.close();
 cout << "The sum is " << total << endl;
 return 0;
}

Unfortunately, this implementation strategy is less than ideal, even if it is not

technically incorrect. If all the numbers are formatted in exactly the right way, the
program will get the right answer. If, however, there are extraneous characters in
the file, the loop will exit before all the input values have been read. Worse still, the
program will give no indication that an error has occurred.

The crux of the problem is that the extraction operator in the line

infile >> value;

will set the failure indicator in either of two cases:

1. Reaching the end of the file, at which point there are no more values to read.

2. Trying to read data from the file that cannot be converted to an integer.

You can make things better by checking to make sure the end of the file has been
reached when the loop exits. For example, you could at least let the user know that
an error had occurred by adding the following lines after the while loop:

if (!infile.eof()) {
 error("Data error in file");
}

The error doesn’t provide the user with much guidance as to the source of the data
error, but at least it’s better than nothing.

Another problem, however, is that the extraction operator is overly permissive in
terms of the formats it allows. Unless you specify otherwise, the >> operator will
accept any sequence of whitespace characters as data separators. Thus, the data in
the input file need not be one value per line, but can be formatted in any of a

176 Streams

number of ways. For example, if you wanted to use your application to add the first
five integers, it would not be necessary to enter the data with one value per line, as
illustrated by the following data file:

It would work just as well—and might indeed be more convenient—to put the
values on a single line like this:

One problem with having this much flexibility is that it becomes harder to detect
certain kinds of formatting errors. What happens, for example, if you accidentally
include a space in one of the integers? As things stand, the SumIntegerFile
application would simply read the digits before and after the space as two separate
values. In such cases, it is often better to insist on more rigid formatting rules to
improve data integrity.

In the SumIntegerFile application, it probably makes sense to insist that the
data values appear one per line, as in the first sample file. Unfortunately, enforcing
that restriction is difficult if the only tools you have are file streams and the
extraction operator. One way to start would be to read the data file one line at a
time and then convert each line to an integer before adding it to the total. If you
were to adopt this approach, the main program would look like this:

int main() {
 ifstream infile;
 promptUserForFile(infile, "Input file: ");
 int total = 0;
 while (true) {
 string line;
 getline(infile, line);
 if (infile.fail()) break;
 total += stringToInteger(line);
 }
 infile.close();
 cout << "The sum is " << total << endl;
 return 0;
}

The only thing that’s missing is the implementation of stringToInteger.

1

2

3

4

5

1 2 3 4 5

 4.3 Data files 177

Although the C++ libraries include a function called atoi that converts a string
to an integer, that function predates the <string> library and therefore requires the
use of C strings, which are much less convenient to use. It would be great if you
could find a way to implement that conversion while remaining entirely in the C++
domain. You know that the C++ libraries must contain the necessary code, because
the >> operator has to perform that conversion when it reads an integer from a file.
If there were a way to use that same code to read an integer from a string, the
implementation of stringToInteger would follow immediately as a result. As
you will learn in the following section, the C++ stream libraries provide precisely
that capability, which will turn out to be useful in a wide variety of applications.

String streams
Given that files and strings are both sequences of characters, it seems reasonable to
think that programming languages might allow you to treat them symmetrically.
C++ provides that capability through the <sstream> library, which exports several
classes that allow you to associate a stream with a string value in much the same
way that the <fstream> library allows you to associate a stream with a file. The
istringstream class is the counterpart of ifstream and makes it possible to use
stream operators to read data from a string. For output, the ostringstream class
works very much like ofstream except that the output is directed to a string rather
than a file.

The existence of the istringstream class makes it possible to implement the
stringToInteger method described in the last section as follows:

int stringToInteger(string str) {
 istringstream stream(str);
 int value;
 stream >> value >> ws;
 if (stream.fail() || !stream.eof()) {
 error("stringToInteger: Illegal integer format");
 }
 return value;
}

The first line of the function introduces an important feature of variable declarations
that you have not yet seen. If you are declaring an object, C++ allows you to supply
arguments after the variable name that control how that object is initialized. Here,
the line

istringstream stream(str);

178 Streams

declares a variable named stream and initializes it to an istringstream object
that is already set up to read data from the string variable str. The next two lines

int value;
stream >> value >> ws;

read an integer value from that stream and store it in the variable value. In this
implementation, whitespace characters are allowed either before or after the value.
The first >> operator automatically skips over any whitespace characters that appear
before the value; the ws manipulator at the end of the line reads any whitespace
characters that follow the value, thereby ensuring that the stream will be positioned
correctly at the end of the line if the input is correctly formatted. The lines

if (stream.fail() || !stream.eof()) {
 error("stringToInteger: Illegal integer format");
}

then check to make sure that the input is valid. If the string cannot be parsed as an
integer, stream.fail() will return true, thereby triggering the error message. If,
however, the string begins with a number but then contains some additional
characters, stream.eof() will be false, which also triggers the error message.

If you need to convert in the other direction, you can use the ostringstream
class. The following function, for example, converts an integer into a string of
decimal digits:

string integerToString(int n) {
 ostringstream stream;
 stream << n;
 return stream.str();
}

The << operator in the second line converts the value into its decimal representation
just as it would for a file. Here, however, the output is directed to a string value
stored internally as part of the ostringstream object. The str function in the
return statement copies the value of that internal string so that it can be returned to
the caller. It is interesting to note that converting in this direction is substantially
easier because it is no longer necessary to take account of formatting errors.

A better strategy for console input
String streams also offer a solution to the problem of checking whether user input is
properly formed. As discussed in the section on “Formatted input” earlier in the
chapter, the >> operator does not check the user’s input for errors. Consider, for

 4.3 Data files 179

example, what happens if you ask the user for an integer value using the following
statements from the PowersOfTwo program:

int limit;
cout << "Enter exponent limit: ";
cin >> limit;

If the user enters a valid integer, everything is fine. But what happens if the user
tries to enter the value 16 but slips down one row on the keyboard and types the
letter t instead of the digit 6? In an ideal world, the program would look at the
input 1t and complain about its validity. Unfortunately, if you use the extraction
operator in C++, that error will go undetected. When it is asked to read a value into
the integer variable limit, the >> operator reads characters until it finds one that is
illegal in an integer field. Input therefore stops on the t, but the value 1 is still a
legal integer, so the program would keep right on going with limit equal to 1.

The most effective way to ensure that user input is valid is to read an entire line
as a string and then convert that string to an integer. This strategy is embodied in
the function getInteger shown in Figure 4-4. This function reads an integer from
the user just as the >> operator does but also makes sure that the integer is valid.

F I G U R E 4 - 4 Function to read an integer from the console

/*
 * Function: getInteger
 * Usage: int n = getInteger(prompt);
 * ----------------------------------
 * Requests an integer value from the user. The function begins by
 * printing the prompt string on the console and then waits for the
 * user to enter a line of input data. If that line contains a
 * single integer, the function returns the corresponding integer
 * value. If the input is not a legal integer or if extraneous
 * characters (other than whitespace) appear on the input line,
 * the implementation gives the user a chance to reenter the value.
 */

int getInteger(string prompt) {
 int value;
 string line;
 while (true) {
 cout << prompt;
 getline(cin, line);
 istringstream stream(line);
 stream >> value >> ws;
 if (!stream.fail() && stream.eof()) break;
 cout << "Illegal integer format. Try again." << endl;
 }
 return value;
}

180 Streams

The logic of getInteger is similar to that used in the stringToInteger function
from the preceding section. The only major difference is that getInteger gives
the user a chance to reenter a corrected value instead of terminating the program
with an error message, as illustrated in the following sample run:

As this example makes clear, getInteger identifies the typographical error in the
first input line and then asks the user for a new value. When the user presses the
RETURN key after correctly typing the value 16, getInteger returns this value to
the caller.

As you can see from the code in Figure 4-4, the getInteger function takes a
optional prompt string as an argument and then displays that string to the user
before reading the input line. This design decision follows directly from the fact
that the getInteger function needs that information in order to repeat the prompt
string if an error occurs.

The getInteger function is a much more reliable tool for reading integer data
than the extraction operator. For that reason, it makes sense to use getInteger
instead of >> in any application in which checking for errors is important. It
therefore makes sense to put getInteger in a library. As you already know from
Chapter 1, the Stanford libraries include getInteger as part of the simpio library.

 4.4 Class hierarchies
When the designers of C++ undertook the task of modernizing the input/output
libraries, they chose to adopt an object-oriented approach. One implication of that
decision is that the data types in the stream libraries are implemented as classes.
Classes have a number of advantages over older strategies for representing data. Of
these, the most important is that classes provide a framework for encapsulation,
which is the process of combining the data representation and the associated
operations into a coherent whole that reveals as few details as possible about the
underlying structure. The classes you have already seen in this chapter illustrate
encapsulation well. When you use these classes, you have no idea how they are
implemented. As a client, all you need to know is what methods are available for
those classes and how to call them.

PowersOfTwo
This program lists powers of two.
Enter exponent limit: 1t
Illegal integer format. Try again.
Enter exponent limit: 16

 4.4 Class hierarchies 181

Object-oriented programming, however, offers other important advantages
besides encapsulation. Classes in an object-oriented language form a hierarchy in
which each class automatically acquires the characteristics of the classes that
precede it in the hierarchy. This property is called inheritance. Although C++
tends to use inheritance somewhat less frequently than many object-oriented
languages do, it is nonetheless one of the features that sets the object-oriented
paradigm apart from earlier programming models.

Biological hierarchies
The class structure of an object-oriented language is similar in many ways to the
biological classification system developed by the Swedish botanist Carl Linnaeus in
the eighteenth century as a way to represent the structure of the biological world. In
Linnaeus’s conception, living things are first subdivided into kingdoms. The
original system contained only the plant and animal kingdoms, but there are some
forms of life—such as fungi and bacteria—that don’t fit well in either category and
now have kingdoms of their own. Each kingdom is then further broken down into
the hierarchical categories of phylum, class, order, family, genus, and species.
Every living species fits at the bottom of this hierarchy but also belongs to some
category at each higher level.

This biological classification system is illustrated in Figure 4-5, which shows the
classification of the common black garden ant, which has the scientific name of
Lasius niger, corresponding to its genus and species. This species of ant, however,
is also part of the family Formicidae, which is the classification that actually
identifies it as an ant. Moving upward in the hierarchy from there, Lasius niger is
also of the order Hymenoptera (which also includes bees and wasps), the class
Insecta (which consists of the insects), and the phylum Arthropoda (which also
includes, for example, shellfish and spiders).

One of the properties that makes this biological classification system useful is
that all living things belong to a category at every level in the hierarchy. Each
individual life form therefore belongs to several categories simultaneously and
inherits the properties that are characteristic of each one. The species Lasius niger,
for example, is an ant, an insect, and arthropod, and an animal—all at the same
time. Moreover, each individual ant shares the properties that it inherits from each
of those categories. One of the defining characteristics of the class Insecta is that
insects have six legs. All ants must therefore have six legs because ants are
members of that class.

182 Streams

The biological metaphor also helps to illustrate the distinction between classes
and objects. Every common black garden ant has the same classification, but there
can be many different ants that all fit that single pattern. Thus, each of the ants

is an instance of Lasius niger. In the language of object-oriented programming,
Lasius niger is a class and each individual ant is an object.

F I G U R E 4 - 5 Class hierarchies in the biological world

Living Things

AnimaliaPlantae Fungi . . .

ArthropodaAnnelida Brachiopoda Mollusca Chordata . . .

InsectaCrustacea Arachnida . . .

Hymenoptera

Formicidae

Lasius

niger

This black garden ant is classified
according to its genus and species
as Lasius niger. It is also a member
of every class up the highlighted
chain.

Every class in the biological hierarchy
inherits the characteristics of the classes
above it. For example, a black garden
ant has six legs because ants are a
subclass of the class Insecta, and all
insects have six legs.

 4.4 Class hierarchies 183

The stream class hierarchy
The classes in the stream libraries form hierarchies that are in many ways similar to
the biological hierarchy introduced in the preceding section. So far, you have seen
two types of input streams—ifstream and istringstream—and two types of
output streams—ofstream and ostringstream—that in each pairing share a
common set of operations. In C++, these classes form the hierarchy shown in
Figure 4-6. At the top of the hierarchy is the class ios, which represents a general
stream type that can be used for any kind of I/O. The hierarchy is then subdivided
into two categories—istream and ostream—that generalize the notions of input
stream and output stream, respectively. The C++ file and string stream classes then
fall naturally into the appropriate position in this hierarchy, as shown.

Figure 4-6 provides a useful framework for introducing some of the terminology
associated with object-oriented programming. In this diagram, which was drawn
using the same geometrical structure as the evolutionary diagram in Figure 4-5,
each class is a subclass of the class that appears above it in the hierarchy. Thus,
istream and ostream are both subclasses of ios. In the opposite direction, ios
is called a superclass of both istream and ostream. Similar relationships exist at
different levels of this diagram. For example, ifstream is a subclass of istream,
and ostream is a superclass of ofstream.

The relationship between subclasses and superclasses is in many ways best
conveyed by the English words is a. Every ifstream object is also an istream
and, by continuing up the hierarchy, an ios. As in the biological hierarchy, this
relationship implies that the characteristics of any class are inherited by its
subclasses. In C++, these characteristics correspond to the methods and other
definitions associated with the class. Thus, if the istream class exports a
particular method, that method is automatically available to any ifstream or

F I G U R E 4 - 6 Selected classes in the stream hierarchy

ios

istream ostream

ifstream istringstream ofstream ostringstream

184 Streams

istringstream object. More globally, any methods exported by the ios class are
available to every class in the hierarchy shown in Figure 4-6.

Although simple diagrams that show only the relationships among classes are
often useful in their own right, it is useful to expand them to include the methods
exported at each level, as shown in Figure 4-7. This enhanced diagram adopts parts
of a standard methodology for illustrating class hierarchies called the Universal
Modeling Language, or UML for short. In UML, each class appears as a
rectangular box whose upper portion contains the name of the class. The methods
exported by that class appear in the lower portion. In UML diagrams, subclasses
use open arrowheads to point to their superclasses.

UML diagrams of the sort shown in Figure 4-7 make it easy to determine what
methods are available to each of the classes in the diagram. Because each class
inherits the methods of every class in its superclass chain, an object of a particular
class can call any method defined in any of those classes. For example, the diagram
indicates that any ifstream object has access to the following methods:

• The open and close methods from the ifstream class itself

• The get and unget methods and the >> operator from the istream class

• The clear, fail, and eof methods from the ios class

F I G U R E 4 - 7 Simplified UML diagram for the stream hierarchy

ios

clear()
fail()
eof()

istream

get()
unget()
>>

ostream

put(ch)
<<

ifstream

open(cstr)
close()

ofstream

open(cstr)
close()

ostringstream

str()

istringstream

istringstream(s)

 4.4 Class hierarchies 185

Choosing the right level in the stream hierarchy
One of the most important decisions you need to make when you use object
hierarchies is finding the right level at which to work. As a general rule, it is best to
write your code so that it uses the most general level in the hierarchy that supports
the operations you need. Adopting this rule ensures that your code is as flexible as
possible in that it supports the widest range of types.

As an example, you will often find it useful to define a copyStream method that
copies all the characters from one input stream to another. If you had come up with
this idea as you were working with file streams, you might have been tempted to
implement the method as follows:

void copyStream(ifstream & infile, ofstream & outfile) {
 while (true) {
 int ch = infile.get();
 if (ch == EOF) break;
 outfile.put(ch);
 }
}

Although this implementation is not technically incorrect, it is certainly problematic
enough to justify the bug icon. The problem is that the method works only for file
streams, even though the code would be perfectly appropriate for any type of input
and output stream if you had chosen more general types for the arguments. A much
better implementation of copyStream looks like this:

void copyStream(istream & is, ostream & os) {
 while (true) {
 int ch = is.get();
 if (ch == EOF) break;
 os.put(ch);
 }
}

The advantage of the new coding is that you can use this version of copyStream
with more general types of streams. For example, given the new implementation of
copyStream, you could replace the while loop in ShowFileContents with the
single line

copyStream(infile, cout);

which copies the contents of the file to cout. The previous version—in which the
second argument is declared to be an ofstream rather than the more general class
ostream—fails because cout is not a file stream.

186 Streams

Multiple inheritance
Although inheritance is used in various places in the standard libraries, it is not used
as widely in C++ as it tends to be in other object-oriented languages, most notably
Java. Thus, while it is essential to understand inheritance in the context of existing
library packages such as those that implement streams, this book does not cover the
implementation of such hierarchies until Chapter 17. You can get along fine using
inheritance when it is offered to you without having to code it on your own.

Part of the reason for deferring the implementation of class hierarchies until
close to the end of the book is that inheritance in C++ is more powerful—and
consequently more complex—than its counterpart in other languages. One of the
features that sets C++ apart from other object-oriented languages in common use
today is that classes can inherit behavior from more than one superclass. This
property is called multiple inheritance. Although using multiple inheritance in
your own classes is beyond the scope of this book, it is useful to see how it is used
in the design of existing library packages.

The stream hierarchy uses multiple inheritance to define new classes that are
both input and output streams. Figure 4-8 shows how these classes fit into the UML
diagram for the stream hierarchy as a whole. Because there are arrows leading from
iostream to both istream and ostream, the iostream class inherits the
methods from both of its superclasses, which it then passes on to its subclasses.

As an example of how you might use these bidirectional streams, suppose that
you have been assigned the task of writing a roundToSignificantDigits
function that takes a floating-point value x and rounds it to some specified number
of significant digits. For example, if you call

roundToSignificantDigits(3.14159265, 5)

the function should return the value of π rounded to 5 significant digits, which is
3.1416. Although it is possible to write this function in other ways, the simplest
strategy is to use the facilities already provided by streams. All you need to do is
write the value of x to an output stream after setting the precision to the desired
number of digits and then read that same value back to convert it to its numeric
form. The following implementation does just that using a stringstream—which
is both an istream and an ostream—to store the intermediate string:

double roundToSignificantDigits(double x, int nDigits) {
 stringstream ss;
 ss << setprecision(nDigits) << x;
 ss >> x;
 return x;
}

 4.5 Exploring the Stanford libraries 187

 4.5 Exploring the Stanford libraries
Chapter 3 introduced several new functions that were useful enough to package up
as the strlib.h library. In this chapter, you have seen several useful tools for
working with streams that have also made their way into two interfaces in the
Stanford library: the simpio.h interface you have already seen and a filelib.h
interface for the methods that are more closely related to files.

Although it would be possible to list the contents of each of those interfaces in
tables of the sort you have already seen for the standard libraries, most modern
interfaces are not described on paper. With the expansion of the web, programmers
tend to use online reference materials more often than printed ones. Figure 4-9, for
example, shows the online documentation for the simpio.h library, which exports
the getInteger, getReal, and getLine functions.

F I G U R E 4 - 8 Multiple inheritance in the stream hierarchy

ios

clear()
fail()
eof()

istream

get()
unget()
>>

ostream

put(ch)
<<

ifstream

open(cstr)
close()

ofstream

open(cstr)
close()

ostringstream

str()

istringstream

istringstream(s)

iostream

fstream

open(cstr)
close()

stringstream

stringstream(s)
str()

188 Streams

Web figure
 F I G U R E 4 - 9 Online documentation for the simpio.h interface

simpio.h

The Stanford C++ Libraries

simpio.h

This interface exports a set of functions that simplify input/output operations in C++ and provide some
error-checking on console input.

Functions

getInteger(prompt) Reads a complete line from cin and tries to scan it as an integer.

getReal(prompt) Reads a complete line from cin and tries to scan it as a floating-point number.

getLine(prompt) Reads a line of text from cin and returns that line as a string.

Function detail

int getInteger(string prompt = "");

Reads a complete line from cin and scans it as an integer. If the scan succeeds, the integer value is
returned. If the argument is not a legal integer or if extraneous characters (other than whitespace)
appear in the string, the user is given a chance to reenter the value. If supplied, the optional prompt
string is printed before reading the value.

Usage:

int n = getInteger(prompt);

double getReal(string prompt = "");

Reads a complete line from cin and scans it as a floating-point number. If the scan succeeds, the
floating-point value is returned. If the input is not a legal number or if extraneous characters (other
than whitespace) appear in the string, the user is given a chance to reenter the value. If supplied, the
optional prompt string is printed before reading the value.

Usage:

double x = getReal(prompt);

string getLine(string prompt = "");

Reads a line of text from cin and returns that line as a string. The newline character that terminates the
input is not stored as part of the return value. If supplied, the optional prompt string is printed before
reading the value.

Usage:

string line = getLine(prompt);

 Summary 189

Although the tabular description fits well on the printed page and the web-based
documentation is ideal for online browsing, you do have another option for learning
what resources are available in an interface: you can read the .h file. If an interface
is designed and documented effectively, reading the .h file may well be the best
option. In any event, reading .h files is a programming skill that you will need to
cultivate if you want to become proficient in C++.

To give yourself some practice in reading interfaces, you should look at the
filelib.h interface, which appears in Appendix A. That interface includes the
promptUserForFile function developed in this chapter, along with a number of
other functions that will likely come in handy when you work with files.

 Summary
In this chapter, you have learned how to use the libraries in the stream hierarchy to
support input/output operations involving the console, strings, and data files.
Important points in this chapter include:

• The <iostream> library exports three standard streams: cin, cout, and cerr.

• The <iomanip> library makes it possible to control the output format. This
library exports a set of manipulators, the most important of which appear in
Table 4-1. The <iomanip> library includes manipulators for input as well, but
these are less important in practice.

• The <fstream> library in C++ supports reading and writing data files. The
most important methods that apply to file streams are listed in Table 4-3.

• The C++ stream libraries allow you to choose any of several different strategies
when reading a file. You can read the file character by character using the get
methods, line by line using the getline method, or as formatted data using the
>> extraction operator.

• The <sstream> library makes it possible to use the >> and << operators to read
and write string data.

• The classes in the stream library form a hierarchy in which subclasses inherit the
behavior of their superclasses. When you design functions to work with streams,
it is important to choose the most general level of the hierarchy for which the
necessary operations are defined.

• At various points in the first three chapters, the text defines new functions that
are likely to prove useful in many different contexts. To make sure that these
functions are freely accessible without having to copy the code, those functions
are exported through several interfaces that collectively constitute the Stanford
C++ libraries.

190 Streams

 Review questions
1. What are the three standard file streams defined by the <iostream> library?

2. What are the formal names for the << and >> operators?

3. What value do the << and >> operators return? Why is this value important?

4. What is a manipulator?

5. What is the difference between a transient and a persistent property?

6. In your own words, describe how the fixed and scientific manipulators

change the format for floating-point output. What happens if you don’t
specify either of these options?

7. Suppose that the constant PI has been defined as

const double PI = 3.14159265358979323846;

What output manipulators would you use to produce each line of the following
sample run:

8. What is the purpose of the types ifstream and ofstream?

9. The argument to open must be a C-style string. How does this requirement

affect the code you write to open a file?

10. How can you determine if an open operation on a stream was successful?

11. When you are using the get method to read a file character by character, how

do you detect the end of a file?

12. Why is the return type of get declared as int instead of char?

13. What is the purpose of the unget method?

PrecisionExercise
3.141592653589793

3.141593

3.141592653589793e+00

3.141593E+00

 3.141592654

003.1416

 Exercises 191

14. When you are using the getline method to read a file line by line, how do
you detect the end of a file?

15. What classes does the <sstream> library support? How are these classes

different from the ones provided in <fstream>?

16. What is meant by the following terms: subclass, superclass, and inheritance?

17. True or false: The stream class hierarchy of Figure 3-8 shows that istream

is a subclass of istringstream.

18. Why does the copyStream function take arguments of type istream and

ostream instead of ifstream and ofstream?

19. What are the advantages of using the getInteger and getReal functions

from simpio.h over using the >> extraction operator?

20. If this text does not describe the functions exported by a library in tabular

form, what options do you have for learning how to use that library?

 Exercises
1. The <iomanip> library gives programmers more control over output format,

which makes it easy, for example, to create formatted tables. Write a program
that displays a table of trigonometric sines and cosines that looks like this:

The numeric columns should all be aligned on the right, and the columns
containing the trigonometric functions (which are listed here for angles in
degrees at 15-degree intervals) should all have seven digits after the decimal
point.

TrigTable
 theta | sin(theta) | cos(theta) |
-------+------------+------------+
 -90 | -1.0000000 | 0.0000000 |
 -75 | -0.9659258 | 0.2588190 |
 -60 | -0.8660254 | 0.5000000 |
 -45 | -0.7071068 | 0.7071068 |
 -30 | -0.5000000 | 0.8660254 |
 -15 | -0.2588190 | 0.9659258 |
 0 | 0.0000000 | 1.0000000 |
 15 | 0.2588190 | 0.9659258 |
 30 | 0.5000000 | 0.8660254 |
 45 | 0.7071068 | 0.7071068 |
 60 | 0.8660254 | 0.5000000 |
 75 | 0.9659258 | 0.2588190 |
 90 | 1.0000000 | 0.0000000 |

192 Streams

2. In exercise 4 in Chapter 2, you wrote a function windChill that calculated
the wind chill for a given temperature and wind velocity. Write a program that
uses this function to display these values in tabular form, as illustrated by the
table from the National Weather service shown in Figure 2-17 on page 117.

3. Write a program that prints out the longest line in a file entered by the user. If

several lines are all equally long, your program should print out the first such
line.

4. Write a program that reads a file and reports how many lines, words, and

characters appear in it. For the purposes of this program, a word consists of a
consecutive sequence of any characters except whitespace characters. As an
example, suppose that the file Lear.txt contains the following passage from
Shakespeare’s King Lear,

your program should be able to generate the following sample run:

The counts in the output should be displayed in a column that is aligned on
the right but which expands to fit the data. For example, if you have a file
containing the full text of George Eliot’s Middlemarch, the output of your
program should look like this:

Lear.txt

Poor naked wretches, wheresoe'er you are,
That bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop'd and window'd raggedness, defend you
From seasons such as these? O, I have ta'en
Too little care of this!

FileCounts
Input file: Lear.txt
Chars: 254
Words: 43
Lines: 6

FileCounts
Input file: Middlemarch.txt
Chars: 1796948
Words: 316689
Lines: 34037

 Exercises 193

5. The filelib.h interface exports several functions that make it easy to work
with filenames. Two functions that are particularly useful are getRoot and
getExtension, which divide a function into its root, which is the identifying
part of the filename, and the extension, which indicates its type. For example,
given the filename Middlemarch.txt used in the preceding exercise, the
root is Middlemarch and the extension is .txt (note that filelib.h defines
the extension to includes the dot). Write the code necessary to implement
these functions. To find out how to handle special cases, such as filenames
that don’t include a dot, consult the filelib.h interface in Appendix A.

6. Another useful function in filelib.h is

string defaultExtension(string filename, string ext);

which adds ext to the end of filename if it doesn’t already have an
extension. For example,

defaultExtension("Shakespeare", ".txt")

would return "Shakespeare.txt". If filename already has an extension,
that name is returned unchanged, so that

defaultExtension("library.h", ".cpp")

would ignore the specified extension and return "library.h" unchanged. If,
however, ext includes a star before the dot, defaultExtension removes
any existing extension from filename and adds the new one (minus the star).
Thus,

defaultExtension("library.h", "*.cpp")

would return "library.cpp". Write the code for defaultExtension so
that it behaves as described in this exercise.

7. On occasion, publishers find it useful to evaluate layouts and stylistic designs

without being distracted by the actual words. To do so, they sometimes
typeset sample pages in such a way that all of the original letters are replaced
with random letters. The resulting text has the spacing and punctuation
structure of the original, but no longer conveys any meaning that might get in
the way of the design. The publishing term for text that has been replaced in
this way is greek, presumably after the old saying “It’s all Greek to me,”
which is itself adapted from a line from Julius Caesar.

194 Streams

Write a program that reads characters from an input file and displays them
on the console after making the appropriate random substitutions. Your
program should replace every uppercase character in the input by a random
uppercase character and every lowercase character by a random lowercase
one. Nonalphabetic characters should remain unchanged. For example, if the
input file Troilus.txt contains the text from Troilus and Cressida,

your program should generate output that looks something like this:

8. Books were bks and Robin Hood was Rbinhd. Little Goody Two
Shoes lost her Os and so did Goldilocks, and the former became a
whisper, and the latter sounded like a key jiggled in a lck. It was
impossible to read “cockadoodledoo” aloud, and parents gave up
reading to their children, and some gave up reading altogether. . . .

—James Thurber, The Wonderful O, 1957

In James Thurber’s children’s story The Wonderful O, the island of Ooroo is
invaded by pirates who set out to banish the letter O from the alphabet. Such
censorship would be much easier with modern technology. Write a program
that asks the user for an input file, an output file, and a string of letters to be
eliminated. The program should then copy the input file to the output file,
deleting any of the letters that appear in the string of censored letters, no
matter whether they appear in uppercase or lowercase form.

As an example, suppose that you have a file containing the first few lines

of Thurber’s novel, as follows:

Troilus.txt

Ay, Greek; and that shall be divulged well
In characters as red as Mars his heart
Inflamed with Venus:

Greek
Input file: Troilus.txt
Ne, Inyes; fmd ckhj zntqt uv dqijxnkp uyww
Rt pkjfvkmzdf yt kut ya Itgp byi blxod
Ogmgmkwl jjbe Nscku:

TheWonderfulO.txt

Somewhere a ponderous tower clock slowly
dropped a dozen strokes into the gloom.
Storm clouds rode low along the horizon,
and no moon shown. Only a melancholy
chorus of frogs broke the soundlessness.

 Exercises 195

If you run your program with the input

it should write the following file:

If you tried to get greedy and banish all the vowels by entering aeiou in
response to the prompt, the contents of the output file would be

9. Even though comments are essential for human readers, the compiler simply

ignores them. If you are writing a compiler, you therefore need to be able to
recognize and eliminate comments that occur in a source file.

Write a function

void removeComments(istream & is, ostream & os);

that copies characters from the input stream is to the output stream os, except
for characters that appear inside C++ comments. Your implementation should
recognize both comment conventions:

• Any text beginning with /* and ending with */, possibly many lines later.

• Any text beginning with //and extending through the end of the line.

The real C++ compiler needs to check to make sure that these characters are
not contained inside quoted strings, but you should feel free to ignore that
detail. The problem is tricky enough as it stands.

BanishLetters
Input file: TheWonderfulO.txt
Output file: TheWnderful.txt
Letters to banish: o

TheWnderful.txt

Smewhere a pnderus twer clck slwly
drpped a dzen strkes int the glm.
Strm cluds rde lw alng the hrizn,
and n mn shwn. nly a melanchly
chrus f frgs brke the sundlessness.

Smwhr pndrs twr clck slwly
drppd dzn strks nt th glm.
Strm clds rd lw lng th hrzn,
nd n mn shwn. nly mlnchly
chrs f frgs brk th sndlssnss.

196 Streams

10. Some files use tab characters to align data into columns. Doing so, however,
can cause problems for applications that are unable to work directly with tabs.
For these applications, it is useful to have access to a program that replaces
tabs in an input file with the number of spaces required to reach the next tab
stop. In programming, tab stops are usually set at every eight columns. For
example, suppose that the input file contains a line of the form

where the symbol represents the space taken up by a tab, which differs
depending on its position in the line. If the tab stops are set every eight
spaces, the first tab character must be replaced by five spaces and the second
tab character by three.

Write a program that copies an input file to an output file, replacing all tab
characters by the appropriate number of spaces.

11. Using the functions stringToInteger and integerToString as a model,

write the code necessary to implement stringToReal and realToString.

12. Complete the implementation of the simpio.h interface by implementing the

functions getReal and getLine.

abc pqrst xyz

Chapter 5
Collections

You see what a collection I have.
— Jane Austen, Mansfield Park, 1814

198 Collections

As you know from your programming experience, data structures can be assembled
to form hierarchies. The atomic data types like int, char, double, and the
enumerated types occupy the lowest level in the hierarchy. To represent more
complex information, you combine the atomic types to form larger structures.
These larger structures can then be assembled into even larger ones in an
open-ended process. Collectively, these assemblages are called data structures.

As you learn more about programming, you will discover that particular data
structures are so useful that they are worth studying in their own right. Moreover, it
is usually far more important to know how to use those structures effectively than it
is to understand their underlying representation. For example, even though a string
might be represented inside the machine as an array of characters, it also has an
abstract behavior that transcends its representation. A type defined in terms of its
behavior rather than its representation is called an abstract data type, which is often
abbreviated to ADT. Abstract data types are central to the object-oriented style of
programming, which encourages programmers to think about data structures in a
holistic way.

This chapter introduces five classes—Vector, Stack, Queue, Map, and Set—
each of which represents an important abstract data type. Each of these classes,
moreover, contains a collection of values of some simpler type. Such classes are
therefore called collection classes. For the moment, you don’t need to understand
how these classes are implemented, because your primary focus is on learning how
to use these classes as a client. In later chapters, you’ll have a chance to explore a
variety of implementation strategies and learn about the algorithms and data
structures necessary to make those implementations efficient.

Being able to separate the behavior of a class from its underlying
implementation is a fundamental precept of object-oriented programming. As a
design strategy, it offers the following advantages:

• Simplicity. Hiding the internal representation from the client means that there

are fewer details for the client to understand.

• Flexibility. Because a class is defined in terms of its public behavior, the
programmer who implements one is free to change its underlying private
representation. As with any abstraction, it is appropriate to change the
implementation as long as the interface remains the same.

• Security. The interface boundary acts as a wall that protects the implementation
and the client from each other. If a client program has access to the
representation, it can change the values in the underlying data structure in
unexpected ways. Making the data private in a class prevents the client from
making such changes.

 5.1 The Vector class 199

To use any of the collection classes introduced in this chapter, you must include
the appropriate interface, just as you would for any of the libraries from the earlier
chapters. The interface for each of the collection classes is simply the name of the
class spelled with a lowercase initial letter and followed with the extension .h at the
end. For example, in order to use the Vector class in a program, you must include
the line

#include "vector.h"

The collection classes used in this book are inspired by and draw much of their
structure from a more advanced set of classes available for C++ called the
Standard Template Library, or STL for short. Although the STL is enormously
powerful, it is more difficult to understand from both the client and implementation
perspectives. The advantage of using the simplified version is that you can
understand the entire implementation by the time you finish this book. Knowing
how the implementation works gives you greater insight into what the Standard
Template Library is doing for you behind the scenes.

 5.1 The Vector class
One of the most valuable collection classes is the Vector class, which provides a
facility similar to the arrays you have almost certainly encountered in your earlier
experience with programming. Arrays have been around since the early days of
programming. Like most languages, C++ supports arrays, and you will have the
chance to learn how C++ arrays work in Chapter 11. Arrays in C++, however, have
a number of weaknesses, including the following:

• Arrays are allocated with a fixed size that you can’t subsequently change.

• Even though arrays have a fixed size, C++ does not make that size available to
the programmer. As a result, programs that work with arrays typically need an
additional variable to keep track of the number of elements.

• Traditional arrays offer no support for inserting and deleting elements.

• C++ makes no effort to ensure that the elements you select are actually present
in the array. For example, if you create an array with 25 elements and then try to
select the value at index position 50, C++ will simply look at the memory
addresses at which element 50 would appear if it existed.

The Vector class solves each of these problems by reimplementing the array

concept in the form of an abstract data type. You can use the Vector class in place
of arrays in any application, usually with surprisingly few changes in the source
code and at most a minor reduction in efficiency. In fact, once you have the
Vector class, it’s unlikely that you will have much occasion to use arrays at all,
unless you actually have to implement classes like Vector, which, not surprisingly,

200 Collections

uses arrays in its underlying structure. As a client of the Vector class, however,
you are not interested in that underlying structure and can leave the array mechanics
to the programmers who implement the abstract data type.

As a client of the Vector class, you are concerned with a different set of issues
and need to answer the following questions:

1. How is it possible to specify the type of object contained in a Vector?

2. How does one create an object that is an instance of the Vector class?

3. What methods exist in the Vector class to implement its abstract behavior?

The next three sections explore the answers to each of these questions in turn.

Specifying the base type of a Vector
In C++, collection classes specify the type of object they contain by including the
type name in angle brackets following the class name. For example, the class
Vector<int> represents a vector whose elements are integers, Vector<char>
specifies a vector whose elements are single characters, and Vector<string>
specifies one in which the elements are strings. The type enclosed within the angle
brackets is called the base type for the collection.

Classes that include a base-type specification are called parameterized classes in
the object-oriented community. In C++, parameterized classes are more often
called templates, which reflects the fact that C++ compilers treat Vector<int>,
Vector<char>, and Vector<string> as independent classes that share a
common structure. The name Vector acts as a template for stamping out a whole
family of classes, in which the only difference is what type of value the vector
contains. For now, all you need to understand is how to use templates; the process
of implementing basic templates is described in Chapter 14.

Declaring a Vector object
One of the philosophical principles behind abstract data types is that clients should
be able to think of them as if they were built-in primitive types. Thus, just as you
would declare an integer variable by writing a declaration such as

int n;

it ought to be possible to declare a new vector by writing

Vector<int> vec;

 5.1 The Vector class 201

In C++, that is precisely what you do. That declaration introduces a new variable
named vec, which is—as the template marker in angle brackets indicates—a vector
of integers.

Vector operations
When you declare a Vector variable, it starts out as an empty vector, which means
that it contains no elements. Since an empty vector is not particularly useful, one
of the first things you need to learn is how to add new elements to a Vector object.
The usual approach is to invoke the add method, which adds a new element at the
end of the Vector. For example, if vec is an empty vector of integers as declared
in the preceding section, executing the code

vec.add(10);
vec.add(20);
vec.add(40);

changes vec into a three-element vector containing the values 10, 20, and 40. As
with the characters in a string, C++ numbers the elements of a vector starting with
0, which means that you could diagram the contents of vec like this:

Unlike the more primitive array type that will be introduced in Chapter 11, the
size of a vector is not fixed, which means that you can add additional elements at
any time. Later in the program, for example, you could call

vec.add(50);

which would add the value 50 to the end of the vector, like this:

The insertAt method allows you to add new elements in the middle of a
vector. The first argument to insertAt is an index number, and the new element
is inserted before that position. For example, calling

vec.insertAt(2, 30);

inserts the value 30 before index position 2, as follows:

10 20 40

vec

0 1 2

10 20 40 50

vec

0 1 2 3

202 Collections

Internally, the implementation of the Vector class has to expand the array storage
and move the values 40 and 50 over one position to make room for the 30. From
your perspective as a client, the implementation simply takes care of such details,
and you don’t need to understand how it does so.

The Vector class also lets you remove elements. For example, calling

vec.removeAt(0);

removes the element from position 0, leaving the following values:

Once again, the implementation takes care of shifting elements to close the gap left
by the deleted value.

The Vector class includes two methods for selecting and modifying individual
elements. The get method takes an index number and returns the value in that
index position. For example, given the value of vec shown in the most recent
diagram, calling vec.get(2) would return the value 40.

Symmetrically, you can use the set method to change the value of an existing
element. For example, calling

vec.set(3, 70);

changes the value in index position 3 from 50 to 70, like this:

The get, set, insertAt, and removeAt methods all check to make sure that
the index value you supply is valid for the vector. For example, if you were to call
vec.get(4) in this vector, the get method would call error to report that the
index value 4 is too large for a vector in which the index values run from 0 to 3.
For get, set, and removeAt, the Vector implementation checks that the index is
greater than or equal to 0 and less than the number of elements. The insertAt
method allows the index to be equal to the number of elements, in which case the
new value is added at the end of the array, just as it is with add.

10 20 30 40 50

vec

0 1 2 3 4

20 30 40 50

vec

0 1 2 3

20 30 40 70

vec

0 1 2 3

 5.1 The Vector class 203

The operation of testing whether an index is valid is called bounds-checking.
Bounds-checking makes it easier to catch programming errors that can often go
unnoticed when you work with traditional arrays.

Selecting elements in a vector
Even though the get and set methods are easy to use, hardly anyone actually calls
these methods. One of the characteristics of C++ that sets it apart from most other
languages is that classes can override the definition of the standard operators. This
feature makes it possible for the Vector class to support the more traditional syntax
of using square brackets to specify the desired index. Thus, to select the element at
position i, you can use the expression vec[i], just as you would with a traditional
array. You can, moreover, change the value of that element by assigning a new
value to vec[i]. For example, you can set element 3 in vec to 70 by writing

vec[3] = 70;

The resulting syntax is marginally shorter than calling set, but is more evocative of
the array operations that the Vector class is designed to emulate.

The index used to select an element from an array can be any expression that
evaluates to an integer. One of the most common index expressions is the index of
a for loop that cycles through each of the index values is order. The general
pattern for cycling through the index positions in a vector looks like this:

for (int i = 0; i < vec.size(); i++) {
 loop body
}

Inside the loop body, you can refer to the current element as vec[i].

As an example, the following code writes out the contents of the vector vec as a
comma-separated list enclosed in square brackets:

cout << "[";
for (int i = 0; i < vec.size(); i++) {
 if (i > 0) cout << ", ";
 cout << vec[i];
}
cout << "]" << endl;

If you were to execute this code given the most recent contents of vec, you would
see the following output on the screen:

204 Collections

Passing a Vector object as a parameter
The code at the end of the preceding section is so useful (particularly when you’re
debugging and need to see what values a vector contains), that it is worth defining a
function for this purpose. At one level, encapsulating the code inside a function is
easy; all you have to do is add the appropriate function header, like this:

void printVector(Vector<int> & vec) {
 cout << "[";
 for (int i = 0; i < vec.size(); i++) {
 if (i > 0) cout << ", ";
 cout << vec[i];
 }
 cout << "]" << endl;
}

The header line, however, involves one subtlety that you have to understand before
you can use collection classes effectively. As described in Chapter 2, the & before
the parameter name indicates that the argument vec is passed by reference, which
means that the value in the function is shared with the value in the caller.
Call-by-reference is more efficient than C++’s default model of call-by-value,
which would require copying every element in the vector. In the printVector
example, there is no reason to make that copy, so call-by-reference represents a
more efficient design.

Perhaps more importantly, using call-by-reference makes it possible to write
functions that change the contents of a vector. As an example, the following
function deletes any zero-valued elements from a vector of integers:

void removeZeroElements(Vector<int> & vec) {
 for (int i = vec.size() - 1; i >= 0; i--) {
 if (vec[i] == 0) vec.removeAt(i);
 }
}

The for loop cycles through each element and checks whether its value is 0. If so,
the function calls removeAt to delete that element from the vector. To ensure that

PrintVector
[20, 30, 40, 70]

 5.1 The Vector class 205

removing an element doesn’t change the positions of elements that have not yet
been checked, the for loop starts at the end of the vector and runs backwards.

This function depends on the use of call-by-reference. If you had left out the
ampersand in this header line, removeZeroElements would have no effect at all.
The code would remove the zero elements from the local copy of vec, but not from
the vector the caller supplied. When removeZeroElements returns, that copy
goes away, leaving the original vector unchanged. This kind of error is easy to
make, and you should learn to look for it when your programs go awry.

The ReverseFile program in Figure 5-1 shows a complete C++ program that
uses Vector to display the lines from a file in reverse order. The functions
promptUserForFile and readEntireFile will come in handy in a variety of
applications. For this reason, both of these functions—along with many other
useful functions for working with files—are included in the filelib.h library
listed in Appendix A.

Creating a Vector of a predefined size
The examples you have seen up to this point start out with an empty vector and then
add elements to it, one at a time. In many applications, building up a vector one
element at a time is tedious, particularly if you know the size of the vector in
advance. In such cases, it makes more sense to specify the number of elements as
part of the declaration.

As an example, suppose that you wanted to create a vector to hold the scores for
each hole on an 18-hole golf course. The strategy you already know is to create an
empty Vector<int> and then add 18 elements to it using a for loop, as follows:

const int N_HOLES = 18;

Vector<int> golfScores;
for (int i = 0; i < N_HOLES; i++) {
 golfScores.add(0);
}

A better approach is to include the size as a parameter to the declaration like this:

Vector<int> golfScores(N_HOLES);

This declaration creates a Vector<int> with N_HOLES elements, each of which is
initialized to 0 for a Vector of type int. The effect of these two code fragments is
the same. Each of them creates a Vector<int> filled with 18 zero values. The
first form requires the client to initialize the elements; the second hands that
responsibility off to the Vector class itself.

206 Collections

Figure 4-1
F I G U R E 5 - 1 Program to display the lines of a file in reverse order

/*
 * File: ReverseFile.cpp
 * ---------------------
 * This program displays the lines of an input file in reverse order.
 */

#include <iostream>
#include <fstream>
#include <string>
#include "filelib.h"
#include "vector.h"
using namespace std;

/* Function prototypes */

void readEntireFile(istream & is, Vector<string> & lines);

/* Main program */

int main() {
 ifstream infile;
 Vector<string> lines;
 promptUserForFile(infile, "Input file: ");
 readEntireFile(infile, lines);
 infile.close();
 for (int i = lines.size() - 1; i >= 0; i--) {
 cout << lines[i] << endl;
 }
 return 0;
}

/*
 * Function: readEntireFile
 * Usage: readEntireFile(is, lines);
 * ---------------------------------
 * Reads the entire contents of the specified input stream into the
 * string vector lines. The client is responsible for opening and
 * closing the stream.
 */

void readEntireFile(istream & is, Vector<string> & lines) {
 while (true) {
 string line;
 getline(is, line);
 if (is.fail()) break;
 lines.add(line);
 }
}

 5.1 The Vector class 207

As a more significant example of when you might want to declare a vector of a
constant size, consider the LetterFrequency program in Figure 5-2, which counts
how often each of the 26 letters appears in a data file. Those counts are maintained
in the variable letterCounts, which is declared as follows:

Vector<int> letterCounts(26);

Each element in this vector contains the count of the letter at the corresponding
index in the alphabet, with the number of As in letterCounts[0], the number of
Bs in letterCounts[1], and so on. For each letter in the file, all the program has
to do is increment the value at the appropriate index position in the vector, which

F I G U R E 5 - 2 Program to count letter frequencies in a file

/*
 * File: LetterFrequency.cpp
 * -------------------------
 * This program counts the frequency of letters in a data file.
 */

#include <iostream>
#include <iomanip>
#include <fstream>
#include <cctype>
#include "filelib.h"
#include "vector.h"
using namespace std;

/* Constants */

static const int COLUMNS = 7;

/* Main program */

int main() {
 Vector<int> letterCounts(26);
 ifstream infile;
 promptUserForFile(infile, "Input file: ");
 while (true) {
 int ch = infile.get();
 if (ch == EOF) break;
 if (isalpha(ch)) {
 letterCounts[toupper(ch) - 'A']++;
 }
 }
 infile.close();
 for (char ch = 'A'; ch <= 'Z'; ch++) {
 cout << setw(COLUMNS) << letterCounts[ch - 'A'] << " " << ch << endl;
 }
 return 0;
}

208 Collections

can be calculated arithmetically based on the ASCII code of the character. This
calculation occurs in the statement

letterCounts[toupper(ch) - 'A']++;

Subtracting the ASCII value 'A' from the uppercase character code gives the index
of the character ch in the alphabet. This statement then updates the count by
incrementing that element of the vector.

The remainder of the program is mostly concerned with formatting the output so
that the letter counts are properly aligned in columns. As an example, here is what
the LetterCounts program produces if you run it on a file containing the text of
George Eliot’s Middlemarch:

Constructors for the Vector class
The sample programs you’ve seen so far in this chapter declare vectors in two
different ways. The ReverseFile program in Figure 5-1 defines an empty vector
of strings using the declaration

Vector<string> lines;

The LetterFrequency program declares a vector containing 26 zeroes like this:

LetterFrequency
Input file: Middlemarch.txt
 114157 A
 23269 B
 34031 C
 61046 D
 166989 E
 30826 F
 30055 G
 89636 H
 99651 I
 1695 J
 11010 K
 56865 L
 37816 M
 96887 N
 108561 O
 21922 P
 1441 Q
 79808 R
 88555 S
 123433 T
 40647 U
 12792 V
 34508 W
 2069 X
 28700 Y
 249 Z

 5.1 The Vector class 209

Vector<int> letterCounts(26);

As it happens, there is more going on in these declarations than meets the eye.

When you declare a variable of a primitive type, as in

double total;

C++ does not make any attempt to initialize that variable. The contents of the
memory used to hold the variable total continue to contain whatever value
happened to be there, which can easily lead to unexpected results. For this reason,
declarations of primitive variables usually include an explicit initializer that sets the
variable to the desired starting value, as in

double total = 0.0;

The situation is different when you declare a variable to be an instance of a C++
class. In that case, C++ automatically initializes that variable by invoking a special
method called a constructor. For example, in the declaration

Vector<string> lines;

C++ calls the Vector constructor, which initializes the variable lines to be an
empty vector that belongs to the parameterized class Vector<string>. The
declaration

Vector<int> letterCounts(26);

calls a different version of the constructor to initialize a Vector<int> with 26
elements.

The C++ compiler determines which version of the constructor to call by looking
at the arguments appearing in the declaration, just as it does for overloaded
functions. The declaration of lines provides no arguments, which tells the
compiler to invoke the constructor that takes no arguments, which is called the
default constructor. The declaration of letterCounts provides an integer
argument, which tells the compiler to invoke the version of the constructor that
takes an integer indicating the vector size. The two versions of the Vector
constructor appear—along with a complete list of the Vector methods—in
Table 5-1.

If you look closely at the constructor descriptions in Table 5-1, you’ll discover
that the second form of the constructor accepts an optional argument indicating the
initial value to use for each of the elements. That argument is usually omitted, in
which case, the initial value for the elements is the default value for the base type,

210 Collections

which is 0 for numeric types, false for type bool, the character whose ASCII
value is 0 for type char, and the result of calling the default constructor for a class.

Vector operators
Partly to illustrate the power of operator overloading and partly because these
operators turn out to be so useful, the Vector class in the Stanford library defines
several operators that apply to vector objects. You have already seen the use of
square brackets, which make it possible to select objects from a vector using the
traditional selection syntax for arrays. The Vector class also defines the operators
+ and += as shorthands for concatenating two vectors and for adding elements to an
existing vector.

T A B L E 5 - 1 Entries in the vector.h interface

Constructors

Vector<type>() Creates an empty vector.

Vector<type>(n, value) Creates a vector with n elements, each of which has the specified value.
If value is missing, each element is initialized to its default value.

Methods

size() Returns the number of elements in the vector.

isEmpty() Returns true if the vector is empty.

get(index) Returns the element at the specified index position. Attempting to get the
value of an element outside the vector bounds generates an error.

set(index, value) Sets the element at the specified index to the new value. Attempting to
set the value of an element outside the vector bounds generates an error.

add(value) Adds a new element at the end of the vector.

insertAt(index, value) Inserts the new value before the specified index position.

removeAt(index) Deletes the element at the specified index position.

clear() Removes all elements from the vector.

Operators

vec[index] The Vector class extends the square bracket operators so that clients
can use array notation to select elements. Attempting to select an
element outside the vector bounds generates an error.

v1 + v2 Concatenates v1 and v2 and returns a new vector containing the
combined elements.

vec += e1, e2, . . . Adds the elements e1, e2, and so on, to the end of the vector vec.

 5.1 The Vector class 211

The + operator on vectors is defined so that it works in exactly the way it does
for strings. If the character vectors v1 and v2 contain the values

and

evaluating the expression v1 + v2 creates a new five-element vector, as follows:

The += operator adds elements to the end of an existing vector and turns out to
be even more useful, particularly when you need to initialize the contents of a
vector. For example, you could declare and initialize the vectors v1 and v2 in this
example using the following code:

Vector<char> v1;
Vector<char> v2;
v1 += 'A', 'B', 'C';
v2 += 'D', 'E';

Representing two-dimensional structures
The type parameter used in the Vector class can be any C++ type and may itself be
a parameterized type. In particular, you can create a two-dimensional structure by
declaring a Vector whose base type is itself a Vector. The declaration

Vector< Vector<int> > sudoku(9, Vector<int>(9));

initializes the variable sudoku to a Vector of nine elements, each of which is itself
a Vector of nine elements. The base type of the inner vector is int, and the base
type of the outer vector is Vector<int>. The type of the whole assemblage is
therefore

Vector< Vector<int> >

Although some C++ compilers have been extended so that the spaces are optional,
this declaration adheres to the C++ standard by including spaces around the inner

'A' 'B' 'C'

v1

0 1 2

'D' 'E'

v2

0 1

'A' 'B' 'C' 'D' 'E'

0 1 2 3 4

212 Collections

type parameter. Those spaces ensure that the angle brackets for the type parameters
are interpreted correctly. If you instead write this declaration as

Vector<Vector<int>> sudoku(9, Vector<int>(9));

many C++ compilers will interpret the >> as a single operator and be unable to
compile this line.

The Grid class in the Stanford libraries
Although using nested vectors makes it possible to represent two-dimensional
structures, that strategy is by no means convenient. To simplify the development of
applications that need to work with two-dimensional structures, the Stanford version
of the collection class library includes a class called Grid, even though there is no
direct counterpart for this class in the Standard Template Library. The entries
exported by grid.h appear in Table 5-2.

T A B L E 5 - 2 Entries exported by the grid.h interface

Constructors

Grid<type>() Creates an empty grid. Clients who use the default constructor must
specify the grid dimensions by calling resize.

Grid<type>(rows, cols) Creates a grid with the specified number of rows and columns. Each
element is initialized to the default value for the type.

Methods

numRows()

numCols()

These methods return the number of rows and the number of columns,
respectively.

inBounds(row, col) Returns true if the specified row and column coordinates are inside the
grid.

get(row, col) Returns the element of the grid that appears at the specified row and
column.

set(row, col, value) Sets the element at the specified grid coordinates to the new value.

resize(rows, cols) Changes the dimensions of the grid as specified by the rows and cols
parameters. Any previous contents of the grid are discarded.

Operators

grid[row][col] The Grid class extends the square bracket operators so that clients can
use array notation to select individual elements of the grid.

 5.2 The Stack class 213

 5.2 The Stack class
When measured in terms of the operations it supports, the simplest collection class
is the Stack class, which—despite its simplicity—turns out to be useful in a variety
of programming applications. Conceptually, a stack provides storage for a
collection of data values, subject to the restriction that values must be removed from
a stack in the opposite order from which they were added. This restriction implies
that the last item added to a stack is always the first item that gets removed.

In light of their importance in computer science, stacks have a terminology of
their own. Adding a new value to a stack is called pushing that value; removing the
most recent item from a stack is called popping the stack. Moreover, the order in
which stacks are processed is sometimes called LIFO, which stands for “last in,
first out.”

A common (but possibly apocryphal) explanation for the words stack, push, and
pop is that the stack model is derived from the way plates are stored in a cafeteria.
Particularly, if you are in a cafeteria in which customers pick up their own plates at
the beginning of a buffet line, those plates are placed in spring-loaded columns that
make it easy for people in the cafeteria line to take the top plate, as illustrated in the
following diagram:

When a dishwasher adds a new plate, it goes on the top of the stack, pushing the
others down slightly as the spring is compressed, as shown:

Customers can take plates only from the top of the stack. When they do, the
remaining plates pop back up. The last plate added to the stack is the first one a
customer takes.

The primary reason that stacks are important in programming is that nested
function calls behave in a stack-oriented fashion. For example, if the main program
calls a function named f, a stack frame for f gets pushed on top of the stack frame
for main, as illustrated by the following diagram:

214 Collections

If f calls g, a new stack frame for g is pushed on top of the frame for f, as follows:

When g returns, its frame is popped off the stack, restoring f to the top of the stack
as shown in the original diagram.

The structure of the Stack class
Like Vector and Grid, Stack is a collection class that requires you to specify the
element type. For example, Stack<int> represents a stack whose elements are
integers, and Stack<string> represents one in which the elements are strings.
Similarly, if you define the classes Plate and Frame, you can create stacks of these
objects using the classes Stack<Plate> and Stack<Frame>. The list of entries
exported by the stack.h interface appears in Table 5-3.

int main() {
 f();
 return 0;
}

void f() {
 cout << "This is the function f" << endl;
 g();
}

☞

int main() {
 f();
 return 0;
}

void f() {
 cout << "This is the function f" << endl;
 g();
}

void g() {
 cout << "This is the function g" << endl;
}
☞

T A B L E 5 - 3 Entries exported by the stack.h interface

Constructor

Stack<type>() Creates an empty stack capable of holding values of the specified type.

Methods

size() Returns the number of elements currently on the stack.

isEmpty() Returns true if the stack is empty.

push(value) Pushes value on the stack so that it becomes the topmost element.

pop() Pops the topmost value from the stack and returns it to the caller. Calling pop on
an empty stack generates an error.

peek() Returns the topmost value on the stack without removing it. Calling peek on an
empty stack generates an error.

clear() Removes all the elements from a stack.

 5.2 The Stack class 215

Stacks and pocket calculators
One interesting application of stacks is in electronic calculators, where they are used
to store intermediate results of a calculation. Although stacks play a central role in
the operation of most calculators, that role is easiest to see in early scientific
calculators that required users to enter expressions in Reverse Polish Notation, or
RPN.

In Reverse Polish Notation, operators are entered after the operands to which
they apply. For example, to compute the result of the expression

8.5 * 4.4 + 6.9 / 1.5

on an RPN calculator, you would enter the operations in the following order:

When the ENTER button is pressed, the calculator takes the previous value and
pushes it on a stack. When an operator button is pressed, the calculator first checks
whether the user has just entered a value and, if so, automatically pushes it on the
stack. It then computes the result of applying the operator by

• Popping the top two values from the stack

• Applying the arithmetic operation indicated by the button to these values

• Pushing the result back on the stack

Except when the user is actually typing in a number, the calculator display shows
the value at the top of the stack. Thus, at each point in the operation, the calculator
display and stack contain the values shown in Figure 5-3.

8.5 ENTER 4.4 * 6.9 ENTER 1.5 / +

F I G U R E 5 - 3 Execution diagram of the RPN calculator

Buttons:

Display:

Stack:

8.5

8.5

ENTER

8.5

8.5

4.4

4.4

8.5

*

37.4

37.4

6.9

6.9

37.4

ENTER

6.9

37.4

6.9

1.5

1.5

37.4

6.9

/

4.6

37.4

4.6

+

42.0

42.0

216 Collections

Implementing the RPN calculator in C++ requires making some changes in the
user-interface design. In a real calculator, the digits and operations appear on a
keypad. In this implementation, it is easier to imagine that the user enters lines on
the console, where those lines take one of the following forms:

• A floating-point number

• An arithmetic operator chosen from the set +, -, *, and /

• The letter Q, which causes the program to quit

• The letter H, which prints a help message

• The letter C, which clears any values left on the stack

A sample run of the calculator program might therefore look like this:

Because the user enters each number on a separate line terminated with the RETURN
key, there is no need for any counterpart to the calculator’s ENTER button, which
really serves only to indicate that a number is complete. The calculator program
can simply push the numbers on the stack as the user enters them. When the
calculator reads an operator, it pops the top two elements from the stack, applies the
operator, displays the result, and then pushes the result back on the stack.

The complete implementation of the calculator application appears in Figure 5-4.

RPNCalculator
RPN Calculator Simulation (type H for help)
> H
Enter expressions in Reverse Polish Notation,
in which operators follow the operands to which
they apply. Each line consists of a number, an
operator, or one of the following commands:
 Q -- Quit the program
 H -- Display this help message
 C -- Clear the calculator stack
> 8.5
> 4.4
> *
37.4
> 6.9
> 1.5
> /
4.6
> +
42
> Q

 5.2 The Stack class 217

 Figure 4-4
F I G U R E 5 - 4 Program to implement a simple RPN calculator

/*
 * File: RPNCalculator.cpp
 * -----------------------
 * This program simulates an electronic calculator that uses
 * reverse Polish notation, in which the operators come after
 * the operands to which they apply. Information for users
 * of this application appears in the helpCommand function.
 */

#include <iostream>
#include <cctype>
#include <string>
#include "error.h"
#include "stack.h"
#include "strlib.h"
using namespace std;

/* Function prototypes */

void applyOperator(char op, Stack<double> & operandStack);
void helpCommand();

/* Main program */

int main() {
 cout << "RPN Calculator Simulation (type H for help)" << endl;
 Stack<double> operandStack;
 while (true) {
 cout << "> ";
 string line;
 getline(cin, line);
 if (line.length() == 0) line = "Q";
 char ch = toupper(line[0]);
 if (ch == 'Q') {
 break;
 } else if (ch == 'C') {
 operandStack.clear();
 } else if (ch == 'H') {
 helpCommand();
 } else if (isdigit(ch)) {
 operandStack.push(stringToReal(line));
 } else {
 applyOperator(ch, operandStack);
 }
 }
 return 0;
}

218 Collections

Figure 4-4
F I G U R E 5 - 4 Program to implement a simple RPN calculator (continued)

/*
 * Function: applyOperator
 * Usage: applyOperator(op, operandStack);
 * ---------------------------------------
 * This function applies the operator to the top two elements on
 * the operand stack. Because the elements on the stack are
 * popped in reverse order, the right operand is popped before
 * the left operand.
 */

void applyOperator(char op, Stack<double> & operandStack) {
 double result;
 double rhs = operandStack.pop();
 double lhs = operandStack.pop();
 switch (op) {
 case '+': result = lhs + rhs; break;
 case '-': result = lhs - rhs; break;
 case '*': result = lhs * rhs; break;
 case '/': result = lhs / rhs; break;
 default: error("Illegal operator");
 }
 cout << result << endl;
 operandStack.push(result);
}

/*
 * Function: helpCommand
 * Usage: helpCommand();
 * ---------------------
 * This function generates a help message for the user.
 */

void helpCommand() {
 cout << "Enter expressions in Reverse Polish Notation," << endl;
 cout << "in which operators follow the operands to which" << endl;
 cout << "they apply. Each line consists of a number, an" << endl;
 cout << "operator, or one of the following commands:" << endl;
 cout << " Q -- Quit the program" << endl;
 cout << " H -- Display this help message" << endl;
 cout << " C -- Clear the calculator stack" << endl;
}

 5.3 The Queue class 219

 5.3 The Queue class
As you learned in section 5.2, the defining feature of a stack is that the last item
pushed is always the first item popped. As noted in the introduction to that section,
this behavior is often referred to in computer science as LIFO, which is an acronym
for the phrase “last in, first out.” The LIFO discipline is useful in programming
contexts because it reflects the operation of function calls; the most recently called
function is the first to return. In real-world situations, however, its usefulness is
more limited. In human society, our collective notion of fairness assigns some
priority to being first, as expressed in the maxim “first come, first served.” In
programming, the usual phrasing of this ordering strategy is “first in, first out,”
which is traditionally abbreviated as FIFO.

A data structure that stores items using a FIFO discipline is called a queue. The
fundamental operations on a queue—which are analogous to the push and pop
operations for stacks—are called enqueue and dequeue. The enqueue operation
adds a new element to the end of the queue, which is traditionally called its tail.
The dequeue operation removes the element at the beginning of the queue, which
is called its head.

The conceptual difference between these structures can be illustrated most easily
with a diagram. In a stack, the client must add and remove elements from the same
end of the internal data structure, as follows:

In a queue, the client adds elements at one end and removes them from the other,
like this:

As you might expect from the fact that the models are so similar, the structure of
the Queue class looks very much like its Stack counterpart. The list of entries in
Table 5-4 bears out that supposition. The only differences are in the terminology,
which reflects the difference in the ordering of the elements.

Stack:

↑
top of
stack

push

pop

Queue:

↑
head of
queue

↑
tail of
queue

enqueue

dequeue

220 Collections

The queue data structure has many applications in programming. Not
surprisingly, queues turn up in many situations in which it is important to maintain a
first-in/first-out discipline in order to ensure that service requests are treated fairly.
For example, if you are working in an environment in which a single printer is
shared among several computers, the printing software is usually designed so that
all print requests are entered in a queue. Thus, if several users decide to enter print
requests, the queue structure ensures that each user’s request is processed in the
order received.

Queues are also common in programs that simulate the behavior of waiting lines.
For example, if you wanted to decide how many cashiers you needed in a
supermarket, it might be worth writing a program that could simulate the behavior
of customers in the store. Such a program would almost certainly involve queues,
because a checkout line operates in a first-in/first-out way. Customers who have
completed their purchases arrive in the checkout line and wait for their turn to pay.
Each customer eventually reaches the front of the line, at which point the cashier
totals up the purchases and collects the money. Because simulations of this sort
represent an important class of application programs, it is worth spending a little
time understanding how such simulations work.

Simulations and models
Beyond the world of programming, there are an endless variety of real-world events
and processes that—although they are undeniably important—are nonetheless too
complicated to understand completely. For example, it would be very useful to
know how various pollutants affect the ozone layer and how the resulting changes

T A B L E 5 - 4 Entries exported by the queue.h interface

Constructor

Queue<type>() Creates an empty queue capable of holding values of the specified type.

Methods

size() Returns the number of elements currently in the queue.

isEmpty() Returns true if the queue is empty.

enqueue(value) Adds value to the tail of the queue.

dequeue() Removes the element at the head of the queue and returns it to the caller. Calling
dequeue on an empty queue generates an error.

peek() Returns the value at the head of the queue without removing it. Calling peek on
an empty queue generates an error.

clear() Removes all the elements from a queue.

 5.3 The Queue class 221

in the ozone layer affect the global climate. Similarly, if economists and political
leaders had a more complete understanding of exactly how the national economy
works, it would be possible to evaluate whether a cut in the capital-gains tax would
spur investment or whether it would exacerbate the existing disparities of wealth
and income.

When faced with such large-scale problems, it is usually necessary to come up
with an idealized model, which is a simplified representation of some real-world
process. Most problems are far too complex to allow for a complete understanding.
There are just too many details. The reason to build a model is that, despite the
complexity of a particular problem, it is often possible to make certain assumptions
that allow you to simplify a complicated process without affecting its fundamental
character. If you can come up with a reasonable model for a process, you can often
translate the dynamics of the model into a program that captures the behavior of that
model. Such a program is called a simulation.

It is important to remember that creating a simulation is usually a two-step
process. The first step consists of designing a conceptual model for the real-world
behavior you are trying to simulate. The second consists of writing a program that
implements the conceptual model. Because errors can occur in both steps of the
process, maintaining a certain skepticism about simulations and their applicability
to the real world is probably wise. In a society conditioned to believe the “answers”
delivered by computers, it is critical to recognize that the simulations can never be
better than the models on which they are based.

The waiting-l ine model
Suppose that you want to design a simulation that models the behavior of a
supermarket waiting line. By simulating the waiting line, you can determine some
useful properties of waiting lines that might help a company make such decisions as
how many cashiers are needed, how much space needs to be reserved for the line
itself, and so forth.

The first step in the process of writing a checkout-line simulation is to develop a
model for the waiting line, detailing the simplifying assumptions. For example, to
make the initial implementation of the simulation as simple as possible, you might
begin by assuming that there is one cashier who serves customers from a single
queue. You might then assume that customers arrive with a random probability and
enter the queue at the end of the line. Whenever the cashier is free and someone is
waiting in line, the cashier begins to serve that customer. After an appropriate
service period—which you must also model in some way—the cashier completes
the transaction with the current customer, and is free to serve the next customer in
the queue.

222 Collections

Discrete time
Another assumption often required in a model is some limitation on the level of
accuracy. Consider, for example, the time that a customer spends being served by
the cashier. One customer might spend two minutes; another might spend six. It is
important, however, to consider whether measuring time in minutes allows the
simulation to be sufficiently precise. If you had a sufficiently accurate stopwatch,
you might discover that a customer actually spent 3.14159265 minutes. The
question you need to resolve is how accurate you need to be.

For most models, and particularly for those intended for simulation, it is useful
to introduce the simplifying assumption that all events within the model happen in
discrete integral time units. Using discrete time assumes that you can find a time
unit that—for the purpose of the model—you can treat as indivisible. In general,
the time units used in a simulation must be small enough that the probability of
more than one event occurring during a single time unit is negligible. In the
checkout-line simulation, for example, minutes may not be accurate enough; two
customers could easily arrive in the same minute. On the other hand, you could
probably get away with using seconds as the time unit and discount the possibility
that two customers arrive in precisely the same second.

Although the checkout-line example assumes that simulation time is measured in
seconds, in general, there is no reason you have to measure time in conventional
units. When you write a simulation, you can define the unit of time in any way that
fits the structure of the model. For example, you could define a time unit to be five
seconds and then run the simulation as a series of five-second intervals.

Events in simulated time
The real advantage of using discrete time units is not that it makes it possible to
work with variables of type int instead of being forced to use type double. The
most important property of discrete time is that it allows you to structure the
simulation as a loop in which each time unit represents a single cycle. When you
approach the problem in this way, a simulation program has the following form:

for (int time = 0; time < SIMULATION_TIME; time++) {
 Execute one cycle of the simulation.
}

Within the body of the loop, the program performs the operations necessary to
advance through one unit of simulated time.

Think for a moment about what events might occur during each time unit of the
checkout-line simulation. One possibility is that a new customer might arrive.
Another is that the cashier might finish with the current customer and go on the

 5.3 The Queue class 223

serve the next person in line. These events bring up some interesting issues. To
complete the model, you need to say something about how often customers arrive
and how much time they spend at the cash register. You could (and probably
should) gather approximate data by watching a real checkout line in a store. Even if
you collect that information, however, you will need to simplify it to a form that (1)
captures enough of the real-world behavior to be useful and (2) is easy to
understand in terms of the model. For example, your surveys might show that
customers arrive at the line on average once every 20 seconds. This average arrival
rate is certainly useful input to the model. On the other hand, you would not have
much confidence in a simulation in which customers arrived exactly once every 20
seconds. Such an implementation would violate the real-world condition that
customer arrivals have some random variability and that they sometimes bunch
together.

For this reason, the arrival process is usually modeled by specifying the
probability that an arrival takes place in any discrete time unit instead of the average
time between arrivals. For example, if your studies indicated that a customer
arrived once every 20 seconds, the average probability of a customer arriving in any
particular second would be 1/20 or 0.05. If you assume that arrivals occur randomly
with an equal probability in each unit of time, the arrival process forms a pattern
that mathematicians call a Poisson distribution.

You might also choose to make simplifying assumptions about how long it takes
to serve a particular customer. For example, the program is easier to write if you
assume that the service time required for each customer is uniformly distributed
within a certain range. If you do, you can use the randomInteger function from
the random.h interface to pick the service time.

Implementing the simulation
Even though it is longer than the other programs in this chapter, the code for the
simulation program is reasonably easy to write and appears in Figure 5-5. The core
of the simulation is a loop that runs for the number of seconds indicated by the
parameter SIMULATION_TIME. In each second, the simulation performs the
following operations:

1. Determine whether a new customer has arrived and, if so, add that person to the

queue.

2. If the cashier is busy, note that the cashier has spent another second with the
current customer. Eventually, the required service time will be complete,
which will free the cashier.

3. If the cashier is free, serve the next customer in the waiting line.

224 Collections

Figure 4-5
F I G U R E 5 - 5 Program to simulate a checkout line

/*
 * File: CheckoutLine.cpp
 * ----------------------
 * This program simulates a checkout line, such as one you
 * might encounter in a grocery store. Customers arrive at
 * the checkout stand and get in line. Those customers wait
 * in the line until the cashier is free, at which point
 * they are served and occupy the cashier for some period
 * of time. After the service time is complete, the cashier
 * is free to serve the next customer in the line.
 *
 * In each unit of time, up to the constant SIMULATION_TIME,
 * the following operations are performed:
 *
 * 1. Determine whether a new customer has arrived.
 * New customers arrive randomly, with a probability
 * determined by the constant ARRIVAL_PROBABILITY.
 *
 * 2. If the cashier is busy, note that the cashier has
 * spent another minute with that customer. Eventually,
 * the customer's time request is satisfied, which frees
 * the cashier.
 *
 * 3. If the cashier is free, serve the next customer in line.
 * The service time is taken to be a random period between
 * MIN_SERVICE_TIME and MAX_SERVICE_TIME.
 *
 * At the end of the simulation, the program displays the
 * simulation constants and the following computed results:
 *
 * o The number of customers served
 * o The average time spent in line
 * o The average number of people in line
 */

#include <iostream>
#include <iomanip>
#include "queue.h"
#include "random.h"
using namespace std;

/* Constants */

const double ARRIVAL_PROBABILITY = 0.05;
const int MIN_SERVICE_TIME = 5;
const int MAX_SERVICE_TIME = 15;
const int SIMULATION_TIME = 2000;

/* Function prototypes */

void runSimulation(int & nServed, int & totalWait, int & totalLength);
void printReport(int nServed, int totalWait, int totalLength);

 5.3 The Queue class 225

Figure 4-5
F I G U R E 5 - 5 Program to simulate a checkout line (continued)

/* Main program */

int main() {
 int nServed;
 int totalWait;
 int totalLength;
 runSimulation(nServed, totalWait, totalLength);
 printReport(nServed, totalWait, totalLength);
 return 0;
}

/*
 * Function: runSimulation
 * Usage: runSimulation();
 * -----------------------
 * This function runs the actual simulation. The number of
 * customers served, the sum of the customer waiting times,
 * and the sum of the queue length in each time step are
 * returned through the reference parameters.
 */

void runSimulation(int & nServed, int & totalWait, int & totalLength) {
 Queue<int> queue;
 int timeRemaining = 0;
 nServed = 0;
 totalWait = 0;
 totalLength = 0;
 for (int t = 0; t < SIMULATION_TIME; t++) {
 if (randomChance(ARRIVAL_PROBABILITY)) {
 queue.enqueue(t);
 }
 if (timeRemaining > 0) {
 timeRemaining--;
 } else if (!queue.isEmpty()) {
 totalWait += t - queue.dequeue();
 nServed++;
 timeRemaining = randomInteger(MIN_SERVICE_TIME, MAX_SERVICE_TIME);
 }
 totalLength += queue.size();
 }
}

226 Collections

The waiting line itself is represented, naturally enough, as a queue. The value
stored in the queue is the time at which that customer arrived in the queue, which
makes it possible to determine how many seconds that customer spent in line before
reaching the head of the queue.

The simulation is controlled by the following constants:

• SIMULATION_TIME—This constant specifies the duration of the simulation.

• ARRIVAL_PROBABILITY—This constant indicates the probability that a new
customer will arrive at the checkout line during a single unit of time. In keeping
with standard statistical convention, the probability is expressed as a real number
between 0 and 1.

• MIN_SERVICE_TIME, MAX_SERVICE_TIME—These constants define the legal
range of customer service time. For any particular customer, the amount of time
spent at the cashier is determined by picking a random integer in this range.

F I G U R E 5 - 5 Program to simulate a checkout line (continued)

/*
 * Function: printReport
 * Usage: printReport(nServed, totalWait, totalLength);
 * --
 * This function reports the results of the simulation.
 */

void printReport(int nServed, int totalWait, int totalLength) {
 cout << "Simulation results given the following constants:"
 << endl;
 cout << fixed << setprecision(2);
 cout << " SIMULATION_TIME: " << setw(4)
 << SIMULATION_TIME << endl;
 cout << " ARRIVAL_PROBABILITY: " << setw(7)
 << ARRIVAL_PROBABILITY << endl;
 cout << " MIN_SERVICE_TIME: " << setw(4)
 << MIN_SERVICE_TIME << endl;
 cout << " MAX_SERVICE_TIME: " << setw(4)
 << MAX_SERVICE_TIME << endl;
 cout << endl;
 cout << "Customers served: " << setw(4) << nServed << endl;
 cout << "Average waiting time: " << setw(7)
 << double(totalWait) / nServed << endl;
 cout << "Average queue length: " << setw(7)
 << double(totalLength) / SIMULATION_TIME << endl;
}

 5.3 The Queue class 227

When the simulation is complete, the program reports the simulation constants
along with the following results:

• The number of customers served

• The average amount of time customers spent in the waiting line

• The average length of the waiting line

For example, the following sample run shows the results of the simulation for the
indicated constant values:

The behavior of the simulation depends significantly on the values of the
constants used to control it. Suppose, for example, that the probability of a
customer arriving increases from 0.05 to 0.10. Running the simulation with these
parameters gives the following results:

As you can see, doubling the probability of arrival causes the average waiting
time to grow from under nine seconds to more than a minute, which is obviously a
dramatic increase. The reason for the poor performance is that the arrival rate in the
second run of the simulation means that new customers arrive at the same rate at
which they are served. When this arrival level is reached, the length of the queue
and the average waiting time both begin to grow very quickly. Simulations of this
sort make it possible to experiment with different parameter values. Those
experiments, in turn, make it possible to identify potential sources of trouble in the
corresponding real-world systems.

CheckoutLine
Simulation results given the following constants:
 SIMULATION_TIME: 2000
 ARRIVAL_PROBABILITY: 0.05
 MIN_SERVICE_TIME: 5
 MAX_SERVICE_TIME: 15

Customers served: 117
Average waiting time: 8.73
Average queue length: 0.51

CheckoutLine
Simulation results given the following constants:
 SIMULATION_TIME: 2000
 ARRIVAL_PROBABILITY: 0.10
 MIN_SERVICE_TIME: 5
 MAX_SERVICE_TIME: 15

Customers served: 176
Average waiting time: 68.95
Average queue length: 6.49

228 Collections

 5.4 The Map class
This section introduces another generic collection called a map, which is
conceptually similar to a dictionary. A dictionary allows you to look up a word to
find its meaning. A map is a generalization of this idea that provides an association
between an identifying tag called a key and an associated value, which may be a
much larger and more complicated structure. In the dictionary example, the key is
the word you’re looking up, and the value is its definition.

Maps have many applications in programming. For example, an interpreter for a
programming language needs to be able to assign values to variables, which can
then be referenced by name. A map makes it easy to maintain the association
between the name of a variable and its corresponding value. When they are used in
this context, maps are often called symbol tables, which is just another name for the
same concept.

In addition to the Map class described in this section, the Stanford libraries offer
a HashMap class that has almost the same structure and behavior. The HashMap
class is more efficient but somewhat less convenient to use for certain applications.
For now, it’s best to focus on the Map class until you understand how maps work in
general. You’ll have a chance to learn about the differences between these two
implementations of the map concept in Chapter 15.

The structure of the Map class
As with the collection classes introduced earlier in this chapter, Map is implemented
as a template class that must be parameterized with both the key type and the value
type. For example, if you want to simulate a dictionary in which individual words
are associated with their definitions, you can start by declaring a dictionary
variable as follows:

Map<string,string> dictionary;

Similarly, if you are implementing a programming language, you could use a Map to
store the values of floating-point variables by associating variable names and
values, as follows:

Map<string,double> symbolTable;

These definitions create empty maps that contain no keys and values. In either
case, you would subsequently need to add key/value pairs to the map. In the case of
the dictionary, you could read the contents from a data file. For the symbol table,
you would add new associations whenever an assignment statement appeared.

 5.4 The Map class 229

The most common methods used with the Map class appear in Table 5-5. Of
these, the ones that implement the fundamental behavior of the map concept are put
and get. The put method creates an association between a key and a value. Its
operation is analogous to assigning a value to a variable in C++: if there is a value
already associated with the key, the old value is replaced by the new one. The get
method retrieves the value most recently associated with a particular key and
therefore corresponds to the act of using a variable name to retrieve its value. If no
value appears in the map for a particular key, calling get with that key generates an
error condition. You can check for that condition by calling the containsKey
method, which returns true or false depending on whether the key exists in the
map.

A few simple diagrams may help to illustrate the operation of the Map class in
more detail. Suppose that you have declared the symbolTable variable to be a
Map<string,double> as you saw earlier in the section. That declaration creates
an empty map with no associations, as follows:

T A B L E 5 - 5 Entries exported by the map.h interface

Constructors

Map<key type,value type>() Creates an empty map associating keys and values.

Methods

size() Returns the number of key/value pairs contained in the map.

isEmpty() Returns true if the map is empty.

put(key, value) Associates the specified key and value in the map. If key has no
previous definition, a new entry is added; if a previous association
exists, the old value is discarded and replaced by the new one.

get(key) Returns the value currently associated with key in the map. If there is no
such value, get generates an error.

remove(key) Removes key from the map along with any associated value. If key does
not exist, this call leaves the map unchanged.

containsKey(key) Checks to see whether key is associated with a value. If so, this method
returns true; if not, it returns false.

clear() Removes all the key/value pairs from the map.

Operators

map[key] The Map class overloads the square bracket operator so that a map acts
as an associative array indexed by the key value. If the key does not
exist in the map, the square bracket operator creates a new entry and sets
its value to the default for that type.

230 Collections

Once you have the map, you can use put to establish new associations. For
example, if you call

symbolTable.put("pi", 3.14159);

the conceptual effect is to add an association between the key "pi" and the value
3.14159, as follows:

Calling

symbolTable.put("e", 2.71828);

would add a new association between the key "e" and the value 2.71828, like this:

You can then use get to retrieve these values. Calling symbolTable.get("pi")
would return the value 3.14159, and calling symbolTable.get("e") would
return 2.71828.

Although it hardly makes sense in the case of mathematical constants, you could
change the values in the map by making additional calls to put. You could, for
example, reset the value associated with "pi" (as an 1897 bill before the Indiana
State General Assembly sought to do) by calling

symbolTable.put("pi", 3.0);

which would leave the map in the following state:

At this point, calling symbolTable.containsKey("pi") would return true; by
contrast, calling symbolTable.containsKey("x") would return false.

symbolTable

symbolTable

pi = 3.14159

symbolTable

pi = 3.14159
e = 2.71828

symbolTable

pi = 3.0
e = 2.71828

 5.4 The Map class 231

Using maps in an application
If you fly at all frequently, you quickly learn that every airport in the world has a
three-letter code assigned by the International Air Transport Association (IATA).
For example, John F. Kennedy airport in New York City is assigned the three-letter
code JFK. Other codes, however, are considerably harder to recognize. Most
web-based travel systems offer some means of looking up these codes as a service
to their customers.

Suppose that you have been asked to write a simple C++ program that reads a
three-letter airport code from the user and responds with the location of that airport.
The data you need is in the form of a text file called AirportCodes.txt, which
contains a list of the several thousand airport codes that IATA has assigned. Each
line of the file consists of a three-letter code, an equal sign, and the location of the
airport. If the file were sorted in descending order by passenger traffic in 2009, as
compiled by Airports Council International, the file would begin with the lines in
Figure 5-6.

The existence of the Map class makes this application extremely easy to write.
The entire application fits on a single page, as shown in Figure 5-7.

F I G U R E 5 - 6 Beginning of data file containing airport codes and locations

AirportCodes.txt

ATL=Atlanta, GA, USA
ORD=Chicago, IL, USA
LHR=London, England, United Kingdom
HND=Tokyo, Japan
LAX=Los Angeles, CA, USA
CDG=Paris, France
DFW=Dallas/Ft Worth, TX, USA
FRA=Frankfurt, Germany
PEK=Beijing, China
MAD=Madrid, Spain
DEN=Denver, CO, USA
AMS=Amsterdam, Netherlands
JFK=New York, NY, USA
HKG=Hong Kong, Hong Kong
LAS=Las Vegas, NV, USA
IAH=Houston, TX, USA
PHX=Phoenix, AZ, USA
BKK=Bangkok, Thailand
SIN=Singapore, Singapore
MCO=Orlando, FL, USA
 .
 .
 .

232 Collections

Figure 4-7
F I G U R E 5 - 7 Program to look up three-letter airport codes

/*
 * File: AirportCodes.cpp
 * ----------------------
 * This program looks up a three-letter airport code in a Map object.
 */

#include <iostream>
#include <fstream>
#include <string>
#include "error.h"
#include "map.h"
#include "strlib.h"
using namespace std;

/* Function prototypes */

void readCodeFile(string filename, Map<string,string> & map);

/* Main program */

int main() {
 Map<string,string> airportCodes;
 readCodeFile("AirportCodes.txt", airportCodes);
 while (true) {
 string line;
 cout << "Airport code: ";
 getline(cin, line);
 if (line == "") break;
 string code = toUpperCase(line);
 if (airportCodes.containsKey(code)) {
 cout << code << " is in " << airportCodes.get(code) << endl;
 } else {
 cout << "There is no such airport code" << endl;
 }
 }
 return 0;
}

void readCodeFile(string filename, Map<string,string> & map) {
 ifstream infile;
 infile.open(filename.c_str());
 if (infile.fail()) error("Can't read the data file");
 while (true) {
 string line;
 getline(infile, line);
 if (infile.fail()) break;
 if (line.length() < 4 || line[3] != '=') {
 error("Illegal data line: " + line);
 }
 string code = toUpperCase(line.substr(0, 3));
 map.put(code, line.substr(4));
 }
 infile.close();
}

 5.4 The Map class 233

The main program in the AirportCodes application reads in three-letter codes,
looks up the corresponding location, and writes that back to the console, as shown
in the following sample run:

Maps as associative arrays
The Map class overloads the square bracket operators used for array selection so that
the statement

map[key] = value;

acts as a shorthand for

map.put(key, value);

Similarly, the expression map[key] returns the value from map associated with key
in exactly the same way that map.get(key) does. While these shorthand forms of
the put and get methods are undoubtedly convenient, using array notation for
maps is initially surprising, given that maps and arrays seem to be entirely different
in their structure. If you think about maps and arrays in the right way, however,
they turn out to be more alike than you might at first suspect.

The insight necessary to unify these two seemingly different structures is that
you can think of arrays as structures that map index positions to elements. Suppose,
for example, that you have an array—or equivalently a vector—containing a set of
scores such as those you might assign for a gymnastics match:

This array maps the key 0 into the value 9.2, the key 1 into 9.9, the key 2 into 9.7,
and so forth. Thus, you can think of an array as simply a map with integer keys.
Conversely, you can think of a map as an array that uses the key type as its indices,
which is precisely what the overloaded selection syntax for the Map class suggests.

AirportCodes
Airport code: LHR
LHR is in London, England, United Kingdom
Airport code: SFO
SFO is in San Francisco, CA, USA
Airport code: XXX
There is no such airport code
Airport code:

9.2 9.9 9.7 8.9 9.5

scores

0 1 2 3 4

234 Collections

Using array syntax to perform map operations is becoming increasingly common
in programming languages even beyond the C++ domain. Many popular scripting
languages implement all arrays internally as maps, making it possible to use index
values that are not necessarily integers. Arrays implemented using maps as their
underlying representation are called associative arrays.

 5.5 The Set class
One of the most useful collection classes is the Set class, which exports the entries
shown in Table 5-6. This class is used to model the mathematical abstraction of a
set, which is a collection in which the elements are unordered and in which each
value appears only once. Sets turn out to be extremely useful in many algorithmic

T A B L E 5 - 6 Entries exported by the set.h interface

Constructor

Set<type>() Creates an empty set containing values of the specified type.

Methods

size() Returns the number of elements in the set.

isEmpty() Returns true if the set is empty.

add(value) Adds the value to the set. If the value is already in the set, no error is generated,
and the set remains unchanged.

remove(value) Removes the value to the set. If the value is not present, no error is generated,
and the set remains unchanged.

contains(value) Returns true if the value is in the set.

clear() Removes all elements from the set.

isSubsetOf(set) Returns true if this set is a subset of the set passed as an argument.

first() Returns the first element of the set in the ordering specified for its value type.

Operators

s1 + s2 Returns the union of s1 and s2, which consists of the elements in either or both
of the original sets.

s1 * s2 Returns the intersection of s1 and s2, which consists of the elements common to
both of the original sets.

s1 - s2 Returns the set difference of s1 and s2, which consists of the all elements in s1
that are not present in s2.

s1 += s2

s1 -= s2

s1 *= s2

The +, -, and * operators can be combined with assignment just as they can with
numeric values. For += and -=, the right hand value can be a set, a single value,
or a list of values separated by commas.

 5.5 The Set class 235

applications and are therefore worth a chapter of their own. Even before you have a
chance to read the more detailed account in Chapter 18, it is worth presenting a few
examples of sets so you can get a better sense of how they work and how they might
be useful in applications.

Implementing the <cctype> l ibrary
In Chapter 3, you learned about the <cctype> library, which exports several
predicate functions that test the type of a character. Calling isdigit(ch), for
example, tests whether the character ch is one of the digit characters. In that case,
you can implement the function by testing the character code for ch against a
simple range of values, as follows:

bool isdigit(ch) {
 return ch >= '0' && ch <= '9';
}

The situation gets a little more complicated with some of the other functions.
Implementing ispunct in this same style would be more difficult because the
punctuation characters are spread over several intervals of the ASCII range. Things
would be a lot easier if you could simply define a set of all the punctuation marks,
in which case all you need to do to implement ispunct(ch) is check whether the
character ch is in that set.

A set-based implementation of the predicate functions from <cctype> appears
in Figure 5-8. The code creates a Set<char> for each of the character types and
then defines the predicate functions so that they simply invoke contains on the
appropriate set. For example, to implement isdigit, the cctype implementation
defines a set containing the digit characters like this:

const Set<char> DIGIT_SET = setFromString("0123456789");

The setFromString function, which appears at the bottom of Figure 5-8, is a
simple helper function that creates a set by adding each of the characters in the
argument string. This function makes it very easy to define sets like the set of
punctuation characters simply by listing the characters that fit that description.

One of the advantages of working with sets is that doing so makes it easier to
think in terms of abstract, high-level operations. While most of the sets in
cctype.cpp use setFromString to create the set from the actual characters, a
few use the + operator, which is overloaded to return the union of two sets. For
example, once you have defined the sets LOWER_SET and UPPER_SET so that they
contain the lowercase and uppercase letters, you can define ALPHA_SET by writing

const Set<char> ALPHA_SET = LOWER_SET + UPPER_SET;

236 Collections

Figure 4-8
F I G U R E 5 - 8 Set-based implementation of <cctype>

/*
 * File: cctype.cpp
 * ----------------
 * This program simulates the <cctype> interface using sets of characters.
 */

#include <string>
#include "set.h"
#include "cctype.h"
using namespace std;

/* Function prototypes */

Set<char> setFromString(string str);

/*
 * Constant sets
 * -------------
 * These sets are initialized to contain the characters in the
 * corresponding character class.
 */

const Set<char> DIGIT_SET = setFromString("0123456789");
const Set<char> LOWER_SET = setFromString("abcdefghijklmnopqrstuvwxyz");
const Set<char> UPPER_SET = setFromString("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
const Set<char> PUNCT_SET = setFromString("!\"#$%&'()*+,-./:;<=>?@[\\]^_‘{|}");
const Set<char> SPACE_SET = setFromString(" \t\v\f\n\r");
const Set<char> XDIGIT_SET = setFromString("0123456789ABCDEFabcdef");
const Set<char> ALPHA_SET = LOWER_SET + UPPER_SET;
const Set<char> ALNUM_SET = ALPHA_SET + DIGIT_SET;
const Set<char> PRINT_SET = ALNUM_SET + PUNCT_SET + SPACE_SET;

/* Exported functions */

bool isalnum(char ch) { return ALNUM_SET.contains(ch); }
bool isalpha(char ch) { return ALPHA_SET.contains(ch); }
bool isdigit(char ch) { return DIGIT_SET.contains(ch); }
bool islower(char ch) { return LOWER_SET.contains(ch); }
bool isprint(char ch) { return PRINT_SET.contains(ch); }
bool ispunct(char ch) { return PUNCT_SET.contains(ch); }
bool isspace(char ch) { return SPACE_SET.contains(ch); }
bool isupper(char ch) { return UPPER_SET.contains(ch); }
bool isxdigit(char ch) { return XDIGIT_SET.contains(ch); }

/* Helper function to create a set from a string of characters */

Set<char> setFromString(string str) {
 Set<char> set;
 for (int i = 0; i < str.length(); i++) {
 set.add(str[i]);
 }
 return set;
}

 5.5 The Set class 237

Creating a word list
In the discussion of the Map class earlier in the chapter, one of the examples used to
explain the underlying concept was that of a dictionary in which the keys were
individual words and the corresponding values were the definitions. In some
applications, such as a spelling checker or a program that plays Scrabble, you don’t
need to know the definition of a word. All you need to know is whether a particular
combination of letters is a legal word. For such applications, the Set class is an
ideal tool. Instead of a map containing both words and definitions, all you need is a
Set<string> whose elements are the legal words. A word is legal if it is
contained in the set, and illegal if it is not.

A set of words with no associated definitions is called a lexicon. If you have a
text file named EnglishWords.txt containing all the words in English, one word
per line, you could create an English lexicon using the following code:

Set<string> lexicon;
ifstream infile;
infile.open("EnglishWords.txt");
if (infile.fail()) error("Can't open EnglishWords.txt");
while (true) {
 string word;
 getline(infile, word);
 if (infile.fail()) break;
 lexicon.add(word);
}
infile.close();

The Lexicon class in the Stanford libraries
Although the Set class works reasonably well as the underlying representation for a
lexicon, it is not particularly efficient. Because having an efficient representation
for lexicons opens up many exciting possibilities for programming projects, the
Stanford libraries include a Lexicon class, which is essentially a specialized
version of Set optimized for storing sets of words. The entries exported by the
Lexicon class appear in Table 5-9. As you can see, these entries are largely the
same as those for Set.

The library distribution also includes a data file called EnglishWords.dat that
contains a compiled representation of a lexicon containing a reasonably complete
list of English words. Programs that use the English lexicon conventionally
initialize it using the declaration

Lexicon english("EnglishWords.dat");

238 Collections

In word games like Scrabble, it is useful to memorize as many two-letter words
as you can, because knowing the two-letter words makes it easier to attach new
words to the existing words on the board. Given that you have a lexicon containing
English words, you could create such a list by generating all two-letter strings and
then using the lexicon to check which of the resulting combinations are actually
words. The code to do so appears in Figure 5-9.

As you will discover in the following section, it is also possible to solve this
problem by going through the lexicon and printing out the words whose length is
two. Given that there are more than 100,000 English words in the lexicon and only
676 (26 × 26) combinations of two letters, the strategy used in Figure 5-9 is
probably more efficient.

 5.6 Iterating over a collection
The TwoLetterWords program introduced in Figure 5-9 produces a list of the
two-letter words by generating every possible combination of two letters and then
looking up each one to see whether that two-letter string appears in the lexicon of
English words. Another strategy that accomplishes the same result is to go through
every word in the lexicon and display the words whose length is equal to 2. To do
so, all you need is some way of stepping through each word in a Lexicon object,
one word at a time.

T A B L E 5 - 7 Entries exported by the lexicon.h interface

Constructors

Lexicon() Creates an empty lexicon.

Lexicon(file) Initializes a lexicon by reading data from a file.

Methods

size() Returns the number of words in the lexicon.

isEmpty() Returns true if the lexicon is empty.

add(word) Adds a new word to the lexicon, if it is not already present. All words
in a lexicon are stored in lower case.

addWordsFromFile(file) Adds all the words in the named file to the lexicon. The file must either
be a text file, in which case the words are listed on separate lines, or a
compiled data file specifically formatted for the lexicon.

contains(word) Returns true if word is in the lexicon.

containsPrefix(prefix) Returns true if any of the words in the lexicon start with the specified
prefix.

clear() Removes all the words from a lexicon.

 5.6 Iterating over a collection 239

Iterating through the elements is a fundamental operation for any collection
class. Moreover, if the package of collection classes is well designed, clients should
be able to use the same strategy to perform that operation, no matter whether they
are cycling through all elements in a vector or a grid, all keys in a map, or all words
in a lexicon. The Standard Template Library offers a powerful mechanism called an
iterator for doing just that. Unfortunately, understanding these standard iterators
depends on a high level of familiarity with the low-level details of C++, most
notably the concept of pointers. Given that one of the goals of this text is to defer
covering those details until you understand the high-level ideas, introducing
standard iterators has the effect of dragging in a large amount of complexity to
achieve a goal that is in fact quite simple. All you really need is some way to
express the algorithmic idea suggested by the following pseudocode:

For each element in a particular collection {
 Process that element
}

Most modern languages define a syntactic form that expresses precisely that

idea. Unfortunately, the syntax of C++ does not yet include such a facility,
although one has been proposed for a future release. The good news, however, is
that it is possible to use the macro-definition capabilities of the C++ preprocessor to

F I G U R E 5 - 9 Program to generate a list of all the two-letter English words

/*
 * File: TwoLetterWords.cpp
 * ------------------------
 * This program generates a list of the two-letter words.
 */

#include <iostream>
#include "lexicon.h"
using namespace std;

int main() {
 Lexicon english("EnglishWords.dat");
 string word = "xx";
 for (char c0 = 'a'; c0 <= 'z'; c0++) {
 word[0] = c0;
 for (char c1 = 'a'; c1 <= 'z'; c1++) {
 word[1] = c1;
 if (english.contains(word)) {
 cout << word << endl;
 }
 }
 }
 return 0;
}

240 Collections

achieve exactly what you would like to see in the language. Although the
implementation is beyond the scope of this text, the collection classes—both those
in the Standard Template Library and the simplified versions used in this text—
support an extended control pattern called foreach that takes the following form:

foreach (type variable in collection) {
 body of the loop.
}

For example, if you want to iterate through all the words in the English lexicon and
select only those containing two letters, you could write

foreach (string word in english) {
 if (word.length() == 2) {
 cout << word << endl;
 }
}

Iteration order
When you use the foreach pattern, it is sometimes useful to understand the order
in which it processes the individual values. There is no universal rule. Each
collection class defines its own policy about iteration order, usually based on
considerations of efficiency. The classes you’ve already seen make the following
guarantees about the order of values:

• When you iterate through the elements of the Vector class, foreach delivers

the elements in the order of the index position, so that the element in position 0
comes first, followed by the element in position 1, and so on, up to the end of the
vector. The iteration order is therefore the same as that produced by the
traditional for loop pattern:

for (int i = 0; i < vec.size(); i++) {
 code to process vec[i]
}

• When you iterate through the elements of the Grid class, foreach begins by

cycling through the elements of row 0 in order, then the elements of row 1, and
so forth. This iteration strategy for Grid is thus analogous to using the
following for loop:

 5.6 Iterating over a collection 241

for (int row = 0; row < grid.numRows(); row++) {
 for (int col = 0; col < grid.numCols(); col++) {
 code to process grid[row][col]
 }
}

 This order, in which the row subscript appears in the outer loop, is called
row-major order.

• When you iterate through the elements of the Map class, foreach returns the
keys in the natural order for the key type. For example, a Map whose keys are
integers will process the keys in ascending numerical order. A Map whose keys
are strings will process the keys in lexicographic order, which is the order
determined by comparing the underlying ASCII codes.

• When you iterate through the elements of a Set or a Lexicon, foreach always
returns the elements in the natural order for the value type. In the Lexicon
class, foreach returns the words in lower case.

• You cannot use foreach in conjunction with the Stack and Queue classes.
Allowing unrestricted access to these structures would violate the principle that
only one element (the element at the top of a stack or the one at the head of a
queue) is visible at a particular time.

Pig Latin revisited
When you convert English to Pig Latin as described in section 3.2, most words turn
into something that sounds vaguely Latinate but certainly distinct from conventional
English. There are, however, a few words whose Pig Latin equivalents just happen
to be English words. For example, the Pig Latin translation of trash is ashtray, and
the translation for entry is entryway. Such words are not all that common; in the
lexicon stored in EnglishWords.dat, there are only 27 words with that property
out of over 100,000 English words. Given foreach and the translateWord
function from the PigLatin program from Chapter 3, it is easy to write a program
that lists all such words, as shown in Figure 5-10.

Computing word frequencies
Computers have revolutionized many fields of academic inquiry, including some in
which the use of such modern tools might at first seem surprising. Over the last few
decades, computer analysis has become central to resolving questions of disputed
authorship. For example, there are plays from the Elizabethan era that might have
been written by Shakespeare, even though they are not part of the traditional canon.
Conversely, several Shakespearean plays that are attributed to Shakespeare have
parts that don’t sound like his other works and may have in fact been written by
someone else. To resolve such questions, Shakespearean scholars often compute

242 Collections

the frequency of particular words that appear in the text and see whether those
frequencies match what we expect to find based on an analysis of Shakespeare’s
known works. The code for the word frequency program appears in Figure 5-11.
Given the tools you have at your disposal from earlier examples, the code required
to tabulate word frequencies is quite straightforward. The strategy for dividing a
line into words is similar to what you have already seen in the PigLatin program
from Chapter 3. To keep track of the mapping between words and their associated
counts, a Map<string,int> is precisely what you need.

F I G U R E 5 - 1 0 Program to list words that remain English words in Pig Latin

/*
 * File: PigEnglish.cpp
 * --------------------
 * This program finds all English words that remain words when
 * you convert them to Pig Latin, such as "trash" (which becomes
 * "ashtray") and "entry" (which becomes "entryway"). The code
 * ignores words containing no vowels (mostly Welsh-derived
 * words like "cwm"), which don't change form under the Pig Latin
 * rules introduced in Chapter 3.
 */

#include <iostream>
#include <string>
#include <cctype>
#include "lexicon.h"
using namespace std;

/* Function prototypes */

string wordToPigLatin(string word);
int findFirstVowel(string word);
bool isVowel(char ch);

/* Main program */

int main() {
 cout << "This program finds words that remain words"
 << " when translated to Pig Latin." << endl;
 Lexicon english("EnglishWords.dat");
 foreach (string word in english) {
 string pig = wordToPigLatin(word);
 if (pig != word && english.contains(pig)) {
 cout << word << " -> " << pig << endl;
 }
 }
 return 0;
}

/* The code for the helper functions appears in Figure 3-2 */

 5.6 Iterating over a collection 243

Figure 4-11
F I G U R E 5 - 1 1 Program to compute word frequencies

/*
 * File: WordFrequency.cpp
 * -----------------------
 * This program computes the frequency of words in a text file.
 */

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <cctype>
#include "filelib.h"
#include "map.h"
#include "strlib.h"
#include "vector.h"
using namespace std;

/* Function prototypes */

void countWords(istream & stream, Map<string,int> & wordCounts);
void displayWordCounts(Map<string,int> & wordCounts);
void extractWords(string line, Vector<string> & words);

/* Main program */

int main() {
 ifstream infile;
 Map<string,int> wordCounts;
 promptUserForFile(infile, "Input file: ");
 countWords(infile, wordCounts);
 infile.close();
 displayWordCounts(wordCounts);
 return 0;
}

/*
 * Function: countWords
 * Usage: countWords(stream, wordCounts);
 * --------------------------------------
 * Counts the words in the input stream, updating the counts in
 * the wordCounts map for each word in the stream.
 */

void countWords(istream & stream, Map<string,int> & wordCounts) {
 Vector<string> lines, words;
 readEntireFile(stream, lines);
 foreach (string line in lines) {
 extractWords(line, words);
 foreach (string word in words) {
 wordCounts[toLowerCase(word)]++;
 }
 }
}

244 Collections

Figure 4-11
F I G U R E 5 - 1 1 Program to compute word frequencies (continued)

/*
 * Function: displayWordCounts
 * Usage: displayWordCounts(wordCount);
 * ------------------------------------
 * Displays the count associated with each word in the wordCount map.
 */

void displayWordCounts(Map<string,int> & wordCounts) {
 foreach (string word in wordCounts) {
 cout << left << setw(15) << word
 << right << setw(5) << wordCounts[word] << endl;
 }
}

/*
 * Function: extractWords
 * Usage: extractWords(line, words);
 * ---------------------------------
 * This function scans through the characters in the line and stores
 * each individual word (any sequence of alphabetic characters) in the
 * vector of strings passed by reference as the second argument. The
 * caller is responsible for creating the vector.
 */

void extractWords(string line, Vector<string> & words) {
 words.clear();
 int start = -1;
 for (int i = 0; i < line.length(); i++) {
 if (isalpha(line[i])) {
 if (start == -1) start = i;
 } else {
 if (start >= 0) {
 words.add(line.substr(start, i - start));
 start = -1;
 }
 }
 }
 if (start >= 0) words.add(line.substr(start));
}

 Summary 245

Suppose, for example, that you have a text file containing a passage from
Shakespeare, such as the following well-known lines from Act 5 of Macbeth:

If you are trying to determine the relative frequency of words in Shakespeare’s
writing, you need to have a program that counts how many times each word appears
in the data file. Thus, given the file Macbeth.txt, you would like your program to
produce something like the following output:

 Summary
This chapter introduced the C++ classes Vector, Stack, Queue, Map, and Set that
together represent a powerful framework for storing collections. For the moment,
you have looked at these classes only as a client. In subsequent chapters, you will
have a chance to learn more about how they are implemented. Given that you will
be implementing them as you complete the text, the classes presented here have
been simplified to some extent from the vector, stack, queue, map, and set
classes in the Standard Template Library, although they export a very similar
collection of methods. The chapter also introduced two additional classes from the
Stanford libraries—Grid and Lexicon—that make it easier to implement various
interesting applications.

Important points in this chapter include:

• Data structures defined in terms of their behavior rather their representation are

called abstract data types. Abstract data types have several important
advantages over more primitive data structures. These advantages include:

1. Simplicity. The representation of the underlying data representation is
hidden, which means that there are fewer details for the client to understand.

Macbeth.txt

Tomorrow, and tomorrow, and tomorrow
Creeps in this petty pace from day to day

WordFrequency
Input file: Macbeth.txt
and 2
creeps 1
day 2
from 1
in 1
pace 1
petty 1
this 1
to 1
tomorrow 3

246 Collections

2. Flexibility. The implementer is free to change the underlying representation
as long as the methods in the interface continue to behave in the same way.

3. Security. The interface barrier prevents the client from making unexpected
changes in the internal structure.

• Classes that contain other objects as elements of an integral collection are called
collection classes. In C++, container classes are defined using a template or
parameterized type, in which the type name of the element appears in angle
brackets after the name of the container class. For example, the class
Vector<int> signifies a vector containing values of type int.

• The Vector class is an abstract data type that behaves in much the same fashion
as a one-dimensional array but is much more powerful. Unlike arrays, a Vector
can grow dynamically as elements are added and removed. They are also more
secure, because the Vector class checks to make sure that selected elements
exist. Although you can use vectors of vectors to create two-dimensional
structures, it is usually easier to use the Grid class, which is part of the Stanford
libraries.

• The Stack class represents a collection of objects whose behavior is defined by
the property that items are removed from a stack in the opposite order from
which they were added: last in, first out (LIFO). The fundamental operations on
a stack are push, which adds a value to the stack, and pop, which removes and
returns the value most recently pushed.

• The Queue class is similar to the Stack class except for the fact that elements
are removed from a queue in the same order in which they were added: first in,
first out (FIFO). The fundamental operations on a queue are enqueue, which
adds a value to the end of a queue, and dequeue, which removes and returns the
value from the front.

• The Map class makes it possible to associate keys with values in a way that
makes it possible to retrieve those associations efficiently. The fundamental
operations on a map are put, which adds a key/value pair, and get, which
returns the value associated with a particular key.

• The Set class represents a collection in which the elements are unordered and in
which each value appears only once, as with sets in mathematics. The
fundamental operations on a set include add, which stores a new element in the
set and contains, which checks to see whether an element is in the set.

• With the exception of Stack and Queue, all collection classes support the
foreach pattern, which makes it easy to cycle through the elements of the
collection.

 Review questions 247

 Review questions
1. True or false: An abstract data type is one defined in terms of its behavior

rather than its representation.

2. What three advantages does this chapter cite for separating the behavior of a

class from its underlying implementation?

3. What is the STL?

4. If you want to use the Vector class in a program, what #include line do you

need to add to the beginning of your code?

5. List at least three advantages of the Vector class over the more primitive

array mechanism available in C++.

6. What is meant by the term bounds-checking?

7. What is a parameterized type?

8. What type name would you use to store a vector of Boolean values?

9. True or false: The default constructor for the Vector class creates a vector

with ten elements, although you can make it longer later.

10. How would you initialize a Vector<int> with 20 elements, all equal to 0?

11. What method do you call to determine the number of elements in a Vector?

12. If a Vector object has N elements, what is the legal range of values for the

first argument to insertAt? What about for the argument to removeAt?

13. What feature of the Vector class makes it possible to avoid explicit use of the

get and set methods?

14. Why is it important to pass vectors and other collection object by reference?

15. What declaration would you use to initialize a variable called chessboard to

an 8×8 grid, each of whose elements is a character?

16. Given the chessboard variable from the preceding exercise, how would you

assign the character 'R' (which stands for a white rook in standard chess
notation) to the squares in the lower left and lower right corners of the board?

17. What do the acronyms LIFO and FIFO stand for? How do these terms apply

248 Collections

to stacks and queues?

18. What are the names of the two fundamental operations for a stack?

19. What are the names for the corresponding operations for a queue?

20. What does the peek operation do in each of the Stack and Queue classes?

21. Describe in your own words what is meant by the term discrete time in the

context of a simulation program.

22. What are the two type parameters used with the Map class.

23. What happens if you call get for a key that doesn’t exist in a map?

24. What are the syntactic shorthand forms for get and put that allow you to treat

a map as an associative array?

25. Why do the Stanford libraries include a separate Lexicon class even though it

is easy to implement the fundamental operations of a lexicon using the Set
class?

26. What are the two kinds of data files supported by the constructor for the

Lexicon class?

27. What is the general form of the foreach pattern?

28. What reason does the chapter offer for disallowing the use of foreach with

the Stack and Queue classes?

29. Describe the order in which foreach processes elements for each of the

collection classes introduced in this chapter.

 Exercises
1. In statistics, a collection of data values is often referred to as a distribution.

One of the primary goals of statistical analysis is to find ways to compress the
complete set of data into summary statistics that express properties of the
distribution as a whole. The most common statistical measure is the mean,
which is simply the traditional average. For the distribution x1, x2, x3, . . . , xn,
the mean is usually represented by the symbol .

Write a function

double mean(Vector<double> & data);

that returns the mean of the data in the vector.

x

 Exercises 249

2. Another common statistical measure is the standard deviation, which provides

an indication of how much the individual values in the distribution differ from
the mean. To calculate the standard deviation of a distribution whose elements
are x1, x2, . . . , xn you need to perform the following steps:

a. Calculate the mean of the distribution as in exercise 1.

b. Go through the individual data items in the distribution and calculate the
square of the difference between each data value and the mean. Add all
these values to a running total.

c. Take the total from step (b) and divide it by the number of data items

d. Take the square root of the result, which represents the standard deviation.

In mathematical form, the standard deviation (σ) is expressed as follows, at
least if you are computing the standard deviation of a complete distribution as
opposed to a sample:

σ =

The Greek letter sigma (Σ) indicates a summation of the quantity that follows,
which in this case is the square of the difference between the mean and each
individual data point.

Write a function

double stddev(Vector<double> & data);

that returns the standard deviation of the data distribution.

3. Write the overloaded functions

void readVector(istream & is, Vector<int> & vec);
void readVector(istream & is, Vector<double> & vec);
void readVector(istream & is, Vector<string> & vec);

each of which reads lines from the input stream specified by is into the vector
vec. In the input stream, each element of the vector appears on a line of its
own. The function should read elements until it encounters a blank line or the
end of the file.

To illustrate the operation of this function, suppose that you have the data

file

(x – xi)
2Σ

i = 1

n

n

250 Collections

and that you have opened infile as an ifstream on that file. In addition,
suppose that you have declared the variable roots as follows:

Vector<double> roots;

The first call to readVector(infile, roots) should initialize roots so
that it contains the four elements shown at the beginning of the file. The
second call should change the value of roots so that it contains the eight
elements shown at the end of the file. Calling readVector a third time
should set roots to an empty vector.

4. A histogram is a graphical way of displaying data by dividing the data into

separate ranges and then indicating how many data values fall into each range.
For example, given the set of exam scores

100, 95, 47, 88, 86, 92, 75, 89, 81, 70, 55, 80

a traditional histogram would have the following form:

The asterisks in the histogram indicate one score in the 40s, one score in the
50s, five scores in the 80s, and so forth.

When you generate histograms using a computer, however, it is much

easier to display them sideways on the page, as in this sample run:

SquareAndCubeRoots.txt

1.0000
1.4142
1.7321
2.0000

1.0000
1.2599
1.4422
1.5874
1.7100
1.8171
1.9129
2.0000

00s 10s 20s 30s 40s
*

50s
*

60s 70s
*
*

80s
*
*
*
*
*

90s
*
*

100
*

 Exercises 251

Write a program that reads in a vector of integers from a data file and then
displays a histogram of those numbers, divided into the ranges 0–9, 10–19,
20–29, and so forth, up to the range containing only the value 100. Your
program should generate output that looks as much like the sample run as
possible.

5. Extend the flexibility of the previous exercise by defining a hist.h interface

that gives clients more control over the format of the histogram. At a
minimum, your interface should allow clients to specify the minimum and
maximum values along with the size of each histogram range, but you should
feel free to provide other capabilities as well. Use your imagination!

6. In the third century B.C.E., the Greek astronomer Eratosthenes developed an

algorithm for finding all the prime numbers up to some upper limit N. To
apply the algorithm, you start by writing down a list of the integers between 2
and N. For example, if N were 20, you would begin by writing the following
list:

You then circle the first number in the list, indicating that you have found a
prime. Whenever you mark a number as a prime, you go through the rest of
the list and cross off every multiple of that number, since none of those
multiples can itself be prime. Thus, after executing the first cycle of the
algorithm, you will have circled the number 2 and crossed off every multiple
of 2, as follows:

To complete the algorithm, you simply repeat the process by circling the
first number in the list that is neither crossed off nor circled, and then crossing
off its multiples. In this example, you would circle 3 as a prime and cross off
all multiples of 3 in the rest of the list, which results in the following state:

Histogram
00s:

10s:

20s:

30s:

40s: *

50s: *

60s:

70s: **

80s: *****

90s: **

100: *

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

252 Collections

Eventually, every number in the list will either be circled or crossed out, as
shown in this diagram:

The circled numbers are the primes; the crossed-out numbers are composites.
This algorithm is called the sieve of Eratosthenes.

Write a program that uses the sieve of Eratosthenes to generate a list of the
primes between 2 and 1000.

7. One of the problems in using the Grid class is that it isn’t as easy to set up a

particular set of initial values as it is with a vector, where you can add the
elements you want with the += operator. One way to streamline the process of
initializing a grid is to define a function

void fillGrid(Grid<int> & grid, Vector<int> & values);

that fills the elements of the grid from the values in the vector. For example,
the code

Grid<int> matrix(3, 3);
Vector<int> values;
values += 1, 2, 3;
values += 4, 5, 6;
values += 7, 8, 9;
fillGrid(matrix, values);

initializes the variable matrix to be a 3×3 grid containing the values

8. A magic square is a two-dimensional grid of integers in which the rows,

columns, and diagonals all add up to the same value. One of the most famous
magic squares appears in the 1514 engraving “Melencolia I” by Albrecht
Dürer shown in Figure 5-12, in which a 4×4 magic square appears in the
upper right, just under the bell. In Dürer’s square, which can be read more
easily in the magnified inset shown at the right of the figure, all four rows, all

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3

4 5 6

7 8 9

 Exercises 253

four columns, and both diagonals add up to 34. A more familiar example is
the following 3×3 magic square in which each of the rows, columns, and
diagonals add up to 15, as shown:

Implement a function

8 1 6
3 5 7
4 9 2 = 15

= 15

= 15 8 1 6
3 5 7
4 9 2

=
15

=
15

=
15

8 1 6
3 5 7
4 9 2

= 1
5

= 15

F I G U R E 5 - 1 2 Magic square in Albrecht Durer’s Melencolia I (1514)

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

254 Collections

bool isMagicSquare(Grid<int> & square);

that tests to see whether the grid contains a magic square. Your program
should work for square grids of any size. If you call isMagicSquare with a
grid in which the number of rows and columns are different, it should simply
return false.

9. In the last several years, a new logic puzzle called Sudoku has become quite

popular throughout the world. In Sudoku, you start with a 9×9 grid of integers
in which some of the cells have been filled in with digits between 1 and 9.
Your job in the puzzle is to fill in each of the empty spaces with a digit
between 1 and 9 so that each digit appears exactly once in each row, each
column, and each of the smaller 3×3 squares. Each Sudoku puzzle is carefully
constructed so that there is only one solution. For example, Figure 5-13 shows
a typical Sudoku puzzle on the left and its unique solution on the right.

Although you won’t discover the algorithmic strategies you need to solve
Sudoku puzzles until later in this book, you can easily write a method that
checks to see whether a proposed solution follows the Sudoku rules against
duplicating values in a row, column, or outlined 3×3 square. Write a function

bool checkSudokuSolution(Grid<int> & puzzle);

that performs this check and returns true if the puzzle is a valid solution.
Your program should check to make sure that puzzle contains a 9×9 grid of
integers and report an error if this is not the case.

F I G U R E 5 - 1 3 Typical Sudoku puzzle and its solution

2 4 5 8
4 1 8 2

6 7 3 9
2 3 9 6

9 6 7 1
1 7 5 3
9 6 8 1

2 9 5 6
8 3 6 9

3 9 2 4 6 5 8 1 7
7 4 1 8 9 3 6 2 5
6 8 5 2 7 1 4 3 9
2 5 4 1 3 8 7 9 6
8 3 9 6 2 7 1 5 4
1 7 6 9 5 4 2 8 3
9 6 7 5 8 2 3 4 1
4 2 3 7 1 9 5 6 8
5 1 8 3 4 6 9 7 2

 Exercises 255

10. In the game of Minesweeper, a player searches for hidden mines on a
rectangular grid that might—for a very small board—look like this:

One way to represent that grid in C++ is to use a grid of Boolean values
marking mine locations, where true indicates the location of a mine. In
Boolean form, this sample grid therefore looks like this:

Given such a grid of mine locations, write a function

void fixCounts(Grid<bool> & mines, Grid<int> & counts);

that creates a grid of integers storing the number of mines in each neighborhood.
The neighborhood of a location includes the location itself and the eight adjacent
locations, but only if they are inside the boundaries of the grid. The reference
parameter counts is used to store the result. Your job in this exercise is to make
sure that it has the same size as the mines grid and then to assign to each element
an integer between 0 and 9. For example, if mineLocations contains the Boolean
grid shown earlier, the code

Grid<int> mineCounts;
fixCounts(mineLocations, mineCounts);

should initialize mineCounts as follows:

T F F F F T

F F F F F T

T T F T F T

T F F F F F

F F T F F F

F F F F F F

256 Collections

11. The resize method in the Grid class resets the dimensions of the grid but

also initializes every element of the grid to its default value. Write a function

void reshape(Grid<int> & grid, int nRows, int nCols);

that resizes the grid but fills in the data from the original grid by copying
elements in the standard row-major order (left-to-right/top-to-bottom). For
example, if myGrid initially contains the values

calling the function

reshape(myGrid, 4, 3)

should change the dimensions and contents of myGrid as follows:

If the new grid does not include enough space for all of the original values, the
values at the bottom of the grid are simply dropped. For example, if you call

reshape(myGrid, 2, 5)

there is no room for the last two elements, so the new grid will look like this:

1 1 0 0 2 2

3 3 2 1 4 3

3 3 2 1 3 2

3 4 3 2 2 1

1 2 1 1 0 0

0 1 1 1 0 0

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3

4 5 6

7 8 9

10 11 12

1 2 3 4 5

6 7 8 9 10

 Exercises 257

Conversely, if there are not enough elements in the original grid to fill the
available space, the entries at the end should simply retain their default values.

12. Write a program that uses a stack to reverse a sequence of integers read from

the console one number per line, as shown in the following sample run:

13. And the first one now

Will later be last
For the times they are a-changin’.

—Bob Dylan, “The Times They Are a-Changin’,” 1963

Following the inspiration from Bob Dylan’s song (which is itself inspired by
Matthew 19:30), write a function

void reverseQueue(Queue<string> & queue);

that reverses the elements in the queue. Remember that you have no access to
the internal representation of the queue and must therefore come up with an
algorithm—presumably involving other structures—that accomplishes the
task.

14. Write a program that checks whether the bracketing operators (parentheses,

brackets, and curly braces) in a string are properly matched. As an example of
proper matching, consider the string

{ s = 2 * (a[2] + 3); x = (1 + (2)); }

If you go through the string carefully, you discover that all the bracketing
operators are correctly nested, with each open parenthesis matched by a close
parenthesis, each open bracket matched by a close bracket, and so on. On the
other hand, the following strings are all unbalanced for the reasons indicated:

(([]) The line is missing a close parenthesis.
)(The close parenthesis comes before the open parenthesis.
{(}) The bracketing operators are improperly nested.

ReverseList
Enter a list of integers, ending with 0:
? 10
? 20
? 30
? 40
? 0
Those integers in reverse order are:
 40
 30
 20
 10

258 Collections

15. The figures in this book are created using PostScript®, a powerful graphics
language developed by the Adobe Corporation in the early 1980s. PostScript
programs store their data on a stack. Many of the operators available in the
PostScript language have the effect of manipulating the stack in some way.
You can, for example, invoke the pop operator, which pops the top element
off the stack, or the exch operator, which swaps the top two elements.

One of the most interesting (and surprisingly useful) PostScript operators is
the roll operator, which takes two arguments: n and k. The effect of
applying roll(n, k) is to rotate the top n elements of a stack by k positions,
where the general direction of the rotation is toward the top of the stack. More
specifically, roll(n, k) has the effect of removing the top n elements,
cycling the top element to the last position k times, and then replacing the
reordered elements back on the stack. Figure 5-14 shows before and after
pictures for three different examples of roll.

Write a function

void roll(Stack<char> & stack, int n, int k)

that implements the roll(n, k) operation on the specified stack. Your
implementation should check that n and k are both nonnegative and that n is
not larger than the stack size; if either of these conditions is violated, your
implementation should call error with the message

roll: argument out of range

Note, however, that k can be larger than n, in which case the roll operation
continues through more than a complete cycle. This case is illustrated in the
final example in Figure 5-14, in which the top two elements on the stack are
rolled four times, leaving the stack exactly as it started.

F I G U R E 5 - 1 4 Examples of the roll function for stacks

before

A

B

C

D

after

D

A

B

C

roll(4, 1)

before

A

B

C

D

after

A

C

D

B

roll(3, 2)

before

A

B

C

D

after

A

B

C

D

roll(2, 4)

 Exercises 259

16. The checkout-line simulation in Figure 5-5 can be extended to investigate
important practical questions about how waiting lines behave. As a first step,
rewrite the simulation so that there are several independent queues, as is
usually the case in supermarkets. A customer arriving at the checkout area
finds the shortest checkout line and enters that queue. Your revised simulation
should calculate the same results as the simulation in the chapter.

17. As a second extension to the checkout-line simulation, change the program

from the previous exercise so that there is a single waiting line served by
multiple cashiers—a practice that has become more common in recent years.
In each cycle of the simulation, any cashier that becomes idle serves the next
customer in the queue. If you compare the data produced by this exercise and
the preceding one, what can you say about the relative advantages of these two
strategies?

18. Write a program to simulate the following experiment, which was included in

the 1957 Disney film Our Friend the Atom, to illustrate the chain reactions
involved in nuclear fission. The setting for the experiment is a large cubical
box, the bottom of which is completely covered with 625 mousetraps arranged
to form a square grid 25 mousetraps on a side. Each of the mousetraps is
initially loaded with two ping-pong balls. At the beginning of the simulation,
an additional ping-pong ball is released from the top of the box and falls on
one of the mousetraps. That mousetrap springs and shoots its two ping-pong
balls into the air. The ping-pong balls bounce around the sides of the box and
eventually land on the floor, where they are likely to set off more mousetraps.

In writing this simulation, you should make the following simplifying
assumptions:

• Every ping-pong ball that falls always lands on a mousetrap, chosen
randomly by selecting a random row and column in the grid. If the trap is
loaded, its balls are released into the air. If the trap has already been
sprung, having a ball fall on it has no effect.

• Once a ball falls on a mousetrap—whether or not the trap is sprung—that
ball stops and takes no further role in the simulation.

• Balls launched from a mousetrap bounce around the room and land again
after a random number of simulation cycles have gone by. That random
interval is chosen independently for each ball and is always between one
and four cycles.

Your simulation should run until there are no balls in the air. At that point,
your program should report how many time units have elapsed since the
beginning, what percentage of the traps have been sprung, and the maximum
number of balls in the air at any time in the simulation.

260 Collections

19. Telephone numbers in the United States and Canada are organized into various
three-digit area codes. A single state or province will often have many area
codes, but a single area code will not cross a state boundary. This rule makes
it possible to list the geographical locations of each area code in a data file.
For this problem, assume that you have access to the file AreaCodes.txt,
which lists all the area codes paired with their locations as illustrated by the
first ten lines of that file:

Using the AirportCodes program as a model, write the code necessary to
read this file into a Map<int,string>, where the key is the area code and the
value is the location. Once you’ve read in the data, write a main program that
repeatedly asks the user for an area code and then looks up the corresponding
location, as illustrated in the following sample run:

As the prompt suggests, however, your program should also allow users to
enter the name of a state or province and have the program list all the area
codes that serve that area, as illustrated by the following sample run:

AreaCodes.txt

201-New Jersey
202-District of Columbia
203-Connecticut
204-Manitoba
205-Alabama
206-Washington
207-Maine
208-Idaho
209-California
210-Texas

FindAreaCode
Enter area code or state name: 650

California

Enter area code or state name: 202

District of Columbia

Enter area code or state name: 778

British Columbia

FindAreaCode
Enter area code or state name: Oregon
458
503
541
971
Enter area code or state name: Manitoba
204

 Exercises 261

20. When you wrote the FindAreaCode program for the previous exercise, it is
likely that you generated the list of area codes for a state by looping through
the entire map and printing out any area codes that mapped to that state.
Although this strategy is fine for small maps like the area code example,
efficiency might become an issue in working with much larger collections of
data. This strategy also feels uncomfortably asymmetric. When you want to
translate an area code to a state name, you ask the map and it gives you the
answer immediately; translating in the opposite direction requires a lot more
work.

What you would like to do is invert the map so that you could perform

lookup operations in either direction. You can’t, however, declare the inverted
map as a Map<string,int>, because there is often more than one area code
associated with a state. An int can’t hold all the necessary information. A
better strategy is to make the inverted map a Map< string,Vector<int> >
that maps each state name to a vector of the area codes that serve that state.
Rewrite the FindAreaCode program so that it creates an inverted map after
reading in the data file and then uses that map to list the area codes for a state.

21. In May of 1844, Samuel F. B. Morse sent the message “What hath God

wrought!” by telegraph from Washington to Baltimore, heralding the
beginning of the age of electronic communication. To make it possible to
communicate information using only the presence or absence of a single tone,
Morse designed a coding system in which letters and other symbols are
represented as coded sequences of short and long tones, traditionally called
dots and dashes. In Morse code, the 26 letters of the alphabet are represented
by the codes shown in Figure 5-15.

262 Collections

Write a program that reads in lines from the user and translates each line
either to or from Morse code depending on the first character of the line:

• If the line starts with a letter, you want to translate it to Morse code. Any
characters other than the 26 letters should simply be ignored.

• If the line starts with a period (dot) or a hyphen (dash), it should be read as
a series of Morse code characters that you need to translate back to letters.
Each sequence of dots and dashes is separated by spaces, but any other
characters should be ignored. Because there is no encoding for the space
between words, the characters of the translated message will be run
together when your program translates in this direction.

The program should end when the user enters a blank line. A sample run of
this program (taken from the messages between the Titanic and the Carpathia
in 1912) might look like this:

22. Section 3.6 defines the function isPalindrome that checks whether a word

reads identically forward and backward. Use that function together with the
English lexicon to print out a list of all words that are palindromes.

23. In Scrabble, knowing the two-letter word list is important because those short

words make it easy to “hook” a new word into tiles already on the board.
Another list that Scrabble experts memorize is the list of three-letter words
that can be formed by adding a letter to the front or back of a two-letter word.
Write a program that generates this list.

24. One of the most important strategic principles in Scrabble is to conserve your

S tiles, because the rules for English plurals mean that many words take an
S-hook at the end. Some words, of course, allow an S tile to be added at the
beginning, but it turns out that there are 680 words—including, for example,
both the words cold and hot—that allow S-hooks on either end. Write a
program that uses the English lexicon to make a list of all such words.

MorseCode
Morse code translator

> SOS TITANIC

... --- ... - .. - .- -. .. -.-.

> WE ARE SINKING FAST

.-- . .- .-. -. -.- .. -. --. ..-. .- ... -

>- -.. .. -. --. ..-. --- .-. -.-- --- ..-

HEADINGFORYOU

>

Chapter 6
Designing Classes

You don’t understand. I coulda had class. . . .
— Marlon Brando’s character in

On the Waterfront, 1954

264 Designing Classes

Although you have been using classes extensively throughout this book, you have
not yet had the chance to define classes of your own. The purpose of this chapter is
to fill that gap by giving you the tools you need to implement new classes. This
chapter, however, presents only the beginning of the story. In later chapters, you
will have a chance to learn other important aspects of class design, including
memory management and inheritance.

 6.1 Representing points
One of the useful properties of classes—but by no means the only one—is that they
make it possible to combine several related pieces of information into a composite
value that can be manipulated as a unit. As a simple example, suppose that you are
working with coordinates in a x-y grid in which the coordinates are always integers.
Although it is possible to work with the x and y values independently, it is more
convenient to define an abstract data type that combines an x and a y value together.
In geometry, this unified pair of coordinate values is called a point, and it therefore
makes sense to use the name Point for the corresponding type. C++ offers several
strategies for defining a Point type, ranging in sophistication from the simple
structure types that have always been available in the C family of languages to
definitions that use a much more modern object-oriented style. The individual
sections that follow explore these strategies, beginning with the structure-based
model and then moving on to the class-based form.

Defining Point as a structure type
In your past experience with programming, you have almost certainly encountered
types that are defined by combining values of simpler types that already exist. Such
types are called records or structures, where the first term is used more broadly in
the computer science community and the second is more common among C++
programmers. Given that C++ supports the facilities available in C, you can define
the Point type as a structure type using the following C-style structure definition:

struct Point {
 int x;
 int y;
};

This code defines the type Point as a traditional structure with two components. In
a structure, components are called fields or members. In this example, the Point
structure contains a field named x and a field named y, both of type int.

When you work with structures or classes in C++, it is important to keep in mind
that the definition introduces a new type and does not in itself declare any variables.
Once you have the definition, you can then use the type name to declare variables,

 6.1 Representing points 265

just as you would with any other type. For example, if you include the local
variable declaration

Point p;

in a function, the compiler will reserve space in the stack frame for a variable of
type Point named p, just as the declaration

int n;

reserves space for a variable of type int named n. The only difference is that the
Point variable p includes internal fields that hold the values of its x and y
components. If you were to draw a box diagram of the variable p, it would look
something like this:

The variable p holds a compound value, which contains the internal fields x and y.

Given a structure, you can select the individual fields using the dot operator,
which is written in the form

var.name

where var is the variable containing the structured value and name specifies the
desired field. For example, you can use the expressions p.x and p.y to select the
individual coordinate value of the Point structure stored in the variable p.
Selection expressions are assignable, so you can initialize the components of p to
represent the point (2, 3) using the following code:

p.x = 2;
p.y = 3;

which leads to the state shown in the following diagram:

The fundamental characteristic of a structure is that it is possible to view it both
as a collection of individual fields and as a single value. At the lower levels of the
implementation, the values stored in the individual fields are likely to be important.
At higher levels of detail, it makes sense to focus on the value as an integral unit.

x y

p

x

2

y

3

p

266 Designing Classes

C++ makes it easier to maintain a high-level perspective by defining several
important operations that work with the structure as a whole. Given a Point value,
for example, you can assign that value to a variable, pass it as a parameter to a
function, or return it as a result. Any client can select the x and y fields if you need
to look at the components individually, but it is often sufficient to work with the
value as a whole. These design decisions mean that you can pass a structure up and
down through the various levels of an application. At all but the lowest levels, the
underlying details of that structure are unimportant.

Defining Point as a class
Although structure types are part of the history of C++ and the languages that came
before it, they have largely been supplanted by classes, which offer greater power
and flexibility. The Point structure from the preceding section is identical to the
following class definition:

class Point {
public:
 int x;
 int y;
};

As you can see from this example, the fields of a class—which are also called

instance variables when they occur in the context of a class—are declared using the
same syntax used for fields in a structure. The only syntactic difference is that
fields within a class are separated into public and private sections to control what
parts of the program have access to those fields. The keyword public introduces
the public section containing fields that are available to anyone who uses the
defining class. A class definition, however, can also include a private section
introduced by the keyword private. Fields that are declared in the private section
are visible only to the defining class and not to any of its clients. In C++ today,
structures are implemented using classes and behave in exactly the same way except
for the fact that entries are public by default.

As the definition of the Point class now stands, the x and y fields are included
as part of the public section, which makes them visible to clients. You can select a
public field in an object using the dot operator. For example, if you have a variable
pt containing an object that is an instance of the Point class, you can select its x
field by writing

pt.x

just as if it were still the Point structure from the preceding section.

 6.1 Representing points 267

Declaring public instance variables, however, is discouraged in modern
object-oriented programming. Today, the common practice is to make all instance
variables private, which means that clients have no direct access to the internal
variables. Clients instead use methods exported by the class to obtain access to any
information the class contains. Keeping implementation details away from the
client is likely to foster simplicity, flexibility, and security, as described in the
introduction to Chapter 5.

Making the instance variables private is easy enough. All you have to do is
change the label that introduces that section of the class from public to private,
as follows:

class Point {
private:
 int x;
 int y;
};

The problem with this definition is that clients no longer have any way to reach the
information stored within a Point object, which makes it unusable in its current
form. At a minimum, clients need some way to create Point objects and to retrieve
the individual x and y coordinates from an existing Point.

As you know from your experience with collection classes in Chapter 5, creating
objects is the responsibility of a constructor, which always has the same name as
the class. Classes often define more than one version of the constructor to take
account of different initialization patterns. In particular, most classes define a
constructor that takes no arguments, which is called the default constructor. The
default constructor is used to initialize an object declared without specifying a
parameter list. In the case of the Point class, it is useful to define a version of the
constructor that takes a pair of coordinate values.

 In computer science, methods that retrieve the values of instance variables are
formally called accessors, but are more often known as getters. By convention, the
name of a getter method begins with the prefix get followed by the name of the
field after capitalizing the first letter in its name. The getters for the Point class are
therefore getX and getY.

In keeping with the general strategy used in this book of showing examples
before explaining each new concept in detail, Figure 6-1 offers a minimal definition
of a Point class that defines two constructors, the methods getX and getY, and a
toString method in its public section. I have omitted the comments that would
ordinarily accompany the class and its methods to provide room for the annotations,
which illustrate the structure of the class definition.

268 Designing Classes

For the most part, the code in Figure 6-1 should be easy to understand. The only
subtlety that might cause confusion shows up in the names of the parameters to the
second form of the constructor. Logically, the constructor takes an x and a y
coordinate, and it is therefore reasonable to expect that the parameter names would
be x and y instead of xc and yc (where I’ve included the c to suggest the word
coordinate). Using the names x and y as parameters to the constructor would result

F I G U R E 6 - 1 A simple version of the Point class

/*
 * Class: Point
 * ------------
 * This class represents an x-y coordinate point on a two-dimensional
 * integer grid.
 */

#include <string>
#include "strlib.h"
using namespace std;

class Point {

public:

 Point() {
 x = 0;
 y = 0;
 }

 Point(int xc, int yc) {
 x = xc;
 y = yc;
 }

 int getX() {
 return x;
 }

 int getY() {
 return y;
 }

 string toString() {
 return "(" + integerToString(x) + ","
 + integerToString(y) + ")";
 }

private:
 int x;
 int y;

};

Constructors

Getter methods

Instance variables

Public section

Private section

 6.1 Representing points 269

in confusion as to whether a reference to the variable x was intended to refer to the
parameter or to the instance variable with that name.

Having one variable hide an identically named variable in some larger scope is
called shadowing. In Chapter 11, you’ll learn a simple technique to resolve this
ambiguity; unfortunately, that technique depends on concepts that are as yet beyond
your knowledge. For the moment, therefore, the examples in this text avoid the
problem of shadowing altogether by choosing different names for parameters and
instance variables.

The other question you may have after reading the code in Figure 6-1 is why
certain methods aren’t part of the class. Although the getter methods make it
possible to get information out of a Point object, the current definition provides no
means of changing the values of these fields. One approach that is useful in some
situations is to export methods that set the values of specific instance variables.
Such methods are called mutators or, more informally, setters. If the Point class
were to export a setX and a setY method that allowed the client to change the
values of these fields, you could easily replace any application that previously used
the old structure type with a version that relies entirely on the new Point class. All
you would need to do is replace every assignment of the form

pt.x = value;

with a call to

pt.setX(value);

Similarly, every reference to pt.y that isn’t on the left side of an assignment
statement would need to be rewritten as pt.getY().

It is, however, a bit unsatisfying to think about adding setter methods to a class
so soon after deciding that it was important to make its instance variables private.
After all, part of the reason for making instance variables private is to ensure that
clients don’t have unrestricted access to them. Having every instance variable in a
class come with a public setter method circumvents those restrictions and eliminates
the advantages one might have obtained by making those variables private in the
first place. In general, it is considerably safer to allow clients to read the values of
the instance variables than it is to have clients change those values. As a result,
setter methods are far less common than getters in object-oriented design.

Many programmers, in fact, take the recommendation against allowing change to
an even higher level by making it impossible to change the values of any instance
variables after an object has been created. Classes designed in this way are said to
be immutable. The Point class is immutable, as that concept tends to be defined in

270 Designing Classes

practice in C++. Although it is still possible to change the contents of a Point
object by assigning another Point to it, there is no way to change the individual
fields in a point independently.

Separating the interface from the implementation
The Point class as it appears in Figure 6-1 is useful only if you plan to use that
class entirely within the context of a single source file. It is generally more useful
to export class definitions in a library, thereby making those definitions available to
a broader set of applications. In this case, what you would like to do is create a
point.h file that serves as the interface for the class and a separate point.cpp
file that includes the corresponding implementation.

As you know from Chapter 2, an interface typically contains only the prototypes
for its functions and not the full implementation. The same is true for the methods
in a class. The class definition in the interface includes only the method prototypes,
deferring the code for those methods to the implementation. The header files
therefore look similar to header files for the other libraries you have seen, except for
the fact that the prototypes appear inside a class definition. The structure of the
implementation file, however, is somewhat different.

In C++, when you separate the interface for a class from its implementation, the
class definition itself exists only in the .h file. The corresponding code appears in
the .cpp file as independent method definitions that are not nested within a class
definition in the way that the prototypes are. For this reason, the method definitions
need to specify the class to which they belong in a different way. In C++, this
identification is accomplished by adding the class name as a qualifier before the
method name, separating the two with a double colon. Thus, the fully qualified
name of the getX method in the Point class is Point::getX.

Once that minor syntactic wrinkle is out of the way, the implementations are
straightforward. Figure 6-2 provides a complete interface for the Point class, and
the corresponding implementation appears in Figure 6-3.

Hiding the underlying representation
One of the primary reasons for separating an interface from its implementation is
that doing so hides complexity from the client. A well-designed interface contains
only the information that is necessary to use the entries it exports. The details of
how those entries work should be hidden inside the interface. The point.h
interface in Figure 6-2 approaches this goal by specifying only the prototypes for
the methods; the corresponding implementations are hidden away in point.cpp.

 6.1 Representing points 271

point.h
F I G U R E 6 - 2 Preliminary interface for the Point class

/*
 * File: point.h
 * -------------
 * This interface exports the Point class, which represents a point on
 * a two-dimensional integer grid.
 */

#ifndef _point_h
#define _point_h

#include <string>

class Point {

public:

/*
 * Constructor: Point
 * Usage: Point origin;
 * Point pt(xc, yc);
 * ------------------------
 * Creates a Point object. The default constructor sets the coordinates
 * to 0; the second form sets the coordinates to xc and yc.
 */

 Point();
 Point(int xc, int yc);

/*
 * Methods: getX, getY
 * Usage: int x = pt.getX();
 * int y = pt.getY();
 * -------------------------
 * These methods returns the x and y coordinates of the point.
 */

 int getX();
 int getY();

/*
 * Method: toString
 * Usage: string str = pt.toString();
 * ----------------------------------
 * Returns a string representation of the Point in the form "(x,y)".
 */

 std::string toString();

private:

 int x; /* The x-coordinate */
 int y; /* The y-coordinate */

};

#endif

272 Designing Classes

point.cpp
F I G U R E 6 - 3 Preliminary implementation of the Point class

/*
 * File: point.cpp
 * ---------------
 * This file implements the point.h interface.
 */

#include <string>
#include "point.h"
#include "strlib.h"
using namespace std;

/*
 * Implementation notes: Constructors
 * ----------------------------------
 * The constructors initialize the instance variables x and y. In the
 * second form of the constructor, the parameter names are xc and yc
 * to avoid the problem of shadowing the instance variables.
 */

Point::Point() {
 x = 0;
 y = 0;
}

Point::Point(int xc, int yc) {
 x = xc;
 y = yc;
}

/*
 * Implementation notes: Getters
 * -----------------------------
 * The getters return the value of the corresponding instance variable.
 * No setters are provided to ensure that Point objects are immutable.
 */

int Point::getX() {
 return x;
}

int Point::getY() {
 return y;
}

/*
 * Implementation notes: toString
 * ------------------------------
 * The implementation of toString uses the integerToString function
 * from the strlib.h interface.
 */

string Point::toString() {
 return "(" + integerToString(x) + "," + integerToString(y) + ")";
}

 6.2 Operator overloading 273

So far, so good. Unfortunately, the point.h file still specifies certain details
that are of no interest to the client. The instance variables x and y—which are
really part of the implementation—are right there in the interface for everyone to
see, even though clients have no direct access to these variables. Even though those
declarations appear in a section marked as private, it would be better if the client
didn’t have to see those details at all.

Unfortunately, the rules of C++ make it tricky to hide the declarations of the
instance variables from the client. Syntactically, both the public and private
sections of the class must be enclosed within the class body. Given the fact that the
compiler has to be able to see the definition of the entire class, there is no way to
prevent a determined client from seeing the contents of the private section. Even so,
it is still useful to avoid sticking all that information in the client’s face.

To accomplish this goal, the interface files in this book replace the private
section with an #include line that reads that section from another file. In the case
of point.h, for example, the finished version of the interface replaces the private
section—including the private keyword—with the line

#include "pointpriv.h"

This line instructs the compiler to read in the contents of the file pointpriv.h at
that point in the compilation. That file contains exactly the same code that used to
appear in the point.h interface, but in some sense moves it out of sight. Anyone
reading the interface could go off and look at the contents of pointpriv.h, but in
practice no one bothers. The information you need as a client is in the public
section, and you have no interest in being loaded down with irrelevant details.

 6.2 Operator overloading
As you know from your experience with the library classes in several of the earlier
chapters, C++ makes it possible to extend the standard operators so that they apply
to new types. This technique is called operator overloading. For example, the
string class overloads the + operator so that it behaves differently when applied to
strings. When the C++ compiler sees the + operator, it decides how to evaluate it by
looking at the types of the operand, just as it uses the argument signature to choose
among various overloaded versions of a function. If the compiler sees + applied to
two integers, it generates the instructions necessary to add those values to produce
an integer result. If the operands are strings, the compiler instead generates a call to
the method provided by the string class that implements concatenation.

The ability to overload operators is a powerful feature of C++ that can make
programs much easier to read, but only if the interpretation of each operator remains
consistent across the types to which it is applied. The classes that overload the +

274 Designing Classes

operator, for example, use it for operations that are conceptually similar to addition,
like concatenating strings. If you write an expression like

s1 + s2

for two variables of type string, it is easy to think about this operation as one of
adding the strings together. If, however, you redefine an operator in such a way that
readers have no clue what it means, operator overloading can make programs
essentially unreadable. It is therefore important to exercise restraint by using this
feature only in circumstances where it enhances program readability.

The sections that follow illustrate how you can overload operators in your own
type definitions, using the Point class from section 6.1 as the starting point for the
examples and then moving on to add some useful operators to the Direction type
introduced in Chapter 1.

Overloading the insertion operator
As you can see from the point.h interface in Figure 6-2, the Point class exports a
method called toString that converts a Point object into a string containing the
coordinate values enclosed in parentheses. The primary purpose for including this
method is to make it easy to display the value of a Point. When you’re debugging
a program, it is often convenient to display the value of a variable. To display the
value of a Point variable named pt, all you need to do is add a statement to your
program that looks something like this:

cout << "pt = " << pt.toString() << endl;

Operator overloading makes it possible to simplify this process even further.
C++ already overloads the stream insertion operator << so that it can display strings
along with the primitive types. If you overload this operator to support the Point
class as well, you can simplify the preceding statement to

cout << "pt = " << pt << endl;

A minor change to be sure, but one that makes printing the value of a point require
even less thought.

Each of the operators in C++ is associated with a function name used to define
its overloaded behavior. In almost all cases, the function name consists of the
keyword operator followed by the operator symbol. For example, if you want to
redefine the + operator for some new type, you define a function named operator+
that takes arguments of that type. Similarly, you overload the insertion operator by
supplying a new definition for the function operator<<.

 6.2 Operator overloading 275

The hardest part of coding the operator<< function is writing its prototype.
The left operand of the << operator is the output stream. For this argument, it
makes sense to choose the most general class that implements the insertion operator,
which is ostream. The right operand of << is the value you want to insert into that
stream, which in this example is a Point object. The overloaded definition of
operator<< therefore takes two arguments: an ostream and a Point.

Completing the prototype, however, requires some care to take account of the
fact that streams cannot be copied. This restriction implies that the ostream
argument must be passed by reference. That same restriction, however, also comes
up when the << operator returns. As I describe on page 160, the insertion operator
implements its wonderful chaining behavior by returning the output stream, which
is then carried forward to the next << operator in the chain. To avoid copying the
stream on this end of the process, the definition of operator<< must also return its
result by reference.

Returning results by reference is much less common than passing parameters by
reference. There are a few cases—including the current example of overloading the
<< operator—in which you need that capability, but there is no reason to introduce
it as a general tool. For those applications where it comes up, it is enough to know
that you can specify return by reference using pretty much the same syntax you use
to indicate call by reference: you simply add an ampersand after the result type.

 Putting all these observations together suggests that the prototype for the
overloaded version of operator<< must look like this:

ostream & operator<<(ostream & os, Point pt);

The implementation must print the string representation of pt on the output stream
and then return the stream by reference so that it can be used again in the
surrounding context. If you code these steps sequentially, you get the following:

ostream & operator<<(ostream & os, Point pt) {
 os << pt.toString();
 return os;
}

You can, however, reduce this implementation to a single line, as follows:

ostream & operator<<(ostream & os, Point pt) {
 return os << pt.toString();
}

The classes in this text use this second form, which emphasizes that the << operator
continues to produce the same value it returns when you apply it to other types.

276 Designing Classes

Testing points for equality
If you look at the final version of the point.h interface in Appendix A, you will
discover that the Point class supports other operators besides stream insertion. For
example, given two points, p1 and p2, you can test whether those points are equal
by applying the == operator, just as you would with strings or primitive values.

C++ offers two strategies for overloading a built-in operator so that it works with
objects of a newly defined class:

1. You can define the operator as a method within the class. When you use this

style to overload a binary operator, the left operand is the receiver object and
the right operand is passed as a parameter.

2. You can define the operator as a free function outside the class. If you use this
style, the operands for a binary operator are both passed as parameters.

If you use the method-based style, the first step in extending the == operator is to

add the prototypes for this operator to the point.h interface, as follows:

bool operator==(Point rhs);

This method is part of the Point class and must therefore be defined as part of its
public section. The corresponding implementation appears in the point.cpp file,
where you would need to add the following code:

bool Point::operator==(Point rhs) {
 return x == rhs.x && y == rhs.y;
}

As with other methods that are part of a class exported through an interface, the
implementation of operator== must specify that it is associated with the Point
class by including the Point:: prefix before the method name.

The client code that calls this method presumably looks something like this:

if (pt == origin) . . .

Assuming that both pt and origin are variables of type Point, the compiler will
invoke the == operator from the Point class when it encounters this expression.
Because operator== is a method, the compiler designates the variable pt as the
receiver and then copies the value of origin to the parameter rhs. In the body of
the operator== method, the unqualified references to x and y therefore refer to
fields in the variable pt, while the expressions rhs.x and rhs.y refer to fields in
the variable origin.

 6.2 Operator overloading 277

The code for the operator== method offers a useful illustration of an important
property of object-oriented programming. The operator== method clearly has
access to the x and y fields of the current object, because any method in a class has
access to its own private variables. What is perhaps harder to understand is that the
operator== method also has access to the private variables of rhs, even though
that variable holds a completely different object. These references are legal in C++
because the definitions in the private section of a class are private to the class and
not to the object. The code for the methods of a class can refer to the instance
variables of any object of that class.

In my experience, students often find the method-based form of operator
overloading confusing because the compiler treats the operands differently,
designating one as the receiver and passing the other as a parameter. The easiest
way to restore symmetry is to use the alternative approach of defining the operators
as free functions. If you use this strategy, the point.h interface needs to include
the following prototype:

bool operator==(Point p1, Point p2);

This prototype declares a free function and must therefore appear outside the
definition of the Point class. The corresponding implementation—which no
longer includes the Point:: prefix because the operator is no longer part of the
class—looks like this:

bool operator==(Point p1, Point p2) {
 return p1.x == p2.x && p1.y == p2.y;
}

Although this implementation is easier to follow because it treats the parameters

p1 and p2 symmetrically, this code has a significant problem: it doesn’t actually
work. In fact, if you add this definition to the Point class, your code won’t even
compile. The crux of the problem is that the == operator is now defined as a free
function and therefore has no access to the private instance variables x and y.

I haven’t included a bug icon here because the code for the == operator is going
to end up looking exactly as it does in this example. What saves the day is that C++
makes it possible to solve the access problem in another way. Given that the ==
operator appears in the point.h interface, it is conceptually associated with the
Point class and therefore in some sense deserves to have access to the private
variables of the class.

To make this design work, the Point class must let the C++ compiler know that
it is okay for a particular function—in this case the overloaded version of the ==
operator—to see its private instance variables. To make such access legal, the

278 Designing Classes

Point class must designate the operator== function as a friend. In this context,
friendship has much the same character as it does on social networks. Your private
information is typically not shared with the community at large, but is accessible to
those you have accepted as your friends.

In C++, the syntax for declaring a free function as a friend is

friend prototype;

where prototype is the complete function prototype. Here, for example, you need to
specify that the free function operator== is a friend of the Point class by writing

friend bool operator==(Point p1, Point p2);

This line is part of the class definition and must therefore be available when the
point.h interface is read. As with the declarations of the instance variables,
however, the client is probably not interested in this level of detail. It therefore
makes sense to put the friend specification in the pointpriv.h file instead of in
the point.h interface itself.

In C++, a class can declare that everything in some other class should gain the
benefits of friendship by including the line

friend class name;

where name is the name of the class. In C++, such declarations of friendship are
not automatically reciprocal. If two classes both want access to the private variables
of the other, each class must explicitly declare the other class as a friend.

Whenever you overload the == operator for a class, it is good practice to provide
an overloaded definition for the != operator as well. Clients, after all, will expect
that they can test whether two points are different as easily as they can test whether
those points are the same. C++ does not assume that == and != return opposite
values; if you want that behavior, you have to overload each of these operators
separately. You can, however, make use of operator== when you implement
operator!=, because operator== is a public member of the class. The most
straightforward implementation of != therefore looks like this:

bool operator!=(Point p1, Point p2) {
 return !(p1 == p2);
}

The final version of the Point class appears on the next few pages. Figure 6-4

contains the point.h interface, Figure 6-5 lists the contents of pointpriv.h, and
Figure 6-6 completes the presentation with the point.cpp implementation.

 6.2 Operator overloading 279

Finished version of point.h
F I G U R E 6 - 4 Complete interface for the Point class

/*
 * File: point.h
 * -------------
 * This interface exports the Point class, which represents a point on
 * a two-dimensional integer grid.
 */

#ifndef _point_h
#define _point_h

#include <iostream>
#include <string>

class Point {

public:

/*
 * Constructor: Point
 * Usage: Point origin;
 * Point pt(xc, yc);
 * ------------------------
 * Creates a Point object. The default constructor sets the coordinates
 * to 0; the second form sets the coordinates to xc and yc.
 */

 Point();
 Point(int xc, int yc);

/*
 * Methods: getX, getY
 * Usage: int x = pt.getX();
 * int y = pt.getY();
 * -------------------------
 * These methods returns the x and y coordinates of the point.
 */

 int getX();
 int getY();

/*
 * Method: toString
 * Usage: string str = pt.toString();
 * ----------------------------------
 * Returns a string representation of the Point in the form "(x,y)".
 */

 std::string toString();

#include "pointpriv.h"

};

280 Designing Classes

point.h and pointpriv.h
F I G U R E 6 - 4 Complete interface for the Point class (continued)

/*
 * Operator: <<
 * Usage: cout << pt;
 * ------------------
 * Overloads the << operator so that it is able to display Point values.
 */

std::ostream & operator<<(std::ostream & os, Point pt);

/*
 * Operator: ==
 * Usage: p1 == p2
 * ---------------
 * This operator supports equality testing for points.
 */

bool operator==(Point p1, Point p2);

/*
 * Operator: !=
 * Usage: p1 != p2
 * ---------------
 * This operator implements the != operator for points. It is good
 * practice to overload this operator whenever you overload == to
 * ensure that clients can perform either test.
 */

bool operator!=(Point p1, Point p2);

#endif

F I G U R E 6 - 5 The private section of the Point class

/*
 * File: pointpriv.h
 * -----------------
 * This file contains the private section of the Point class. This
 * information is stored in a separate file to ensure that the client
 * doesn't see this information when reading the interface.
 */

/* Friend declaration */

 friend bool operator==(Point p1, Point p2);

private:

/* Instance variables */

 int x; /* The x-coordinate */
 int y; /* The y-coordinate */

 6.2 Operator overloading 281

point.cpp
F I G U R E 6 - 6 Complete implementation of the Point class

/*
 * File: point.cpp
 * ---------------
 * This file implements the point.h interface. The comments have been
 * eliminated from this listing so that the implementation fits on a
 * single page.
 */

#include <string>
#include "point.h"
#include "strlib.h"
using namespace std;

Point::Point() {
 x = 0;
 y = 0;
}

Point::Point(int xc, int yc) {
 x = xc;
 y = yc;
}

int Point::getX() {
 return x;
}

int Point::getY() {
 return y;
}

string Point::toString() {
 return "(" + integerToString(x) + "," + integerToString(y) + ")";
}

bool operator==(Point p1, Point p2) {
 return p1.x == p2.x && p1.y == p2.y;
}

bool operator!=(Point p1, Point p2) {
 return !(p1 == p2);
}

ostream & operator<<(ostream & os, Point pt) {
 return os << pt.toString();
}

282 Designing Classes

Adding operators to the Direction type
Although operator overloading is most commonly associated with classes, C++ also
allows you to extend the definition of operators so that they work with enumerated
types. This feature makes it possible to add two operators to the direction.h
interface from Chapter 2 that make the enumerated Direction type considerably
easier to use.

For exactly the same reasons that made it useful to overload the << operator for
the Point class, it makes sense to define that operator for the Direction type as
well. Given that the direction.h interface exports the directionToString
function, the extended implementation of operator<< is straightforward:

ostream & operator<<(ostream & os, Direction dir) {
 return os << directionToString(dir);
}

As with any function in a library interface, the body of this function belongs in
direction.cpp, and its prototype must appear in direction.h.

Before introducing the second operator, which is both more important and more
subtle, it is useful to take note of an unfortunate limitation in the capabilities
provided by the Direction type. As you will discover in Chapter 9, it is often
useful to iterate through the elements of the Direction type, cycling through the
values NORTH, EAST, SOUTH, and WEST in order. To accomplish that goal, what you
would like to do is use what seems to be the obvious for loop idiom, as follows:

for (Direction dir = NORTH; dir <= WEST; dir++) . . .

Unfortunately, that statement doesn’t quite work for the Direction type as it is
currently defined. The problem is that the ++ operator doesn’t work for enumerated
types. To achieve the effect of dir++, you have to write the much less elegant
expression

dir = Direction(dir + 1)

Once again, operator overloading comes to the rescue. To make the standard
for loop idiom work exactly as it should, all you have to do is overload the ++
operator for the Direction type. Doing so, however, is not quite as simple as it
sounds. The ++ and -- operators are special in C++ because they occur in two
forms. When they are written in the prefix position, as in the expression ++x, the
operator is applied first and the value of the expression is the value at the end of the
operation. When they are written in the suffix position, as in the expression x++,
the value of the variable changes in exactly the same way, but the value of the
expression is the value of the variable before the operation takes place.

 6.2 Operator overloading 283

When you overload the ++ or -- operators in C++, you have to tell the compiler
whether you want to redefine the prefix or suffix form of the operator. The
designers of C++ chose to indicate the suffix form by passing an integer argument
that has no purpose other than to differentiate it from its prefix counterpart. Thus,
to overload the prefix form of the ++ operator for the Direction type, you would
define the function

Direction operator++(Direction & dir) {
 dir = Direction(dir + 1);
 return dir;
}

To overload the suffix form, you would instead define the function

Direction operator++(Direction & dir, int) {
 Direction old = dir;
 dir = Direction(dir + 1);
 return old;
}

Note that the dir parameter must be passed by reference so that the function can
change its value. This example also illustrates the fact that C++ doesn’t require a
parameter name if you aren’t going to use that value.

Given that the only purpose in overloading this operator is to enable the standard
for loop idiom, the library version of the Direction type overrides only the suffix
form. This extension is useful for any enumerated type for which it makes sense to
iterate through the elements.

Once you have made the extensions described in this section, the Direction
type becomes much easier to use. For example, if you execute

for (Direction dir = NORTH; dir <= WEST; dir++)
 cout << dir << endl;
}

you get the following output:

Generating this output without these extensions would be much more difficult.

TestDirection
NORTH

EAST

SOUTH

WEST

284 Designing Classes

 6.3 Rational numbers
Although the Point class from section 6.1 illustrates the basic mechanics used to
define a new class, developing a solid understanding of the topic requires you to
consider more sophisticated examples. This section walks you through the design
of a class to represent rational numbers, which are those numbers that can be
represented as the quotient of two integers. In elementary school, you probably
called these numbers fractions.

In some respects, rational numbers are similar to the floating-point numbers you
have been using since Chapter 1. Both types of numbers can represent fractional
values, such as 1.5, which is the rational number 3/2. The difference is that rational
numbers are exact, while floating-point numbers are approximations limited by the
precision of the hardware.

To get a sense of why this distinction might be important, consider the arithmetic
problem of adding together the following fractions:

Basic arithmetic—or even a little intuition—makes it clear that the mathematically
precise answer is 1, but that answer is impossible to obtain using double-precision
arithmetic on a computer. Writing a program to perform this calculation and
display the result with 16 digits of precision is easy:

int main() {
 double a = 1.0 / 2.0;
 double b = 1.0 / 3.0;
 double c = 1.0 / 6.0;
 double sum = a + b + c;
 cout << setprecision(16);
 cout << "1/2 + 1/3 + 1/6 = " << sum << endl;
 return 0;
}

The result of running this program, however, might be a bit surprising:

The problem is that the memory cells used to store numbers inside a computer have
a limited storage capacity, which in turn restricts the precision they can offer.

1

2
 +

1

3
 +

1

6

FractionSum
1/2 + 1/3 + 1/6 = 0.9999999999999999

 6.3 Rational numbers 285

Within the limits of double-precision arithmetic, the sum of one-half plus one-third
plus one-sixth is closer to 0.9999999999999999 than it is to 1.0. Worse still, the
calculated value of the sum really is less than 1 and would show up as such if you
were to test it in your program. At the end of the run, the value of the expression
sum < 1 would be true, and the value of sum == 1 would be false. That result is
all rather unsettling from a mathematical point of view.

Rational numbers are not subject to rounding errors because no approximations
are involved. What’s more, rational numbers are well understood as a mathematical
concept with their own arithmetic rules, which are summarized in Figure 6-7. The
problem is that C++ does not include rational numbers among its predefined types.
To use rational numbers in C++, you have to define a new class to represent them.

A strategy for defining new classes
When you work in object-oriented languages, designing new classes is the most
important skill you need to master. As with much of programming, designing a new
class is as much an art as it is a science. Developing effective class designs requires
a strong sense of aesthetics and considerable sensitivity to the needs and desires of
clients who will use those classes as tools. Experience and practice are the best
teachers, but following a general design framework can help get you started along
this path.

From my own experience, I’ve found that the following step-by-step approach is
often helpful:

1. Think generally about how clients are likely to use the class. From the very

beginning of the process, it is essential to remember that library classes are
designed to meet the needs of clients and not for the convenience of the
implementer. In a professional context, the most effective way to ensure that a
new class meets those needs is to involve clients in the design process. At a
minimum, however, you need to put yourself in the client role as you sketch the
outlines of the class design.

F I G U R E 6 - 7 Rules for rational arithmetic

Addition
a

b
 +

c

d
 =

ad + bc

bd

Subtraction
a

b
 –

c

d
 =

ad – bc

bd

Multiplication
a

b
 × c

d
 =

ac

bd

Division
a

b
 ÷ c

d
 =

ad

bc

286 Designing Classes

2. Determine what information belongs in the private state of each object.
Although the private section is conceptually part of the implementation of a
class, it simplifies the later design phases if you have at least an intuitive sense
about what information objects of this class contain. In many cases, you can
write down the instance variables that go into the private section. Although this
precise level of detail is not essential at this point, having at least a feeling for
the inner structure makes it easier to define its constructors and methods.

3. Define a set of constructors to create new objects. Classes typically define
more than one overloaded form of the constructor, and it is useful to think from
the client’s point of view about the types of objects that need to be created and
what information the client has on hand at that time. Typically, every class
exports a default constructor, which makes it possible for clients to declare
variables of that class and initialize them later on. During this phase, it is also
useful to consider whether the constructors need to apply any restrictions to
ensure that the resulting objects are valid.

4. Enumerate the operations that will become the public methods of the class. In
this phase, the goal is to write the prototypes for the exported methods, thereby
adding specificity to the general outline you developed at the beginning of the
process. You can also use this phase to refine the overall design, following the
principles of unity, simplicity, sufficiency, generality, and stability outlined in
Chapter 2.

5. Code and test the implementation. Once you have the interface specification,
you need to write the code that implements it. Writing the implementation is of
course essential to having a working program but also offers validation for the
design. As you write the implementation, it is sometimes necessary to revisit
the interface design if, for example, you discover that a particular feature is
difficult to implement at an acceptable level of efficiency. As the implementer,
you also have a responsibility to test the class to ensure that the class delivers
the functionality it advertises in the interface.

The sections that follow carry out these steps for the Rational class.

Adopting the client perspective
As a first step toward the design of the Rational class, you need to think about
what features your clients are likely to need. In a large company, you might have
various implementation teams that need to use rational numbers and can give you a
good sense of what they need. In that setting, it would be useful to work together
with those clients to agree on a set of design goals.

Given that this example is designed for a textbook, it isn’t possible to schedule
meetings with prospective clients. The primary purpose of the example, moreover,

 6.3 Rational numbers 287

is to illustrate the structure of class definitions in C++. Given these limitations and
the need to manage the complexity of the example, it makes sense to limit the
design goals so that the Rational class implements only the arithmetic operations
defined in Figure 6-7.

The private state of the Rational class
For the Rational class, the private state is easy to specify. A rational number is
defined as the quotient of two integers. Each rational object must therefore keep
track of these two integers. The declarations of the instance variables that will go
into the private section will therefore look something like this:

int num;
int den;

The names for these variables are shortened versions of the mathematical terms
numerator and denominator, which refer to the upper and lower parts of a fraction.

It is interesting to note that the instance variables of the Point class and the
Rational class are the same except for the variable names. The values maintained
by each of these classes consist of a pair of integers. What makes these classes
different is the interpretation of that data, which is reflected in the operations each
class supports.

Constructors for the Rational class
Given that a rational number represents the quotient of two integers, one of the
constructors will presumably take two integers representing the components of the
fraction. Having such a constructor makes it possible, for example, to define the
rational number one-third by calling Rational(1, 3). The prototype for this form
of the constructor—which is the only part of the definition that goes into the
interface—looks like this:

Rational(int x, int y);

Although it isn’t necessary to think about the implementation at this stage in the
process, keeping implementation issues at least at the back of your mind can
sometimes save you headaches later on. In this case, it is worth recognizing that it
isn’t appropriate to implement this constructor in the following form:

Rational(int x, int y) {
 num = x;
 den = y;
}

288 Designing Classes

The problem with this implementation is that the rules of arithmetic place
constraints on the values of the numerator and denominator—constraints that need
to be incorporated into the constructor. The most obvious constraint is that the
value of the denominator cannot be zero, and the constructor should check for this
case and signal an error if it occurs. There is, however, a more subtle issue. If the
client is given unconstrained choice for the numerator and denominator, there will
be many different ways to represent the same rational number. For example, the
rational number one-third can be written as a fraction in any of the following ways:

Given that these fractions all represent the same rational number, it is inelegant to
allow arbitrary combinations of numerator and denominator values in a Rational
object. It simplifies the implementation if every rational number has a consistent,
unique representation.

Mathematicians achieve this goal by insisting on the following rules:

• The fraction is always expressed in lowest terms, which means that any common

factors are eliminated from the numerator and the denominator. In practice, the
easiest way to reduce a fraction to lowest terms is to divide both the numerator
and the denominator by their greatest common divisor, which you already know
how to compute using the gcd function presented on page 61.

• The denominator is always positive, which means that the sign of the value is
stored with the numerator.

• The rational number 0 is always represented as the fraction 0/1.

Implementing these rules results in the following code for the constructor:

Rational(int x, int y) {
 if (y == 0) error("Rational: Division by zero");
 if (x == 0) {
 num = 0;
 den = 1;
 } else {
 int g = gcd(abs(x), abs(y));
 num = x / g;
 den = abs(y) / g;
 if (y < 0) num = -num;
 }
}

As a general rule, every class should have a default constructor, which is used

when no parameters are provided in a declaration. The appropriate mathematical

1

3

2

6

100

300

–1

–3

 6.3 Rational numbers 289

value for the default rational number is zero, which is represented as the fraction
0/1. The code for the default constructor therefore looks like this:

Rational() {
 num = 0;
 den = 1;
}

Finally, it turns out to be useful to define a third version of the constructor that

takes a single argument representing an integer:

Rational(int n) {
 num = n;
 den = 1;
}

Defining methods for the Rational class
In light of the earlier decision to limit the functionality of the Rational class to the
arithmetic operators, figuring out what methods to export is a relatively easy task,
particularly in C++. In many object-oriented languages—including Java, for
example—the only way to define arithmetic operations would be to export methods
named add, subtract, multiply, and divide to implement the four arithmetic
operations. What’s worse is that you have to use the receiver syntax to apply those
operators. Instead of writing the intuitively satisfying declaration

Rational sum = a + b + c;

languages like Java would require you to write

Rational sum = a.add(b).add(c);

While it is not all that difficult to puzzle out what this expression means, it has none
of the fluidity and expressiveness that redefining the arithmetic operators provides.

The situation is much better in C++. In C++, you implement rational arithmetic
by overloading the operators +, -, *, and / to work with Rational objects. As was
true for the Point class in section 6.2, it is easier to define these operators as free
functions than as methods, which means that the prototypes for the four operators
look like this:

Rational operator+(Rational r1, Rational r2);
Rational operator-(Rational r1, Rational r2);
Rational operator*(Rational r1, Rational r2);
Rational operator/(Rational r1, Rational r2);

290 Designing Classes

As with the == operator in the Point class, these arithmetic operators will need to
have access to the fields of r1 and r2, which means that these operator methods
must be declared as friends of the Rational class. The most convenient place to
put those declarations is in the rationalpriv.h file that hides away the private
section of the class. The contents of that file appear in Figure 6-8.

Although there are many other methods and operators that would make sense in
a professional implementation of the Rational class, the only additional facilities
included in this example are a toString method and an overloaded version of the
<< operator, mostly to get you in the habit of including these facilities in every class
you design. Being able to display the values of your objects in a human-readable
form is tremendously important for both testing and debugging, which are essential
phases of the development process.

These design decisions make it possible to complete the definition of the
rational.h interface, which appears in Figure 6-9.

Implementing the Rational class
The final step in the process is writing the code for the Rational class, which
appears in Figure 6-10. Particularly given the fact that the only complex part of the
implementation is the constructor for which you have already seen the necessary
code, the contents of rational.cpp are reasonably straightforward.

F I G U R E 6 - 8 The private section of the Rational class

/*
 * File: rationalpriv.h
 * --------------------
 * This file contains the private section (and the friends declarations)
 * for the Rational class.
 */

/* Declare the operator functions as friends */

 friend Rational operator+(Rational r1, Rational r2);
 friend Rational operator-(Rational r1, Rational r2);
 friend Rational operator*(Rational r1, Rational r2);
 friend Rational operator/(Rational r1, Rational r2);

private:

/* Instance variables */

 int num; /* The numerator of this Rational object */
 int den; /* The denominator of this Rational object */

 6.3 Rational numbers 291

rational.h, page 1
F I G U R E 6 - 9 Interface for the Rational class

/*
 * File: rational.h
 * ----------------
 * This interface exports a class for representing rational numbers.
 */

#ifndef _rational_h
#define _rational_h

#include <string>
#include <iostream>

/*
 * Class: Rational
 * ---------------
 * The Rational class is used to represent rational numbers, which
 * are defined to be the quotient of two integers.
 */

class Rational {

public:

/*
 * Constructor: Rational
 * Usage: Rational zero;
 * Rational num(n);
 * Rational r(x, y);
 * ------------------------
 * Creates a Rational object. The default constructor creates the
 * rational number 0. The single-argument form creates a rational
 * equal to the specified integer, and the two-argument form creates
 * a rational number corresponding to the fraction x/y.
 */

 Rational();
 Rational(int n);
 Rational(int x, int y);

/*
 * Method: toString()
 * Usage: string str = r.toString();
 * ---------------------------------
 * Returns the string representation of this rational number.
 */

 std::string toString();

#include "rationalpriv.h"

};

292 Designing Classes

Rational.h, page 2
F I G U R E 6 - 9 Interface for the Rational class (continued)

/*
 * Operator: <<
 * ------------
 * Overloads the << operator so that it is able to display Rational values.
 */

std::ostream & operator<<(std::ostream & os, Rational rat);

/*
 * Operator: +
 * Usage: r1 + r2
 * --------------
 * Overloads the + operator so that it performs addition on two
 * rational numbers.
 */

Rational operator+(Rational r1, Rational r2);

/*
 * Operator: -
 * Usage: r1 - r2
 * --------------
 * Overloads the - operator so that it performs subtraction on two
 * rational numbers.
 */

Rational operator-(Rational r1, Rational r2);

/*
 * Operator: *
 * Usage: r1 * r2
 * --------------
 * Overloads the * operator so that it performs multiplication on two
 * rational numbers.
 */

Rational operator*(Rational r1, Rational r2);

/*
 * Operator: /
 * Usage: r1 / r2
 * --------------
 * Overloads the / operator so that it performs division on two
 * rational numbers.
 */

Rational operator/(Rational r1, Rational r2);

#endif

 6.3 Rational numbers 293

rational.cpp, page 1
F I G U R E 6 - 1 0 Implementation of the Rational class

/*
 * File: rational.cpp
 * ------------------
 * This file implements the Rational class.
 */

#include <string>
#include <cstdlib>
#include "error.h"
#include "rational.h"
#include "strlib.h"
using namespace std;

/* Function prototypes */

int gcd(int x, int y);

/*
 * Implementation notes: Constructors
 * ----------------------------------
 * There are three constructors for the Rational class. The default
 * constructor creates a Rational with a zero value, the one-argument
 * form converts an integer to a Rational, and the two-argument form
 * allows specifying a fraction. The constructors ensure that
 * the following invariants are maintained:
 *
 * 1. The fraction is always reduced to lowest terms.
 * 2. The denominator is always positive.
 * 3. Zero is always represented as 0/1.
 */

Rational::Rational() {
 num = 0;
 den = 1;
}

Rational::Rational(int n) {
 num = n;
 den = 1;
}

Rational::Rational(int x, int y) {
 if (y == 0) error("Rational: Division by zero");
 if (x == 0) {
 num = 0;
 den = 1;
 } else {
 int g = gcd(abs(x), abs(y));
 num = x / g;
 den = abs(y) / g;
 if (y < 0) num = -num;
 }
}

294 Designing Classes

rational.cpp, page 2
F I G U R E 6 - 1 0 Implementation of the Rational class (continued)

/* Implementation of toString and the << operator */

string Rational::toString() {
 if (den == 1) {
 return integerToString(num);
 } else {
 return integerToString(num) + "/" + integerToString(den);
 }
}

ostream & operator<<(ostream & os, Rational rat) {
 return os << rat.toString();
}

/*
 * Implementation notes: arithmetic operators
 * --
 * The implementation of the operators follows directly from the definitions.
 */

Rational operator+(Rational r1, Rational r2) {
 return Rational(r1.num * r2.den + r2.num * r1.den, r1.den * r2.den);
}

Rational operator-(Rational r1, Rational r2) {
 return Rational(r1.num * r2.den - r2.num * r1.den, r1.den * r2.den);
}

Rational operator*(Rational r1, Rational r2) {
 return Rational(r1.num * r2.num, r1.den * r2.den);
}

Rational operator/(Rational r1, Rational r2) {
 return Rational(r1.num * r2.den, r1.den * r2.num);
}

/*
 * Implementation notes: gcd
 * -------------------------
 * This implementation uses Euclid's algorithm to calculate the
 * greatest common divisor.
 */

int gcd(int x, int y) {
 int r = x % y;
 while (r != 0) {
 x = y;
 y = r;
 r = x % y;
 }
 return y;
}

 6.4 Designing a token scanner class 295

Particularly when you implement the operators as free functions, the code for the
operators follows directly from the mathematical definitions in Figure 6-7. For
example, the implementation of operator+

Rational operator+(Rational r1, Rational r2) {
 return Rational(r1.num * r2.den + r2.num * r1.den,
 r1.den * r2.den);
}

is a direct translation of the rules for adding the rational numbers r1 and r2:

 6.4 Designing a token scanner class
In Chapter 3, the most sophisticated example of string processing is the Pig Latin
translator. As it appears in Figure 3-2, the PigLatin program decomposes the
problem into two phases: the lineToPigLatin function divides the input into
words and then calls wordToPigLatin to convert each word to its Pig Latin form.
The first phase of this decomposition, however, is not at all specific to the Pig Latin
domain. Many applications need to divide a string into words, or more generally,
into logical units that may be larger than a single character. In computer science,
such units are typically called tokens.

Given that the problem of dividing a string into individual tokens comes up so
frequently in applications, it is useful to build a library package that takes care of
that task. This section introduces a TokenScanner class designed for that purpose.
The primary goal is to build a package that is simple to use but nonetheless flexible
enough to meet the needs of a variety of clients.

What clients want from a token scanner
As always, the best way to begin the design of the TokenScanner class is to look
at the problem from the client perspective. Every client that wants to use a scanner
starts with a source of tokens, which might be a string but might also be an input
stream for applications that read data from files. In either case, what the client
needs is some way to retrieve individual tokens from that source.

There are several strategies for designing a TokenScanner class that offers the
necessary functionality. You could, for example, have the token scanner return a
vector containing the entire list of tokens. That strategy, however, isn’t appropriate
for applications that work with large input file, because the scanner has to create a
single vector containing the entire list of tokens. A more space-efficient approach is

r1 + r2 =
r1num r2den + r2num r1den

r1den r2den

296 Designing Classes

to have the scanner deliver its tokens one at a time. When you use this design, the
process of reading tokens from a scanner has the following pseudocode form:

Set the input for the token scanner to be some string or input stream.
while (more tokens are available) {
 Read the next token.
}

This pseudocode structure immediately suggests the sort of methods that the

TokenScanner class will have to support. From this example, you would expect
TokenScanner to export the following methods:

• A setInput method that allows clients to specify the token source. For

maximum flexibility, this method should be overloaded to take either a string or
an input stream as its argument.

• A hasMoreTokens method that tests whether the token scanner has any tokens
left to process.

• A nextToken method that scans and returns the next token.

These methods define the operational structure of a token scanner and are largely
independent of the specifics of the applications. Different applications, however,
define tokens in all sorts of different ways, which means that the TokenScanner
class must give the client some control over what types of tokens are recognized.

The need to recognize different types of tokens is easiest to illustrate by offering
a few examples. As a starting point, it is instructive to revisit to the problem of
translating English into Pig Latin. If you rewrite the PigLatin program to use the
token scanner, you can’t ignore the spaces and punctuation marks, because those
characters need to be part of the output. In the context of the Pig Latin problem,
tokens fall into one of two categories:

1. A string of consecutive alphanumeric characters representing a word.

2. A single-character string consisting of a space or punctuation mark.

If you gave the token scanner the input

this is "pig latin"

calling nextToken repeatedly would return the following sequence of nine tokens:

Other applications, however, are likely to define tokens in different ways. Your
C++ compiler, for example, uses a token scanner to break programs into tokens that

this is " pig latin "

 6.4 Designing a token scanner class 297

make sense in the programming context, including identifiers, constants, operators,
and other symbols that define the syntactic structure of the language. For example,
if you gave the compiler’s token scanner the line

cout << "hello, world" << endl;

you would like it to deliver up the following sequence of tokens:

There are several differences between these two application domains in the
definition of a token. In the Pig Latin translator, anything that’s not a sequence of
alphanumeric characters is returned as a single-character token. In the compiler
example, the situation is more complicated. For one thing, programming languages
often define multicharacter operators like << that must be treated as single tokens.
Similarly, the string constant "hello, world" has the correct meaning only if the
token scanner treats it as a single entity. Perhaps less obviously, the compiler’s
token scanner ignores spaces in the input entirely, unless they appear inside string
constants.

As you will learn if you go on to take a course on compilers, it is possible to
build a token scanner that allows the client to specify what constitutes a legal token,
typically by supplying a precise set of rules. That design offers the greatest possible
generality. That generality, however, often comes at the expense of simplicity. If
you force clients to specify the rules for token formation, they need to learn how to
write those rules, which is similar in many respects to learning a new language.
Worse still, the rules for token formation—particularly if you are trying to specify,
for example, the rules that a compiler uses to recognize numbers—are complicated
and difficult for clients to get right.

If your goal in the interface is to maximize simplicity, it is probably better to
design the TokenScanner class so that clients can enable specific options that
allow it to recognize the type of tokens used in specific application contexts. If all
you want is a token scanner that collects consecutive alphanumeric characters into
words, you use the TokenScanner class in its simplest possible configuration. If
you instead want the TokenScanner to identify the units in a C++ program, you
enable options that tell the scanner, for example, to ignore whitespace, to treat
quoted strings as single units, and that certain combinations of punctuation marks
represent multicharacter operators.

The tokenscanner.h interface
The Stanford C++ library includes a TokenScanner class that offers considerable
flexibility without sacrificing simplicity. The methods exported by TokenScanner

cout << "hello, world" << endl ;

298 Designing Classes

appear in Table 6-1. Many of the methods in the interface are used to enable
options that change the default behavior of the scanner. For example, you can
ignore all whitespace in the input stream by initializing a token scanner like this:

TokenScanner scanner;
scanner.ignoreWhitespace();

T A B L E 6 - 1 Methods exported by the library TokenScanner class

Constructors

TokenScanner()

TokenScanner(str)

TokenScanner(infile)

Initializes a scanner object. The source for the tokens is initialized
from the specified string or input file. If no token source is provided,
the client must call setInput before reading tokens from the scanner.

Methods for reading tokens

hasMoreTokens() Returns true if there are more tokens to read from the input source.

nextToken() Returns the next token from this scanner. If nextToken is called
when no tokens are available, it returns the empty string.

saveToken(token) Saves the specified token as part of this scanner’s internal state so that
it will be returned on the next call to nextToken.

Methods for controlling scanner options

ignoreWhitespace() Tells the scanner to ignore whitespace characters.

ignoreComments() Tells the scanner to ignore comments, which can be in either the
slash-star or slash-slash form.

scanNumbers() Tells the scanner to recognize any legal number as a single token.

scanStrings() Tells the scanner to return a string enclosed in quotation marks as a
single token. The quotation marks (which may be either single or
double quotes) are included in the scanned token so that clients can
differentiate strings from other token types.

addWordCharacters(str) Adds the characters in str to the set of characters legal in a word.

addOperator(op) Defines a new multicharacter operator.

Miscellaneous methods

setInput(str)

setInput(infile)

Sets the input source for this scanner to the specified string or input
stream. Any tokens remaining in the previous source are lost.

getPosition() Returns the current position of the scanner in the input stream.

isWordCharacter(ch) Returns true if the character ch is valid in a word.

verifyToken(expected) Reads the next token and makes sure it matches the string expected.

getTokenType(token) Returns the type of the token, which must be one of the following
constants: EOF, SEPARATOR, WORD, NUMBER, STRING, OPERATOR.

 6.4 Designing a token scanner class 299

If you instead want to initialize a TokenScanner so that it adheres to the rules for
tokens in C++, you could use the following code:

TokenScanner scanner;
scanCPlusPlusTokens(scanner);

The implementation of scanCPlusPlusTokens in Figure 6-11 tells the scanner to
ignore whitespace and comments, that numbers and strings should be scanned as
single tokens, that the underscore is a legal character in an identifier, and that C++
recognizes the multicharacter operators (many of which are likely to be unfamiliar
but are nonetheless defined in C++) shown in the various calls to addOperator.

F I G U R E 6 - 1 1 Initializing a TokenScanner to scan C++ tokens

/*
 * Function: scanCPlusPlusTokens
 * Usage: scanCPlusPlusTokens(scanner);
 * ------------------------------------
 * Sets the necessary options for the scanner so that it can
 * read C++ source code.
 */

void scanCPlusPlusTokens(TokenScanner & scanner) {
 scanner.ignoreWhitespace();
 scanner.ignoreComments();
 scanner.scanNumbers();
 scanner.scanStrings();
 scanner.addWordCharacters("_");
 scanner.addOperator("++");
 scanner.addOperator("--");
 scanner.addOperator("==");
 scanner.addOperator("!=");
 scanner.addOperator("<=");
 scanner.addOperator(">=");
 scanner.addOperator("<<");
 scanner.addOperator(">>");
 scanner.addOperator("&&");
 scanner.addOperator("||");
 scanner.addOperator("+=");
 scanner.addOperator("-=");
 scanner.addOperator("*=");
 scanner.addOperator("%=");
 scanner.addOperator("^=");
 scanner.addOperator("&=");
 scanner.addOperator("|=");
 scanner.addOperator("<<=");
 scanner.addOperator(">>=");
 scanner.addOperator("->");
 scanner.addOperator("::");
}

300 Designing Classes

The tokenscanner.h interface makes it much easier to write a variety of
applications, including several you have already seen in this book. You could, for
example, use it to simplify the PigLatin program from Figure 3-2 by rewriting the
lineToPigLatin function as follows:

string lineToPigLatin(string line) {
 TokenScanner scanner(line);
 string result = "";
 while (scanner.hasMoreTokens()) {
 string word = scanner.nextToken();
 if (isalpha(word[0])) word = wordToPigLatin(word);
 result += word;
 }
 return result;
}

The new version of lineToPigLatin is shorter than the original implementation,
but the real simplification is conceptual. The original code had to operate at the
level of individual characters; the new version gets to work with complete words
because the TokenScanner class takes care of the low-level details.

Implementing the TokenScanner class
Particularly given the number of options it supports, the complete implementation
of the TokenScanner class is too complicated to serve as an effective example.
Figures 6-12 through 6-14 therefore present a simplified version of the token
scanner package that defines only the following methods:

• A constructor that takes a string argument, in addition to the default constructor

• The setInput method that sets the scanner input to a string

• The nextToken method, which returns the next token from the string

• The hasMoreTokens method, which allows clients to see if tokens are available

• The ignoreWhitespace method, which tells the scanner to ignore spaces

The ignoreWhitespace method serves as a model for the other option settings
that are available in this package, and you will have a chance to implement all of
these options in the exercises. Adding the functionality to read tokens from data
files, however, depends on concepts that won’t be introduced until Chapter 11, and
you will have a chance at that point to finish the implementation of the interface.

 6.4 Designing a token scanner class 301

tokenscanner.h
F I G U R E 6 - 1 2 Simplified interface for the TokenScanner class

/*
 * File: tokenscanner.h
 * --------------------
 * This file exports a simple TokenScanner class that divides a string
 * into individual logical units called tokens. In this version
 * of the package, tokens come in two forms:
 *
 * 1. Strings of consecutive letters and digits representing words
 * 2. One-character strings representing punctuation or separators
 *
 * The use of the TokenScanner class is illustrated by the following code
 * pattern, which reads the tokens in the string variable input:
 *
 * TokenScanner scanner;
 * scanner.setInput(input);
 * while (scanner.hasMoreTokens()) {
 * string token = scanner.nextToken();
 * . . . process the token . . .
 * }
 *
 * This version of the TokenScanner class includes the ignoreWhitespace
 * method. The other options available in the library version of the
 * class are included as exercises in the text.
 */

#ifndef _tokenscanner_h
#define _tokenscanner_h

#include <string>

/*
 * Class: TokenScanner
 * -------------------
 * This class is used to represent a single instance of a scanner.
 */

class TokenScanner {

public:

/*
 * Constructor: TokenScanner
 * Usage: TokenScanner scanner;
 * TokenScanner scanner(str);
 * ---------------------------------
 * Initializes a scanner object. The initial token stream comes from
 * the string str, if it is specified. The default constructor creates
 * a scanner with an empty token stream.
 */

 TokenScanner();
 TokenScanner(std::string str);

302 Designing Classes

tokenscanner.h (page 2)
F I G U R E 6 - 1 2 Simplified interface for the TokenScanner class (continued)

/*
 * Method: setInput
 * Usage: scanner.setInput(str);
 * -----------------------------
 * Sets the input for this scanner to the specified string. Any
 * previous input string is discarded.
 */

 void setInput(std::string str);

/*
 * Method: hasMoreTokens
 * Usage: if (scanner.hasMoreTokens()) . . .
 * ---
 * Returns true if there are additional tokens for this scanner to read.
 */

 bool hasMoreTokens();

/*
 * Method: nextToken
 * Usage: token = scanner.nextToken();
 * -----------------------------------
 * Returns the next token from this scanner. If called when no tokens
 * are available, nextToken returns the empty string.
 */

 std::string nextToken();

/*
 * Method: ignoreWhitespace()
 * Usage: scanner.ignoreWhitespace();
 * ----------------------------------
 * Tells the scanner to ignore whitespace characters. By default, the
 * nextToken method treats whitespace characters (typically spaces and
 * tabs) just like any other punctuation mark and returns them as
 * single-character tokens. Calling
 *
 * scanner.ignoreWhitespace();
 *
 * changes this behavior so that the scanner ignore whitespace characters.
 */

 void ignoreWhitespace();

#include "tokenscannerpriv.h"

};

#endif

 6.4 Designing a token scanner class 303

 F I G U R E 6 - 1 3 The private section of the TokenScanner class

/*
 * File: tokenscannerpriv.h
 * ------------------------
 * This file contains the private section for the TokenScanner class.
 */

private:

/* Instance variables */

 std::string buffer; /* The input string containing the tokens */
 int cp; /* The current position in the buffer */
 bool ignoreWhitespaceFlag; /* Flag set by a call to ignoreWhitespace */

/* Private methods */

 void skipWhitespace();

F I G U R E 6 - 1 4 Implementation of the simplified TokenScanner class

/*
 * File: tokenscanner.cpp
 * ----------------------
 * This file implements the TokenScanner class. Most of the methods
 * are straightforward enough to require no additional documentation.
 */

#include <cctype>
#include <string>
#include "tokenscanner.h"
using namespace std;

TokenScanner::TokenScanner() {
 /* Empty */
}

TokenScanner::TokenScanner(string str) {
 setInput(str);
}

void TokenScanner::setInput(string str) {
 buffer = str;
 cp = 0;
}

bool TokenScanner::hasMoreTokens() {
 if (ignoreWhitespaceFlag) skipWhitespace();
 return cp < buffer.length();
}

304 Designing Classes

tokenscanner.cpp (page 2)
F I G U R E 6 - 1 4 Implementation of the simplified TokenScanner class (continued)

/*
 * Implementation notes: nextToken
 * -------------------------------
 * This method starts by looking at the character at the current character
 * indicated by the index cp. If that index is past the end of the string,
 * nextToken returns the empty string. If that character is alphanumeric,
 * nextToken scans ahead until it finds the end of that word; if not,
 * nextToken returns that character as a one-character string.
 */

string TokenScanner::nextToken() {
 if (ignoreWhitespaceFlag) skipWhitespace();
 if (cp >= buffer.length()) {
 return "";
 } else if (isalnum(buffer[cp])) {
 int start = cp;
 while (cp < buffer.length() && isalnum(buffer[cp])) {
 cp++;
 }
 return buffer.substr(start, cp - start);
 } else {
 return string(1, buffer[cp++]);
 }
}

void TokenScanner::ignoreWhitespace() {
 ignoreWhitespaceFlag = true;
}

/*
 * Implementation notes: skipWhitespace
 * ------------------------------------
 * This method is a private method and is therefore not exported. It
 * does, however, need to be declared in the private section of the
 * class, which is contained in the tokenscannerpriv.h file. This
 * method is called from both hasMoreTokens and nextToken.
 */

 void TokenScanner::skipWhitespace() {
 while (cp < buffer.length() && isspace(buffer[cp])) {
 cp++;
 }
 }

 6.5 Encapsulating programs as classes 305

 6.5 Encapsulating programs as classes
Most of the class definitions you have seen in this chapter create new abstract types
that you can then use as if they were primitive objects. Once you have defined the
Rational class, for example, you can then use Rational objects in much the
same ways that you use the primitive types in C++. You can declare variables that
hold Rational values, assign new values to those variables, combine them using
operators, print them on cout, and store them in any of the collection classes.
Programs that work with rational numbers typically create many Rational objects,
all of which are instances of the same class.

Classes, however, can still be useful even if you never intend to have more than
one object of a particular class. For example, it often makes sense to write a
program as a class rather than as a collection of free functions. The primary
advantage of doing so is that classes provide better encapsulation. The fact that
access to any private data is limited to the class itself means that it is much safer to
use private instance variables to share information than it is to use global variables,
which offer no such security.

As an illustration of this technique, the program in Figure 6-15 shows how to
redesign the checkout-line simulation from Figure 5-5 as a class. In the new design,
the free functions runSimulation and printReport become public methods in a
new CheckoutLineSimulation class. Given that the bodies of those methods are
exactly the same as they were before, this change alone has little impact on the
complexity of the code. What has changed, however, is that the information shared
between these functions can now be stored in instance variables and need not be
passed as arguments. Being able to share access to such data among all the methods
in the class substantially reduces the size and complexity of the parameter lists,
which in this example shrink from three parameters to zero.

When you use this approach, the main function typically becomes considerably
shorter. It declares an object of the class that encapsulates the program operation
and then calls the public methods necessary to get it going, as illustrated by the
definition of main in Figure 6-15:

int main() {
 CheckoutLineSimulation simulation;
 simulation.runSimulation();
 simulation.printReport();
 return 0;
}

The advantage of using a class increases along with the complexity of the program.
Programs in this book use this technique only if doing so simplifies the code.

306 Designing Classes

Class-based checkout-line simulation
F I G U R E 6 - 1 5 Class-based version of the checkout-line simulation

/*
 * File: CheckoutLineClass.cpp
 * ---------------------------
 * This program duplicates the CheckoutLine program from Chapter 5,
 * but embeds the entire program in a class definition.
 */

#include <iostream>
#include <iomanip>
#include "queue.h"
#include "random.h"
using namespace std;

/* Constants */

const double ARRIVAL_PROBABILITY = 0.05;
const int MIN_SERVICE_TIME = 5;
const int MAX_SERVICE_TIME = 15;
const int SIMULATION_TIME = 2000;

/*
 * Class: CheckoutLineSimulation
 * -----------------------------
 * This class encapsulates the code and data for the simulation.
 */

class CheckoutLineSimulation {

public:

 void runSimulation() {

 }

 void printReport() {

 }

private:
 int nServed; /* Number of customers served */
 int totalWait; /* Sum of all customer waiting times */
 int totalLength; /* Sum of the queue length at each time step */

};

/* Main program */

int main() {
 CheckoutLineSimulation simulation;
 simulation.runSimulation();
 simulation.printReport();
 return 0;
}

. . . same as in Figure 5-5 . . .

. . . same as in Figure 5-5 . . .

 Review questions 307

 Summary
The primary purpose of this chapter is to give you the tools you need to design and
implement classes on your own. The examples in this chapter focus on classes that
encapsulate data and operations into a coherent whole, deferring the more complex
issue of inheritance to Chapter 17.

Important points covered in this chapter include:

• In many applications, it is useful to combine several independent data values into

a single abstract data type. C++ offers several strategies for encapsulating data
in this way. At the lowest level, C++ continues to support the definition of
C-style structure types. In modern programming practice, however, this kind of
encapsulation is more commonly accomplished using classes.

• In C++, a class is divided into sections that control the access clients have to the
fields and methods in that section. The public section of a class is accessible to
all clients; the private section is accessible only to the implementation. In
modern object-oriented programming, instance variables are declared in the
private section. One class can give other functions and classes access to its
private data by declaring them as friends.

• Given a compound object that is either a structure or a class, you select the
individual components using the dot operator. Clients can select a field from a
compound object only if that field is in the public section. The implementation
of a class, however, has access to the private members of all objects of that class.

• Class definitions typically export one or more constructors that are responsible
for initializing objects of that class. In general, all class definitions include a
default constructor that takes no arguments.

• Methods that give clients access to the values of the instance variables are called
getters; methods that allow clients to change the value of an instance variable are
called setters. A class that gives the client no opportunity to change the value of
an object after it is created is said to be immutable.

• Class definitions exported by an interface typically separate the definition of
class methods between the interface and the implementation. The .h file
contains only method prototypes; the bodies of those methods go in the .cpp
file. In C++, the implementation file must specify the class to which each
method belongs by adding a :: tag before the method name.

• Class definitions can overload the standard operators in either of two ways.
Defining an operator as a class method means that the operator is part of the
class and therefore has free access to the private methods. Defining an operator
as a free function often produces code that is easier to read but means that the
operator function must be designated as a friend to refer to the private data.

308 Designing Classes

• One of the most useful operators to overload is the insertion operator <<,
because doing so makes it easy to display values of that class on the console. In
this text, most classes overload the << operator and define a toString method
that converts a value of that class to a string.

• Designing new classes is as much an art as a science. Although the chapter
offers some general guidelines to guide you in this process, experience and
practice are the best teachers.

• The Stanford libraries export a TokenScanner class that supports the process of
breaking input text into individual units called tokens. The library version of the
TokenScanner class supports a variety of options that make this package useful
in a wide range of applications.

• For applications that are complex enough to require maintaining more than a
modest amount of internal state, it often makes sense to encapsulate the entire
program inside a class. When you use such a design, the main program declares
a variable of that class and then invokes some method to start it up.

 Review questions
1. Define each of the following terms: object, structure, class, instance variable,

method.

2. In a C++ class definition, what do the keywords public and private mean?

3. True or false: In C++, the only difference between the keyword struct and

the keyword class is that struct makes fields public by default.

4. What operator does C++ use to select an instance variable from an object?

5. What is the syntax for a C++ constructor?

6. How many arguments are passed to the default constructor.

7. What are getters and setters?

8. What does it mean for a class to be immutable?

9. When you separate the interface and implementation of a class, how does the

implementation let the compiler know to which class a particular method
definition belongs?

10. What strategy is used in the .h files in this chapter to prevent clients from

seeing the contents of the private section?

 Review questions 309

11. In C++, what method name would you use to overload the % operator.

12. How does C++ differentiate between the prefix and suffix versions of the ++

and -- operators?

13. Why does the overloaded implementation of the << operator require the use of

return by reference?

14. True or false: Return by reference is used as frequently in C++ programs as

call by reference.

15. Describe the differences between the method-based and free-function-based

approaches to overloading the operators for a class. What are the advantages
and disadvantages of each style?

16. What does it mean for one class to declare a method or another class as a

friend?

17. What reason does this chapter offer for overloading the ++ operator for the

Direction type?

18. What are the five steps suggested in this chapter as a guideline for designing a

class?

19. What is a rational number?

20. What restrictions does the Rational constructor place on the values of the

num and den variables?

21. The code for the Rational constructor of page 288 includes an explicit check

to see whether x is zero? Would the Rational class still work the same way
if this check were eliminated?

22. In the rationalpriv.h file in Figure 6-8, why is it necessary to designate

the operator methods for +, -, *, and / as friends but not the operator method
for <<?

23. What is a token?

24. What is the standard pattern for reading all tokens from a string?

25. How do you initialize a TokenScanner object so that it ignores spaces, tabs,

and other whitespace characters in the input?

26. In your own words, explain the technique of embedding a program in a class.

310 Designing Classes

 Exercises
1. The gtypes.h interface included in Appendix A exports a few useful classes

designed to work together with the graphics library. The simplest of these
classes is GPoint, which is identical to the Point class from this chapter
except for the fact that it uses floating-point numbers for the coordinates
instead of integers. Another useful class is GRectangle, which represents a
rectangular region defined by the x and y coordinates of its upper left corner
along with a width and a height. Using the description of the GRectangle
class in Appendix A for reference, implement the GRectangle class.

2. The classes exported by the gtypes.h interface described in the preceding

exercise make it simpler to create intricate graphical patterns, in part because
they make it easy to store coordinate information inside collection classes and
other abstract data types. In this exercise, for example, you get to have some
fun with a vector of GPoint objects. Imagine that you start with a rectangular
board and then arrange pegs around the edges so that they are evenly spaced
along all four edges, with N_ACROSS pegs along the top and bottom and
N_DOWN pegs along the left and right edges. To model this process using the
graphics window, what you want to do is create a Vector<GPoint> that
holds the coordinates of each of these pegs, which are inserted into the vector
starting at the upper right and then proceeding clockwise around the edges of
the rectangle, as follows:

From here, you create a figure by drawing lines between the pegs, starting
at peg 0 and then moving ahead a fixed number of spaces on each cycle, as
specified by the constant DELTA. For example, if DELTA is 11, the first line
goes from peg 0 to peg 11, the second goes from peg 11 to peg 22, and the
third—which has to count 11 pegs clockwise past the beginning—goes from
peg 22 to peg 5. The process continues in this way until the line returns to peg
0. As usual, implementing the wrap-around feature is much easier if you make
use of the % operator.

Write a program that simulates this process on the graphics window using
larger values for N_ACROSS and N_DOWN. The output of the program with
N_ACROSS equal to 50, N_DOWN equal to 30, and DELTA equal to 67 appears in

0 1 2 3 4 5 6 7 8 9

10

11

12

13

14151617181920212223

24

25

26

27

 Exercises 311

Figure 6-16. By changing those constants, you can create other wonderful
patterns composed entirely of straight lines.

3. The game of dominos is played using pieces that are usually black rectangles

with some number of white dots on each side. For example, the domino

is called the 4-1 domino, with four dots on its left side and one on its right.

Define a simple Domino class that represents a traditional domino. Your
class should export the following entries:

• A default constructor that creates the 0-0 domino

• A constructor that takes the number of dots on each side

• A toString method that creates a string representation of the domino

• Two getter methods named getLeftDots and getRightDots

All instance variables should be private to the class.

F I G U R E 6 - 1 6 Sample run of the yarn-pattern program

YarnPattern

312 Designing Classes

Write the domino.h interface and the domino.cpp implementation that
export this class. As with the examples in the text, the interface should
overload the << operator so that it is possible to print the string representation
of a domino on any output stream.

Test your implementation of the Domino class by writing a program that
creates a full set of dominos from 0-0 up to 6-6 and then displays those
dominos on the console. A full set of dominos contains one copy of each
possible domino in that range, disallowing duplicates that result from flipping
a domino over. A domino set, therefore, has a 4-1 domino but not a separate
1-4 domino.

4. Defines a Card class suitable for representing a standard playing card, which

is identified by two components: a rank and a suit. The rank is stored as an
integer between 1 and 13 in which an ace is a 1, a jack is an 11, a queen is a
12, and a king is 13. The suit is one of the four constants in the following
enumeration type:

enum Suit = { CLUBS, DIAMONDS, HEARTS, SPADES };

The Card class should export the following methods:

• A default constructor that creates a card that can later be assigned a value

• A constructor that takes a short string name like "10S" or "JD"

• A constructor that takes separate values for the rank and the suit

• A toString method that returns the short string representation of the card

• The getter methods getRank and getSuit

Write the card.h interface and the card.cpp implementation necessary
to export the Card class. In addition to the Card class itself, the card.h
interface should export the Suit type, constant names for the ranks that are
usually named rather than numbered (ACE, JACK, QUEEN, KING), and any other
definitions you need to run the following main program:

int main() {
 for (Suit suit = CLUBS; suit <= SPADES; suit++) {
 for (int rank = ACE; rank <= KING; rank++) {
 cout << " " << Card(rank, suit);
 }
 cout << endl;
 }
 return 0;
}

 Exercises 313

This program should produce the following sample run:

5. Extend the calendar.h interface from Chapter 2, exercise 11 so that it also

exports a Date class that exports the following methods:

• A default constructor that sets the date to January 1, 1970, which is used as
the base of many computerized time standards.

• A constructor that takes a month, day, and year and initializes the Date to
contain those values. For example, the declaration

Date moonLanding(JULY, 20, 1969);

should initialize moonLanding so that it represents July 20, 1969.

• An overloaded version of the constructor that takes the first two parameters
in the opposite order, for the benefit of clients in other parts of the world.
This change allows the declaration of moonLanding to be written as

Date moonLanding(20, JULY, 1969);

• The getter methods getDay, getMonth, and getYear.

• A toString method that returns the date in the form dd-mmm-yyyy,
where dd is a one- or two-digit date, mmm is the three-letter English
abbreviation for the month, and yyyy is the four-digit year. Thus, calling
toString(moonLanding) should return the string "20-Jul-1969".

6. Extend the calendar.h interface still further by adding overloaded versions

of the following operators:

• The insertion operator <<.

• The relational operators ==, !=, <, <=, >, and >=

• The expression date + n, which returns the date n days after date

• The expression date - n, which returns the date n days before date

• The expression d1 - d2, which returns how many days separate d1 and d2

• The shorthand assignment operators += and -= with an integer on the right

• The ++ and -- operators in both their prefix and suffix form.

TestCardClass
 AC 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC
 AD 2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD
 AH 2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH
 AS 2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS

314 Designing Classes

Suppose, for example, that you have made the following definitions:

Date electionDay(6, NOVEMBER, 2012);
Date inaugurationDay(21, JANUARY, 2013);

Given these values of the variables, electionDay < inaugurationDay is
true because electionDay comes before inaugurationDay. Evaluating
inaugurationDay - electionDay returns 76, which is the number of days
between the two events. The definitions of these operators, moreover, allow
you to write a for loop like:

for (Date d = electionDay; d <= inaugurationDay; d++)

which would cycle through each of these days, including both endpoints.

7. The Rational class presented in the text defines the operators +, –, *, / but

needs several other operators for completeness, including the following:

• The relational operators ==, !=, <, <=, >, and >=

• The shorthand assignment operators +=, -=, *=, and /=

• The ++ and -- operators in both their prefix and suffix form.

Add these operators to the interface and implementation.

8. Reimplement the RPN calculator from Figure 5-4 so that it performs its

internal calculations using rational instead of floating-point numbers. For
example, your program should be able to produce the following sample run
(which demonstrates that rational arithmetic is always exact):

RationalRPNCalculator
RPN Calculator Simulation (type H for help)
> 1
> 2
> /
1/2
> 1
> 3
> /
1/3
> 1
> 6
> /
1/6
> +
1/2
> +
1
> Q

 Exercises 315

9. For certain applications, it is useful to be able to generate a series of names
that form a sequential pattern. For example, if you were writing a program to
number figures in a paper, having some mechanism to return the sequence of
strings "Figure 1", "Figure 2", "Figure 3", and so on, would be very
handy. However, you might also need to label points in a geometric diagram,
in which case you would want a similar but independent set of labels for
points such as "P0", "P1", "P2", and so forth.

If you think about this problem more generally, the tool you need is a label
generator that allows the client to define arbitrary sequences of labels, each of
which consists of a prefix string ("Figure " or "P" for the examples in the
preceding paragraph) coupled with an integer used as a sequence number.
Because the client may want different sequences to be active simultaneously,
it makes sense to define the label generator as an abstract type called
LabelGenerator. To initialize a new generator, the client provides the
prefix string and the initial index as arguments to the LabelGenerator
constructor. Once the generator has been created, the client can return new
labels in the sequence by calling nextLabel on the LabelGenerator.

As an illustration of how the interface works, the main program shown in
Figure 6-17 produces the following sample run:

F I G U R E 6 - 1 7 Main program to test the label generator

int main() {
 LabelGenerator figureNumbers("Figure ", 1);
 LabelGenerator pointNumbers("P", 0);
 cout << "Figure numbers: ";
 for (int i = 0; i < 3; i++) {
 if (i > 0) cout << ", ";
 cout << figureNumbers.nextLabel();
 }
 cout << endl << "Point numbers: ";
 for (int i = 0; i < 5; i++) {
 if (i > 0) cout << ", ";
 cout << pointNumbers.nextLabel();
 }
 cout << endl << "More figures: ";
 for (int i = 0; i < 3; i++) {
 if (i > 0) cout << ", ";
 cout << figureNumbers.nextLabel();
 }
 cout << endl;
 return 0;
}

316 Designing Classes

Write the files labelgen.h and labelgen.cpp that define and
implement this class.

10. Write a program that checks the spelling of all words in a file. Your program

should use the TokenScanner class to reads tokens from an input file and
then look up each word in the lexicon stored in the file EnglishWords.dat
introduced in Chapter 5. If the word does not appear in the lexicon, your
program should print a message to that effect. If, for example, you run the
program on a file containing the text of this paragraph, the SpellCheck
program would produce the following output:

11. Write a program that implements a simple arithmetic calculator. Input to the

calculator consists of lines composed of numbers (either integers or reals)
combined together using the arithmetic operators +, -, *, and /. For each line
of input, your program should display the result of applying the operators from
left to right. You should use the token scanner to read the terms and operators
and set up the scanner so that it ignores any whitespace characters. Your
program should exit when the user enters a blank line. A sample run of your
program might look like this:

The last line in this sample run is the arithmetic problem the Mathemagician
gives to Milo in Norton Juster’s children’s story, The Phantom Tollbooth.

TestLabelGenerator
Figure numbers: Figure 1, Figure 2, Figure 3
Point numbers: P0, P1, P2, P3, P4
More figures: Figure 4, Figure 5, Figure 6

SpellCheck
Input file: SampleParagraph.txt
"TokenScanner" is not in the dictionary
"EnglishWords" is not in the dictionary
"dat" is not in the dictionary
"SpellCheck" is not in the dictionary

ExpressionCalculator
> 2 + 2
4
> 355 / 113
3.14159
> 20.4 - 3.6 * 2.5
42
> 4+9-2*16+1/3*6-67+8*2-3+26-1/34+3/7+2-5
0
>

 Exercises 317

12. Extend the program you wrote for the preceding exercise so that the terms in
the expressions can also be variable names assigned earlier in the session by
entering lines like

var = exp

as shown in the following sample run:

13. Implement the saveToken method for the TokenScanner class. This

method saves the specified token so that subsequent calls to nextToken
return the saved token without consuming any additional characters from the
input. Your implementation should allow clients to save multiple tokens,
which are then returned so that the last token saved is the first token returned.

14. Using ignoreWhitespace as a model, implement the ignoreComments

method for the TokenScanner class. If ignoreComments is in effect, the
token scanner should ignore any characters in comments marked using either
the /* . . . */ or // style.

15. Implement the scanNumbers method for the TokenScanner class, which

causes the token scanner to read any valid C++ number as a single token. The
difficult part of this extension lies in understanding the rules for what
constitutes a valid numeric string and then finding a way to implement those
rules efficiently. The easiest way to specify those rules is in a form that
computer scientists call a finite-state machine, which is usually represented
diagrammatically as a collection of circles representing the possible states of
the machine. The circles are then connected by a set of labeled arcs that
indicate how the process moves from one state to another. A finite-state
machine for scanning a real number appears in Figure 6-18.

When you use a finite-state machine, you start in state s0 and then follow
the labeled arcs for each character in the input until there is no arc that
matches the current character. If you end up in a state marked by a double
circle, you have successfully scanned a number. These states that indicate
successful scanning of a token are called final states. Figure 6-18 includes
three examples that show how the finite-state machine scans numbers of
various kinds.

ExpressionCalculator
> pi = 3.1415926535
> r = 1.5
> area = pi * r * r
> area
7.06858
>

318 Designing Classes

The easiest way to write the code that scans a token when scanNumbers is
in effect is to simulate the operation of the finite-state machine. Your code
should keep track of the current state and then go through the input one
character at a time. Each character will either signal the end of the number or
send the machine into a new state.

15. Implement the scanStrings method for the TokenScanner class. When

scanStrings is in effect, the token scanner should return quoted strings as
single tokens. The strings may use either single or double quotation marks
and should include the quotation marks in the string that nextToken returns.

F I G U R E 6 - 1 8 Finite-state machine for scanning numbers

s0 s1 s2 s3 s4 s5digit

digit

.

E

digit

E +, -

digit

digit

digit

Examples:

1729

state char

s0 1

s1 7

s1 2

s1 9

s1

3.1416

state char

s0 3

s1 .

s2 1

s2 4

s2 1

s2 6

s2

3.0E+9

state char

s0 3

s1 .

s2 0

s2 E

s4 +

s5 9

s5

Chapter 7
Introduction to Recursion

And often enough, our faith beforehand in a certain result is the
only thing that makes the result come true.

— William James, The Will To Believe, 1897

320 Introduction to Recursion

Most algorithmic strategies used to solve programming problems have counterparts
outside the domain of computing. When you perform a task repeatedly, you are
using iteration. When you make a decision, you exercise conditional control.
Because these operations are familiar, most people learn to use the control
statements for, while, and if with relatively little trouble.

Before you can solve many sophisticated programming tasks, however, you will
have to learn to use a powerful problem-solving strategy that has few direct
counterparts in the real world. That strategy, called recursion, is defined as any
solution technique in which large problems are solved by reducing them to smaller
problems of the same form. The italicized phrase is crucial to the definition, which
otherwise describes the basic strategy of stepwise refinement. Both strategies
involve decomposition. What makes recursion special is that the subproblems in a
recursive solution have the same form as the original problem.

If you are like most beginning programmers, the idea of breaking a problem
down into subproblems of the same form does not make much sense when you first
hear it. Unlike repetition or conditional testing, recursion is not a concept that
comes up in day-to-day life. Because it is unfamiliar, learning how to use recursion
can be difficult. To do so, you must develop the intuition necessary to make
recursion seem as natural as all the other control structures. For most students of
programming, reaching that level of understanding takes considerable time and
practice. Even so, learning to use recursion is definitely worth the effort. As a
problem-solving tool, recursion is so powerful that it at times seems almost magical.
In addition, using recursion often makes it possible to write complex programs in
simple and profoundly elegant ways.

 7.1 A simple example of recursion
To gain a better sense of what recursion is, let’s imagine that you have been
appointed as the funding coordinator for a large charitable organization that is long
on volunteers and short on cash. Your job is to raise $1,000,000 in contributions so
the organization can meet its expenses.

If you know someone who is willing to write a check for the entire $1,000,000,
your job is easy. On the other hand, you may not be lucky enough to have friends
who are generous millionaires. In that case, you must raise the $1,000,000 in
smaller amounts. If the average contribution to your organization is $100, you
might choose a different tack: call 10,000 friends and ask each of them for $100.
But then again, you probably don’t have 10,000 friends. So what can you do?

As is often the case when you are faced with a task that exceeds your own
capacity, the answer lies in delegating part of the work to others. Your organization

 7.1 A simple example of recursion 321

has a reasonable supply of volunteers. If you could find 10 dedicated supporters in
different parts of the country and appoint them as regional coordinators, each of
those 10 people could then take responsibility for raising $100,000.

Raising $100,000 is simpler than raising $1,000,000, but it hardly qualifies as
easy. What should your regional coordinators do? If they adopt the same strategy,
they will in turn delegate parts of the job. If they each recruit 10 fundraising
volunteers, those people will only have to raise $10,000. The delegation process
can continue until the volunteers are able to raise the money on their own; because
the average contribution is $100, the volunteer fundraisers can probably raise $100
from a single donor, which eliminates the need for further delegation.

If you express this fundraising strategy in pseudocode, it has the following
structure:

void collectContributions(int n) {
 if (n <= 100) {
 Collect the money from a single donor.
 } else {
 Find 10 volunteers.
 Get each volunteer to collect n/10 dollars.
 Combine the money raised by the volunteers.
 }
}

The most important thing to notice about this pseudocode translation is that the line

Get each volunteer to collect n/10 dollars.

is simply the original problem reproduced at a smaller scale. The basic character of
the task—raise n dollars—remains exactly the same; the only difference is that n
has a smaller value. Moreover, because the problem is the same, you can solve it by
calling the original function. Thus, the preceding line of pseudocode would
eventually be replaced with the following line:

collectContributions(n / 10);

It’s important to note that the collectContributions function ends up calling
itself if the contribution level is greater than $100. In the context of programming,
having a function call itself is the defining characteristic of recursion.

The structure of the collectContributions function is typical of recursive
functions. In general, the body of a recursive function has the following form:

322 Introduction to Recursion

if (test for simple case) {
 Compute a simple solution without using recursion.
} else {
 Break the problem down into subproblems of the same form.
 Solve each of the subproblems by calling this function recursively.
 Reassemble the subproblem solutions into a solution for the whole.
}

This structure provides a template for writing recursive functions and is therefore
called the recursive paradigm. You can apply this technique to programming
problems as long as they meet the following conditions:

1. You must be able to identify simple cases for which the answer is easily

determined.

2. You must be able to identify a recursive decomposition that allows you to
break any complex instance of the problem into simpler problems of the same
form.

The collectContributions example illustrates the power of recursion. As

in any recursive technique, the original problem is solved by breaking it down into
smaller subproblems that differ from the original only in their scale. Here, the
original problem is to raise $1,000,000. At the first level of decomposition, each
subproblem is to raise $100,000. These problems are then subdivided in turn to
create smaller problems until the problems are simple enough to be solved
immediately without recourse to further subdivision. Because the solution depends
on dividing hard problems into simpler instances of the same problem, recursive
solutions of this form are often called divide-and-conquer algorithms.

 7.2 The factorial function
Although the collectContributions example illustrates the idea of recursion, it
gives little insight into how recursion is used in practice, mostly because the steps
that make up the solution, such as finding 10 volunteers and collecting money, are
not easily represented in a C++ program. To get a practical sense of the nature of
recursion, you need to consider problems that fit more easily into the programming
domain.

For most people, the best way to understand recursion is to start with simple
mathematical functions in which the recursive structure follows directly from the
statement of the problem and is therefore easy to see. Of these, the most common is
the factorial function—traditionally denoted in mathematics as n!—which is defined
as the product of the integers between 1 and n. In C++, the equivalent problem is to
write an implementation of a function with the prototype

 7.2 The factorial function 323

int fact(int n);

that takes an integer n and returns its factorial.

As you probably know from your programming experience, it is easy to code the
fact function using a for loop, as illustrated by the following implementation:

int fact(int n) {
 int result = 1;
 for (int i = 1; i <= n; i++) {
 result *= i;
 }
 return result;
}

This implementation uses a for loop to cycle through each of the integers between
1 and n. In the recursive implementation, this loop does not exist. The same effect
is generated instead by the cascading recursive calls.

Implementations that use looping (typically by using for and while statements)
are said to be iterative. Iterative and recursive strategies are often seen as opposites
because they can be used to solve the same problem in rather different ways. These
strategies, however, are not mutually exclusive. Recursive functions sometimes
employ iteration internally, and you will see examples of this technique in
Chapter 8.

The recursive formulation of fact
The iterative implementation of fact, however, does not take advantage of an
important mathematical property of factorials. Each factorial is related to the
factorial of the next smaller integer in the following way:

n ! = n × (n – 1)!

Thus, 4! is 4 × 3!, 3! is 3 × 2!, and so on. To make sure that this process stops at
some point, mathematicians define 0! to be 1. Thus, the conventional mathematical
definition of the factorial function looks like this:

n ! =

1 if n = 0

n × (n – 1)! otherwise

This definition is recursive, because it defines the factorial of n in terms of the
factorial of n – 1. The new problem—finding the factorial of n – 1—has the same
form as the original problem, which is the fundamental characteristic of recursion.

324 Introduction to Recursion

You can then use the same process to define (n – 1)! in terms of (n – 2)!. Moreover,
you can carry this process forward step by step until the solution is expressed in
terms of 0!, which is equal to 1 by definition.

From your perspective as a programmer, the practical impact of the
mathematical definition is that it provides a template for a recursive
implementation. In C++, you can implement a function fact that computes the
factorial of its argument as follows:

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

If n is 0, the result of fact is 1. If not, the implementation computes the result by
calling fact(n - 1) and then multiplying the result by n. This implementation
follows directly from the mathematical definition of the factorial function and has
precisely the same recursive structure.

Tracing the recursive process
If you work from the mathematical definition, writing the recursive implementation
of fact is straightforward. On the other hand, even though the definition is easy to
write, the brevity of the solution may seem suspicious. When you are learning
about recursion for the first time, the recursive implementation of fact seems to
leave something out. Even though it clearly reflects the mathematical definition, the
recursive formulation makes it hard to identify where the actual computational steps
occur. When you call fact, for example, you want the computer to give you the
answer. In the recursive implementation, all you see is a formula that transforms
one call to fact into another one. Because the steps in that calculation are not
explicit, it seems somewhat magical when the computer gets the right answer.

If you follow through the logic the computer uses to evaluate any function call,
however, you discover that no magic is involved. When the computer evaluates a
call to the recursive fact function, it goes through the same process it uses to
evaluate any other function call. To visualize the process, suppose that you have
executed the statement

cout << "fact(4) = " << fact(4) << endl;

as part of the function main. When main calls fact, the computer creates a new
stack frame and copies the argument value into the formal parameter n. The frame

 7.2 The factorial function 325

for fact temporarily supersedes the frame for main, as shown in the following
diagram:

In the diagram, the code for the body of fact is shown inside the frame to make it
easier to keep track of the current position in the program. In this diagram, the
current position indicator appears at the beginning of the code because all function
calls start at the first statement of the function body.

The computer now begins to evaluate the body of the function, starting with the
if statement. Because n is not equal to 0, control proceeds to the else clause,
where the program must evaluate and return the value of the expression

n * fact(n - 1)

Evaluating this expression requires computing the value of fact(n - 1), which
introduces a recursive call. When that call returns, all the program has to do is to
multiply the result by n. The current state of the computation can therefore be
diagrammed as follows:

As soon as the call to fact(n - 1) returns, the result is substituted for the
expression underlined in the diagram, allowing computation to proceed.

The next step in the computation is to evaluate the call to fact(n - 1),
beginning with the argument expression. Because the current value of n is 4, the
argument expression n - 1 has the value 3. The computer then creates a new frame
for fact in which the formal parameter is initialized to this value. Thus, the next
frame looks like this:

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

4

☞

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

4?

326 Introduction to Recursion

There are now two frames labeled fact. In the most recent one, the computer is
just starting to calculate fact(3). This new frame hides the previous frame for
fact(4), which will not reappear until the fact(3) computation is complete.

Computing fact(3) again begins by testing the value of n. Since n is still not
0, the else clause instructs the computer to evaluate fact(n - 1). As before, this
process requires the creation of a new stack frame, as shown:

Following the same logic, the program must now call fact(1), which in turn calls
fact(0), creating two new stack frames, as follows:

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

3

☞

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

2

☞

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

0

☞

 7.2 The factorial function 327

At this point, however, the situation changes. Because the value of n is 0, the
function can return its result immediately by executing the statement

return 1;

The value 1 is returned to the calling frame, which resumes its position on top of the
stack, as shown:

From this point, the computation proceeds back through each of the recursive
calls, completing the calculation of the return value at each level. In this frame, for
example, the call to fact(n - 1) can be replaced by the value 1, as shown in the
diagram for the stack frame. In this stack frame, n has the value 1, so the result of
this call is simply 1. This result gets propagated back to its caller, which is
represented by the top frame in the following diagram:

Because n is now 2, evaluating the return statement causes the value 2 to be
passed back to the previous level, as follows:

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

11

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

21

328 Introduction to Recursion

At this stage, the program returns 3 × 2 to the previous level, so that the frame for
the initial call to fact looks like this:

The final step in the calculation process consists of calculating 4 × 6 and returning
the value 24 to the main program.

The recursive leap of faith
The point of including the complete trace of the fact(4) computation is to
convince you that the computer treats recursive functions just like all other
functions. When you are faced with a recursive function, you can—at least in
theory—mimic the operation of the computer and figure out what it will do. By
drawing all the frames and keeping track of all the variables, you can duplicate the
entire operation and come up with the answer. If you do so, however, you will
usually find that the complexity of the process ends up making the computation
much harder to follow.

Whenever you try to understand a recursive program, it is useful to put the
underlying details aside and focus instead on a single level of the operation. At that
level, you are allowed to assume that any recursive call automatically gets the right
answer as long as the arguments to that call are in some sense simpler than the
original arguments. This psychological strategy—assuming that any simpler
recursive call will work correctly—is called the recursive leap of faith. Learning to
apply this strategy is essential to using recursion in practical applications.

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

32

int main() {
 printf("f(5) = %s\n", f(5));
 return 1;
}

int fact(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * fact(n - 1);
 }
}

n

46

 7.3 The Fibonacci function 329

As an example, consider what happens when this implementation is used to
compute fact(n) with n equal to 4. To do so, the recursive implementation must
compute the value of the expression

n * fact(n - 1)

By substituting the current value of n into the expression, you know that the result is

4 * fact(3)

Stop right there. Computing fact(3) is simpler than computing fact(4).
Because it is simpler, the recursive leap of faith allows you to assume that it works.
Thus, you should assume that the call to fact(3) will correctly compute the value
of 3!, which is 3 × 2 × 1, or 6. The result of calling fact(4) is therefore 4 × 6, or
24.

As you look at the examples in the rest of this chapter, try to focus on the big
picture instead of the details. Once you have made the recursive decomposition and
identified the simple cases, be satisfied that the computer can handle the rest.

 7.3 The Fibonacci function
In a mathematical treatise entitled Liber Abbaci published in 1202, the Italian
mathematician Leonardo Fibonacci proposed a problem that has had a wide
influence on many fields, including computer science. The problem was phrased as
an exercise in population biology—a field that has become increasingly important
in recent years. Fibonacci’s problem concerns how the population of rabbits would
grow from generation to generation if the rabbits reproduced according to the
following, admittedly fanciful, rules:

• Each pair of fertile rabbits produces a new pair of offspring each month.

• Rabbits become fertile in their second month of life.

• Old rabbits never die.

If a pair of newborn rabbits is introduced in January, how many pairs of rabbits are
there at the end of the year?

You can solve Fibonacci’s problem simply by keeping a count of the rabbits at
each month during the year. At the beginning of January, there are no rabbits, since
the first pair is introduced sometime in that month, which leaves one pair of rabbits
on February 1. Since the initial pair of rabbits is newborn, they are not yet fertile in
February, which means that the only rabbits on March 1 are the original pair of
rabbits. In March, however, the original pair is now of reproductive age, which

330 Introduction to Recursion

means that a new pair of rabbits is born. The new pair increases the colony’s
population—counting by pairs—to two on April 1. In April, the original pair goes
right on reproducing, but the rabbits born in March are as yet too young. Thus,
there are three pairs of rabbits at the beginning of May. From here on, with more
and more rabbits becoming fertile each month, the rabbit population begins to grow
more quickly.

Computing terms in the Fibonacci sequence
At this point, it is useful to record the population data so far as a sequence of terms,
indicated here by the subscripted value ti , each of which shows the number of rabbit
pairs at the beginning of the i th month from the start of the experiment on January 1.
The sequence itself is called the Fibonacci sequence and begins with the following
terms, which represent the results of our calculation so far:

 t0 t1 t2 t3 t4
 0 1 1 2 3

You can simplify the computation of further terms in this sequence by making an
important observation. Because rabbits in this problem never die, all the rabbits that
were around in the previous month are still around. Moreover, all of the fertile
rabbits have produced a new pair. The number of fertile rabbit pairs capable of
reproduction is simply the number of rabbits that were alive in the month before the
previous one. The net effect is that each new term in the sequence must simply be
the sum of the preceding two. Thus, the next several terms in the Fibonacci
sequence look like this:

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
 0 1 1 2 3 5 8 13 21 34 55 89 144

The number of rabbit pairs at the end of the year is therefore 144.

From a programming perspective, it helps to express the rule for generating new
terms in the following, more mathematical form:

tn = tn-1 + tn-2

An expression of this type, in which each element of a sequence is defined in terms
of earlier elements, is called a recurrence relation.

The recurrence relation alone is not sufficient to define the Fibonacci sequence.
Although the formula makes it easy to calculate new terms in the sequence, the
process has to start somewhere. In order to apply the formula, you need to have at

 7.3 The Fibonacci function 331

least two terms already available, which means that the first two terms in the
sequence—t0 and t1—must be defined explicitly. The complete specification of the
terms in the Fibonacci sequence is therefore

tn =

n if n is 0 or 1

 tn-1 + tn-2 otherwise

This mathematical formulation is an ideal model for a recursive implementation
of a function fib(n) that computes the n th term in the Fibonacci sequence. All
you need to do is plug the simple cases and the recurrence relation into the standard
recursive paradigm. The recursive implementation of fib(n) is shown in
Figure 7-1, which also includes a test program that displays the terms in the
Fibonacci sequence between two specified indices.

Gaining confidence in the recursive implementation
Now that you have a recursive implementation of the function fib, how can you go
about convincing yourself that it works? You can always begin by tracing through
the logic. Consider, for example, what happens if you call fib(5). Because this is
not one of the simple cases enumerated in the if statement, the implementation
computes the result by evaluating the line

return fib(n - 1) + fib(n - 2);

which is in this case equivalent to

return fib(4) + fib(3);

At this point, the computer calculates the result of fib(4), adds that to the result of
calling fib(3), and returns the sum as the value of fib(5).

But how does the computer go about evaluating fib(4) and fib(3)? The
answer, of course, is that it uses precisely the same strategy. The essence of
recursion is to break problems down into simpler ones that can be solved by calls to
exactly the same function. Those calls get broken down into simpler ones, which in
turn get broken down into even simpler ones, until at last the simple cases are
reached.

On the other hand, it is best to regard this entire mechanism as irrelevant detail.
Remember the recursive leap of faith. Your job at this level is to understand how
the call to fib(5) works. In the course of walking though the execution of that
function, you have managed to transform the problem into computing the sum of
fib(4) and fib(3). Because the argument values are smaller, each of these calls

332 Introduction to Recursion

The Fibonacci function
F I G U R E 7 - 1 Program to list the Fibonacci series

/*
 * File: Fib.cpp
 * -------------
 * This program lists the terms in the Fibonacci sequence with
 * indices ranging from MIN_INDEX to MAX_INDEX.
 */

#include <iostream>
#include <iomanip>
using namespace std;

/* Constants */

const int MIN_INDEX = 0; /* Index of first term to generate */
const int MAX_INDEX = 20; /* Index of last term to generate */

/* Function prototypes */

int fib(int n);

/* Main program */

int main() {
 cout << "This program lists the Fibonacci sequence." << endl;
 for (int i = MIN_INDEX; i <= MAX_INDEX; i++) {
 if (i < 10) cout << " ";
 cout << "fib(" << i << ")";
 cout << " = " << setw(4) << fib(i) << endl;
 }
 return 0;
}

/*
 * Function: fib
 * Usage: int f = fib(n);
 * ----------------------
 * Returns the nth term in the Fibonacci sequence using the
 * following recursive formulation:
 *
 * fib(0) = 0
 * fib(1) = 1
 * fib(n) = fib(n - 1) + fib(n - 2)
 */

int fib(int n) {
 if (n < 2) {
 return n;
 } else {
 return fib(n - 1) + fib(n - 2);
 }
}

 7.3 The Fibonacci function 333

represents a simpler case. Applying the recursive leap of faith, you can assume that
the program correctly computes each of these values, without going through all the
steps yourself. For the purposes of validating the recursive strategy, you can just
look the answers up in the table: fib(4) is 3 and fib(3) is 2. The result of calling
fib(5) is therefore 3 + 2, or 5, which is indeed the correct answer. Case closed.
You don’t need to see all the details, which are best left to the computer.

Efficiency of the recursive implementation
If you do decide to go through the details of the evaluation of the call to fib(5),
however, you will quickly discover that the calculation is extremely inefficient. The
recursive decomposition makes many redundant calls, in which the computer ends
up calculating the same term in the Fibonacci sequence several times. This situation
is illustrated in Figure 7-2, which shows all the recursive calls required in the
calculation of fib(5). As you can see from the diagram, the program ends up
making one call to fib(4), two calls to fib(3), three calls to fib(2), five calls to
fib(1), and three calls to fib(0). Given that the Fibonacci function can be
implemented efficiently using iteration, the explosion of steps required by the
recursive implementation is more than a little disturbing.

F I G U R E 7 - 2 Steps in the calculation of fib(5)

fib(5)

fib(4)

fib(3)

fib(2)

fib(1)

1

fib(0)

0

fib(1)

1

fib(2)

fib(1)

1

fib(0)

0

fib(3)

fib(2)

fib(1)

1

fib(0)

0

fib(1)

1

334 Introduction to Recursion

Recursion is not to blame
On discovering that the implementation of fib(n) given in Figure 7-1 is highly
inefficient, many people are tempted to point their finger at recursion as the culprit.
The problem in the Fibonacci example, however, has nothing to do with recursion
per se but rather the way in which recursion is used. By adopting a different
strategy, it is possible to write a recursive implementation of the fib function in
which the large-scale inefficiencies revealed in Figure 7-2 disappear completely.

As is often the case when using recursion, the key to finding a more efficient
solution lies in adopting a more general approach. The Fibonacci sequence is not
the only sequence whose terms are defined by the recurrence relation

tn = tn-1 + tn-2

Depending on how you choose the first two terms, you can generate many different
sequences. The traditional Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

comes from defining t0 = 0 and t1 = 1. If, for example, you defined t0 = 3 and t1 = 7,
you would get this sequence instead:

3, 7, 10, 17, 27, 44, 71, 115, 186, 301, 487, 788, 1275, . . .

Similarly, defining t0 = –1 and t1 = 2 gives rise to the following sequence:

–1, 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, . . .

These sequences all use the same recurrence relation, which specifies that each new
term is the sum of the previous two. The only way the sequences differ is in the
choice of the first two terms. As a general class, the sequences that follow this
pattern are called additive sequences.

This concept of an additive sequence makes it possible to convert the problem of
finding the n th term in the Fibonacci sequence into the more general problem of
finding the n th term in an additive sequence whose initial terms are t0 and t1. Such a
function requires three arguments and might be expressed in C++ as a function with
the following prototype:

int additiveSequence(int n, int t0, int t1);

If you had such a function, it would be easy to implement fib using it. All you
would need to do is supply the correct values of the first two terms, as follows:

 7.3 The Fibonacci function 335

int fib(int n) {
 return additiveSequence(n, 0, 1);
}

The body consists of a single line of code that does nothing but call another
function, passing along a few extra arguments. Functions of this sort, which simply
return the result of another function, often after transforming the arguments in some
way, are called wrapper functions. Wrapper functions are extremely common in
recursive programming. In most cases, a wrapper function is used—as it is here—
to supply additional arguments to a subsidiary function that solves a more general
problem.

From here, the one remaining task is to implement additiveSequence. If you
think about this more general problem for a few minutes, you will discover that
additive sequences have an interesting recursive character of their own. The simple
case for the recursion consists of the terms t0 and t1, whose values are part of the
definition of the sequence. In the C++ implementation, the values of these terms
are passed as arguments. If you need to compute t0, for example, all you have to do
is return the argument t0.

But what if you are asked to find a term further down in the sequence? Suppose,
for example, that you want to find t6 in the additive sequence whose initial terms are
3 and 7. By looking at the list of terms in the sequence

 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
 3 7 10 17 27 44 71 115 186 301 . . .

you can see that the correct value is 71. The interesting question, however, is how
you can use recursion to determine this result.

The key insight you need to discover is that the n th term in any additive sequence
is simply the n–1st term in the additive sequence that begins one step further along.
For example, t6 in the sequence shown in the most recent example is simply t5 in the
additive sequence

 t0 t1 t2 t3 t4 t5 t6 t7 t8
 7 10 17 27 44 71 115 186 301 . . .

that begins with 7 and 10.

This insight makes it possible to implement the function additiveSequence as
follows:

336 Introduction to Recursion

int additiveSequence(int n, int t0, int t1) {
 if (n == 0) return t0;
 if (n == 1) return t1;
 return additiveSequence(n - 1, t1, t0 + t1);
}

If you trace through the steps in the calculation of fib(5) using this technique,

you will discover that the calculation involves none of the redundant computation
that plagued the earlier recursive formulation. The steps lead directly to the
solution, as shown in the following diagram:

fib(5)
= additiveSequence(5, 0, 1)

= additiveSequence(4, 1, 1)
= additiveSequence(3, 1, 2)

= additiveSequence(2, 2, 3)
= additiveSequence(1, 3, 5)

= 5

Even though the new implementation is entirely recursive, it is comparable in
efficiency to the traditional iterative version of the Fibonacci function. In fact, it is
possible to use more sophisticated mathematics to write an entirely recursive
implementation of fib(n) that is considerably more efficient than the iterative
strategy. You will have a chance to code this implementation on your own in the
exercises for Chapter 10.

 7.4 Checking palindromes
Although the factorial and Fibonacci functions provide excellent examples of how
recursive functions work, they are mathematical in nature and may therefore convey
the incorrect impression that recursion is applicable only to mathematical functions.
In fact, you can apply recursion to any problem that can be decomposed into
simpler problems of the same form. It is therefore useful to consider a few more
examples of recursion, focusing on those that are less mathematical in nature. This
section, for example, illustrates the use of recursion in a simple string application.

A palindrome is a string that reads identically backward and forward, such as
"level" or "noon". Although it is easy to check whether a string is a palindrome
by iterating through its characters, palindromes can also be defined recursively. The
insight you need is that any palindrome longer than a single character must contain
a shorter palindrome in its interior. For example, the string "level" consists of the
palindrome "eve" with an "l" at each end. Thus, to check whether a string is a
palindrome—assuming the string is sufficiently long that it does not constitute a

 7.4 Checking palindromes 337

simple case—all you need to do is

1. Check to see that the first and last characters are the same.

2. Check to see whether the substring generated by removing the first and last
characters is itself a palindrome.

If both conditions apply, the string is a palindrome.

The only other question you must consider before writing a recursive solution to
the palindrome problem is what the simple cases are. Clearly, any single-character
string is a palindrome because reversing a one-character string has no effect. The
one-character string therefore represents a simple case, but it is not the only one.
The empty string—which contains no characters at all—is also a palindrome, and
any recursive solution must operate correctly in this case as well.

Figure 7-3 contains a recursive implementation of the isPalindrome function,
which returns true if and only if its argument is a palindrome. The function begins
by checking to see whether the length of the string is less than 2. If it is, the string
is certainly a palindrome. If not, the function checks to make sure that the string
meets both of the necessary criteria.

This implementation shown in Figure 7-3 is inefficient, even though the
recursive decomposition is easy to follow. You can improve the performance of
isPalindrome by making the following changes:

F I G U R E 7 - 3 Program to check for palindromes

/*
 * Function: isPalindrome
 * Usage: if (isPalindrome(str)) . . .
 * -----------------------------------
 * Returns true if str is a palindrome, which is a string that
 * reads the same backwards and forwards. This implementation
 * uses the recursive insight that all strings of length 0 or 1
 * are palindromes and that longer strings are palindromes if
 * their first and last characters match and the remaining substring
 * is a palindrome.
 */

bool isPalindrome(string str) {
 int len = str.length();
 if (len <= 1) {
 return true;
 } else {
 return str[0] == str[len - 1] && isPalindrome(str.substr(1, len - 2));
 }
}

338 Introduction to Recursion

• Calculate the length of the argument only once. The original implementation of
isPalindrome calculates the length of the string at every level of the recursive
decomposition. It is more efficient to call the length method once and then
pass that information down through the chain of recursive calls.

• Don’t make a substring on each call. The other source of inefficiency in the first
version of isPalindrome is the repeated substr calls that remove the first and
last characters. You can avoid the calls to substr entirely by passing indices to
keep track of the positions at which the desired substring begins and ends.

Each of these changes requires the recursive function to take additional arguments.
Figure 7-4 shows a revised version of isPalindrome implemented as a wrapper
function that calls the helper function isSubstringPalindrome to do the actual
work. The isSubstringPalindrome function takes the additional arguments
p1 and p2, which specify the indices between which the checking occurs.

F I G U R E 7 - 4 More efficient implementation of isPalindrome

/*
 * Function: isPalindrome
 * Usage: if (isPalindrome(str)) . . .
 * -----------------------------------
 * Returns true if str is a palindrome, which is a string that reads the
 * same backwards and forwards. This level of the implementation is
 * simply a wrapper for isSubstringPalindrome, which does the real work.
 */

bool isPalindrome(string str) {
 return isSubstringPalindrome(str, 0, str.length() - 1);
}

/*
 * Function: isSubstringPalindrome
 * Usage: if (isSubstringPalindrome(str, p1, p2)) . . .
 * --
 * Returns true if the characters in str from p1 to p2 inclusive form
 * a palindrome. This implementation uses the recursive insight that
 * all strings of length 0 or 1 are palindromes (the simple cases) and
 * that longer strings are palindromes only if their first and last
 * characters match and the remaining substring is a palindrome.
 */

bool isSubstringPalindrome(string str, int p1, int p2) {
 if (p1 >= p2) {
 return true;
 } else {
 return str[p1] == str[p2] && isSubstringPalindrome(str, p1 + 1, p2 - 1);
 }
}

 7.5 The binary search algorithm 339

 7.5 The binary search algorithm
When you work with sequences of values stored in a vector, one of the common
operations consists of searching that vector for a particular element. For example, if
you work frequently with string vectors, it is useful to have a function

int findInVector(string key, Vector<string> & vec);

that searches through each of the elements of vec, looking for an element whose
value is equal to key. If a matching value is found, findInVector returns the
index at which it appears. If no such value exists, the function returns –1.

If you have no specific knowledge about the order of elements within the array,
the implementation of findInVector must simply check each of the elements in
turn until it either finds a match or runs out of elements. This strategy is called the
linear-search algorithm, which can be time-consuming if the arrays are large. On
the other hand, if you know that the elements of the array are arranged in
alphabetical order, you can adopt a much more efficient approach. All you have to
do is divide the array in half and compare the key you’re trying to find against the
element closest to the middle of the array, using the order defined by the ASCII
character codes, which is called lexicographic order. If the key you’re looking for
precedes the middle element, then the key—if it exists at all—must be in the first
half. Conversely, if the key follows the middle element in lexicographic order, you
only need to look at the elements in the second half. This strategy is called the
binary-search algorithm. Because binary search makes it possible for you to
discard half the possible elements at each step in the process, it turns out to be much
more efficient than linear search for sorted arrays.

The binary-search algorithm—which appears in Figure 7-5—is also a perfect
example of the divide-and-conquer strategy. It should therefore not be particularly
surprising that binary search has a natural recursive implementation. Note that the
function findInSortedVector is implemented as a wrapper, leaving the real
work to the recursive function binarySearch, which takes two additional
arguments—the indices p1 and p2—to limit the range of the search.

The simple cases for binarySearch are

1. There are no elements in the active part of the array. This condition is marked

by the fact that the index p1 is greater than the index p2, which means that
there are no elements left to search.

2. The middle element matches the specified key. Since the key has just been
found, findInSortedVector can simply return the index of that value.

340 Introduction to Recursion

If neither of these cases applies, the implementation can simplify the problem by
choosing the appropriate half of the array and calling itself recursively with an
updated set of search limits.

 7.6 Mutual recursion
In each of the examples considered so far, the recursive functions have called
themselves directly, in the sense that the body of the function contains a call to
itself. Although most of the recursive functions you encounter are likely to adhere
to this style, the definition of recursion is actually somewhat broader. To be

F I G U R E 7 - 5 Divide-and-conquer implementation of binary search

/*
 * Function: findInSortedVector
 * Usage: int index = findInSortedVector(key, vec);
 * --
 * Searches for the specified key in the Vector<string> vec, which
 * must be sorted in lexicographic (character code) order. If the
 * key is found, the function returns the index in the vector at
 * which that key appears. (If the key appears more than once in
 * the vector, any of the matching indices may be returned). If the
 * key does not exist in the vector, the function returns -1. This
 * implementation is simply a wrapper function; all of the real work
 * is done by the more general binarySearch function.
 */

int findInSortedVector(string key, Vector<string> & vec) {
 return binarySearch(key, vec, 0, vec.size() - 1);
}

/*
 * Function: binarySearch
 * Usage: int index = binarySearch(key, vec, p1, p2);
 * --
 * Searches for the specified key in the Vector<string> vec, looking
 * only at indices between p1 and p2, inclusive. The function returns
 * the index of a matching element or -1 if no match is found.
 */

int binarySearch(string key, Vector<string> & vec, int p1, int p2) {
 if (p1 > p2) return -1;
 int mid = (p1 + p2) / 2;
 if (key == vec[mid]) return mid;
 if (key < vec[mid]) {
 return binarySearch(key, vec, p1, mid - 1);
 } else {
 return binarySearch(key, vec, mid + 1, p2);
 }
}

 7.6 Mutual recursion 341

recursive, a function must call itself at some point during its evaluation. If a
function is subdivided into subsidiary functions, the recursive call can occur at a
deeper level of nesting. For example, if a function ƒ calls a function g, which in
turn calls ƒ, those function calls are still considered to be recursive. Because the
functions ƒ and g call each other, this type of recursion is called mutual recursion.

As a simple example, it turns out to be easy—although wildly inefficient—to use
recursion to test whether a number is even or odd. The code in Figure 7-6, for
example, implements the isEven and isOdd functions, by taking advantage of the
following informal definition:

• A number is even if its predecessor is odd.

• A number is odd if is not even.

• The number 0 is even by definition.

Even though these rules seem simplistic, they form the basis of an effective strategy
for distinguishing odd and even numbers, as long as those numbers are nonnegative.

F I G U R E 7 - 6 Mutually recursive definitions of isEven and isOdd

/*
 * Function: isOdd
 * Usage: if (isOdd(n)) . . .
 * --------------------------
 * Returns true if the unsigned number n is odd. A number is odd
 * if it is not even.
 */

bool isOdd(unsigned int n) {
 return !isEven(n);
}

/*
 * Function: isEven
 * Usage: if (isEven(n)) . . .
 * ---------------------------
 * Returns true if the unsigned number n is even. A number is even
 * either (1) if it is zero or (2) if its predecessor is odd.
 */

bool isEven(unsigned int n) {
 if (n == 0) {
 return true;
 } else {
 return isOdd(n - 1);
 }
}

342 Introduction to Recursion

The code in Figure 7-6 ensures that condition by having isEven and isOdd take
arguments of type unsigned, which C++ uses to represent an integer that can never
be less than zero.

 7.7 Thinking recursively
For most people, recursion is not an easy concept to grasp. Learning to use it
effectively requires considerable practice and forces you to approach problems in
entirely new ways. The key to success lies in developing the right mindset—
learning how to think recursively. The remainder of this chapter is designed to help
you achieve that goal.

Maintaining a holistic perspective
When you are learning to program, I think it helps enormously to keep in mind the
philosophical concepts of holism and reductionism. Simply stated, reductionism is
the belief that the whole of an object can be understood merely by understanding the
parts that make it up. Its antithesis is holism, the position that the whole is often
greater than the sum of its parts. As you learn about programming, it helps to be
able to interleave these two perspectives, sometimes focusing on the behavior of a
program as a whole, and at other times delving into the details of its execution.
When you try to learn about recursion, however, this balance seems to change.
Thinking recursively requires you to think holistically. In the recursive domain,
reductionism is the enemy of understanding and almost always gets in the way.

To maintain the holistic perspective, you must become comfortable adopting the
recursive leap of faith, which was introduced in its own section earlier in this
chapter. Whenever you are writing a recursive program or trying to understand the
behavior of one, you must get to the point where you ignore the details of the
individual recursive calls. As long as you have chosen the right decomposition,
identified the appropriate simple cases, and implemented your strategy correctly,
those recursive calls will simply work. You don’t need to think about them.

Unfortunately, until you have had extensive experience working with recursive
functions, applying the recursive leap of faith does not come easily. The problem is
that doing so requires to suspend your disbelief and make assumptions about the
correctness of your programs that fly in the face of your experience. After all, when
you write a program, the odds are good—even if you are an experienced
programmer—that your program won’t work the first time. In fact, it is quite likely
that you have chosen the wrong decomposition, messed up the definition of the
simple cases, or somehow gotten things muddled as you tried to implement your
strategy. If you have done any of these things, your recursive calls won’t work.

 7.7 Thinking recursively 343

When things go wrong—as they inevitably will—you have to remember to look
for the error in the right place. The problem lies somewhere in your recursive
implementation, not in the recursive mechanism itself. If there is a problem, you
should be able to find it by looking at a single level of the recursive hierarchy.
Looking down through additional levels of recursive calls is not going to help. If
the simple cases work and the recursive decomposition is correct, the subsidiary
calls will work correctly. If they don’t, the problem must lie in your formulation of
the recursive decomposition.

Avoiding the common pitfalls
As you gain experience with recursion, the process of writing and debugging
recursive programs will become more natural. At the beginning, however, finding
out what you need to fix in a recursive program can be difficult. The following is a
checklist that will help you identify the most common sources of error.

• Does your recursive implementation begin by checking for simple cases? Before

you attempt to solve a problem by transforming it into a recursive subproblem,
you must first check to see if the problem is so simple that such decomposition is
unnecessary. In almost all cases, recursive functions begin with the keyword if.
If your function doesn’t, you should look carefully at your program and make
sure that you know what you’re doing.

• Have you solved the simple cases correctly? A surprising number of bugs in
recursive programs arise from having incorrect solutions to the simple cases. If
the simple cases are wrong, the recursive solutions to more complicated
problems will inherit the same mistake. For example, if you had mistakenly
defined fact(0) as 0 instead of 1, calling fact on any argument would end up
returning 0.

• Does your recursive decomposition make the problem simpler? For recursion to
work, the problems have to get simpler as you go along. More formally, there
must be some metric—a standard of measurement that assigns a numeric
difficulty rating to the problem—that gets smaller as the computation proceeds.
For mathematical functions like fact and fib, the value of the integer argument
serves as a metric. On each recursive call, the value of the argument gets
smaller. For the isPalindrome function, the appropriate metric is the length of
the argument string, because the string gets shorter on each recursive call. If the
problem instances do not get simpler, the decomposition process will just keep
making more and more calls, giving rise to the recursive analogue of the infinite
loop, which is called nonterminating recursion.

• Does the simplification process eventually reach the simple cases, or have you
left out some of the possibilities? A common source of error is failing to include
simple case tests for all the cases that can arise as the result of the recursive

344 Introduction to Recursion

decomposition. For example, in the isPalindrome implementation presented
in Figure 7-3, it is critically important for the function to check the
zero-character case as well as the one-character case, even if the client never
intends to call isPalindrome on the empty string. As the recursive
decomposition proceeds, the string arguments get shorter by two characters at
each level of the recursive call. If the length of the original argument string is
even, the recursive decomposition will never get to the one-character case.

• Do the recursive calls in your function represent subproblems that are truly
identical in form to the original? When you use recursion to break down a
problem, it is essential that the subproblems be of the same form. If the
recursive calls change the nature of the problem or violate one of the initial
assumptions, the entire process can break down. As several of the examples in
this chapter illustrate, it is often useful to define the publicly exported function
as a simple wrapper that calls a more general recursive function that is private to
the implementation. Because the private function has a more general form, it is
usually easier to decompose the original problem and still have it fit within the
recursive structure.

• When you apply the recursive leap of faith, do the solutions to the recursive
subproblems provide a complete solution to the original problem? Breaking a
problem down into recursive subinstances is only part of the recursive process.
Once you get the solutions, you must also be able to reassemble them to generate
the complete solution. The way to check whether this process in fact generates
the solution is to walk through the decomposition, religiously applying the
recursive leap of faith. Work through all the steps in the current function call,
but assume that every recursive call generates the correct answer. If following
this process yields the right solution, your program should work.

 Summary
This chapter has introduced the idea of recursion, a powerful programming strategy
in which complex problems are broken down into simpler problems of the same
form. The important points presented in this chapter include:

• Recursion is similar to stepwise refinement in that both strategies consist of

breaking a problem down into simpler problems that are easier to solve. The
distinguishing characteristic of recursion is that the simpler subproblems must
have the same form as the original.

• To use recursion, you must be able to identify simple cases for which the answer
is easily determined and a recursive decomposition that allows you to break any
complex instance of the problem into simpler problems of the same type.

 Summary 345

• In C++, recursive functions typically have the following paradigmatic form:

if (test for simple case) {
 Compute a simple solution without using recursion.
} else {
 Break the problem down into subproblems of the same form.
 Solve each of the subproblems by calling this function recursively.
 Reassemble the subproblem solutions into a solution for the whole.
}

• Recursive functions are implemented using exactly the same mechanism as any

other function call. Each call creates a new stack frame that contains the local
variables for that call. Because the computer creates a separate stack frame for
each function call, the local variables at each level of the recursive
decomposition remain separate.

• Before you can use recursion effectively, you must learn to limit your analysis to
a single level of the recursive decomposition and to rely on the correctness of all
simpler recursive calls without tracing through the entire computation. Trusting
these simpler calls to work correctly is called the recursive leap of faith.

• Mathematical functions often express their recursive nature in the form of a
recurrence relation, in which each element of a sequence is defined in terms of
earlier elements.

• Although some recursive functions may be less efficient than their iterative
counterparts, recursion itself is not the problem. As is typical with all types of
algorithms, some recursive strategies are more efficient than others.

• In order to ensure that a recursive decomposition produces subproblems that are
identical in form to the original, it is often necessary to generalize the problem.
As a result, it is often useful to implement the solution to a specific problem as a
simple wrapper function whose only purpose is to call a subsidiary function that
handles the more general case.

• Recursion need not consist of a single function that calls itself but may instead
involve several functions that call each other in a cyclical pattern. Recursion
that involves more than one function is called mutual recursion.

• You will be more successful at understanding recursive programs if you can
maintain a holistic perspective rather than a reductionistic one.

Thinking about recursive problems in the right way does not come easily.

Learning to use recursion effectively requires practice and more practice. For many
students, mastering the concept takes years. But because recursion will turn out to
be one of the most powerful techniques in your programming repertoire, that time
will be well spent.

346 Introduction to Recursion

 Review questions
1. Define the terms recursive and iterative. Is it possible for a function to employ

both strategies?

2. What is the fundamental difference between recursion and traditional stepwise

refinement?

3. In the pseudocode for the collectContributions function, the if statement

looks like this:

if (n <= 100)

Why is it important to use the <= operator instead of simply checking whether
n is exactly equal to 100?

4. What is the standard recursive paradigm?

5. What two properties must a problem have for recursion to make sense as a

solution strategy?

6. Why is the term divide and conquer appropriate to recursive techniques?

7. What is meant by the recursive leap of faith? Why is this concept important to

you as a programmer?

8. In the section entitled “Tracing the recursive process,” the text goes through a

long analysis of what happens internally when fact(4) is called. Using this
section as a model, trace through the execution of fib(3), sketching out each
stack frame created in the process.

9. What is a recurrence relation?

10. Modify Fibonacci’s rabbit problem by introducing the additional rule that

rabbit pairs stop reproducing after giving birth to three litters. How does this
assumption change the recurrence relation? What changes do you need to
make in the simple cases?

11. How many times is fib(1) called when calculating fib(n) using the

recursive implementation given in Figure 7-1?

12. What is a wrapper function? Why are they often useful in writing recursive

functions?

 Review questions 347

13. What would happen if you eliminated the if (n == 1) check from the function
additiveSequence, so that the implementation looked like this:

int additiveSequence(int n, int t0, int t1) {
 if (n == 0) return t0;
 return additiveSequence(n - 1, t1, t0 + t1);
}

Would the function still work? Why or why not?

14. Why is it important that the implementation of isPalindrome in Figure 7-3

checks for the empty string as well as the single character string? What would
happen if the function didn’t check for the single character case and instead
checked only whether the length is 0? Would the function still work correctly?

15. Explain the effect of the function call

isPalindrome(str, p1 + 1, p2 - 1)

in the isPalindrome implementation given in Figure 7-4.

16. What is mutual recursion?

17. What would happen if you defined isEven and isOdd as follows:

bool isEven(unsigned int n) {
 return !isOdd(n);
}

bool isOdd(unsigned int n) {
 return !isEven(n);
}

Which of the errors explained in the section “Avoiding the common pitfalls” is
illustrated in this example?

18. The following definitions of isEven and isOdd are also incorrect:

bool isEven(unsigned int n) {
 if (n == 0) {
 return true;
 } else {
 return isOdd(n - 1);
 }
}

348 Introduction to Recursion

bool isOdd(unsigned int n) {
 if (n == 1) {
 return true;
 } else {
 return isEven(n - 1);
 }
}

Give an example that shows how this implementation can fail. What common
pitfall is illustrated here?

 Exercises
1. Spherical objects, such as cannonballs, can be stacked to form a pyramid with

one cannonball at the top, sitting on top of a square composed of four
cannonballs, sitting on top of a square composed of nine cannonballs, and so
forth. Write a recursive function cannonball that takes as its argument the
height of the pyramid and returns the number of cannonballs it contains. Your
function must operate recursively and must not use any iterative constructs,
such as while or for.

2. Unlike many programming languages, C++ does not include a predefined

operator that raises a number to a power. As a partial remedy for this
deficiency, write a recursive implementation of a function

int raiseToPower(int n, int k)

that calculates n k . The recursive insight that you need to solve this problem is
the mathematical property that

n k =

1 if k is 0

n × n k-1 otherwise

3. In the 18th century, the astronomer Johann Daniel Titius proposed a rule, later

recorded by Johann Elert Bode, for calculating the distance from the sun to
each of the planets known at that time. To apply that rule, which is now known
as the Titius-Bode Law, you begin by writing down the sequence

b1 = 1 b2 = 3 b3 = 6 b4 = 12 b5 = 24 b6 = 48 . . .

where each subsequent element in the sequence is twice the preceding one. It
turns out that an approximate distance to the i th planet can be computed from
this series by applying the formula

 Exercises 349

The distance di is expressed in astronomical units (AU), which correspond to
the average distance from the earth to the sun (approximately 93,000,000
miles). Except for a disconcerting gap between Mars and Jupiter, the
Titius-Bode law gives reasonable approximations for the distances to the seven
planets known at the time:

Mercury 0.5 AU
Venus 0.7 AU
Earth 1.0 AU
Mars 1.6 AU
? 2.8 AU
Jupiter 5.2 AU
Saturn 10.0 AU
Uranus 19.6 AU

Concern about the gap in the sequence led astronomers to discover the asteroid
belt, which they suggested might have been the remains of a planet that had
once orbited the sun at distance specified by the missing entry in the table.

Write a recursive function getTitiusBodeDistance(k) that calculates
the expected distance between the sun and the kth planet, numbering outward
from Mercury starting with 1. Test your function by writing a program that
displays the distances to each of these planets in tabular form.

4. The greatest common divisor (often abbreviated to gcd) of two nonnegative

integers is the largest integer that divides evenly into both. In the third century
BCE, the Greek mathematician Euclid discovered that the greatest common
divisor of x and y can always be computed as follows:

• If x is evenly divisible by y, then y is the greatest common divisor.

• Otherwise, the greatest common divisor of x and y is always equal to the
greatest common divisor of y and the remainder of x divided by y.

Use Euclid’s insight to write a recursive function gcd(x, y) that computes the
greatest common divisor of x and y.

5. Write an iterative implementation of the function fib(n).

6. For each of the two recursive implementations of the function fib(n)

presented in this chapter, write a recursive function (you can call these
countFib1 and countFib2 for the two algorithms) that counts the number of

di =
4 + bi

10

350 Introduction to Recursion

function calls made during the evaluation of the corresponding Fibonacci
calculation. Write a main program that uses these functions to display a table
showing the number of calls made by each algorithm for various values of n, as
shown in the following sample run:

7. Write a recursive function digitSum(n) that takes a nonnegative integer and

returns the sum of its digits. For example, calling digitSum(1729) should
return 1 + 7 + 2 + 9, which is 19.

The recursive implementation of digitSum depends on the fact that it is

very easy to break an integer down into two components using division by 10.
For example, given the integer 1729, you can divide it into two pieces as
follows:

Each of the resulting integers is strictly smaller than the original and thus
represents a simpler case.

8. The digital root of an integer n is defined as the result of summing the digits

repeatedly until only a single digit remains. For example, the digital root of
1729 can be calculated using the following steps:

Step 1: 1 + 7 + 2 + 9 → 19
Step 2: 1 + 9 → 10
Step 3: 1 + 0 → 1

CountFib
This program counts the number of calls made by the two
algorithms used to compute the Fibonacci sequence.

 n fib1 fib2
 -- ---- ----
 0 1 2
 1 1 2
 2 3 3
 3 5 4
 4 9 5
 5 15 6
 6 25 7
 7 41 8
 8 67 9
 9 109 10
 10 177 11
 11 287 12
 12 465 13

1 7 2 9

1 7 2 9

 Exercises 351

Because the total at the end of step 3 is the single digit 1, that value is the
digital root.

Write a function digitalRoot(n) that returns the digital root of its

argument. Although it is easy to implement digitalRoot using the
digitSum function from exercise 6 and a while loop, part of the challenge of
this problem is to write the function recursively without using any explicit loop
constructs.

9. As you know from Chapter 2, the mathematical combinations function c(n, k) is

usually defined in terms of factorials, as follows:

c(n, k) =

The values of c(n, k) can also be arranged geometrically to form a triangle in
which n increases as you move down the triangle and k increases as you move
from left to right. The resulting structure, which is called Pascal’s Triangle
after the French mathematician Blaise Pascal, is arranged like this:

c(0, 0)

c(1, 0) c(1, 1)

c(2, 0) c(2, 1) c(2, 2)

c(3, 0) c(3, 1) c(3, 2) c(3, 3)

c(4, 0) c(4, 1) c(4, 2) c(4, 3) c(4, 4)

 Pascal’s Triangle has the interesting property that every entry is the sum of the

two entries above it, except along the left and right edges, where the values are
always 1. Consider, for example, the circled entry in the following display of
Pascal’s Triangle:

This entry, which corresponds to c(6, 2), is the sum of the two entries—5 and
10—that appear above it to either side. Use this relationship between entries in

k! × (n – k)!
n!

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

352 Introduction to Recursion

Pascal’s Triangle to write a recursive implementation of the c(n, k) function
that uses no loops, no multiplication, and no calls to fact.

10. Write a recursive function that takes a string as argument and returns the

reverse of that string. The prototype for this function should be

string reverse(string str);

and the statement

cout << reverse("program") << endl;

should display

Your solution should be entirely recursive and should not use any iterative
constructs such as while or for.

11. The strlib.h library contains a function integerToString. Reimplement

this function without using streams by exploiting the recursive decomposition
of an integer outlined in exercise 7.

ReverseString
margorp

Chapter 8
Recursive Strategies

Tactics without strategy is the noise before defeat.
— Sun Tzu, ~5th Century BCE

354 Recursive Strategies

When a recursive decomposition follows directly from a mathematical definition, as
it does in the case of the fact and fib functions in Chapter 7, applying recursion is
not particularly hard. In most cases, you can translate the mathematical definition
directly into a recursive implementation by plugging the appropriate expressions
into the standard recursive paradigm. The situation changes, however, as you begin
to solve more complex problems.

This chapter introduces several programming problems that seem—at least on
the surface—much more difficult than those in Chapter 7. In fact, if you try to solve
these problems without using recursion, relying instead on more familiar iterative
techniques, you will find them quite difficult to solve. By contrast, each of the
problems has a recursive solution that is surprisingly short. If you exploit the power
of recursion, a few lines of code are sufficient for each task.

The brevity of these solutions, however, endows them with a deceptive aura of
simplicity. The hard part of solving these problems has nothing to do with the
length of the code. What makes these programs difficult is finding the recursive
decomposition in the first place. Doing so occasionally requires some cleverness,
but what you need even more is confidence. You have to accept the recursive leap
of faith.

 8.1 The Towers of Hanoi
The first example in this chapter is a simple puzzle that has come to be known as
the Towers of Hanoi. Invented by French mathematician Édouard Lucas in the
1880s, the Towers of Hanoi puzzle quickly became popular in Europe. Its success
was due in part to the legend that grew up around the puzzle, which was described
as follows in La Nature by the French mathematician Henri de Parville (as
translated by the mathematical historian W. W. R. Ball):

In the great temple at Benares beneath the dome which marks the center of the
world, rests a brass plate in which are fixed three diamond needles, each a
cubit high and as thick as the body of a bee. On one of these needles, at the
creation, God placed sixty-four disks of pure gold, the largest disk resting on
the brass plate and the others getting smaller and smaller up to the top one.
This is the Tower of Brahma. Day and night unceasingly, the priests transfer
the disks from one diamond needle to another according to the fixed and
immutable laws of Brahma, which require that the priest on duty must not
move more than one disk at a time and that he must place this disk on a needle
so that there is no smaller disk below it. When all the sixty-four disks shall
have been thus transferred from the needle on which at the creation God
placed them to one of the other needles, tower, temple and Brahmins alike
will crumble into dust, and with a thunderclap the world will vanish.

Over the years, the setting has shifted from India to Vietnam, but the puzzle and its
legend remain the same.

 8.1 The Towers of Hanoi 355

As far as I know, the Towers of Hanoi puzzle has no practical use except one:
teaching recursion to computer science students. In that domain, it has tremendous
value because the solution involves nothing besides recursion. In contrast to most
recursive algorithms that arise in response to real-world problems, the Towers of
Hanoi problem has no extraneous complications that might interfere with your
understanding and keep you from seeing how the recursive solution works.
Because it works so well as an example, the Towers of Hanoi is included in most
textbooks that treat recursion and has become—much like the “hello, world”
program in Chapter 1—part of the cultural heritage that computer scientists share.

In commercial versions of the puzzle, the 64 golden disks of legend are replaced
with eight wooden or plastic ones, which makes the puzzle considerably easier to
solve (not to mention cheaper). The initial state of the puzzle looks like this:

At the beginning, all eight disks are on spire A. Your goal is to move these eight
disks from spire A to spire B, but you must adhere to the following rules:

• You can only move one disk at a time.

• You are not allowed to move a larger disk on top of a smaller disk.

Framing the problem
In order to apply recursion to the Towers of Hanoi problem, you must first frame
the problem in more general terms. Although the ultimate goal is moving eight
disks from A to B, the recursive decomposition of the problem will involve moving
smaller subtowers from spire to spire in various configurations. In the more general
case, the problem you need to solve is moving a tower of a given height from one
spire to another, using the third spire as a temporary repository. To ensure that all
subproblems fit the original form, your recursive procedure must therefore take the
following arguments:

1. The number of disks to move

2. The name of the spire where the disks start out

3. The name of the spire where the disks should finish

4. The name of the spire used for temporary storage

A B C

356 Recursive Strategies

The number of disks to move is clearly an integer, and the fact that the spires are
labeled with the letters A, B, and C suggests the use of type char to indicate which
spire is involved. Knowing the types allows you to write a prototype for the
operation that moves a tower, as follows:

void moveTower(int n, char start, char finish, char tmp);

To move the eight disks in the example, the initial call is

moveTower(8, 'A', 'B', 'C');

This function call corresponds to the English command “Move a tower of size 8
from spire A to spire B using spire C as a temporary.” As the recursive
decomposition proceeds, moveTower will be called with different arguments that
move smaller towers in various configurations.

Finding a recursive strategy
Now that you have a more general definition of the problem, you can return to the
problem of finding a strategy for moving a large tower. To apply recursion, you
must first make sure that the problem meets the following conditions:

1. There must be a simple case. In this problem, the simple case occurs when n is

equal to 1, which means that there is only a single disk to move. As long as
you don’t violate the rule of placing a larger disk on top of a smaller one, you
can move a single disk as a single operation.

2. There must be a recursive decomposition. In order to implement a recursive
solution, it must be possible to break the problem down into simpler problems
in the same form as the original. This part of the problem is harder and will
require closer examination.

To see how solving a simpler subproblem helps solve a larger problem, it helps

to go back and consider the original example with eight disks.

The goal here is to move eight disks from spire A to spire B. You need to ask
yourself how it would help if you could solve the same problem for a smaller

A B C

 8.1 The Towers of Hanoi 357

number of disks. In particular, you should think about how being able to move a
stack of seven disks would help you to solve the eight-disk case.

If you think about the problem for a few moments, it becomes clear that you can
solve the problem by dividing it into these three steps:

1. Move the entire stack consisting of the top seven disks from spire A to spire C.

2. Move the bottom disk from spire A to spire B.

3. Move the stack of seven disks from spire C to spire B.

Executing the first step takes you to the following position:

Once you have gotten rid of the seven disks on top of the largest disk, the second
step is simply to move that disk from spire A to spire B, which results in the
following configuration:

All that remains is to move the tower of seven disks back from spire C to spire B,
which is again a smaller problem of the same form. This operation is the third step
in the recursive strategy, and leaves the puzzle in the desired final configuration:

A B C

A B C

A B C

358 Recursive Strategies

That’s it! You’re finished. You’ve reduced the problem of moving a tower of
size eight to one of moving a tower of size seven. More importantly, this recursive
strategy generalizes to towers of size N, as follows:

1. Move the top N–1 disks from the start spire to the temporary spire.

2. Move a single disk from the start spire to the finish spire.

3. Move the stack of N–1 disks from the temporary spire back to the finish spire.

At this point, it is hard to avoid saying to yourself, “Okay, I can reduce the
problem to moving a tower of size N–1, but how do I accomplish that?” The
answer, of course, is that you move a tower of size N–1 in precisely the same way.
You break that problem down into one that requires moving a tower of size N–2,
which further breaks down into moving a tower of size N–3, and so forth, until there
is just one disk to move. Psychologically, however, the important thing is to avoid
asking that question altogether. The recursive leap of faith should be sufficient.
You’ve reduced the scale of the problem without changing its form. That’s the hard
work. All the rest is bookkeeping, and it’s best to let the computer take care of that.

Once you have identified the simple cases and the recursive decomposition, all
you need to do is plug them into the standard recursive paradigm, which results in
the following pseudocode procedure:

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 Move a single disk from start to finish.
 } else {
 Move a tower of size n - 1 from start to tmp.
 Move a single disk from start to finish.
 Move a tower of size n - 1 from tmp to finish.
 }
}

Validating the strategy
Although the pseudocode strategy is in fact correct, the derivation up to this point
has been a little careless. Whenever you use recursion to decompose a problem,
you must make sure that the new problems are identical in form to the original. The
task of moving N–1 disks from one spire to another certainly sounds like an instance
of the same problem and fits the moveTower prototype. Even so, there is a subtle
but important difference. In the original problem, the destination and temporary
spires are empty. When you move a tower of size N–1 to the temporary spire as
part of the recursive strategy, you’ve left a disk behind on the starting spire. Does
the presence of that disk change the nature of the problem and thus invalidate the
recursive solution?

 8.1 The Towers of Hanoi 359

To answer this question, you need to think about the subproblem in light of the
rules of the game. If the recursive decomposition doesn’t end up violating the rules,
everything should be okay. The first rule—that only one disk can be moved at a
time—is not an issue. If there is more than a single disk, the recursive
decomposition breaks the problem down to generate a simpler case. The steps in
the pseudocode that actually transfer disks move only one disk at a time. The
second rule—that you are not allowed to place a larger disk on top of a smaller
one—is the critical one. You need to convince yourself that you will not violate this
rule in the recursive decomposition.

The important observation to make is that, as you move a subtower from one
spire to the other, the disk you leave behind on the original spire—and indeed any
disk left behind at any previous stage in the operation—must be larger than
anything in the current subtower. Thus, as you move those disks among the spires,
the only disks below them will be larger in size, which is consistent with the rules.

Coding the solution
To complete the Towers of Hanoi solution, the only remaining step is to substitute
function calls for the remaining pseudocode. The task of moving a complete tower
requires a recursive call to the moveTower function. The only other operation is
moving a single disk from one spire to another. For the purposes of writing a test
program that displays the steps in the solution, all you need is a function that
records its operation on the console. For example, you can implement the function
moveSingleDisk as follows:

void moveSingleDisk(char start, char finish) {
 cout << start << " -> " << finish << endl;
}

The moveTower code itself looks like this:

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

The complete implementation appears in Figure 8-1.

360 Recursive Strategies

Hanoi.cpp
F I G U R E 8 - 1 Program to solve the Towers of Hanoi puzzle

/*
 * File: Hanoi.cpp
 * ---------------
 * This program solves the Tower of Hanoi puzzle.
 */

#include <iostream>
#include "simpio.h"
using namespace std;

/* Function prototypes */

void moveTower(int n, char start, char finish, char tmp);
void moveSingleDisk(char start, char finish);

/* Main program */

int main() {
 int n = getInteger("Enter number of disks: ");
 moveTower(n, 'A', 'B', 'C');
 return 0;
}

/*
 * Function: moveTower
 * Usage: moveTower(n, start, finish, tmp);
 * --
 * Moves a tower of size n from the start spire to the finish
 * spire using the tmp spire as the temporary repository.
 */

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

/*
 * Function: moveSingleDisk
 * Usage: moveSingleDisk(start, finish);
 * -------------------------------------
 * Executes the transfer of a single disk from the start spire to the
 * finish spire. In this implementation, the move is simply displayed
 * on the console; in a graphical implementation, the code would update
 * the graphics window to show the new arrangement.
 */

void moveSingleDisk(char start, char finish) {
 cout << start << " -> " << finish << endl;
}

 8.1 The Towers of Hanoi 361

Tracing the recursive process
The only problem with this implementation of moveTower is that it seems like
magic. If you’re like most students learning about recursion for the first time, the
solution seems so short that you feel sure there must be something missing. Where
is the strategy? How can the computer know which disk to move first and where it
should go?

The answer is that the recursive process—breaking a problem down into smaller
subproblems of the same form and then providing solutions for the simple cases—is
all you need to solve the problem. If you trust the recursive leap of faith, you’re
done. You can skip this section of the book and go on to the next. If, on the other
hand, you’re still suspicious, it may be necessary for you to go through the steps in
the complete process and watch what happens.

To make the problem more manageable, consider what happens if there are only
three disks in the original tower. The main program call is therefore

moveTower(3, 'A', 'B', 'C');

To trace how this call computes the steps necessary to transfer a tower of size 3, all
you need to do is keep track of the operation of the program, using precisely the
same strategy as in the factorial example from Chapter 7. For each new function
call, you introduce a stack frame that shows the values of the parameters for that
call. The initial call to moveTower, for example, creates the following stack frame:

As the arrow in the code indicates, the function has just been called, so execution
begins with the first statement in the function body. The current value of n is not
equal to 1, so the program skips ahead to the else clause and executes the
statement

moveTower(n-1, start, tmp, finish);

As with any function call, the first step is to evaluate the arguments. To do so,
you need to determine the values of the variables n, start, tmp, and finish.

int main() {
 moveTower(3, 'A', 'B', 'C');
 return 0;
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
} tmp

'C'

finish

'B'

start

'A'

n

3

☞

362 Recursive Strategies

Whenever you need to find the value of a variable, you use the value as it is defined
in the current stack frame. Thus, the moveTower call is equivalent to

moveTower(2, 'A', 'C', 'B');

This operation, however, indicates another function call, which means that the
current operation is suspended until the new function call is complete. To trace the
operation of the new function call, you need to generate a new stack frame and
repeat the process. As always, the parameters in the new stack frame are copied
from the calling arguments in the order in which they appear. Thus, the new stack
frame looks like this:

As the diagram illustrates, the new stack frame has its own set of variables, which
temporarily supersede the variables in frames that are further down on the stack.
Thus, as long as the program is executing in this stack frame, n will have the value
2, start will be 'A', finish will be 'C', and tmp will be 'B'. The old values in
the previous frame will not reappear until the subtask represented by this call to
moveTower is complete.

The evaluation of the recursive call to moveTower proceeds exactly like the
original one. Once again, n is not 1, which requires another call of the form

moveTower(n-1, start, tmp, finish);

Because this call comes from a different stack frame, however, the value of the
individual variables are different from those in the original call. If you evaluate the
arguments in the context of the current stack frame, you discover that this function
call is equivalent to

moveTower(1, 'A', 'B', 'C');

The effect of making this call is to introduce yet another stack frame for the
moveTower function, as follows:

int main() {
 moveTower(3, 'A', 'B', 'C');
 return 0;
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
} tmp

'B'

finish

'C'

start

'A'

n

2

☞

 8.1 The Towers of Hanoi 363

This call to moveTower, however, does represent the simple case. Since n is 1,
the program calls the moveSingleDisk function to move a disk from A to B,
leaving the puzzle in the following configuration:

At this point, the most recent call to moveTower is complete and the function
returns. In the process, its stack frame is discarded, which brings the execution
back to the previous stack frame, having just completed the first statement in the
else clause:

The call to moveSingleDisk again represents a simple operation, which leaves
the puzzle in the following state:

int main() {
 moveTower(3, 'A', 'B', 'C');
 return 0;
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
} tmp

'C'

finish

'B'

start

'A'

n

1

☞

A B C

int main() {
 moveTower(3, 'A', 'B', 'C');
 return 0;
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
} tmp

'B'

finish

'C'

start

'A'

n

2

☞

A B C

364 Recursive Strategies

With the moveSingleDisk operation completed, the only remaining step
required to finish the current call to moveTower is the last statement in the function:

moveTower(n-1, tmp, finish, start);

Evaluating these arguments in the context of the current frame reveals that this call
is equivalent to

moveTower(1, 'B', 'C', 'A');

Once again, this call requires the creation of a new stack frame. By this point in the
process, however, you should be able to see that the effect of this call is simply to
move a tower of size 1 from B to C, using A as a temporary repository. Internally,
the function determines that n is 1 and then calls moveSingleDisk to reach the
following configuration:

This operation again completes a call to moveTower, allowing it to return to its
caller having completed the subtask of moving a tower of size 2 from A to C.
Discarding the stack frame from the just-completed subtask reveals the stack frame
for the original call to moveTower, which is now in the following state:

The next step is to call moveSingleDisk to move the largest disk from A to B,
which results in the following position:

The only operation that remains is to call

A B C

int main() {
 moveTower(3, 'A', 'B', 'C');
 return 0;
}

void moveTower(int n, char start, char finish, char tmp) {
 if (n == 1) {
 moveSingleDisk(start, finish);
 } else {
 moveTower(n - 1, start, tmp, finish);
 moveSingleDisk(start, finish);
 moveTower(n - 1, tmp, finish, start);
 }
} tmp

'C'

finish

'B'

start

'A'

n

3

☞

A B C

 8.2 The subset-sum problem 365

moveTower(n-1, tmp, finish, start);

with the arguments from the current stack frame, which are

moveTower(2, 'C', 'B', 'A');

If you’re still suspicious of the recursive process, you can draw the stack frame
created by this function call and continue tracing the process to its ultimate
conclusion. At some point, however, it is essential that you trust the recursive
process enough to see that function call as a single operation having the effect of the
following command in English:

Move a tower of size 2 from C to B, using A as a temporary repository.

If you think about the process in this holistic form, you can immediately see that
completion of this step will move the tower of two disks back from C to B, leaving
the desired final configuration:

 8.2 The subset-sum problem
Although the Towers of Hanoi problem offers a wonderful illustration of the power
of recursion, its effectiveness as an example is compromised by its lack of any
practical application. Many people are drawn to programming because it enables
them to solve practical problems. If the only examples of recursion are like the
Towers of Hanoi, it’s easy to conclude that recursion is useful only for solving
abstract puzzles. Nothing could be further from the truth. Recursive strategies give
rise to extremely efficient solutions to practical problems—most notably the
problem of sorting introduced in Chapter 10—that are hard to solve in other ways.

The problem covered in this section is called the subset-sum problem, which can
be defined as follows:

Given a set of integers and a target value, determine whether it is
possible to find a subset of those integers whose sum is equal to
the specified target.

For example, given the set { –2, 1, 3, 8 } and the target value 7, the answer to the
subset-sum question is yes, because the subset { –2, 1, 8 } adds up to 7. If the target
value had been 5, however, the answer would be no, because there is no way to
choose a subset of the integers in { –2, 1, 3, 8 } that adds up to 5.

A B C

366 Recursive Strategies

It is easy to translate the idea of the subset-sum problem into C++. The concrete
goal is to write a predicate function

bool subsetSumExists(Set<int> & set, int target);

that takes the required information and returns true if it is possible to generate the
value target by adding up some combination of elements chosen from set.

Even though it might at first seem that the subset-sum problem is just as esoteric
as the Towers of Hanoi, it has significant importance in both the theory and practice
of computer science. As you will discover in Chapter 10, the subset-sum problem is
an instance of an important class of computational problems that are hard to solve
efficiently. That very fact, however, makes problems like subset-sum useful in
applications where the goal is to keep information secret. The first implementation
of public-key cryptography, for example, used a variant of the subset-sum problem
as its mathematical foundation. By basing their operation on problems that are
provably hard, modern encryption strategies are more difficult to break.

The search for a recursive solution
The subset-sum problem is difficult to solve using a traditional iterative approach.
To make any headway, you need to think recursively. As always, you therefore
need to identify a simple case and a recursive decomposition. In applications that
work with sets, the simple case is almost always when the set is empty. If the set is
empty, there is no way that you can add elements to produce a target value unless
the target is zero. That discovery suggests that the code for subsetSumExists
will start off like this:

bool subsetSumExists(Set<int> & set, int target) {
 if (set.isEmpty()) {
 return target == 0;
 } else {
 Find a recursive decomposition that simplifies the problem.
 }
}

In this problem, the hard part is finding that recursive decomposition.

When you are looking for a recursive decomposition, you need to be on the
lookout for some value in the inputs—which are conveyed as arguments in the C++
formulation of the problem—that you can make smaller. In this case, what you
need to do is make the set smaller, because what you’re trying to do is move toward
the simple case that occurs when the set is empty. If you take an element out of the
set, what’s left over is smaller by one element. The operations exported by the Set

 8.2 The subset-sum problem 367

class make it easy to choose an element from a set and then determine what’s left
over. All you need is the following code:

int element = set.first();
Set<int> rest = set - element;

The first method returns the element of the set that appears first in its iteration
order, and the expression involving the overloaded - operator produces the set that
contains every element in set except the value of element. The fact that element
is first in iteration order is not really important here. All you really need is some
way to choose some element and then to create a smaller set by removing the
element you selected from the original set.

The inclusion/exclusion pattern
Making the set smaller, however, is not enough to solve this problem. The code to
divide a set into an element and the rest of the set will come up again in many
recursive applications and is part of a general programming pattern for working
with the Set class. Structurally, you know that subsetSumExists must call itself
recursively on the smaller set now stored in the variable rest. What you haven’t
yet determined is how the solution to these recursive subproblems will help to solve
the original.

The key insight you need to solve this problem is that there are two ways that
you might be able to produce the desired target sum after you have identified a
particular element. One possibility is that the subset you’re looking for includes
that element. For that to happen, it must be possible to take the rest of the set and
produce the value target - element. The other possibility is that the subset
you’re looking for excludes that element, in which case it must be possible to
generate the value target using only the leftover set of elements. This insight is
enough to complete the implementation of subsetSumExists, as follows:

bool subsetSumExists(Set<int> & set, int target) {
 if (set.isEmpty()) {
 return target == 0;
 } else {
 int element = set.first();
 Set<int> rest = set - element;
 return subsetSumExists(rest, target)
 || subsetSumExists(rest, target - element);
 }
}

Because the recursive strategy subdivides the general case into one branch that
includes a particular element and another that excludes it, this strategy is sometimes

368 Recursive Strategies

called the inclusion/exclusion pattern. As you work through the exercises in this
chapter as well as several subsequent ones, you will find that this pattern, with slight
variations, comes up in many different applications. Although the pattern is easiest
to recognize when you are working with sets, it also comes up in applications
involving vectors and strings, and you should be on the lookout for it in those
situations as well.

 8.3 Generating permutations
Many word games and puzzles require the ability to rearrange a set of letters to
form a word. Thus, if you wanted to write a Scrabble program, it would be useful to
have a facility for generating all possible arrangements of a particular set of tiles. In
word games, such arrangements are generally called anagrams. In mathematics,
they are known as permutations.

Let’s suppose you want to write a function

Set<string> generatePermutations(string str);

that returns a set containing all permutations of the string. For example, if you call

generatePermutations("ABC")

the function should return a set containing the following elements:

{ "ABC", "ACB", "BAC", "BCA", "CAB", "CBA" }

How might you go about implementing the generatePermutations function?
If you are limited to iterative control structures, finding a general solution that
works for strings of any length is difficult. Thinking about the problem recursively,
on the other hand, leads to a relatively straightforward solution.

As is usually the case with recursive programs, the hard part of the solution
process is figuring out how to divide the original problem into simpler instances of
the same problem. In this case, to generate all permutations of a string, you need to
discover how being able to generate all permutations of a shorter string might
contribute to the solution.

Before you look at my solution on the next page, stop and think about this
problem for a few minutes. When you are first learning about recursion, it is easy to
look at a recursive solution and believe that you could have generated it on your
own. Without trying it first, however, it is hard to know whether you would have
come up with the necessary recursive insight.

 8.3 Generating permutations 369

Finding the recursive insight
To give yourself more of a feel for the problem, it helps to consider a concrete case.
Suppose you want to generate all permutations of a five-character string, such as
"ABCDE". In your solution, you can apply the recursive leap of faith to generate all
permutations of any shorter string. Just assume that the recursive calls work and be
done with it. Once again, the critical question is how being able to permute shorter
strings helps you solve the problem of permuting the original five-character string.

If you focus on breaking the five-character permutation problem down into some
number of instances of the permutation problem involving four-character strings,
you will soon discover that the permutations of the five-character string "ABCDE"
consist of the following strings:

• The character 'A' followed by every possible permutation of "BCDE"

• The character 'B' followed by every possible permutation of "ACDE"

• The character 'C' followed by every possible permutation of "ABDE"

• The character 'D' followed by every possible permutation of "ABCE"

• The character 'E' followed by every possible permutation of "ABCD"

More generally, you can construct the set of all permutations of a string of length n
by selecting each character in turn and then, for each of those n possible first
characters, concatenating the selected character on to the front of every possible
permutation of the remaining n – 1 characters. The problem of generating all
permutations of n – 1 characters is a smaller instance of the same problem and can
therefore be solved recursively.

As always, you also need to define a simple case. One possibility is to check to
see whether the string contains a single character. Computing all the permutations
of a single-character string is easy, because there is only one possible ordering. In
string processing, however, the best choice for the simple case is rarely a
one-character string, because there is in fact an even simpler alternative: the empty
string containing no characters at all. Just as there is only one ordering for a
single-character string, there is only one way to write the empty string. If you call
generatePermutations(""), you should get back a set containing a single
element, which is the empty string.

Once you have both the simple case and the recursive insight, writing the code
for generatePermutations becomes reasonably straightforward. The code for
generatePermutations appears in Figure 8-2, along with a simple test program
that asks the user for a string and then prints out every possible permutation of the
characters in that string.

370 Recursive Strategies

Permutations.cpp
F I G U R E 8 - 2 Program to generate all permutations of a string

/*
 * File: Permutations.cpp
 * ----------------------
 * This file generates all permutations of an input string.
 */

#include <iostream>
#include "set.h"
#include "simpio.h"
using namespace std;

/* Function prototypes */

Set<string> generatePermutations(string str);

/* Main program */

int main() {
 string str = getLine("Enter a string: ");
 cout << "The permutations of \"" << str << "\" are:" << endl;
 foreach (string s in generatePermutations(str)) {
 cout << " \"" << s << "\"" << endl;
 }
 return 0;
}

/*
 * Function: generatePermutations
 * Usage: Set<string> permutations = generatePermutations(str);
 * --
 * Returns a set consisting of all permutations of the specified string.
 * This implementation uses the recursive insight that you can generate
 * all permutations of a string by selecting each character in turn,
 * generating all permutations of the string without that character,
 * and then concatenating the selected character on the front of each
 * string generated.
 */

Set<string> generatePermutations(string str) {
 Set<string> result;
 if (str == "") {
 result += "";
 } else {
 for (int i = 0; i < str.length(); i++) {
 char ch = str[i];
 string rest = str.substr(0, i) + str.substr(i + 1);
 foreach (string s in generatePermutations(rest)) {
 result += ch + s;
 }
 }
 }
 return result;
}

 8.3 Generating permutations 371

If you run the Permutations program and enter the string "ABC", you see the
following output:

The use of sets in this application ensures that the program generates permutations
in alphabetical order and that each distinct ordering of the characters appears
exactly once, even if there are repeated letters in the input string. For example, if
you enter the string AABB in response to the prompt, the program produces only six
permutations, as follows:

The recursive process adds a new element to this set the full total of 24 (4!) times,
but the implementation of the Set class ensures that no duplicate values appear.

You can use the generatePermutations function to generate all anagrams of
a word by changing the main program from Figure 8-2 so that it checks each string
against the English lexicon. If you enter the string "aeinrst", you get the
following output—a list that serious Scrabble players will recognize instantly:

Permutations
Enter a string: ABC
The permutations of "ABC" are:
 "ABC"
 "ACB"
 "BAC"
 "BCA"
 "CAB"
 "CBA"

Permutations
Enter a string: AABB
The permutations of "AABB" are:
 "AABB"
 "ABAB"
 "ABBA"
 "BAAB"
 "BABA"
 "BBAA"

Anagrams
Enter the letters: aeinrst
The anagrams of aeinrst are:
 anestri
 nastier
 ratines
 retains
 retinas
 retsina
 stainer
 stearin

372 Recursive Strategies

 8.4 Graphical recursion
Some of the most exciting applications of recursion use graphics to create intricate
pictures in which a particular motif is repeated at many different scales. The
remainder of this chapter offers a few examples of graphical recursion that make
use of the graphics.h interface introduced briefly at the end of Chapter 2. This
material is not essential to learning about recursion, and you can skip it if you don’t
have ready access to the graphics library. On the other hand, working through these
examples will make recursion seem a lot more powerful, not to mention more fun.

An example from computer art
In the early part of the twentieth century, a controversial artistic movement arose in
Paris, largely under the influence of Pablo Picasso and Georges Braque. The
Cubists—as they were called by their critics—rejected classical artistic notions of
perspective and representationalism and instead produced highly fragmented works
based on primitive geometrical forms. Strongly influenced by Cubism, the Dutch
painter Piet Mondrian (1872–1944) produced a series of compositions based on
horizontal and vertical lines, such as the one shown in Figure 8-3.

Suppose that you want to generate compositions such as the following, which—
like much of Mondrian’s work—consists only of horizontal and vertical lines:

F I G U R E 8 - 3 Image and grid pattern from Mondrian, “Composition with Grid 6,” 1919

 8.4 Graphical recursion 373

How would you go about designing a general strategy to create such a figure using
the graphics library?

To understand how a program might produce such a figure, it helps to think
about the process as one of successive decomposition. At the beginning, the canvas
was simply an empty rectangle that looked like this:

If you want to subdivide the canvas using a series of horizontal and vertical lines,
the easiest way to start is by drawing a single line that divides the rectangle in two:

374 Recursive Strategies

If you’re thinking recursively, the thing to notice at this point is that you now
have two empty rectangular canvases, each of which is smaller in size. The task of
subdividing these rectangles is the same as before, so you can perform it by using a
recursive implementation of the same procedure.

The only thing needed for a complete recursive strategy is a simple case. The
process of dividing up rectangles can’t go on indefinitely. As the rectangles get
smaller and smaller, at some point the process has to stop. One approach is to look
at the area of each rectangle before you start. Once the area of a rectangle falls
below some threshold, you needn’t bother to subdivide it any further.

The Mondrian.cpp program in Figure 8-4 implements the recursive algorithm,
using the entire graphics window as the initial canvas. In Mondrian.cpp, the
recursive function subdivideCanvas does all the work. The arguments give the
position and dimensions of the current rectangle on the canvas. At each step in the
decomposition, the function simply checks to see whether the rectangle is large
enough to split. If it is, the function checks to see which dimension—width or
height—is larger and accordingly divides the rectangle with a vertical or horizontal
line. In each case, the function draws only a single line; all remaining lines in the
figure are drawn by subsequent recursive calls.

Fractals
In the late 1970s, a researcher at IBM named Benoit Mandelbrot (1924–2010)
generated a great deal of excitement by publishing a book on fractals, which are
geometrical structures in which the same pattern is repeated at many different
scales. Although mathematicians have known about fractals for a long time, there
was a resurgence of interest in the subject during the 1980s, partly because the
development of computers made it possible to do so much more with fractals than
had ever been possible before.

One of the earliest examples of fractal figures is called the Koch snowflake after
its inventor, Helge von Koch (1870–1924). The Koch snowflake begins with an
equilateral triangle like this:

 8.4 Graphical recursion 375

Mondrian.cpp
F I G U R E 8 - 4 Program to subdivide the plane in a Mondrian-like style

/*
 * File: Mondrian.cpp
 * ------------------
 * This program creates a random line drawing in a style reminiscent
 * of the Dutch painter Piet Mondrian.
 */

#include <iostream>
#include "graphics.h"
#include "random.h"
using namespace std;

/* Constants */

const double MIN_AREA = 10000; /* Smallest square that will be split */
const double MIN_EDGE = 20; /* Smallest edge length allowed */

/* Function prototypes */

void subdivideCanvas(double x, double y, double width, double height);

/* Main program */

int main() {
 initGraphics();
 subdivideCanvas(0, 0, getWindowWidth(), getWindowHeight());
 return 0;
}

/*
 * Function: subdivideCanvas
 * Usage: subdivideCanvas(x, y, width, height);
 * --
 * Decomposes the specified rectangular region on the canvas recursively
 * using randomly chosen horizontal and vertical lines. The rectangle
 * will not be split if its area is too small, and the division is always
 * chosen so that it splits the larger of the two dimensions.
 */

void subdivideCanvas(double x, double y, double width, double height) {
 if (width * height >= MIN_AREA) {
 if (width > height) {
 double mid = randomReal(MIN_EDGE, width - MIN_EDGE);
 subdivideCanvas(x, y, mid, height);
 subdivideCanvas(x + mid, y, width - mid, height);
 drawLine(x + mid, y, x + mid, y + height);
 } else {
 double mid = randomReal(MIN_EDGE, height - MIN_EDGE);
 subdivideCanvas(x, y, width, mid);
 subdivideCanvas(x, y + mid, width, height - mid);
 drawLine(x, y + mid, x + width, y + mid);
 }
 }
}

376 Recursive Strategies

This triangle, in which the sides are straight lines, is called the Koch snowflake of
order 0. The figure is then revised in stages to generate fractals of successively
higher orders. At each stage, every straight-line segment in the figure is replaced by
one in which the middle third consists of a triangular bump protruding outward
from the figure. Thus, the first step is to replace each line segment in the triangle
with a line that looks like this:

Applying this transformation to each of the three sides of the original triangle
generates the Koch snowflake of order 1, as follows:

If you then replace each line segment in this figure with a new line that again
includes a triangular wedge, you create the following order-2 Koch snowflake:

Replacing each of these line segments gives the order-3 fractal shown in the
following diagram, which now looks even more like a snowflake:

 8.4 Graphical recursion 377

Because figures like the Koch snowflake are much easier to draw by computer
than by hand, it makes sense to write a program that uses the facilities exported by
the graphics.h interface to generate this design. Although it is possible to draw
fractal snowflakes using only the drawLine function, it is usually easier to use the
drawPolarLine function in the graphics library, which lets you specify a line in
terms of its length and a direction. In mathematics, the length and direction of a line
segment are conventionally represented by the symbols r and θ, which are called its
polar coordinates. The use of polar coordinates is illustrated by the following
diagram, in which the solid line has length r and extends from its starting point at
the angle θ measured in degrees counterclockwise from the x-axis:

The drawPolarLine function takes the coordinates of the starting point (either
as separate coordinates or as a GPoint object) and returns the coordinates of the
other endpoint of the line segment, thereby making it easy to chain consecutive
segments together. For example, the following code draws a downward-pointing
equilateral triangle whose upper left corner is at the original value of pt:

pt = drawPolarLine(pt, size, 0);
pt = drawPolarLine(pt, size, -120);
pt = drawPolarLine(pt, size, +120);

This code creates the snowflake fractal of order 0. To generalize it so that it creates
higher-order fractals, all you need to do is replace the calls to drawPolarLine with
a new function drawFractalLine that takes an additional parameter specifying
the order of the fractal line, as follows:

pt = drawFractalLine(pt, size, 0, order);
pt = drawFractalLine(pt, size, -120, order);
pt = drawFractalLine(pt, size, +120, order);

The only remaining task is to implement drawFractalLine, which is easy if

you think about it recursively. The simple case for drawFractalLine occurs
when order is 0, in which case the function simply draws a straight line with the
specified length and direction. If order is greater than 0, the fractal line is broken
down into four components, each of which is a fractal line of the next lower order.
Like drawPolarLine, the drawFractalLine function returns the end point of the
last segment it draws so that the next fractal line can begin where the last one left
off. The complete implementation of the Snowflake program, which includes the
finished code for drawFractalLine, appears in Figure 8-5.

r

x-axis
θ

378 Recursive Strategies

Snowflake.cpp
F I G U R E 8 - 5 Program to draw the Koch fractal snowflake

/*
 * File: Snowflake.cpp
 * -------------------
 * This program draws a Koch fractal snowflake.
 */

#include <iostream>
#include <cmath>
#include "graphics.h"
#include "gtypes.h"
#include "simpio.h"
using namespace std;

/* Function prototypes */

GPoint drawFractalLine(GPoint pt, double len, double theta, int order);

/* Main program */

int main() {
 initGraphics();
 cout << "Program to draw a snowflake fractal." << endl;
 double size = getReal("Enter edge length in pixels: ");
 int order = getInteger("Enter order of fractal: ");
 double cx = getWindowWidth() / 2;
 double cy = getWindowHeight() / 2;
 GPoint pt(cx - size / 2, cy - sqrt(3.0) * size / 6);
 pt = drawFractalLine(pt, size, 0, order);
 pt = drawFractalLine(pt, size, -120, order);
 pt = drawFractalLine(pt, size, +120, order);
 return 0;
}

/*
 * Function: drawFractalLine
 * Usage: GPoint end = drawFractalLine(pt, len, theta, order);
 * ---
 * Draws a fractal edge starting from the point pt and then extending
 * len units in direction theta. If order is 0, the fractal edge is
 * a straight line. If order is greater than zero, the edge is divided
 * into four line segments, each of which is a fractal edge of the next
 * lower order. The function returns the end point of the line.
 */

GPoint drawFractalLine(GPoint pt, double len, double theta, int order) {
 if (order == 0) {
 return drawPolarLine(pt, len, theta);
 } else {
 pt = drawFractalLine(pt, len / 3, theta, order - 1);
 pt = drawFractalLine(pt, len / 3, theta + 60, order - 1);
 pt = drawFractalLine(pt, len / 3, theta - 60, order - 1);
 return drawFractalLine(pt, len / 3, theta, order - 1);
 }
}

 Summary 379

Summary
This chapter in fact introduces relatively few new concepts because the fundamental
precepts of recursion were introduced in Chapter 7. The point of this chapter is to
raise the sophistication of the recursive examples to the point at which the problems
become difficult to solve in any other way. Given this increase in sophistication,
beginning students often find these problems much harder to comprehend than those
in the preceding chapter. They are indeed harder, but recursion is a tool for solving
hard problems. To master it, you need to practice with problems at this level of
complexity.

The important points in this chapter include:

• Whenever you want to apply recursion to a programming problem, you have to

devise a strategy that transforms the problem into simpler instances of the same
problem. Until you find the correct insight that leads to the recursive strategy,
there is no way to apply recursive techniques.

• Once you identify a recursive approach, it is important for you to check your
strategy to ensure that it does not violate any conditions imposed by the problem.

• When the problems you are trying to solve increase in complexity, the
importance of accepting the recursive leap of faith increases.

• Recursion is not magical. If you need to do so, you can simulate the operation of
the computer yourself by drawing the stack frames for every procedure that is
called in the course of the solution. On the other hand, it is critical to get beyond
the skepticism that forces you to look at all the underlying details.

Review questions
1. In your own words, describe the recursive insight necessary to solve the

Towers of Hanoi puzzle.

2. The following strategy for solving the Towers of Hanoi puzzle is structurally

similar to the strategy used in the text:

a. Move the top disk from the start spire to the temporary spire.

b. Move a stack of N–1 disks from the start spire to the finish spire.

c. Move the top disk now on the temporary spire back to the finish spire.

Why does this strategy fail?

3. If you call

moveTower(16, 'A', 'B', 'C')

380 Recursive Strategies

what line is displayed by moveSingleDisk as the first step in the solution?
What is the last step in the solution?

4. What is a permutation?

5. In your own words, explain the recursive insight necessary to enumerate the

permutations of the characters in a string.

6. How many permutations are there of the string "WXYZ"?

7. What simple case is used to terminate the recursion in Mondrian.cpp?

8. Draw a picture of the order-1 fractal snowflake.

9. How many line segments appear in the order-2 fractal snowflake?

Exercises
1. Following the logic of the moveTower function, write a recursive function

countHanoiMoves(n) that computes the number of moves required to solve
the Towers of Hanoi puzzle for n disks.

2. To make the operation of the program somewhat easier to explain, the

implementation of moveTower in this chapter uses

if (n == 1)

as its simple case test. Whenever you see a recursive program use 1 as its
simple case, it pays to be a little skeptical; in most applications, 0 is a more
appropriate choice. Rewrite the Towers of Hanoi program so that the
moveTower function checks whether n is 0 instead. What happens to the
length of the moveTower implementation?

3. Rewrite the Towers of Hanoi program so that it uses an explicit stack of

pending tasks instead of recursion. In this context, a task can be represented
most easily as a structure containing the number of disks to move and the
names of the spires used for the start, finish, and temporary repositories. At
the beginning of the process, you push onto your stack a single task that
describes the process of moving the entire tower. The program then
repeatedly pops the stack and executes the task found there until no tasks are
left. Except for the simple cases, the process of executing a task results in the
creation of more tasks that get pushed onto the stack for later execution.

4. In the subset-sum problem introduced in section 8-2, there are often several

ways to generate the desired target number. For example, given the set

 Exercises 381

{ 1, 3, 4, 5 }, there are two different ways to produce the target value 5:

• Select the 1 and the 4

• Select just the 5

By contrast, there is no way to partition the set { 1, 3, 4, 5 } to get 11.

Write a function

int countSubsetSumWays(Set<int> & set, int target);

that returns the number of ways in which you can produce the target value by
choosing a subset of the specified set. For example, suppose that sampleSet
has been initialized as follows:

Set<int> sampleSet;
sampleSet += 1, 3, 4, 5;

Given this definition of sampleSet, calling

countSubsetSumWays(sampleSet, 5);

should return 2 (there are two ways to make 5), and calling

countSubsetSumWays(sampleSet, 11)

should return 0 (there are no ways to make 11).

5. Write a program EmbeddedWords that finds all English words that can be

formed by taking some subset of letters in order from a given starting word.
For example, given the starting word happy, you can certainly produce the
words a, ha, hap, and happy, in which the letters appear consecutively. You
can also produce the words hay and ay, because those letters appear in happy
in the correct left-to-right order. You cannot, however, produce the words pa
or pap because the letters—even though they appear in the word—don’t
appear in the correct order. A sample run of the program might look like this:

EmbeddedWords
Enter starting word: happy
The embedded words are:
 a
 ay
 ha
 hap
 happy
 hay

382 Recursive Strategies

6. I am the only child of parents who weighed, measured,
and priced everything; for whom what could not be
weighed, measured, and priced had no existence.

—Charles Dickens, Little Dorrit, 1857

In Dickens’s time, merchants measured many commodities using weights and
a two-pan balance—a practice that continues in many parts of the world today.
If you are using a limited set of weights, however, you can only measure
certain quantities accurately. For example, suppose that you have only two
weights: a 1-ounce weight and a 3-ounce weight. With these you can easily
measure out 4 ounces, as shown:

It is somewhat more interesting to discover that you can also measure out 2
ounces by shifting the 1-ounce weight to the other side, as follows:

Write a recursive function

bool isMeasurable(int target, Vector<int> & weights)

that determines whether it is possible to measure out the desired target amount
with a given set of weights, which is stored in the vector weights.

For example, suppose that sampleWeights has been initialized like this:

Vector<int> sampleWeights;
sampleWeights += 1, 3;

Given these values, the function call

isMeasurable(2, sampleWeights)

should return true because it is possible to measure out 2 ounces using the
sample weight set as illustrated in the preceding diagram. On the other hand,
calling

isMeasurable(5, sampleWeights)

1 3

1 3

 Exercises 383

should return false because it is impossible to use the 1- and 3-ounce
weights to measure out 5 ounces.

7. In the card game called Cribbage, part of the game consists of adding up the

score from a set of five playing cards. One of the components of the score is
the number of distinct card combinations whose values add up to 15, with aces
counting as 1 and all face cards (jacks, queens, and kings) counting as 10.
Consider, for example, the following cards:

There are three different combinations that sum to 15, as follows:

AD + 10S + 4H AD + 5C + 9C 5C + 10S

As a second example, the cards

contain the following eight different combinations that add up to 15:

5C + JC 5D + JC 5H + JC 5S + JC
5C + 5D + 5H 5C + 5D + 5S 5C + 5H + 5S 5D + 5H + 5S

Write a function

int countFifteens(Vector<Card> & cards);

that takes a vector of Card values (as defined in Chapter 6, exercise 4) and
returns the number of ways you can make 15 from that set of cards. You don’t
need to know much about the Card class to solve this problem. The only
thing you need is the getRank method, which returns the rank of the card as
an integer. You may assume that the card.h interface exports the constant
names ACE, JACK, QUEEN, and KING with the values 1, 11, 12, and 13,
respectively.

♦

♦
A

♦
A

♣ ♣
♣

♣
5

♣♣ ♣
5

♠ ♠
♠ ♠♠

♠
l0

♠♠
♠♠♠

♠
l0

♥ ♥♥
4

♥♥ ♥
4

♣ ♣
♣ ♣
♣

♣
9

♣♣
♣♣

♣
9

♣ ♣
♣

♣
5

♣♣ ♣
5

♦ ♦
♦

♦
5

♦♦ ♦
5

♥ ♥
♥

♥
5

♥♥ ♥
5

♠ ♠
♠

♠
5

♠♠ ♠
5

♣♣
J

♣♣
J

384 Recursive Strategies

8. The recursive decomposition presented in section 8-3 to solve the problem of
generating permutations is not the only effective strategy. Another way to
look at the problem is to solve the recursive case looks like this:

a) Remove the first character from the string and store it in the variable ch.

b) Generate the set containing all permutations of the remaining characters.

c) Form a new set by inserting ch in every possible position in each of those
permutations.

Reimplement the Permutations program so that it uses this new strategy.

9. The strategy used to implement the Permutations program in the text is

designed to emphasize its recursive character. The resulting code is not
particularly efficient, mostly because it ends up generating sets that are later
discarded and because it applies methods like substr that require copying the
characters in a string. It is possible to eliminate those inefficiencies using the
following recursive formulation:

a) At each level, pass the entire string along with an index that indicates

where the permutation process starts. Characters in the string before this
index stay where they are; characters at or after that position must go
through all their permutations.

b) The simple case occurs when the index reaches the end of the string.

c) The recursive case operates by swapping the character at the index
position with every other character in the string and then generating every
permutation starting with the next higher index and then swapping the
characters back to ensure that the original order is restored.

Use this strategy to implement a function

void listPermutations(string str);

that lists on cout all permutations of the string str without generating any
sets at all or applying any string methods other than length or selection. The
listPermutations function itself must be a wrapper function for a second
function that includes the index.

This function is relatively easy to implement if you don’t try to take
account of duplicated letters in the string. The interesting challenge comes in
adapting the structure of the algorithm so that it lists each unique permutation
exactly once without using sets to accomplish that task. You should not,
however, worry about the order in which listPermutations delivers its
output.

 Exercises 385

10. On a telephone keypad, the digits are mapped onto the alphabet as shown in
the diagram below:

In order to make their phone numbers more memorable, service providers like
to find numbers that spell out some word (called a mnemonic) appropriate to
their business that makes that phone number easier to remember.

Imagine that you have just been hired by a local telephone company to
write a function listMnemonics that will generate all possible letter
combinations that correspond to a given number, represented as a string of
digits. For example, the call

listMnemonics("723")

should list the following 36 possible letter combinations that correspond to
that prefix:

PAD PBD PCD QAD QBD QCD RAD RBD RCD SAD SBD SCD
PAE PBE PCE QAE QBE QCE RAE RBE RCE SAE SBE SCE
PAF PBF PCF QAF QBF QCF RAF RBF RCF SAF SBF SCF

11. Rewrite the program from exercise 4 so that it uses the Lexicon class and the

EnglishWords.dat file so that the program only lists mnemonics that are
valid English words.

12. These days, the letters on a telephone keypad are not used for mnemonics as

much as they are for texting. Entering text using a keypad is problematic,
because there are fewer keys than there are letters in the alphabet. Some cell
phones use a “multi-tap” user interface, in which you tap the 2 key once for a,
twice for b, and three times for c, which can get tedious. A streamlined
alternative is to use a predictive strategy in which the cell phone guesses
which of the possible letter you intended, based on the sequence so far and its
possible completions.

* 0
 #

7
PQRS

8
TUV

9
WXYZ

4
GHI

5
JKL

6
MNO

1

2
ABC

3
DEF

386 Recursive Strategies

For example, if you type the digit sequence 72, there are 12 possibilities:
pa, pb, pc, qa, qb, qc, ra, rb, rc, sa, sb, and sc. Only four of these letter
pairs—pa, ra, sa, and sc—seem promising because they are prefixes of
common English words like party, radio, sandwich, and scanner. The
others can be ignored because there are no common words that begin with
those sequences of letters. If the user enters 9956, there are 144 (4 x 4 x 3 x 3)
possible letter sequences, but you can be assured the user meant xylo since
that is the only sequence that is a prefix of any English words.

Write a function

void listCompletions(string digits, Lexicon & lex);

that prints all words from the lexicon that can be formed by extending the
given digit sequence. For example, calling

listCompletions("72547", english)

should generate the following sample run:

If your only concern is getting the answer, the easiest way to solve this
problem is to iterate through the words in the lexicon and print out each word
that matches the specified digit string. That solution requires no recursion and
very little thinking. Your managers, however, believe that looking through
every word in the dictionary is slow and insist that your code use the lexicon
only to test whether a given string is a word or a prefix of an English word.
With that restriction, you need to figure out how to generate all possible letter
sequences from the string of digits. That task is easiest to solve recursively.

13. Many of Mondrian’s geometrical paintings fill in the rectangular regions with

some color, as in his “Composition with Color Planes and Gray Lines 1”
shown in Figure 8-6. Extend the Mondrian program from the text so that it
fills in some fraction of the rectangular regions it creates with randomly
chosen colors.

ListCompletions

palisade
palisaded
palisades
palisading
palish
rakis
rakish
rakishly
rakishness
sakis

 Exercises 387

14. In countries like the United States that still use the traditional English system
of measurement, each inch on a ruler is marked off into fractions using tick
marks that look like this:

The longest tick mark falls at the half-inch position, two smaller tick marks
indicate the quarter inches, and even smaller ones are used to mark the eighths
and sixteenths. Write a recursive program that draws a 1-inch line at the
center of the graphics window and then draws the tick marks shown in the
diagram. Assume that the length of the tick mark indicating the half-inch
position is given by the constant definition

const double HALF_INCH_TICK = 0.2;

and that each smaller tick mark is half the size of the next larger one.

F I G U R E 8 - 6 Piet Mondrian, “Composition with Color Planes and Gray Lines 1,” 1918

388 Recursive Strategies

15. One of the reasons that fractals have generated so much interest is that they
turn out to be useful in some surprising practical contexts. For example, the
most successful techniques for drawing computer images of mountains and
certain other landscape features involve using fractal geometry.

As a simple example of where this issue comes up, consider the problem of
connecting two points A and B with a fractal that looks like a coastline on a
map. The simplest possible strategy would be to draw a straight line between
the two points:

This is the order-0 coastline and represents the base case of the recursion.

Of course, a real coastline will have small peninsulas or inlets somewhere
along its length, so you would expect a realistic drawing of a coastline to jut in
or out occasionally like a real one. As a first approximation, you could replace
the straight line with the same fractal line used to create the snowflake fractal,
as follows:

This process gives the order-1 coastline. However, in order to give the feeling
of a traditional coastline, it is important for the triangular wedge in this line
sometimes to point up and sometimes down, with equal probability.

If you then replace each of the straight-line segments in the order-1 fractal

with a fractal line in a random direction, you get the order-2 coastline, which
might look like this:

Continuing this process eventually results in a drawing that conveys a
remarkably realistic sense, as in this order-5 coastline:

A B

A B

A B

 Exercises 389

Write a program to draw a fractal coastline on the graphics window.

16. To celebrate its 550th anniversary in 2008, Magdalen College at Oxford

commissioned the English artist Mark Wallinger to create a sculpture called Y
that has a decidedly recursive structure. A photograph of the sculpture appears
at the left of Figure 8-7 and a diagram illustrating its fractal nature appears at
the right. Given its branching structure, the underlying pattern in Wallinger’s
sculpture is called a fractal tree. The tree begins as a simple trunk indicated
by a straight vertical line, as follows:

A B

F I G U R E 8 - 7 Photograph and structure of Mark Wallinger’s fractal tree

390 Recursive Strategies

The trunk may branch at the top to form two lines that veer off at an angle, as
shown:

These branches may themselves split to form new branches, which split to
form new ones, and so on.

Write a program that uses the graphics library to draw the fractal tree in
Wallinger’s sculpture. If you carry this process on to the eighth-order fractal,
you get the image on the right of Figure 8-7.

18. If you search the web for fractal designs, you will find many intricate wonders

beyond the Koch snowflake illustrated in this chapter. One of these is the
Sierpinski Triangle, named after its inventor, the Polish mathematician
Wacław Sierpiński (1882–1969). The order-0 Sierpinski Triangle is an
equilateral triangle:

To create an order-N Sierpinski Triangle, you draw three Sierpinski Triangles
of order N – 1, each of which has half the edge length of the original. Those
three triangles are placed in the corners of the larger triangle, which means
that the order-1 Sierpinski Triangle looks like this:

 Exercises 391

The downward-pointing triangle in the middle of this figure is not drawn
explicitly, but is instead formed by the sides of the other three triangles. That
area, moreover, is not recursively subdivided and will remain unchanged at
every level of the fractal decomposition. Thus, the order-2 Sierpinski Triangle
has the same open area in the middle:

If you continue this process through three more recursive levels, you get the
order-5 Sierpinski Triangle, which looks like this:

Write a program that asks the user for an edge length and a fractal order
and draws the resulting Sierpinski Triangle in the center of the graphics
window.

Chapter 9
Backtracking Algorithms

Truth is not discovered by proofs but by exploration. It is
always experimental.

— Simone Weil, The New York Notebook, 1942

394 Backtracking Algorithms

For many real-world problems, the solution process consists of working your way
through a sequence of decision points in which each choice leads you further along
some path. If you make the correct set of choices, you end up at the solution. On
the other hand, if you reach a dead end or otherwise discover that you have made an
incorrect choice somewhere along the way, you have to backtrack to a previous
decision point and try a different path. Algorithms that use this approach are called
backtracking algorithms.

If you think about a backtracking algorithm as the process of repeatedly
exploring paths until you encounter the solution, the process appears to have an
iterative character. As it happens, however, most problems of this form are easier to
solve recursively. The fundamental recursive insight is simply this: a backtracking
problem has a solution if and only if at least one of the smaller backtracking
problems that result from making each possible initial choice has a solution. The
examples in this chapter are designed to illustrate this process and demonstrate the
power of recursion in this domain.

 9.1 Recursive backtracking in a maze
Once upon a time, in the days of Greek mythology, the Mediterranean island of
Crete was ruled by a tyrannical king named Minos. From time to time, Minos
demanded tribute from the city of Athens in the form of young men and women,
whom he would sacrifice to the Minotaur, a fearsome beast with the head of a bull
and the body of a man. To house this deadly creature, Minos forced his servant
Daedalus (the engineering genius who later escaped by constructing a set of wings)
to build a vast underground labyrinth at Knossos. The young sacrifices from Athens
would be led into the labyrinth, where they would be eaten by the Minotaur before
they could find their way out. This tragedy continued until young Theseus of
Athens volunteered to be one of the sacrifices. Following the advice of Minos’s
daughter Ariadne, Theseus entered the labyrinth with a sword and a ball of string.
After slaying the monster, Theseus was able to find his way back to the exit by
unwinding the string as he went along.

The right-hand rule
Ariadne’s strategy is an algorithm for escaping from a maze, but not everyone
trapped in a maze is lucky enough to have a ball of string. Fortunately, there are
other strategies for solving a maze. Of these strategies, the best known is called the
right-hand rule, which can be expressed in the following pseudocode form:

Put your right hand against a wall.
while (you have not yet escaped from the maze) {
 Walk forward keeping your right hand on a wall.
}

 9.1 Recursive backtracking in a maze 395

To visualize the operation of the right-hand rule, imagine that Theseus has
successfully dispatched the Minotaur and is now standing in the position marked by
the first character in Theseus’s name, the Greek letter theta (Θ):

If Theseus puts his right hand on the wall and then follows the right-hand rule from
there, he will trace out the path shown by the dashed line in this diagram:

Unfortunately, the right-hand rule does not in fact work in every maze. If there is a
loop that surrounds the starting position, Theseus can get trapped in an infinite loop,
as illustrated by the following simple maze:

Finding a recursive approach
As the while loop in its pseudocode form makes clear, the right-hand rule is an
iterative strategy. You can, however, also think about the process of solving a maze
from a recursive perspective. To do so, you must adopt a different mindset. You
can no longer think about the problem in terms of finding a complete path. Instead,
your goal is to find a recursive insight that simplifies the problem, one step at a

Θ

Θ

Θ

396 Backtracking Algorithms

time. Once you have made the simplification, you use the same process to solve
each of the resulting subproblems.

Let’s go back to the initial configuration of the maze shown in the illustration of
the right-hand rule. Put yourself in Theseus’s place. From the initial configuration,
you have three choices, as indicated by the arrows in the following diagram:

The exit, if any, must lie along one of those paths. Moreover, if you choose the
correct direction, you will be one step closer to the solution. The maze has
therefore become simpler along that path, which is the key to a recursive solution.
This observation suggests the necessary recursive insight. The original maze has a
solution if and only if it is possible to solve at least one of the new mazes shown in
Figure 9-1. The × in each diagram marks the original starting square and is
off-limits for any of the recursive solutions because the optimal solution will never
have to backtrack through this square.

By looking at the mazes in Figure 9-1, it is easy to see—at least from your global
vantage point—that the submazes labeled (a) and (c) represent dead-end paths and
that the only solution begins in the direction shown in the submaze (b). If you are
thinking recursively, however, you don’t need to carry on the analysis all the way to

Θ

F I G U R E 9 - 1 Recursive decomposition of a maze

Θ

(a)

Θ

(b)

Θ

(c)

 9.1 Recursive backtracking in a maze 397

the solution. You have already decomposed the problem into simpler instances. All
you need to do is rely on the power of recursion to solve the individual
subproblems, and you’re home free. You still have to identify a set of simple cases
so that the recursion can terminate, but the hard work has been done.

Identifying the simple cases
What constitutes the simple case for a maze? One possibility is that you might
already be standing outside the maze. If so, you’re finished. Clearly, this situation
represents one simple case. There is, however, another possibility. You might also
reach a blind alley where you’ve run out of places to move. For example, if you try
to solve the sample maze by moving north and then continue to make recursive calls
along that path, you will eventually be in the position of trying to solve the
following maze:

At this point, you’ve run out of room to maneuver. Every path from the new
position is either marked or blocked by a wall, which makes it clear that the maze
has no solution from this point. Thus, the maze problem has a second simple case
in which every direction from the current square is blocked, either by a wall or a
marked square.

It is easier to code the recursive algorithm if, instead of checking for marked
squares as you consider the possible directions of motion, you go ahead and make
the recursive calls on those squares. If you check at the beginning of the procedure
to see whether the current square is marked, you can terminate the recursion at that
point. After all, if you find yourself positioned on a marked square, you must be
retracing your path, which means that the optimal solution must lie in some other
direction.

Thus, the two simple cases for this problem are as follows:

1. If the current square is outside the maze, the maze is solved.

2. If the current square is marked, the maze is unsolvable, at least along the path
you’ve chosen so far.

Θ

398 Backtracking Algorithms

Coding the maze solution algorithm
Although the recursive insight and the simple cases are all you need to solve the
problem on a conceptual level, writing a complete program to navigate a maze
requires you to consider a number of implementation details as well. For example,
you need to decide on a representation for the maze itself that allows you to figure
out where the walls are, keep track of the current position, indicate that a particular
square is marked, and determine whether you have escaped from the maze. While
designing an appropriate data structure for the maze is an interesting programming
challenge in its own right, it has very little to do with understanding the recursive
algorithm, which is the focus of this discussion. If anything, the details of the data
structure are likely to get in the way and make it more difficult for you to
understand the algorithmic strategy as a whole. Fortunately, it is possible to set
those details aside by introducing a new interface that hides some of the complexity.
The maze.h interface in Figure 9-2 exports a class called Maze that encapsulates all
the information necessary to keep track of the passages in a maze and to display that
maze in the graphics window.

Once you have access to the Maze class, writing a program to solve a maze
becomes much simpler. The goal of this exercise is to write a function

bool solveMaze(Maze & maze, Point pt);

The arguments to solveMaze are (1) the Maze object that holds the data structure
and (2) the starting position, which changes for each of the recursive subproblems.
To ensure that the recursion can terminate when a solution is found, the solveMaze
function returns true if a solution has been found, and false otherwise.

Given this definition of solveMaze, the main program looks like this:

int main() {
 initGraphics();
 Maze maze("SampleMaze.txt");
 maze.showInGraphicsWindow();
 if (solveMaze(maze, maze.getStartPosition())) {
 cout << "The marked path is a solution." << endl;
 } else {
 cout << "No solution exists." << endl;
 }
 return 0;
}

 9.1 Recursive backtracking in a maze 399

maze.h, p1
F I G U R E 9 - 2 The maze.h interface

/*
 * File: maze.h
 * ------------
 * This interface exports the Maze class.
 */

#ifndef _maze_h
#define _maze_h

#include "grid.h"
#include "point.h"

/*
 * Class: Maze
 * -----------
 * This class represents a two-dimensional maze contained in a rectangular
 * grid of squares. The maze is read in from a data file in which the
 * characters '+', '-', and '|' represent corners, horizontal walls, and
 * vertical walls, respectively; spaces represent open passageway squares.
 * The starting position is indicated by the character 'S'. For example,
 * the following data file defines a simple maze:
 *
 * +-+-+-+-+-+
 * | |
 * + +-+ + +-+
 * |S | |
 * +-+-+-+-+-+
 */

class Maze {

public:

/*
 * Constructor: Maze
 * Usage: Maze maze(filename);
 * ---------------------------
 * Constructs a new maze by reading the specified data file.
 */

 Maze(string filename);

/*
 * Method: showInGraphicsWindow
 * Usage: showInGraphicsWindow();
 * showInGraphicsWindow(x, y);
 * ----------------------------------
 * Displays the maze in the graphics window, positioned with its origin
 * at the point (x, y), which defaults to center the maze in the window.
 */

 void showInGraphicsWindow();
 void showInGraphicsWindow(double x, double y);

400 Backtracking Algorithms

maze.h, p2
F I G U R E 9 - 2 The maze.h interface (continued)

/*
 * Method: getStartPosition
 * Usage: Point start = maze.getStartPosition();
 * ---
 * Returns a Point indicating the coordinates of the start square.
 */

 Point getStartPosition();

/*
 * Method: isOutside
 * Usage: if (maze.isOutside(pt)) . . .
 * ------------------------------------
 * Returns true if the specified point is outside the boundary of the maze.
 */

 bool isOutside(Point pt);

/*
 * Method: wallExists
 * Usage: if (maze.wallExists(pt, dir)) . . .
 * --
 * Returns true if there is a wall in direction dir from the square at pt.
 */

 bool wallExists(Point pt, Direction dir);

/*
 * Method: markSquare
 * Usage: maze.markSquare(pt);
 * ---------------------------
 * Marks the specified square in the maze.
 */

 void markSquare(Point pt);

/*
 * Method: unmarkSquare
 * Usage: maze.unmarkSquare(pt);
 * -----------------------------
 * Unmarks the specified square in the maze.
 */

 void unmarkSquare(Point pt);

/*
 * Method: isMarked
 * Usage: if (maze.isMarked(pt)) . . .
 * -----------------------------------
 * Returns true if the specified square is marked.
 */

 bool isMarked(Point pt);

#include "mazepriv.h"

};

 9.1 Recursive backtracking in a maze 401

The code for the solveMaze function appears in Figure 9-3, along with the
function adjacentPoint(start, dir), which returns the point you reach if you
move in the specified direction from the starting point.

F I G U R E 9 - 3 The implementation of the solveMaze function

/*
 * Function: solveMaze
 * Usage: solveMaze(maze, start);
 * ------------------------------
 * Attempts to generate a solution to the current maze from the specified
 * start point. The solveMaze function returns true if the maze has a
 * solution and false otherwise. The implementation uses recursion
 * to solve the submazes that result from marking the current square
 * and moving one step along each open passage.
 */

bool solveMaze(Maze & maze, Point start) {
 if (maze.isOutside(start)) return true;
 if (maze.isMarked(start)) return false;
 maze.markSquare(start);
 for (Direction dir = NORTH; dir <= WEST; dir++) {
 if (!maze.wallExists(start, dir)) {
 if (solveMaze(maze, adjacentPoint(start, dir))) {
 return true;
 }
 }
 }
 maze.unmarkSquare(start);
 return false;
}

/*
 * Function: adjacentPoint
 * Usage: Point finish = adjacentPoint(start, dir);
 * --
 * Returns the point that results from moving one square from start
 * in the direction specified by dir. For example, if pt is the
 * point (1, 1), calling adjacentPoint(pt, EAST) returns the
 * point (2, 1). To maintain consistency with the graphics package,
 * the y coordinates increase as you move downward on the screen. Thus,
 * moving NORTH decreases the y component, and moving SOUTH increases it.
 */

Point adjacentPoint(Point start, Direction dir) {
 switch (dir) {
 case NORTH: return Point(start.getX(), start.getY() - 1);
 case EAST: return Point(start.getX() + 1, start.getY());
 case SOUTH: return Point(start.getX(), start.getY() + 1);
 case WEST: return Point(start.getX() - 1, start.getY());
 }
 return start;
}

402 Backtracking Algorithms

Convincing yourself that the solution works
In order to use recursion effectively, at some point you must be able to look at a
recursive function like the solveMaze example in Figure 9-3 and say to yourself
something like this: “I understand how this works. The problem is getting simpler
because more squares are marked each time. The simple cases are clearly correct.
This code must do the job.” For most of you, however, that confidence in the power
of recursion will not come easily. Your natural skepticism makes you want to see
the steps in the solution. The problem is that, even for a maze as simple as the one
shown earlier in this chapter, the complete history of the steps involved in the
solution is far too large to think about comfortably. Solving that maze, for example,
requires 66 calls to solveMaze that are nested 27 levels deep when the solution is
finally discovered. If you attempt to trace the code in detail, you will almost
certainly get lost.

If you are not yet ready to accept the recursive leap of faith, the best you can do
is track the operation of the code in a more general sense. You know that the code
first tries to solve the maze by moving one square to the north, because the for loop
goes through the directions in the order defined by the Direction enumeration.
Thus, the first step in the solution process is to make a recursive call that starts in
the following position:

At this point, the same process occurs again. The program again tries to move
north and makes a new recursive call in the following position:

Θ

Θ

 9.1 Recursive backtracking in a maze 403

At this level of the recursion, moving north is no longer possible, so the for loop
cycles through the other directions. After a brief excursion southward, upon which
the program encounters a marked square, the program finds the opening to the west
and proceeds to generate a new recursive call. The same process occurs in this new
square, which in turn leads to the following configuration:

In this position, none of the directions in the for loop do any good; every square
is either blocked by a wall or already marked. Thus, when the for loop at this level
exits at the bottom, it unmarks the current square and returns to the previous level.
It turns out that all the paths have also been explored in this position, so the program
once again unmarks the square and returns to the next higher level in the recursion.
Eventually, the program backtracks all the way to the initial call, having completely
exhausted the possibilities that begin by moving north. The for loop then tries the
eastward direction, finds it blocked, and continues on to explore the southern
corridor, beginning with a recursive call in the following configuration:

From here on, the same process ensues. The recursion systematically explores
every corridor along this path, backing up through the stack of recursive calls
whenever it reaches a dead end. The only difference along this route is that
eventually—after descending through an additional recursive level for every step on
the path—the program makes a recursive call in the following position:

Θ

Θ

404 Backtracking Algorithms

At this point, Theseus is outside the maze, so the simple case kicks in and returns
true to its caller. This value is then propagated back through all 27 levels of the
recursion, eventually returning back to the main program.

 9.2 Backtracking and games
Although backtracking is easiest to illustrate in the context of a maze, the strategy is
considerably more general. For example, you can apply backtracking to most
two-player strategy games. The first player has several choices for an initial move.
Depending on which move is chosen, the second player then has a particular set of
responses. Each of these responses leads in turn to new options for the first player,
and this process continues until the end of the game. The different possible
positions at each turn in the game form a branching structure in which each option
opens up more and more possibilities.

If you want to program a computer to take one side of a two-player game, one
approach is to have the computer follow all the branches in the list of possibilities.
Before making its first move, the computer would try every possible choice. For
each of these choices, it would then try to determine what its opponent’s response
would be. To do so, it would follow the same logic: try every possibility and
evaluate the possible counterplays. If the computer can look far enough ahead to
discover that some move would leave its opponent in a hopeless position, it should
make that move.

In theory, this strategy can be applied to any two-player strategy game. In
practice, the process of looking at all the possible moves, potential responses,
responses to those responses, and so on requires too much time and memory, even
for modern computers. There are, however, several games that are simple enough
to solve by looking at all the possibilities, yet complex enough so that the solution is
not immediately obvious to the human player.

Θ

 9.2 Backtracking and games 405

The game of Nim
To see how recursive backtracking applies to two-player games, it helps to consider
a simple example such as the game of Nim, which is the generic name for an entire
class of games in which players take turns removing objects from some initial
configuration. In this particular version, the game begins with a pile of 13 coins.
On each turn, players take either one, two, or three coins from the pile and put them
aside. The object of the game is to avoid being forced to take the last coin.
Figure 9-4 shows a sample game between the computer and a human player.

How would you go about writing a program to play a winning game of Nim?
The mechanical aspects of the game—keeping track of the number of coins, asking
the player for a legal move, determining the end of the game, and so forth—are a
straightforward programming task. The interesting part of the program consists of
figuring out how to give the computer a strategy for playing the best possible game.

Finding a successful strategy for Nim is not particularly hard, particularly if you
work backward from the end of the game. The rules of Nim indicate that the loser
is the player who takes the last coin. Thus, if you ever find yourself with just one
coin on the table, you’re in a bad position. You have to take that coin and lose. On
the other hand, things look good if you find yourself with two, three, or four coins.
In any of these cases, you can always take all but one of the remaining coins,
leaving your opponent in the unenviable position of being stuck with just one coin.

F I G U R E 9 - 4 Sample run of the Nim game

Nim
Welcome to the game of Nim!
In this game, we will start with a pile of
13 coins on the table. On each turn, you
and I will alternately take between 1 and
3 coins from the table. The player who
takes the last coin loses.

There are 13 coins in the pile.
How many would you like? 2
There are 11 coins in the pile.
I'll take 2.
There are 9 coins in the pile.
How many would you like? 3
There are 6 coins in the pile.
I'll take 1.
There are 5 coins in the pile.
How many would you like? 1
There are 4 coins in the pile.
I'll take 3.
There is only one coin left.
I win.

406 Backtracking Algorithms

But what if there are five coins on the table? What can you do then? After a bit of
thought, it’s easy to see that you’re also doomed if you’re left with five coins. No
matter what you do, you have to leave your opponent with two, three, or four
coins—situations that you’ve just discovered represent good positions from your
opponent’s perspective. If your opponent is playing intelligently, you will surely be
left with a single coin on your next turn. Since you have no good moves, being left
with five coins is clearly a bad position.

This informal analysis reveals an important insight about the game of Nim. On
each turn, you are looking for a good move. A good move is one that leaves your
opponent in a bad position. But what is a bad position? A bad position is one in
which there is no good move.

Even though these definitions of good move and bad position are circular, they
nonetheless constitute a complete strategy for playing a perfect game of Nim. You
just have to rely on the power of recursion. If you have a function findGoodMove
that takes the number of coins as its argument, all it has to do is try every
possibility, looking for one that leaves a bad position for the opponent. You can
then assign the job of determining whether a particular position is bad to the
predicate function isBadPosition, which calls findGoodMove to see if there is
one. The two functions call each other back and forth, evaluating all possible
branches as the game proceeds.

The mutually recursive functions findGoodMove and isBadPosition provide
all the strategy that the Nim program needs to play a perfect game. To complete the
program, all you need to do is write the code that takes care of the mechanics of
playing Nim with a human player. This code is responsible for setting up the game,
printing out instructions, keeping track of whose turn it is, asking the user for a
move, checking whether that move is legal, updating the number of coins, figuring
out when the game is over, and letting the user know who won.

Although none of these tasks is conceptually difficult, the Nim application is
large enough that it makes sense to adopt the implementation strategy described in
section 6.5, in which the program is defined as a class rather than as a collection of
free functions. Figure 9-5 shows an implementation of the Nim game that adopts
this design. The code for the game is encapsulated in a class called SimpleNim,
along with two instance variables that keep track of the progress of play:

• An integer variable nCoins that records the number of coins in the pile.

 • A variable whoseTurn that indicates which player is about to move. This value
is stored using the enumerated type Player, which defines the constants HUMAN
and COMPUTER. At the end of each turn, the code for the play method passes
the turn to the next player by setting whoseTurn to opponent(whoseTurn).

 9.2 Backtracking and games 407

Nim.cpp
F I G U R E 9 - 5 The Nim.cpp implementation

/*
 * File: Nim.cpp
 * -------------
 * This program simulates a simple variant of the game of Nim. In this
 * version, the game starts with a pile of 13 coins on a table. Players
 * then take turns removing 1, 2, or 3 coins from the pile. The player
 * who takes the last coin loses.
 */

#include <iostream>
#include <string>
#include "error.h"
#include "simpio.h"
#include "strlib.h"
using namespace std;

/* Constants */

const int N_COINS = 13; /* Initial number of coins */
const int MAX_MOVE = 3; /* Number of coins a player may take */
const int NO_GOOD_MOVE = -1; /* Marker indicating there is no good move */

/*
 * Type: Player
 * ------------
 * This enumerated type differentiates the human and computer players.
 */

enum Player { HUMAN, COMPUTER };

/*
 * Method: opponent
 * Usage: Player other = opponent(player);
 * ---------------------------------------
 * Returns the opponent of the player. The opponent of the computer
 * is the human player and vice versa.
 */

Player opponent(Player player) {
 return (player == HUMAN) ? COMPUTER : HUMAN;
}

/*
 * Constant: STARTING_PLAYER
 * -------------------------
 * Indicates which player should start the game.
 */

const Player STARTING_PLAYER = HUMAN;

408 Backtracking Algorithms

nim.cpp, p2
F I G U R E 9 - 5 The Nim.cpp implementation (continued)

/*
 * Class: SimpleNim
 * ----------------
 * The SimpleNim class implements the simple version of Nim.
 */

class SimpleNim {

public:

/*
 * Method: play
 * Usage: game.play();
 * -------------------
 * Plays one game of Nim with the human player.
 */

 void play() {
 nCoins = N_COINS;
 whoseTurn = STARTING_PLAYER;
 while (nCoins > 1) {
 cout << "There are " << nCoins << " coins in the pile." << endl;
 if (whoseTurn == HUMAN) {
 nCoins -= getUserMove();
 } else {
 int nTaken = getComputerMove();
 cout << "I'll take " << nTaken << "." << endl;
 nCoins -= nTaken;
 }
 whoseTurn = opponent(whoseTurn);
 }
 announceResult();
 }

/*
 * Method: printInstructions
 * Usage: game.printInstructions();
 * -------------------------------
 * This method explains the rules of the game to the user.
 */

 void printInstructions() {
 cout << "Welcome to the game of Nim!" << endl;
 cout << "In this game, we will start with a pile of" << endl;
 cout << N_COINS << " coins on the table. On each turn, you" << endl;
 cout << "and I will alternately take between 1 and" << endl;
 cout << MAX_MOVE << " coins from the table. The player who" << endl;
 cout << "takes the last coin loses." << endl << endl;
 }

 9.2 Backtracking and games 409

nim.cpp, p3
F I G U R E 9 - 5 The Nim.cpp implementation (continued)

private:

/*
 * Method: getComputerMove
 * Usage: int nTaken = getComputerMove();
 * -----------------------------------
 * Figures out what move is best for the computer player and returns
 * the number of coins taken. The method first calls findGoodMove
 * to see if a winning move exists. If none does, the program takes
 * only one coin to give the human player more chances to make a mistake.
 */

 int getComputerMove() {
 int nTaken = findGoodMove(nCoins);
 return (nTaken == NO_GOOD_MOVE) ? 1 : nTaken;
 }

/*
 * Method: findGoodMove
 * Usage: int nTaken = findGoodMove(nCoins);
 * ---
 * This method looks for a winning move, given the specified number
 * of coins. If there is a winning move in that position, the method
 * returns that value; if not, the method returns the constant
 * NO_GOOD_MOVE. This method depends on the recursive insight that a
 * good move is one that leaves your opponent in a bad position and a bad
 * position is one that offers no good moves.
 */

 int findGoodMove(int nCoins) {
 int limit = (nCoins < MAX_MOVE) ? nCoins : MAX_MOVE;
 for (int nTaken = 1; nTaken <= limit; nTaken++) {
 if (isBadPosition(nCoins - nTaken)) return nTaken;
 }
 return NO_GOOD_MOVE;
 }

/*
 * Method: isBadPosition
 * Usage: if (isBadPosition(nCoins)) . . .
 * ---------------------------------------
 * This method returns true if nCoins is a bad position.
 * A bad position is one in which there is no good move.
 * Being left with a single coin is clearly a bad position
 * and represents the simple case of the recursion.
 */

 bool isBadPosition(int nCoins) {
 if (nCoins == 1) return true;
 return findGoodMove(nCoins) == NO_GOOD_MOVE;
 }

410 Backtracking Algorithms

nim.cpp, p4
F I G U R E 9 - 5 The Nim.cpp implementation (continued)

/*
 * Method: getUserMove
 * Usage: int nTaken = getUserMove();
 * ----------------------------------
 * Asks the user to enter a move and returns the number of coins taken.
 * If the move is not legal, the user is asked to reenter a valid move.
 */

 int getUserMove() {
 while (true) {
 int nTaken = getInteger("How many would you like? ");
 int limit = (nCoins < MAX_MOVE) ? nCoins : MAX_MOVE;
 if (nTaken > 0 && nTaken <= limit) return nTaken;
 cout << "That's cheating! Please choose a number";
 cout << " between 1 and " << limit << "." << endl;
 cout << "There are " << nCoins << " coins in the pile." << endl;
 }
 }

/*
 * Method: announceResult
 * Usage: announceResult();
 * ------------------------
 * This method announces the final result of the game.
 */

 void announceResult() {
 if (nCoins == 0) {
 cout << "You took the last coin. You lose." << endl;
 } else {
 cout << "There is only one coin left." << endl;
 if (whoseTurn == HUMAN) {
 cout << "I win." << endl;
 } else {
 cout << "I lose." << endl;
 }
 }
 }

/* Instance variables */

 int nCoins; /* Number of coins left on the table */
 Player whoseTurn; /* Identifies which player moves next */

};

/* Main program */

int main() {
 SimpleNim game;
 game.printInstructions();
 game.play();
 return 0;
}

 9.2 Backtracking and games 411

A generalized program for two-player games
The code in Figure 9-5 is highly specific to Nim. The play method, for example, is
directly responsible for setting up the nCoins variable and updating it after each
player moves. The general structure of a two-player game, however, is more widely
applicable. Many games can be solved using the same overall strategy, even though
different games will require different implementations to get the details right.

One of the key concepts in this text is the notion of abstraction, which is the
process of separating out the general aspects of a problem so that they are no longer
obscured by the details of a specific domain. You may not be terribly interested in a
program that plays Nim; after all, Nim is rather boring once you figure it out. What
you would probably enjoy more is a program that is general enough to be adapted to
play Nim, tic-tac-toe, or any other two-player strategy game you choose.

The possibility of creating such a generalization arises from the fact that most
games share a few fundamental concepts. The first such concept is that of state.
For any game, there are data values that define exactly what is happening at any
point in time. In the Nim game, for example, the state consists of the values of its
two instance variables, nCoins and whoseTurn. For a game like chess, the state
would need to include what pieces are currently placed on which squares, although
it would presumably continue to include the whoseTurn variable, or something that
fulfills the same function. For any game, however, it should be possible to store the
relevant data in the instance variables of the class that implements the game.

The second important concept is that of a move. In Nim, a move consists of an
integer representing the number of coins taken away. In chess, a move might
consist of a pair indicating the starting and ending coordinates of the piece that is
moving, although this approach is in fact complicated by the need to represent such
esoteric moves as castling or the promotion of a pawn. For any game, however, it is
possible to define a Move class that encapsulates whatever information is necessary
to represent a move in that game.

When you implement the Nim game, however, it doesn’t quite work to define the
Move class in the simplest possible way:

class Move {
 int nTaken;
}

The problem here is that the default visibility for entries in a class is private, which
means that the class implementing the game would have no access to the instance
variable.

412 Backtracking Algorithms

There are several strategies you can adopt to fix this problem. One strategy is to
make the nTaken variable public or, equivalently, to replace the class definition
by a traditional C-style struct. That strategy, however, violates the principle of
encapsulation by making the details of the Move class available to the entire
program. A second approach is to define getter and setter methods in the style of
the classes introduced in Chapter 6. That approach follows the style of modern
object-oriented programming at the cost of making the Move class harder to use.
That extra complexity seems unwarranted for a class whose only client is likely to
be the class that implements the game. A third strategy—and the one used in this
text—is to have the Move class declare the game class as a friend.

Once you have a Move class, it is possible to define a few additional helper
methods that allow you to rewrite the play method like this:

void play() {
 initGame();
 while (!gameIsOver()) {
 displayGame();
 if (getCurrentPlayerType() == HUMAN) {
 makeMove(getUserMove());
 } else {
 Move move = getComputerMove();
 displayMove(move);
 makeMove(move);
 }
 }
 announceResult();
}

The most important thing to notice about the implementation of the play method is
that the code gives no indication about what game is being played. It might be Nim,
but it could just as easily be tic-tac-toe (which you’ll have a chance to implement in
the exercises) or some other strategy game. Every game requires its own definitions
for the Move class, along with the various game-specific methods such as
initGame and makeMove. Even so, the structure of the play method is general
enough to work for many different two-player games.

If you compare the generalized implementation of play with the code in
Figure 9-5, you will also notice that the code to switch turns is no longer included at
this level of the implementation. In the general version of the program, it makes
sense to embed this aspect of the game into the methods initGame, makeMove, and
getCurrentPlayerType. Making this change means that the play method no
longer refers directly to the instance variables but instead calls methods to do the
job. This strategy allows more flexibility in the underlying implementation.

 9.3 The minimax algorithm 413

The play method and the mechanics of taking turns, however, are not the most
exciting aspects of a game. The algorithmically interesting part is embedded inside
the method getComputerMove, which is responsible for choosing the best move
for the computer. The version of Nim in Figure 9-5 implements this strategy using
the mutually recursive methods findGoodMove and isBadPosition, which
search through all possible choices for each player to find a winning move in the
current position. As a strategy, that idea is also independent from the details of any
particular game, and it therefore ought to be possible to write these methods in a
more general way. Before going further down that path, however, it helps to make a
further generalization to the problem, which will make it suitable for a wider variety
of games.

 9.3 The minimax algorithm
The techniques described in the preceding section work well for simple, completely
solvable games like Nim. As games become more complex, however, it quickly
becomes impossible to examine every possible outcome. If you tried to go through
every possible game of chess, for example, the process could take billions of years,
even at the speed of modern computers. Yet, somehow, in spite of this limitation,
computers are very good at chess. In 1997, IBM’s “Deep Blue” supercomputer beat
the reigning world champion at that time, Garry Kasparov. Deep Blue did not win
by conducting an exhaustive analysis of all possible games; it instead looked ahead
only for a restricted number of moves, in much the same way that humans do.

Even for games for which it is computationally infeasible to work through every
possible sequence of moves, the recursive concepts of good moves and bad
positions from the Nim game still come in handy. Although it may not be possible
to identify a move as surefire winner, it is still true that the best move in any
position is the one that leaves your opponent in the worst position. Similarly, the
worst position is the one that offers the weakest best move. This strategy—which
consists of finding the position that leaves your opponent with the worst possible
best move—is called the minimax algorithm because the goal is to find the move
that minimizes your opponent’s maximum opportunity.

Game trees
The best way to visualize the operation of the minimax strategy is to think about the
possible future moves in a game as forming a branching diagram that expands on
each turn. Because of this branching structure, such diagrams are called game trees.
The initial state is represented by a dot at the top of the game tree. If there are, for
example, three possible moves from this position, there will be three lines
emanating downward from the current state to three new states that represent the
results of these moves, as shown in the following diagram:

414 Backtracking Algorithms

From each of these new positions, your opponent also has options. If each position
again has three options, the next generation of the game tree looks like this:

Which move do you choose in the initial position? Clearly, your goal is to
achieve the best outcome. Unfortunately, you only get to control half of the game.
If you were able to select your opponent’s move as well as your own, you could
select the path to the state two turns away that left you in the best position. Given
that your opponent is also trying to win, the best thing you can do is choose the
initial move that leaves your opponent with as few winning chances as possible.

Rating positions and moves
In order to get a sense of how you should proceed, it helps to add some quantitative
data to the analysis. Deciding whether a particular move is better than some
alternative is much easier if you assign a numeric score to each possible move. The
higher the numeric score, the better the move. Thus, a move that has a score of +7,
for example, is better than a move with a rating of –4. In addition to rating each
possible move, it makes sense to assign a similar numeric rating to each position in
the game. Thus, one position might have a rating of +9 and would therefore be
better than a position with a score of only +2.

Both positions and moves are rated from the perspective of the player having the
move. Moreover, the rating system is designed to be symmetric around 0, in the
sense that a position that has a score of +9 for the player to move would have a
score of –9 from the opponent’s point of view. This interpretation of rating
numbers captures the idea that a position that is good for one player is bad for the
other, as was true for the Nim game. More importantly, defining the rating system
in this way makes it easy to express the relationship between the scores for moves
and positions. The rating for any move is simply the negative of the rating for the
resulting position when evaluated by your opponent. Similarly, the rating of any
position can be defined as the rating of its best move.

To make this discussion more concrete, it helps to consider a simple example.
Suppose that you have looked two steps ahead in the game, covering one move by

 9.3 The minimax algorithm 415

you and the possible responses from your opponent. In computer science, a single
move for a single player is called a ply to avoid the ambiguity associated with the
words move and turn, which sometimes imply that both players have a chance to
play. If you rate the positions at the conclusion of the two-ply analysis, the game
tree might look like this:

Because the positions at the bottom of this tree are again positions in which—as at
the top of the tree—you have to move, the rating numbers in those positions are
assigned from your perspective. Given these ratings of the potential positions, what
move should you make from the original configuration?

At first glance, you might be attracted by the fact that the center branch contains
a path that leads to a +9, which is an excellent outcome for you. Unfortunately, the
fact that the center branch offers such a wonderful outcome doesn’t really matter. If
your opponent is playing rationally, there is no way that the game can reach the +9
position. Suppose, for example, that you do choose the center branch. Given the
options available, your opponent will select the leftmost branch, as illustrated by the
colored path in the following game tree:

Your initial choice thus leaves you in a position that—from your point of view—has
a rating of –5. You would do better to choose the rightmost branch, from which
your opponent’s best strategy leaves you in a position with a –2 rating:

As noted earlier in this section, the rating of a move is the negative of the rating
of the resulting position when evaluated from the opponent’s perspective. The

+7 +6 –9 –5 +9 –4 –1 +1 –2

+7 +6 –9 –5 +9 –4 –1 +1 –2

+7 +6 –9 –5 +9 –4 –1 +1 –2

416 Backtracking Algorithms

rating of the last move in the highlighted line of the game tree is +2 because it leads
to a position with a –2 rating. The negative sign indicates the shift in perspective.
Moves that lead to positions that are bad for my opponent are good for me, and vice
versa. The rating of each position is simply the rating of the best move it offers.
The ratings for the positions and moves along the highlighted path in the game tree
therefore look like this:

The rating of the starting position is therefore –2. While this position is hardly
ideal, it is better for you than the other possible outcomes, assuming that your
opponent is playing rationally.

Any implementation of the minimax algorithm will need to compare the ratings
of moves to determine the best one. For this reason, it is convenient to store the
rating of each move in the corresponding Move object. The simplest way to
accomplish this goal is to add a new instance variable called rating to the Move
class, so that the definition now looks like this for the Nim game:

class Move {
 int nTaken;
 int rating;
 friend class SimpleNim;
};

The code that implements the minimax algorithm will assume that the Move
structure—no matter what else it has that is specific to a particular game—always
includes a rating field.

In the implementation of the minimax application outlined later in this chapter,
the values used as ratings are integers that must fall between the limits defined by
the following constants:

const int WINNING_POSITION = 1000;
const int LOSING_POSITION = -WINNING_POSITION;

At the end of a game, the rating of a position can be determined by checking to see
who has won. The rating of any position for which the outcome is not yet
determined must be an integer somewhere between these extremes.

+7 +6 –9 –5 +9 –4 –1 +1 –2

–2

–2

+2

+
2

As rated by
your opponent

 9.3 The minimax algorithm 417

Limiting the depth of the recursive search
If you could search an entire game tree from the beginning of a game through to
every possible conclusion, you could implement the minimax algorithm using pretty
much the same structure as in the earlier Nim example. All you would need to do is
two mutually recursive functions, one that finds the best move and one that
evaluates positions. For games that involve any significant level of complexity, it is
impossible to search the entire game tree in a reasonable amount of time. A
practical implementation of the minimax algorithm must therefore include a
provision for cutting off the search at a certain point.

The usual strategy for limiting the search is to set some maximum value for the
depth of the recursion. You could, for example, allow the recursion to continue
until each player has made five moves, for a total of ten ply. If the game ends
before that limit is reached, you can evaluate the final position by checking to see
who won the game and then returning WINNING_POSITION or LOSING_POSITION,
as appropriate.

But what happens if you hit the recursion limit before the outcome of the game is
decided? At that point, you need to evaluate the position in some other way that
does not involve making additional recursive calls. Given that this kind of analysis
depends only on the state of the game as it stands, it is usually called static analysis.
In chess-playing programs, for example, static analysis usually performs some
simple calculation based on the values of the pieces each side has on the board. If
the player to move is ahead in that calculation, the position has a positive rating; if
not, the rating will be negative.

Although any simple calculation is sure to overlook some important factor, it is
important to remember that static analysis applies only after the recursion limit is
reached. If, for example, there was some line of play that would force a win in the
game in the next few moves, the quality of the static analysis is irrelevant, because
the recursive evaluation will find that winning line of play before it gets to the
static-analysis phase.

The easiest way to add a depth limit to the minimax implementation is to have
each of the recursive methods take a parameter named depth that records how
many levels have already been analyzed and add one to that value before trying to
rate the next position. If that parameter exceeds a defined constant MAX_DEPTH, any
further evaluations must be performed using static analysis.

Implementing the minimax algorithm
The minimax algorithm can be implemented using two mutually recursive methods:
findBestMove and evaluatePosition. The findBestMove method considers

418 Backtracking Algorithms

every possible move and then calls evaluatePosition on the resulting positions,
looking for the one with the lowest rating when evaluated from the opponent’s
perspective. The code for evaluatePosition uses findBestMove to determine
the best move and then return the rating of that move, unless the recursion limit or
state of the game require static analysis. The code for these methods appears in
Figure 9-6.

F I G U R E 9 - 6 Generalized implementation of the minimax algorithm

/*
 * Method: findBestMove
 * Usage: move = findBestMove(depth);
 * ----------------------------------
 * Finds the best move for the current player. The depth parameter
 * and the constant MAX_DEPTH are used to limit the depth of the search
 * for games that are too difficult to analyze in full detail.
 */

 Move findBestMove(int depth = 0) {
 Vector<Move> moveList;
 Move bestMove;
 int minRating = WINNING_POSITION + 1;
 generateMoveList(moveList);
 if (moveList.isEmpty()) error("No moves available");
 foreach (Move move in moveList) {
 makeMove(move);
 int rating = evaluatePosition(depth + 1);
 if (rating < minRating) {
 bestMove = move;
 minRating = rating;
 }
 retractMove(move);
 }
 bestMove.rating = -minRating;
 return bestMove;
 }

/*
 * Method: evaluatePosition
 * Usage: rating = evaluatePosition(depth);
 * --
 * Evaluates a position by finding the rating of the best move in
 * the current position. The depth parameter and the constant
 * MAX_DEPTH are used to limit the depth of the search.
 */

 int evaluatePosition(int depth) {
 if (gameIsOver() || depth >= MAX_DEPTH) {
 return evaluateStaticPosition();
 }
 return findBestMove(depth).rating;
 }

 Summary 419

The code in Figure 9-6 calls several methods—each of which is coded
independently for a particular game—that are worth some further explanation:

• The generateMoveList method fills the moveList vector with the legal

moves available in the current state.

• The methods makeMove and retractMove have the effect of making and
taking back a particular move. These methods allow the program to try out a
potential move, evaluate the resulting position, and then go back to the original
state.

• The isGameOver method checks to see if the game has reached a final state in
which no further analysis is possible.

• The evaluateStaticPosition method evaluates a particular state in the
game without making any further recursive calls.

 Summary
In this chapter, you have learned to solve problems that require making a sequence
of choices as you search for a goal, as illustrated by finding a path through a maze
or a winning strategy in a two-player game. The basic strategy is to write programs
that can backtrack to previous decision points if those choices lead to dead ends. By
exploiting the power of recursion, however, you can avoid coding the details of the
backtracking process explicitly and develop general solution strategies that apply to
a wide variety of problem domains.

Important points in this chapter include:

• You can solve most problems that require backtracking by adopting the

following recursive approach:

If you are already at a solution, report success.
for (every possible choice in the current position) {
 Make that choice and take one step along the path.
 Use recursion to solve the problem from the new position.
 If the recursive call succeeds, report the success to the next higher level.
 Back out of the current choice to restore the state at the beginning of the loop.
}
Report failure.

• The complete history of recursive calls in a backtracking problem—even for

relatively simple applications—is usually too complex to understand in detail.
For problems that involve any significant amount of backtracking, it is essential
to accept the recursive leap of faith.

420 Backtracking Algorithms

• You can often find a winning strategy for two-player games by adopting a
recursive-backtracking approach. Because the goal in such games involves
minimizing the winning chances for your opponent, the conventional strategic
approach is called the minimax algorithm.

 Review questions
1. What is the principal characteristic of a backtracking algorithm?

2. Using your own words, state the right-hand rule for escaping from a maze.

Would a left-hand rule work equally well?

3. What is the insight that makes it possible to solve a maze by recursive

backtracking?

4. What are the simple cases that apply in the recursive implementation of

solveMaze?

5. Why is important to mark squares as you proceed through the maze? What

would happen in the solveMaze function if you never marked any squares?

6. What is the purpose of the unmarkSquare call at the end of the for loop in

the solveMaze implementation? Is this statement essential to the algorithm?

7. What is the purpose of the Boolean result returned by solveMaze?

8. In your own words, explain how the backtracking process actually takes place

in the recursive implementation of solveMaze.

9. In the simple Nim game, the human player plays first and begins with a pile of

13 coins. Is this a good or a bad position? Why?

10. Write a simple C++ expression based on the value of nCoins that has the

value true if the position is good for the current player and false otherwise.

11. What is the minimax algorithm? What does its name signify?

12. Why is it useful to develop an abstract implementation of the minimax

algorithm that does not depend on the details of a particular game?

13. What is the role of the depth argument in the functions findBestMove and

evaluatePosition?

 Exercises 421

14. Explain the role of the evaluateStaticPosition function in the minimax
implementation.

15. Suppose you are in a position in which the analysis for the next two moves

shows the following rated outcomes from your original player’s point-of-view:

If you adopt the minimax strategy, what is the best move to make in this
position? What is the rating of that move from your perspective?

 Exercises
1. In many mazes, there are multiple paths. For example, Figure 9-7 shows three

solutions for the same maze. None of these solutions, however, is optimal.
The shortest path through the maze has a path length of 11:

–9 –4 +4 –3 –2 –4 –3 +2 –5 +1 +0 –5

Θ

F I G U R E 9 - 7 Multiple paths through a maze

Θ

length = 13

Θ

length = 15

Θ

length = 13

422 Backtracking Algorithms

Write a function

int shortestPathLength(Maze & maze, Point start);

that returns the length of the shortest path in the maze from the specified
position to any exit. If there is no solution, shortestPathLength should
return –1.

2. As implemented in Figure 9-3, the solveMaze function unmarks each square

as it discovers there are no solutions from that point. Although this design
strategy has the advantage that the final configuration of the maze shows the
solution path as a series of marked squares, the decision to unmark squares as
you backtrack has a cost in terms of the overall efficiency of the algorithm. If
you’ve marked a square and then backtracked through it, you’ve already
explored the possibilities leading from that square. If you come back to it by
some other path, you might as well rely on your earlier analysis instead of
exploring the same options again.

To give yourself a sense of how much these unmarking operations cost in

terms of efficiency, extend the solveMaze program so that it records the
number of recursive calls as it proceeds. Use this program to calculate how
many recursive calls are required to solve the following maze if the call to
unmarkSquare remains part of the program:

Run your program again, this time without the call to unmarkSquare. What
happens to the number of recursive calls?

3. As the result of the preceding exercise makes clear, the idea of keeping track

of the path through a maze by using the markSquare facility in the Maze
class has a substantial cost. A more practical approach is to change the
definition of the recursive function so that it keeps track of the current path as
it goes. Following the logic of solveMaze, write a function

bool findSolutionPath(Maze & maze, Point start,
 Vector<Point> & path);

Θ

 Exercises 423

that takes, in addition to the coordinates of the starting position, a vector of
Point values called path. Like solveMaze, findSolutionPath returns a
Boolean value indicating whether the maze is solvable. In addition, the
findSolutionPath function initializes the elements of the path vector to a
sequence of coordinates beginning with the starting position and ending with
the coordinates of the first square that lies outside the maze. For this exercise,
it is sufficient for findPath to find any solution path. It need not find the
shortest one.

4. Most drawing programs for personal computers make it possible to fill an

enclosed region on the screen with a solid color. Typically, you invoke this
operation by selecting a “paint bucket” tool and then clicking the mouse, with
the cursor somewhere in your drawing. When you do, the paint spreads to
every part of the picture it can reach without going through a line.

For example, suppose you have just drawn the following picture of a
house:

If you select the paint bucket and click inside the door, the drawing program
fills the area bounded by the door frame as shown at the left side of the
following diagram. If you instead click somewhere on the front wall of the
house, the program fills the entire wall space except for the windows and
doors, as shown on the right:

In order to understand how this process works, it is important to understand
that the screen of the computer is broken down into an array of tiny dots called

424 Backtracking Algorithms

pixels. On a monochrome display, pixels can be either white or black. The
paint-fill operation consists of painting black the starting pixel (i.e., the pixel
you click while using the paint-bucket tool) along with any pixels connected to
that starting point by an unbroken chain of white pixels. Thus, the patterns of
pixels on the screen representing the preceding two diagrams would look like
this:

It is easy to represent a pixel grid using the type Grid<bool>. White
pixels in the grid have the value false, and black pixels have the value true.
Given this representation, write a function

void fillRegion(Grid<bool> & pixels, int row, int col)

that simulates the operation of the paint-bucket tool by painting in black all
white pixels reachable from the specified row and column without crossing an
existing black pixel.

5. The most powerful piece in the game of chess is the queen, which can move

any number of squares in any direction, horizontally, vertically, or diagonally.
For example, the queen shown in this chessboard can move to any of the
marked squares:

 Exercises 425

Even though the queen can cover a large number of squares, it is possible to
place eight queens on an 8×8 chessboard so that none of them attacks any of
the others, as shown in the following diagram:

Write a program that solves the more general problem of whether it is
possible to place N queens on an N×N chessboard so that none of them can
move to a square occupied by any of the others in a single turn. Your program
should either display a solution if it finds one or report that no solutions exist.

6. In chess, a knight moves in an L-shaped pattern: two squares in one direction

horizontally or vertically, and then one square at right angles to that motion.
For example, the white knight in the upper right side of the following diagram
can move to any of the eight squares marked with an ×:

The mobility of a knight decreases near the edge of the board, as illustrated by
the black knight in the corner, which can reach only the two squares marked
with an o.

426 Backtracking Algorithms

It turns out that a knight can visit all 64 squares on a chessboard without
ever moving to the same square twice. A path for the knight that moves
through all the squares without repeating a square is called a knight’s tour.
One such tour is shown in the following diagram, in which the numbers in the
squares indicate the order in which they were visited:

Write a program that uses backtracking recursion to find a knight’s tour.

7. In the 1960s, a puzzle called Instant Insanity was popular for some years

before it faded from view. The puzzle consisted of four cubes whose faces
were each painted with one of the colors red, blue, green, and white,
represented in the rest of this problem by their initial letter. The goal of the
puzzle was to arrange the cubes into a line so that if you looked at the line
from any of its edges, you would see no duplicated colors.

Cubes are hard to draw in two dimensions, but the following diagram

shows what the cubes would look like if you unfolded them and placed them
flat on the page:

Write a program that uses backtracking to solve the Instant Insanity puzzle.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

W B B R

G

G

W W G B

R

G

R R W B

W

G

G R R R

B

W

 Exercises 427

8. In theory, the recursive backtracking strategy described in this chapter should
be sufficient to solve most puzzles that involve performing a sequence of
moves looking for some solution. In practice, however, some of those puzzles
are too complex to solve in a reasonable amount of time. One puzzle that is
just at the limit of what recursive backtracking can accomplish without using
some additional cleverness is the peg solitaire puzzle, which dates from the
17th century. Peg solitaire is usually played on a board that looks like this:

The black dots in the diagram are pegs, which fill the board except for the
center hole. On a turn, you are allowed to jump over and remove a peg, as
illustrated in the following diagram, in which the colored peg jumps into the
vacant center hole and the peg in the middle is removed:

The object of the game is to perform a series of jumps that leaves only one peg
in the center hole. Write a program to solve this puzzle.

9. The game of dominos is played with rectangular pieces composed of two

connected squares, each of which is marked with a certain number of dots.
For example, each of the following four rectangles represents a domino:

428 Backtracking Algorithms

Dominos can be connected end-to-end to form chains, subject to the condition
that two dominos can be linked together only if the numbers match. For
example, you can form a chain consisting of these four dominos by connecting
them in the following order:

As in the traditional game, dominos can be rotated by 180˚ so that their
numbers are reversed. In this chain, for example, the 1–6 and 3–4 dominos
have been “turned over” so that they fit into the chain.

Suppose that you have access to a Domino class (see Chapter 6, exercise 3)
that exports the methods getLeftDots and getRightDots. Given this
class, write a recursive function

bool formsDominoChain(Vector<Domino> & dominos);

that returns true if it possible to build a chain consisting of every domino in
the vector.

10. Suppose that you have been assigned the job of buying the plumbing pipes for

a construction project. Your foreman gives you a list of the varying lengths of
pipe needed, but the distributor sells stock pipe only in one fixed size. You
can, however, cut each stock pipe in any way needed. Your job is to figure out
the minimum number of stock pipes required to satisfy the list of requests,
thereby saving money and minimizing waste.

Your job is to write a recursive function

int cutStock(Vector<int> & requests, int stockLength);

that takes two arguments—a vector of the lengths needed and the length of
stock pipe that the distributor sells—and returns the minimum number of stock
pipes needed to service all requests in the vector. For example, if the vector
contains [4, 3, 4, 1, 7, 8] and the stock pipe length is 10, you can purchase
three stock pipes and divide them as follows:

Pipe 1: 4, 4, 1
Pipe 2: 3, 7
Pipe 3: 8

Doing so leaves you with two small remnants left over. There are other
possible arrangements that also fit into three stock pipes, but it cannot be done
with fewer.

 Exercises 429

11. Most operating systems and many applications that allow users to work with
files support wildcard patterns, in which special characters are used to create
filename patterns that can match many different files. The most common
special characters used in wildcard matching are ?, which matches any single
character, and *, which matches any sequence of characters. Other characters
in a filename pattern must match the corresponding character in a filename.
For example, the pattern *.* matches any filename that contains a period,
such as EnglishWords.dat or HelloWorld.cpp, but would not match
filenames that do not contain a period. Similarly, the pattern test.? matches
any filename that consists of the name test, a period, and a single character;
thus, test.? matches test.h but not test.cpp. These patterns can be
combined in any way you like. For example, the pattern ??* matches any
filename containing at least two characters.

Write a function

bool wildcardMatch(string filename, string pattern);

that takes two strings, representing a filename and a wildcard pattern, and
returns true if that filename matches the pattern. Thus,

wildcardMatch("US.txt", "*.*") returns true
wildcardMatch("test", "*.*") returns false
wildcardMatch("test.h", "test.?") returns true
wildcardMatch("test.cpp", "test.?") returns false
wildcardMatch("x", "??*") returns false
wildcardMatch("yy", "??*") returns true
wildcardMatch("zzz", "??*") returns true

12. Rewrite the simple Nim game so that it uses the generalized minimax

algorithm presented in Figure 9-6. Your program should not change the code
for findBestMove or evaluatePosition. Your job is to come up with an
appropriate definition of the Move class and the various game-specific
methods so that the program still plays a perfect game of Nim.

13. Modify the code for the simple Nim game you wrote for exercise 11 so that it

plays a different variant of Nim. In this version, the pile begins with 17 coins.
On each turn, players alternate taking one, two, three, or four coins from the
pile. In the simple Nim game, the coins the players took away were simply
ignored; in this game, the coins go into a pile for each player. The player
whose pile contains an even number of coins after the last coin is taken wins
the game.

430 Backtracking Algorithms

14. In the most common variant of Nim, the coins are not combined into a single
pile but are instead arranged in three rows like this:

A move in this game consists of taking any number of coins, subject to the
condition that all the coins must come from the same row. The player who
takes the last coin loses.

Write a program that uses the minimax algorithm to play a perfect game of

three-pile Nim. The starting configuration shown here is a typical one, but
your program should be general enough so that you can easily change either
the number of rows or the number of coins in each row.

15. The game of tic-tac-toe is played by two players who take turns placing

Xs and Os in a 3×3 grid that looks like this:

The object of the game is to line up three of your own symbols in a row,
horizontally, vertically, or diagonally. In the following game, for example, X
has won the game by completing three in a row across the top:

If the board fills up without anyone completing a row, the game is a draw,
which is called a cat’s game in tic-tac-toe.

Write a program that uses the minimax algorithm to play a perfect game of

tic-tac-toe. Figure 9-8 shows a sample run against a particularly inept player.

Row 0:

Row 1:

Row 2:

 Exercises 431

tic-tac-toe sample run
F I G U R E 9 - 8 Sample run of the tic-tac-toe game

TicTacToe
Welcome to TicTacToe, the game of three in a row.
I'll be X, and you'll be O.
The squares are numbered like this:

 1 | 2 | 3
---+---+---
 4 | 5 | 6
---+---+---
 7 | 8 | 9

I'll move to 1.
The game now looks like this:

 X | |
---+---+---
 | |
---+---+---
 | |

Your move.
What square? 5
The game now looks like this:

 X | |
---+---+---
 | O |
---+---+---
 | |

I'll move to 2.
The game now looks like this:

 X | X |
---+---+---
 | O |
---+---+---
 | |

Your move.
What square? 7
The game now looks like this:

 X | X |
---+---+---
 | O |
---+---+---
 O | |

I'll move to 3.
The final position looks like this:

 X | X | X
---+---+---
 | O |
---+---+---
 O | |

I win.

Chapter 10
Algorithmic Analysis

Without analysis, no synthesis.
— Friedrich Engels, Herr Eugen Dühring’s

Revolution in Science, 1878

434 Algorithmic Analysis

In Chapter 7, you were introduced to two different recursive implementations of the
function fib(n), which computes the nth Fibonacci number. The first is based
directly on the mathematical definition

fib(n) =

n if n is 0 or 1

fib(n - 1) + fib(n - 2) otherwise

and turns out to be wildly inefficient. The second implementation, which uses the
notion of additive sequences to produce a version of fib(n) that is comparable in
efficiency to traditional iterative approaches, demonstrates that recursion itself is
not the cause of the problem. Even so, examples like the first version of the
Fibonacci function have such high execution costs that recursion sometimes gets a
bad name as a result.

As you will see in this chapter, the ability to think recursively about a problem
often leads to new strategies that are considerably more efficient than anything that
would come out of an iterative design process. The power of divide-and-conquer
algorithms is enormous and has a profound impact on many problems that arise in
practice. By using recursive algorithms of this form, it is possible to achieve
dramatic increases in efficiency that can cut the solution times, not by factors of two
or three, but by factors of a thousand or more.

Before looking at these algorithms, however, it is important to ask a few
questions. What does the term efficiency mean in an algorithmic context? How
would you go about measuring that efficiency? These questions form the
foundation for the subfield of computer science known as analysis of algorithms.
Although a detailed understanding of algorithmic analysis requires a reasonable
facility with mathematics and a lot of careful thought, you can get a sense of how it
works by investigating the performance of a few simple algorithms.

 10.1 The sorting problem
The easiest way to illustrate the analysis of algorithms is to consider a problem
domain in which different algorithms vary widely in their performance. Of these,
one of the most interesting is the problem of sorting, which consists of reordering
the elements in an array or vector so that they fall in some defined sequence. For
example, suppose you have stored the following integers in the variable vec, which
is a Vector<int>:

vec

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

 10.1 The sorting problem 435

Your mission is to write a function sort(vec) that rearranges the elements into
ascending order, like this:

The selection sort algorithm
There are many algorithms you could choose to sort a vector of integers into
ascending order. One of the simplest is called selection sort. Given a vector of size
N, the selection sort algorithm goes through each element position and finds the
value that should occupy that position in the sorted vector. When it finds the
appropriate element, the algorithm exchanges it with the value that previously
occupied the desired position to ensure that no elements are lost. Thus, on the first
cycle, the algorithm finds the smallest element and swaps it with the first vector
position. On the second cycle, it finds the smallest remaining element and swaps it
with the second position. Thereafter, the algorithm continues this strategy until all
positions in the vector are correctly ordered. An implementation of sort that uses
selection sort is shown in Figure 10-1.

0

19

1

25

2

30

3

37

4

56

5

58

6

73

7

95

F I G U R E 1 0 - 1 Implementation of the selection sort algorithm

/*
 * Function: sort
 * --------------
 * This implementation uses an algorithm called selection sort, which can
 * be described as follows. With your left hand (lh), point at each element
 * in the vector in turn, starting at index 0. At each step in the cycle:
 *
 * 1. Find the smallest element in the range between your left hand and the
 * end of the vector, and point at that element with your right hand (rh).
 *
 * 2. Move that element into its correct position by exchanging the elements
 * indicated by your left and right hands.
 */

void sort(Vector<int> & vec) {
 int n = vec.size();
 for (int lh = 0; lh < n; lh++) {
 int rh = lh;
 for (int i = lh + 1; i < n; i++) {
 if (vec[i] < vec[rh]) rh = i;
 }
 int tmp = vec[lh];
 vec[lh] = vec[rh];
 vec[rh] = tmp;
 }
}

436 Algorithmic Analysis

For example, if the initial contents of the vector are

the first cycle through the outer for loop identifies the 19 in index position 5 as the
smallest value in the entire vector and then swaps it with the 56 in index position 0
to leave the following configuration:

On the second cycle, the algorithm finds the smallest element between positions 1
and 7, which turns out to be the 25 in position 1. The program goes ahead and
performs the exchange operation, leaving the vector unchanged from the preceding
diagram. On each subsequent cycle, the algorithm performs a swap operation to
move the next smallest value into its appropriate final position. When the for loop
is complete, the entire vector is sorted.

Empirical measurements of performance
How efficient is the selection sort algorithm as a strategy for sorting? To answer
this question, it helps to collect empirical data about how long it takes the computer
to sort a vector of various sizes. When I did this experiment on my MacBook Pro
laptop, I observed the following timing data for selection sort, where N represents
the number of elements in the vector:

N Running time
 10 0.0000024 sec
 50 0.0000448 sec
 100 0.000169 sec
 500 0.00402 sec
 1000 0.0159 sec
 5000 0.395 sec
 10,000 1.58 sec
 50,000 39.6 sec
 100,000 158.7 sec

For a vector of 10 integers, the selection sort algorithm completes its work in a
couple of microseconds. Even for 5000 integers, this implementation of sort takes
less than a second, which certainly seems fast enough in terms of our human sense
of time. As the vector sizes get larger, however, the performance of selection sort
begins to go downhill. For a vector of 100,000 integers, the algorithm requires

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

0

19

1

25

2

37

3

58

4

95

5

56

6

73

7

30

 10.1 The sorting problem 437

more than two and a half minutes. If you’re sitting in front of your computer
waiting for it to reply, that is an awfully long time.

Even more disturbing is the fact that the performance of selection sort rapidly
gets worse as the vector size increases. As you can see from the timing data, every
time you multiply the number of values by 10, the time required to sort the vector
goes up a hundredfold. If this pattern continues, sorting a list of a million numbers
would take about four and a half hours. If your business requires sorting vectors on
this scale, you would have no choice but to find a more efficient approach.

Analyzing the performance of selection sort
What makes selection sort perform so badly as the number of values to be sorted
becomes large? To answer this question, it helps to think about what the algorithm
has to do on each cycle of the outer loop. To correctly determine the first value in
the vector, the selection sort algorithm must consider all N elements as it searches
for the smallest value. Thus, the time required on the first cycle of the loop is
presumably proportional to N. For each of the other elements in the vector, the
algorithm performs the same basic steps but looks at one less element each time. It
looks at N–1 elements on the second cycle, N–2 on the third, and so on, so the total
running time is roughly proportional to

N + N–1 + N–2 + . . . + 3 + 2 + 1

Because it is difficult to work with an expression in this expanded form, it is
useful to simplify it by applying a bit of mathematics. As you may have learned in
an algebra course, the sum of the first N integers is given by the formula

or, multiplying out the numerator,

You will learn how to prove that this formula is correct in the section on
“Mathematical induction” later in this chapter. For the moment, all you need to
know is that the sum of the first N integers can be expressed in this more compact
form.

If you write out the values of the function

N × (N + 1)

2

N
2
 + N

2

N
2
 + N

2

438 Algorithmic Analysis

for various values of N, you get a table that looks like this:

N
 10 55
 50 1275
 100 5050
 500 125,250
 1000 500,500
 5000 12,502,500
 10,000 50,005,000
 50,000 1,250,025,000
 100,000 5,000,050,000

Because the running time of the selection sort algorithm is presumably related to the
amount of work the algorithm needs to do, the values in this table should be roughly
proportional to the observed execution time of the algorithm, which turns out to be
true. If you look at the measured timing data for selection sort in Figure 10-2, for
example, you discover that the algorithm requires 1.58 seconds to sort 10,000
numbers. In that time, the selection sort algorithm has to perform 50,005,000
operations in its innermost loop. Assuming that there is indeed a proportionality
relationship between these two values, dividing the time by the number of
operations gives the following estimate of the proportionality constant:

 = 3.16 × 10–8 seconds

If you apply this same proportionality constant to the other entries in the table, you
discover that the formula

N
2
 + N

2

1.58 seconds
50,005,000

F I G U R E 1 0 - 2 Observed and estimated times for selection sort

N Observed time Estimated time Error

10 0.0000024 sec 0.0000017 sec 28%

50 0.0000448 sec 0.0000403 sec 10%

100 0.000169 sec 0.000159 sec 6%

500 0.00402 sec 0.00395 sec 2%

1000 0.0159 sec 0.0159 sec < 1%

5000 0.395 sec 0.395 sec < 1%

10,000 1.58 sec 1.58 sec < 1%

50,000 39.6 sec 39.5 sec < 1%

100,000 158.7 sec 158.0 sec < 1%

 10.2 Computational complexity 439

3.16 × 10–8 seconds ×

offers a reasonable approximation of the running time, at least for large values of N.
The observed times and the estimates calculated using this formula appear in
Figure 10-2, along with the relative error between the two.

 10.2 Computational complexity
The problem with carrying out a detailed analysis like the one shown in Figure 10-2
is that you end up with too much information. Although it is occasionally useful to
have a formula for predicting exactly how long a program will take, you can usually
get away with more qualitative measures. The reason that selection sort is
impractical for large values of N has little to do with the precise timing
characteristics of a particular implementation running on the laptop I happen to own
at the moment. The problem is simpler and more fundamental. At its essence, the
problem with selection sort is that doubling the size of the input vector increases the
running time of the selection sort algorithm by a factor of four, which means that
the running time grows more quickly than the number of elements in the vector.

The most valuable qualitative insights you can obtain about algorithmic
efficiency are usually those that help you understand how the performance of an
algorithm responds to changes in problem size. Problem size is usually easy to
quantify. For algorithms that operate on numbers, it generally makes sense to let
the numbers themselves represent the problem size. For most algorithms that
operate on arrays or vectors, you can use the number of elements. When evaluating
algorithmic efficiency, computer scientists traditionally use the letter N to indicate
the size of the problem, no matter how it is calculated. The relationship between N
and the performance of an algorithm as N becomes large is called the
computational complexity of that algorithm. In general, the most important
measure of performance is execution time, although it is also possible to apply
complexity analysis to other concerns, such as the amount of memory space
required. Unless otherwise stated, all assessments of complexity used in this text
refer to execution time.

Big-O notation
Computer scientists use a special shorthand called big-O notation to denote the
computational complexity of algorithms. Big-O notation was introduced by the
German mathematician Paul Bachmann in 1892—long before the development of
computers. The notation itself is very simple and consists of the letter O, followed
by a formula enclosed in parentheses. When it is used to specify computational
complexity, the formula is usually a simple function involving the problem size N.
For example, in this chapter you will soon encounter the big-O expression

N
2
 + N

2

440 Algorithmic Analysis

O (N 2)

which is read aloud as “big-oh of N squared.”

Big-O notation is used to specify qualitative approximations and is therefore
ideal for expressing the computational complexity of an algorithm. Coming as it
does from mathematics, big-O notation has a precise definition, which appears later
in this chapter in the section entitled “A formal definition of big-O.” At this point,
however, it is far more important for you—no matter whether you think of yourself
as a programmer or a computer scientist—to understand what big-O means from a
more intuitive point of view.

Standard simplifications of big-O
When you use big-O notation to estimate the computational complexity of an
algorithm, the goal is to provide a qualitative insight as to how changes in N affect
the algorithmic performance as N becomes large. Because big-O notation is not
intended to be a quantitative measure, it is not only appropriate but desirable to
reduce the formula inside the parentheses so that it captures the qualitative behavior
of the algorithm in the simplest possible form. The most common simplifications
that you can make when using big-O notation are as follows:

1. Eliminate any term whose contribution to the total ceases to be significant as N

becomes large. When a formula involves several terms added together, one of
those terms often grows much faster than the others and ends up dominating the
entire expression as N becomes large. For large values of N, this term alone
will control the running time of the algorithm, and you can ignore the other
terms in the formula entirely.

2. Eliminate any constant factors. When you calculate computational complexity,
your main concern is how running time changes as a function of the problem
size N. Constant factors have no effect on the overall pattern. If you bought a
machine that was twice as fast as your old one, any algorithm that you executed
on your machine would run twice as fast as before for every value of N. The
growth pattern, however, would remain exactly the same. Thus, you can ignore
constant factors when you use big-O notation.

The computational complexity of selection sort
You can apply the simplification rules from the preceding section to derive a big-O
expression for the computational complexity of selection sort. From the analysis in
the section “Analyzing the performance of selection sort” earlier in the chapter, you
know that the running time of the selection sort algorithm for a vector of N elements
is proportional to

 10.2 Computational complexity 441

Although it would be mathematically correct to use this formula directly in the
big-O expression

O ()

you would never do so in practice because the formula inside the parentheses is not
expressed in the simplest form.

The first step toward simplifying this relationship is to recognize that the
formula is actually the sum of two terms, as follows:

 +

You then need to consider the contribution of each of these terms to the total
formula as N increases in size, which is illustrated by the following table:

N
 10 50 5 55
 100 5000 50 5050
 1000 500,000 500 500,500
 10,000 50,000,000 5000 50,005,000
 100,000 5,000,000,000 50,000 5,000,050,000

As N increases, the term involving N 2 quickly dominates the term involving N. As
a result, the simplification rule allows you to eliminate the smaller term from the
expression. Even so, you would not write that the computational complexity of
selection sort is

O ()

because you can eliminate the constant factor. The simplest expression you can use
to indicate the complexity of selection sort is

O (N 2)

This expression captures the essence of the performance of selection sort. As the
size of the problem increases, the running time tends to grow by the square of that
increase. Thus, if you double the size of the vector, the running time goes up by a

N
2
 + N

2

N
2
 + N

2

N
2

2

N

2

N
2

2

N

2

N
2
 + N

2

N
2

2

442 Algorithmic Analysis

factor of four. If you instead multiply the number of input values by 10, the running
time will explode by a factor of 100.

Deducing computational complexity from code
The following function computes the average of the elements in a vector:

double average(Vector<double> & vec) {
 int n = vec.size();
 double total = 0;
 for (int i = 0; i < n; i++) {
 total += vec[i];
 }
 return total / n;
}

How would you determine its computational complexity? When you call this
function, some parts of the code are executed only once, such as the initialization of
total to 0 and the division operation in the return statement. These
computations take a certain amount of time, but that time is constant in the sense
that it doesn’t depend on the size of the vector. Code whose execution time does
not depend on the problem size is said to run in constant time, which is expressed in
big-O notation as O (1).

Some of you will probably find the designation O(1) confusing, because the
expression inside the parentheses does not depend on N. In fact, this lack of any
dependency on N is the whole point of the O(1) notation. As you increase the size
of the problem, the time required to execute code whose running time is O(1)
increases in exactly the same way that 1 increases; in other words, the running time
of the code does not increase at all.

There are, however, other parts of the average function that are executed
exactly n times, once for each cycle of the for loop. These components include the
expression i++ in the for loop and the statement

total += vec[i];

that constitutes the loop body. Although any single execution of this part of the
computation takes a fixed amount of time, the fact that these statements are
executed n times means their total execution time is directly proportional to the
vector size. The computational complexity of this part of the average function is
O (N), which is commonly called linear time.

The total running time for average is therefore the sum of the times required
for the constant parts and the linear parts of the algorithm. As the size of the

 10.2 Computational complexity 443

problem increases, however, the constant term becomes less and less relevant. By
exploiting the simplification rule that allows you to ignore terms that become
insignificant as N gets large, you can assert that the average function as a whole
runs in O (N) time.

You could, however, predict this result just by looking at the loop structure of
the code. For the most part, the individual expressions and statements—unless they
involve function calls that must be accounted separately—run in constant time.
What matters in terms of computational complexity is how often those statements
are executed. For many programs, you can determine the computational complexity
simply by finding the piece of the code that is executed most often and determining
how many times it runs as a function of N. In the case of the average function, the
body of the loop is executed n times. Because no part of the code is executed more
often than this, you can predict that the computational complexity will be O (N).

The selection sort function can be analyzed in a similar way. The most
frequently executed part of the code is the comparison in the statement

if (vec[i] < vec[rh]) rh = i;

That statement is nested inside two for loops whose limits depend on the value of
N. The inner loop runs N times as often as the outer loop, which implies that the
inner loop body is executed O (N 2) times. Algorithms like selection sort that exhibit
O (N 2) performance are said to run in quadratic time.

Worst-case versus average-case complexity
In some cases, the running time of an algorithm depends not only on the size of the
problem but also on the specific characteristics of the data. For example, consider
the function

int linearSearch(int key, Vector<int> & vec) {
 int n = vec.size();
 for (int i = 0; i < n; i++) {
 if (key == vec[i]) return i;
 }
 return -1;
}

which returns the first index position in vec at which the value key appears, or –1 if
the value key does not appear anywhere in the vector. Because the for loop in the
implementation executes n times, you expect the performance of linearSearch,
as its name implies, to be O (N).

444 Algorithmic Analysis

On the other hand, some calls to linearSearch can be executed very quickly.
Suppose, for example, that the key element you are searching for happens to be in
the first position in the vector. In that case, the body of the for loop will run only
once. If you’re lucky enough to search for a value that always occurs at the
beginning of the vector, linearSearch will run in constant time.

When you analyze the computational complexity of a program, you’re usually
not interested in the minimum possible time. In general, computer scientists tend to
be concerned about the following two types of complexity analysis:

• Worst-case complexity. The most common type of complexity analysis consists

of determining the performance of an algorithm in the worst possible case. Such
an analysis is useful because it allows you to set an upper bound on the
computational complexity. If you analyze for the worst case, you can guarantee
that the performance of the algorithm will be at least as good as your analysis
indicates. You might sometimes get lucky, but you can be confident that the
performance will not get any worse.

• Average-case complexity. From a practical point of view, it is often useful to
consider how well an algorithm performs if you average its behavior over all
possible sets of input data. Particularly if you have no reason to assume that the
specific input to your problem is in any way atypical, the average-case analysis
provides the best statistical estimate of actual performance. The problem,
however, is that average-case analysis is usually much more difficult to carry out
and typically requires considerable mathematical sophistication.

The worst case for the linearSearch function occurs when the key is not in

the vector at all. When the key is not there, the function must complete all n cycles
of the for loop, which means that its performance is O (N). If the key is known to
be in the vector, the for loop will be executed about half as many times on average,
which implies that average-case performance is also O (N). As you will discover in
the section on “The Quicksort algorithm” later in this chapter, the average-case and
worst-case performances of an algorithm sometimes differ in qualitative ways,
which means that in practice it is often important to take both performance
characteristics into consideration.

A formal definit ion of big-O
Because understanding big-O notation is critical to modern computer science, it is
important to offer a more formal definition to help you understand why the intuitive
model of big-O works and why the suggested simplifications of big-O formulas are
in fact justified. In mathematics, big-O notation is used to express the relationship
between two functions, in an expression like this:

 10.2 Computational complexity 445

t (N) = O (ƒ (N))

The formal meaning of this expression is that ƒ (N) is an approximation of t (N) with
the following characteristic: it must be possible to find a constant N0 and a positive
constant C so that for every value of N ≥ N0, the following condition holds:

t (N) ≤ C × ƒ (N)

In other words, as long as N is “large enough,” the function t (N) is always bounded
by a constant multiple of the function ƒ (N).

When it is used to express computational complexity, the function t (N)
represents the actual running time of the algorithm, which is usually difficult to
compute. The function ƒ (N) is a much simpler formula that nonetheless provides a
reasonable qualitative estimate for how the running time changes as a function of N,
because the condition expressed in the mathematical definition of big-O ensures that
the actual running time cannot grow faster than ƒ (N).

To see how the formal definition applies, it is useful to go back to the selection
sort example. Analyzing the loop structure of selection sort showed that the
operations in the innermost loop were executed

times and that the running time was presumably roughly proportional to this
formula. When this complexity was expressed in terms of big-O notation, the
constants and low-order terms were eliminated, leaving only the assertion that the
execution time was O (N 2), which is in fact an assertion that

 = O (N 2)

To show that this expression is indeed true under the formal definition of big-O,

all you need to do is find constants C and N0 so that

 ≤ C × N 2

for all values of N ≥ N0. This particular example is extremely simple. All you need
to do to satisfy the constraints is to set the constants C and N0 both to 1. After all,
as long as N is no smaller than 1, you know that N 2 ≥ N. It must therefore be the
case that

 ≤

N
2
 + N

2

N
2
 + N

2

N
2
 + N

2

N
2
 + N

2

N
2
 + N

2

2

446 Algorithmic Analysis

But the right side of this inequality is simply N 2, which means that

 ≤ N 2

for all values of N ≥ 1, as required by the definition.

You can use a similar argument to show that any polynomial of degree k, which
can be expressed in general terms as

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N 2 + a1 N + a0

is O (N k). To do so, your goal is to find constants C and N0 so that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N 2 + a1 N + a0 ≤ C × N k

for all values of N ≥ N0.

As in the preceding example, start by letting N0 be 1. For all values of N ≥ 1,
each successive power of N is at least as large as its predecessor, so

N k ≥ N k–1 ≥ N k–2 ≥ . . . ≥ N ≥ 1

This property in turn implies that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a1 N + a0

≤ | ak | N k + | ak-1 | N k + | ak-2 | N k + . . . + | a1 | N k + | a0 | N k

where the vertical bars surrounding the coefficients on the right side of the equation
indicate absolute value. By factoring out N k, you can simplify the right side of this
inequality to

(| ak | + | ak-1 | + | ak-2 | + . . . + | a1 | + | a0 |) N k

Thus, if you define the constant C to be

| ak | + | ak-1 | + | ak-2 | + . . . + | a1 | + | a0 |

you have established that

ak N k + ak–1 N k–1 + ak–2 N k–2 + . . . + a2 N 2 + a1 N + a0 ≤ C × N k

This result proves that the entire polynomial is O (N k).

N
2
 + N

2

 10.3 Recursion to the rescue 447

If all this mathematics scares you, try not to worry. It is much more important
for you to understand what big-O means in practice than it is to follow all the steps
in the formal derivation.

 10.3 Recursion to the rescue
At this point, you know considerably more about complexity analysis than you did
when you started the chapter. However, you are no closer to solving the practical
problem of how to write a sorting algorithm that is more efficient for large vectors.
The selection sort algorithm is clearly not up to the task, because the running time
increases in proportion to the square of the input size. The same is true for most
sorting algorithms that process the elements of the vector in a linear order. To
develop a better sorting algorithm, you need to adopt a qualitatively different
approach.

The power of divide-and-conquer strategies
Oddly enough, the key to finding a better sorting strategy lies in recognizing that the
quadratic behavior of algorithms like selection sort has a hidden virtue. The basic
characteristic of quadratic complexity is that, as the size of a problem doubles, the
running time increases by a factor of four. The reverse, however, is also true. If
you divide the size of a quadratic problem by two, you decrease the running time by
that same factor of four. This fact suggests that dividing a vector in half and then
applying a recursive divide-and-conquer approach might reduce the required sorting
time.

To make this idea more concrete, suppose you have a large vector that you need
to sort. What happens if you divide the vector into two halves and then use the
selection sort algorithm to sort each of those pieces? Because selection sort is
quadratic, each of the smaller vectors requires one quarter of the original time. You
need to sort both halves, of course, but the total time required to sort the two smaller
vectors is still only half the time that would have been required to sort the original
vector. If it turns out that sorting two halves of a vector simplifies the problem of
sorting the complete vector, you will be able to reduce the total time substantially.
More importantly, once you discover how to improve performance at one level, you
can use the same algorithm recursively to sort each half.

To determine whether a divide-and-conquer strategy is applicable to the sorting
problem, you need to answer the question of whether dividing a vector into two
smaller vectors and then sorting each one helps to solve the general problem. As a
way to gain some insight into this question, suppose that you start with a vector
containing the following eight elements:

448 Algorithmic Analysis

If you divide the vector of eight elements into two vectors of length four and then
sort each of those smaller vectors—remember that the recursive leap of faith means
you can assume that the recursive calls work correctly—you get the following
situation in which each of the smaller vectors is sorted:

How useful is this decomposition? Remember that your goal is to take the values
out of these smaller vectors and put them back into the original vector in the correct
order. How does having these smaller sorted vectors help you in accomplishing that
goal?

Merging two vectors
As it happens, reconstructing the complete vector from the smaller sorted vectors is
a much simpler problem than sorting itself. The required technique, called
merging, depends on the fact that the first element in the complete ordering must be
either the first element in v1 or the first element in v2, whichever is smaller. In this
example, the first element you want in the new vector is the 19 in v2. If you add
that element to an empty vector vec and, in effect, cross it out of v2, you get the
following configuration:

Once again, the next element can only be the first unused element in one of the two
smaller vectors. You compare the 25 from v1 against the 30 in v2 and choose the
former:

vec

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

v1

0

25

1

37

2

56

3

58

v2

0

19

1

30

2

73

3

95

v1

0

25

1

37

2

56

3

58

v2

0

19

1

30

2

73

3

95

vec

0

19

 10.3 Recursion to the rescue 449

You can easily continue this process of choosing the smaller value from v1 or v2
until you have reconstructed the entire vector.

The merge sort algorithm
The merge operation, combined with recursive decomposition, gives rise to a new
sorting algorithm called merge sort, which you can implement in a straightforward
way. The basic idea of the algorithm can be outlined as follows:

1. Check to see if the vector is empty or has only one element. If so, it must

already be sorted. This condition defines the simple case for the recursion.

2. Divide the vector into two smaller vectors, each of which is half the size.

3. Sort each of the smaller vectors recursively.

4. Clear the original vector so that it is again empty.

5. Merge the two sorted vectors back into the original one.

The code for the merge sort algorithm, shown in Figure 10-3, divides neatly into
two functions: sort and merge. The code for sort follows directly from the
outline of the algorithm. After checking for the special case, the algorithm divides
the original vector into two smaller ones, v1 and v2. As soon as the code for sort
has copied all of the elements into either v1 or v2, the rest of the function sorts
these vectors recursively, clears the original vector, and then calls merge to
reassemble the complete solution.

Most of the work is done by the merge function, which takes the destination
vector, along with the smaller vectors v1 and v2. The indices p1 and p2 mark the
progress through each of the subsidiary vectors. On each cycle of the loop, the
function selects an element from v1 or v2—whichever is smaller—and adds that
value to the end of vec. As soon as the elements in either of the two smaller
vectors are exhausted, the function can simply copy the elements from the other
vector without bothering to test them. In fact, because one of these vectors is
already exhausted when the first while loop exits, the function can simply copy the
rest of each vector to the destination. One of these vectors will be empty, and the
corresponding while loop will therefore not be executed at all.

v1

0

25

1

37

2

56

3

58

v2

0

19

1

30

2

73

3

95

vec

0

19

1

25

450 Algorithmic Analysis

F I G U R E 1 0 - 3 Implementation of the merge sort algorithm

/*
 * Function: sort
 * --------------
 * This function sorts the elements of the vector into increasing order
 * using the merge sort algorithm, which consists of the following steps:
 *
 * 1. Divide the vector into two halves.
 * 2. Sort each of these smaller vectors recursively.
 * 3. Merge the two vectors back into the original one.
 */

void sort(Vector<int> & vec) {
 int n = vec.size();
 if (n <= 1) return;
 Vector<int> v1;
 Vector<int> v2;
 for (int i = 0; i < n; i++) {
 if (i < n / 2) {
 v1.add(vec[i]);
 } else {
 v2.add(vec[i]);
 }
 }
 sort(v1);
 sort(v2);
 vec.clear();
 merge(vec, v1, v2);
}

/*
 * Function: merge
 * ---------------
 * This function merges two sorted vectors, v1 and v2, into the vector
 * vec, which should be empty before this operation. Because the input
 * vectors are sorted, the implementation can always select the first
 * unused element in one of the input vectors to fill the next position.
 */

void merge(Vector<int> & vec, Vector<int> & v1, Vector<int> & v2) {
 int n1 = v1.size();
 int n2 = v2.size();
 int p1 = 0;
 int p2 = 0;
 while (p1 < n1 && p2 < n2) {
 if (v1[p1] < v2[p2]) {
 vec.add(v1[p1++]);
 } else {
 vec.add(v2[p2++]);
 }
 }
 while (p1 < n1) vec.add(v1[p1++]);
 while (p2 < n2) vec.add(v2[p2++]);
}

 10.3 Recursion to the rescue 451

The computational complexity of merge sort
You now have an implementation of the sort function based on the strategy of
divide-and-conquer. How efficient is it? You can measure its efficiency by sorting
vectors of numbers and timing the result, but it is helpful to start by thinking about
the algorithm in terms of its computational complexity.

When you call the merge sort implementation of sort on a list of N numbers,
the running time can be divided into two components:

1. The amount of time required to execute the operations at the current level of the

recursive decomposition

2. The time required to execute the recursive calls

At the top level of the recursive decomposition, the cost of performing the
nonrecursive operations is proportional to N. The loop to fill the subsidiary vectors
accounts for N cycles, and the call to merge has the effect of refilling the original N
positions in the vector. If you add these operations and ignore the constant factor,
you discover that the complexity of any single call to sort—not counting the
recursive calls within it—requires O (N) operations.

But what about the cost of the recursive operations? To sort a vector of size N,
you must recursively sort two vectors of size N / 2. Each of these operations
requires some amount of time. If you apply the same logic, you quickly determine
that sorting each of these smaller vectors requires time proportional to N / 2 at that
level, plus whatever time is required by its own recursive calls. The same process
then continues until you reach the simple case in which the vectors consist of a
single element or no elements at all.

The total time required to solve the problem is the sum of the time required at
each level of the recursive decomposition. In general, the decomposition has the
structure shown in Figure 10-4. As you move down through the recursive
hierarchy, the vectors get smaller, but more numerous. The amount of work done at
each level, however, is always directly proportional to N. Determining the total
amount of work is therefore a question of finding out how many levels there will be.

At each level of the hierarchy, the value of N is divided by 2. The total number
of levels is therefore equal to the number of times you can divide N by 2 before you
get down to 1. Rephrasing this problem in mathematical terms, you need to find a
value of k such that

N = 2k

452 Algorithmic Analysis

Solving the equation for k gives

k = log2N

Because the number of levels is log2N and the amount of work done at each level is
proportional to N, the total amount of work is proportional to N log2N.

Unlike other scientific disciplines, in which logarithms are expressed in terms of
powers of 10 (common logarithms) or the mathematical constant e (natural
logarithms), computer science tends to use binary logarithms, which are based on
powers of 2. Logarithms computed using different bases differ only by a constant
factor, and it is therefore traditional to omit the logarithmic base when you talk
about computational complexity. Thus, the computational complexity of merge sort
is usually written as

O (N log N)

Comparing N 2 and N log N performance
But how good is O (N log N)? One way to assess the level of improvement is to
look at empirical data to get a sense of how the running times of the selection and
merge sort algorithms compare. That timing information appears in Figure 10-5.
For 10 items, this implementation of merge sort is more than five times slower than
selection sort. At 100 items, selection sort is still faster, but not by very much. By
the time you get up to 100,000 items, merge sort is almost 500 times faster than
selection sort. On my computer, the selection sort algorithm requires more than two

F I G U R E 1 0 - 4 Recursive decomposition of merge sort

Sorting a vector of size N

N operations

requires sorting two vectors of size N / 2

2 × N /2 operations

requires sorting four vectors of size N / 4

4 × N /4 operations

requires sorting eight vectors of size N / 8

8 × N /8 operations

and so on.

 10.4 Standard complexity classes 453

and a half minutes to sort 100,000 items while merge sort completes the job in less
than half a second. For large vectors, merge sort clearly represents a significant
improvement.

You can, however, get much the same information by comparing the
computational complexity formulas for the two algorithms, as follows:

N N 2 N log N
 10 100 33
 100 10,000 664
 1000 1,000,000 9965
 10,000 100,000,000 132,877

The numbers in both columns grow as N becomes larger, but the N 2 column grows
much faster than the N log N column. Sorting algorithms based on an N log N
algorithm will therefore be useful over a much larger range of vector sizes.

 10.4 Standard complexity classes
In programming, most algorithms fall into one of several common complexity
classes. The most important complexity classes are shown in Figure 10-6, which
gives the common name of the class along with the corresponding big-O expression
and a representative algorithm in that class.

The classes in Figure 10-6 are presented in strictly increasing order of
complexity. If you have a choice between one algorithm that requires O (log N)
time and another that requires O (N) time, the first will always outperform the
second as N grows large. For small values of N, terms that are discounted in the
big-O calculation may allow a theoretically less efficient algorithm to do better

F I G U R E 1 0 - 5 Empirical comparison of selection and merge sorts

N Selection sort Merge sort

10 0.0000024 sec 0.0000128 sec

50 0.0000448 sec 0.0000887 sec

100 0.000169 sec 0.000196 sec

500 0.00402 sec 0.00110 sec

1000 0.0159 sec 0.00236 sec

5000 0.395 sec 0.0129 sec

10,000 1.58 sec 0.027 sec

50,000 39.6 sec 0.156 sec

100,000 158.7 sec 0.324 sec

454 Algorithmic Analysis

against one that has a lower computational complexity. On the other hand, as N
grows larger, there will always be a point at which the theoretical difference in
efficiency becomes the deciding factor.

The differences in efficiency between these classes are in fact profound. You
can begin to get a sense of how the different complexity functions stand in relation
to one another by looking at the graph in Figure 10-7, which plots these complexity

F I G U R E 1 0 - 6 Standard complexity classes

Constant O (1) Returning the first element in a vector

Logarithmic O (log N) Binary search in a sorted vector

Linear O (N) Linear search in a vector

N log N O (N log N) Merge sort

Quadratic O (N2) Selection sort

Cubic O (N3) Conventional algorithms for matrix multiplication

Exponential O (2N) Tower of Hanoi

F I G U R E 1 0 - 7 Growth characteristics of the standard complexity classes: linear plot

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

O (1)

O (log N)

O (N)

O (N log N)

O (N2)O (N3) O (2N)

 10.4 Standard complexity classes 455

functions on a traditional linear scale. Unfortunately, this graph tells an incomplete
and somewhat misleading part of the story, because the values of N are all very
small. Complexity analysis, after all, is primarily relevant as the values of N
become large. Figure 10-8 shows the same data plotted on a logarithmic scale,
which gives you a better sense of how these functions grow over a more extensive
range of values.

Algorithms that fall into the constant, linear, quadratic, and cubic complexity
classes are all part of a more general family called polynomial algorithms that
execute in time N k for some constant k. One of the useful properties of the
logarithmic plot shown in Figure 10-8 is that the graph of any function N k always
comes out as a straight line whose slope is proportional to k. From looking at the
figure, it is immediately clear that the function N k—no matter how big k happens to
be—will invariably grow more slowly than the exponential function represented by
2N, which continues to curve upward as the value of N increases. This property has
important implications in terms of finding practical algorithms for real-world
problems. Even though the selection sort example makes it clear that quadratic
algorithms have substantial performance problems for large values of N, algorithms

F I G U R E 1 0 - 8 Growth characteristics of the standard complexity classes: logarithmic plot

1 10 102 103

1

10

102

103

104

105

106

107

108

O (1)

O (log N)

O (N)

O (N log N)

O (N2)

O (N3)O (2N)

456 Algorithmic Analysis

whose complexity is O (2N) are considerably worse. As a general rule of thumb,
computer scientists classify problems that can be solved using algorithms that run in
polynomial time as tractable, in the sense that they are amenable to implementation
on a computer. Problems for which no polynomial time algorithm exists are
regarded as intractable.

Unfortunately, there are many commercially important problems for which all
known algorithms require exponential time. One of those is the subset-sum
problem introduced in Chapter 8, which turns up in several practical contexts.
Another is the traveling salesman problem, which seeks to find the shortest route
by which one can visit a set of N cities connected by some transportation system
and then return to the starting point. As far as anyone knows, it is not possible to
solve either the subset-sum problem or the traveling salesman problem in
polynomial time. The best-known approaches all have exponential performance in
the worst case and are equivalent in efficiency to generating all possible routings
and comparing the cost. In general, the best known solution to each of these
problems is to try every possibility, which requires exponential time. On the other
hand, no one has been able to prove conclusively that no polynomial-time algorithm
for this problem exists. There might be some clever algorithm that makes these
problems tractable. If so, it turns out that many problems currently believed to be
difficult would move into the tractable range as well.

The question of whether problems like subset-sum or the traveling salesman
problem, which are part of class of problems that computer scientists designate as
NP-complete problems, can be solved in polynomial time is one of the most
important open questions in computer science and, indeed, in mathematics.

 10.5 The Quicksort algorithm
Even though the merge sort algorithm presented earlier in this chapter performs well
in theory and has a worst-case complexity of O (N log N), it is not used much in
practice. Instead, most sorting programs in use today are based on an algorithm
called Quicksort, developed by the British computer scientist C. A. R. (Tony)
Hoare.

Both Quicksort and merge sort employ a divide-and-conquer strategy. In the
merge sort algorithm, the original vector is divided into two halves, each of which is
sorted independently. The resulting sorted vectors are then merged together to
complete the sort operation for the entire vector. Suppose, however, that you took a
different approach to dividing up the vector. What would happen if you started the
process by making an initial pass through the vector, changing the positions of the
elements so that “small” values come at the beginning of the vector and “large”
values come at the end, for some definition of the words large and small?

 10.5 The Quicksort algorithm 457

For example, suppose that the original vector you wanted to sort was the
following one, presented earlier in the discussion of merge sort:

Half of these elements are larger than 50 and half are smaller, so it might make
sense to define small in this case as being less than 50 and large as being 50 or
more. If you could then find a way to rearrange the elements so that all the small
elements came at the beginning and all the large ones at the end, you would wind up
with a vector that looks something like the following diagram, which shows one of
many possible orderings that fit the definition:

When the elements are divided into parts in this fashion, all that remains to be

done is to sort each of the parts, using a recursive call to the function that does the
sorting. Since all the elements on the left side of the boundary line are smaller than
all those on the right, the final result will be a completely sorted vector:

If you could always choose the optimal boundary between the small and large
elements on each cycle, this algorithm would divide the vector in half each time and
end up demonstrating the same qualitative characteristics as merge sort. In practice,
the Quicksort algorithm selects some existing element in the vector and uses that
value as the dividing line between the small and large elements. For example, a
common approach is to pick the first element, which was 56 in the original vector,
and use it as the demarcation point between small and large elements. When the
vector is reordered, the boundary is therefore at a particular index position rather
than between two positions, as follows:

From this point, the recursive calls must sort the vector between positions 0 and 3
and the vector between positions 5 and 7, leaving index position 4 right where it is.

vec

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

0

19

1

25

2

37

3

30

4

56

5

95

6

73

7

58

small elements large elements

0

19

1

25

2

37

3

30

4

56

5

95

6

73

7

58

458 Algorithmic Analysis

As in merge sort, the simple case of the Quicksort algorithm is a vector of size 0
or 1, which must already be sorted. The recursive part of the Quicksort algorithm
consists of the following steps:

1. Choose an element to serve as the boundary between the small and large

elements. This element is traditionally called the pivot. For the moment, it is
sufficient to choose any element for this purpose, and the simplest strategy is to
select the first element in the vector.

2. Rearrange the elements in the vector so that large elements are moved toward
the end of the vector and small elements toward the beginning. More formally,
the goal of this step is to divide the elements around a boundary position so that
all elements to the left of the boundary are less than the pivot and all elements
to the right are greater than or possibly equal to the pivot. This processing is
called partitioning the vector and is discussed in detail in the next section.

3. Sort the elements in each of the partial vectors. Because all elements to the left
of the pivot boundary are strictly less than all those to the right, sorting each of
the vectors must leave the entire vector in sorted order. Moreover, since the
algorithm uses a divide-and-conquer strategy, these smaller vectors can be
sorted using a recursive application of Quicksort.

Partit ioning the vector
In the partition step of the Quicksort algorithm, the goal is to rearrange the elements
so that they are divided into three classes: those that are smaller than the pivot; the
pivot element itself, which is situated at the boundary position; and those elements
that are at least as large as the pivot. The tricky part about partition is to rearrange
the elements without using any extra storage, which is typically done by swapping
pairs of elements.

Tony Hoare’s original approach to partitioning is fairly easy to explain in
English. Because the pivot value has already been selected when you start the
partitioning phase of the algorithm, you can tell immediately whether a value is
large or small relative to that pivot. To make things easier, let’s assume that the
pivot value is stored in the initial element position. Hoare’s partitioning algorithm
proceeds as follows:

1. For the moment, ignore the pivot element at index position 0 and concentrate

on the remaining elements. Use two index values, lh and rh, to record the
index positions of the first and last elements in the rest of the vector, as shown:

 10.5 The Quicksort algorithm 459

2. Move the rh index to the left until it either coincides with lh or points to an
element containing a value that is small with respect to the pivot. In this
example, the value 30 in position 7 is already a small value, so the rh index
does not need to move.

3. Move the lh index to the right until it coincides with rh or points to an element

containing a value that is larger than or equal to the pivot. In this example, the
lh index must move to the right until it points to an element larger than 56,
which leads to the following configuration:

4. If the lh and rh index values have not yet reached the same position, exchange
the elements in those positions in the vector, which leaves it looking like this:

5. Repeat steps 2 through 4 until the lh and rh positions coincide. On the next
pass, for example, the exchange operation in step 4 swaps the 19 and the 95.
As soon as that happens, the next execution of step 2 moves the rh index to the
left, where it ends up matching the lh, as follows:

6. Unless the chosen pivot just happened to be the smallest element in the entire
vector (and the code includes a special check for this case), the point at which
the lh and rh index positions coincide will be the small value that is furthest to
the right in the vector. The only remaining step is to exchange that value in this
position with the pivot element at the beginning of the vector, as shown:

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

☞

lh

☞
rh

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

☞

lh

☞
rh

0

56

1

25

2

37

3

30

4

95

5

19

6

73

7

58

☞

lh

☞
rh

0

56

1

25

2

37

3

30

4

19

5

95

6

73

7

58

☞

lh
☞
rhlh+rh

460 Algorithmic Analysis

 Note that this configuration meets the requirements of the partitioning step.
The pivot value is at the marked boundary position, with every element to the
left being smaller and every element to the right being at least that large.

An implementation of sort using the Quicksort algorithm is shown in Figure 10-9.

0

19

1

25

2

37

3

30

4

56

5

95

6

73

7

58

→

boundary

F I G U R E 1 0 - 9 Implementation of the Quicksort algorithm

/*
 * Function: sort
 * --------------
 * This function sorts the elements of the vector into
 * increasing numerical order using the Quicksort algorithm.
 * In this implementation, sort is a wrapper function that
 * calls quicksort to do all the work.
 */

void sort(Vector<int> & vec) {
 quicksort(vec, 0, vec.size() - 1);
}

/*
 * Function: quicksort
 * -------------------
 * Sorts the elements in the vector between index positions
 * start and finish, inclusive. The Quicksort algorithm begins
 * by "partitioning" the vector so that all elements smaller
 * than a designated pivot element appear to the left of a
 * boundary and all equal or larger values appear to the right.
 * Sorting the subsidiary vectors to the left and right of the
 * boundary ensures that the entire vector is sorted.
 */

void quicksort(Vector<int> & vec, int start, int finish) {
 if (start >= finish) return;
 int boundary = partition(vec, start, finish);
 quicksort(vec, start, boundary - 1);
 quicksort(vec, boundary + 1, finish);
}

 10.5 The Quicksort algorithm 461

Analyzing the performance of Quicksort
A head-to-head comparison of the actual running times for the merge sort and
Quicksort algorithms appears in Figure 10-10. As you can see, this implementation
of Quicksort tends to run several times faster than the implementation of merge sort
given in Figure 10-3, which is one of the reasons why programmers use it more
frequently in practice. Moreover, the running times for both algorithms appear to
grow in roughly the same way.

The empirical results presented in Figure 10-10, however, obscure an important
point. As long as the Quicksort algorithm chooses a pivot that is close to the
median value in the vector, the partition step will divide the vector into roughly
equal parts. If the algorithm chooses its pivot value poorly, one of the two partial
vectors may be much larger than the other, which defeats the purpose of the
divide-and-conquer strategy. In a vector with randomly chosen elements, Quicksort
tends to perform well, with an average-case complexity of O (N log N). In the worst

F I G U R E 1 0 - 9 Implementation of the Quicksort algorithm (continued)

/*
 * Function: partition
 * -------------------
 * This function rearranges the elements of the vector so that the
 * small elements are grouped at the left end of the vector and the
 * large elements are grouped at the right end. The distinction
 * between small and large is made by comparing each element to the
 * pivot value, which is initially taken from vec[start]. When the
 * partitioning is done, the function returns a boundary index such
 * that vec[i] < pivot for all i < boundary, vec[i] == pivot
 * for i == boundary, and vec[i] >= pivot for all i > boundary.
 */

int partition(Vector<int> & vec, int start, int finish) {
 int pivot = vec[start];
 int lh = start + 1;
 int rh = finish;
 while (true) {
 while (lh < rh && vec[rh] >= pivot) rh--;
 while (lh < rh && vec[lh] < pivot) lh++;
 if (lh == rh) break;
 int tmp = vec[lh];
 vec[lh] = vec[rh];
 vec[rh] = tmp;
 }
 if (vec[lh] >= pivot) return start;
 vec[start] = vec[lh];
 vec[lh] = pivot;
 return lh;
}

462 Algorithmic Analysis

case—which paradoxically consists of a vector that is already sorted—the
performance degenerates to O (N 2). Despite this inferior behavior in the worst case,
Quicksort is so much faster in practice than most other algorithms that it has
become the standard choice for general sorting procedures.

There are several strategies you can use to increase the likelihood that the pivot
is in fact close to the median value in the vector. One simple approach is to have
the Quicksort implementation choose the pivot element at random. Although it is
still possible that the random process will choose a poor pivot value, it is unlikely
that it would make the same mistake repeatedly at each level of the recursive
decomposition. Moreover, there is no distribution of the original vector that is
always bad. Given any input, choosing the pivot randomly ensures that the
average-case performance for that vector would be O (N log N). Another
possibility, which is explored in more detail in exercise 6, is to select a few values,
typically three or five, from the vector and choose the median of those values as the
pivot.

You do have to be somewhat careful as you try to improve the algorithm in this
way. Picking a good pivot improves performance, but also costs some time. If the
algorithm spends more time choosing the pivot than it gets back from making a
good choice, you will end up slowing down the implementation rather than
speeding it up.

 10.6 Mathematical induction
Earlier in the chapter, I asked you to rely on the fact that the sum

N + N–1 + N–2 + . . . + 3 + 2 + 1

F I G U R E 1 0 - 1 0 Empirical comparison of merge sort and Quicksort

N Merge sort Quicksort

10 0.0000128 sec 0.0000014 sec

50 0.0000887 sec 0.0000120 sec

100 0.000196 sec 0.0000288 sec

500 0.00110 sec 0.000200 sec

1000 0.00236 sec 0.000456 sec

5000 0.0129 sec 0.00284 sec

10,000 0.027 sec 0.00608 sec

50,000 0.156 sec 0.0365 sec

100,000 0.324 sec 0.0774 sec

 10.6 Mathematical induction 463

could be simplified to the more manageable formula

If you were skeptical about this simplification, how would you go about proving
that the simplified formula is indeed correct?

There are, in fact, several different proof techniques you could try. One
possibility is to represent the original extended sum in a geometric form. Suppose,
for example, that N is 5. If you then represent each term in the summation with a
row of dots, those dots form the following triangle:

If you make a copy of this triangle and flip it upside down, the two triangles fit
together to form a rectangle, shown here with the lower triangle in gray:

Since the pattern is now rectangular, the total number of dots—both black and
gray—is easy to compute. In this picture, there are five rows of six dots each, so the
total collection of dots, counting both colors, is 5×6, or 30. Since the two triangles
are identical, exactly half of these dots are black; thus the number of black dots is
30 / 2, or 15. In the more general case, there are N rows containing N+1 dots each,
and the number of black dots from the original triangle is therefore

Proving that a formula is correct in this fashion, however, has some potential
drawbacks. For one thing, geometrical arguments presented in this style are not as
formal as many computer scientists would like. More to the point, constructing this
type of argument requires that you come up with the right geometrical insight,

N
2
 + N

2

N × (N + 1)

2

464 Algorithmic Analysis

which is different for each problem. It would be better to adopt a more general
proof strategy that would apply to many different problems.

The technique that computer scientists generally use to prove propositions like

N + N–1 + N–2 + . . . + 3 + 2 + 1 =

is called mathematical induction. Mathematical induction applies when you want
to show that a proposition is true for all values of an integer N beginning at some
initial starting point. This starting point is called the basis of the induction and is
typically 0 or 1. The process consists of the following steps:

• Prove the base case. The first step is to establish that the proposition holds true

when N has the basis value. In most cases, this step is a simple matter of
plugging the basis value into a formula and showing that the desired relationship
holds.

• Prove the inductive case. The second step is to demonstrate that, if you assume
the proposition to be true for N, it must also be true for N+1.

As an example, here is how you can use mathematical induction to prove the

proposition that

N + N–1 + N–2 + . . . + 3 + 2 + 1 =

is indeed true for all N greater than or equal to 1. The first step is to prove the base
case, when N is equal to 1. That part is easy. All you have to do is substitute 1 for
N in both halves of the formula to determine that

1 = = = 1

To prove the inductive case, you begin by assuming that the proposition

N + N–1 + N–2 + . . . + 3 + 2 + 1 =

is indeed true for N. This assumption is called the inductive hypothesis. Your goal
is now to verify that the same relationship holds for N+1. In other words, what you
need to do to establish the truth of the current formula is to show that

N+1 + N + N–1 + N–2 + . . . + 3 + 2 + 1 =

N × (N + 1)

2

N × (N + 1)

2

1 × (1 + 1)

2
2

2

N × (N + 1)

2

(N + 1) × (N + 2)
2

 10.6 Mathematical induction 465

If you look at the left side of the equation, you should notice that the sequence of
terms beginning with N is exactly the same as the left side of your inductive
hypothesis. Since you have assumed that the inductive hypothesis is true, you can
substitute the equivalent closed-form expression, so that the left side of the
proposition you’re trying to prove looks like this:

N+1 +

From here on, the rest of the proof is simple algebra:

N+1 +

= +

=

=

The last line in this derivation is precisely the result you were looking for and
therefore completes the proof.

Many students need time to get used to the idea of mathematical induction. At
first glance, the inductive hypothesis seems to be “cheating” in some sense; after all,
you get to assume precisely the proposition that you are trying to prove. In fact, the
process of mathematical induction is nothing more than an infinite family of proofs,
each of which proceeds by the same logic. The base case in a typical example
establishes that the proposition is true for N = 1. Once you have proved the base
case, you can adopt the following chain of reasoning:

Now that I know the proposition is true for N = 1, I can prove it is true for N = 2.
Now that I know the proposition is true for N = 2, I can prove it is true for N = 3.
Now that I know the proposition is true for N = 3, I can prove it is true for N = 4.
Now that I know the proposition is true for N = 4, I can prove it is true for N = 5.
And so on. . . .

At each step in this process, you could write out a complete proof by applying the
logic you used to establish the inductive case. The power of mathematical induction
comes from the fact that you don’t actually need to write out the details of each step
individually.

N × (N + 1)

2

N × (N + 1)

2

2N + 2

2

N
2
 + N

2

N
2
 + 3N + 2

2

(N + 1) × (N + 2)
2

466 Algorithmic Analysis

In a way, the process of mathematical induction is like the process of recursion
viewed from the opposite direction. If you try to explain a typical recursive
decomposition in detail, the process usually sounds something like this:

To calculate this function for N = 5, I need to know its value for N = 4.
To calculate this function for N = 4, I need to know its value for N = 3.
To calculate this function for N = 3, I need to know its value for N = 2.
To calculate this function for N = 2, I need to know its value for N = 1.
The value N = 1 represents a simple case, so I can return the result immediately.

Both induction and recursion require you to make a leap of faith. When you

write a recursive function, this leap consists of believing that all simpler instances of
the function call will work without your paying any attention to the details. Making
the inductive hypothesis requires much the same mental discipline. In both cases,
you have to restrict your thinking to one level of the solution and not get sidetracked
trying to follow the details all the way to the end.

 Summary
The most valuable concept to take with you from this chapter is that algorithms for
solving a problem can vary widely in their performance characteristics. Choosing
an algorithm that has better computational properties can often reduce the time
required to solve a problem by many orders of magnitude. The difference in
behavior is illustrated dramatically by the tables presented in this chapter that give
the actual running times for various sorting algorithms. When sorting a vector of
10,000 integers, for example, the Quicksort algorithm outperforms selection sort by
a factor of almost 250; as the vector sizes get larger, the difference in efficiency
between these algorithms will become even more pronounced.

Other important points in this chapter include:

• Most algorithmic problems can be characterized by an integer N that represents

the size of the problem. For algorithms that operate on large integers, the size of
the integer provides an effective measure of problem size; for algorithms that
operate on arrays or vectors, it usually makes sense to define the problem size as
the number of elements.

• The most useful qualitative measure of efficiency is computational complexity,
which is defined as the relationship between problem size and algorithmic
performance as the problem size becomes large.

• Big-O notation provides an intuitive way of expressing computational
complexity because it allows you to highlight the most important aspects of the
complexity relationship in the simplest possible form.

 Review questions 467

• When you use big-O notation, you can simplify the formula by eliminating any
term in the formula that becomes insignificant as N becomes large, along with
any constant factors.

• You can often predict the computational complexity of a program by looking at
the nesting structure of the loops it contains.

• Two useful measures of complexity are worst-case and average-case analysis.
Average-case analysis is usually much more difficult to conduct.

• Divide-and-conquer strategies make it possible to reduce the complexity of
sorting algorithms from O (N 2) to O (N log N), which is a significant reduction.

• Most algorithms fall into one of several common complexity classes, which
include the constant, logarithmic, linear, N log N, quadratic, cubic, and
exponential classes. Algorithms whose complexity class appears earlier in this
list are more efficient than those that come afterward when the problems being
considered are sufficiently large.

• Problems that can be solved in polynomial time, which is defined to be O (N k) for
some constant value k, are considered to be tractable. Problems for which no
polynomial-time algorithm exists are considered intractable because solving
such problems requires prohibitive amounts of time, even for problems of
relatively modest size.

• Because it tends to perform extremely well in practice, most sorting programs
are based on the Quicksort algorithm, developed by Tony Hoare, even though its
worst-case complexity is O (N 2).

• Mathematical induction provides a general technique for proving that a property
holds for all values of N greater than or equal to some base value. To apply this
technique, your first step is to demonstrate that the property holds in the base
case. In the second step, you must prove that, if the formula holds for a specific
value N, then it must also hold for N+1.

 Review questions
1. The simplest recursive implementation of the Fibonacci function is

considerably less efficient than the iterative version. Does this fact allow you
to make any general conclusions about the relative efficiency of recursive and
iterative solutions?

2. What is the sorting problem?

3. The implementation of sort shown in Figure 10-1 runs through the code to

exchange the values at positions lh and rh even if these values happen to be
the same. If you change the program so that it checks to make sure lh and rh

468 Algorithmic Analysis

are different before making the exchange, it is likely to run more slowly than
the original algorithm. Why might this be so?

4. Suppose that you are using the selection sort algorithm to sort a vector of 250

values and find that it takes 50 milliseconds to complete the operation. What
would you expect the running time to be if you used the same algorithm to sort
a vector of 1000 values on the same machine?

5. What is the closed-form expression that computes the sum of the series

N + N–1 + N–2 + . . . + 3 + 2 + 1

6. In your own words, define the concept of computational complexity.

7. True or false: Big-O notation was invented as a means to express

computational complexity.

8. What are the two rules presented in this chapter for simplifying big-O

notation?

9. Is it technically correct to say that selection sort runs in

O ()

time? What, if anything, is wrong with doing so?

10. Is it technically correct to say that selection sort runs in O (N 3) time? Again,

what, if anything, is wrong with doing so?

11. Why is it customary to omit the base of the logarithm in big-O expressions

such as O (N log N)?

12. What is the computational complexity of the following function:

int mystery1(int n) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < i; j++) {
 sum += i * j;
 }
 }
 return sum;
}

N
2
 + N

2

 Review questions 469

13. What is the computational complexity of this function:

int mystery2(int n) {
 int sum = 0;
 for (int i = 0; i < 10; i++) {
 for (int j = 0; j < i; j++) {
 sum += j * n;
 }
 }
 return sum;
}

14. Explain the difference between worst-case and average-case complexity. In

general, which of these measures is harder to compute?

15. State the formal definition of big-O.

16. In your own words, explain why the merge function runs in linear time.

17. The last two lines of the merge function are

while (p1 < n1) vec.add(v1[p1++]);
while (p2 < n2) vec.add(v2[p2++]);

Would it matter if these two lines were reversed? Why or why not?

18. What are the seven complexity classes identified in this chapter as the most

common classes encountered in practice?

19. What does the term polynomial algorithm mean?

20. What criterion do computer scientists use to differentiate tractable and

intractable problems?

21. In the Quicksort algorithm, what conditions must be true at the conclusion of

the partitioning step?

22. What are the worst- and average-case complexities for Quicksort?

23. Describe the two steps involved in a proof by mathematical induction.

24. In your own words, describe the relationship between recursion and

mathematical induction.

470 Algorithmic Analysis

 Exercises
1. It is easy to write a recursive function

double raiseToPower(double x, int n)

that calculates xn, by relying on the recursive insight that

x n = x × x n–1

Such a strategy leads to an implementation that runs in linear time. You can,
however, adopt a recursive divide-and-conquer strategy which takes advantage
of the fact that

x 2n = x n × x n

Use this fact to write a recursive version of raiseToPower that runs in
O (log N) time.

2. There are several other sorting algorithms that exhibit the O (N 2) behavior of

selection sort. Of these, one of the most important is insertion sort, which
operates as follows. You go through each element in the vector in turn, as
with the selection sort algorithm. At each step in the process, however, the
goal is not to find the smallest remaining value and switch it into its correct
position, but rather to ensure that the values considered so far are correctly
ordered with respect to each other. Although those values may shift as more
elements are processed, they form an ordered sequence in and of themselves.

For example, if you consider again the data used in the sorting examples

from this chapter, the first cycle of the insertion sort algorithm requires no
work, because a vector of one element is always sorted:

On the next cycle, you need to put 25 into the correct position with respect to
the elements you have already seen, which means that you need to exchange
the 56 and 25 to reach the following configuration:

On the third cycle, you need to find where the value 37 should go. To do so,
you need to move backward through the earlier elements—which you know

0

56

1

25

2

37

3

58

4

95

5

19

6

73

7

30

in order

0

25

1

56

2

37

3

58

4

95

5

19

6

73

7

30

in order

 Exercises 471

are in order with respect to each other—looking for the position where 37
belongs. As you go, you need to shift each of the larger elements one position
to the right, which eventually makes room for the value you’re trying to insert.
In this case, the 56 gets shifted by one position, and the 37 winds up in
position 1. Thus, the configuration after the third cycle looks like this:

After each cycle, the initial portion of the vector is always sorted, which
implies that cycling through all the positions in this way will sort the entire
vector.

The insertion sort algorithm is important in practice because it runs in

linear time if the vector is already more or less in the correct order. It
therefore makes sense to use insertion sort to restore order to a large vector in
which only a few elements are out of sequence.

Write an implementation of sort that uses the insertion sort algorithm.
Construct an informal argument to show that the worst-case behavior of
insertion sort is O (N 2).

3. Write a function that keeps track of the elapsed time as it executes the sort

procedure on a randomly chosen vector. Use that function to write a program
that produces a table of the observed running times for a predefined set of
sizes, as shown in the following sample run:

The best way to measure elapsed system time for programs of this sort is to
use the ANSI clock function, which is exported by the ctime interface. The
clock function takes no arguments and returns the amount of time the
processing unit of the computer has used in the execution of the program. The
unit of measurement and even the type used to store the result of clock differ

0

25

1

37

2

56

3

58

4

95

5

19

6

73

7

30

in order

SortTimer
 N | Time (msec)
---------+---------------
 10 | 0.00074
 50 | 0.00688
 100 | 0.01654
 500 | 0.11578
 1000 | 0.25458
 5000 | 1.59824
 10000 | 3.46010
 50000 | 20.45690
 100000 | 43.76030

472 Algorithmic Analysis

depending on the type of machine, but you can always convert the
system-dependent clock units into seconds by using the following expression:

double(clock()) / CLOCKS_PER_SEC

If you record the starting and finishing times in the variables start and
finish, you can use the following code to compute the time required by a
calculation:

double start = double(clock()) / CLOCKS_PER_SEC;
. . . Perform some calculation . . .
double finish = double(clock()) / CLOCKS_PER_SEC;
double elapsed = finish - start;

Unfortunately, calculating the time requirements for a program that runs

quickly requires some subtlety because there is no guarantee that the system
clock unit is precise enough to measure the elapsed time. For example, if you
used this strategy to time the process of sorting 10 integers, the odds are good
that the time value of elapsed at the end of the code fragment would be 0.
The reason is that the processing unit on most machines can execute many
instructions in the space of a single clock tick—almost certainly enough to get
the entire sorting process done for a vector of 10 elements. Because the
system’s internal clock may not tick in the interim, the values recorded for
start and finish are likely to be the same.

The best way to get around this problem is to repeat the calculation many
times between the two calls to the clock function. For example, if you want
to determine how long it takes to sort 10 numbers, you can perform the
sort-10-numbers experiment 1000 times in a row and then divide the total
elapsed time by 1000. This strategy gives you a timing measurement that is
much more accurate.

4. Suppose you know that all the values in an integer array fall into the range 0 to

9999. Show that it is possible to write a O (N) algorithm to sort arrays with
this restriction. Implement your algorithm and evaluate its performance by
taking empirical measurements using the strategy outlined in exercise 3.
Explain why the performance of the algorithm is so bad for small values of N.

5. Write a program that generates a table comparing the performance of two

algorithms—linear and binary search—when used to find a randomly chosen
integer key in a sorted Vector<int>. The linear search algorithm simply
goes through each element of the vector in turn until it finds the desired one or
determines that the key does not appear. The binary search algorithm, which
is implemented for string vectors in Figure 7-5, uses a divide-and-conquer

 Exercises 473

strategy by checking the middle element of the vector and then deciding which
half of the remaining elements to search.

The table you generate in this problem, rather than computing the time as
in exercise 3, should instead calculate the number of comparisons made
against elements of the vector. To ensure that the results are not completely
random, your program should average the results over several independent
trials. A sample run of the program might look like this:

6. Change the implementation of the Quicksort algorithm so that, instead of

picking the first element in the vector as the pivot, the partition function
chooses the median of the first, middle, and last elements.

7. Although O (N log N) sorting algorithms are clearly more efficient than O (N 2)

algorithms for large vectors, the simplicity of quadratic algorithms like
selection sort often means that they perform better for small values of N. This
fact raises the possibility of developing a strategy that combines the two
algorithms, using Quicksort for large vectors but selection sort whenever the
vectors become less than some threshold called the crossover point.
Approaches that combine two different algorithms to exploit the best features
of each are called hybrid strategies.

Reimplement sort using a hybrid of the Quicksort and selection sort
strategies. Experiment with different values of the crossover point below
which the implementation chooses to use selection sort, and determine what
value gives the best performance. The value of the crossover point depends on
the specific timing characteristics of your computer and will change from
system to system.

8. Another interesting hybrid strategy for the sorting problem is to start with a

recursive implementation of Quicksort that simply returns when the size of the
vector falls below a certain threshold. When this function returns, the vector is
not sorted, but all the elements are relatively close to their final positions. At

SearchComparison
 N | Linear | Binary
---------+----------+----------
 10 | 4.4 | 2.2
 50 | 31.2 | 5.4
 100 | 33.2 | 6.2
 500 | 270.4 | 8.6
 1000 | 637.4 | 9.2
 5000 | 4101.6 | 12.0
 10000 | 4632.8 | 13.8
 50000 | 32681.4 | 15.6
 100000 | 51598.4 | 16.8

474 Algorithmic Analysis

this point, you can use the insertion sort algorithm presented in exercise 2 on
the entire vector to fix any remaining problems. Because insertion sort runs in
linear time on vectors that are mostly sorted, you may be able to save some
time using this approach.

9. Suppose you have two functions, ƒ and g, for which ƒ (N) is less than g (N) for

all values of N. Use the formal definition of big-O to prove that

15ƒ (N) + 6g (N)

is O (g (N)).

10. Use the formal definition of big-O to prove that N 2 is O (2N).

11. Use mathematical induction to prove that the following properties hold for all

positive values of N.

a) 1 + 3 + 5 + 7 + . . . + 2N–1 = N 2

b) 12 + 22 + 32 + 42 + . . . + N 2 =

c) 13 + 23 + 33 + 43 + . . . + N 3 = (1 + 2 + 3 + 4 + . . . + N) 2

d) 20 + 21 + 22 + 23 + . . . + 2 N = 2N+1 – 1

12. Exercise 1 shows that it is possible to compute x n in O (log N) time. This fact

in turn makes it possible to write an implementation of the function fib(n)
that also runs in O (log N) time, which is much faster than the traditional
iterative version. To do so, you need to rely on the somewhat surprising fact
that the Fibonacci function is closely related to a value called the golden ratio,
which has been known since the days of Greek mathematics. The golden
ratio, which is usually designated by the Greek letter ϕ, is defined to be the
value that satisfies the equation

ϕ 2 – ϕ – 1 = 0

Because this is a quadratic equation, it actually has two roots. If you apply the
quadratic formula, you will discover that these roots are

ϕ =

 =

N × (N + 1) × (2N + 1)

6

1 + 5

2

ϕ^ 1 – 5

2

 Exercises 475

In 1718, the French mathematician Abraham de Moivre discovered that the
n th Fibonacci number can be represented in closed form as

Moreover, because n is always very small, the formula can be simplified to

rounded to the nearest integer.

Use this formula and the raiseToPower function from exercise 1 to write
an implementation of fib(n) that runs in O (log N) time. Once you have
verified empirically that the formula seems to work for the first several terms
in the sequence, use mathematical induction to prove that the formula

actually computes the n th Fibonacci number.

13. If you’re ready for a real algorithmic challenge, write the function

int findMajorityElement(Vector<int> & vec);

that takes a vector of nonnegative integers and returns the majority element,
which is defined to be a value that occurs in an absolute majority (at least 50
percent plus one) of the element positions. If no majority element exists, the
function should return –1 to signal that fact. Your function must also meet the
following conditions:

• It must run in O (N) time.

• It must use O (1) additional space. In other words, it may use individual
temporary variables but may not allocate any additional array or vector
storage. Moreover, this condition rules out recursive solutions, because the
space required to store the stack frames would grow with the depth of the
recursion.

• It may not change any of the values in the vector.

The hard part about this problem is coming up with the algorithm, not
implementing it. Play with some sample vectors and see if you can come up
with the right strategy.

14. If you enjoyed the previous problem, here’s an even more challenging one that

used to be an interview question at Microsoft. Suppose that you have a vector
of N elements, in which each element has a value in the inclusive range 1 to

ϕn
 – ϕ^n

5

ϕ^

ϕn

5

ϕn
 – ϕ^n

5

476 Algorithmic Analysis

N–1. Given that there are N elements in the vector and only N–1 possible
values to store in each slot, there must be at least one value that is duplicated
in the vector. There may, of course, be many duplicated values, but you know
that there must be at least one by virtue of what mathematicians call the
pigeonhole principle: if you have more items to put into a set of pigeonholes
than the number of pigeonholes, there must be some pigeonhole that ends up
with more than one item.

Your task in this problem is to write a function

int findDuplicate(Vector<int> vec);

that takes a vector whose values are constrained to be in the 1 to N–1 range
and returns one of the duplicated values. The hard part of this problem is to
design an algorithm so that your implementation adheres to the same set of
conditions as the solution to the preceding exercise:

• It must run in O (N) time.

• It must use O (1) additional space. In other words, it may use individual
temporary variables but may not allocate any additional array or vector
storage. Moreover, this condition rules out recursive solutions, because the
space required to store the stack frames would grow with the depth of the
recursion.

• It may not change any of the values in the vector.

It’s easy, for example, to write a quadratic-time solution to this problem,
which looks like this:

int findDuplicate(Vector<int> & vec) {
 for (int i = 0; i < vec.size(); i++) {
 for (int j = 0; j < i; j++) {
 if (vec[i] == vec[j]) return vec[i];
 }
 }
 error("Vector has no duplicates");
 return -1;
}

The hard part is optimizing it so that it runs in linear time.

Chapter 11
Pointers and Arrays

Orlando ran her eyes through it and then, using the first finger of
her right hand as pointer, read out the following facts as being
most germane to the matter.

— Virginia Woolf, Orlando, 1928

478 Pointers and Arrays

For the most part, the programs in this book have relied on abstract data types to
represent compound objects. From a practical point of view, this strategy is clearly
correct. When you write programs in an object-oriented language like C++, you
should take as much advantage as you can of the abstract types provided by the
libraries and stay as far away as possible from the complexity of the low-level
details. At the same time, it is useful to know a bit more about how C++ represents
data. Having that knowledge gives you a better sense of how those abstract types
work and helps you understand why C++ behaves as it does.

At this point in the text, there is another compelling reason to learn how memory
works in C++. In Chapter 5, you learned about the wonderful collection classes in
C++ that make programming so much easier. In the chapters that follow, the
primary goal is to understand how those structures can be implemented efficiently.
Evaluating the efficiency of different possible algorithms requires you to know what
costs are involved in the various options. Without a detailed understanding of the
low-level structures that C++ uses to implement those algorithms—most notably
pointers and arrays—those costs are impossible to evaluate.

 11.1 The structure of memory
Before you can understand C++’s memory model in any detail, you need to know
how information is stored inside a computer. Every modern computer contains
some amount of high-speed internal memory that is its principal repository for
information. In a typical machine, that memory is built out of special
integrated-circuit chips called RAM, which stands for random-access memory.
Random-access memory allows the program to use the contents of any memory cell
at any time. The technical details of how the RAM chip operates are not important
to most programmers. What is important is how the memory is organized.

Bits, bytes, and words
Inside the computer, all data values—no matter how complex—are stored as
combinations of the fundamental unit of information, which is called a bit. Each bit
can be in one of two possible states. If you think of the circuitry inside the machine
as if it were a tiny light switch, you might label those states as off and on. If you
think of each bit as a Boolean value, you might instead use the labels false and true.
However, because the word bit comes originally from a contraction of binary digit,
it is more common to label those states as 0 and 1, which are the two digits used in
the binary number system on which computer arithmetic is based.

Since a single bit holds so little information, individual bits are not the most
convenient mechanism for storing data. To make it easier to store such traditional
types of information as numbers or characters, individual bits are collected together
into larger units that are then treated as integral units of storage. The smallest such

 11.1 The structure of memory 479

combined unit is called a byte, which consists of eight bits and is large enough to
hold a value of type char. On most machines, bytes are assembled into larger
structures called words, where a word is usually defined to be the size required to
hold a value of type int. Today, most machines use words that are either four or
eight bytes long (32 or 64 bits).

The amount of memory available to a particular computer varies over a wide
range. Early machines supported memories whose size was measured in kilobytes
(KB), the machines of the 1980s and ’90s had memory sizes measured in megabytes
(MB), and today’s machines typically have memories measured in gigabytes (GB).
In most sciences, the prefixes kilo, mega, and giga stand for one thousand, one
million, and one billion, respectively. In the world of computers, however, those
base-10 values do not fit well into the internal structure of the machine. By
tradition, therefore, these prefixes are taken to represent the power of two closest to
their traditional interpretations. Thus, in programming, the prefixes kilo, mega, and
giga have the following meanings:

kilo (K) = 210 = 1,024
mega (M) = 220 = 1,048,576
giga (G) = 230 = 1,073,741,824

A 64KB computer from the early 1970s would have had 64×1024 or 65,536 bytes
of memory. Similarly, a modern 4GB machine would have 4×1,037,741,824 or
4,294,967,296 bytes of memory.

Binary and hexadecimal representations
Each of the bytes inside a machine holds data whose meaning depends on how the
system interprets the individual bits. Depending on the hardware instructions that
are used to manipulate it, a particular sequence of bits can represent an integer, a
character, or a floating-point value, each of which requires some kind of encoding
scheme. The easiest encoding scheme to describe is that for unsigned integers. The
bits in an unsigned integer are represented using binary notation, in which the only
legal values are 0 and 1, just as is true for the underlying bits. Binary notation is
similar in structure to our more familiar decimal notation, but uses 2 rather than 10
as its base. The contribution that a binary digit makes to the entire number depends
on its position within the number as a whole. The rightmost digit represents the
units field, and each of the other positions counts for twice as much as the digit to
its right.

Consider, for example, the eight-bit byte containing the following binary digits:

01010100

480 Pointers and Arrays

That sequence of bits represents the number forty-two, which you can verify by
calculating the contribution for each of the individual bits, as follows:

This diagram illustrates how to map an integer into bits using binary notation,
but also helps to demonstrate the fact that writing numbers in binary form is terribly
inconvenient. Binary numbers are cumbersome, mostly because they tend to be so
long. Decimal representations are intuitive and familiar but make it harder to
understand how the number translates into bits.

For applications in which it is useful to understand how a number translates into
its binary representation without having to work with binary numbers that stretch all
the way across the page, computer scientists tend to use hexadecimal (base 16)
representation instead. In hexadecimal notation, there are sixteen digits,
representing values from 0 to 15. The decimal digits 0 through 9 are perfectly
adequate for the first ten digits, but classical arithmetic does not define the extra
symbols you need to represent the remaining six digits. Computer science
traditionally uses the letters A through F for this purpose, where the letters have the
following values:

A = 10
B = 11
C = 12
D = 13
E = 14
F = 15

What makes hexadecimal notation so attractive is that you can instantly convert

between hexadecimal values and the underlying binary representation. All you need
to do is combine the bits into groups of four. For example, the number forty-two
can be converted from binary to hexadecimal like this:

01010100
 × 1 = 0

 × 2 = 2

 × 4 = 0

 × 8 = 8

 × 16 = 0

 × 32 = 32

 × 64 = 0

 × 128 = 0

42

01010100

2 A

 11.1 The structure of memory 481

The first four bits represent the number 2, and the next four represent the number
10. Converting each of these to the corresponding hexadecimal digit gives 2A as
the hexadecimal form. You can then verify that this number still has the value 42
by adding up the digit values, as follows:

For the most part, numeric representations in this book use decimal notation for
readability. If the base is not clear from the context, the text follows the usual
strategy of using a subscript to denote the base. Thus, the three most common
representations for the number forty-two—decimal, binary, and hexadecimal—look
like this:

4210 = 001010102 = 2A16

The key point is that the number itself is always the same; the numeric base
affects only the representation. Forty-two has a real-world interpretation that is
independent of the base. That real-world interpretation is perhaps easiest to see in
the representation an elementary school student might use, which is after all just
another way of writing the number down:

The number of line segments in this representation is forty-two. The fact that a
number is written in binary, decimal, or any other base is a property of the
representation and not of the number itself.

Representing other data types
In many ways, the fundamental idea behind modern computing is that any data
value can be represented as a collection of bits. It is easy to see, for example, how
to represent a Boolean value in a single bit. All you have to do is assign each of the
possible states of a bit to one of the two Boolean values. Conventionally, 0 is
interpreted as false, and 1 is interpreted as true. As the last section makes clear,
you can store unsigned integers by interpreting a sequence of bits as a number in
binary notation, so that the eight-bit sequence 00101010 represents the number 42.
With eight bits, it is possible to represent numbers between 0 and 28–1, or 255.
Sixteen bits are sufficient to represent numbers between 0 and 216–1, or 65,535.
Thirty-two bits allow for numbers up to 232–1, or 4,294,967,295.

The fact that each byte of memory can store a numeric value between 0 and 255
means that a byte is a perfect size to store an ASCII character. For historical

2 A
 × 1 = 10

 × 16 = 32

42

482 Pointers and Arrays

reasons dating back to its predecessor languages, C++ defines the data type char to
be exactly one byte in size. This design decision makes it more difficult for C++
programs to work with expanded character sets needed to encode languages that
don’t fit easily into the ASCII model. The C++ standard libraries define a type
called wchar_t to represent “wide characters” that extend outside the ASCII range.
Those facilities, however, are beyond the scope of this book.

Signed integers can also be stored as bit sequences by making a minor change to
the encoding. Primarily because doing so simplifies the hardware design, most
computers use a representation called two’s complement arithmetic to represent
signed integers. If you want to express a nonnegative value in two’s complement
arithmetic, you simply use its traditional binary expansion. To represent a negative
value, you subtract its absolute value from 2N, where N is the number of bits used in
the representation. For example, the two’s complement representation of –1 in a
32-bit word is calculated by performing the following binary subtraction:

1 0
– 0 1

1

Floating-point numbers are also represented as fixed-length bit sequences in
C++. Although the details of floating-point representation are beyond the scope of
this text, it isn’t too hard to imagine building hardware that would use some subset
of the bits in a word to represent the digits in the floating-point value and some
other subset to represent the exponent by which that value is scaled. The important
thing to remember is simply that, internally, every data value is stored as bits.

In C++, different data types require different amounts of memory. For the
primitive types, the following values are typical, although the C++ standard gives
compiler-writers some flexibility to choose different sizes that are more convenient
for a particular type of hardware:

char 1 byte (by definition)
bool 1 byte
short 2 bytes
int 4 bytes
float 4 bytes
long 8 bytes
double 8 bytes
long double 16 bytes

In C++, the size of an object is usually just the sum of the sizes of the instance

variables it contains. If, for example, you define the Point class as it appears in
Chapter 6, its private section would contain the following instance variables:

 11.1 The structure of memory 483

int x;
int y;

Each of these instance variables typically requires four bytes, so the total space
required to store the data for the object is eight bytes on most machines. Compilers,
however, are allowed to add memory space to the underlying representation of an
object, mostly because doing so sometimes allows them to generate more efficient
machine language code. Thus, the size of a Point object must be at least the eight
bytes necessary to hold the instance variable x and y, but it might be larger.

In a C++ program, you can determine how much memory will be assigned to a
variable using the sizeof operator. The sizeof operator takes a single operand,
which must be either a type name enclosed in parentheses or an expression. If the
operand is a type, the sizeof operator returns the number of bytes required to store
a value of that type; if the operand is an expression, sizeof returns the number of
bytes required to store the value of that expression. For example, the expression

sizeof(int)

returns the number of bytes required to store a value of type int. The expression

sizeof x

returns the number of bytes required to store the variable x.

Memory addresses
Within the memory system of a typical computer, every byte is identified by a
numeric address. The first byte in the computer is numbered 0, the second is
numbered 1, and so on, up to the number of bytes in the machine minus one. As an
example, the memory addresses in a tiny 64KB computer would begin with a byte
numbered 0 and end with a byte numbered 65,535. Those numbers, however, are
represented as decimal values, which is not how most programmers think about
addresses. Given that addresses are closely tied to the internal structure of the
hardware, it is more common to think about addresses as beginning at address 0000
and ending with FFFF, using the hexadecimal notation introduced in the preceding
section. It is important, however, to remember that addresses are simply numbers
and that the base determines only how those numbers are written down.

Although it is possible to work with decimal addresses, this book uses
hexadecimal notation for the following reasons:

• Address numbers are conventionally written in hexadecimal, and C++ debuggers

and runtime environments tend to display addresses in this form.

484 Pointers and Arrays

• Writing address numbers in their hexadecimal form using a sans-serif font makes
it easier to recognize that a particular number represents an address rather than
some unidentified integer. In this text, if you see the number 65,536, you can
assume that it represents an integer. If you see instead the number FFFF, you can
be confident that number represents an address.

• Using hexadecimal makes it easier to see why particular limits are chosen. If
you write it as a decimal value, the number 65,535 seems like a rather random
value. If you express that same number in hexadecimal as FFFF, it becomes
easier to recognize that this value is the largest value that can be represented in
16 bits.

Although addresses in memory are usually specified in terms of bytes, most

computers support operations on larger units such as words. In a typical machine, a
word consists of four bytes, and it is therefore possible to group four bytes together
to refer to an individual word. In that case, however, the addresses of consecutive
words increase by four. The difference between byte and word addressing is
illustrated in Figure 11-1.

F I G U R E 1 1 - 1 Typical memory layout for C++ programs

byte addressing word addressing memory layout

FFF8

FFF9

FFFA

FFFB

FFFC

FFFD

FFFE

FFFF

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

000A

000B
.

.

.

FFE0

FFE4

FFE8

FFEC

FFF0

FFF4

FFF8

FFFC

0000

0004

0008

000C

0010

0014

0018

001C

0020

0024

0028

002C
.

.

.

program code
and

global variables

available for
dynamic allocation

as described in
Chapter 12

available for
stack frames

 11.1 The structure of memory 485

The right side of Figure 11-1 provides a rough sketch as to how memory is
organized in a typical C++ program. The instructions in the program—which are
represented internally as bit patterns stored in memory words—and global variables
tend to be stored in low-numbered addresses near the beginning of the address
space. The amount of memory allocated in this region typically does not change as
the program runs.

The highest addresses in memory are used for stack frames. Each time your
program calls a function or a method, the computer creates a new stack frame in this
memory region. When that function returns, the stack frame is discarded leaving
the memory free to be used for the stack frames of subsequent calls. The structure
of these stack frames is described in more detail in the next section.

The region of memory between the end of the program data and the stack is
available for use by the program in case it needs to acquire more memory as it runs.
This technique is extremely important in the design and implementation of abstract
data types and is described in Chapter 12.

Assigning memory to variables
When you declare a variable in a C++ program, the compiler must make sure that
the variable is assigned enough memory to hold a value of that type. The source
from which that memory is taken depends on how the variable is declared. Global
variables—of which the only kind used in this book are constants—are typically
allocated in the same region of memory as the program, which in most architectures
today appears at relatively small addresses in memory. Thus, if the compiler sees
the declaration

const double PI = 3.14159;

it will reserve eight bytes of memory somewhere in the low-address region of
memory and store the value 3.14159 in that variable. As a programmer, you have
no idea what memory address the compiler will choose, but it often helps you to
visualize what is happening inside the machine if you make up an address and use
that in a diagram. Here, for example, you might imagine that the constant PI is
stored in the address 0200, as shown in the following diagram:

Most variables, however, are local variables. Local variables are allocated in the
stack region at the high end of memory in a contiguous block of addresses called a
stack frame. You’ve already seen stack frames beginning in Chapter 2, but those
frames have been represented abstractly as boxes. Internally, these variables are

PI0200

3.14159

486 Pointers and Arrays

assigned space in a block that is pushed onto the top of the stack at the time of each
function call.

To make this discussion concrete, it makes sense to walk through the execution
of the PowersOfTwo program from Chapter 1 to show exactly what happens on the
stack. So that you don’t have to keep flipping back to the original figure, the code
for the program—without the comments and prototype lines—is reprinted as
Figure 11-2 at the bottom of this page.

When you run the PowersOfTwo program, the first thing that happens is that the
operating system generates a call to the main function. The main function takes no
arguments but does have two local variables, limit and i. The stack frame must
therefore allocate space for these integer variables, as follows:

iFFF8

limitFFF4

F I G U R E 1 1 - 2 Code for the PowersOfTwo program

/*
 * File: PowersOfTwo.cpp
 * ---------------------
 * This figure contains only the function definitions from the
 * PowersOfTwo program from Chapter 1.
 */

int main() {
 int limit;
 cout << "This program lists powers of two." << endl;
 cout << "Enter exponent limit: ";
 cin >> limit;
 for (int i = 0; i <= limit; i++) {
 cout << "2 to the " << i << " = "
 << raiseToPower(2, i) << endl;
 }
 return 0;
}

int raiseToPower(int n, int k) {
 int result = 1;
 for (int i = 0; i < k; i++) {
 result *= n;
 }
 return result;
}

 11.1 The structure of memory 487

In this diagram, the variable limit has been assigned to address FFF4, and the
variable i appears at FFF8. These addresses are in some sense arbitrary in that there
is no way to predict exactly what addresses the compiler will assign or whether
limit will come before i or the other way around. What you can count on is that
both of these variables will be allocated in the region assigned to that stack frame.
The gray rectangle at the bottom of the diagram indicates that the computer will
need to keep track of additional information about each function call beyond the
values of the local variables. If nothing else, each stack frame needs to keep track
of the location in the program to which it should return. The format of that
information depends on the architecture of the machine and is not at all essential to
understanding the data model. The stack diagrams in this book include a gray
rectangle in each stack frame both to remind you that this extra information exists
and to make it easier to see the extent of each frame visually.

When the program runs, each function has access to its own stack frame and
updates the values of the local variables as they change. Assuming that the user has
entered 8 as the value of limit, the situation immediately before the first call to
raiseToPower looks like this:

Calling raiseToPower(2, i)creates a new stack frame on top of the existing one.
The frame contains entries for the parameter variables n and k, as well as the local
variables result and i. The parameter variables are initialized to the values of the
arguments, which means that the stack now looks like this:

When raiseToPower returns, its stack frame is discarded, restoring the state
before the call.

This example is quite simple and includes none of the complexity involved in
creating more accurate memory diagrams. This example does, however, give you

iFFF8

limitFFF4 8

0

iFFF8

limitFFF4 8

0

nFFEC

kFFE8

iFFE4

resultFFE0

2

0

488 Pointers and Arrays

enough of a sense of how variables are assigned to memory to cover the topic of
pointers, which are introduced in the following section. In Chapter 12, you’ll have
a chance to get back to memory diagrams and learn more about strategies for
memory allocation.

 11.2 Pointers
One of the principles behind the design of C++ is that programmers should have as
much access as possible to the facilities provided by the underlying hardware. For
this reason, C++ makes the fact that memory locations have addresses visible to the
programmer. A data item whose value is an address in memory is called a pointer.
In many high-level programming languages, pointers are used sparingly because
those languages provide other mechanisms that eliminate much of the need for
pointers. The Java programming language, for example, hides pointers from the
programmer altogether. In C++, pointers are pervasive, and it is impossible to
understand most professional C++ programs without knowing how pointers work.

In C++, pointers serve several purposes, of which the following are the most
important:

• Pointers allow you to refer to a large data structure in a compact way. Data

structures in a program can become arbitrarily large. No matter how large they
grow, however, the data structures still reside somewhere in the computer’s
memory and therefore have an address. Pointers allow you to use the address as
a shorthand for the complete value. Because a memory address typically fits in
four bytes of memory, this strategy offers considerable space savings when the
data structures themselves are large.

• Pointers make it possible to reserve new memory during program execution. Up
to now, the only memory you could use in your programs was the memory
assigned to variables that you have declared explicitly. In many applications, it
is convenient to acquire new memory as the program runs and to refer to that
memory using pointers. This strategy is discussed in the section on “Dynamic
allocation” in Chapter 12.

• Pointers can be used to record relationships among data items. In advanced
programming applications, pointers are used extensively to model connections
between individual data values. For example, programmers often indicate that
one data item follows another in a conceptual sequence by including a pointer to
the second item in the internal representation of the first. Data structures that use
pointers to create connections between individual components are called
linked structures. Linked structures play a critical role in implementing many of
the abstract data types you will encounter later in this book.

 11.2 Pointers 489

Using addresses as data values
In C++, any expression that refers to an internal memory location capable of storing
data is called an lvalue (pronounced “ell-value”). The l at the beginning of lvalue
comes from the observation that lvalues can appear on the left side of an assignment
statement in C++. For example, simple variables are lvalues because you can write
a statement like

x = 1.0;

Many values in C++, however, are not lvalues. For example, constants are not
lvalues because a constant cannot be changed. Similarly, although the result of an
arithmetic expression is a value, it is not an lvalue, because you cannot assign a new
value to the result of an arithmetic expression.

The following properties apply to lvalues in C++:

• Every lvalue is stored somewhere in memory and therefore has an address.

• Once it has been declared, the address of an lvalue never changes, even though
the contents of those memory locations may change.

• The address of an lvalue is a pointer value, which can be stored in memory and
manipulated as data.

Declaring pointer variables
As with all other variables in C++, you must declare pointer variables before you
use them. To declare a variable as a pointer, all you need to do is add an asterisk (*)
before the variable name in the declaration. For example, the line

int *p;

declares p to be of the conceptual type pointer-to-int. Similarly, the line

char *cptr;

declares cptr to be of type pointer-to-char. These two types—pointer-to-int and
pointer-to-char—are distinct in C++, even though each of them is represented
internally as an address. To use the value at that address, the compiler needs to
know how to interpret it and therefore requires that its type be specified explicitly.
The value at the address specified by a pointer is called its target. The type of that
target value is called the base type for the pointer. Thus, the type pointer-to-int
has int as its base type.

It is important to note that the asterisk symbol used to indicate that a variable is a
pointer belongs syntactically with the variable name and not with the base type. If

490 Pointers and Arrays

you use the same declaration to declare two pointers of the same type, you need to
mark each of the variables with an asterisk, as in

int *p1, *p2;

The declaration

int *p1, p2;

declares p1 as a pointer to an integer, but declares p2 as an integer variable.

The fundamental pointer operations
C++ defines two operators that allow you to move back and forth between a pointer
and its target value:

& Address-of
* Value-pointed-to

The & operator takes an lvalue as its operand and returns the memory address in
which that lvalue is stored. The * operator takes a value of any pointer type and
returns the lvalue to which it points. This operation is called dereferencing the
pointer. The * operation produces an lvalue, which means that you can assign a
value to a dereferenced pointer.

The easiest way to illustrate these operators is by example. Consider the
declarations

int x, y;
int *p1, *p2;

These declarations allocate memory for four words, two of type int and two of
type pointer-to-int. For concreteness, let’s suppose that these values are stored on
the stack at the machine addresses indicated by the following diagram:

Given these declarations, you can assign values to x and y just as you always
have. For example, executing the assignment statements

x = 42;
y = 163;

p2FF0C

p1FF08

yFF04

xFF00

 11.2 Pointers 491

results in the following memory state:

To initialize the pointer variables p1 and p2, you need to assign values that
represent the addresses of some integer objects. In C++, the operator that produces
addresses is the & operator. You can use assignment and the & operator to make p1
point to y and p2 point to x like this:

p1 = &y;
p2 = &x;

These assignments leave memory in the following state:

The variable p1 contains the value FF04, which is the address of the variable y.
Similarly, p2 contains the value FF00, which is the address of the variable x.

Using explicit addresses to represent pointers emphasizes the fact that addresses
are stored internally as numbers. It does not, however, give you an intuitive sense
of what pointers mean. To accomplish that goal, it is better to use arrows to indicate
the target of each pointer. If you eliminate the address values entirely and use
arrows to represent the pointers, the diagram looks like this:

Using arrows in the diagram makes it clear that the variables p1 and p2 point to the
cells indicated by the arrowheads. Arrows makes it easier to understand how
pointers work and therefore appear in most of the memory diagrams in this text. At
the same time, it is important to remember that pointers are simply numeric
addresses and that there are no arrows inside the machine.

p2FF0C

p1FF08

yFF04

xFF00 42

163

p2FF0C

p1FF08

yFF04

xFF00 42

163

FF04

FF00

p2

p1

y

x42

163

492 Pointers and Arrays

To move from a pointer to the value it points to, you use the * operator. For
example, the expression

*p1

indicates the value in the memory location to which p1 points. Moreover, since p1
is declared as a pointer to an integer, the compiler knows that the expression *p1
must refer to an integer. Thus, given the configuration of memory illustrated in the
diagram, *p1 turns out to be another name for the variable y.

Like the simple variable name y, the expression *p1 is an lvalue, and you can
assign new values to it. Executing the assignment statement

*p1 = 17;

changes the value in the variable y because that is the target of the pointer p1. After
you make this assignment, the memory configuration is

You can see that the value of p1 itself is unaffected by this assignment. It continues
to point to the variable y.

It is also possible to assign new values to the pointer variables themselves. For
instance, the statement

p1 = p2;

tells the computer to take the value contained in the variable p2 and copy it into the
variable p1. The value contained in p2 is the pointer value FF00. If you copy this
value into p1, both p1 and p2 contain the same pointer, as illustrated by the
following diagram:

As long as you remember the fact that a pointer has an underlying representation
as an integer, the idea of copying a pointer is not at all mysterious. The value of the

p2

p1

y

x42

17

p2

p1

y

x42

17

FF00

FF00

 11.2 Pointers 493

pointer is simply copied unchanged to the destination. If you draw your memory
diagrams using arrows, you have to keep in mind that copying a pointer replaces the
destination pointer with a new arrow that points to the same location as the old one.
Thus, the effect of the assignment

p1 = p2;

is to change the arrow leading from p1 so that it points to the same location as the
arrow originating at p2, like this:

It is important to distinguish the assignment of a pointer from that of a value.
Pointer assignment, such as

p1 = p2;

makes p1 and p2 point to the same location. By contrast, value assignment, which
is represented by the statement

*p1 = *p2;

copies the value from the memory location addressed by p2 into the location
addressed by p1.

Pointers to structures and objects
The examples in the preceding sections declare pointers only to the primitive types.
In C++, it is much more common to use pointers in conjunction with structures or
objects. For example, the declarations

Point pt(3, 4);
Point *pp = &pt;

declare two local variables. The variable pt contains a Point object with the
coordinate values 3 and 4. The variable pp contains a pointer to that same Point
object. Using the pointer-based format, the memory diagram that results from these
declarations looks like this:

p2

p1

y

x42

17

494 Pointers and Arrays

From the pointer pp, you can move to the object using the * operator, so that *pp
and pt are effectively synonyms.

You do, however, need to exercise a bit of caution if you try to refer to the fields
and methods of a compound object given a pointer to that object. You cannot, for
example, obtain the x coordinate of the point by writing

*pp.getX()

Although the code looks right, there is a problem with the precedence of the
operators in this expression. In C++, the dot operator has higher precedence than
the star operator, which means that the compiler tries to interpret this expression as

*(pp.getX())

which is meaningless. What you want to do is dereference the pointer first and then
invoke the method, which means that the statement needs to be parenthesized as
follows:

(*pp).getX()

This expression has the desired effect but is too cumbersome for everyday use.
As you write more sophisticated applications, you’ll find yourself using pointers to
objects all the time. Forcing programmers to include these parentheses in every
selection operation would make pointers to objects considerably less convenient.
To eliminate some of this inconvenience, C++ defines the operator -> (usually read
aloud as arrow), which combines the operations of dereference and selection into a
single operator. The conventional way to invoke the getX method given the pointer
variable pp is therefore

pp->getX()

The keyword this
When you are writing the implementation of a class, C++ defines the keyword this
as a pointer to the current object. That definition has several important applications
that you will discover in examples throughout the rest of this book. Of these, one of
the most common is that you can use the keyword this to select the instance
variables of an object even if those names are shadowed by a parameter or local
variable.

pp

pt3

4

 11.2 Pointers 495

The problem of shadowing was introduced in Chapter 6 in the context of the
constructor for the Point class, which at the time looked like this:

Point(int cx, int cy) {
 x = cx;
 y = cy;
}

The parameters in this constructor had to be named something other than x and y to
avoid name conflicts with the instance variables. Clients, however, are likely to
find the new names at least a bit confusing. From the client’s point of view, x and y
are precisely the right names for the constructor parameters. From the perspective
of the implementer, however, x and y are the perfect names for the instance
variables.

Using the keyword this to select the instance variables makes it possible to
satisfy the client and the implementer at the same time, as follows:

Point(int x, int y) {
 this->x = x;
 this->y = y;
}

Some programmers argue that using this with every reference to a member of the
current object makes the code easier to read. The JavaScript language goes so far as
to require the keyword this for all such references. This text follows the common
C++ convention of using this only when doing so helps to resolve an ambiguity.

The special pointer NULL
In many pointer applications, it is useful to have a special pointer value that
indicates that the pointer does not in fact refer to any valid memory address, at least
for the present. That special value is called the null pointer and is represented
internally as the value 0. In C++, the best way to indicate the null pointer is to use
the constant NULL, which is defined in the <cstddef> interface.

It is illegal to use the * operator on a null pointer. The popular programming
environments in use today typically detect that error and terminate the program, but
that response is not guaranteed. On some machines, trying to read the target value
of a null pointer simply gives you back the contents of address 0000 in the machine.
The situation is much the same in the case of uninitialized pointers. If you declare a
pointer but fail to initialize it, the computer will try to interpret the contents of that
pointer as an address and try to read that region of memory. In such cases,
programs can fail in ways that are extremely difficult to detect.

496 Pointers and Arrays

The uses of the null pointer will be introduced in this text as they become
relevant to a particular application. For now, the important thing to remember is
that this constant exists.

Pointers and call by reference
As an illustration of their use in practice, pointers are used internally by C++ to
implement call by reference. When a parameter is passed by reference, the stack
frame stores a pointer to the location in the caller at which that value resides. Any
changes to that value are made to the target of the pointer, which means that those
changes remain in effect after the function returns.

The program in Figure 11-3 offers a simple illustration of how C++ implements
call by reference. The program reads two integers from the user and then checks to
see that they are in ascending order. If not, the program calls the function swap,
which exchanges the values of its arguments.

Suppose that you run this program and enter the values 20 and 10, as follows:

Those values are out of order, so the main program will call swap. The contents of
the stack immediately before that call look like this:

The function swap takes its parameters by reference, which means that the stack
frame for swap is given the addresses of the calling arguments rather than the
values. Immediately after the call, the contents of the stack look like this:

SwapIntegers
Enter n1: 20

Enter n2: 10

n2FFF8

n1FFF4 20

10

n2FFF8

n1FFF4 20

10

&yFFEC

&xFFE8

tmpFFE4

FFF4

FFF8

 11.2 Pointers 497

All references to x and y inside swap are passed along to the variables n1 and n2,
which are the targets of the pointers. Exchanging those values means that the effect
of this function persists after the call to swap returns, when the stack looks like this:

The program continues with the updated values, leading to the following output:

n2FFF8

n1FFF4 10

20

F I G U R E 1 1 - 3 Program to ensure two integers are in sequence

/*
 * File: SwapIntegers.cpp
 * ----------------------
 * This program illustrates the use of call by reference to exchange
 * the values of two integers.
 */

#include <iostream>
#include "simpio.h"
using namespace std;

/* Function prototype */

void swap(int & x, int & y);

/* Main program */

int main() {
 int n1 = getInteger("Enter n1: ");
 int n2 = getInteger("Enter n2: ");
 if (n1 > n2) swap(n1, n2);
 cout << "The range is " << n1 << " to " << n2 << "." << endl;
 return 0;
}

/*
 * Function: swap
 * Usage: swap(x, y);
 * ------------------
 * Exchanges the values of x and y. The arguments are passed by
 * reference and can therefore be modified.
 */

void swap(int & x, int & y) {
 int tmp = x;
 x = y;
 y = tmp;
}

498 Pointers and Arrays

Although call by reference is extremely convenient, it is not an essential feature
of the C++ language. You can simulate the effect of call by reference by making
the pointers explicit. In this program, all you would have to do is change the
implementation of swap to

void swap(int *px, int *py) {
 int tmp = *px;
 *px = *py;
 *py = tmp;
}

and the call in the main program to

swap(&n1, &n2);

In the exercises, you’ll have a chance to practice converting programs that use call
by reference into their pointer-based equivalents.

 11.3 Arrays
When the Vector class first appeared in Chapter 5, the introduction to that section
described vectors in terms of arrays, noting that you were likely to have some idea
about arrays from your previous programming experience. C++ offers a built-in
array type, which is based on the language model that C++ inherits from C. Given
that the Vector collection class is uniformly more flexible and convenient, there
are few reasons to use arrays in new code, although you will certainly encounter
arrays in existing applications.

In C++, an array is a low-level collection of individual data values with two
distinguishing characteristics:

1. An array is ordered. You must be able to count off the individual components

of an array in order: here is the first, here is the second, and so on.

2. An array is homogeneous. Every value stored in an array must be of the same
type. Thus, you can define an array of integers or an array of floating-point
numbers but not an array in which the two types are mixed.

Given, however, that you are already familiar with the Vector class, it’s probably
easiest to think of arrays as a primitive implementation of the vector idea. As with

SwapIntegers
Enter n1: 20
Enter n2: 10
The range is 10 to 20.

 11.3 Arrays 499

vectors, arrays are composed of individual elements of some base type selected by
an integer index. The pictures one draws to represent a vector almost certainly work
for arrays as well. There are a few small differences in syntax, but those are easily
mastered. The real difference is that arrays have the following limitations that make
them less useful in practice than the more powerful vector type:

• Arrays are allocated with a fixed size that you can’t subsequently change.

• Even though arrays have a fixed size, C++ does not make that size available to
the programmer. As a result, programs that work with arrays typically need an
additional variable to keep track of the number of elements.

• Arrays offer no support for inserting and deleting elements.

• C++ performs no bounds-checking to ensure that the elements you select are
actually present in the array.

Despite these clear disadvantages, arrays are the framework from which the more
powerful collection classes are built. To understand the implementation of those
classes, you need to have some familiarity with the mechanics of arrays.

Array declaration
Like any other variable in C++, an array must be declared before it is used. The
general form for an array declaration is

type name[size];

where type is the type of each element in the array, name is the name of the array
variable, and size is an integer value indicating the number of elements allocated to
the array. For example, the declaration

int intArray[10];

declares an array named intArray with 10 elements, each of which is of type int.
In most cases, however, you should specify the size as a symbolic constant rather
than an explicit integer so that the array size is easier to change. Thus, a more
conventional declaration would look like this:

const int N_ELEMENTS = 10;

int intArray[N_ELEMENTS];

You can represent this declaration pictorially as follows:

500 Pointers and Arrays

As with the elements in a vector, the index numbers for an array always begin with
0 and run up to the array size minus one. Thus, in an array with 10 elements, the
index numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Array selection
To refer to a specific element within an array, you specify both the array name and
the index corresponding to the position of that element within the array. The
process of identifying a particular element within an array is called selection, and is
indicated in C++ by writing the name of the array and following it with the index
written in square brackets, just as if you are selecting an element from a vector.

The result of a selection expression is an lvalue, which means that you can
assign new values to it. For example, if you execute the for loop

for (int i = 0; i < N_ELEMENTS; i++) {
 intArray[i] = 10 * i;
}

the variable intArray will be initialized as follows:

When you select an element from an array, C++ performs no bounds checking.
If the index is out of range, C++ simply figures out where that element would be in
memory and uses that value, leading to unpredictable results. Worse still, if you
assign a value to that index position, you can overwrite the contents of memory
used by some other part of the program. Writing beyond the end of an array is one
of the primary vulnerabilities used by hackers to attack computer systems.

Static init ialization of arrays
Array variables can be given initial values at the time they are declared. In this
case, the equal sign specifying the initial value is followed by a list of initializers
enclosed in curly braces. For example, the declaration

const int DIGITS[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

declares a constant array called DIGITS in which each of the 10 elements is
initialized to its own index number. As you can see from this example, specifying

intArray

0 1 2 3 4 5 6 7 8 9

0 10 20 30 40 50 60 70 80 90

intArray

0 1 2 3 4 5 6 7 8 9

 11.3 Arrays 501

explicit initializers allow you to omit the array size from the declaration, which is
then taken from the number of values.

In the DIGITS example, you know that there are 10 digits in the list. In many
cases, however, the program will need to determine the number of elements in a
statically initialized array in order to free the programmer from having to count the
number of elements each time the program is changed. As an example, imagine
you’re writing a program that requires an array containing the names of all U.S.
cities with populations of over 1,000,000. Taking data from the 2010 census, you
could declare and initialize BIG_CITIES as a constant global array using the
following declaration:

const string BIG_CITIES[] = {
 "New York",
 "Los Angeles",
 "Chicago",
 "Houston",
 "Philadelphia",
 "Phoenix",
 "San Antonio",
 "San Diego",
 "Dallas",
};

This list, however, is not static over time. Between the census results of 1990 and
2000, Detroit dropped off this list while Phoenix and San Antonio joined it. When
the results are in from the 2020 census, it is likely that San Jose will join the list of
cities with more than 1,000,000 people. If you are responsible for maintaining the
program that contains this code, the last thing you want to do is to have to count
how many cities there are in the list just so the program can determine how many
elements there are. What you would like to do instead is update the list of cities and
have the compiler figure out how many there are.

Fortunately, C++ offers a standard idiom for determining the allocated size of an
array that uses static initialization to set the number of elements. Given a statically
initialized array named MY_ARRAY, the number of elements in MY_ARRAY can be
computed using the idiomatic pattern

sizeof MY_ARRAY / sizeof MY_ARRAY[0]

This expression takes the size of the entire array and divides it by the size of the
initial element in the array. Because all elements of an array are the same size, the
result is the number of elements in the array, regardless of the element type. Thus

502 Pointers and Arrays

you could initialize a variable N_BIG_CITIES to hold the number of cities in the
bigCities array by writing

const int N_BIG_CITIES = sizeof BIG_CITIES /
 sizeof BIG_CITIES[0];

Effective and allocated sizes
Although the sizeof technique allows you to determine the size of a statically
allocated array, there are many applications in which you have no way of knowing
how large an array should be when you write the code because the actual number of
elements depends on the user’s data. One strategy for solving the problem of
choosing an appropriate array size is to declare an array that you know is larger than
you need and then use only part of it. Thus, instead of declaring the array so that it
holds the actual number of elements, you define a constant indicating the maximum
number of elements and use that constant in the declaration of the array. On any
given use of the program, the actual number of elements is less than or equal to this
bound. When you use this strategy, you need to maintain a separate integer variable
that keeps track of the number of values that are actually in use. The size of the
array specified in the declaration is called the allocated size; the number of
elements actively in use is called the effective size.

Suppose, for example, that you want to define an array that holds the scores for
competitors in a sport like gymnastics, where judges rate each entrant on a numeric
scale, which might run—as Olympic gymnastics did until 2005—from 0.0 to 10.0.
If you wanted your program to allow for a maximum of 100 judges even though the
actual number is usually smaller, you might declare the array like this:

const int MAX_JUDGES = 100;

double scores[MAX_JUDGES];

To keep track of the effective size, you need to declare an additional variable, which
you might call nJudges, and make sure that it keeps track of how many judges
there actually are.

The relationship between pointers and arrays
In C++, the name of an array is synonymous with a pointer to its initial element.
This identity is most easily illustrated by example. The declaration

int list[5];

allocates space for an array of five integers, which is assigned storage in the current
stack frame, as illustrated in the following diagram:

 11.3 Arrays 503

The name list represents an array but can also be used as a pointer value.
When it is used as a pointer, list is defined to be the address of the initial element
in the array. Thus, if the compiler encounters the variable name list on its own,
without any subscript after it, it translates the array name into the pointer value at
which the array begins in memory.

One of the most important implications of the way that C++ treats arrays as
pointers is that array parameters appear to be shared with the calling argument even
though no explicit call by reference is involved. You can, for example, implement
an array-based version of the selection sort algorithm as follows:

void sort(int array[], int n) {
 for (int lh = 0; lh < n; lh++) {
 int rh = lh;
 for (int i = lh + 1; i < n; i++) {
 if (array[i] < array[rh]) rh = i;
 }
 swap(array[lh], array[rh]);
 }
}

This function correctly sorts the array passed by the caller because the function
initializes the array parameter by copying the address of the calling argument.
The function then selects elements from the array using that address, which means
that the elements are the ones in the calling argument.

The sort function would work exactly the same way if you had written its
prototype like this:

void sort(int *array, int n)

In this case, the first argument is declared as a pointer, but the effect is the same as
in the original implementation, which declared this parameter as an array. In either
case, the value stored in the stack frame under the name array is the address of the
initial element of the calling argument. Inside the machine, the declarations are
equivalent. No matter which of these forms you use in the declaration, you can
apply the same operations to the variable array.

list[0]

list[1]

list[2]

list[3]

list[4]

FF60

FF64

FF68

FF6C

FF70

504 Pointers and Arrays

As a general rule, you should declare parameters in the way that reflects their
use. If you intend to use a parameter as an array and select elements from it, you
should declare that parameter as an array. If you intend to use the parameter as a
pointer and dereference it, you should declare it as a pointer.

The crucial difference between arrays and pointers in C++ comes into play when
variables are originally declared, not when those values are passed as parameters.
The fundamental distinction between the declaration

int array[5];

and the declaration

int *p;

is one of memory allocation. The first declaration reserves five consecutive words
of memory capable of holding the array elements. The second declaration reserves
only a single word, which is large enough to hold a machine address. The
implication of this distinction is important for you to keep in mind. If you declare
an array, you have storage to work with; if you declare a pointer variable, that
variable is not associated with any storage until you initialize it.

The simplest way to initialize a pointer to an array is to copy the base address of
an existing array into the pointer variable. As an example, if you were to write the
statement

p = array;

after making the preceding declarations, the pointer variable p would point to the
same address used for array, and you could use the two names interchangeably.

The technique of setting a pointer to the address of an existing array is rather
limited. After all, if you already have an array name, you might as well use it.
Assigning that name to a pointer does not really do you any good. The real
advantage of using a pointer as an array comes from the fact that you can initialize
that pointer to new memory that has not previously been allocated, which allows
you to create new arrays as the program runs. This technique is described later in
Chapter 12.

Pointer arithmetic
In C++, you can apply the operators + and - to pointers. The results are similar to
the familiar arithmetic operations in certain respects but different in others. The
process of applying these operators to pointer values is called pointer arithmetic.

 11.3 Arrays 505

Pointer arithmetic is defined by a simple rule. If p is a pointer to the initial
element in an array array, and k is an integer, the following identity always holds:

p + k is defined to be &array[k]

In other words, if you add an integer k to a pointer value, the result is the address of
the array element at index k for an array beginning at the original pointer address.

To illustrate how this rule applies, suppose that a function contains the following
declarations:

double list[3];
double *p;

Each of these variables is given space in the frame for this function. For the array
variable list, the compiler allocates space for the three elements in the array, each
of which is large enough to hold a double. For p, the compiler allocates enough
space for a pointer, which will be used to hold the address of some lvalue of type
double. If the stack frame begins at location FFA0, the memory allocation looks
like this:

Since no values have been assigned to any of these memory locations, their initial
contents are undefined. Suppose that you use the following assignment statements
to store values in each of the array elements:

list[0] = 1.0;
list[1] = 1.1;
list[2] = 1.2;

and initialize the pointer variable p to the beginning of the array by executing the
assignment statement

p = list;

or, equivalently,

p = &list[0];

pFFB8

FFB0

FFA8

FFA0 list[0]

list[1]

list[2]

506 Pointers and Arrays

After these assignments, the stack frame holds the following values:

In this diagram, p now points to the initial address in the array list. If you add
an integer k to the pointer p, the result is the address corresponding to the array
element at index position k. For example, if a program contained the expression

p + 2

the result of evaluating this expression would be a new pointer value that references
list[2]. Thus, in the preceding diagram, in which p points to address FFA0, p + 2
points to the address of the element that appears two elements later in the array,
which is at address FFB0.

It’s important to note that pointer addition is not equivalent to traditional
addition because the calculation must take into account the size of the base type. In
this example, for each unit that is added to a pointer value, the internal numeric
value must be increased by eight to take account of the fact that a double requires
eight bytes.

The C++ compiler interprets subtraction of an integer from a pointer in a similar
way. The expression

p - k

in which p is a pointer and k is an integer, computes the address of an array element
located k elements before the address currently indicated by p. Thus, if you had set
p to the address of list[1] using

p = &list[1];

the addresses corresponding to p - 1 and p + 1 would be the addresses of list[0]
and list[2], respectively.

The arithmetic operations *, /, and % make no sense for pointers and cannot be
used with pointer operands. Moreover, the uses of + and - with pointers are

pFFB8

FFB0

FFA8

FFA0 list[0]

list[1]

list[2]

FFA0

1.0

1.1

1.2

 11.3 Arrays 507

limited. In C, you can add or subtract an integer from a pointer, but you cannot, for
example, add two pointers together.

The only other arithmetic operation defined for pointers is subtracting one
pointer from another. The expression

p1 - p2

is defined to return the number of array elements between the current values of
p1 and p2. For example, if p1 points at list[2] and p2 points at list[0], the
expression

p1 - p2

has the value 2, since there are two elements between the current pointer values.

Incrementing and decrementing pointers
Knowing the rules for pointer arithmetic makes it possible to understand one of the
most common idiomatic constructions in C++, which is the expression

*p++

In this expression, the * operator and the ++ operator compete for the operand p.
Because unary operators in C++ are evaluated in right-to-left order, the ++ takes
precedence over the *, so the compiler interprets this expression as if it had been
written like this:

*(p++)

As you learned in Chapter 1, the postfix ++ operator increments the value of p
and then returns the value that p had prior to the increment operation. Since p is a
pointer, the increment operation uses pointer arithmetic. Thus, adding 1 to the value
of p creates a pointer to the next element in the array. If p originally pointed to
arr[0], for example, the increment operation would cause it to point to arr[1].
Thus, the expression

*p++

has the following meaning in English:

Dereference the pointer p and return as an lvalue the object to which it
currently points. As a side effect, increment the value of p so that, if the
original lvalue was an element in an array, the new value of p points to
the next element in that array.

508 Pointers and Arrays

As an example of how you might use the *p++ construction, the following code
adds the elements in an array of effective size n using a pointer-based model:

int sumArray(int *p, int n) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += *p++;
 }
 return sum;
}

At each cycle of the for loop, the expression *p++ returns the value of the current
element and then advances p so that it is correctly positioned for the next cycle.

Partly for reasons of history and habit, C++ programmers tend to overuse the
*p++ idiom in places where array notation makes the intent much clearer. The
sumArray function is easier to read in the following array-based form:

int sumArray(int array[], int n) {
 int sum = 0;
 for (int i = 0; i < n; i++) {
 sum += array[i];
 }
 return sum;
}

The examples in this text do not use pointer arithmetic, relying instead on array

indexing to improve the readability of the program examples. In general, you
would be well-advised to adopt the same rule in your own code. If you look at
existing code, however, you will certainly encounter the *p++ idiom (and possibly
even more complex applications of pointer arithmetic), and you need to know what
that construction means. The same syntactic pattern, moreover, is used by the
Standard Template Library to implement iterators, which are introduced in
Chapter 14. In that context, it is useful to remember that *p++ is a C++ shorthand
for retrieving the current element of an array and then advancing to the next one.

 11.4 Using functions as data values
In the programming you have done up to this point, the concepts of functions and
data structures have remained quite separate. Functions provide the means for
representing an algorithm; data structures allow you to organize the information to
which those algorithms are applied. Functions have been part of the algorithmic
structure, not part of the data structure. Being able to use functions as data values,
however, often makes it much easier to design effective interfaces because doing so
allows clients to specify operations as well as data.

 11.4 Using functions as data values 509

Pointers to functions
In the earliest days of computing, programs were represented in a form that made
them entirely separate from data. Typically, instructions were punched on paper
tape and then fed into the machine, which would then execute the instructions in
sequence. If you wanted to change the program, you had to punch a new tape. One
of the most important characteristics of modern computers is that the same memory
words used to store data values are also used to store the machine-language
instructions executed by the hardware. This technique of storing instructions in the
memory addresses used for data values is called the von Neumann architecture,
after the mathematician John von Neumann. Although computing historians now
believe that von Neumann is unlikely to have originated the idea, he seems to have
been the first to publish it, and the concept continues to bear his name.

One of the important implications of the von Neumann architecture is that every
machine-language instruction in a program has an address in memory. That fact
makes it possible to create a pointer to a function, which is simply the address of its
first instruction. Most modern object-oriented languages use pointers to functions
internally but hide the details from the programmer. By contrast, C++ makes it
possible for programmers to declare pointers to functions and then use those
functions as data values in an application.

A simple plotting application
Before looking at the details of how C++ incorporates pointers to functions into its
syntax, it helps to consider an example that shows how this technique is used in
practice. One of the most convincing examples is an application that plots the value
of a client-specified function. Suppose, for example, that you want to write a
program that plots the value of a function ƒ (x) for values of x in a specified range.
For example, if ƒ is the trigonometric sine function, you would like your program to
produce a sample run that like something like this:

PlotFunction

510 Pointers and Arrays

The graphical output shows only the shape of the graph and does not indicate any
units along the x- and y-axes. In this diagram, the values of x vary from –2π to 2π,
and the values of y extend from –1 to 1. The plot function called by the client
would need to include these ranges as parameters, which means that the call that
produces this output would look something like this, assuming the appropriate
definition of the constant PI:

plot(sin, -2 * PI, 2 * PI, -1, 1);

The interesting parameter here is the first argument, which is the name of the
function you want to plot. In this example, the function is the trigonometric
function sin from the <cmath> library.

If plot is designed in a general way, however, it should be possible to plot a
different function by changing the first argument. For example, the call

plot(sqrt, 0, 4, 0, 2);

should plot the sqrt function on a graph that extends from 0 to 4 along the x-axis
and from 0 to 2 along the y-axis, as follows:

At the same time, the first argument to plot can’t be any function at all. It
wouldn’t make sense, for example, to use a string function, because graphical plots
on an x-y grid make sense only for functions that apply to numbers. What’s more, it
also wouldn’t make sense to call plot with a numeric function that takes several
arguments. The function that appears as the first argument must be a function that
takes a real number (presumably a double) and returns one as well. Thus, you can
say that the first argument to plot must be an instance chosen from the general
class of functions that map one double into another double.

PlotFunction

 11.4 Using functions as data values 511

The first argument, moreover, must be a data value that is part of the C++ type
system. When the compiler encounters the name of a function that is not followed
by the parentheses that would indicate a function call, it treats that function name as
a pointer to the beginning of the machine-language implementation of that function
in memory. The first argument to plot is therefore a pointer to a function that
takes a double as its argument and returns a double as a result.

Declaring pointers to functions
The next question to consider is how to declare the parameter variable that
represents the first argument to plot. C++ uses a syntactic form to declare a
pointer to a function that often appears odd at first but that is in fact consistent with
other declaration forms. If you want, for example, to declare a variable fn to be a
pointer to a function taking and returning a double, you do so by writing

double (*fn)(double);

It’s important to remember the parentheses around *fn in the declaration of a
function pointer. The alternative

double *fn(double);

declares fn as a function returning a pointer to a double.

This declaration syntax makes it possible to write down the prototype for the
plot function, which looks like this:

void plot(double (*fn)(double), double minX, double maxX,
 double minY, double maxY);

Implementing the plot function
Once you have defined the prototype, you can write a simple implementation of
plot using the graphics library introduced in Chapter 2, as shown in Figure 11-4.
The implementation cycles through each pixel coordinate across the graphics
window and then transforms that value into the x coordinate by choosing the point
at the corresponding position in the interval between minX and maxX. Thus, the
point halfway across the window corresponds to the point halfway between minX
and maxX. The program then calls the function passed as the first argument to
compute the value of y, which appears in the code as the declaration

double y = fn(x);

The final step consists of converting the y value to the appropriate vertical position
on the screen by scaling this value with respect to minY and maxY. This operation

512 Pointers and Arrays

is essentially the inverse of the transformation to derive the value of x. The only
difference is that the y-axis on the screen is inverted from the traditional Cartesian
coordinate plane, making it necessary to subtract the computed value from the
height of the graphics window.

The implementation of plot begins by computing the coordinates of the point at
the left edge of the window, storing the result in the variables sx0 and sy0. From
there it fills in the coordinates one pixel to the right in the variables sx1 and sy1.
The graphics library call then connects these points with a call to

drawLine(sx0, sy0, sx1, sy1);

Each additional cycle of the loop connects the current point to its predecessor. This
process has the effect of approximating the graph of the function by connecting a
sequence of line segments, each of which extends one pixel in the x direction.

The plot function in Figure 11-4 is probably too primitive to be used in a
practical application. It nonetheless makes a useful first example of how treating
functions as data values can be useful in an application.

F I G U R E 1 1 - 4 Implementation of the plot function

/*
 * Function: plot
 * Usage: plot(fn, minX, maxX, minY, maxY);
 * --
 * Plots the specified function (which must map one double to another
 * double) on the screen. The remaining arguments indicate the range
 * of values in the x and y directions, respectively.
 */

void plot(double (*fn)(double), double minX, double maxX,
 double minY, double maxY) {
 double width = getWindowWidth();
 double height = getWindowHeight();
 double nSteps = int(width);
 double dx = (maxX - minX) / nSteps;
 double sx0 = 0;
 double sy0 = height - (fn(minX) - minY) / (maxY - minY) * height;
 for (int i = 1; i < nSteps && y0 >= 0; i++) {
 double x = minX + i * dx;
 double y = fn(x);
 double sx1 = (x - minX) / (maxX - minX) * width;
 double sy1 = height - (y - minY) / (maxY - minY) * height;
 drawLine(sx0, sy0, sx1, sy1);
 sx0 = sx1;
 sy0 = sy1;
 }
}

 11.4 Using functions as data values 513

Comparison functions
Another common application of functions as data arises when you want to sort a
vector or an array using some ordering scheme other than the natural ordering
provided by the relational operators <, ==, and >. The usual approach in such cases
is to pass a comparison function to the sorting function that implements the new
ordering. Comparison functions typically take two values, v1 and v2, and return an
integer with the following properties:

• If v1 and v2 are equal, the comparison function returns 0.

• If v1 comes before v2, the comparison function returns a number less than 0.

• If v1 comes after v2, the comparison function returns a number greater than 0.

Figure 11-5 defines a sort function that sorts a vector of strings according to a
client-supplied comparison function along with a compareIgnoringCase function
that compares two strings without regard to case. Calling

sort(vec, compareIgnoringCase);

therefore sorts a vector of strings without considering the case of the letters, which
is presumably what you want for most programs that alphabetize a list of words.

The compareIgnoringCase function is only one of many that you could use in
connection with this extended version of sort. If, for example, you wanted to sort
strings in order of increasing length, you could give sort the following comparison
function:

int compareByLength(string s1, string s2) {
 return s1.length() - s2.length();
}

The subtraction operator is all you need here. If s1 is shorter than s2, this function
will return a negative number. Similarly, if s1 is longer than s2, the result will be
positive. If the lengths are the same, the compareByLength comparison function
returns 0.

As another example, you can sort strings in reverse lexicographic order by
calling sort with the following comparison function:

int compareBackwards(string s1, string s2) {
 if (s1 == s2) return 0;
 if (s1 > s2) return -1;
 return 1;
}

514 Pointers and Arrays

sort with comparison function
F I G U R E 1 1 - 5 Implementation of selection sort using a comparison function

/*
 * Function: sort
 * Usage: sort(vec, cmp);
 * ----------------------
 * Sorts the vector of strings using the client-specified comparison
 * function cmp to determine the ordering. The comparison function
 * takes two strings, s1 and s2, and returns an integer whose sign
 * indicates the result of the comparison. If s1 and s2 are equal,
 * the comparison function must return 0. If s1 comes before s2 in
 * the ordering, the comparison function must return some integer less
 * than 0. If s1 comes after s2, the comparison function returns an
 * integer greater than 0.
 */

void sort(Vector<string> & vec, int (*cmp)(string, string)) {
 int n = vec.size();
 for (int lh = 0; lh < n; lh++) {
 int rh = lh;
 for (int i = lh + 1; i < n; i++) {
 if (cmp(vec[i], vec[rh]) < 0) rh = i;
 }
 string tmp = vec[lh];
 vec[lh] = vec[rh];
 vec[rh] = tmp;
 }
}

/*
 * Function: compareIgnoringCase
 * Usage: sort(vec, compareIgnoringCase);
 * --------------------------------------
 * Returns an integer whose sign indicates the relationship between
 * the strings s1 and s2 when considered without regard to case.
 * In most cases, this function is not called explicitly but is instead
 * passed to the sort function or some other utility that requires a
 * comparison function. This implementation adopts the simple but
 * inefficient tactic of converting the entire string to lowercase
 * and then comparing the result using the relational operators for
 * the string class.
 */

int compareIgnoringCase(string s1, string s2) {
 s1 = toLowerCase(s1);
 s2 = toLowerCase(s2);
 if (s1 == s2) return 0;
 if (s1 < s2) return -1;
 return 1;
}

 Summary 515

 Summary
One of the goals of this book is to encourage you to use high-level structures that
allow you to think about data in an abstract way that is independent of the
underlying representation. Abstract data types and classes help make it possible to
maintain this holistic viewpoint. At the same time, using C++ effectively requires
you to have a mental model of how data structures are represented in memory. In
this chapter, you have had a chance to see how those structures are stored and to get
a sense of what goes on “under the hood” as you write your programs.

The important points introduced in this chapter include:

• The fundamental unit of information in a modern computer is a bit, which can be

in one of two possible states. The state of a bit is usually represented in memory
diagrams using the binary digits 0 and 1, but it is equally appropriate to think of
these values as off and on or false and true, depending on the application.

• Sequences of bits are combined inside the hardware to form larger structures,
including bytes, which are eight bits long, and words, which contain either four
bytes (32 bits) or eight bytes (64 bits) depending on the machine architecture.

• The internal memory of a computer is arranged into a sequence of bytes in which
each byte is identified by its index position in that sequence, which is called its
address.

• Computer scientists tend to write address values and the contents of memory
locations in hexadecimal notation (base 16) because doing so makes it easy to
identify the individual bits.

• The primitive types in C++ require different amounts of memory. A value of
type char requires one byte, a value of type int typically requires four, and a
value of type double requires eight.

• Addresses of data in memory are themselves data values and can be manipulated
as such by a program. A data value that is the address of some other piece of
data is called a pointer. Pointer variables are declared in C++ by writing an
asterisk in front of the variable name in its declaration line.

• The fundamental operations on pointers are & and *, which indicate the address
of a stored value and the value stored at a particular address, respectively.

• Data values that you create in a C++ program are allocated in different regions
of memory. Static variables and constants are allocated in a region of memory
devoted to the program code and static data. Local variables are allocated in a
region called the stack, which is apportioned into structures called frames that
contain all of the local variables for a function or method. As you will discover
in Chapter 12, programs can also allocate additional memory as they run.

516 Pointers and Arrays

• The stack frame for a method call includes an entry identified by the keyword
this that identifies the current object.

• C++ uses the -> operator to select a member of a structure or an object given a
pointer to that value.

• There is a special pointer value called NULL, which is used to indicate that a
pointer does not refer to anything.

• Reference parameters are implemented in C++ by storing a pointer to the calling
argument in the stack frame.

• Like most languages, C++ includes a built-in array type for storing an ordered,
homogeneous collection of elements. As in a vector, each element in an array
has an integer index that begins with 0.

• Arrays are declared by specifying the size in square brackets after the name of
the array. The size specified in the declaration is called the allocated size of the
array and is typically larger than the effective size, which is the actual number of
elements in use.

• Arrays in C++ are interpreted internally as a pointer to their first element. An
important implication of this design is that passing an array as a parameter does
not copy the elements. Instead, the function stores the address of the array in the
caller. As a result, if a function changes the values of any elements of an array
passed as a parameter, those changes will be visible to the caller.

• C++ defines arithmetic on pointers so that adding an integer to a pointer
generates the address of an array element that number of index positions further
down in the array. Thus, if the pointer p points to array[0], the expression
p + 2 points to array[2].

• The idiomatic pattern *p++ returns the value to which p currently points and
then increments p so that it points to the next element in an array of that type.

• Most computers use the von Neumann architecture, in which machine-language
instructions are stored in the same memory as any other kind of data. As a
result, it is possible to define a pointer to a function as the address of its first
instruction.

• In C++, the declaration of a variable or parameter of type pointer-to-function
must specify the types of the parameters and the function result. The syntactic
form of the declaration is illustrated by the following example, which appears in
the argument list to the plot function:

double (*fn)(double)

This declaration specifies that the parameter fn is a pointer to a function taking
one argument of type double and returning a double as its result.

 Review questions 517

 Review questions
1. Define the following terms: bit, byte, and word.

2. What is the etymology of the word bit?

3. How many bytes of memory are there in a 2GB machine?

4. Convert each of the following decimal numbers to its hexadecimal equivalent:

a) 17 c) 1729
b) 256 d) 2766

5. Convert each of the following hexadecimal numbers to decimal:

a) 17 c) CC
b) 64 d) FAD

6. How many bytes does C++ assign to a value of type char? How many bytes

are typically required for a double?

7. What are the three memory regions in which values can be stored in a C++

program?

8. True or false: In C++, values of type char always require one byte of

memory.

9. True or false: In C++, values of type int always require four bytes of

memory.

10. If a machine uses two’s complement arithmetic to represent negative numbers,

what is the internal representation of –7 in a 32-bit integer format?

11. What is the purpose of the sizeof operator? How do you use it?

12. What is an address?

13. What is an lvalue?

14. What reasons for using pointers are cited in this chapter?

15. What are the types of the variables introduced by the following declaration:

int * p1, p2;

518 Pointers and Arrays

16. What are the two fundamental pointer operations? Which one corresponds to
the term dereferencing?

17. Explain the difference between pointer assignment and value assignment.

18. Assuming that variables of type int and all pointers require four bytes of

memory, draw a diagram showing a portion of the stack frame that contains
the following declarations:

int v1 = 10;
int v2 = 25;
int *p1 = &v1;
int *p2 = &v2;

In your diagram, trace through the operation of these statements:

*p1 += *p2;
p2 = p1;
*p2 = *p1 + *p2;

19. True or false: For any variable x, the expression *&x is essentially a synonym

for x.

20. True or false: For any variable p, the expression &*p is essentially a synonym

for p.

21. How are pointers used in the implementation of call by reference?

22. Write array declarations for the following array variables:

a) An array realArray consisting of 100 floating-point values
b) An array inUse consisting of 16 Boolean values
c) An array lines that can hold up to 1000 strings

Remember to declare constants to specify the allocated size for these arrays.

23. Write the variable declaration and for loop necessary to create and initialize

the following integer array:

24. What is the difference between the allocated size and the effective size of an

array?

0 1 4 9 16 25 36 49 64 81 100

squares

0 1 2 3 4 5 6 7 8 9 10

 Review questions 519

25. Assuming that intArray is declared as

int intArray[10];

and that j is an integer variable, describe the steps the computer would take to
determine the value of the following expression:

&intArray[j + 3];

26. If array is declared to be an array, describe the distinction between the

expressions

array[2]

and

array + 2

27. Assume that variables of type double take up eight bytes on the computer

system you are using. If the base address of the array doubleArray is FF00,
what is the address value of doubleArray + 5?

28. True or false: If p is a pointer variable, the expression p++ adds 1 to the

internal representation of p.

29. Describe the effect of the idiomatic C++ expression

*p++

30. In the expression *p++, which operator (* or ++) is applied first. In general,

what rule does C use to determine the precedence of unary operators?

31. What feature of the von Neumann architecture makes it possible to define

pointers to functions?

32. Describe the difference in the declarations

char *fn1(string);

and

char (*fn1)(string);

33. How would you declare a variable fn as a pointer to a function taking two

integers and returning a Boolean value?

34. What is the rule governing the return value of a comparison function?

520 The C++ Memory Model

 Exercises
1. As you know from the chapter, integers are represented inside the computer as

a sequence of bits, each of which is a single digit in the binary number system
and can therefore have only the value 0 or 1. With N bits, you can represent
2N distinct integers. For example, three bits are sufficient to represent the
eight (23) integers between 0 and 7, as follows:

000 → 0
001 → 1
010 → 2
011 → 3
100 → 4
101 → 5
110 → 6
111 → 7

The bit patterns for these integers follow a recursive pattern. The binary
numbers with N bits consist of the following two sets in order:

• All binary numbers with N − 1 bits preceded by a 0.

• All binary numbers with N − 1 bits preceded by a 1.

Write a recursive function

void generateBinaryCode(int nBits);

that generates the bit patterns for the binary representation of all integers that
can be represented using the specified number of bits. For example, calling
generateBinaryCode(3) should produce the following output:

2. Although the binary coding used in exercise 1 is ideal for most applications, it

has certain drawbacks. As you count in standard binary notation, there are
some points in the sequence at which several bits change at the same time.
For example, in the three-bit binary code, the value of every bit changes as
you move from 3 (011) to 4 (100).

GenerateBinaryCode
000

001

010

011

100

101

110

111

 Exercises 521

In some applications, this instability in the bit patterns used to represent
adjacent numbers can lead to problems. Imagine for the moment that you are
using some hardware measurement device that produces a three-bit value from
some real-world phenomenon that happens to be varying between 3 and 4.
Sometimes, the device will register 011 to indicate the value 3; at other times,
it will register 100 to indicate 4. For this device to work correctly, the
transitions for each of the individual bits must occur simultaneously. If the
first bit changes more quickly than the others, for example, there may be an
intermediate state in which the device reads 111, which would be a highly
inaccurate reading.

It turns out that you can avoid this problem simply by changing the

numbering system. If instead of using binary representation in the traditional
way, you can assign three-bit values to each of the numbers 0 through 7 with
the highly useful property that only one bit changes in the representation
between every pair of adjacent integers. Such an encoding is called a
Gray code (after its inventor, the mathematician Frank Gray) and looks like
this:

000 → 0
001 → 1
011 → 2
010 → 3
110 → 4
111 → 5
101 → 6
100 → 7

In the Gray code representation, the bit patterns for 3 and 4 differ only in their
leftmost bit. If the hardware measurement device used Gray codes, a value
oscillating between 3 and 4 would simply turn that bit on and off, eliminating
any problems with synchronization.

The recursive insight that you need to create a Gray code of N bits is

summarized in the following informal procedure:

1. Write down the Gray code for N – 1 bits.

2. Copy that same list in reverse order below the original one.

3. Add a 0 bit in front of the encodings in the original half of the list and a 1
bit in front of those in the reversed copy.

This procedure is illustrated in the following derivation of the Gray code for
three bits:

522 The C++ Memory Model

Write a recursive function generateGrayCode(nBits) that generates
the Gray code patterns for the specified number of bits. For example, if you
call the function

generateGrayCode(3)

the program should produce the following output:

3. Write overloaded versions of the integerToString and stringToInteger

functions that take a second argument indicating the numeric base, which can
be any integer in the range 2 through 36 (the 10 digits plus the 26 letters). For
example, calling

integerToString(42, 16)

should return the string "2A". Similarly, calling

stringToInteger("111111", 2)

should return the integer 63. Your functions should allow for negative
numbers and should generate an error if any of the digits in the first argument
to stringToInteger is out of range for the specified base.

000

001

011

010

110

111

101

100

00

01

11

10

0

1
reverse

d reversed

3-bit Gray code 2-bit Gray code 1-bit Gray code

GenerateGrayCode
000

001

011

010

110

111

101

100

 Exercises 523

4. Rewrite the simple expression calculator from Chapter 6, exercise 11, so that
both the input and output values are represented in hexadecimal. A sample
run of this program might look like this:

In writing this program, the easiest approach is to scan all tokens as words
rather than numbers and the call the functions you wrote for exercise 3 to
perform the conversions.

5. Rewrite the Quadratic program from Figure 2-3 so that it uses explicit

pointers instead of call by reference to return values from the functions
getCoefficients and solveQuadratic.

6. Using the definitions of MAX_JUDGES and scores on page 502 as a starting

point, write a program that reads in gymnastics scores between 0 and 10 from
a set of judges and then computes the average of the scores after eliminating
both the highest and lowest scores from consideration. Your program should
accept input values until the user enters a blank line as a sentinel. A sample
run of this program might look like this:

7. Rewrite the implementation of the merge sort algorithm from Figure 10-3 so

that it sorts an array rather than a vector. The revised function should use the
prototype

HexCalculator
> 2 + 2

4

> 9 + 3

C

> 10000 - 1

FFFF

> 6 * 7

2A

> FEED - CAFE

33EF

>

GymnasticsJudge
Enter score for each judge in the range 0 to 10.
Enter a blank line to signal the end of the list.
Judge #1: 9.0
Judge #2: 9.1
Judge #3: 9.3
Judge #4: 9.0
Judge #5: 8.8
Judge #6: 9.0
Judge #7:
The average after eliminating 8.80 and 9.30 is 9.03.

524 The C++ Memory Model

void sort(int array[], int n)

as in the reimplementation of the selection sort algorithm on page 503.

8. In calculus, the definite integral of a function is defined to be the area

bounded horizontally by two specified limits and vertically by the x-axis and
the value of the function. For example, the definite integral of the
trigonometric sine function in the range 0 to π is the area of the shaded region
in the following diagram:

You can compute an approximation to this area by adding up the area of small
rectangles of a fixed width, where the height is given by the value of the
function at the midpoint of the rectangle:

Design the prototype and write the code for a function integrate that
calculates the definite integral by summing the areas of a set of rectangles.
For example, to calculate the area of the shaded region in the earlier example,
the client would write

double value = integrate(sin, 0, PI, 20);

where the last argument is the number of rectangles into which the area gets
divided; the larger this value, the more accurate the approximation.

π
2

π 3π
2

2π

π
2

π 3π
2

2π

 Exercises 525

Note that any region that falls below the x-axis is treated as negative area.
Thus, if you compute the definite integral of sin from 0 to 2π, the result
would be 0 because the areas above and below the axis cancel each other out.

9. As noted in the text, the code for compareIgnoringCase in Figure 11-5 is

inefficient because it converts the entire string to lowercase even if you can
determine the relative ordering by looking only at the first character. Write a
more efficient version of compareIgnoringCase that looks at as few
characters as possible as it determines the result.

10. Write a comparison function compareByTitle that takes two strings and

compares them subject to the following rules:

• The comparison should ignore differences in case.

• All punctuation marks except spaces should be ignored.

• The words a, an, or the at the beginning of a title should be ignored.

Chapter 12
Dynamic Memory Management

You have burdened your memory with exploded systems and
useless names.

— Mary Shelley, Frankenstein, 1818

528 Dynamic Memory Management

Up to this point in the text, you have seen two mechanisms for assigning memory to
variables. When you declare a global constant, the compiler allocates memory
space that persists throughout the entire program. This style of allocation is called
static allocation because the variables are assigned to locations in memory that
remain unchanged throughout the lifetime of the program. When you declare a
local variable inside a function, the space for that variable is allocated on the stack.
Calling the function assigns memory to the variable; that memory is freed when the
function returns. This style of allocation is called automatic allocation. There is,
however, a third way of allocating memory that permits you to acquire new memory
as the program runs. The process of acquiring new storage while the program is
running is called dynamic allocation.

Dynamic allocation is one of the most important techniques that you need to
learn before you can consider yourself fluent in C++. In part, the importance comes
from the fact that dynamic allocation makes it possible for data structures to expand
as needed while a program is running. The collection classes introduced in
Chapter 5, for example, depend on this ability. There is no arbitrary limit on the
size of a Vector or a Map. If these classes need more memory, they simply request
it from the system.

In C++, dynamic allocation takes on special importance because the language
assigns much more responsibility to the programmer than most modern languages
do. In C++, it is not enough to know how to allocate memory. You also have to
learn how to free memory when it is no longer needed. The process of allocating
and freeing memory in a disciplined way is called memory management.

 12.1 Dynamic allocation and the heap
When a program is loaded into memory, it usually occupies only a fraction of the
available storage. Like most programming languages, C++ allows you to allocate
some of the unused storage to the program whenever your application needs more
memory. For example, if you need space for an array while the program is running,
you can reserve part of the unallocated memory, leaving the rest for subsequent
allocations. The pool of unallocated memory available to a program is called the
heap.

In most modern architectures, memory is arranged so that the heap and the stack
grow in opposite directions toward each other, as illustrated in the following
diagram:

heap
(grows toward higher addresses)

stack
(grows toward lower addresses)

 12.1 Dynamic allocation and the heap 529

The advantage of this strategy is that either region can grow as needed until all of
the available memory is filled.

The ability to allocate memory from the heap when you need it turns out to be an
extremely useful technique that has widespread application to programming. For
example, all the collection classes use the heap to store their elements, because
dynamic allocation is essential to creating data structures that can expand as needed.
Later in this chapter, you’ll have a chance to build a simplified version of one of
those collection classes. Before doing so, however, it is important to learn the
underlying mechanics of dynamic allocation and how the process works.

The new operator
C++ uses the new operator to allocate memory from the heap. In its simplest form,
the new operator takes a type and allocates space for a variable of that type located
in the heap. For example, if you want to allocate an integer in the heap, you call

int *ip = new int;

The call to the new operator returns the address of a storage location in the heap that
has been set aside to hold an integer. If the first free word in the heap is located at
address 1000, the variable ip in the current stack frame will be assigned the address
of that memory word, as follows:

Conceptually, the local variable ip on the stack points to the newly allocated word
on the heap. That relationship becomes clearer if you indicate the relationship with
an arrow rather than an address, as follows:

The contents of the memory locations are the same. The only change is in how you
draw the picture.

Once you have allocated the space for the integer value in heap memory, you can
refer to that integer by dereferencing the pointer. For example, you can store the
integer 42 into that word by executing the statement

*ip = 42;

which leaves memory looking like this:

ipFFF01000 1000

ip

ip42

530 Dynamic Memory Management

You can also use the new operator to allocate objects on the heap. If you use
only the class name, as in

Rational *rp = new Rational;

C++ allocates space for a Rational object on the heap and invokes the default
constructor, creating the following state in memory:

If you supply arguments after the type name, C++ will call the matching version of
the constructor. The declaration

Rational *rp = new Rational(2, 3);

therefore creates the following state:

Dynamic arrays
The new operator also makes it possible to allocate space for an array in the heap,
which is called a dynamic array. To allocate space for a dynamic array, you follow
the type name with the desired number of elements enclosed in square brackets.
Thus, the declaration

double *array = new double[3];

initializes array so that it points to a contiguous block of memory large enough to
hold three doubles, like this:

The variable array is now a fully functioning array whose storage lives in the heap
rather than on the stack. You can assign values to the elements of array, which are
then stored in the appropriate cells in the heap.

rp

0

1

rp

2

3

array

 12.1 Dynamic allocation and the heap 531

Freeing memory
Although they are getting larger all the time, computer memory systems are finite in
size. As a result, the heap will eventually run out of space. When this occurs, the
new operator will be unable to allocate a block of the requested size. Failure to
fulfill an allocation request is such a serious error that there is usually nothing the
program can do to recover.

The best strategy to ensure that you don’t run out of memory is to free any heap
storage when you are finished using it. To this end, C++ includes the operator
delete, which takes a pointer previously allocated by new and frees the memory
associated with that pointer. If, for example, you determine that you are completely
finished using the storage allocated for ip, you can free that storage by calling

delete ip;

If the heap memory is an array, you need to add square brackets after the delete
keyword. Thus, when you are finished using array in the earlier example, you can
free its memory by executing the statement

delete[] array;

Knowing when to free a piece of memory is not an easy task, particularly as
programs become large. If several parts of a program share some data structure that
has been allocated in the heap, it may not be possible for any single part to
recognize that the memory is no longer needed. For simple programs that run only
until they produce the desired results, it is often a reasonable strategy to allocate
whatever memory you need without bothering to free it again. Doing so, however,
is likely to create a dangerous habit. If some other programmer tries to use your
code in a long-running application, the fact that you were careless with memory will
become a serious problem. It is therefore good practice to make sure that you at
some point free any heap storage that you allocate. When a program fails to free its
unused heap storage, that program is said to contain a memory leak.

Some languages, such as Java, support a strategy for dynamic allocation that
actively goes through memory freeing any storage that is no longer in active use.
This strategy is called garbage collection. Garbage collection makes memory
management extremely easy for programmers, although it also imposes some costs.
Scanning through the entire heap to figure out what parts of it are in use takes some
time. Worse still, garbage collection often makes it impossible to predict how long
it will take to execute a specific task. A function that usually runs very quickly can
suddenly take a significant amount of time if that particular call ends up running the
garbage collector. If that function is responsible for some time-critical task, the
application might fail to respond in time.

532 Dynamic Memory Management

Increasingly, programming languages are adopting garbage collection as a
strategy for memory management. As a general principle, it is worth sacrificing
some amount of processing time to save a lot of programmer time. Processors, after
all, are cheap, and programmers are expensive. C++, however, dates from an earlier
era. For better or worse, the designers of C++ decided to leave the responsibility for
freeing heap memory in the hands of the programmers instead of delegating that
task to an automatic process.

Fortunately, those designers made up for the lack of garbage collection by
offering programmers a different strategy for memory management that simplifies
the problem enormously. In C++, each class is allowed to specify what happens
when an object of that class disappears. In well-designed C++ applications, each
class takes responsibility for its own heap storage, thereby freeing clients from the
nearly impossible task of remembering exactly what heap storage is currently
active. Learning to use this strategy effectively is one of the most important
techniques you need to master as a C++ programmer, so it is worth paying
particular attention to the following section, which describes this approach in detail.

Destructors
As you know from the examples you have already seen, C++ classes typically
define one or more constructors that initialize an object. Each class can also define
a destructor, which is called automatically when an object of that class disappears.
This destructor can perform a variety of cleanup operations. It can, for example,
close any files the object has opened. The most important role for a destructor,
however, is freeing any heap memory created by that object.

In C++, the destructor has the same name as the class preceded by the tilde
character ~. Thus, if you needed to define a destructor for a class named MyClass,
the prototype in the interface would look like this:

~MyClass();

As with the constructors, the destructor does not include a result type. Unlike
constructors, the destructor cannot be overloaded. Each class has only one
destructor, which takes no arguments.

In C++, objects disappear in several different ways. In most cases, objects are
declared as local variables within some function, which means that they are
allocated on the stack. Those objects disappear when the function returns. That
means that their destructor is automatically called at that same time, which gives the
class definition the chance to free any heap memory that it allocated during that
object’s lifetime. In most C++ documentation, local variables that disappear when a
function returns are said to go out of scope.

 12.2 Defining a CharStack class 533

Objects can also be created as temporaries in the evaluation of expressions, even
if their value is never stored in a local variable. As an example, the test program for
the Rational class from Chapter 6 includes the following code:

Rational a(1, 2);
Rational b(1, 3);
Rational c(1, 6);
Rational sum = a + b + c;

The local variables a, b, c, and sum will disappear when the function returns. The
final line, however, ends up computing the Rational value 5/6 as an intermediate
result before going on to compute the final value. Temporary values of this sort go
out of scope as soon as the evaluation is complete for the expression that generates
them. If the Rational class had a destructor, it would be called at that point to free
the storage associated with the temporary object.

 12.2 Defining a CharStack class
The easiest way to get a more detailed sense of how to write classes that use
dynamic allocation is to implement one of the container classes from Chapter 5.
You already know how these classes work, so you can focus on the implementation
without having to learn how some new class operates from the client’s perspective.

In part because it exports the smallest set of methods, the easiest container class
to implement is the Stack class. As you know from Chapter 5, the Stack class in
the Stanford libraries allows clients to create stacks of different kinds by specifying
the base type in angle brackets after the type name. The RPN calculator in
Chapter 5, for example uses a Stack<double> to hold the values. Writing a
parameterized class, however, requires the use of the template facility described in
Chapter 14. At the moment, the goal is to see how classes like Stack use dynamic
allocation to manage memory. For that purpose, the base type of the stack is not
important, and it will work just as well to define a specific type of stack—in this
case a stack of characters that will turn out to be useful in its own right in
Chapter 13—to illustrate the general principles.

The charstack.h interface
Given that you already know the operations that a stack supports from your
experience with the generic Stack class from Chapter 5, the interface that exports
the CharStack class is easy to write. The contents of the charstack.h interface
appear in Figure 12-1. The entries exported by the interface include the default
constructor and the various methods—size, isEmpty, clear, push, pop, and
peek—that define the behavior of the stack abstraction.

534 Dynamic Memory Management

charstack.h-p1
F I G U R E 1 2 - 1 Interface for the CharStack class

/*
 * File: charstack.h
 * -----------------
 * This interface defines the CharStack class, which implements
 * the stack abstraction for characters.
 */

#ifndef _charstack_h
#define _charstack_h

/*
 * Class: CharStack
 * ----------------
 * This class models a stack of characters. The fundamental operations
 * are the same as those for the Stack<char> class.
 */

class CharStack {

public:

/*
 * Constructor: CharStack
 * Usage: CharStack cstk;
 * ----------------------
 * Initializes a new empty stack that can contain characters.
 */

 CharStack();

/*
 * Destructor: ~CharStack
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this character stack.
 */

 ~CharStack();

/*
 * Method: size
 * Usage: int nElems = cstk.size();
 * --------------------------------
 * Returns the number of characters in this stack.
 */

 int size();

 12.2 Defining a CharStack class 535

charstack.h-p2
F I G U R E 1 2 - 1 Interface for the CharStack class (continued)

/*
 * Method: isEmpty
 * Usage: if (cstk.isEmpty()) . . .
 * --------------------------------
 * Returns true if this stack contains no characters.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: cstk.clear();
 * --------------------
 * Removes all characters from this stack.
 */

 void clear();

/*
 * Method: push
 * Usage: cstk.push(ch);
 * ---------------------
 * Pushes the character ch onto this stack.
 */

 void push(char ch);

/*
 * Method: pop
 * Usage: char ch = cstk.pop();
 * ----------------------------
 * Removes the top character from this stack and returns it.
 */

 char pop();

/*
 * Method: peek
 * Usage: char ch = cstk.peek();
 * -----------------------------
 * Returns the value of top character from this stack without
 * removing it. Raises an error if called on an empty stack.
 */

 char peek();

#include "charstackpriv.h"

};

#endif

536 Dynamic Memory Management

The only new feature of the interface beyond what you have seen in the class
definitions from Chapter 6 is the prototype for the destructor, which looks like this:

~CharStack();

The destructor for the CharStack class is never invoked explicitly. The definition
appears in the interface to let the compiler know that the CharStack class defines a
destructor that needs to be called whenever a CharStack object goes out of scope.
Clients no longer need to pay attention to how the CharStack class uses the heap,
because that class manages its own memory. When the CharStack variables go
out of scope, the destructor takes care of freeing any memory allocated on the heap.

Choosing a representation for the stack elements
As with most of the classes defined in this text, the private section of the class does
not actually appear in the charstack.h interface. That information is instead
hidden away in the file charstackpriv.h. The contents of that file depend
entirely on how you choose to represent the data values in the stack.

The first question you should ask yourself is what information needs to be stored
inside a stack. A character stack must clearly keep track of the characters that have
been pushed in the order in which they appear. As with any collection class, there is
no reason to put an arbitrary limit on the number of characters the stack can contain.
As the implementer, you therefore need to choose a data structure that can expand
dynamically as the program runs.

As you think about what such a structure might look like, one idea you will
probably consider is to use a Vector<char> to hold the elements of the stack.
Vectors grow dynamically, which is just what you need for this application. In fact,
using Vector<char> as the underlying representation makes the implementation
extremely easy, as shown in Figures 12-2 and 12-3.

F I G U R E 1 2 - 2 Private section for CharStack using Vector

/*
 * File: charstackpriv.h
 * ---------------------
 * This file contains the private data for the CharStack class. In this
 * implementation, the elements are stored in a Vector.
 */

private:

/* Instance variables */

 Vector<char> elements;

 12.2 Defining a CharStack class 537

Vector-based charstack.cpp
F I G U R E 1 2 - 3 Implementation of CharStack using Vector

/*
 * File: charstack.cpp
 * -------------------
 * This file implements the CharStack class using a Vector<char> as the
 * underlying representation. The Vector class already implements most
 * of the essential operations for the CharStack class, which can simply
 * forward the request on to the underlying structure. The methods are
 * short enough to require no detailed documentation.
 */

#include "charstack.h"
#include "error.h"
#include "vector.h"
using namespace std;

CharStack::CharStack() {
 /* Empty */
}

CharStack::~CharStack() {
 /* Empty */
}

int CharStack::size() {
 return elements.size();
}

bool CharStack::isEmpty() {
 return elements.isEmpty();
}

void CharStack::clear() {
 elements.clear();
}

void CharStack::push(char ch) {
 elements.add(ch);
}

char CharStack::pop() {
 if (isEmpty()) error("pop: Attempting to pop an empty stack");
 char result = elements[elements.size() - 1];
 elements.removeAt(elements.size() - 1);
 return result;
}

char CharStack::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty stack");
 return elements[elements.size() - 1];
}

538 Dynamic Memory Management

Before arguing that the Vector class is inappropriate for this example, it is
critical to emphasize that choosing to use Vector<char> as the underlying
representation shows just the right instincts. You should always be on the lookout
for ways that you can reframe each new problem in terms of other problems that
you have already solved. Moreover, as a software-engineering strategy, there is
absolutely nothing wrong with using vectors to implement stacks. The library
version of the Stack class does just that. The problem is not that the
implementation is problematic, but rather that using Vector compromises the
instructional value of the example. As you will see in Chapter 14, implementing
vectors is considerably more complicated than implementing stacks. Using Vector
as the underlying representation does nothing to demystify the operation of the
CharStack class, but merely hides the mystery under a somewhat larger stone.

Perhaps more importantly, relying on the Vector class makes it harder to
analyze the performance of the CharStack class because the Vector class hides so
much complexity. Because you don’t yet know how the Vector class works in
detail, you have no idea how much work is involved in adding or deleting an
element, as the push and pop methods require. The primary purpose of the next
several chapters is to analyze how data representation affects the efficiency of
algorithms. That analysis is much easier to carry out if all the costs are visible.

One way to ensure that there are no hidden costs is to limit the implementation
so that it relies only on the most primitive operations supported by the language. In
the case of the character stack, using the built-in array type to store the elements has
the advantage that an array hides nothing. Selecting an element from an array
requires a couple of machine-language instructions and therefore takes very little
time on a modern computer. Allocating array storage on the heap or reclaiming that
storage when it is no longer needed generally takes more time than selection, but
these operations still run in constant time. In a typical memory-management
system, it takes the same amount of time to allocate a block of 1000 bytes as it does
to allocate a block of 10.

At the same time, it isn’t immediately clear that arrays—even those that are
allocated dynamically from the heap—can serve as the underlying representation for
a collection class. As noted at the beginning of this section, whatever representation
you use to store the characters in the stack must allow for expansion. Arrays don’t.
Once you’ve allocated space for an array, there is no way to change its size.

What you can do, however, is allocate an array of some fixed initial size and
then replace it with an entirely new array whenever the old one runs out of space.
In the process, you will have to copy all of the elements from the old array to the
new one and then make sure that the memory used by the old array gets recycled
back to the heap, but the strategy seems to work in principle.

 12.2 Defining a CharStack class 539

To store the stack elements, the new version of the charstackpriv.h file
needs to keep track of several variables. Most importantly, it needs a pointer to a
dynamic array that contains all the characters in the CharStack. It also needs to
keep track of how many elements have been allocated to that array so that the
implementation can tell when the stack runs out of space and needs to reallocate its
internal storage. Since that value indicates how many characters the array can store
in its current configuration, it is usually called the capacity of the dynamic array.
Finally, it is important to remember that the array will typically contain fewer
characters than its capacity allows. The data structure therefore needs to include a
variable that keeps track of the effective size. Including these three instance
variables in the private section makes it possible to implement the stack operations
using nothing more complicated than array operations. The contents of the revised
charstackpriv.h file appear in Figure 12-4 and the associated implementation
appears in Figure 12-5.

Although much of the code in charstack.cpp is similar to classes you’ve seen
earlier in this text, a few of the methods bear special mention. The constructor, for
example, must initialize the internal data structure to represent an empty stack. The
count variable must be zero, but there is no reason not to provide the stack with
some initial capacity. In this implementation, the constructor starts off by allocating
space for 10 characters, which is the value of the constant INITIAL_CAPACITY.
There is nothing magical about that value. Any number would work. Choosing a
large value reduces the chance that the stack will have to expand and therefore saves
execution time; choosing a small one conserves memory. Deciding what value to
use for INITIAL_CAPACITY is an example of a time-space tradeoff, which will be
covered in more detail in Chapter 13.

F I G U R E 1 2 - 4 Private section for the CharStack class

/*
 * File: charstackpriv.h
 * ---------------------
 * This file contains the private data for the CharStack class.
 */

private:

/* Instance variables */

 char *array; /* Dynamic array of characters */
 int capacity; /* Allocated size of that array */
 int count; /* Current count of chars pushed */

/* Private function prototype */

 void expandCapacity();

540 Dynamic Memory Management

charstack.cpp, p1
F I G U R E 1 2 - 5 Implementation of the CharStack class

/*
 * File: charstack.cpp
 * -------------------
 * This file implements the CharStack class.
 */

#include "charstack.h"
#include "error.h"
using namespace std;

/*
 * Constant: INITIAL_CAPACITY
 * --------------------------
 * This constant defines the initial allocated size of the dynamic
 * array used to hold the elements. If the stack grows beyond its
 * capacity, the implementation doubles the allocated size.
 */

const int INITIAL_CAPACITY = 10;

/*
 * Implementation notes: CharStack constructor
 * ---
 * The constructor must allocate the array storage for the stack elements
 * and initialize the fields of the object.
 */

CharStack::CharStack() {
 capacity = INITIAL_CAPACITY;
 array = new char[capacity];
 count = 0;
}

/*
 * Implementation notes: ~CharStack
 * --------------------------------
 * The destructor frees any heap memory allocated by the class, which
 * is just the dynamic array of elements.
 */

CharStack::~CharStack() {
 delete[] array;
}

int CharStack::size() {
 return count;
}

bool CharStack::isEmpty() {
 return count == 0;
}

void CharStack::clear() {
 count = 0;
}

 12.2 Defining a CharStack class 541

charstack.cpp, p2
F I G U R E 1 2 - 5 Implementation of the CharStack class (continued)

/*
 * Implementation notes: push
 * --------------------------
 * This function must first check to see whether there is enough room for
 * the character and expand the array storage if necessary.
 */

void CharStack::push(char ch) {
 if (count == capacity) expandCapacity();
 array[count++] = ch;
}

/*
 * Implementation notes: pop, peek
 * -------------------------------
 * These functions must check for an empty stack and report an
 * error if there is no top element.
 */

char CharStack::pop() {
 if (isEmpty()) error("pop: Attempting to pop an empty stack");
 return array[--count];
}

char CharStack::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty stack");
 return array[count - 1];
}

/*
 * Implementation notes: expandCapacity
 * ------------------------------------
 * This private method doubles the capacity of the elements array whenever
 * it runs out of space. To do so, it must copy the pointer to the old
 * array, allocate a new array with twice the capacity, copy the characters
 * from the old array to the new one, and finally free the old storage.
 */

void CharStack::expandCapacity() {
 char *oldArray = array;
 capacity *= 2;
 array = new char[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[i];
 }
 delete[] oldArray;
}

542 Dynamic Memory Management

The more interesting change occurs in the push method, which adds a new
character to the top of the stack. As long as there is room for the character, the
method simply stores the character in the first unused array position and increments
the count field. Things get tricky only if there is no space left in the array.

In the implementation shown in Figure 12-5, the push method delegates the task
of expanding the dynamic array to the private method expandCapacity, which
looks like this:

void CharStack::expandCapacity() {
 char *oldArray = array;
 capacity *= 2;
 array = new char[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[i];
 }
 delete[] oldArray;
}

As you can see from the code, the expandCapacity method begins by saving a
pointer to the old array. It then allocates a new array with twice the capacity of the
existing one, copies all the characters from the old array into the new one, and
finally frees the old array storage.

The one other method that bears at least some mention is the destructor, if for no
other reason than the fact that this is the first destructor you’ve seen. The primary
responsibility that most destructors have is freeing any heap memory allocated by
the class. The expandCapacity method ensures that the old storage is released
every time the array expands. When the CharStack is ready to be reclaimed, the
only pointer to heap storage is the dynamic array whose address is stored in the
instance variable array. The implementation of the destructor is therefore

CharStack::~CharStack() {
 delete[] array;
}

The use of destructors in C++ is not a magical solution to the problem of

memory allocation. As the charstack.cpp implementation makes clear, you still
have to pay close attention to memory management and make sure that the
implementation frees any heap memory it allocates. The advantage of using
destructors is that the complexity of memory management is then hidden from the
client. A client can declare a CharStack, use it for a time, and then forget about it.
The implementation of the CharStack class takes care of freeing the memory used
by a character stack as soon as it goes out of scope.

 12.2 Defining a CharStack class 543

The computational complexity of the CharStack class
In analyzing the performance of the collection classes, the most important question
is how the running time of each operation varies as the number of values in the
collection changes. For the CharStack class, most of the methods run in constant
time. The only method for which the size of the stack makes any difference at all is
the push method, which occasionally has to expand the capacity of the array.

Up to this point in the book, complexity analysis has focused on how a particular
algorithm performs in the worst case. If the push operation has to expand the
capacity of the stack, that call will run in linear time, so it seems as if the
computational complexity of push must be O(N) in the worst case. There is,
however, an important characteristic that makes the push operation different from
the other operations that arise in traditional complexity analysis: the worst case
can’t possibly happen every time. In particular, if pushing one item on the stack
triggers an expansion that makes that particular call run in O(N) time, the cost of
pushing the next item is guaranteed to be O(1) because the capacity has already
been expanded. It therefore makes sense in this case to distribute the cost of the
expansion over all the push operations that benefit from it. This style of
complexity measurement is called amortized analysis.

To make this process easier to understand, it is useful to compute the total cost
of the push operation if it is repeated N times, where N is some large number.
Every push operation incurs some cost whether or not the stack is expanded. If you
represent that fixed cost using the Greek letter α, the total fixed cost of pushing N
items is αN. Every so often, however, the implementation needs to expand the
capacity of the internal array, which is a linear-time operation that costs some
constant β times the number of characters on the stack. In terms of the total running
time, the worst possible situation is if that expansion happens on the very last cycle.
In that case, the final push operation incurs an additional cost of βN. Given that
expandCapacity always doubles the size of the array, the capacity also had to be
expanded when the stack was half as large as N, a quarter as large as N, and so on.
The total cost of pushing N items is therefore given by the following formula:

The average time is simply this total divided by N, as follows:

Although the sum inside the parentheses depends on N, the total can never be larger
than 2, which means that the average time is bounded by the constant value α + 2β
and is therefore O(1).

total time = αN + β (N +
N

2
 +

N

4
 +

N

8
 + . . .)

average time = α + β (1 +
1

2
 +

1

4
 +

1

8
 + . . .)

544 Dynamic Memory Management

 12.3 Heap-stack diagrams
It is difficult to understand how memory allocation works without drawing lots of
pictures. In my experience, the single best tool for visualizing the allocation
process is the heap-stack diagram, in which you diagram the state of memory on
both the heap and the stack. Dynamically allocated memory created using the new
operator appears on the left hand side of the diagram, which represents the heap.
The stack frames for each function call appear on the right.

For reasons I’m not sure I understand, students have more trouble generating
heap-stack diagrams than I originally expected. Unlike the process of writing code,
which invariably requires creativity, drawing heap-stack diagrams is essentially a
mechanical activity. That fact, however, does not mean that the process is trivial or
that the insights you get from making these diagrams are unimportant. When I’m
helping students debug their code, I’ve found that drawing these diagrams is the
best way to help students get past those sticking points that can make coding so
frustrating. If spending a few minutes chugging through this process saves hours of
frustration as a result, that time is certainly well spent.

The best way to understand how to create heap-stack diagrams is to go through
an example. Suppose that you have defined the CharStack class as it appears in
Figure 12-5 and that you want to test it by running the following main program,
which should print the alphabet backwards:

int main() {
 CharStack cstk;
 for (int i = 0; i < 26; i++) {
 cstk.push(char('A' + i));
 }
 while (!cstk.isEmpty()) {
 cout << cstk.pop();
 }
 cout << endl;
 return 0;
}

The focus of this section is not on what this program does, but rather on how it

allocates memory on the stack and the heap. The rest of this section traces the
execution of this program in the form of a series of heap-stack diagrams constructed
according to the process outlined in Figure 12-6. Having watched generations of
students get completely confused by what’s going on inside the machine, I’m
convinced that it helps to work through this process a few times until you
understand the rules the compiler uses to allocate memory. Once you’ve mastered
that idea, there is no need to carry out this process in detail each time.

 12.3 Heap-stack diagrams 545

F I G U R E 1 2 - 6 Steps to follow in creating heap-stack diagrams

1. Start with an empty diagram. Before you begin, draw a vertical line on the page to separate the heap space from
the stack space. Both sides of the diagram are empty at the beginning. In a typical machine, the heap expands
towards larger memory addresses and thus grows downward on the page; the stack, by contrast grows in the
opposite direction and therefore grows upward on the page. The diagrams in this book make 1000 the first
address in the heap and FFFF the last byte in the stack, but these choices are simply a convention.

2. Hand-simulate the program, allocating memory as you go. The allocation of memory is a dynamic process
that happens as the program runs. To figure out what memory looks like at a particular point, you need to trace
through the program from the beginning. As you do so, the rest of the rules will apply at the appropriate time.

3. Add a new stack frame for each function or method call. Every time the program begins a function call
(including the initial call to main), new memory is allocated on the stack side of the diagram to store the stack
frame for that call. Drawing a stack frame is worth describing in a step-by-step process of its own.

3a) Add an overhead word represented as a rectangle filled in gray. As noted in the chapter, the contents of
this gray area are machine-dependent, but drawing the gray rectangle helps to separate the frames visually.

3b) Include space in the stack frame for all local variables declared by the function. The size of the stack
frame you create depends on the number of variables it declares. Go through the code and find all the local
variable declarations in the function, including the parameters. For each variable you find, allocate as much
space in the stack frame as that variable requires, and then label the space with the variable name.
Parameters passed by reference use only the space of a pointer rather than the actual value. If the call is a
method call, the stack frame should also include a cell labeled this pointing to the current object. The
order of variables within a stack frame is arbitrary, so you can arrange them in any order you want.

3c) Initialize the parameters by copying the values of the actual arguments. After you have drawn the
variables in the stack frame, you need to copy the argument values into the parameter variables, keeping in
mind that the association is determined by the order of the arguments and not by their names. Arguments in
C++ are passed by value unless the declaration of the parameter variable includes an & to indicate call by
reference. When a parameter uses call by reference, you don’t copy the value of the argument but instead
assign its address to the pointer variable stored in the frame.

3d) Continue the hand-simulation through the body of the function. Once you’ve initialized the parameters,
you are ready to execute the steps in the function body. This process will likely involve assignments
(rule 4), dynamic allocation (rule 5), and nested function calls (recursive invocations of rule 3).

3e) Pop the entire stack frame when the function returns. When you finish executing a function, the stack
frame that it was using is automatically reclaimed. On a diagram, you can simply cross out that space. The
next function call will reuse the same memory.

4. Execute each assignment statement by copying values from right to left. The nature of the copy depends on
the type of value. If you assign a primitive value or an enumerated type, you simply copy the value. If you
assign a pointer value to another, the pointer is copied, but not the underlying value. Moreover, because C++
treats array names as being synonymous with a pointer to their initial element, assigning an array name to a
variable copies only the pointer and not the underlying elements. If you assign one object to another, the
behavior depends on how that class defines assignment.

5. Allocate new heap memory when the program explicitly asks for it. The only time that a C++ program creates
new memory in the heap is when the new operator appears explicitly in an expression. Whenever you see the
keyword new, you need to draw space in the heap that is large enough to hold the value being allocated. The
value of the new operator is a pointer to the heap space, which you then treat just like any other pointer value.

546 Dynamic Memory Management

As with any C++ program, the first thing that happens is that the operating
system issues a call to the main function. In this example, the main function
declares two local variables: the variable cstk of type CharStack and the index
variable i used in the for loop. The CharStack object requires three words of
memory, one for the address of the dynamic array and one for each of the integer
fields capacity and count. Before any initialization, the stack frame therefore
looks like this (nothing has yet been allocated on the heap, so that side of the
diagram is empty):

Declaring an object in C++ automatically invokes its constructor, so the first
thing that happens is a call to the CharStack constructor. Even though the
constructor takes no arguments and declares no local variables, the stack frame must
still contain an entry named this that points to the current object, since every
method call includes this entry as an implicit parameter: In this case, this points to
the cstk object in the main program, as follows:

The steps in the constructor are quite straightforward. All of the variables
mentioned in the constructor are fields in the current object. The first line sets the
capacity to the constant INITIAL_CAPACITY, which is defined to be 10. The
second line allocates a dynamic array of 10 characters. As with any value allocated
using the operator new, the space for that array is allocated on the heap. In C++, the
type char takes up one byte, so the array requires 10 bytes of heap memory,
although that number is typically rounded up so that it fills an integral number of

heap stack

i

cstk.array

cstk.capacity

cstk.count

heap stack

i

cstk.array

cstk.capacity

cstk.count

this

 12.3 Heap-stack diagrams 547

words. The last line initializes the count to zero to indicate that the stack is empty.
The contents of the heap and stack now look like this:

The constructor then returns, leaving the object initialized as shown.

The next method call occurs during the first cycle of the for loop, when i has
the value 0. This cycle generates a call to cstk.push with an argument equal to
the character 'A'. Once again, push is a method call, so the frame will include the
pointer variable this along with the parameter ch, as follows:

Given that count is not equal to capacity, this call is straightforward. The
character ch is copied to the dynamic array and the count is incremented, like this:

heap stack

i

cstk.array

cstk.capacity

cstk.count

this

10

0

i

cstk.array

0

cstk.capacity

cstk.count

10

0

this

chA

i

cstk.array

0

cstk.capacity

cstk.count

A

10

1

this

chA

548 Dynamic Memory Management

The next nine cycles of the for loop proceed in the same way, filling up the
available capacity in the stack:

At this point, the next call to cstk.push creates a frame in which count is equal
to capacity:

This condition generates a call to the private method expandCapacity, which
declares the local variables oldArray and i. These variables appear along with the
pointer to the current object in the stack frame at the top of this diagram:

i

cstk.array

9

cstk.capacity

cstk.count

A B C D

E F G H

I J 10

10

i

cstk.array

10

cstk.capacity

cstk.count

A B C D

E F G H

I J

10

10

this

chK

i

cstk.array

10

cstk.capacity

cstk.count

A B C D

E F G H

I J

10

10

this

chK

this

oldArray

i

 12.3 Heap-stack diagrams 549

The operation of expandCapacity is sufficiently interesting that it makes sense
to go through the process in more detail. The lines

char *oldArray = array;
capacity *= 2;
char *array = new char[capacity];

copy the old array pointer and then allocate a new dynamic array with twice the
original capacity:

The for loop then copies the characters from the old array into the new one, leaving
the following configuration:

The last statement in the body of expandCapacity is

delete[] oldArray;

i

cstk.array

10

cstk.capacity

cstk.count

A B C D

E F G H

I J

20

10

this

chK

this

oldArray

i

i

cstk.array

10

cstk.capacity

cstk.count

A B C D

E F G H

I J

A B C D

E F G H

I J 20

10

this

chK

this

oldArray

i10

550 Dynamic Memory Management

This statement frees the old array storage so that the memory looks like this after
expandCapacity returns:

Now that there is room in the array, the push method can operate just as it did
before. The state after push returns looks like this:

The main program then continues through the rest of the alphabet, doubling the
capacity once more when the count hits 20.

The only other noteworthy event in this example occurs when the function main
returns. At that point, the variable cstk goes out of scope, which triggers a call to
the ~CharStack destructor. The destructor ensures that the dynamic array storage
allocated during the lifetime of the character stack is returned to the heap.

 12.4 Copying objects
As it appears in Figures 12-4 and 12-5, the implementation of the CharStack class
is not quite finished. As long as you pass every CharStack object by reference and
never assign one CharStack value to another, everything will work just fine. If,
however, your code ends up passing a CharStack by value or tries to make a copy
of an existing CharStack, your program is likely to crash in some unpredictable
way.

i

cstk.array

10

cstk.capacity

cstk.count

20

10

this

chK

A B C D

E F G H

I J

i

cstk.array

10

cstk.capacity

cstk.count

20

11

A B C D

E F G H

I J K

 12.4 Copying objects 551

The distinction between shallow and deep copying
The crux of the problem in the current implementation of the CharStack class is
that C++ interprets assignment of one object to another in a way that often makes
sense, but which usually fails miserably if that object contains any dynamically
allocated memory. By default, C++ assigns one object to another by copying the
value of each of its instance variables. If those values are the usual kinds of data
values—numbers, characters, and the like—the copy operation does exactly what
you want. If the value is a pointer, however, copying the pointer does not actually
copy the underlying values. C++’s default behavior is called shallow copying
because it doesn’t extend beneath the surface. When you copy an object that
contains dynamic memory, you usually want to copy the underlying data as well.
That process is called deep copying.

To get more of a sense of the importance of this problem, think about what
happens if you call the following code:

CharStack s1, s2;
s1.push('A');
s2 = s1;

What you want this program to do is initialize s2 to be a copy of s1, which means
that both stacks would contain the character A at the top of an independent stack.
That is exactly what would happen if C++ used deep copying to initialize s2. If you
allow C++ to use its default technique of shallow copying, however, executing these
statements will almost certainly cause problems at some point in the program.

The easiest way to see how this code works is to draw a heap-stack diagram
showing the state of memory at the end of this sequence of statements. That
diagram looks like this:

The shallow copy has copied the count and capacity fields correctly but leaves
the array field in each structure pointing to the same dynamic array. If you were
to pop the top character off stack s2 and then push some other character, that

s2.array

s1.array

s1.capacity

s1.count

10

1

s2.capacity

s2.count

10

1

A

552 Dynamic Memory Management

operation would change the contents of s1 as well, which is not what you want if
the stacks are supposed to be independent copies.

Worse still, the program is likely to crash when the function declaring the
variables s1 and s2 returns. When that happens, both variables go out of scope,
which in each case triggers a call to the CharStack destructor. The first destructor
call will free the array, and the second one will try to do the same thing. Freeing the
same memory twice is illegal, but there is no guarantee that C++ will detect and
report the error. On some machines, the second call to free will compromise the
internal structure of the heap, which will at some point cause the program to fail.

If you want to copy a CharStack so that the copy is independent of the original,
you need to make a deep copy, which looks like this:

Writing the code to make a deep copy isn’t hard. The interesting challenge is
getting C++ to invoke that code when you assign one CharStack to another.

Assignment and copy constructors
In C++, you can change the default shallow-copying behavior by redefining two
methods. One of those methods is the assignment operator. The second is a special
form of the constructor called the copy constructor, which initializes an object from
an existing one. In C++, the assignment operator is called only when you assign a
value to an object that already exists. Whenever an object is being initialized for the
first time, C++ invokes the copy constructor.

By default, the assignment operator and the copy constructor create a shallow
copy as described in the preceding section. If you want your classes to support deep
copying, all you have to do is supply new definitions for these two methods that
copy the data in the heap as well.

In C++, the definitions required to override the copy constructor and the
assignment operator are full of details that are easy to get wrong if you try to write
these definitions from scratch. In most cases, the best approach is to copy these

s2.array

s1.array

s1.capacity

s1.count

10

1

s2.capacity

s2.count

10

1

A

A

 12.4 Copying objects 553

methods from a pattern you know works and then make whatever changes are
necessary to support your class. As an example, the definitions that must be added
to the charstackpriv.h file to implement deep copying appear in Figure 12-7.

F I G U R E 1 2 - 7 Definitions necessary to support deep copying for the CharStack class

public:

/*
 * Copy constructor: CharStack
 * ---------------------------
 * Initializes the current object to be a deep copy of the argument.
 */

 CharStack(const CharStack & cstk) {
 copyInternalData(cstk);
 }

/*
 * Operator: =
 * Usage: s1 = s2;
 * ---------------
 * Assigns s2 to s1 so that the two stacks function as independent copies.
 * For the CharStack class, this kind of assignment requires making a
 * deep copy that includes the dynamic array.
 */

 CharStack & operator=(const CharStack & rhs) {
 if (this != &rhs) {
 delete[] array;
 copyInternalData(rhs);
 }
 return *this;
 }

private:

/*
 * Private method: copyInternalData
 * --------------------------------
 * Copies all the data from the CharStack passed as an argument into
 * the current object, including the characters in the dynamic array.
 */

 void copyInternalData(const CharStack & cstk) {
 array = new char[cstk.count];
 for (int i = 0; i < cstk.count; i++) {
 array[i] = cstk.array[i];
 }
 count = cstk.count;
 capacity = cstk.capacity;
 }

554 Dynamic Memory Management

The code in Figure 12-7 requires some additional explanation. One of the first
things you’re likely to notice is that every parameter declaration includes the const
keyword, as illustrated by the copyInternalData method, which is responsible
for making the deep copy of the CharStack object:

void copyInternalData(const CharStack & cstk) {
 array = new char[cstk.count];
 for (int i = 0; i < cstk.count; i++) {
 array[i] = cstk.array[i];
 }
 count = cstk.count;
 capacity = cstk.capacity;
}

In this context, the const keyword tells the compiler that the function will not
change the value of the cstk argument even though it is passed by reference. This
style of parameter transmission is called constant call by reference.

At first glance, the idea of declaring a constant reference parameter might seem
silly. Up to this point in the text, the primary reason for using call by reference is
that doing so makes it possible to change the calling argument. Call by reference,
however, has other advantages. Particularly if you are working with large data
structures, using call by reference can make programs more efficient by removing
the need to copy those values when you pass them as parameters. Marking those
parameters with the keyword const makes it possible to gain that efficiency and at
the same time let the compiler know that the calling argument will not be changed.

In the case of the copyInternalData method, the need to avoid making a copy
is even more compelling. The whole reason for writing the code in Figure 12-7 is
that the default implementation that C++ uses to copy a CharStack object is
incorrect. It is therefore essential to prevent C++ from making that shallow copy or,
worse yet, making an infinite chain of recursive calls to the copy constructor. In
this context, using call by reference is essential.

The code for the copy constructor itself simply calls the copyInternalData
method to copy the internal data from the original CharStack into the current one.
The more interesting method is the overloaded assignment operator:

CharStack & operator=(const CharStack & rhs) {
 if (this != &rhs) {
 delete[] array;
 copyInternalData(rhs);
 }
 return *this;
}

 12.4 Copying objects 555

This code for the assignment operator includes a couple of features that are

worth further comment. The first is the if statement, which checks to see if the left
and right sides of the assignment are in fact the same value. If you assign an object
to itself, making a copy is obviously unnecessary. If you left out the if statement,
however, assigning a CharStack to itself would end up trying to copy data from an
array that had already been freed. The second possible source of confusion is the
return statement. In C++, the assignment operator is defined so that it returns the
value on its left hand side. The keyword this is a pointer to that object, so the
expression *this represents the object itself.

If the process for defining complete implementations of these methods gets too
confusing, you do have another option. The much simpler pattern in Figure 12-8
defines private versions of the copy constructor and the assignment operator. These
definitions override the defaults that C++ provides but makes those methods
unavailable to clients of the class. The net effect is to prevent clients from copying
a CharStack under any circumstances. The standard C++ libraries, for example,
use this approach to make it illegal to copy streams.

Understanding these intricacies is not as important as knowing how to integrate
these patterns into the design of your own classes. If you allocate dynamic memory
as part of a class, you have a responsibility to redefine the copy constructor and the
assignment operator. Unless you tell it otherwise by defining overloaded versions
of the copy constructor and the assignment operator, the compiler will automatically
define versions of these methods that do the wrong thing. It therefore makes sense
to pick one of these strategies—either implementing deep copying or forbidding
copying altogether—for each class you design. You can then use the code in
Figure 12-7 or 12-8 as a model, making whatever substitutions are necessary for
your own class.

F I G U R E 1 2 - 8 Definitions necessary to make copying illegal

private:

/*
 * Implementation note: copy constructor and assignment operator
 * ---
 * The following lines make it illegal to copy a CharStack by defining
 * private versions of the copy constructor and assignment operator.
 */

 CharStack(const CharStack & cstk) { }
 CharStack & operator=(const CharStack & rhs) { return *this; }

556 Dynamic Memory Management

 Summary
One of the goals of this book is to encourage you to use high-level structures that
allow you to think about data in an abstract way that is independent of the
underlying representation. Abstract data types and classes help make it possible to
maintain this holistic viewpoint. At the same time, using C++ effectively requires
that you have a mental model of how data structures are represented in memory. In
this chapter, you have had a chance to see how those structures are stored and to get
a sense of what goes on “under the hood” as you write your programs.

The important points introduced in this chapter include:

• C++ allocates memory from the heap using the new operator, which takes a type

name and returns a pointer to a block of memory large enough to hold a value of
that type.

• Arrays can be allocated dynamically on the heap by giving the new operator the
desired size in square brackets after the type name.

• Unlike many modern languages, C++ makes the programmer responsible for
memory management. The most significant challenge that programmers face is
to free any heap memory that the program allocates. At the lowest level, C++
uses the delete operator to free individual heap values and the delete[]
operator to free dynamically allocated arrays.

• The task of memory management in C++ is simplified considerably by the
existence of destructors, which are called automatically when the stack frame
containing that object disappears at the end of a method call. The primary role
of the destructor is to free any heap memory allocated by the object.

• The name of the destructor is the class name preceded by the tilde character ~.
Each class can have only one destructor, which never takes any arguments.

• As the CharStack class presented in this chapter illustrates, it is possible to use
arrays to implement abstract data types that expand their capacity dynamically.

• Heap-stack diagrams are useful in understanding how C++ allocates memory.
Each function or method call creates a new stack frame with space for the local
variables declared by that function. Memory is allocated on the heap only when
the program executes the new operator. That heap memory is reclaimed only
when the program executes the delete operator. Stack memory is reclaimed
automatically when a function returns.

• When you assign one object to another or pass an object by value, the default
rule in C++ is to make a shallow copy in which the instance variables are copied
but not any structures to which those instance variables point. When objects
contain dynamically allocated memory, it is usually necessary to make a
deep copy in which the targets of the pointers are copied as well.

 Review questions 557

• You can change the way that C++ copies objects of a specific class by overriding
the assignment operator and the copy constructor. The rules for defining these
methods correctly are sufficiently subtle that you should copy the basic structure
from an existing class and then modify the code as necessary.

• You can prohibit copying altogether by defining the assignment operator and the
copy constructor in the private section of the class.

 Review questions
1. What are the three allocation mechanisms described in this chapter?

2. What is the heap?

3. Why does it make sense to start the heap and the stack at opposite ends of

memory and have them grow toward each other?

4. What declaration would you use to create each and initialize each of the

following variables:

a) A pointer bp that points to a Boolean value

b) A pointer named pp that points to a Point with the coordinates (3, 4)

c) A dynamic array names capable of holding 100 C++ strings?

5. What statements would you use to free the storage allocated in the preceding

exercise?

6. What is a memory leak?

7. True or false: C++ uses garbage collection to manage memory.

8. What is a destructor? What is its most important role?

9. If you create a class named IntVector, how would you write the prototype

for its destructor?

10. What does it mean for a variable to go out of scope?

11. True or false: Destructors can be invoked even on temporary values that are

never assigned to local variables.

12. What reasons does the chapter offer for using arrays of characters as the

underlying representation for CharStack instead of Vector<char>?

558 Dynamic Memory Management

13. How is it possible for the CharStack class to expand its capacity dynamically
even though it uses arrays whose size is fixed at the time they are allocated?

14. Describe the purpose of each of the instance variables in the CharStack class.

15. Explain each of the statements in the implementation of expandCapacity in

Figure 12-5.

16. Suppose that, instead of doubling the capacity of the array, expandCapacity

simply added one more element to the array. Would the push method still
have an average computational complexity of O(1)? Why or why not?

17. The argument that the average-case complexity of the push operation is O(1)

depends on the claim that the sum of the series

can never exceed 2 no matter how many terms you include. In your own
words, try to explain why. (If you have trouble, you might try looking up
Zeno’s Paradox on the web and then giving it another go.)

18. When is new memory added to the stack side of a heap-stack diagram? When

does that memory get reclaimed?

19. When is new memory added to the heap side of a heap-stack diagram and

when is it reclaimed?

20. What reasons does the chapter give for including the overhead word in

heap-stack diagrams?

21. How do you represent a reference parameter in a heap-stack diagram?

22. What additional local variable gets added to a stack frame resulting from a

method call?

23. What is the difference between a shallow copy and a deep copy? Which of

these two strategies does C++ use by default?

24. What methods must you override to change how C++ copies an object?

25. What problems are likely to occur if you let C++ use its default copying model

on an object that contains pointers to the heap?

1 +
1

2
 +

1

4
 +

1

8
 + . . .

 Exercises
1. Write a function createIndexArray(n) that allocates a dynamic array of n

integers in which each integer is initialized to its own index. For example,
calling createIndexArray(8) should return a pointer to the following array
on the heap:

2. As a warm-up exercise before you see the complete definition of the Vector

class in Chapter 14, design and implement a somewhat simpler class called
IntArray that implements the following methods:

• A constructor IntArray(n) that creates an IntArray object with n
elements, all of which are initialized to 0.

• A destructor that frees any heap storage allocated by the IntArray.

• A method size() that returns the number of elements in the IntArray.

• A method get(k) that returns the element at index position k. If k is not
within the bounds of the array, the get method should call error with a
message explaining the problem.

• A method put(k, value) that assigns value to the element at index
position k. As with get, the put method should call error if the index k
is out of bounds.

Your solution should be divided into the files intarray.h, intarray.cpp,
and intarraypriv.h in a manner similar to the CharStack example from
the chapter. In this first version of the code, you should add the necessary
definitions to the intarraypriv.h file to prevent clients from copying
IntArray objects.

By keeping track of the array size and checking that index values are inside
the array bounds, the IntArray class already fixes two of the most serious
shortcomings of the built-in array type.

3. You can make the IntArray class from the preceding exercise look a little

more like traditional arrays by overriding the bracket-selection operator, which
has the following prototype:

int & operator[](int k);

Like the get and put methods, your implementation of operator[] should
check to make sure that the index k is valid. If it is, the operator[] method

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

560 Dynamic Memory Management

should return the appropriate element in the internal array by reference so that
clients can assign a new value to a selection expression.

4. Implement deep copying for the IntArray class developed in the two

preceding exercises.

5. Implement a simple String class that implements the following methods

using a dynamic array of characters as the underlying representation:

• A constructor String(str) that creates one of your String objects from
a C++ string.

• A toString() method that converts one of your String objects into a
C++ string.

• A destructor that frees any heap storage allocated by the String.

• A method length() that returns the number of characters in the String.

• A method substr(start, n) that returns an entirely new string that
contains all the characters from the original string beginning with the index
position start and continuing for n characters or through the end of the
string, whichever comes first. The parameter n should be optional. If it is
missing, the substring should always extend through the end of the original
string.

• A redefinition of the operator + that concatenates two String objects.

• A redefinition of the operator << so that String objects can be written to
output streams.

• A redefinition of the bracket-selection operator described in exercise 3 so
that invoking str[i] returns the character at index position i in str as an
lvalue. As an improvement over the string class in the C++ libraries,
your implementation of String should call error if the string index is
out of bounds.

• A redefinition of the assignment operator and the copy constructor for the
String class so that any copying operations make a deep copy that creates
a new character array.

Except for the first two methods in this list, your functions should work only
with the character array and should make no calls to any of the methods in the
C++ string class.

6. Suppose that you have a file containing the code in Figure 12-9. Draw a

heap-stack diagram showing the contents of memory just before the function
initPair returns.

 Exercises 561

F I G U R E 1 2 - 9 Code for the exercise in drawing heap-stack diagrams

/*
 * File: HeapStackExercise.cpp
 * --------------------------
 * This program doesn't do anything useful but serves as an exercise
 * for drawing heap-stack diagrams.
 */

struct Domino {
 int leftDots;
 int rightDots;
};

void initPair(Domino list[], Domino & dom);

int main() {
 Domino onetwo;
 onetwo.leftDots = 1;
 onetwo.rightDots = 2;
 Domino *array = new Domino[2];
 initPair(array, onetwo);
 return 0;
}

void initPair(Domino list[], Domino & dom) {
 list[0] = dom;
 list[1].leftDots = dom.rightDots;
 list[1].rightDots = dom.leftDots;
 dom = list[1];
}

Chapter 13
Efficiency and Representation

Time granted does not necessarily coincide with time that can be
most fully used.

— Tillie Olsen, Silences, 1965

564 Efficiency and Representation

This chapter brings together two ideas that might at first seem to have little to do
with each other: the design of data structures and the concept of algorithmic
efficiency. Up to now, efficiency has been focused on the algorithms. If you
choose a more efficient algorithm, you can reduce the running time of a program
substantially, particularly if the new algorithm is in a different complexity class. In
some cases, however, choosing a different underlying representation for a class can
have an equally dramatic effect. To illustrate this idea, this chapter looks at a
specific class that can be represented in several different ways and contrasts the
efficiency of those representations.

 13.1 The concept of an editor buffer
Whenever you send a text message or edit a source file for one of your programs,
you are using an editor, which is a software application that allows you to create
and make changes in a file composed of characters. Internally, an editor maintains a
sequence of characters, which is usually called a buffer. The editor application
allows you to perform various operations on the contents of the buffer, many of
which are limited to your current location in the buffer. This location is marked on
the screen by a symbol called a cursor, which typically appears as a vertical line
between two characters. Editors differ in what operations they support, but all
editors are likely to support the following operations:

• Moving the cursor to the point in the text at which editing needs to take place.

• Typing in new text, which is then inserted at the current cursor position.

• Deleting characters using a DELETE or BACKSPACE key.

Modern editors usually provide a highly sophisticated editing environment,
complete with such fancy features as using a mouse to position the cursor or
commands that search for a particular text string. Moreover, they tend to show the
results of all editing operations precisely as they are performed. Editors that display
the current contents of the buffer throughout the editing process are called wysiwyg
(pronounced “wizzy-wig”) editors, which is an acronym for “what you see is what
you get.” Such editors are easy to use, but all those advanced features make it
harder to see how an editor works on the inside.

In the early days of computing, editors were much simpler. Lacking access to a
mouse or a sophisticated graphics display, editors were designed to respond to
commands entered on the keyboard. For example, with a typical keyboard-based
editor, you insert new text by typing the command letter I, followed by a sequence
of characters. Additional commands perform other editing functions, such as
moving the cursor around in the buffer. By entering the right combinations of these
commands, you can make any desired set of changes.

 13.1 The concept of an editor buffer 565

To make the idea of the editor buffer as concrete as possible, suppose that your
goal is to build an extremely simple editor that can execute the six commands
shown in Table 13-1. Except for the I command, which also takes the characters to
be inserted, every editor command consists of a single letter read in on a line.

The following sample run illustrates the operation of the editor, along with
annotations that describe each action. In this session, the user first inserts the
characters axc and then corrects the contents of the buffer to abc.

The editor program displays the state of the buffer after each command. As you can
see in the sample run, the program marks the position of the cursor with a caret
symbol (^) on the next line. That behavior is not what you would expect in a real
editor, but will make it easy to see exactly what is going on. And once you’ve
debugged your editor buffer abstraction, you could change the main program to
embed it in a modern wysiwyg editor.

T A B L E 1 3 - 1 Commands available in a simple command-based editor

F Moves the editing cursor forward one character position.

B Moves the editing cursor backward one character position.

J Jumps to the beginning of the buffer.

E Moves the cursor to the end of the buffer.

Ixxx Inserts the characters xxx at the current cursor position.

D Deletes the character just after the current cursor position.

Q Quit the editor program.

566 Efficiency and Representation

 13.2 Defining the buffer abstraction
In creating an editor that can execute the commands from Table 13-1, your main
task is to design a data structure that maintains the state of the editor buffer. This
data structure must keep track of what characters are in the buffer and where the
cursor is. It must also be able to update the buffer contents whenever an editing
operation is performed. In other words, what you want to do is define a new
abstraction that represents the editor buffer.

Even at this early stage, you probably have some ideas about what internal data
structures might be appropriate. Because the buffer is clearly an ordered sequence
of characters, one seemingly obvious choice is to use a string or a
Vector<char> as the underlying representation. As long as you have these classes
available, either would be an appropriate choice. The goal of this chapter, however,
is to understand how the choice of representation affects the efficiency of
applications. That point is difficult to make if you use higher-level structures like
string and Vector because the inner workings of those classes are not visible to
clients. If you choose instead to limit your implementation to the built-in data
structures, every operation becomes visible, and it is therefore much easier to
determine the relative efficiency of various competing designs. That logic suggests
using a character array as the underlying representation, because array operations
have no hidden costs.

Although using an array to represent the buffer is certainly a reasonable
approach to the problem, there are other representations that offer interesting
possibilities. The fundamental lesson in this chapter—and indeed in much of this
book—is that you should not be so quick to choose a particular representation. In
the case of the editor buffer, arrays are only one of several options, each of which
has certain advantages and disadvantages. After evaluating the tradeoffs, you might
decide to use one strategy in a certain set of circumstances and a different strategy
in another. At the same time, it is important to note that, no matter what
representation you choose, the editor must always be able to perform the same set of
commands. Thus, the external behavior of an editor buffer must remain the same,
even if the underlying representation changes.

In order to make your interface as flexible as possible, it makes sense to define a
new class to represent an editor buffer. The principal advantage of using a class in
this context is that doing so allows you to separate the specification of behavior and
representation. Because you understand the operations to which it must respond,
you already know how an editor buffer behaves. In the buffer.h interface, you
define the EditorBuffer class whose public interface provides the required set of
operations, while the data representation is kept private. Clients work entirely with
EditorBuffer objects through their public interface without any access to the

 13.2 Defining the buffer abstraction 567

underlying private data representation. That fact, in turn, leaves you free to change
that representation without requiring your clients to make any changes in their
programs.

The public interface of the EditorBuffer class
The public interface consists of prototypes for the methods that implement the
primitive operations on an editor buffer. What operations do you need to define? If
nothing else, you need methods for each of the six editor commands. As with any
class, however, you will also need to define a constructor that initializes a new
buffer. Given the class name of EditorBuffer, the prototype for the constructor
would be

EditorBuffer();

The class should also provide the destructor

~EditorBuffer();

which relinquishes its storage.

Once these operators are out of the way, the next step is to define the prototypes
for the editing commands. To move the cursor forward, for example, you could
define a method like

void moveCursorForward();

As you design the interface, it is important to keep in mind that you are not
concerned with how such an operation is performed or with how the buffer and its
cursor are represented. The moveCursorForward method is defined entirely in
terms of its abstract effect.

The last method you need in order to create a simple editor application is one
that displays the contents of the buffer, including the position of the cursor. For the
purposes of this example, it makes sense to export this operation as a method
because each of the different representations requires slightly different code to
display the buffer contents. The final entry in the buffer.h interface is therefore

void showContents();

The public section of the EditorBuffer class interface is shown in
Figure 13-1. Note that the private section is included from a file called bufpriv.h
so that its contents don’t clutter up the interface and cause confusion for the client.

568 Efficiency and Representation

buffer.h, p1
F I G U R E 1 2 - 1 Interface for the editor buffer abstraction

/*
 * File: buffer.h
 * --------------
 * This file defines the interface for the EditorBuffer class.
 */

#ifndef _buffer_h
#define _buffer_h

/*
 * Class: EditorBuffer
 * -------------------
 * This class represents an editor buffer, which maintains an ordered
 * sequence of characters along with an insertion point called the cursor.
 */

class EditorBuffer {

public:

/*
 * Constructor: EditorBuffer
 * Usage: EditorBuffer buffer;
 * ---------------------------
 * Creates an empty editor buffer.
 */

 EditorBuffer();

/*
 * Destructor: ~EditorBuffer
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this buffer.
 */

 ~EditorBuffer();

/*
 * Methods: moveCursorForward, moveCursorBackward
 * Usage: buffer.moveCursorForward();
 * buffer.moveCursorBackward();
 * -----------------------------------
 * These functions move the cursor forward or backward one character,
 * respectively. If the command would shift the cursor beyond either
 * end of the buffer, this method has no effect.
 */

 void moveCursorForward();
 void moveCursorBackward();

 13.2 Defining the buffer abstraction 569

buffer.h, p3
F I G U R E 1 3 - 1 Interface for the editor buffer abstraction (continued)

/*
 * Methods: moveCursorToStart, moveCursorToEnd
 * Usage: buffer.moveCursorToStart();
 * buffer.moveCursorToEnd();
 * --------------------------------
 * These functions move the cursor to the start or the end of this buffer.
 */

 void moveCursorToStart();
 void moveCursorToEnd();

/*
 * Method: insertCharacter
 * Usage: buffer.insertCharacter(ch);
 * ----------------------------------
 * Inserts the single character ch into this buffer at the cursor
 * position. The cursor is then advanced to follow the inserted
 * character, thereby allowing for consecutive insertions.
 */

 void insertCharacter(char ch);

/*
 * Method: deleteCharacter
 * Usage: buffer.deleteCharacter();
 * --------------------------------
 * Deletes the character immediately after the cursor. If the cursor is
 * at the end of the buffer, the method has no effect.
 */

 void deleteCharacter();

/*
 * Method: showContents
 * Usage: buffer.showContents();
 * -----------------------------
 * Displays the buffer contents on the console stream and notes the
 * position of the cursor.
 */

 void showContents();

#include "bufferpriv.h"

};

#endif

570 Efficiency and Representation

Coding the editor application
Once you have defined the public interface, you are free to go back and write the
editor application, even though you have not yet implemented the buffer class or
settled on an appropriate internal representation. When you’re writing the editor
application, the only important consideration is what each of the operations does.
At this level, the implementation details are unimportant.

As long as you limit yourself to the six basic commands in Table 13-1, writing
the editor program is relatively simple. All the program has to do is construct a new
EditorBuffer object and then enter a loop in which it reads a series of editor
commands. Whenever the user enters a command, the program simply looks at the
first character in the command name and performs the requested operation by
calling the appropriate method from the buffer interface. The code for the editor
appears in Figure 13-2.

 13.3 An array-based implementation
As noted earlier in the section on “Defining the buffer abstraction,” one of the
possible representations for the buffer is an array of characters. Although this
design is not the only option for representing the editor buffer, it is nonetheless a
useful starting point. After all, the characters in the buffer form an ordered,
homogeneous sequence, which is the sort of data for which one traditionally uses
arrays. That array, however, must be allocated dynamically so that it can expand as
the number of characters in the buffer grows.

Defining the private data structure
In many respects, the underlying representation for the array-based editor buffer
looks like the one used for the CharStack class from Chapter 11. The CharStack
class defined three instance variables: a pointer to the dynamic array containing the
elements, the capacity of that array, and the number of characters. For the
array-based buffer, you need the same instance variables, although it probably
makes sense to change the name of the count variable to length simply because it
is conventional to talk about the length of a buffer. In addition to those variables,
the private data for the EditorBuffer class must also contain an instance variable
indicating the current location of the cursor. Because the cursor is a character
position, you can represent it by including another instance variable called cursor
in the private section of the EditorBuffer class. The cursor index indicates the
character position at which any new characters will be inserted, so that a cursor
value of 0 indicates the beginning of the buffer. Similarly, if the value of cursor is
equal to the value of length, the cursor is at the end of the buffer.

 13.3 An array-based implementation 571

SimpleTextEditor.cpp
F I G U R E 1 3 - 2 Simple text editor to illustrate the EditorBuffer class

/*
 * File: SimpleTextEditor.cpp
 * --------------------------
 * This program implements a simple command-driven text editor, which is
 * used to test the EditorBuffer class.
 */

#include <iostream>
#include <cctype>
#include "buffer.h"
#include "simpio.h"
using namespace std;

/* Function prototypes */

void executeCommand(EditorBuffer & buffer, string line);

/* Main program */

int main() {
 EditorBuffer buffer;
 while (true) {
 string cmd = getLine("*");
 if (cmd != "") executeCommand(buffer, cmd);
 buffer.showContents();
 }
 return 0;
}

/*
 * Function: executeCommand
 * Usage: executeCommand(buffer, line);
 * ------------------------------------
 * Executes the command specified by line on the editor buffer.
 */

void executeCommand(EditorBuffer & buffer, string line) {
 switch (toupper(line[0])) {
 case 'I': for (int i = 1; i < line.length(); i++) {
 buffer.insertCharacter(line[i]);
 }
 break;
 case 'D': buffer.deleteCharacter(); break;
 case 'F': buffer.moveCursorForward(); break;
 case 'B': buffer.moveCursorBackward(); break;
 case 'J': buffer.moveCursorToStart(); break;
 case 'E': buffer.moveCursorToEnd(); break;
 case 'Q': exit(0);
 default: cout << "Illegal command" << endl; break;
 }
}

572 Efficiency and Representation

Figure 13-3 shows the bufferpriv.h file for the array-based implementation.
Given this design, a buffer containing

would look like this:

H E L L O
^

array

capacity 10

length 5

cursor 3

H E L L O

0 1 2 3 4 5 6 7 8 9

F I G U R E 1 3 - 3 Contents of bufferpriv.h for array-based editor

/*
 * File: bufferpriv.h
 * ------------------
 * This file contains the private section of the EditorBuffer class for
 * the array-based editor.
 */

/*
 * Implementation notes: Buffer data structure
 * ---
 * In the array-based implementation of the buffer, the characters in the
 * buffer are stored in a dynamic array. In addition to the array, the
 * structure keeps track of the capacity of the buffer, the length of the
 * buffer, and the cursor position. The cursor position is the index of
 * the character that follows where the cursor would appear on the screen.
 */

private:

/* Instance variables */

 char *array; /* Dynamic array of characters */
 int capacity; /* Allocated size of that array */
 int length; /* Number of character in buffer */
 int cursor; /* Index of character after cursor */

/* Make it illegal to copy editor buffers */

 EditorBuffer(const EditorBuffer & value) { }
 const EditorBuffer & operator=(const EditorBuffer & rhs) { return *this; }

/* Private method prototype */

 void expandCapacity();

 13.3 An array-based implementation 573

Implementing the buffer operations
Given this design, most of the editor operations are very easy to implement. Each
of the four operations that move the cursor can be implemented by assigning a new
value to the contents of the cursor field. Moving to the beginning of the buffer,
for example, requires nothing more than assigning the value 0 to cursor; moving it
to the end is simply a matter of copying the length field into the cursor field.
You can see the code for these simple methods in the complete implementation of
the EditorBuffer class shown in Figure 13-4.

The only operations in Figure 13-4 that require any additional discussion are the
constructor, the destructor, and the insertCharacter and deleteCharacter
methods. Because these methods might seem a little tricky, particularly to someone
coming upon these implementations for the first time, it is worth including
comments in the code that document their operation. The code in Figure 13-4, for
example, offers additional documentation for these particular methods in comments
labeled “Implementation notes”; the simple methods that implement cursor motion
are not documented individually.

The constructor has the responsibility for initializing the instance variables that
represent an empty buffer, so the comments for the constructor are a good place to
describe those instance variables and what they represent. The destructor is charged
with freeing any dynamically allocated storage that was acquired by an object
during its lifetime. For the array-based implementation of the EditorBuffer, the
only dynamically allocated memory is the array used to hold the text. Thus, the
code for the destructor consists of the line

delete[] array;

which deletes the dynamic array storage assigned to array.

The insertCharacter and deleteCharacter methods are interesting
because each of them requires shifting characters in the array, either to make room
for a character you want to insert or to close up space left by a deleted character.
Suppose, for example, that you want to insert the character X at the cursor position
in the buffer containing

To do so in the array representation of the buffer, you first need to make sure that
there is room in the array. If the length field is equal to the capacity field, there
is no more room in the currently allocated array to accommodate the new character.
In that case, it is necessary to expand the array capacity in precisely the same way
that the CharStack implementation does in Chapter 12.

H E L L O
^

574 Efficiency and Representation

ArrayBuffer.cpp, p1
F I G U R E 1 3 - 4 Array-based implementation of the editor buffer

/*
 * File: ArrayBuffer.cpp
 * ---------------------
 * This file implements the buffer.h interface using an array representation.
 */

#include <iostream>
#include "buffer.h"
using namespace std;

/* Constants */

const int INITIAL_CAPACITY = 10;

/*
 * Implementation notes: Constructor and destructor
 * --
 * The constructor initializes the private fields. The destructor
 * frees the heap-allocated memory, which is the dynamic array.
 */

EditorBuffer::EditorBuffer() {
 capacity = INITIAL_CAPACITY;
 array = new char[capacity];
 length = 0;
 cursor = 0;
}

EditorBuffer::~EditorBuffer() {
 delete[] array;
}

/*
 * Implementation notes: moveCursor methods
 * --
 * The four moveCursor methods simply adjust the value of cursor.
 */

void EditorBuffer::moveCursorForward() {
 if (cursor < length) cursor++;
}

void EditorBuffer::moveCursorBackward() {
 if (cursor > 0) cursor--;
}

void EditorBuffer::moveCursorToStart() {
 cursor = 0;
}

void EditorBuffer::moveCursorToEnd() {
 cursor = length;
}

 13.3 An array-based implementation 575

ArrayEditor.cpp
F I G U R E 1 3 - 4 Array-based implementation of the editor buffer (continued)

/*
 * Implementation notes: insertCharacter and deleteCharacter
 * ---
 * Each of the functions that inserts or deletes characters must shift
 * all subsequent characters in the array, either to make room for new
 * insertions or to close up space left by deletions.
 */

void EditorBuffer::insertCharacter(char ch) {
 if (length == capacity) expandCapacity();
 for (int i = length; i > cursor; i--) {
 array[i] = array[i - 1];
 }
 array[cursor] = ch;
 length++;
 cursor++;
}

void EditorBuffer::deleteCharacter() {
 if (cursor < length) {
 for (int i = cursor+1; i < length; i++) {
 array[i - 1] = array[i];
 }
 length--;
 }
}

/*
 * Implementation notes: showContents
 * ----------------------------------
 * This method prints the contents of the buffer with one space between
 * each character to leave room for a caret on the next line to indicate
 * the position of the cursor.
 */

void EditorBuffer::showContents() {
 for (int i = 0; i < length; i++) {
 cout << " " << array[i];
 }
 cout << endl;
 cout << string(2 * cursor, ' ') << "^" << endl;
}

576 Efficiency and Representation

The extra space in the array, however, is entirely at the end. To insert a
character in the middle, you need to make room for that character at the current
position of the cursor. The only way to get that space is to shift the remaining
characters one position to the right, leaving the buffer structure in the following
state:

The resulting gap in the array gives you the space you need to insert the X, after
which the cursor advances so that it follows the newly inserted character, leaving
the following configuration:

The deleteCharacter operation is similar in that it requires a loop to close the
gap left by the deleted character.

Computational complexity of the array-based editor
In order to establish a baseline for comparison with other representations, it is
important to determine the computational complexity of the array-based
implementation of the editor. As usual, the goal of the complexity analysis is to
understand how the execution time required for the editing operations varies
qualitatively as a function of the problem size. In the editor example, the number of
characters in the buffer is the best measure of problem size. For the editor buffer,
you therefore need to determine how the size of the buffer affects the running time
of each of the editing operations.

For the array-based implementation, the easiest operations to understand are the
ones that move the cursor. As an example, the method moveCursorForward has
the following implementation:

void EditorBuffer::moveCursorForward() {
 if (cursor < length) cursor++;

}

array

capacity 10

length 6

cursor 4

H E L L O

0 1 2 3 4 5 6 7 8 9

array

capacity 10

length 6

cursor 4

H E L X L O

0 1 2 3 4 5 6 7 8 9

 13.3 An array-based implementation 577

Even though the method checks the length of the buffer, it doesn’t take long to
realize that the execution time of the method is independent of the buffer length.
This method executes precisely the same operations no matter how long the buffer
is: there is one test and, in almost all cases, one increment operation. Because the
execution time is independent of N, the moveCursorForward operation runs in
O (1) time. The same analysis holds for the other operations that move the cursor,
none of which involve any operations that depend on the length of the buffer.

But what about insertCharacter? In the array-based implementation of the
EditorBuffer class, the insertCharacter method contains the following for
loop:

for (int i = length; i > cursor; i--) {
 array[i] = array[i - 1];
}

If you insert a character at the end of the buffer, this method runs pretty quickly,
because there is no need to shift characters to make room for the new one. On the
other hand, if you insert a character at the beginning of the buffer, every character in
the buffer must be shifted one position rightward in the array. Thus, in the worst
case, the running time for insertCharacter is proportional to the number of
characters in the buffer and is therefore O (N). Because the deleteCharacter
operation has a similar structure, its complexity is also O (N). The computational
complexities for each of the editor operations appear in Table 13-2.

The fact that the last two operations in the table require linear time has important
performance implications for the editor program. If an editor uses arrays to
represent its internal buffer, it will start to run more slowly as the number of
characters in the buffer becomes large. Because this problem seems serious, it
makes sense to explore other representational possibilities.

T A B L E 1 3 - 2 Computational complexity of the array-based buffer

Operation

deleteCharacter

insertCharacter

moveCursorToEnd

moveCursorToStart

moveCursorBackward

moveCursorForward

Array

O(N)

O(N)

O(1)

O(1)

O(1)

O(1)

578 Efficiency and Representation

 13.4 A stack-based implementation
The problem with the array implementation of the editor buffer is that insertions and
deletions run slowly when they occur near the beginning of the buffer. When those
same operations are applied at the end of the buffer, they run relatively quickly
because there is no need to shift the characters in the internal array. This property
suggests an approach to making things faster: force all insertions and deletions to
occur at the end of the buffer. While this approach is completely impractical from
the user’s point of view, it does contain the seed of a workable idea.

The key insight necessary to make insertions and deletions faster is that you can
divide the buffer at the cursor boundary and store the characters before and after the
cursor in separate structures. Because all changes to the buffer occur at the cursor
position, each of those structures behaves like a stack and can be represented by the
CharStack class introduced in Chapter 12. The characters that precede the cursor
are pushed on one stack so that the beginning of the buffer is at the base and the
character just before the pointer is at the top. The characters after the cursor are
stored in the opposite direction, with the end of the buffer at the base of the stack
and the character just after the pointer at the top.

The best way to illustrate this structure is with a diagram. Suppose that the
buffer contains the string

with the cursor sitting between the two L characters as shown. The two-stack
representation of the buffer looks like this:

To read the contents of the buffer, it is necessary to read up the characters in the
before stack and then down the characters in the after stack, as indicated by the
arrow.

Defining the private data structure
Using this strategy, the instance variables for a buffer object are simply a pair of
stacks, one to hold the characters before the cursor and another to hold the ones that
come after it. For the stack-based buffer, the bufferpriv.h file declares only the
two instance variables shown in Figure 13-5. Note that the cursor is not explicitly
represented in this model but is instead simply the boundary between the two stacks.

H E L L O
^

before after

H

E

L

L

O

 13.4 A stack-based implementation 579

Implementing the buffer operations
In the stack model, implementing most of the operations for the editor is
surprisingly easy. For example, moving backward consists of popping a character
from the before stack and pushing it back on the after stack. Moving forward is
entirely symmetrical. Inserting a character consists of pushing that character on the
before stack. Deleting a character consists of popping a character from the after
stack and throwing it away.

This conceptual outline makes it easy to write the code for the stack-based
editor, which appears in Figure 13-6. Four of the commands—insertCharacter,
deleteCharacter, moveCursorForward, and moveCursorBackward—contain
no loops and therefore clearly run in constant time because the stack operations they
call are themselves constant-time operations.

F I G U R E 1 3 - 5 Contents of bufferpriv.h for stack-based editor

/*
 * File: bufferpriv.h
 * ------------------
 * This file contains the private section of the EditorBuffer
 * class for the stack-based editor.
 */

/*
 * Implementation notes: Buffer data structure
 * ---
 * In the stack-based buffer model, the characters are stored in two
 * stacks. Characters before the cursor are stored in a stack named
 * "before"; characters after the cursor are stored in a stack named
 * "after". In each case, the characters closest to the cursor are
 * closer to the top of the stack. The advantage of this
 * representation is that insertion and deletion at the current
 * cursor position occurs in constant time.
 */

private:

/* Instance variables */

 CharStack before; /* Stack of characters before the cursor */
 CharStack after; /* Stack of characters after the cursor */

/* Make it illegal to copy editor buffers */

 EditorBuffer(const EditorBuffer & value) { }
 const EditorBuffer & operator=(const EditorBuffer & rhs) { return *this; }

580 Efficiency and Representation

StackBuffer.cpp, p1
F I G U R E 1 3 - 6 Stack-based implementation of the editor buffer

/*
 * File: StackBuffer.cpp
 * ---------------------
 * This file implements the EditorBuffer class using a pair of
 * stacks to represent the buffer.
 */

#include <iostream>
#include "buffer.h"
#include "charstack.h"
using namespace std;

/*
 * Implementation notes: Constructor and destructor
 * --
 * In this implementation, all dynamic allocation is managed by the
 * CharStack class, which means that there is no work for the
 * EditorBuffer class to do.
 */

EditorBuffer::EditorBuffer() {
 /* Empty */
}

EditorBuffer::~EditorBuffer() {
 /* Empty */
}

/*
 * Implementation notes: moveCursor methods
 * --
 * The four moveCursor methods use push and pop to transfer values
 * between the two stacks.
 */

void EditorBuffer::moveCursorForward() {
 if (!after.isEmpty()) {
 before.push(after.pop());
 }
}

void EditorBuffer::moveCursorBackward() {
 if (!before.isEmpty()) {
 after.push(before.pop());
 }
}

 13.4 A stack-based implementation 581

StackBuffer.cpp, p2
F I G U R E 1 3 - 6 Stack-based implementation of the editor buffer (continued)

void EditorBuffer::moveCursorToStart() {
 while (!before.isEmpty()) {
 after.push(before.pop());
 }
}

void EditorBuffer::moveCursorToEnd() {
 while (!after.isEmpty()) {
 before.push(after.pop());
 }
}

/*
 * Implementation notes: insertCharacter and deleteCharacter
 * ---
 * Each of the functions that inserts or deletes characters
 * can do so with a single push or pop operation.
 */

void EditorBuffer::insertCharacter(char ch) {
 before.push(ch);
}

void EditorBuffer::deleteCharacter() {
 if (!after.isEmpty()) {
 after.pop();
 }
}

/*
 * Implementation notes: showContents()
 * ------------------------------------
 * The showContents operator is complicated in the stack-based version,
 * but it is not part of the fundamental operator set.
 */

void EditorBuffer::showContents() {
 int nBefore = before.size();
 moveCursorToStart();
 while (!after.isEmpty()) {
 cout << ' ' << after.peek();
 moveCursorForward();
 }
 cout << endl;
 moveCursorToStart();
 for (int i = 0; i < nBefore; i++) {
 cout << " ";
 moveCursorForward();
 }
 cout << '^' << endl;
}

582 Efficiency and Representation

But what about the two remaining operations? The moveCursorToStart and
moveCursorToEnd methods each require the program to transfer the entire
contents of one of the stacks to the other. Given the operations provided by the
CharStack class, the only way to accomplish this operation is to pop values from
one stack and push them back on the other stack, one value at a time, until the
original stack is empty. For example, the moveCursorToEnd operation has the
following implementation:

void EditorBuffer::moveCursorToEnd() {
 while (!after.isEmpty()) {
 before.push(after.pop());
 }
}

These implementations have the desired effect, but require O(N) time in the worst
case.

Comparing computational complexities
Table 13-3 shows the computational complexity of the editor operations for both the
array- and the stack-based implementations of the editor. Which implementation is
better? Without some knowledge of the usage pattern, it is impossible to answer
this question. Knowing a little about the way that people use editors, however,
suggests that the stack-based strategy is likely to be more efficient because the slow
operations for the array implementation (insertion and deletion) are used much more
frequently than the slow operations for the stack implementation (moving the cursor
a long distance).

While this tradeoff seems reasonable given the relative frequency of the
operations involved, it makes sense to ask whether it is possible to do even better.
After all, it is now true that each of the six fundamental editing operations runs in
constant time in at least one of the two editor implementations. Insertion is slow

T A B L E 1 3 - 3 Computational complexity of the array- and stack-based buffers

Operation

deleteCharacter

insertCharacter

moveCursorToEnd

moveCursorToStart

moveCursorBackward

moveCursorForward

Array

O(N)

O(N)

O(1)

O(1)

O(1)

O(1)

Stack

O(1)

O(1)

O(N)

O(N)

O(1)

O(1)

 13.5 A list-based implementation 583

given the array implementation but fast when using the stack approach. By
contrast, moving to the front of the buffer is fast in the array case but slow in the
stack case. None of the operations, however, seems to be fundamentally slow, since
there is always some implementation that makes that operation fast. Is it possible to
develop an implementation in which all the operations are fast? The answer to this
question turns out to be “yes,” but discovering the key to the puzzle will require you
to learn a new approach to representing ordering relationships in a data structure.

 13.5 A list -based implementation
As an initial step toward finding a more efficient representation for the editor buffer,
it makes sense to examine why the previous approaches have failed to provide
efficient service for certain operations. In the case of the array implementation, the
answer is obvious: the problem comes from the fact that you have to move a large
number of characters whenever you need to insert some new text near the beginning
of the buffer. For example, suppose that you were trying to enter the alphabet and
instead typed

When you discovered that you’d left out the letter B, you would have to shift each of
the next 24 characters one position to the right in order to make room for the
missing letter. A modern computer could handle this shifting operation relatively
quickly as long as the buffer did not grow too large; even so, the delay would
eventually become noticeable if the number of characters in the buffer became
sufficiently large.

Suppose, however, that you were writing before the invention of modern
computers. What would happen if you were instead using a typewriter and had
already typed the complete line? To avoid giving the impression that you had
slighted one of the letters in the alphabet, you could simply take out a pen and make
the following notation:

The result is perhaps a trifle inelegant, but nonetheless acceptable in such desperate
circumstances.

One advantage of this human editing notation is that it allows you to suspend the
rule that says all letters are arranged in sequence in precisely the form in which they
appear on the printed page. The caret symbol below the line tells your eyes that,
after reading the A, you have to then move up, read the B, come back down, read the
C, and then continue with the sequence. It is also important to notice another
advantage of using this insertion strategy. No matter how long the line is, all you

A C D E F G H I J K L M N O P Q R S T U V W X Y Z

A C D E F G H I J K L M N O P Q R S T U V W X Y Z
B

^

584 Efficiency and Representation

have to draw is the new character and the caret symbol. Using pencil and paper,
insertion runs in constant time.

The concept of a linked list
You can adopt a similar approach in designing a computer-based representation of
the editing buffer. In fact, you can even generalize the idea so that, instead of
representing the buffer mostly as an array with occasional deviations from the
normal sequence, you simply draw an arrow from each letter in the buffer to the
letter that follows it. The original buffer contents might then be represented as
follows:

If you then need to add the character B after the character A, all you need to do is (1)
write the B down somewhere, (2) draw an arrow from B to the letter to which A is
pointing (which is currently the C) so that you don’t lose track of the rest of the
string, and (3) change the arrow pointing from the A so that it now points to the B,
like this:

Given the symbols used to draw these diagrams, it is probably not surprising to
discover that the principal tool for implementing the new strategy in C++ is the
pointer. One of the great advantages of pointers is that they make it possible for one
data object to include a pointer to a second object. You can use this pointer to
indicate an ordering relationship, much like the ordering relationship implied by the
arrows in the foregoing diagram. Pointers used in this way are often referred to as
links. When such links are used to create a linearly ordered data structure in which
each element points to its successor, that structure is called a linked list.

Designing a linked-list data structure
If you want to apply this pointer-based strategy to the design of the editor buffer,
what you need is a linked list of characters. You have to associate each character in
the buffer with a pointer that indicates the next character in the list. That pointer,
however, cannot be a simple character pointer; what you need is a pointer to the
next character/link combination. To make a linked list work, you have to create a
single structure that includes both the data relevant to the application (in this case,
the character) and a pointer to another structure of the same type, which is then used
to indicate the internal ordering. This combination of the application data and the
pointer becomes the basic building block for the linked list, which is often referred
to as a cell.

A C D E F G H I J K L M N O P Q R S T U V W X Y Z

A C D E F G H I J K L M N O P Q R S T U V W X Y Z
B

 13.5 A list-based implementation 585

To make the idea of a cell a little easier to visualize, it often helps to start with a
structure diagram before moving to an actual definition. In the editor buffer, a cell
has two components: a character and link to the following cell. A single cell can
therefore be diagrammed as follows:

You can then represent a sequence of characters by linking several of these cells
together. For example, the character sequence ABC could be represented as a linked
list containing the following collection of cells:

If the C is the last character in the sequence, you need to indicate that fact by putting
a special value in the link field of that cell to indicate that there are no additional
characters in the list. When programming in C++, it is customary to use the special
pointer value NULL for this purpose. In list structure diagrams, however, it is
common to indicate the NULL value with a diagonal line across the box, as shown in
the preceding example.

To represent these cell structure diagrams in C++, you need to define a structure
type to hold the data. The Cell structure must include a ch field for the character
and a link field that points to the next cell. This definition is a bit unusual in that
the Cell type is defined in terms of itself and is therefore a recursive type. The
following type definition correctly represents the structure of a cell:

struct Cell {
 char ch;
 Cell *link;
};

Using a linked list to represent the buffer
You are now in a position to consider how you might use linked lists to represent
the editor buffer. One possibility is to have the initial pointer in the linked list be
the buffer, but this approach ignores the fact that you must also represent the cursor.
The need to indicate a current buffer position suggests that the data members for the
EditorBuffer class should consist of two pointers to Cell objects: a pointer
called start that shows where the buffer starts and a pointer called cursor that
indicates the current cursor position.

ch

link

A B C

586 Efficiency and Representation

This design seems reasonable until you try to figure out how the cursor pointer
works in detail. If you have a buffer containing three characters, your first thought
is to represent that buffer using a linked list with three cells. In this design, the
cursor field is also represented as a pointer to a cell, which presumably changes
depending on the position of the cursor. Unfortunately, there’s a bit of a problem.
Given a buffer containing three characters, there are four possible positions for the
cursor, as follows:

If there are only three cells to which the cursor field can point, it is not clear how
you would be able to represent each of the possible cursor locations.

There are many tactical approaches to solving this problem, but the one that
usually turns out to be the best is to allocate an extra cell so that the list contains one
cell for each possible insertion point. Typically, this cell goes at the beginning of
the list and is called a dummy cell. The value of the ch field in the dummy cell is
irrelevant and is indicated in diagrams by filling the value field with a gray
background. When you use the dummy cell approach, the cursor field points to
the cell immediately before the logical insertion point. For example, a buffer
containing ABC with the cursor at the beginning of the buffer would look like this:

Both start and cursor point to the dummy cell, and insertions will occur
immediately after this cell. If the cursor field instead indicates the end of the
buffer, the diagram looks like this:

The only instance variables that appear in the private section are the start and
cursor pointers. Even though the rest of this structure is not formally a part of the
object, it will help programmers who later have to work with this structure if you
document the data structure design in the bufferpriv.h file, as illustrated in
Figure 13-7.

A B C
^

A B C
^

A B C
^

A B C
^

start

cursor

A B C

start

cursor

A B C

 13.5 A list-based implementation 587

bufferpriv.h, list model
F I G U R E 1 3 - 7 Contents of bufferpriv.h for list-based editor

/*
 * File: bufferpriv.h
 * ------------------
 * This file contains the private section of the EditorBuffer
 * class for the list-based editor.
 */

/*
 * Implementation notes: Buffer data structure
 * ---
 * In the linked-list implementation of the buffer, the characters
 * in the buffer are stored in a list of Cell structures, each of
 * which contains a character and a pointer to the next cell in the
 * chain. To simplify the code used to maintain the cursor, this
 * implementation adds an extra "dummy" cell at the beginning of the
 * list. The character in this cell is not used, but having it in
 * the data structure provides a cell for the cursor to point to
 * when the cursor is at the beginning of the buffer.
 *
 * The following diagram shows the structure of the list-based buffer
 * containing "ABC" with the cursor at the beginning:
 *
 * +-----+ +-----+ +-----+ +-----+ +-----+
 * start | o--+---==>| | -->| A | -->| B | -->| C |
 * +-----+ / +-----+ / +-----+ / +-----+ / +-----+
 * cursor | o--+-- | o--+-- | o--+-- | o--+-- | / |
 * +-----+ +-----+ +-----+ +-----+ +-----+
 */

private:

/*
 * Type: Cell
 * ----------
 * This structure type is used locally within the implementation to
 * store each cell in the linked-list representation. Each cell
 * contains one character and a pointer to the next cell in the chain.
 */

 struct Cell {
 char ch;
 Cell *link;
 };

/* Instance variables */

 Cell *start; /* Pointer to the dummy cell */
 Cell *cursor; /* Pointer to cell before cursor */

/* Make it illegal to copy editor buffers */

 EditorBuffer(const EditorBuffer & value) { }
 const EditorBuffer & operator=(const EditorBuffer & rhs) { return *this; }

588 Efficiency and Representation

Insertion into a linked-list buffer
No matter where the cursor is positioned, the insertion operation for a linked list
consists of the following steps:

1. Allocate space for a new cell, and store the pointer to this cell in the temporary

variable cp.

2. Copy the character to be inserted into the ch field of the new cell.

3. Go to the cell indicated by the cursor field of the buffer and copy its link field
to the link field of the new cell. This operation makes sure that you don’t lose
the characters that lie beyond the current cursor position.

4. Change the link field in the cell addressed by the cursor so that it points to the
new cell.

5. Change the cursor field in the buffer so that it also points to the new cell.
This operation ensures that the next character will be inserted after this one in
repeated insertion operations.

To illustrate this process, suppose that you want to insert the letter B into a buffer

that currently contains

with the cursor between the A and the C as shown. The situation prior to the
insertion looks like this:

The first step in the insertion strategy is to allocate a new cell and store a pointer to
it in the variable cp, as shown:

A C D
^

start

cursor

A C D

start

cursor

A C D

cp

 13.5 A list-based implementation 589

In step 2, you store the character B into the ch field of the new cell, which leaves
the following configuration:

In step 3, you copy the link field from the cell whose address appears in the
cursor field into the link field of the new cell. That link field points to the cell
containing C, so the resulting diagram looks like this:

In step 4, you change the link field in the current cell addressed by the cursor
so that it points to the newly allocated cell, as follows:

Note that the buffer now has the correct contents. If you follow the arrows from the
dummy cell at the beginning of the buffer, you encounter the cells containing A, B,
C, and D, in order along the path.

start

cursor

A C D

B

cp

start

cursor

A C D

B

cp

start

cursor

A C D

B

cp

590 Efficiency and Representation

The final step consists of changing the cursor field in the buffer structure so
that it also points to the new cell, which results in the following configuration:

When the program returns from the insertCharacter method, the temporary
variable cp is released, which results in the following final buffer state:

which represents the buffer contents

The following implementation of the insertCharacter method is a simple
translation into C++ code of the informal steps illustrated in the last several
diagrams:

void EditorBuffer::insertCharacter(char ch) {
 Cell *cp = new Cell;
 cp->ch = ch;
 cp->link = cursor->link;
 cursor->link = cp;
 cursor = cp;
}

Because there are no loops inside this method, the insertCharacter method now
runs in constant time.

start

cursor

A C D

B

cp

start

cursor

A C D

B

A B C D
^

 13.5 A list-based implementation 591

Deletion in a linked-list buffer
To delete a cell in a linked list, all you have to do is remove it from the pointer
chain. Let’s assume that the current contents of the buffer are

which has the following graphical representation:

Deleting the character after the cursor means that you need to eliminate the cell
containing the B by changing the link field of the cell containing A so that it points
to the next character further on. To find that character, you need to follow the link
field from the current cell and continue on to the following link field. The
necessary statement is therefore

cursor->link = cursor->link->link;

Executing this statement leaves the buffer in the following state:

Because the cell containing B is no longer accessible through the linked-list
structure, it is good policy to free its storage by calling delete, as shown in the
following implementation of deleteCharacter:

void EditorBuffer::deleteCharacter() {
 if (cursor->link != NULL) {
 Cell *oldCell = cursor->link;
 cursor->link = cursor->link->link;
 delete oldCell;
 }
}

A B C
^

start

cursor

A B C

start

cursor

A B C

592 Efficiency and Representation

Note that you need a variable like oldCell to hold a copy of the pointer to the cell
about to be freed while you adjust the chain pointers. If you do not save this value,
there will be no way to refer to that cell when you call delete.

Cursor motion in the linked-list representation
The remaining operations in the EditorBuffer class simply move the cursor.
How would you go about implementing these operations in the linked-list buffer?
Two of these operations—moveCursorForward and moveCursorToStart—are
easy to perform in the linked-list model. To move the cursor forward, for example,
all you have to do is pick up the link field from the current cell and make that
pointer be the new current cell by storing it in the cursor field of the buffer. The
statement necessary to accomplish this operation is simply

cursor = cursor->link;

As an example, suppose that the editor buffer contains

with the cursor at the beginning as shown. The list structure diagram for the buffer
is then

and the result of executing the moveCursorForward operation is

Of course, when you reach the end of the buffer, you can no longer move
forward. The implementation of moveCursorForward must check for this case, so
the complete method definition looks like this:

A B C
^

start

cursor

A B C

start

cursor

A B C

 13.5 A list-based implementation 593

void EditorBuffer::moveCursorForward() {
 if (cursor->link != NULL) {
 cursor = cursor->link;
 }
}

Moving the cursor to the beginning of the buffer is equally easy. No matter

where the cursor is, you can always restore it to the beginning of the buffer by
copying the start field into the cursor field. Thus, the implementation of
moveCursorToStart is simply

void EditorBuffer::moveCursorToStart() {
 cursor = start;
}

The operations moveCursorBackward and moveCursorToEnd, however, are

more complicated. Suppose, for example, that the cursor is sitting at the end of a
buffer containing the characters ABC and that you want to move back one position.
In its graphical representation, the buffer looks like this:

Given the structure of the EditorBuffer, there is no constant time strategy for
backing up the pointer. The problem is that you have no easy way—given the
information you can see—to find out what cell precedes the current one. Pointers
allow you to follow a chain from the pointer to the object to which it points, but
there is no way to reverse the direction. Given only the address of a cell, it is
impossible to find out what cells point to it. With respect to the pointer diagrams,
the effect of this restriction is that you can move from the dot at the base of an
arrow to the cell to which the arrow points, but you can never go from an arrowhead
back to its base.

In the list-structure representation of the buffer, you have to implement every
operation in terms of the data that you can see from the buffer structure itself, which
contains the start and the cursor pointers. Looking at just the cursor field and
following the links that are accessible from that position does not seem promising,
because the only cell reachable on that chain is the very last cell in the buffer. The
start pointer, however, gives you access to the entire linked-list chain. At the
same time, you clearly need to consider the value of the cursor field, because you
need to back up from that position.

start

cursor

A B C

594 Efficiency and Representation

Before you abandon hope, you need to recognize that it is possible to find the
cell that precedes the current cell. It is just not possible to do so in constant time. If
you start at the beginning of the buffer and follow the links through all its cells, you
will eventually hit a cell whose link field points to the same cell as the cursor
field in the EditorBuffer itself. This cell must be the preceding cell in the list.
Once you find it, you can simply change the cursor field in the EditorBuffer to
point to that cell, which has the effect of moving the cursor backward.

Moving through the values of a linked list, one cell at a time, by following link
pointers is a very common operation, which is usually called traversing or walking
the list. To traverse the list representing the buffer, you first declare a pointer
variable and initialize it to the beginning of the list. Thus, in this instance, you
might write

Cell *cp = start;

To find the character preceding the cursor, you want to walk down the list as long as
cp’s link field does not match the cursor, moving cp from cell to cell by following
each link field. You might therefore continue the code by adding the following
while loop:

Cell *cp = start;
while (cp->link != cursor) {
 cp = cp->link;
}

When the while loop exits, cp is set to the cell prior to the cursor. As with moving
forward, you need to protect this loop against trying to move past the limits of the
buffer, so the complete code for moveCursorBackward would be

void EditorBuffer::moveCursorBackward() {
 Cell *cp = start;
 if (cursor != start) {
 while (cp->link != cursor) {
 cp = cp->link;
 }
 cursor = cp;
 }
}

For precisely the same reasons, you can implement moveCursorToEnd only by

walking through the entire linked list until you detect the NULL pointer, as illustrated
by the following code:

 13.5 A list-based implementation 595

void EditorBuffer::moveCursorToEnd() {
 while (cursor->link != NULL) {
 cursor = cursor->link;
 }
}

Linked-list patterns
Professional C++ programmers are likely to implement moveCursorBackward
using a for loop instead of a while. In C++, whenever you have a repetitive
operation in which you can easily specify an initialization, a test to see whether you
should continue, and a sequencing operation that moves from one cycle to the next,
the iterative construct of choice is the for loop, which allows you to put all these
ideas together in one place. In the moveCursorBackward example, you have all
three of these pieces and might therefore have coded the internal loop as follows:

for (cp = start; cp->link != cursor; cp = cp->link) {
 /* Empty */
}

The first thing to notice about this loop is that the body performs no operations at
all. The for loop is executed entirely for its effect on the pointer variable cp, and
there are no other operations to perform. In C++, such situations come up
surprisingly often. Although you can indicate an empty loop body simply by
putting a semicolon at the end of the for header line, this text will always include a
comment to emphasize that the loop body has no effect, as in this example.

Because the for loop is so useful when working with linked lists, it is important
to recognize the standard for loop patterns used to manipulate list structure. In
C++ programs, the pattern for traversing a linked list is conceptually similar to the
pattern for iterating through the elements of an array. As you know, the pattern for
performing an operation on every element in an array whose effective size is n
looks like this:

for (int i = 0; i < n; i++) {
 . . . code using a[i] . . .
}

For linked lists, the corresponding idiom is

for (Cell *cp = list; cp != NULL; cp = cp->link) {
 . . . code using cp . . .
}

596 Efficiency and Representation

Completing the buffer implementation
The complete EditorBuffer class contains three operations that have yet to be
implemented: the constructor, the destructor, and the method showContents. In
the constructor, the only wrinkle is that you need to remember the existence of the
dummy cell. The code must allocate the dummy cell that is present even in the
empty buffer. Once you remember this detail, however, the code is fairly
straightforward:

EditorBuffer::EditorBuffer() {
 start = cursor = new Cell;
 start->link = NULL;
}

The implementation of the destructor is a bit more subtle. When the destructor is

called, it is responsible for freeing any memory allocated by the class, which
includes every cell in the linked-list chain. Given the earlier discussion of the for
loop idiom, you might be tempted to code that loop as follows:

for (Cell *cp = start; cp != NULL; cp = cp->link) {
 delete cp;
}

The problem here is that the code tries to use the link pointer inside each block
after that block has been freed. Once you call delete on a pointer to a record, you
are no longer allowed to look inside that record. Doing so is likely to cause errors.
To avoid this problem, you need to maintain your position in the list in a separate
variable as you free each cell; in essence, you need a place to stand. Thus, the
correct code for ~EditorBuffer is slightly more convoluted and has the following
form:

EditorBuffer::~EditorBuffer() {
 Cell *cp = start;
 while (cp != NULL) {
 Cell *next = cp->link;
 delete cp;
 cp = next;
 }
}

The complete code for the linked-list implementation of the buffer class appears

in Figure 13-8.

 13.5 A list-based implementation 597

ListBuffer.cpp, p1
F I G U R E 1 3 - 8 List-based implementation of the editor buffer

/*
 * File: ListBuffer.cpp
 * --------------------
 * This file implements the EditorBuffer class using a linked
 * list to represent the buffer.
 */

#include <iostream>
#include "buffer.h"
using namespace std;

/*
 * Implementation notes: EditorBuffer constructor
 * --
 * This function initializes an empty editor buffer represented as a
 * linked list. In this representation (which is described in more detail
 * in the bufferpriv.h file), the empty buffer contains a dummy cell whose
 * ch field is never used. The constructor must therefore allocate this
 * dummy cell and set the internal pointers correctly.
 */

EditorBuffer::EditorBuffer() {
 start = cursor = new Cell;
 start->link = NULL;
}

/*
 * Implementation notes: EditorBuffer destructor
 * ---
 * The destructor must delete every cell in the buffer. Note that the loop
 * structure is not exactly the standard for loop pattern for processing
 * every cell within a linked list. The complication that forces this
 * change is that the body of the loop can't free the current cell and
 * later have the for loop use the link field of that cell to move to
 * the next one. To avoid this problem, this implementation copies the
 * link pointer before calling delete.
 */

EditorBuffer::~EditorBuffer() {
 Cell *cp = start;
 while (cp != NULL) {
 Cell *next = cp->link;
 delete cp;
 cp = next;
 }
}

598 Efficiency and Representation

ListBuffer.cpp, p3
F I G U R E 1 3 - 8 List-based implementation of the editor buffer (continued)

/*
 * Implementation notes: moveCursor methods
 * --
 * The four methods that move the cursor have different time complexities
 * because the structure of a linked list is asymmetrical with respect to
 * moving backward and forward. The moveCursorForward and moveCursorToStart
 * methods operate in constant time. By contrast, the moveCursorBackward
 * and moveCursorToEnd methods each require a loop that runs in linear time.
 */

void EditorBuffer::moveCursorForward() {
 if (cursor->link != NULL) {
 cursor = cursor->link;
 }
}

void EditorBuffer::moveCursorBackward() {
 Cell *cp = start;
 if (cursor != start) {
 while (cp->link != cursor) {
 cp = cp->link;
 }
 cursor = cp;
 }
}

void EditorBuffer::moveCursorToStart() {
 cursor = start;
}

void EditorBuffer::moveCursorToEnd() {
 while (cursor->link != NULL) {
 cursor = cursor->link;
 }
}

/*
 * Implementation notes: insertCharacter
 * -------------------------------------
 * The steps required to insert a new character are:
 *
 * 1. Allocate a new cell and put the new character in it.
 * 2. Copy the pointer indicating the rest of the list into the link.
 * 3. Update the link in the current cell to point to the new one.
 * 4. Move the cursor forward over the inserted character.
 */

void EditorBuffer::insertCharacter(char ch) {
 Cell *cp = new Cell;
 cp->ch = ch;
 cp->link = cursor->link;
 cursor->link = cp;
 cursor = cp;
}

 13.5 A list-based implementation 599

Computational complexity of the linked-list buffer
From the discussion in the preceding section, it is easy to add another column to the
complexity table showing the cost of the fundamental editing operations as a
method of the number of characters in the buffer. The new table, which includes
the data for all three implementations, appears in Table 13-4.

Unfortunately, the table for the list structure representation still contains two
O (N) operations, moveCursorBackward and moveCursorToEnd. The problem
with this representation is that the link pointers impose a preferred direction on the
implementation: moving forward is easy because the pointers move in the forward
direction.

F I G U R E 1 3 - 8 List-based implementation of the editor buffer (continued)

/*
 * Implementation notes: deleteCharacter
 * -------------------------------------
 * The steps necessary to delete a character are:
 *
 * 1. Remove the current cell by pointing to its successor.
 * 2. Free the cell to reclaim the memory.
 */

void EditorBuffer::deleteCharacter() {
 if (cursor->link != NULL) {
 Cell *oldCell = cursor->link;
 cursor->link = cursor->link->link;
 delete oldCell;
 }
}

/*
 * Implementation notes: showContents
 * ----------------------------------
 * The first for loop uses the standard linked-list pattern to loop through
 * the cells in the linked list. The second loop marks the cursor position.
 */

void EditorBuffer::showContents() {
 for (Cell *cp = start->link; cp != NULL; cp = cp->link) {
 cout << ' ' << cp->ch;
 }
 cout << endl;
 for (Cell *cp = start; cp != cursor; cp = cp->link) {
 cout << " ";
 }
 cout << '^' << endl;
}

600 Efficiency and Representation

Doubly linked lists
The good news is that this problem is easy to solve. To get around the problem that
the links run only in one direction, all you need to do is make the pointers
symmetrical. In addition to having a pointer from each cell that indicates the next
one, you can also include a pointer to the previous cell. The resulting structure is
called a doubly linked list.

Each cell in the doubly linked list has two link fields, a prev field that points to
the previous cell and a next field that points to the next one. For reasons that will
become clear when you implement the primitive operations, it simplifies the
manipulation of the structure if the prev field of the dummy cell points to the end
of the buffer and the next field of the last cell points back to the dummy cell.

If you use this design, the doubly linked representation of the buffer containing

looks like this:

There are quite a few pointers in this diagram, which makes it is easy to get
confused. On the other hand, the structure has all the information you need to
implement each of the fundamental editing operations in constant time. The actual
implementation, however, is left as an exercise so that you can refine your
understanding of linked lists.

A B C
^

start

cursor

A B C

T A B L E 1 3 - 4 Computational complexity of the three buffer models

Operation

deleteCharacter

insertCharacter

moveCursorToEnd

moveCursorToStart

moveCursorBackward

moveCursorForward

Array

O(N)

O(N)

O(1)

O(1)

O(1)

O(1)

Stack

O(1)

O(1)

O(N)

O(N)

O(1)

O(1)

List

O(1)

O(1)

O(N)

O(1)

O(N)

O(1)

 Summary 601

Time-space tradeoffs
The discovery that you can implement a buffer that has these good computational
properties is an important theoretical result. Unfortunately, that result may not in
fact be so useful in practice, at least in the context of the editor application. By the
time you get around to adding the prev field to each cell for the doubly linked list,
you will end up using at least nine bytes of memory to represent each character.
You may be able to perform editing operations very quickly, but you will use up
memory at an extravagant rate. At this point, you face what computer scientists call
a time-space tradeoff. You can improve the computational efficiency of your
algorithm, but waste space in doing so. Wasting this space could matter a lot, if, for
example, it meant that the maximum size of the file you could edit on your machine
were only a tenth what it would have been if you had chosen the array
representation.

When such situations arise in practice, it is usually possible to develop a hybrid
strategy that allows you to select a point somewhere in the middle of the time-space
tradeoff curve. For example, you could combine the array and linked-list strategies
by representing the buffer as a doubly linked list of lines, where each line was
represented using the array form. In this case, insertion at the beginning of a line
would be a little slower, but only in proportion to the length of the line and not to
the length of the entire buffer. On the other hand, this strategy requires link pointers
for each line rather than for each character. Since a line typically contains many
characters, using this representation would reduce the storage overhead
considerably.

Getting the details right on hybrid strategies can be a challenge, but it is
important to know that such strategies exist and that there are ways to take
advantage of algorithmic time improvements that are not prohibitively expensive in
terms of their storage requirements.

 Summary
Even though this chapter focused its attention on implementing a class representing
an editor buffer, the buffer itself is not the main point. Text buffers that maintain a
cursor position are useful in a relatively small number of application domains. The
individual techniques used to improve the buffer representation—particularly the
concept of a linked list—are fundamental ideas that you will use over and over
again.

602 Efficiency and Representation

Important points in this chapter include:

• The strategy used to represent a class can have a significant effect on the

computational complexity of its operations.

• Although an array provides a workable representation for an editor buffer, you
can improve its performance by using other representation strategies. Using a
pair of stacks, for example, reduces the cost of insertion and deletion at the cost
of making it harder to move the cursor a long distance.

• You can indicate the order of elements in a sequence by storing a pointer with
each value linking it to the one that follows it. In programming, structures
designed in this way are called linked lists. The pointers that connect one value
to the next are called links, and the individual records used to store the values
and link fields together are called cells.

• The conventional way to mark the end of a linked list is to store the pointer
constant NULL in the link field of the last cell.

• If you are inserting and deleting values from a linked list, it is often convenient
to allocate an extra dummy cell at the beginning of the list. The advantage of
this technique is that the existence of the dummy cell reduces the number of
special cases you need to consider in your code.

• Insertions and deletions at specified points in a linked list are constant-time
operations.

• You can iterate through the cells of a linked list by using the following idiom:

for (Cell *cp = list; cp != NULL; cp = cp->link) {
 . . . code using cp . . .
}

• Doubly linked lists make it possible to traverse a list efficiently in both

directions.

• Linked lists tend to be efficient in execution time but inefficient in their use of
memory. In some cases, you may be able to design a hybrid strategy that allows
you to combine the execution efficiency of linked lists with the space advantages
of arrays.

 Review questions
1. True or false: The computational complexity of a program depends only on its

algorithmic structure, not on the structures used to represent the data.

2. What does wysiwyg stand for?

 Review questions 603

3. In your own words, describe the purpose of the buffer abstraction used in this
chapter.

4. What are the six commands implemented by the editor application? What are

the corresponding public methods in the EditorBuffer class?

5. In addition to the methods that correspond to the editor commands, what other

public operations are exported by the EditorBuffer class?

6. Which editor operations require linear time in the array representation of the

editor buffer? What makes those operations slow?

7. Draw a diagram showing the contents of the before and after stack in the

two-stack representation of a buffer that contains the following text, with the
cursor positioned as shown:

8. How is the cursor position indicated in the two-stack representation of the
editor buffer?

9. Which editor operations require linear time in the two-stack representation?

10. Define each of the following terms: cell, link, linked list, dummy cell.

11. What is the conventional way to mark the end of a linked list?

12. What is meant by a recursive data type?

13. What is the purpose of the dummy cell in a linked list used to represent the

editor buffer?

14. Does the dummy cell go at the beginning or the end of a linked list? Why?

15. What are the five steps required to insert a new character into the linked-list

buffer?

16. Draw a diagram showing all the cells in the linked-list representation of a

buffer that contains the following text, with the cursor positioned as shown:

17. Modify the diagram you drew in the preceding exercise to show what happens
if you insert the character X at the cursor position.

18. What is meant by the phrase traversing a list?

A B C D E F G H I J
^

H E L L O
^

604 Efficiency and Representation

19. What is the standard idiomatic pattern used in C++ to traverse a linked list?

20. Which editor operations require linear time in the linked-list representation of

the editor buffer? What makes those operations slow?

21. What is a time-space tradeoff?

22. What modification can you make to the linked-list structure so that all six of the

editor operations run in constant time?

23. What is the major drawback to the solution you offered in your answer to

question 22? What can you do to improve the situation?

 Exercises
1. One way to reduce the cost of the array-based implementation is to change the

representation from a dynamic array of characters to a dynamic array of lines,
each of which is a dynamic array of characters that ends with the newline
character, which is written in C++ as '\n'. Using this design, for example, the
palindromic paragraph

A man,
A plan,
A canal,
Panama!

would look something like this:

Rewrite the EditorBuffer class so that it uses this new representation. In
doing so, you will need to keep the following points in mind:

• You will need to store length and capacity information for each of the
dynamic arrays. This information is not shown in the diagram, and you
will have to figure out how best to include it in the data structure.

A m a n , \n
0 1 2 3 4 5 6 7 8 9

A p l a n , \n
0 1 2 3 4 5 6 7 8 9

A c a n a l , \n
0 1 2 3 4 5 6 7 8 9

P a n a m a ! \n
0 1 2 3 4 5 6 7 8 9

 Exercises 605

• The insertCharacter and deleteCharacter methods need to check
whether the character being inserted or deleted is a newline character and
modify the buffer structure appropriately.

• Understanding how best to represent the cursor information will require
careful thought. A single integer indicating the index in the overall buffer
would not support an efficient implementation.

• When you complete your implementation, each of the cursor-motion
methods should run in O(1) time, just as they do in the original array
implementation. The insertCharacter and deleteCharacter
methods should take time proportional to the length of the line for
characters other than the newline character.

2. Even though the stacks in the stackbuf.cpp implementation of the

EditorBuffer class (see Figures 13-5 and 13-6) expand dynamically, the
amount of character space required in the stacks is likely to be twice as large as
that required in the corresponding array implementation. The problem is that
each stack must be able to accommodate all the characters in the buffer.
Suppose, for example, that you are working with a buffer containing N
characters. If you’re at the beginning of the buffer, those N characters are in
the after stack; if you move to the end of the buffer, those N characters move
to the before stack. As a result, each of the stacks must have a capacity of N
characters.

You can reduce the storage requirement in the two-stack implementation of
the buffer by storing the two stacks at opposite ends of the same internal array.
The before stack starts at the beginning of the array, while the after stack
starts at the end. The two stacks then grow toward each other as indicated by
the arrows in the following diagram:

Reimplement the EditorBuffer class using this representation (which is, in
fact, the design strategy used in many editors today). Make sure that your
program continues to have the same computational efficiency as the two-stack
implementation in the text and that the buffer space expands dynamically as
needed.

3. For each of the three representations of the buffer given in this chapter,

implement the method

string EditorBuffer::getText();

which returns the entire contents of the buffer as a string of characters.

before after

606 Efficiency and Representation

4. Rewrite the editor application given in Figure 13-2 so that the F, B, and D
commands take a repetition count specified by a string of digits before the
command letter. Thus, the command 17F would move the cursor forward 17
character positions.

5. Extend the numeric argument facility from exercise 4 so that the numeric

argument can be preceded with a negative sign. For the F and B commands,
this facility is not particularly useful because the -4F command is the same as
4B. For the D command, however, this extension allows you to delete
characters backward using a command like -3D, which deletes the three
characters before the current cursor position. What changes, if any, do you
need to make to the EditorBuffer class interface to implement this
operation?

6. Extend the editor application so that the F, B, and D commands can be preceded

with the letter W to indicate word motion. Thus, the command WF should move
forward to the end of the next word, WB should move backward to the
beginning of the preceding word, and WD should delete characters through the
end of the next word. For the purposes of this exercise, a word consists of a
consecutive sequence of alphanumeric characters (i.e., letters or digits) and
includes any adjacent nonalphanumeric characters between the cursor and the
word. This interpretation is easiest to see in the context of the following
example:

To complete this exercise, you will have to extend the EditorBuffer class
interface in some way. As you design that extension, try to keep in mind the
principles of good interface design that were introduced in Chapter 2. After

SimpleTextEditor
*IThis is a test.

 T h i s i s a t e s t .

 ^

*WB

 T h i s i s a t e s t .

 ^

*J

 T h i s i s a t e s t .

^

*WF

 T h i s i s a t e s t .

 ^

*WF

 T h i s i s a t e s t .

 ^

*WD

 T h i s i s t e s t .

 ^

*

Insert some text.

Back up one word. Note
that the period is skipped.

Jump to the beginning.

Move forward to the end
of the word.

Move forward to the end
of the next word.

Delete the space and the
next word.

 Exercises 607

you have designed the interface extension, add the necessary code to
ArrayBuffer.cpp, StackBuffer.cpp, and ListBuffer.cpp to implement
your changes for each of the representations used in this chapter.

7. Most modern editors provide a facility that allows the user to copy a section of

the buffer text into an internal storage area and then paste it back in at some
other position. For each of the three representations of the buffer given in this
chapter, implement the method

void EditorBuffer::copy(int count);

which stores a copy of the next count characters somewhere in the internal
structure for the buffer, and the method

void EditorBuffer::paste();

which inserts those saved characters back into the buffer at the current cursor
position. Calling paste does not affect the saved text, which means that you
can insert multiple copies of the same text by calling paste more than once.
Test your implementation by adding the commands C and P to the editor
application for the copy and paste operations, respectively. The C command
should take a numeric argument to specify the number of characters using the
technique described in exercise 4.

8. Editors that support the copy/paste facility described in the preceding exercise

usually provide a third operation called cut that copies the text from the buffer
and then deletes it. Implement a new editor command called X that implements
the cut operation without making any changes to the EditorBuffer class
interface beyond those you needed to solve exercise 6.

9. For each of the three representations of the buffer given in this chapter,

implement the method

bool EditorBuffer::search(string str);

When this method is called, it should start searching from the current cursor
position, looking for the next occurrence of the string str. If it finds it,
search should leave the cursor after the last character in str and return the
value true. If str does not occur between the cursor and the end of the
buffer, then search should leave the cursor unchanged and return false.

To illustrate the operation of search, suppose that you have added the S
command to the editor.cpp program so that it calls the search method,
passing it the rest of the input line. Your program should then be able to match
the following sample run:

608 Efficiency and Representation

10. Without making any further changes to the EditorBuffer class interface

beyond those required for exercise 8, add an R command to the editor
application that replaces the next occurrence of one string with another, where
the two strings are specified after the R command separated by a slash, as
shown:

11. The dummy cell strategy described in the text is useful because it reduces the

number of special cases in the code, but it is not strictly necessary. Write a new
implementation of listbuf.cpp in which you make the following changes:

• The linked list contains no dummy cell—just a cell for every character.

• A buffer in which the cursor occurs before the first character is indicated
by storing NULL in the cursor field.

• Every method that checks the position of the cursor makes a special test for
NULL and performs whatever special actions are necessary in that case.

SimpleTextEditor
*ITo Erik Roberts

 T o E r i k R o b e r t s

 ^

*J

 T o E r i k R o b e r t s

^

*SErik

 T o E r i k R o b e r t s

 ^

*B

 T o E r i k R o b e r t s

 ^

*D

 T o E r i R o b e r t s

 ^

*Ic

 T o E r i c R o b e r t s

 ^

*SErik

Search failed.

 T o E r i c R o b e r t s

 ^

*

Insert some text.

Jump back to the start.

Find "Erik" and put cursor
at the end of the string.

Back up one character.

Delete the "k".

Add the "c".

Finding "Erik" again has
no effect because there
are no more matches.

SimpleTextEditor
*ITo Erik Roberts
 T o E r i k R o b e r t s
 ^
*J
 T o E r i k R o b e r t s
^
*RErik/Eric
 T o E r i c R o b e r t s
 ^
*

 Exercises 609

12. Implement the EditorBuffer class using the strategy described in the section
entitled “Doubly linked lists” earlier in this chapter. Be sure to test your
implementation as thoroughly as you can. In particular, make sure that you can
move the cursor in both directions across parts of the buffer where you have
recently made insertions and deletions.

13. In a properly formed linked list, the cells in the list form a chain that ends with

a NULL pointer, like this:

Unfortunately, because the links in the cell structures are pointer values, it’s
possible that a buggy program might cause the link field in the final cell to
point back to some earlier cell in the chain, as shown in the following diagram:

If you try to iterate through the cells in this diagram, your program would go
into an infinite loop, cycling endlessly through the cells c1, c2, and c3. To
avoid such situations, it would be useful to have a function to check whether a
linked list contained a loop or whether it was properly terminated with a NULL
pointer at the end of the chain.

In the 1960s, a computer science professor at Stanford, the late Robert W.
Floyd, found a beautiful algorithm for detecting loops in a linked list without
having to keep track of all the cells you’ve visited. The algorithm begins by
assigning two pointers—a “slow” pointer and a “fast” pointer—to the
beginning of the chain. On each cycle of the loop, you advance the slow
pointer one step along the chain and the fast pointer two steps. If the fast
pointer ever hits a NULL link, it has reached the end of the list and therefore
knows that there are no loops in the chain. If, however, the slow and fast
pointers ever again point to the same cell, the linked list must contain a cycle.
This algorithm is illustrated in Figure 13-9.

Write a function

bool isLooped(Cell *list)

that takes a pointer to a linked list cell and applies Floyd’s algorithm to
determine whether a loop exists in the chain.

list

c0 c1 c2 c3

list

c0 c1 c2 c3

610 Efficiency and Representation

F I G U R E 1 3 - 9 Robert Floyd’s algorithm for detecting loops in a linked list

Floyd’s algorithm is often called the “Tortoise and Hare” algorithm because the two pointers race
through the list at different speeds. The slower tortoise starts at the beginning and moves one step at a
time. The faster hare starts at the same place but advances two cells for each cycle in the loop. The
diagrams on this page use this tortoise-and-hare metaphor to show how the algorithm works.

Cycle 0: At the beginning, both pointers are on the first cell in the list:

Cycle 1: After the first cycle, the tortoise and hare are on the cells containing c1 and c2, respectively:

Cycle 2: On the next cycle, both pointers advance at the appropriate speed:

Cycle 3: On the third cycle, moving the hare two steps forward brings it around the loop so that it is
now in some sense behind the tortoise:

Cycle 4: On the last cycle, the hare catches up to the tortoise, which means that the list must contain a
loop:

list

c0 c1 c2 c3 c4 c5

list

c0 c1 c2 c3 c4 c5

list

c0 c1 c2 c3 c4 c5

list

c0 c1 c2 c3 c4 c5

list

c0 c1 c2 c3 c4 c5

Chapter 14
Linear Structures

It does not come to me in quite so direct a line as that; it takes a
bend or two, but nothing of consequence.

— Jane Austen, Persuasion, 1818

612 Linear Structures

The Stack, Queue, and Vector classes introduced in Chapter 5 are examples of a
general category of abstract data types called linear structures, in which the
elements are arranged in a linear order. This chapter looks at several possible
representations for these types and considers how the choice of representation
affects efficiency.

Because the elements in a linear structure are arranged in an array-like order,
using arrays to represent them seems like an obvious choice. Indeed, the
CharStack class presented in Chapter 12 is implemented using an array as the
underlying representation. Arrays, however, are not the only option. Stacks,
queues, and vectors can also be implemented using a linked list much like the one
used to implement the editor buffer in Chapter 13. By studying the linked-list
implementation of these structures, you will increase your understanding not only of
how linked lists work but also of how you can apply them in practical programming
contexts.

This chapter has another purpose as well. As you know from Chapter 5, the
collection classes—unlike the CharStack class from Chapter 12—aren’t limited to
a single data type. The actual Stack class allows the client to specify the type of
value by providing a type parameter, as in Stack<int> or Stack<Point>. So far,
however, you have only had a chance to use parameterized types as a client. In this
chapter, you will learn how to implement them.

 14.1 Templates
In computer science, being able to use the same code for more than one data type is
called polymorphism. Programming languages implement polymorphism in a
variety of ways. C++ uses an approach called templates, in which the programmer
defines a common code pattern that can then be used for many different types. The
collection classes from Chapter 5 depend on the C++ template facility, which means
that you need to understand how templates work before you can appreciate the
underlying implementation of the collection classes.

Before describing templates in detail, it helps to go back and review the concept
of overloading, which was introduced in Chapter 2. Overloading allows you to
define several functions with the same name as long as those functions can be
distinguished by their arguments. Given a particular function call, the compiler can
look at the number and types of the arguments and choose the version of the
function that matches that signature.

As an example, you can use the following code to define two versions of a
function named max—one for integers and one for floating-point values—that
returns the larger of two arguments:

 14.1 Templates 613

int max(int x, int y) {
 return (x > y) ? x : y;
}

double max(double x, double y) {
 return (x > y) ? x : y;
}

The body of each of these functions is exactly the same. The only thing that
changes is the argument signature. If a client writes

max(17, 42)

the compiler notes that both arguments are integers and therefore issues a call to the
integer version of the max method, which returns an int as its result. By contrast,
calling

max(3.14159, 2.71828)

generates a call to the floating-point version, which returns a double.

Templates make it possible to automate the overloading process in situations
where the code is identical except for the types involved. In C++, you can combine
the earlier definitions of the max function into a single template definition, as
follows:

template <typename ValueType>
ValueType max(ValueType x, ValueType y) {
 return (x > y) ? x : y;
}

In this definition, the identifier ValueType is a placeholder for the argument type
used in the call to max. The typename keyword tells the C++ compiler that this
placeholder represents the name of a type, which enables the compiler to interpret
that identifier correctly.

Once you have defined this template function, you can use it with any of the
primitive types. For example, if the compiler encounters the function call

max('A', 'Z')

it automatically generates a character version of max that looks like this:

char max(char x, char y) {
 return (x > y) ? x : y;
}

614 Linear Structures

The compiler can then insert a call to this newly created version of max, which will
correctly return the character 'Z' as the value of the expression max('A', 'Z').

The template version of the max function works with any data type that defines
the > operator. For example, if you extend the Rational class as described in
exercise 7 from Chapter 6 so that it includes the comparison operator, you could
immediately use max to choose the larger of two Rational objects. The template
facility means that making max work for new types essentially comes for free.

There is, however, some need for caution. Given the compiler that runs on my
machine, calling

max("cat", "dog")

happens to return "cat", which seems contrary to logic. The problem here is that
the literals "cat" and "dog" are C strings rather than C++ strings, which means
that they are pointers to characters. The C++ compiler therefore generates the
more-or-less useless function

char *max(char *x, char *y) {
 return (x > y) ? x : y;
}

which returns the address of the C string stored at the higher address in memory. If
the compiler stores the characters in "cat" at higher addresses than the characters
in "dog", then "cat" will be returned as the maximum. To use the string
comparison operators defined for C++ strings, you would need to write this call as

max(string("cat"), string("dog"))

which correctly returns the C++ string "dog".

It is interesting to note that using the template facility doesn’t actually save any
space in the compiled program over the alternative strategy of defining individual
overloaded versions of the functions. Whenever the compiler encounters an
application of a template function to a type that it hasn’t yet seen, it generates an
entirely new copy of the function body that works for that type. Thus, if you use the
max function on ints, doubles, chars, strings, and Rationals all in the same
program, the compiler will generate five copies of the code, one for each type. This
implementation strategy underscores why the word template is so appropriate. In
C++, you are not defining a single function that works with more than one type, but
are instead providing a pattern from which the compiler can generate specially
tailored versions whenever it needs them.

The fact that the compiler needs to create multiple copies of the template code
has an important implication for you as a programmer. In C++, the compiler must

 14.2 Defining stacks as a template class 615

have access to the template implementation when it encounters a call to a template
function. The prototype, by itself, is not enough. This restriction means that one
cannot separate the interface and implementation of a template function in the way
that the programs in this book have ordinarily put prototypes in the .h file and the
corresponding implementations in the .cpp file. If you want to export a template
function as part of a library, the implementation must be available to the compiler
when the .h file is read. As this book has done with the private section of classes, it
is possible to hide those details in a separate file that appears in an #include line
within the .h file, but it makes sense to defer the details of that strategy to the
following section, when you’ll have a chance to implement your first template class.

 14.2 Defining stacks as a template class
The CharStack class in Chapter 12 defines the relevant operations that all stacks
require, but is limited because it can only store elements of type char. To gain the
flexibility of the library version of the Stack class, it is necessary to reimplement
Stack as a template class, which is a class that uses the C++ template facility so
that is works with any data type.

Changing a non-template class into a template one involves some simple
syntactic changes. For example, if you want to replace the CharStack class from
Chapter 12 with a general Stack template, you begin by replacing the name
CharStack with Stack and then add the following line before the class definition:

template <typename ValueType>

The template keyword indicates that the entire syntactic unit that follows this
line—in this case the class definition—is part of a template pattern that can be used
for many different values of the ValueType parameter. In the class definition that
follows, you use the placeholder name ValueType wherever you need to refer to
the type of element being stored. Thus, as you convert the CharStack class
definition to a more general template form, you replace every occurrence of char in
the prototypes for push, pop, and peek with ValueType. The updated version of
the stack.h interface appears in Figure 14-1. As in the other interfaces you’ve
seen, the private section of the class is stored in a separate stackpriv.h file, as
shown in Figure 14-2 on page 618.

The stackpriv.h file in Figure 14-2 includes the necessary definitions of the
copy constructor and the assignment operator to make it possible to copy the data in
a stack. This version of the stackpriv.h file makes it illegal to copy one stack to
another. As discussed in section 12.4, you can also write code to make a deep copy
of the stack, so that the copy stack does not share data with the original one. This
code is somewhat intricate and is best copied from the examples in Chapter 12.
You will have a chance to implement deep copying in the exercises.

616 Linear Structures

stack.h, p1
F I G U R E 1 4 - 1 Interface for the polymorphic stack abstraction

/*
 * File: stack.h
 * -------------
 * This interface exports the Stack class, which implements a collection
 * that processes values in a last-in/first-out (LIFO) order.
 */

#ifndef _stack_h
#define _stack_h

/*
 * Class: Stack<ValueType>
 * -----------------------
 * This class models a linear structure called a stack in which values are
 * added and removed only from one end. This discipline gives rise to a
 * last-in/first-out behavior (LIFO) that is the defining feature of
 * stacks. The fundamental stack operations are push (add to top) and pop
 * (remove from top).
 */

template <typename ValueType>
class Stack {

public:

/*
 * Constructor: Stack
 * Usage: Stack<ValueType> stack;
 * ------------------------------
 * Initializes a new empty stack.
 */

 Stack();

/*
 * Destructor: ~Stack
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this stack.
 */

 ~Stack();

/*
 * Method: size
 * Usage: int n = stack.size();
 * ----------------------------
 * Returns the number of values in this stack.
 */

 int size();

 14.2 Defining stacks as a template class 617

stack.p2
F I G U R E 1 4 - 1 Interface for the polymorphic stack abstraction (continued)

/*
 * Method: isEmpty
 * Usage: if (stack.isEmpty()) . . .
 * ---------------------------------
 * Returns true if this stack contains no elements.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: stack.clear();
 * ---------------------
 * Removes all elements from this stack.
 */

 void clear();

/*
 * Method: push
 * Usage: stack.push(value);
 * -------------------------
 * Pushes the specified value onto this stack.
 */

 void push(ValueType value);

/*
 * Method: pop
 * Usage: ValueType top = stack.pop();
 * -----------------------------------
 * Removes the top element from this stack and returns it. This
 * method signals an error if called on an empty stack.
 */

 ValueType pop();

/*
 * Method: peek
 * Usage: ValueType top = stack.peek();
 * ------------------------------------
 * Returns the value of top element from this stack, without removing
 * it. This method signals an error if called on an empty stack.
 */

 ValueType peek();

#include "stackpriv.h"

};

#include "stackimpl.cpp"

#endif

618 Linear Structures

The conversion process for the implementation file proceeds along similar lines.
For example, where the CharStack implementation includes the method

void CharStack::push(char ch) {
 if (count == capacity) expandCapacity();
 elements[count++] = ch;
}

you need to replace that definition with the following template method:

template <typename ValueType>
void Stack<ValueType>::push(ValueType value) {
 if (count == capacity) expandCapacity();
 elements[count++] = value;
}

Note that the body itself doesn’t change in any substantive way; the only difference
in the body of the implementation is that the parameter name ch, which is no longer
appropriate for a general stack implementation, has been replaced with a more
generic name.

F I G U R E 1 4 - 2 Contents of the stackpriv.h file for the polymorphic stack

/*
 * File: stackpriv.h
 * -----------------
 * This file contains the private section for the array-based
 * implementation of the Stack class.
 */

private:

 static const int INITIAL_CAPACITY = 10;

/* Instance variables */

 ValueType *array; /* A dynamic array of the elements */
 int count; /* The number of elements on the stack */
 int capacity; /* The allocated size of the array */

/* Private method prototypes */

 void expandCapacity();

/* Make it illegal to copy stacks */

 Stack(const Stack & value) { }
 const Stack & operator=(const Stack & rhs) { return *this; }

 14.2 Defining stacks as a template class 619

There is, however, one additional change that you need to make in the class
definition. In order for the compiler to create the specific classes that are instances
of the general template, it must have access to both the interface and the
implementation. To achieve this goal, you could include the implementation
directly in the header file, but this would have the undesirable effect of exposing
clients to the details of the implementation. A useful strategy for providing those
details to the compiler while hiding them from the client is to use the #include
facility to read in the implementation when it is needed.

The stack.h interface shown in Figure 14-1 illustrates the use of this technique.
The interface file has the following overall structure, which is typical for template
classes in this book:

template <typename ValueType>
class Stack {

public:

 prototypes for the exported methods in the class

#include "stackpriv.h"

};

#include "stackimpl.cpp"

The stackpriv.h file from Figure 14-2 is part of the definition of the Stack class
and therefore appears inside the scope of the class. The stackimpl.cpp file,
which appears in Figure 14-3, implements the methods of the class but is logically
external to the class definition. For this reason, the #include line for the
implementation appears after the closing brace for the class definition itself.

If you look closely at the code for the implementation in stackimpl.cpp, you
will see that it includes its own boilerplate lines that are in some ways similar to
those you have seen in interface files. The entire contents of the implementation
file are enclosed in the following preprocessor lines:

#ifdef _stack_h

 code that implements the class

#endif

These lines ensure that the code for the implementation is compiled only when this
file is included from the stack.h interface, which defines the _stack_h symbol.
If you try to compile the stackimpl.cpp file on its own, the compiler simply
ignores the contents. Some programming environments automatically compile all
.cpp files, and it is therefore important to ensure that this code isn’t compiled when
it is not needed.

620 Linear Structures

stackimpl.cpp, p1
F I G U R E 1 4 - 3 Contents of the stackimpl.cpp file for the polymorphic stack

/*
 * File: stackimpl.cpp
 * -------------------
 * This file contains the array-based implementation of the
 * Stack class.
 */

#ifdef _stack_h

#include "error.h"

/*
 * Implementation notes: Stack constructor
 * ---------------------------------------
 * The constructor must allocate the array storage for the stack elements
 * and initialize the fields of the object.
 */

template <typename ValueType>
Stack<ValueType>::Stack() {
 capacity = INITIAL_CAPACITY;
 array = new ValueType[capacity];
 count = 0;
}

/*
 * Implementation notes: ~Stack
 * ----------------------------
 * The destructor frees any heap memory allocated by the class, which
 * is just the dynamic array of elements.
 */

template <typename ValueType>
Stack<ValueType>::~Stack() {
 delete[] array;
}

template <typename ValueType>
int Stack<ValueType>::size() {
 return count;
}

template <typename ValueType>
bool Stack<ValueType>::isEmpty() {
 return count == 0;
}

template <typename ValueType>
void Stack<ValueType>::clear() {
 count = 0;
}

 14.2 Defining stacks as a template class 621

stackimpl.cpp, p2
F I G U R E 1 4 - 3 Contents of the stackimpl.cpp file for the polymorphic stack (continued)

/*
 * Implementation notes: push
 * --------------------------
 * This function must first check to see whether there is enough room for
 * the value and expand the array storage if necessary.
 */

template <typename ValueType>
void Stack<ValueType>::push(ValueType ch) {
 if (count == capacity) expandCapacity();
 array[count++] = ch;
}

/*
 * Implementation notes: pop, peek
 * -------------------------------
 * These functions must check for an empty stack and report an
 * error if there is no top element.
 */

template <typename ValueType>
ValueType Stack<ValueType>::pop() {
 if (isEmpty()) error("pop: Attempting to pop an empty stack");
 return array[--count];
}

template <typename ValueType>
ValueType Stack<ValueType>::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty stack");
 return array[count - 1];
}

/*
 * Implementation notes: expandCapacity
 * ------------------------------------
 * This private method doubles the capacity of the elements array whenever
 * it runs out of space. To do so, it must copy the pointer to the old
 * array, allocate a new array with twice the capacity, copy the values
 * from the old array to the new one, and finally free the old storage.
 */

template <typename ValueType>
void Stack<ValueType>::expandCapacity() {
 ValueType *oldArray = array;
 capacity *= 2;
 array = new ValueType[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[i];
 }
 delete[] oldArray;
}

#endif

622 Linear Structures

 14.3 Implementing stacks as l inked lists
Although arrays are the most common underlying representation for stacks, it is also
possible to implement the Stack class using linked lists. If you do so, the
conceptual representation for the empty stack is simply the NULL pointer:

When you push a new element onto the stack, the element is simply added to the
front of the linked-list chain. Thus, if you push the element e1 onto an empty stack,
that element is stored in a new cell that becomes the only link in the chain:

Pushing a new element onto the stack adds that element at the beginning of the
chain. The steps involved are the same as those required to insert a character into a
linked-list buffer. You first allocate a new cell, then enter the data, and, finally,
update the link pointers so that the new cell becomes the first element in the chain.
Thus, if you push the element e2 on the stack, you get the following configuration:

In the linked-list representation, the pop operation consists of removing the first
cell in the chain and returning the value stored there. Thus, a pop operation from
the stack shown in the preceding diagram returns e2 and restores the previous state
of the stack, as follows:

The data structure for the Stack class now consists of a single instance variable
used to store the start of the linked list representing the stack. The private section of
the Stack therefore consists of the structure definition for the Cell type, the
pointer to the start of the list, and an integer that holds the number of elements so
that the implementation doesn’t have to count them each time. The contents of the
revised stackpriv.h file are shown in Figure 14-4.

stack

stack

e1

stack

e2 e1

stack

e1

 14.3 Implementing stacks as linked lists 623

Once you have defined the data structure, you can then move on to reimplement
the Stack class methods so that they operate on the new data representation. The
first function that needs to change is the constructor, which must initialize the
stack field to NULL and the count field to 0, like this:

template <typename ValueType>
Stack<ValueType>::Stack() {
 stack = NULL;
 count = 0;
}

The complete implementation appears in Figure 14-5.

F I G U R E 1 4 - 4 Contents of the stackpriv.h file for the list-based stack

/*
 * File: stackpriv.h
 * -----------------
 * This file contains the private section for the list-based
 * implementation of the Stack class. Including this section
 * in a separate file means that clients don't need to look
 * at these details.
 */

private:

/* Type for linked list cell */

struct Cell {
 ValueType data;
 Cell *link;
};

/* Instance variables */

 Cell *stack; /* Beginning of the list of elements */
 int count; /* Number of elements in the stack */

/* Make it illegal to copy stacks */

 Stack(const Stack & value) { }
 const Stack & operator=(const Stack & rhs) { return *this; }

624 Linear Structures

list-based stackimpl.cpp, p1
F I G U R E 1 4 - 5 Implementation of the list-based stack

/*
 * File: stackimpl.cpp
 * -------------------
 * This file contains the list-based implementation of the
 * Stack class.
 */

#ifdef _stack_h

#include "error.h"

/*
 * Implementation notes: Stack constructor
 * ---------------------------------------
 * The constructor must create an empty linked list and then
 * initialize the fields of the object.
 */

template <typename ValueType>
Stack<ValueType>::Stack() {
 stack = NULL;
 count = 0;
}

/*
 * Implementation notes: ~Stack destructor
 * ---------------------------------------
 * The destructor frees any heap memory that is allocated by the
 * implementation. Because clear frees each element it processes,
 * this implementation of the destructor simply calls that method.
 */

template <typename ValueType>
Stack<ValueType>::~Stack() {
 clear();
}

/*
 * Implementation notes: size, isEmpty, clear
 * --
 * These implementations should be self-explanatory.
 */

template <typename ValueType>
int Stack<ValueType>::size() {
 return count;
}

template <typename ValueType>
bool Stack<ValueType>::isEmpty() {
 return count == 0;
}

 14.3 Implementing stacks as linked lists 625

list-based stackimpl.cpp, p2
F I G U R E 1 4 - 5 Implementation of the list-based stack (continued)

template <typename ValueType>
void Stack<ValueType>::clear() {
 while (count > 0) {
 pop();
 }
}

/*
 * Implementation notes: push
 * --------------------------
 * This method chains a new element onto the list where it becomes the
 * top of the stack.
 */

template <typename ValueType>
void Stack<ValueType>::push(ValueType elem) {
 Cell *cell = new Cell;
 cell->data = elem;
 cell->link = stack;
 stack = cell;
 count++;
}

/*
 * Implementation notes: pop, peek
 * -------------------------------
 * These methods must check for an empty stack and report an error if
 * there is no top element. The pop method must free the cell to ensure
 * that the implementation does not waste heap storage as it executes.
 */

template <typename ValueType>
ValueType Stack<ValueType>::pop() {
 if (isEmpty()) error("pop: Attempting to pop an empty stack");
 Cell *cell = stack;
 ValueType result = cell->data;
 stack = stack->link;
 count--;
 delete cell;
 return result;
}

template <typename ValueType>
ValueType Stack<ValueType>::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty stack");
 return stack->data;
}

#endif

626 Linear Structures

 14.4 Implementing queues
As you know from Chapter 5, stacks and queues are very similar structures. The
only difference between them is in the order in which elements are processed. A
stack uses a last-in/first-out (LIFO) discipline in which the last item pushed is
always the first item popped. A queue adopts a first-in/first-out (FIFO) model that
more closely resembles a waiting line. The interfaces for stacks and queues are also
extremely similar. The only changes in the public section of the two interfaces are
the names of the two methods that define the behavior of the class. The push
method from the Stack class is now called enqueue, and the pop method is now
dequeue. The behavior of those methods is also different, which is reflected in the
comments in the queue.h interface, which appears in Figure 14-6.

Given the conceptual similarity of these structures and their interfaces, it is not
surprising that both stacks and queues can be implemented using either array-based
or list-based strategies. With each of these models, however, the implementation of
a queue has subtleties that don’t arise in the case of a stack. These differences arise
from the fact that all the operations on a stack occur at the same end of the internal
data structure. In a queue, the enqueue operation happens at one end, and the
dequeue operation happens at the other.

An array-based implementation of queues
In light of the fact that actions in a queue are no longer confined to one end of an
array, you need two indices to keep track of the head and tail positions in the queue.
The private instance variables therefore look like this:

ValueType *array;
int capacity;
int head;
int tail;

In this representation, the head field holds the index of the next element to come
out of the queue, and the tail field holds the index of the next free slot. In an
empty queue, it is clear that the tail field should be 0 to indicate the initial
position in the array, but what about the head field? For convenience, the usual
strategy is to set the head field to 0 as well. When queues are defined in this way,
having the head and tail fields be equal indicates that the queue is empty.

Given this representation strategy, the Queue constructor looks like this:

template <typename ValueType>
Queue<ValueType>::Queue() {
 head = tail = 0;
}

 14.4 Implementing queues 627

queue.h, p1
F I G U R E 1 4 - 6 Interface for the queue abstraction

/*
 * File: queue.h
 * -------------
 * This interface exports the Queue class, a collection in which values are
 * ordinarily processed in a first-in/first-out (FIFO) order.
 */

#ifndef _queue_h
#define _queue_h

/*
 * Class: Queue<ValueType>
 * -----------------------
 * This class models a linear structure called a queue in which values are
 * added at one end and removed from the other. This discipline gives rise
 * to a first-in/first-out behavior (FIFO) that is the defining feature of
 * queues.
 */

template <typename ValueType>
class Queue {

public:

/*
 * Constructor: Queue
 * Usage: Queue<ValueType> queue;
 * ------------------------------
 * Initializes a new empty queue.
 */

 Queue();

/*
 * Destructor: ~Queue
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this queue.
 */

 ~Queue();

/*
 * Method: size
 * Usage: int n = queue.size();
 * ----------------------------
 * Returns the number of values in the queue.
 */

 int size();

628 Linear Structures

queue.h, p2
F I G U R E 1 4 - 6 Interface for the queue abstraction (continued)

/*
 * Method: isEmpty
 * Usage: if (queue.isEmpty()) . . .
 * ---------------------------------
 * Returns true if the queue contains no elements.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: queue.clear();
 * ---------------------
 * Removes all elements from the queue.
 */

 void clear();

/*
 * Method: enqueue
 * Usage: queue.enqueue(value);
 * ----------------------------
 * Adds value to the end of the queue.
 */

 void enqueue(ValueType value);

/*
 * Method: dequeue
 * Usage: ValueType first = queue.dequeue();
 * ---
 * Removes and returns the first item in the queue.
 */

 ValueType dequeue();

/*
 * Method: peek
 * Usage: ValueType first = queue.peek();
 * --------------------------------------
 * Returns the first value in the queue, without removing it.
 */

 ValueType peek();

#include "queuepriv.h"

};

#include "queueimpl.cpp"

#endif

 14.4 Implementing queues 629

Although it is tempting to think that the enqueue and dequeue methods will
look almost exactly like their push and pop counterparts in the Stack class, you
will run into several problems if you simply try to copy the existing code. As is
often the case in programming, it makes more sense to begin by drawing diagrams
to make sure you understand exactly how the queue should operate before you turn
to the implementation.

To get a sense of how this representation of a queue works, imagine that the
queue represents a waiting line, similar to one in the simulation from Chapter 5.
From time to time, a new customer arrives and is added to the queue. Customers
waiting in line are periodically served at the head end of the queue, after which they
leave the waiting line entirely. How does the queue data structure respond to each
of these operations?

Assuming that the queue is empty at the beginning, its internal structure looks
like this:

Suppose now that five customers arrive, indicated by the letters A through E. Those
customers are enqueued in order, which gives rise to the following configuration:

The value 0 in the head field indicates that the first customer in the queue is stored
in position 0 of the array; the value 5 in tail indicates that the next customer will
be placed in position 5. So far, so good. At this point, suppose that you alternately
serve a customer at the beginning of the queue and then add a new customer to the
end. For example, customer A is dequeued and customer F arrives, which leads to
the following situation:

array

capacity 10

head 0

tail 0

0 1 2 3 4 5 6 7 8 9

array

capacity 10

head 0

tail 5

A B C D E

0 1 2 3 4 5 6 7 8 9

array

capacity 10

head 1

tail 6

B C D E F

0 1 2 3 4 5 6 7 8 9

630 Linear Structures

Imagine that you continue to serve one customer just before the next customer
arrives and that this trend continues until customer J arrives. The internal structure
of the queue then looks like this:

At this point, you’ve got a bit of a problem. There are only five customers in the
queue, but you have used up all the available space. The tail field is pointing
beyond the end of the array. On the other hand, you now have unused space at the
beginning of the array. Thus, instead of incrementing tail so that it indicates the
nonexistent position 10, you can “wrap around” from the end of the array back to
position 0, as follows:

From this position, you have space to enqueue customer K in position 0, which
leads to the following configuration:

If you allow the elements in the queue to wrap around from the end of the array to
the beginning, the active elements always extend from the head index up to the
position immediately preceding the tail index, as illustrated in this diagram:

Because the ends of the array act as if they were joined together, programmers call
this representation a ring buffer.

The only remaining issue you need to consider before you can write the code for
enqueue and dequeue is how to check whether the queue is completely full.

array

capacity 10

head 5

tail 10

F G H I J

0 1 2 3 4 5 6 7 8 9

array

capacity 10

head 5

tail 0

F G H I J

0 1 2 3 4 5 6 7 8 9

array

capacity 10

head 5

tail 1

K F G H I J

0 1 2 3 4 5 6 7 8 9

K F G H I J

0 1 2 3 4 5 6 7 8 9

 14.4 Implementing queues 631

Testing for a full queue is trickier than you might expect. To get a sense of where
complications might arise, suppose that three more customers arrive before any
additional customers are served. If you enqueue the customers L, M, and N, the data
structure looks like this:

At this point, it appears as if there is one extra space. What happens, though, if
customer O arrives at this moment? If you followed the logic of the earlier enqueue
operations, you would end up in the following configuration:

The queue array is now completely full. Unfortunately, whenever the head and
tail fields have the same value, as they do in this diagram, the queue is considered
to be empty. There is no way to tell from the contents of the queue structure itself
which of the two conditions—empty or full—actually applies, because the data
values look the same in each case. Although you can fix this problem by adopting a
different definition for the empty queue and writing some special-case code, the
simplest approach is to limit the number of elements in the queue to one less than
the capacity and to expand the array whenever that limit is reached.

The code for the ring-buffer implementation of the Queue class template appears
in Figures 14-7 and 14-8. It is important to observe that the code does not explicitly
test the array indices to see whether they wrap around from the end of the array to
the beginning. Instead, the code makes use of the % operator to compute the correct
index automatically. The technique of using remainders to reduce the result of a
computation to a small, cyclical range of integers is an important mathematical
technique called modular arithmetic.

The queuepriv.h file in Figure 14-7 is longer than its stackpriv.h
counterpart, but only because it includes more comments. The primary audience for
these comments is the set of programmers who need to maintain this code. The
comments in the representation file should make note of anything that is special or
particularly complex about the representation, so that the maintainers don’t have to
discover those details on their own.

array

capacity 10

head 5

tail 4

K L M N F G H I J

0 1 2 3 4 5 6 7 8 9

array

capacity 10

head 5

tail 5

K L M N O F G H I J

0 1 2 3 4 5 6 7 8 9

632 Linear Structures

array queuepriv.h
F I G U R E 1 4 - 7 Contents of the queuepriv.h file for the array-based queue

/*
 * File: queuepriv.h
 * -----------------
 * This file contains the private section of the array-based queue.
 */

/*
 * Implementation notes: Queue data structure
 * --
 * The array-based queue stores the elements in successive index
 * positions in an array, just as a stack does. What makes the
 * queue structure more complex is the need to avoid shifting
 * elements as the queue expands and contracts. In the array
 * model, this goal is achieved by keeping track of both the
 * head and tail indices. The tail index increases by one each
 * time an element is enqueued, and the head index increases by
 * one each time an element is dequeued. Each index therefore
 * marches toward the end of the allocated array and will
 * eventually reach the end. Rather than allocate new memory,
 * this implementation lets each index wrap around back to the
 * beginning as if the ends of the array of elements were joined
 * to form a circle. This representation is called a ring buffer.
 *
 * The elements of the queue are stored in a dynamic array of
 * the specified element type. If the space in the array is ever
 * exhausted, the implementation doubles the array capacity.
 * Note that the queue capacity is reached when there is still
 * one unused element in the array. If the queue is allowed to
 * fill completely, the head and tail indices will have the same
 * value, and the queue will appear empty.
 */

private:

 static const int INITIAL_CAPACITY = 10;

/* Instance variables */

 ValueType *array; /* A dynamic array of the elements */
 int capacity; /* The allocated size of the array */
 int head; /* The index of the head of the queue */
 int tail; /* The index of the tail of the queue */

/* Private method prototypes */

 void expandCapacity();

/* Make it illegal to copy queues */

 Queue(const Queue & value) { }
 const Queue & operator=(const Queue & rhs) { return *this; }

 14.4 Implementing queues 633

array queueimpl.cpp, p1
F I G U R E 1 4 - 8 Contents of the queueimpl.cpp file for the array-based queue

/*
 * File: queueimpl.cpp
 * -------------------
 * This file contains the array-based implementation of the Queue class.
 */

#ifdef _queue_h

#include "error.h"

/*
 * Implementation notes: Queue constructor
 * ---------------------------------------
 * The constructor must allocate the array storage for the queue elements
 * and initialize the fields of the object.
 */

template <typename ValueType>
Queue<ValueType>::Queue() {
 capacity = INITIAL_CAPACITY;
 array = new ValueType[capacity];
 head = 0;
 tail = 0;
}

/*
 * Implementation notes: ~Queue destructor
 * ---------------------------------------
 * The destructor frees any memory that is allocated by the implementation.
 */

template <typename ValueType>
Queue<ValueType>::~Queue() {
 delete[] array;
}

/*
 * Implementation notes: size
 * --------------------------
 * The size of the queue can be calculated from the head and tail indices
 * using modular arithmetic.
 */

template <typename ValueType>
int Queue<ValueType>::size() {
 return (tail + capacity - head) % capacity;
}

634 Linear Structures

array queueimpl.cpp, p2
F I G U R E 1 4 - 8 Contents of the queueimpl.cpp file for the array-based queue (continued)

/*
 * Implementation notes: isEmpty
 * -----------------------------
 * The queue is empty whenever the head and tail pointers are equal. Note
 * that this interpretation means that the queue cannot be allowed to fill
 * the capacity entirely and must always leave one unused space.
 */

template <typename ValueType>
bool Queue<ValueType>::isEmpty() {
 return head == tail;
}

/*
 * Implementation notes: clear
 * ---------------------------
 * The clear method need not take account of where in the ring buffer any
 * existing data is stored and can simply reset the head and tail indices.
 */

template <typename ValueType>
void Queue<ValueType>::clear() {
 head = tail = 0;
}

/*
 * Implementation notes: enqueue
 * -----------------------------
 * This method must first check to see whether there is enough room for
 * the element and expand the array storage if necessary. Because it is
 * otherwise impossible to differentiate the case when a queue is empty
 * from when it is completely full, this implementation expands the
 * queue when the size is one less than the capacity.
 */

template <typename ValueType>
void Queue<ValueType>::enqueue(ValueType elem) {
 if (size() == capacity - 1) expandCapacity();
 array[tail] = elem;
 tail = (tail + 1) % capacity;
}

 14.4 Implementing queues 635

array queueimpl.cpp, p3
F I G U R E 1 4 - 8 Contents of the queueimpl.cpp file for the array-based queue (continued)

/*
 * Implementation notes: dequeue, peek
 * -----------------------------------
 * These methods must check for an empty queue and report an
 * error if there is no first element.
 */

template <typename ValueType>
ValueType Queue<ValueType>::dequeue() {
 if (isEmpty()) error("dequeue: Attempting to dequeue an empty queue");
 ValueType result = array[head];
 head = (head + 1) % capacity;
 return result;
}

template <typename ValueType>
ValueType Queue<ValueType>::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty queue");
 return array[head];
}

/*
 * Implementation notes: expandCapacity
 * ------------------------------------
 * This private method doubles the capacity of the dynamic array
 * whenever it runs out of space. To do so, it must allocate a new
 * array, copy all the elements from the old array to the new one,
 * and free the old storage. Note that this implementation also
 * shifts all the elements back to the beginning of the array.
 */

template <typename ValueType>
void Queue<ValueType>::expandCapacity() {
 int count = size();
 capacity *= 2;
 ValueType *oldArray = array;
 array = new ValueType[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[(head + i) % capacity];
 }
 head = 0;
 tail = count;
 delete[] oldArray;
}

#endif

636 Linear Structures

Linked-list representation of queues
The queue class also has a simple representation using list structure. To illustrate
the basic approach, the elements of the queue are stored in a list beginning at the
head of the queue and ending at the tail. To allow both enqueue and dequeue to
run in constant time, the Queue object must keep a pointer to both ends of the
queue. The private instance variables are therefore defined as shown in the revised
version of queuepriv.h shown in Figure 14-9. The ASCII data diagram that
appears in the comments is likely to convey more information to the implementer
than the surrounding text. Such diagrams are difficult to produce, but they offer
enormous value to the reader.

Given a modern word processor and a drawing program, it is possible to produce
much more detailed diagrams than you can make using ASCII characters alone. If
you are designing data structures for a large and complex system, it probably makes
sense to create these diagrams and include them as part of the extended
documentation of a package, ideally on a web page. Here, for example, is a
somewhat more readable picture of a queue containing the customers A, B, and C:

The code for the linked-list implementation of queues appears in Figure 14-10.
On the whole, the code is reasonably straightforward, particularly if you use the
linked-list implementation of stacks as a model. The diagram of the internal
structure provides the essential insights you need to understand how to implement
each of the queue operations. The enqueue operation, for example, adds a new cell
after the one marked by the tail pointer and then updates the tail pointer so that
it continues to indicate the end of the list. The dequeue operation consists of
removing the cell addressed by the head pointer and returning the value in that cell.

The only place where the implementation gets tricky is in the representation of
the empty queue. The most straightforward approach is to indicate an empty queue
by storing NULL in the head pointer, as follows:

head

tail

count 3
A B C

head

tail

count 0

 14.4 Implementing queues 637

list queuepriv.h
F I G U R E 1 4 - 9 Contents of the queuepriv.h file for the list-based queue

/*
 * File: queuepriv.h
 * -----------------
 * This file contains the private section for the list-based
 * implementation of the Queue class. Including this section
 * in a separate file means that clients don't need to look
 * at these details.
 */

/*
 * Implementation notes: Queue data structure
 * --
 * The list-based queue uses a linked list to store the elements
 * of the queue. To ensure that adding a new element to the tail
 * of the queue is fast, the data structure maintains a pointer to
 * the last cell in the queue as well as the first. If the queue is
 * empty, both the head pointer and the tail pointer are set to NULL.
 *
 * The following diagram illustrates the structure of a queue
 * containing two elements, A and B.
 *
 * +-------+ +-------+ +-------+
 * head | o---+------->| A | +--==>| B |
 * +-------+ +-------+ | | +-------+
 * tail | o---+---+ | o---+--+ | | NULL |
 * +-------+ | +-------+ | +-------+
 * | |
 * +------------------+
 */

private:

/* Type for linked list cell */

struct Cell {
 ValueType data;
 Cell *link;
};

/* Instance variables */

 Cell *head; /* Pointer to the cell at the head */
 Cell *tail; /* Pointer to the cell at the tail */
 int count; /* Number of elements in the queue */

/* Make it illegal to copy queues */

 Queue(const Queue & value) { }
 const Queue & operator=(const Queue & rhs) { return *this; }

638 Linear Structures

listimpl.cpp, p1
F I G U R E 1 4 - 1 0 Contents of the queueimpl.cpp file for the list-based queue

/*
 * File: queueimpl.cpp
 * -------------------
 * This file contains the list-based implementation of the Queue class.
 */

#ifdef _queue_h

#include "error.h"

/*
 * Implementation notes: Queue constructor
 * ---------------------------------------
 * The constructor creates an empty linked list and sets the count to 0.
 */

template <typename ValueType>
Queue<ValueType>::Queue() {
 head = tail = NULL;
 count = 0;
}

/*
 * Implementation notes: ~Queue destructor
 * ---------------------------------------
 * The destructor frees any heap memory allocated by the queue.
 */

template <typename ValueType>
Queue<ValueType>::~Queue() {
 clear();
}

/*
 * Implementation notes: size, isEmpty, clear
 * --
 * The implementation maintains count so that size remains O(1).
 */

template <typename ValueType>
int Queue<ValueType>::size() {
 return count;
}

template <typename ValueType>
bool Queue<ValueType>::isEmpty() {
 return count == 0;
}

template <typename ValueType>
void Queue<ValueType>::clear() {
 while (count > 0) {
 dequeue();
 }
}

 14.4 Implementing queues 639

listimpl.cpp, p2
F I G U R E 1 4 - 1 0 Contents of the queueimpl.cpp file for the list-based queue (continued)

/*
 * Implementation notes: enqueue
 * -----------------------------
 * This method allocates a new list cell and chains it in at the tail of
 * the queue. If the queue is currently empty, the new cell must also
 * become the head pointer in the queue.
 */

template <typename ValueType>
void Queue<ValueType>::enqueue(ValueType elem) {
 Cell *cell = new Cell;
 cell->data = elem;
 cell->link = NULL;
 if (head == NULL) {
 head = cell;
 } else {
 tail->link = cell;
 }
 tail = cell;
 count++;
}

/*
 * Implementation notes: dequeue, peek
 * -----------------------------------
 * These methods must check for an empty queue and report an error if
 * there is no first element. The dequeue method must also check for
 * the case in which the queue becomes empty and set both the head
 * and tail pointers to NULL.
 */

template <typename ValueType>
ValueType Queue<ValueType>::dequeue() {
 if (isEmpty()) error("dequeue: Attempting to dequeue an empty queue");
 Cell *cell = head;
 ValueType result = cell->data;
 head = cell->link;
 if (head == NULL) tail = NULL;
 count--;
 delete cell;
 return result;
}

template <typename ValueType>
ValueType Queue<ValueType>::peek() {
 if (isEmpty()) error("peek: Attempting to peek at an empty queue");
 return head->data;
}

#endif

640 Linear Structures

The enqueue implementation must check for the empty queue as a special case. If
the head pointer is NULL, enqueue must set both the head and tail pointers so
that they point to the cell containing the new element. Thus, if you were to enqueue
the customer A into an empty queue, the internal structure of the pointers at the end
of the enqueue operation would look like this:

If you make another call to enqueue, the head pointer is no longer NULL, which
means that the implementation no longer has to perform the special-case action for
the empty queue. Instead, the enqueue implementation uses the tail pointer to
find the end of the linked-list chain and adds the new cell at that point. For
example, if you enqueue the customer B after customer A, the resulting structure
looks like this:

 14.5 Implementing vectors
The Vector class introduced in Chapter 5 is another example of a linear structure.
In many respects, the implementation of the Vector class is similar to that of the
stack and queue abstractions you have already seen in this chapter. As with those
structures, you can implement vectors using a variety of internal representations that
vary in their efficiency, although arrays are the most common choice. Moreover,
because vectors must expand dynamically, an implementation of the Vector class
must be able to extend the capacity of its underlying array, just as the array-based
implementations of stacks and queues do. Implementing the Vector class also
raises a couple of new issues that did not arise in the stack and queue structures:

• The Vector class allows the client to insert and remove elements.

• The Vector class supports selection using square brackets, just as arrays do.

The implementation issues that arise in implementing these features are described in
individual sections that follow the listing of the vector.h interface, which appears
as Figure 14-11, followed by the vectorpriv.h private section in Figure 14-12.

head

tail

count 1
A

head

tail

count 2
A B

 14.5 Implementing vectors 641

vector.h, p1
F I G U R E 1 4 - 1 1 Interface for the Vector class

/*
 * File: vector.h
 * --------------
 * This interface exports the Vector template class, which provides an
 * efficient, safe, convenient replacement for the array type in C++.
 */

#ifndef _vector_h
#define _vector_h

/*
 * Class: Vector<ValueType>
 * ------------------------
 * This class stores an ordered list of values similar to an array. It
 * supports traditional array selection using square brackets, but also
 * supports inserting and deleting elements.
 */

template <typename ValueType>
class Vector {

public:

/*
 * Constructor: Vector
 * Usage: Vector<ValueType> vec;
 * Vector<ValueType> vec(n, value);
 * ---------------------------------------
 * Initializes an empty vector.
 */

 Vector();
 Vector(int n, ValueType value = ValueType());

/*
 * Destructor: ~Vector
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage allocated by this vector.
 */

 ~Vector();

/*
 * Method: size
 * Usage: int nElems = vec.size();
 * -------------------------------
 * Returns the number of elements in this vector.
 */

 int size();

642 Linear Structures

vector.h, p2
F I G U R E 1 4 - 1 1 Interface for the Vector class (continued)

/*
 * Method: isEmpty
 * Usage: if (vec.isEmpty()) . . .
 * -------------------------------
 * Returns true if this vector contains no elements.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: vec.clear();
 * -------------------
 * Removes all elements from this vector.
 */

 void clear();

/*
 * Method: get
 * Usage: ValueType val = vec.get(index);
 * --------------------------------------
 * Returns the element at the specified index in this vector. This method
 * signals an error if the index is not in the array range.
 */

 ValueType get(int index);

/*
 * Method: set
 * Usage: vec.set(index, value);
 * -----------------------------
 * Replaces the element at the specified index in this vector with a new
 * value. The previous value at that index is overwritten. This method
 * signals an error if the index is not in the array range.
 */

 void set(int index, ValueType value);

/*
 * Method: insertAt
 * Usage: vec.insertAt(0, value);
 * ------------------------------
 * Inserts the element into this vector before the specified index. All
 * subsequent elements are shifted one position to the right. This method
 * signals an error if the index is outside the range from 0 up to and
 * including the length of the vector.
 */

 void insertAt(int index, ValueType value);

 14.5 Implementing vectors 643

vector.h, p3
F I G U R E 1 4 - 1 1 Interface for the Vector class (continued)

/*
 * Method: removeAt
 * Usage: vec.removeAt(index);
 * ---------------------------
 * Removes the element at the specified index from this vector. All
 * subsequent elements are shifted one position to the left. This method
 * signals an error if the index is outside the array range.
 */

 void removeAt(int index);

/*
 * Method: add
 * Usage: vec.add(value);
 * ----------------------
 * Adds a new value to the end of this vector.
 */

 void add(ValueType value);

/*
 * Operator: []
 * Usage: vec[index]
 * -----------------
 * Overloads [] to select elements from this vector. This extension
 * enables the use of traditional array notation to get or set individual
 * elements. This method signals an error if the index is outside the
 * array range.
 */

 ValueType & operator[](int index);

#include "vectorpriv.h"

};

#include "vectorimpl.cpp"

#endif

644 Linear Structures

Supporting insertion and deletion
The ability to insert and remove elements at arbitrary index positions is not
particularly difficult to implement, especially since you have already seen the
necessary techniques in the discussion of the editor buffer in Chapter 13. Just as in
the case of the array-based editor buffer, inserting a new element into a Vector
requires shifting all subsequent elements forward in the array. Similarly, removing
an element requires shifting the remaining elements backward to close up the hole.
These shift operations are implemented by the insertAt and removeAt methods,
which appear in Figure 14-13 on page 647. Each of these operations requires O(N)
time in the worst case, which occurs when the insertion or deletion takes place near
the beginning of the array.

F I G U R E 1 4 - 1 2 Contents of the vectorpriv.h file

/*
 * File: vectorpriv.h
 * ------------------
 * This file contains the private section of the vector.h interface.
 */

/*
 * Implementation notes: Vector data structure
 * ---
 * The elements of the Vector are stored in a dynamic array of
 * the specified element type. If the space in the array is ever
 * exhausted, the implementation doubles the array capacity.
 */

private:

 static const int INITIAL_CAPACITY = 10;

/* Instance variables */

 ValueType *array; /* A dynamic array of the elements */
 int capacity; /* The allocated size of the array */
 int count; /* The number of elements in use */

/* Private method prototypes */

 void expandCapacity();

/* Make it illegal to copy vectors */

 Vector(const Vector & value) { }
 const Vector & operator=(const Vector & rhs) { return *this; }

 14.5 Implementing vectors 645

vectorimpl.cpp, p1
F I G U R E 1 4 - 1 3 Implementation of the Vector class

/*
 * File: vectorimpl.cpp
 * --------------------
 * This file contains the implementation of the vector.h interface.
 * Because of the way C++ compiles templates, this code must be
 * available to the compiler when it reads the header file.
 */

#ifdef _vector_h

#include "error.h"

/*
 * Implementation notes: Vector constructor and destructor
 * ---
 * The two implementations of the constructor each allocate storage for
 * the dynamic array and then initialize the other fields of the object.
 * The destructor frees the heap memory used by the dynamic array.
 */

template <typename ValueType>
Vector<ValueType>::Vector() {
 capacity = INITIAL_CAPACITY;
 count = 0;
 array = new ValueType[capacity];
}

template <typename ValueType>
Vector<ValueType>::Vector(int n, ValueType value) {
 capacity = (n > INITIAL_CAPACITY) ? n : INITIAL_CAPACITY;
 array = new ValueType[capacity];
 count = n;
 for (int i = 0; i < n; i++) {
 array[i] = value;
 }
}

template <typename ValueType>
Vector<ValueType>::~Vector() {
 delete[] array;
}

646 Linear Structures

vectorimpl.cpp, p2
F I G U R E 1 4 - 1 3 Implementation of the Vector class

/*
 * Implementation notes: Vector methods
 * ------------------------------------
 * The basic Vector methods are straightforward and should require
 * no detailed documentation.
 */

template <typename ValueType>
inline int Vector<ValueType>::size() {
 return count;
}

template <typename ValueType>
bool Vector<ValueType>::isEmpty() {
 return count == 0;
}

template <typename ValueType>
void Vector<ValueType>::clear() {
 count = 0;
}

template <typename ValueType>
ValueType Vector<ValueType>::get(int index) {
 if (index < 0 || index >= count) {
 error("get: index out of range");
 }
 return array[index];
}

template <typename ValueType>
void Vector<ValueType>::set(int index, ValueType elem) {
 if (index < 0 || index >= count) {
 error("set: index out of range");
 }
 array[index] = elem;
}

/*
 * Implementation notes: Vector selection
 * --------------------------------------
 * The following code implements traditional array selection using square
 * brackets for the index. To ensure that clients can assign to array
 * elements, this method uses an & to return the result by reference.
 */

template <typename ValueType>
ValueType & Vector<ValueType>::operator[](int index) {
 if (index < 0 || index >= count) {
 error("Vector selection index out of range");
 }
 return array[index];
}

 14.5 Implementing vectors 647

vectorimpl.cpp, p3
F I G U R E 1 4 - 1 3 Implementation of the Vector class

/*
 * Implementation notes: add, insertAt, removeAt
 * ---
 * These methods must shift the existing elements in the array to make
 * room for a new element or to close up the space left by a deleted one.
 */

template <typename ValueType>
void Vector<ValueType>::add(ValueType elem) {
 insertAt(count, elem);
}

template <typename ValueType>
void Vector<ValueType>::insertAt(int index, ValueType elem) {
 if (count == capacity) expandCapacity();
 if (index < 0 || index > count) {
 error("insertAt: index out of range");
 }
 for (int i = count; i > index; i--) {
 array[i] = array[i - 1];
 }
 array[index] = elem;
 count++;
}

template <typename ValueType>
void Vector<ValueType>::removeAt(int index) {
 if (index < 0 || index >= count) {
 error("removeAt: index out of range");
 }
 for (int i = index; i < count - 1; i++) {
 array[i] = array[i + 1];
 }
 count--;
}

/*
 * Implementation notes: expandCapacity
 * ------------------------------------
 * This method doubles the array capacity whenever it runs out of space.
 */

template <typename ValueType>
void Vector<ValueType>::expandCapacity() {
 ValueType *oldArray = array;
 capacity *= 2;
 array = new ValueType[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[i];
 }
 delete[] oldArray;
}

#endif

648 Linear Structures

Implementing selection brackets
As you know from several of the earlier chapters, C++ makes it possible to extend
the standard operators so that they apply to new types. In the examples you have
seen so far, the name of the operator method consists of the keyword operator
followed by the operator symbol. If, for example, you want to overload the +
operator, you define a method named operator+. For selection, C++ uses the
method name operator[] to suggest that the brackets are paired, even though the
brackets are not in fact adjacent in the code.

The code to implement bracket selection is reasonably straightforward once you
know how to write the method name. The code for operator[] looks exactly like
the code for get except for the header line and the text of the error message:

template <typename ValueType>
ValueType & Vector<ValueType>::operator[](int index) {
 if (index < 0 || index >= count) {
 error("Vector selection index out of range");
 }
 return elements[index];
}

The code for the operator[] method is, however, a bit more subtle than it first
appears. As was true for the insertion operator introduced in section 6.2, the
selection operator must use return by reference so that it is possible to assign a new
value to an element position.

 Summary
In this chapter, you have learned how to use the C++ template mechanism for
generic container classes. A template allows you to define the class in terms of a
type placeholder that can be specialized to a particular client data type. You have
also had the chance to see a list-based implementation of the Stack class, a list- and
an array-based implementation of Queue, and an array-based implementation of
Vector.

Important points in this chapter include:

• Templates are used to define generic container classes.

• Stacks can be implemented using a linked-list structure in addition to the more
traditional array-based representation.

• The array-based implementation of queues is somewhat more complex than its
stack counterpart. The traditional implementation uses a structure called a ring
buffer, in which the elements logically wrap around from the end of the array to

 Review questions 649

the beginning. Modular arithmetic makes it easy to implement the ring buffer
concept.

• In the ring-buffer implementation used in this chapter, a queue is considered
empty when its head and tail indices are the same. This representation strategy
means that the maximum capacity of the queue is one element less than the
allocated size of the array. Attempting to fill all the elements in the array makes
a full queue indistinguishable from an empty one.

• Queues can also be represented using a singly linked list marked by two
pointers, one to the head of the queue and another to the tail.

• Vectors can easily be represented using dynamic arrays. Inserting new elements
and removing existing ones requires shifting data in the array, which means that
these operations typically require O(N) time.

• You can redefine operators for a class by defining methods whose name consists
of the keyword operator followed by the operator symbol. In particular, you
can redefine selection by defining the operator[] method.

 Review questions
1. When designing a generic container, what advantages does a C++ template

offer?

2. When specializing a class template for use as a client, how do you specify

what type should be used to fill in the template placeholder?

3. Using the linked-list implementation, draw a diagram of the cells used to

represent myStack after the following operations have been performed:

Stack<char> myStack;
myStack.push('A');
myStack.push('B');
myStack.push('C');

4. If you use an array to store the underlying elements in a queue, what are the

Queue class private instance variables?

5. What is a ring buffer? How does the ring-buffer concept apply to queues?

6. How can you tell if an array-based queue is empty? How can you tell if it has

reached its capacity?

7. Assuming that INITIAL_CAPACITY has the artificially small value 3, draw a

diagram showing the underlying representation of the array-based queue
myQueue after the following sequence of operations:

650 Linear Structures

Queue<char> myQueue;
myQueue.enqueue('A');
myQueue.enqueue('B');
myQueue.enqueue('C');
myQueue.dequeue();
myQueue.dequeue();
myQueue.enqueue('D');
myQueue.enqueue('E');
myQueue.dequeue();
myQueue.enqueue('F');

8. Explain how modular arithmetic is useful in the array-based implementation of

queues.

9. Describe what is wrong with the following implementation of size for the

array-based representation of queues:

template <typename ValueType>
int Queue<ValueType>::size() {
 return (tail - head) % capacity;
}

10. Draw a diagram showing the internal structure of a linked-list queue after the

computer finishes the set of operations in question 7.

11. How can you tell if a linked-list queue is empty?

12. What is the purpose of the operator keyword?

13. What is the name of the method you need to override if you want to define

bracket selection for a class?

 Exercises
1. Because the ring-buffer implementation of queues makes it impossible to tell

the difference between an empty queue and one that is completely full, the
capacity of the queue is one less than the allocated size of the array. You can
avoid this restriction by changing the internal representation so that the
concrete structure of the queue keeps track of the number of elements in the
queue instead of the index of the tail element. Given the index of the head
element and the number of data values in the queue, you can easily calculate
the tail index, which means that you don’t need to store this value explicitly.
Rewrite the array-based queue representation so that it uses this representation.

 Review questions 651

2. In exercise 13 from Chapter 5, you had the opportunity to write a function

void reverseQueue(Queue<string> & queue);

that reverses the elements in the queue, working entirely from the client side.
If you are the designer of a class, however, you could add this facility to the
queue.h interface and export it as one of its methods. For both the array- and
list-based implementations of the queue, make all the changes necessary to
export the method

void reverse();

that reverses the elements in the queue. In both cases, write the functions so
that they use the original memory cells and do not allocate any additional
storage.

3. In the queue abstraction presented in this chapter, new items are always added

at the end of the queue and wait their turn in line. For some programming
applications, it is useful to extend the simple queue abstraction into a priority
queue, in which the order of the items is determined by a numeric priority
value. When an item is enqueued in a priority queue, it is inserted in the list
ahead of any lower priority items. If two items in a queue have the same
priority, they are processed in the standard first-in/first-out order.

Using the linked-list implementation of queues as a model, design and
implement a pqueue.h interface that exports a class called PriorityQueue,
which exports the same methods as the traditional Queue class with the
exception of the enqueue method, which now takes an additional argument,
as follows:

void enqueue(ValueType value, double priority);

The parameter value is the same as for the traditional versions of enqueue;
the priority argument is a numeric value representing the priority. As in
conventional English usage, smaller integers correspond to higher priorities, so
that priority 1 comes before priority 2, and so forth.

4. Reimplement the Vector class presented in this chapter so that it uses a

linked list as its underlying representation. What operations are slower using
this model? What operations are faster?

5. Reimplement the Vector class so that its underlying representation uses two
stacks in the style of the stack-based editor buffer introduced in Chapter 13.
The gap between the two stacks should always be the last point at which an
insertion or deletion was made, which means that executing a series of
insertions or deletions at the same index position will run in constant time.

652 Linear Structures

6. Use the techniques from the Vector implementation in section 12.4 to
implement the Grid class, with the exception of bracket selection, which is
much trickier to code for a two-dimensional structure.

7. The collection classes implemented in this chapter all define private versions

of the assignment operator and the copy constructor, thereby making it illegal
to copy these structures. The actual library implementations define public
versions of these methods that use the techniques introduced in section 12.4 to
make deep copies of the underlying representation.

Chapter 15
Maps and Hashing

A map was a fine thing to study when you were disposed to think
of something else . . .

— George Eliot, Middlemarch, 1874

654 Maps and Hashing

One of the most useful data structures introduced in Chapter 5 is the Map class,
which provides an association between keys and values. The primary goal of this
chapter is to show you how maps can be implemented efficiently using a clever
representation called a hash table, which makes it possible to find the value of a key
in constant time. Before doing so, however, it makes sense to start with a less
efficient implementation that is not nearly so clever just to make sure that you
understand what is involved in implementing the operations required for a map.
The following section defines an array-based implementation for the Map class. The
rest of the chapter then looks at various strategies for improving on that simple
design.

 15.1 Implementing maps using arrays
Figure 15-1 shows a slightly simplified implementation of the map.h interface,
which leaves out four features of the library version of the interface: removing
existing map entries, deep copying, selection using square brackets, and the ability
to iterate over the keys in a map. Even in its restricted form, the interface is quite
useful, and it makes sense to investigate possible implementations of the
fundamental operations before adding more sophisticated features to the interface.

The simplest strategy for representing a map is to store each key/value pair in an
array. That array, moreover, needs to be dynamic so that it can expand if the
number of entries in the map grows beyond the initial allocation. Each key/value
pair is stored in a structure with the following definition:

struct KeyValuePair {
 KeyType key;
 ValueType value;
};

The identifiers KeyType and ValueType are the template parameters used to define
the Map class.

By this time, the code necessary to implement a collection class based on a
dynamic array should be almost second nature. You have, after all, seen almost
exactly the same code in the implementation of the character stack in Chapter 12,
the array-based implementation of the editor buffer in Chapter 13, and three
different implementations of the linear structures in Chapter 14. In each case, the
private section of the class contains a dynamic array, a variable to hold the capacity,
a variable to hold the actual number of elements, and a method to expand the
capacity of the array when it runs out of space. The mappriv.h file that defines
this structure appears in Figure 15-2.

 15.1 Implementing maps using arrays 655

map.h, p1
F I G U R E 1 5 - 1 Simplified interface for the map abstraction

/*
 * File: map.h
 * -----------
 * This interface exports a simplified version of the Map class.
 */

#ifndef _map_h
#define _map_h

/*
 * Class: Map<KeyType,ValueType>
 * -----------------------------
 * The Map class maintains an association between keys and values of
 * the specified types.
 */

template <typename KeyType,typename ValueType>
class Map {

public:

/*
 * Constructor: Map
 * Usage: Map<KeyType,ValueType> map;
 * ----------------------------------
 * Initializes a new empty map that associates keys and values.
 */

 Map();

/*
 * Destructor: ~Map
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this map.
 */

 ~Map();

/*
 * Method: size
 * Usage: int nEntries = map.size();
 * ---------------------------------
 * Returns the number of entries in this map.
 */

 int size();

/*
 * Method: isEmpty
 * Usage: if (map.isEmpty()) . . .
 * -------------------------------
 * Returns true if this map contains no entries.
 */

 bool isEmpty();

656 Maps and Hashing

map.h, p2
F I G U R E 1 5 - 1 Simplified interface for the map abstraction (continued)

/*
 * Method: clear
 * Usage: map.clear();
 * -------------------
 * Removes all entries from this map.
 */

 void clear();

/*
 * Method: put
 * Usage: map.put(key, value);
 * ---------------------------
 * Associates key with value in this map. Any previous value associated
 * with key is replaced by the new value.
 */

 void put(KeyType key, ValueType value);

/*
 * Method: get
 * Usage: ValueType value = map.get(key);
 * --------------------------------------
 * Returns the value associated with key in this map. If key is not
 * found, the get method signals an error.
 */

 ValueType get(KeyType key);

/*
 * Method: containsKey
 * Usage: if (map.containsKey(key)) . . .
 * --------------------------------------
 * Returns true if there is an entry for key in this map.
 */

 bool containsKey(KeyType key);

#include "mappriv.h"

};

#include "mapimpl.cpp"

#endif

 15.1 Implementing maps using arrays 657

One possible implementation for the array-based version of the Map class
appears in Figure 15-3. This implementation uses the linear-search algorithm to
find an existing key in the map, as expressed in the private method findKey, which
is called by each of the methods get, put, and containsKey:

template <typename KeyType,typename ValueType>
int Map<KeyType,ValueType>::findKey(KeyType key) {
 for (int i = 0; i < count; i++) {
 if (array[i].key == key) return i;
 }
 return -1;
}

This method returns the index at which a particular key appears in the list of keys
already included in the array; if the key does not appear, findKey returns −1. The
use of the linear-search algorithm means that the get, put, and containsKey
methods are all O(N).

F I G U R E 1 5 - 2 Contents of the mappriv.h file for the array-based map

/*
 * File: mappriv.h
 * ---------------
 * This file defines the private section of the Map class using an
 * array-based representation.
 */

private:

/*
 * Type: KeyValuePair
 * ------------------
 * This structure combines a key and a value into a single unit.
 */

 struct KeyValuePair {
 KeyType key;
 ValueType value;
 };

/* Instance variables */

 KeyValuePair *array; /* Dynamic array of key-value pairs */
 int capacity; /* The capacity of the dynamic array */
 int count; /* The current number of entries */

/* Private method prototypes */

 void expandCapacity();
 int findKey(KeyType key);

658 Maps and Hashing

mapimpl.cpp, p1
F I G U R E 1 5 - 3 Contents of the mapimpl.cpp file for the array-based map

/*
 * File: mapimpl.cpp
 * -----------------
 * This file contains the implementation of the map.h interface.
 * Because of the way C++ compiles templates, this code must be
 * available to the compiler when it reads the header file.
 */

#ifdef _map_h

#include "error.h"

/* Constants */

const int INITIAL_CAPACITY = 10; /* Initial capacity for the dynamic array */

/*
 * Implementation notes
 * --------------------
 * The implementation of the methods in this class are short enough that
 * they should be entirely straightforward, particularly given their
 * similarity to the other classes that use dynamic arrays as their
 * internal representation.
 */

template <typename KeyType,typename ValueType>
Map<KeyType,ValueType>::Map() {
 capacity = INITIAL_CAPACITY;
 count = 0;
 array = new KeyValuePair[capacity];
}

template <typename KeyType,typename ValueType>
Map<KeyType,ValueType>::~Map() {
 delete[] array;
}

template <typename KeyType,typename ValueType>
int Map<KeyType,ValueType>::size() {
 return count;
}

template <typename KeyType,typename ValueType>
bool Map<KeyType,ValueType>::isEmpty() {
 return count == 0;
}

template <typename KeyType,typename ValueType>
void Map<KeyType,ValueType>::clear() {
 count = 0;
}

 15.1 Implementing maps using arrays 659

mapimpl.cpp, p2
F I G U R E 1 5 - 3 Contents of the mapimpl.cpp file for the array-based map (continued)

template <typename KeyType,typename ValueType>
void Map<KeyType,ValueType>::put(KeyType key, ValueType value) {
 int index = findKey(key);
 if (index == -1) {
 if (count == capacity) expandCapacity();
 index = count++;
 array[index].key = key;
 }
 array[index].value = value;
}

template <typename KeyType,typename ValueType>
ValueType Map<KeyType,ValueType>::get(KeyType key) {
 int index = findKey(key);
 if (index == -1) error("get: No value for key");
 return array[index].value;
}

template <typename KeyType,typename ValueType>
bool Map<KeyType,ValueType>::containsKey(KeyType key) {
 return findKey(key) != -1;
}

/*
 * Private method: expandCapacity
 * ------------------------------
 * Doubles the capacity of the array containing the key/value pairs.
 */

template <typename KeyType,typename ValueType>
void Map<KeyType,ValueType>::expandCapacity() {
 KeyValuePair *oldArray = array;
 capacity *= 2;
 array = new KeyValuePair[capacity];
 for (int i = 0; i < count; i++) {
 array[i] = oldArray[i];
 }
 delete[] oldArray;
}

/*
 * Private method: findKey
 * -----------------------
 * Returns the index at which the key appears, or -1 if it is not found.
 */

template <typename KeyType,typename ValueType>
int Map<KeyType,ValueType>::findKey(KeyType key) {
 for (int i = 0; i < count; i++) {
 if (array[i].key == key) return i;
 }
 return -1;
}

#endif

660 Maps and Hashing

It is possible to improve the performance of the get and containsKey methods
by keeping the keys in sorted order and applying the binary-search algorithm, which
was introduced in section 7.5. Binary search reduces the search time to O(log N),
which represents a dramatic improvement over the O(N) time that linear search
requires. Unfortunately, there is no obvious way to apply that same optimization to
the put method. Although it is certainly possible to check whether the key already
exists in the map—and even to determine exactly where a new key needs to be
added—in O(log N) time, inserting the new key/value pair at that position requires
shifting every subsequent entry forward. That operation requires O(N) time.

 15.2 Lookup tables
The map abstraction comes up so frequently in programming that it is worth putting
some effort into improving its performance. The implementation plan described in
the preceding section—storing the key/value pairs in sorted order in a dynamic
array—offers O(log N) performance for the get operation and O(N) performance
for the put operation. It is possible to do much better.

When you are trying to optimize the performance of a data structure, it is often
helpful to identify performance enhancements that apply to some special case and
then look for ways to apply those algorithmic improvements more generally. This
section introduces a specific problem for which it is easy to find constant-time
implementations of the get and put operations. It then goes on to explore how a
similar technique might help in a more general context.

In 1963, the United States Postal Service introduced a set of two-letter codes for
the individual states, districts, and territories of the United States. The codes for the
50 states appear in Figure 15-4. Although you might also want to translate in the
opposite direction as well, this section considers only the problem of translating
two-letter codes into state names. The data structure that you choose must therefore
be able to represent a map from two-letter abbreviations to state names.

F I G U R E 1 5 - 4 USPS abbreviations for the 50 states

AK Alaska

AL Alabama

AR Arkansas

AZ Arizona

CA California

CO Colorado

CT Connecticut

DE Delaware

FL Florida

GA Georgia

HI Hawaii

IA Iowa

ID Idaho

IL Illinois

IN Indiana

KS Kansas

KY Kentucky

LA Louisiana

MA Massachusetts

MD Maryland

ME Maine

MI Michigan

MN Minnesota

MO Missouri

MS Mississippi

MT Montana

NC North Carolina

ND North Dakota

NE Nebraska

NH New Hampshire

NJ New Jersey

NM New Mexico

NV Nevada

NY New York

OH Ohio

OK Oklahoma

OR Oregon

PA Pennsylvania

RI Rhode Island

SC South Carolina

SD South Dakota

TN Tennessee

TX Texas

UT Utah

VA Virginia

VT Vermont

WA Washington

WI Wisconsin

WV West Virginia

WY Wyoming

 15.2 Lookup tables 661

You could, of course, encode the translation table in a Map<string,string>.
If you look at this problem strictly from the client’s point of view, the details of the
implementation aren’t particularly important. In this chapter, however, the goal is
to identify new implementation strategies for maps that operate more efficiently. In
this example, the important question to ask is whether the fact that the keys are
two-letter strings makes it possible to implement this association more efficiently
than the array-based strategy from the preceding section.

As it turns out, the two-character restriction on the keys makes it easy to reduce
the complexity of the lookup operation to constant time. All you need to do is store
the state names in a two-dimensional grid in which the letters in the state
abbreviation are used to compute the row and column indices. To select a particular
element from the grid, all you have to do is break the state abbreviation down into
the two characters it contains, subtract the ASCII value of 'A' from each character
to get an index between 0 and 25, and then use these two indices to select a row and
column. Thus, given a grid that has already been initialized to contain the state
abbreviations as shown in Figure 15-5, you can use the following function to
convert an abbreviation to the corresponding state name:

string getStateName(string key, Grid<string> & grid) {
 char row = key[0] - 'A';
 char col = key[1] - 'A';
 if (!grid.inBounds(row, col) || grid[row][col] == "") {
 error("No state name for " + abbr);
 }
 return grid[row][col];
}

This function contains nothing that looks like the traditional process of searching

an array. What happens instead is that the function performs simple arithmetic on
the character codes and then looks up the answer in a grid. There are no loops in
the implementation or any code that depends at all on the number of keys in the
map. Looking up an abbreviation in the table must therefore run in O(1) time.

The grid used in the getStateName function is an example of a lookup table,
which is a programming structure that makes it possible to obtain a desired value
simply by computing the appropriate index in a table, which is typically an array or
a grid. The reason that lookup tables are so efficient is that the key tells you
immediately where to look for the answer. In the current application, however, the
organization of the table depends on the fact that the keys always consist of two
uppercase letters. If the keys could be arbitrary strings—as they are in the library
version of the Map class—the lookup-table strategy no longer applies, at least in its
current form. The critical question is whether it is possible to generalize this
strategy so that it applies to the more general case.

662 Maps and Hashing

If you think about how this question applies to real-life applications, you may

discover that you in fact use something akin to the lookup-table strategy when you
search for words in a dictionary. If you were to apply the array-based map strategy
to the dictionary-lookup problem, you would start at the first entry, go on to the
second, and then the third, until you found the word. No one, of course, would
apply this algorithm in a real dictionary of any significant size. But it is also
unlikely that you would apply the O(log N) binary search algorithm, which consists
of opening the dictionary exactly at the middle, deciding whether the word you’re
searching for appears in the first or second half, and then repeatedly applying this
algorithm to smaller and smaller parts of the dictionary. In all likelihood, you
would take advantage of the fact that most dictionaries have thumb tabs along the
side that indicate where the entries for each letter appear. You look for words
starting with A in the A section, words starting with B in the B section, and so on.

F I G U R E 1 5 - 5 First nine columns of the state lookup table

A

A B C D E F G H . . .

0

I

B 1

C California 2

D Delaware 3

E 4

F 5

G Georgia 6

H 7Hawaii

I Iowa Idaho 8

J 9

K 10

L Louisiana 11

M Massachusetts Maryland Maine 12Michigan

N North Carolina North Dakota Nebraska New Hampshire 13

O Ohio 14

P Pennsylvania 15

Q 16

R 17Rhode Island

S South Carolina South Dakota 18

T 19

U 20

V Virginia 21

W Washington 22Wisconsin

X 23

Y 24

Z

0 1 2 3 4 5 6 7

25

8

 15.3 Hashing 663

These thumb tabs represent a lookup-table that gets you to the right section, thereby
reducing the number of words through which you need to search.

At least for those maps that use strings as their key type, it is possible to apply
the same strategy to the map abstraction. In this type of map, each key begins with
some character value, although that character is not necessarily a letter. If you want
to simulate the strategy of using thumb tabs for every possible first character, you
can divide the map into 256 independent lists of key/value pairs—one for each
starting character. Whenever the client calls put or get with some key, the code
can choose the appropriate list on the basis of the first character. If the characters
used to form keys are uniformly distributed, this strategy would reduce the average
search time by a factor of 256.

Unfortunately, keys in a map—like words in a dictionary—are not uniformly
distributed. In the dictionary case, for example, many more words begin with C
than with X. If you use a map in an application, it is likely that most of the 256
possible first characters never appear at all. As a result, some of the lists will
remain empty, while others become quite long. The increase in efficiency you get
by applying the first-character strategy therefore depends on how common the first
character in the key happens to be.

On the other hand, there is no reason that you have to use only the first character
of the key as you try to optimize the performance of the map. The first-character
strategy is simply the closest analogue to what you do with a physical dictionary.
What you need is a strategy in which the value of the key tells you where to find the
location of the value, as it does in a lookup table. That idea is most elegantly
implemented using a technique called hashing, which is described in the following
section.

 15.3 Hashing
The best way to improve the efficiency of the map implementation is to come up
with a way of using the key to determine, at least fairly closely, where to look for
the corresponding value. Choosing any obvious property of the key, such as its first
character or even its first two characters, runs into the problem that keys are not
equally distributed with respect to that property.

Given that you are using a computer, however, there is no reason that the
property you use to locate the key has to be something easy for a human to figure
out. To maintain the efficiency of the implementation, the only thing that matters is
whether the property is easy for a computer to figure out. Since computers are
better at computation than humans are, allowing for algorithmic computation opens
a much wider range of possibilities.

664 Maps and Hashing

The computational strategy called hashing operates as follows:

1. Select a function ƒ that transforms a key into an integer value. That value is

called the hash code of that key. The function that computes the hash code is
called, naturally enough, a hash function. An implementation of the map
abstraction that uses this strategy is conventionally called a hash table.

2. Use the hash code for a key as the starting point as you search for a matching
key in the table. You might, for example, use the hash code as an index into an
array of lists, each of which holds all the key/value pairs that correspond to that
hash code. To find an exact match, all you need to do is search through the list
of key/value pairs in that list. As long as the hash function always returns the
same value for any particular key, you know that the value, if it exists, must be
in that list. Suppose, for example, that you call put on a key whose hash code
is 17. According to the basic hashing algorithm, the put method must store
that key and its value on list #17. If you later call get with that same key, the
hash code you get will be the same, which means that the desired key/value pair
must be on list #17, if it exists in the hash table at all.

The hashmap.h interface
Before diving into the details of the hash table implementation, it is important to
point out that the Standard Template Library does not actually use hash tables to
represent maps. In C++, the standard libraries adopt a different strategy that uses as
its underlying representation a structure called a binary search tree, which you will
learn about in Chapter 16. Using binary search trees to implement maps is
somewhat less efficient than using hash tables but has the advantage of making it
possible to iterate through the keys in order.

Many modern languages allow programmers to choose a representation for maps
to match the needs of each application. The Java libraries, for example, export two
different classes that implement the map idea. The HashMap class uses a hash table
as its underlying representation; the TreeMap class uses a binary search tree.
Clients use the HashMap class when they require the best possible performance and
the TreeMap class whenever the order of keys is important.

The Stanford libraries adopt a similar strategy. To maintain consistency with the
STL version of maps, the map.h interface uses a tree-based implementation. For
applications that require better performance, the Stanford libraries also export a
separate HashMap class through the hashmap.h interface. The methods exported
by the two classes are exactly the same. The only difference visible to the client is
the order of iteration, which is unpredictable in the HashMap case.

 15.3 Hashing 665

The decision of the C++ designers not to include hash maps in the Standard
Template Library makes a certain amount of sense. The performance advantage of
hashing is not that large in practice; moreover, having a single map abstraction
reduces the conceptual complexity of the libraries. As a student of computer
science, however, it is essential for you to learn about hashing as you study
algorithms and data structures. For one thing, it is extremely important in practice,
and there are many languages for which the library designers made the opposite
decision by including hashing as the only option. For another, hashing surely ranks
as one of the most elegant algorithmic discoveries from the early history of the
computing field, even though no one is sure who actually came up with the idea.

Designing the data structure
The first step toward implementing a hash table is to design the data structure. As
the preceding section suggests, each hash code serves as an index into an array of
linked lists. Each list is traditionally called a bucket. Whenever you call put or
get, you select the appropriate bucket by applying the hash function to the key.
That function gives you an integer, which is likely to be larger than the number of
buckets you have in your hash table. You can, however, convert an arbitrarily large
nonnegative hash code into a bucket number by dividing the hash code by the
number of buckets and taking the remainder. Thus, if the number of buckets is
stored in the variable nBuckets and the function hashCode computes the hash
code for a given key, you can use the following line to compute the bucket number:

int bucket = hashCode(key) % nBuckets;

A bucket number represents an index into an array, each of whose elements is a
pointer to the first cell in a list of key/value pairs. Colloquially, computer scientists
say that a key hashes to a bucket if the hash function applied to the key returns that
bucket number. Thus, the common property that links all the keys in a single linked
list is that they all hash to the same bucket. Having two or more different keys hash
to the same bucket is called collision.

To help you visualize the representation of a hash table, Figure 15-6 shows how
the abbreviations for the 50 states fit into a table with 13 buckets. The abbreviations
AK, KS, ME, RI, and VT all hash to bucket #0; AL, MS, NY, OR, SC, and WA all hash to
bucket #1; and so on. By distributing the keys among the buckets, the get and put
functions have a much shorter list to search.

The private section of the HashMap class must contain the instance variables and
type definitions necessary to represent the data structure depicted in Figure 15-6.
The private section of the object contains three instance variables: a dynamic array
containing linked lists of the individual entries (buckets), the size of that array
(nBuckets), and the number of entries in the hash table (count).

666 Maps and Hashing

state map
F I G U R E 1 5 - 6 Hash table containing the state abbreviations

buckets

nBuckets

count

13

50

0

VT

Vermont

RI

Rhode Island

ME

Maine

KS

Kansas

AK

Alaska

1

WA

Washington

SC

South Carolina

OR

Oregon

NY

New York

MS

Mississippi

AL

Alabama

2 SD

South Dakota

NM

New Mexico

MT

Montana

LA

Louisiana

DE

Delaware

AZ

Arizona3

TX

Texas

4

PA

Pennsylvania

OH

Ohio

MI

Michigan

CA

California

5

NC

North Carolina

IL

Illinois

CO

Colorado

6

UT

Utah

TN

Tennessee

ND

North Dakota

KY

Kentucky

GA

Georgia

7

VA

Virginia

OK

Oklahoma

NE

Nebraska

IN

Indiana

IA

Iowa

AR

Arkansas

8

HI

Hawaii

9

WV

West Virginia

WI

Wisconsin

MN

Minnesota

MA

Massachusetts

10

NH

New Hampshire

MO

Missouri

ID

Idaho

FL

Florida

CT

Connecticut

11

NV

Nevada

12

WY

Wyoming

NJ

New Jersey

MD

Maryland

 15.3 Hashing 667

Each of the elements in the buckets array is a linked list of the key/value pairs
that hash to that bucket. The cells in the chain are similar to those you have seen in
the earlier linked list examples except for the fact that each cell contains both a key
and a value. The definition for the Cell structure for this list therefore looks like
this:

struct Cell {
 KeyType key;
 ValueType value;
 Cell *link;
};

The definition of this structure and the declarations of the instance variables appear
in the hashmappriv.h file shown in Figure 15-7.

If you look at the declaration of the instance variable buckets in Figure 15-7,
the syntax may initially seem confusing. Up to now, the dynamic arrays you’ve
created for the other collection classes have been declared as pointers to the base
type. Here, the declaration reads

Cell **buckets;

As in the earlier examples, buckets is a dynamic array and is therefore represented
in C++ as a pointer to the initial element in the array. Each element, moreover, is a
pointer to the first cell in the linked-list chain of key/value pairs. The buckets
variable is therefore a pointer to a pointer to a cell, which accounts for the double
star.

In addition to the definition of the Cell structure and the instance variables, the
hashmappriv.h file defines a private method called findCell that searches for a
key in a linked-list chain. This method is used in the get, put, and containsKey
methods to avoid duplicating the common code. The code for findCell fits the
standard pattern for looping through the cells of a linked list. The only unusual
thing about findCell is that the implementation appears in the hashmappriv.h
file. Up to now, this book has imposed a rigid separation of prototypes and
implementations between the .h and the .cpp files. For template classes, that
separation is less important because the compiler needs access to the complete
implementation in any case. The typical client won’t look at either the
hashmappriv.h or the hashmapimpl.cpp file, and it therefore doesn’t enhance
the principle of information hiding to enforce that separation.

Particularly given the fact that the code to process the linked list is already
provided in the findCell method, the implementation of the HashMap class is
straightforward. The code appears in the hashmapimpl.cpp file in Figure 15-8.

668 Maps and Hashing

hashmappriv.h
F I G U R E 1 5 - 7 Contents of the hashmappriv.h file

/*
 * File: hashmappriv.h
 * -------------------
 * This file contains the private section of the hashmap.h interface.
 */

/*
 * Notes on the representation
 * ---------------------------
 * The HashMap class is represented using a hash table that keeps the
 * key/value pairs in an array of buckets, where each bucket is a
 * linked list of elements that share the same hash code. If two or
 * more keys have the same hash code (which is called a "collision"),
 * each of those keys will be on the same list.
 */

private:

/* Type definition for cells in the bucket chain */

 struct Cell {
 KeyType key;
 ValueType value;
 Cell *link;
 };

/* Instance variables */

 Cell **buckets; /* Dynamic array of pointers to cells */
 int nBuckets; /* The number of buckets in the array */
 int count; /* The number of entries in the map */

/* Private methods */

/*
 * Private method: findCell
 * Usage: Cell *cp = findCell(bucket, key);
 * --
 * Finds a cell in the chain for the specified bucket that matches key.
 * If a match is found, the return value is a pointer to the cell containing
 * the matching key. If no match is found, the function returns NULL.
 * Given that this method is already embedded in a file marked private,
 * it makes sense to implement it here rather than doing so in the
 * hashmapimpl.cpp file.
 */

 Cell *findCell(int bucket, ValueType key) {
 Cell *cp = buckets[bucket];
 while (cp != NULL && key != cp->key) {
 cp = cp->link;
 }
 return cp;
 }

 15.3 Hashing 669

hashmapimpl.cpp, p1
F I G U R E 1 5 - 8 Implementation of the HashMap class

/*
 * File: hashmapimpl.cpp
 * ---------------------
 * This file contains the private section of the hashmap.cpp interface.
 * Because of the way C++ compiles templates, this code must be
 * available to the compiler when it reads the header file.
 */

#ifdef _hashmap_h

#include "error.h"

/* Constant definitions */

const int INITIAL_BUCKET_COUNT = 101;

/*
 * Implementation notes: HashMap constructor and destructor
 * --
 * The constructor allocates the array of buckets and initializes
 * each bucket to the empty list. The destructor must free the memory,
 * but can do so by calling clear.
 */

template <typename KeyType,typename ValueType>
HashMap<KeyType,ValueType>::HashMap() {
 nBuckets = INITIAL_BUCKET_COUNT;
 buckets = new Cell*[nBuckets];
 for (int i = 0; i < nBuckets; i++) {
 buckets[i] = NULL;
 }
 count = 0;
}

template <typename KeyType,typename ValueType>
HashMap<KeyType,ValueType>::~HashMap() {
 clear();
}

/*
 * Implementation notes: size, isEmpty
 * -----------------------------------
 * These methods are simple because the structure stores the entry count.
 */

template <typename KeyType,typename ValueType>
int HashMap<KeyType,ValueType>::size() {
 return count;
}

template <typename KeyType,typename ValueType>
bool HashMap<KeyType,ValueType>::isEmpty() {
 return count == 0;
}

670 Maps and Hashing

hashmapimpl.cpp, p2
F I G U R E 1 5 - 8 Implementation of the HashMap class (continued)

/*
 * Implementation notes: clear
 * ---------------------------
 * This method frees all the cells to avoid a memory leak.
 */

template <typename KeyType,typename ValueType>
void HashMap<KeyType,ValueType>::clear() {
 for (int i = 0; i < nBuckets; i++) {
 Cell *cp = buckets[i];
 while (cp != NULL) {
 Cell *oldCell = cp;
 cp = cp->link;
 delete oldCell;
 }
 }
 count = 0;
}

/*
 * Implementation notes: put, get, containsKey
 * ---
 * These methods rely on the findCell method from the hashmappriv.h file.
 */

template <typename KeyType,typename ValueType>
void HashMap<KeyType,ValueType>::put(KeyType key, ValueType value) {
 int bucket = hashCode(key) % nBuckets;
 Cell *cp = findCell(bucket, key);
 if (cp == NULL) {
 cp = new Cell;
 cp->key = key;
 cp->link = buckets[bucket];
 buckets[bucket] = cp;
 count++;
 }
 cp->value = value;
}

template <typename KeyType,typename ValueType>
ValueType HashMap<KeyType,ValueType>::get(KeyType key) {
 int bucket = hashCode(key) % nBuckets;
 Cell *cp = findCell(bucket, key);
 if (cp == NULL) error("get: no value for key");
 return cp->value;
}

template <typename KeyType,typename ValueType>
bool HashMap<KeyType,ValueType>::containsKey(KeyType key) {
 int bucket = hashCode(key) % nBuckets;
 return findCell(bucket, key) != NULL;
}

#endif

 15.3 Hashing 671

Defining a hash function for strings
Although Figure 15-8 defines the implementations of the methods in the HashMap
class, it does not include the hashCode function that sits at the heart of the hashing
algorithm. The hashCode function—or, more correctly, the collection of
overloaded hashCode functions for each possible key type—is not defined as a
method in the HashMap class but instead appears as a free function. For that reason,
the prototypes and implementations for those functions will be split between the
hashmap.h and hashmap.cpp files, just as they have been in the libraries you
have been writing since Chapter 2.

Although they are typically short, hash functions tend to be subtle and difficult
to understand on a first reading. The hash function for strings used in the HashMap
class, which was developed by Daniel J. Bernstein, Professor of Mathematics at the
University of Illinois at Chicago, looks like this:

const int HASH_SEED = 5381;
const int HASH_MULTIPLIER = 33;
const int HASH_MASK = unsigned(-1) >> 1;

int hashCode(string str) {
 unsigned hash = HASH_SEED;
 int n = str.length();
 for (int i = 0; i < n; i++) {
 hash = HASH_MULTIPLIER * hash + str[i];
 }
 return int(hash & HASH_MASK);
}

The hash function used for strings in any particular library will presumably not

look exactly like this one, but most implementations will have much the same
structure. In this implementation, the code iterates through each character in the
key, updating a value stored in the local variable hash, which is declared as an
unsigned integer and initialized to the seemingly random constant 5381. On each
loop cycle, the hashCode function multiplies the previous value of hash by a
constant called HASH_MULTIPLIER and then adds the ASCII value of the current
character. At the end of the loop, the result is not simply the value of hash but
instead computed by means of the rather odd-looking expression

int(hash & HASH_MASK)

Given the amount of confusing code present in such a short function, you should
feel perfectly justified in deciding that the intricacies of the hashCode function are
not worth understanding in detail. The point of all the complexity is to ensure that
the results of the hashCode function are as unpredictable as possible given a

672 Maps and Hashing

particular set of keys. The details as to how the function does so, while interesting
in their own right as a theoretical question, are not of immediate concern to clients
of the HashMap class. Choosing the right hashCode function, however, can have a
significant effect on the efficiency of the implementation

To see how the design of the hashCode function can affect efficiency, consider
what might happen if you use the following, much simpler implementation:

int hashCode(string str) {
 int hash = 0;
 int n = str.length();
 for (int i = 0; i < n; i++) {
 hash += str[i];
 }
 return hash;
}

This code is far more understandable. All it does is add up the ASCII codes for the
characters in the string, which will be a nonnegative integer unless the string is
hugely long. Beyond the fact that long strings might cause integer overflow and
result in negative results (which justifies the inclusion of the bug symbol), writing
hashCode in this way is likely to cause collisions in the table if the keys happen to
fall into certain patterns. The strategy of adding the ASCII values means that any
keys whose letters are permutations of each other would collide. Thus, cat and
act would hash to the same bucket. So would the keys a3, b2, and c1. If you were
using this hash table in the context of a compiler, variable names that fit such
patterns would all end up hashing to the same bucket.

At the cost of making the code for the hashCode function more obscure, you
can reduce the likelihood that similar keys will collide. Figuring out how to design
such a function, however, requires a reasonably advanced knowledge of computer
science theory. Most implementations of the hashCode function use techniques
that are similar to those for generating pseudorandom numbers, as discussed in
Chapter 2. In both domains, it is important that the results are hard to predict. In
the hash table, the consequence of this unpredictability is that keys chosen by a
programmer are unlikely to exhibit any higher level of collision than one would
expect by random chance.

Even though careful choice of a hash function can reduce the number of
collisions and thereby improve performance, it is important to recognize that the
correctness of the algorithm is not affected by the collision rate. The only
requirement is that the hash function has to return a nonnegative integer. If it does,
the map implementation will still work even if the hash function always returns 0.
In that case, every key would end up in the chain attached to bucket #0. Programs

 15.3 Hashing 673

that use such a hash function would run slowly because every key is linked into the
same chain, but they would nonetheless continue to give the correct results.

Determining the number of buckets
Although the design of the hash function is important, it is clear that the likelihood
of collision also depends on the number of buckets. If the number is small,
collisions occur more frequently. In particular, if there are more entries in the hash
table than buckets, collisions are inevitable. Collisions affect the performance of
the hash table strategy because they force put and get to search through longer
chains. As the hash table fills up, the number of collisions rises, which in turn
reduces the performance of the hash table.

It is important to remember that the goal of using a hash table is to optimize the
put and get methods so that they run in constant time, at least in the average case.
To achieve this goal, it is important that the linked-list chains emerging from each
bucket remain short. To do so, you need to keep the number of buckets relatively
large in comparison to the number of entries. Assuming that the hash function does
a good job of distributing the keys evenly among the buckets, the average length of
each bucket chain is given by the formula

λ =

For example, if the total number of entries in the table is three times the number of
buckets, the average chain will contain three entries, which in turn means that three
string comparisons will be required, on average, to find a key. The value λ is called
the load factor of the hash table

For good performance, you want to make sure that the value of λ remains small.
Although the mathematical details are beyond the scope of this text, maintaining a
load factor of 0.7 or less means that the average cost of looking up a key in a
HashMap is O(1). Smaller load factors imply that there will be lots of empty
buckets in the hash table array, which wastes a certain amount of space. Hash
tables represent a good example of a time-space tradeoff, a concept introduced in
Chapter 13. By increasing the amount of space used by the hash table, you can
improve performance, but there is little advantage in reducing the load factor below
the 0.7 threshold.

Unless the HashMap class is engineered for a particular application in which the
number of keys is known in advance, there is no way to choose a value for
nBuckets that works well for all clients. If a client keeps entering more and more
entries into a map, the performance will eventually decline. If you want to maintain
good performance, the best approach is to allow the implementation to increase the

Nbuckets

Nentries

674 Maps and Hashing

number of buckets dynamically. For example, you can design the implementation
so that it allocates a larger hash table if the load factor in the table ever reaches a
certain threshold. Unfortunately, if you increase the number of buckets, the bucket
numbers all change, which means that the code to expand the table must reenter
every key from the old table into the new one. This process is called rehashing.
Although rehashing can be time-consuming, it is performed infrequently and
therefore has minimal impact on the overall running time of the application. You
will have a chance to implement the rehashing strategy in exercise 4.

Hash functions for other types
Although strings are by far the most common key type in practice, the use of
templates in the HashMap definition makes it possible to use other key types as
well. The code to implement the HashMap class imposes two requirements on the
key type:

1. The key type must support the == comparison operator so that the code can tell

whether two keys are identical.

2. The code for the HashMap class must have access to an overloaded version of
the hashCode function that produces a nonnegative integer for every value of
the key type. For the common types like string and the primitive types, those
functions are exported by the hashmap.h interface itself. For types that are
specific to an application, the client must supply this function.

In many cases, these functions can be extremely simple. For example, the

hashCode function for integers is simply

int hashCode(int key) {
 return key & HASH_MASK;
}

The HASH_MASK constant is the same as the one defined in the section on the hash
function for strings and consists of a word whose internal representation contains a
1 in every bit position except the sign bit, which is 0. The & operator, which is
covered in more detail in Chapter 18, has the effect of removing the sign bit from
key, which ensures that the value of hashCode cannot be negative.

Writing good hash functions for compound types requires a certain amount of
mathematical sophistication to ensure that the hash codes are distributed uniformly
across the space. There is, however, a simple expedient that you can use to produce
a reasonable hash function for any type that exports a toString method. All you
have to do is convert the value to a string and then use the string version of
hashCode to deliver the result. Using this approach, you could write a hashCode
function for the Rational class like this:

 Summary 675

int hashCode(Rational r) {
 return hashCode(r.toString());
}

Computing this function requires more execution time than performing arithmetic
operations on the numerator and denominator, but the function is much easier to
code.

 Summary
The focus of this chapter has been a variety of strategies for implementing the basic
operations provided by the Map class, even though this chapter stops short of
introducing the library implementation of Map, which requires the material in
Chapter 16.

Important points in this chapter include:

• It is possible to implement the basic map operations by storing key/value pairs in

a dynamic array. Keeping the array in sorted order makes it possible for get to
run in O(log N) time, even though put remains O(N).

• Specific applications may make it possible to implement map operations using a
lookup table in which both get and put run in O(1) time.

• Maps can be implemented very efficiently using a strategy called hashing, in
which keys are converted to an integer that determines where the implementation
should look for the result.

• A common implementation of the hashing algorithm is to allocate a dynamic
array of buckets, each of which contains a linked list of the keys that hash to that
bucket. As long as the ratio of the number of entries to the number of buckets
does not exceed about 0.7, the get and put methods operate in O(1) time on
average. Maintaining this performance as the number of entries grows requires
periodic rehashing to increase the number of buckets.

• The detailed design of a hash function is subtle and requires mathematical
analysis to achieve optimum performance. Even so, any hash function that
delivers nonnegative integer values will produce correct results.

 Review questions
1. For the array-based implementation of maps, what algorithmic strategy does

the chapter suggest for reducing the cost of the get method to O(log N) time?

2. If you implement the strategy suggested in the preceding question, why does

the put method still require O(N) time?

676 Maps and Hashing

3. What is a lookup table? In what cases is this strategy appropriate?

4. What disadvantages would you expect from using the ASCII value of the first

character in a key as its hash code?

5. What is meant by the term bucket in the implementation of a hash table?

6. What is a collision?

7. Explain the operation of the findCell function in the hashmappriv.h file

shown in Figure 15-7.

8. The hashCode function for strings presented in the text has a structure similar

to that of a random-number generator. If you took that similarity too literally,
however, you might be tempted to write the following hash function:

int hashCode(string str) {
 return randomInteger(0, HASH_MASK);
}

Why would this approach fail?

9. Would the HashMap class still operate correctly if you supplied the following

hashCode function:

int hashCode(string str) {
 return 42;
}

10. What time-space tradeoff arises in the implementation of a hash table?

11. What is meant by the term load factor?

12. What is the approximate threshold for the load factor that ensures that the

average performance of the HashMap class will remain O(1)?

13. What is meant by the term rehashing?

14. What two operations must every key type implement?

15. Suppose that you wanted to use the Point class from Chapter 6 as a key type

in a HashMap. What simple strategy does the chapter offer for implementing
the necessary hashCode function?

 Exercises 677

 Exercises
1. Although it presumably made mathematics more difficult, the Romans wrote

numbers using letters to stand for various multiples of 5 and 10. The
characters used to encode Roman numerals have the following values:

I → 1
V → 5
X → 10
L → 50
C → 100
D → 500
M → 1000

Design a lookup table that makes it possible to determine the value of each
letter in a single array selection. Use this table to implement a function

int romanToDecimal(string str);

that translates a string containing a Roman numeral into its numeric form. To
compute the value of a Roman numeral, you simply add the values
corresponding to each letter, subject to one exception: If the value of a letter is
less than the letter that follows it, that value should be subtracted from the total
instead of added. For example, the Roman numeral string

MCMLXIX

corresponds to

1000 – 100 + 1000 + 50 + 10 – 1 + 10

or 1969. The C and the I are subtracted rather than added because each of
those letters is followed by a letter with a larger value.

2. Modify the code in Figure 15-3 so that put always keeps the keys in sorted

order in the array. Change the implementation of the private findKey method
so that it uses binary search to find the key in O(log N) time.

3. The implementations of the Map and HashMap abstractions in this chapter do

not include the remove method, which deletes a key from the table. Extend
the implementation of the array-based and hash-table maps so that they
implement the remove method.

4. Extend the implementation of the hash table from Figures 15-7 and 15-8 so

that the bucket array expands dynamically. Your implementation should keep
track of the load factor for the hash table and perform a rehashing operation if
the load factor exceeds the limit indicated by a constant defined as follows:

678 Maps and Hashing

const double REHASH_THRESHOLD = 0.7;

5. Although the bucket-chaining approach used in the text is extremely effective

in practice, other strategies exist for resolving collisions in hash tables. In the
early days of computing—when memories were small enough that the cost of
introducing extra pointers was taken seriously—hash tables often used a more
memory-efficient strategy called open addressing, in which the key/value
pairs are stored directly in the array, like this:

For example, if a key hashes to bucket #2, the open-addressing strategy tries to
put that key and its value directly into the entry at array[2].

The problem with this approach is that array[3] may already be assigned

to another key that hashes to the same bucket. The simplest approach to
dealing with collisions of this sort is to store each new key in the first free cell
at or after its expected hash position. Thus, if a key hashes to bucket #2, the
put and get functions first try to find or insert that key in array[2]. If that
entry is filled with a different key, however, these functions move on to try
array[3], continuing the process until they find an empty entry or an entry
with a matching key. As in the ring-buffer implementation of queues in
Chapter 13, if the index advances past the end of the array, it should wrap
around back to the beginning. This strategy for resolving collisions is called
linear probing.

Reimplement the HashMap class using open addressing with linear

probing. Make sure your function generates an error if the client tries to enter
a new key into a table that is already full.

key

value
array[nBuckets-1]

.

.

.

key

value
array[0]

key

value
array[1]

key

value
array[2]

key

value
array[3]

 Exercises 679

6. As noted at the beginning of this chapter, the implementations of the map
abstraction have been simplified by eliminating deep copying and selection
using square brackets. Rewrite both the array-based version of Map and the
HashMap class so that they support these operations.

Chapter 16
Trees

I like trees because they seem more resigned to the way they have
to live than other things do.

— Willa Cather, O Pioneers!, 1913

682 Trees

As you have seen in several earlier chapters, linked lists make it possible to
represent an ordered collection of values without using arrays. The link pointers
associated with each cell form a linear chain that defines the underlying order.
Although linked lists require more memory space than arrays and are less efficient
for operations such as selecting a value at a particular index position, they have the
advantage that insertion and deletion operations can be performed in constant time.

The use of pointers to define the ordering relationship among a set of values is
considerably more powerful than the linked-list example suggests and is by no
means limited to creating linear structures. In this chapter, you will learn about a
data structure that uses pointers to model hierarchical relationships. That structure
is called a tree, which is defined to be a collection of individual entries called nodes
for which the following properties hold:

• As long as the tree contains any nodes at all, there is a specific node called the

root that forms the top of a hierarchy.

• Every other node is connected to the root by a unique line of descent.

Tree-structured hierarchies occur in many contexts outside of computer science.
The most familiar example is the family tree, which is discussed in the next section.
Other examples include

• Game trees. The game trees introduced in the section on “The minimax

strategy” in Chapter 9 have a branching pattern that is typical of trees. The
current position is the root of the tree; the branches lead to positions that might
occur later in the game.

• Biological classifications. The classification system for living organisms, which
was developed in the eighteenth century by the Swedish botanist Carl Linnaeus,
is structured as a tree. The root of the tree is all living things. From there, the
classification system branches to form separate kingdoms, of which animals and
plants are the most familiar. From there, the hierarchy continues down through
several additional levels until it defines an individual species.

• Organization charts. Many businesses are structured so that each employee
reports to a single supervisor, forming a tree that extends up to the company
president, who represents the root.

• Directory hierarchies. On most modern computers, files are stored in directories
that form a tree. There is a top-level directory that represents the root, which can
contain files along with other directories. Those directories may contain
subdirectories, which gives rise to the hierarchical structure representative of
trees.

 16.1 Family trees 683

 16.1 Family trees
Family trees provide a convenient way to represent the lines of descent from a
single individual through a series of generations. For example, the diagram in
Figure 16-1 shows the family tree of the House of Normandy, which ruled England
after the accession of William I at the Battle of Hastings in 1066. The structure of
the diagram fits the definition of a tree given in the preceding section. William I is
the root of the tree, and all other individuals in the chart are connected to William I
through a unique line of descent.

Terminology used to describe trees
The family tree in Figure 16-1 makes it easy to introduce the terminology computer
scientists use to describe tree structures. Each node in a tree may have several
children, but only a single parent in the tree. In the context of trees, the words
ancestor and descendant have exactly the same meaning as they do in English. The
line of descent through Henry I and Matilda shows that Henry II is a descendant of
William I, which in turn implies that William I is an ancestor of Henry II.
Similarly, two nodes that share the same parent, such as Robert and Adela, are
called siblings.

Although most of the terms used to describe trees come directly from the
family-tree analogue, others—like the word root—come from the botanical
metaphor instead. At the opposite end of the tree from the root, there are nodes that
have no children, which are called leaves. Nodes that are neither the root nor a leaf
are called interior nodes. For example, in Figure 16-1, Robert, William II, Stephen,
William, and Henry II represent leaf nodes; Adela, Henry I, and Matilda represent
interior nodes. The height of a tree is defined to be the number of nodes in the
longest path from the root to a leaf. Thus, the height of the tree shown in
Figure 16-1 is 4, because there are four nodes on the path from William I to
Henry II, which is longer than any other path from the root.

F I G U R E 1 6 - 1 The House of Normandy

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

684 Trees

The recursive nature of a tree
One of the most important things to notice about any tree is that the same branching
pattern occurs at every level of the decomposition. If you take any node in a tree
together with all its descendants, the result fits the definition of a tree. For example,
if you extract the portion of Figure 16-1 descending from Henry I, you get the
following tree:

A tree formed by extracting a node and its descendants from an existing tree is
called a subtree of the original one. The tree in this diagram, for example, is the
subtree rooted at Henry I.

The fact that each node in a tree can be considered the root of its own subtree
underscores the recursive nature of tree structures. If you think about trees from a
recursive perspective, a tree is simply a node and a set—possibly empty in the case
of a leaf node—of attached subtrees. The recursive character of trees is
fundamental to their underlying representation as well as to most algorithms that
operate on trees.

Representing family trees in C++
In order to represent a tree in C++, you need some way to model the hierarchical
relationships among the data values. In most cases, the easiest way to represent the
parent/child relationship is to include a pointer in the parent that points to the child.
If you use this strategy, each node is a structure that contains—in addition to other
data specific to the node itself—pointers to each of its children. In general, it works
well to define a node as the structure itself and to define a tree as a pointer to that
structure. This definition is mutually recursive even in its English conception
because of the following relationship:

• Trees are pointers to nodes.

• Nodes are structures that contain trees.

How would you use this recursive insight to design a structure suitable for
storing the data in a family tree such as the one shown in Figure 16-1? Each node
consists of a name of a person and a set of pointers to its children. If you store the
child pointers in a vector, a node has the following form as a C++ structure:

Henry I

William Matilda

Henry II

 16.2 Binary search trees 685

struct FamilyTreeNode {
 string name;
 Vector<FamilyTreeNode *> children;
};

A family tree is simply a pointer to one of these nodes.

A diagram showing the internal representation of the royal family tree appears in
Figure 16-2. To keep the figure neat and orderly, Figure 16-2 represents the
children as if they were stored in a five-element array; in fact, the children field is
a vector that grows to accommodate any number of children. You will have a
chance to explore other strategies for storing the children, such as keeping them in a
linked list rather than a vector, in the exercises at the end of this chapter.

 16.2 Binary search trees
Although it is possible to illustrate tree algorithms using family trees, it is more
effective to do so in a simpler environment that has more direct application to
programming. The family-tree example provides a useful framework for
introducing the terminology used to describe trees, but suffers in practice from the
complication that each node can have an arbitrary number of children. In many

F I G U R E 1 6 - 2 Pointer-based tree representation for the House of Normandy

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

686 Trees

programming contexts, it is reasonable to restrict the number of children to make
the resulting trees easier to implement.

One of the most important subclasses of trees—which has many practical
applications—is a binary tree, which is defined to be a tree in which the following
additional properties hold:

• Each node in the tree has at most two children.

• Every node except the root is designated as either a left child or a right child of
its parent.

The second condition emphasizes the fact that child nodes in a binary tree are
ordered with respect to their parents. For example, the binary trees

are different trees, even though they consist of the same nodes. In both cases, the
node labeled B is a child of the root node labeled A, but it is a left child in the first
tree and a right child in the second.

The fact that the nodes in a binary tree have a defined geometrical relationship
makes it convenient to represent ordered collections of data using binary trees. The
most common application uses a special class of binary tree called a
binary search tree, which is defined by the following properties:

1. Every node contains—possibly in addition to other data—a special value called

a key that defines the order of the nodes.

2. Key values are unique, in the sense that no key can appear more than once in
the tree.

3. At every node in the tree, the key value must be greater than all the keys in the
subtree rooted at its left child and less than all the keys in the subtree rooted at
its right child.

Although this definition is formally correct, it almost certainly seems confusing at
first glance. To make sense of the definition and begin to understand why
constructing a tree that meets these conditions might be useful, it helps to go back
and look at a specific problem for which binary search trees represent a potential
solution strategy.

A

B

and

A

B

 16.2 Binary search trees 687

The motivation behind binary search trees
In Chapter 15, one of the strategies proposed for representing maps—before the
hashing algorithm made other options seem far less attractive—was to store the
key-value pairs in an array. This strategy has a useful computational property: if
you keep the keys in sorted order, you can write an implementation of get that runs
in O(log N) time. All you need to do is employ the binary search algorithm, which
was introduced in Chapter 7. Unfortunately, the array representation does not offer
any equally efficient way to code the put function. Although put can use binary
search to determine where any new key fits into the array, maintaining the sorted
order requires O(N) time because each subsequent array element must be shifted to
make room for the new entry.

This problem brings to mind a similar situation that arose in Chapter 13. When
arrays were used to represent the editor buffer, inserting a new character was a
linear-time operation. In that case, the solution was to replace the array with a
linked list. Is it possible that a similar strategy would improve the performance of
put for the map? After all, inserting a new element into a linked list—as long as
you have a pointer to the cell prior to the insertion point—is a constant-time
operation.

The trouble with linked lists is that they do not support the binary search
algorithm in any efficient way. Binary search depends on being able to find the
middle element in constant time. In an array, finding the middle element is easy. In
a linked list, the only way to do so is to iterate through all the link pointers in the
first half of the list.

To get a more concrete sense of why linked lists have this limitation, suppose
that you have a linked list containing the names of Walt Disney’s seven dwarves:

The elements in this list appear in lexicographic order, which is the order imposed
by their internal character codes.

Given a linked list of this sort, you can easily find the first element, because the
initial pointer gives you its address. From there, you can follow the link pointer to
find the second element. On the other hand, there is no easy way to locate the
element that occurs halfway through the sequence. To do so, you have to walk
through each chain pointer, counting up to N/2. This operation requires linear time,
which completely negates the efficiency advantage of binary search. If binary
search is to offer any improvement in efficiency, the data structure must enable you
to find the middle element quickly.

Bashful Doc Dopey Grumpy Happy Sleepy Sneezy

688 Trees

Although it might at first seem silly, it is useful to consider what happens if you
simply point at the middle of the list instead of the beginning:

In this diagram, you have no problem at all finding the middle element. It’s
immediately accessible through the list pointer. The problem, however, is that
you’ve thrown away the first half of the list. The pointers in the structure provide
access to Grumpy and any name that follows it in the chain, but there is no longer
any way to reach Bashful, Doc, and Dopey.

If you think about the situation from Grumpy’s point of view, the general outline
of the solution becomes clear. What you need is to have two chains emanating from
the Grumpy cell: one that consists of the cells whose names precede Grumpy and
another for the cells whose names follow Grumpy in the alphabet. In the conceptual
diagram, all you need to do is reverse the arrows:

Each of the strings is now accessible, and you can easily divide the entire list in
half.

At this point, you need to apply the same strategy recursively. The binary search
algorithm requires you to find the middle of not only the original list but its sublists
as well. You therefore need to restructure the lists that precede and follow Grumpy,
using the same decomposition strategy. Every cell points in two directions: to the
midpoint of the list that precedes it and to the midpoint of the list that follows it.
Applying this process transforms the original list into the following binary tree:

The most important feature about this particular style of binary tree is that it is
ordered. For any particular node in the tree, the string it contains must follow all the
strings in the subtree descending to the left and precede all strings in the subtree to
the right. In this example, Grumpy comes after Doc, Bashful, and Dopey but
before Sleepy, Happy, and Sneezy. The same rule applies at each level, so the
node containing Doc comes after the Bashful node but before the Dopey node.

Bashful Doc Dopey Grumpy Happy Sleepy Sneezy

Bashful Doc Dopey Grumpy Happy Sleepy Sneezy

Grumpy

Doc Sleepy

Bashful Dopey Happy Sneezy

 16.2 Binary search trees 689

The formal definition of a binary search tree, which appears at the end of the
preceding section, ensures that every node in the tree obeys this ordering rule.

Finding nodes in a binary search tree
The fundamental advantage of a binary search tree is that you can use the binary
search algorithm to find a particular node. Suppose, for example, that you are
looking for the node containing the string Happy in the tree diagram shown at the
end of the preceding section. The first step is to compare Happy with Grumpy,
which appears at the root of the tree. Since Happy comes after Grumpy in
lexicographic order, you know that the Happy node, if it exists, must be in the right
subtree. The next step, therefore, is to compare Happy and Sleepy. In this case,
Happy comes before Sleepy and must therefore be in the left subtree of this node.
That subtree consists of a single node, which contains the correct name.

Because trees are recursive structures, it is easy to code the search algorithm in
its recursive form. For concreteness, let’s suppose that the type definition for
BSTNode looks like this:

struct BSTNode {
 string key;
 BSTNode *left, *right;
};

Given this definition, you can easily write a function findNode that implements the
binary search algorithm, as follows:

BSTNode *findNode(BSTNode *t, string key) {
 if (t == NULL) return NULL;
 if (key == t->key) return t;
 if (key < t->key) {
 return findNode(t->left, key);
 } else {
 return findNode(t->right, key);
 }
}

If the tree is empty, the desired node is clearly not there, and findNode returns the
value NULL as a sentinel indicating that the key cannot be found. If the tree is not
equal to NULL, the implementation checks to see whether the desired key matches
the one in the current node. If so, findNode returns a pointer to the current node.
If the keys do not match, findNode proceeds recursively, looking in either the left
or right subtree depending on the result of the key comparison.

690 Trees

Inserting new nodes in a binary search tree
The next question to consider is how to create a binary search tree in the first place.
The simplest approach is to begin with an empty tree and then call an insertNode
function to insert new keys into the tree, one at a time. As each new key is inserted,
it is important to maintain the ordering relationship among the nodes of the tree. To
make sure the findNode function continues to work, the code for insertNode
must use binary search to identify the correct insertion point.

As with findNode, the code for insertNode can proceed recursively
beginning at the root of the tree. At each node, insertNode must compare the new
key to the key in the current node. If the new key precedes the existing one, the
new key belongs in the left subtree. Conversely, if the new key follows the one in
the current node, it belongs in the right subtree. Eventually, the process will
encounter a NULL subtree that represents the point in the tree where the new node
needs to be added. At this point, the insertNode implementation must replace the
NULL pointer with a new node initialized to contain a copy of the key.

The code for insertNode, however, is a bit tricky. The difficulty comes from
the fact that insertNode must be able to change the value of the binary search tree
by adding a new node. Since the function needs to change the values of the
argument, it must be passed by reference. Instead of taking a BSTNode * as its
argument the way findNode does, insertNode must instead take that node
pointer by reference. The prototype for insertNode therefore looks like this:

void insertNode(BSTNode * & t, string key);

Once you understand the prototype for the insertNode function, writing the
code is not particularly hard. The implementation of insertNode looks like this:

void insertNode(BSTNode * & t, string key) {
 if (t == NULL) {
 t = new BSTNode;
 t->key = key;
 t->left = t->right = NULL;
 } else {
 if (key != t->key) {
 if (key < t->key) {
 insertNode(t->left, key);
 } else {
 insertNode(t->right, key);
 }
 }
 }
}

 16.2 Binary search trees 691

If t is NULL, insertNode creates a new node, initializes its fields, and then
replaces the NULL pointer in the existing structure with a pointer to the new node. If
t is not NULL, insertNode compares the new key with the one stored at the root of
the tree t. If the keys match, the key is already in the tree and no further operations
are required. If not, insertNode uses the result of the comparison to determine
whether to insert the key in the left or the right subtree and then makes the
appropriate recursive call.

Because the code for insertNode seems complicated until you’ve seen it work,
it makes sense to go through the process of inserting a few keys in some detail.
Suppose, for example, that you have declared and initialized an empty tree as
follows:

BSTNode *dwarfTree = NULL;

These statements create a local variable dwarfTree that lives in the stack frame of
the function that contains its declaration, as illustrated by the following diagram:

What happens if you then call

insertNode(dwarfTree, "Grumpy");

starting with this initial configuration in which dwarfTree is empty? In the frame
for insertNode, the variable t is a reference parameter bound to the variable
dwarfTree in the caller. The stack at the beginning of this call therefore looks like
this:

 The first step in the code checks if t is set to NULL, which is true is this case, so it
executes the body of the if statement, which begins with the line

t = new BSTNode;

heap stack

dwarfTreeNULL

dwarfTreeNULL

&t

keyGrumpy

692 Trees

This line allocates a new node on the heap and assigns it to the reference parameter
t, therefore changing the pointer cell in the caller, as follows:

The remaining statements initialize the fields in the new node, copying the key
Grumpy and initializing each of the subtree pointers to NULL. When insertNode
returns, the tree looks like this:

This structure correctly represents the binary search tree containing the single node
Grumpy.

What happens if you then use insertNode to insert Sleepy into the tree? As
before, the initial call generates a stack frame in which the reference parameter t is
aliased to dwarfTree:

This time, however, the value of the tree t is no longer NULL, since the variable
dwarfTree now contains the address of the Grumpy node. Because Sleepy comes
after Grumpy in the lexicographical order, the code for insertNode continues with
the following recursive call:

insertNode(t->right, key);

At this point, the recursive call looks much like the insertion of Grumpy into the
original empty tree. The only difference is that the reference parameter t now
refers to a field within an existing node, as follows:

dwarfTree

&t

keyGrumpy

dwarfTree

Grumpy

NULL

NULL

dwarfTree

&t

keySleepyGrumpy

NULL

NULL

 16.2 Binary search trees 693

The new node allocated by insertNode replaces the right child of the Grumpy
node, like this:

When this call to insertNode returns after filling in the contents of the new node,
the tree looks like this:

Additional calls to insertNode will create additional nodes and insert them into
the structure in a way that preserves the ordering constraint required for binary
search trees. For example, if you insert the names of the five remaining dwarves in
the order Doc, Bashful, Dopey, Happy, and Sneezy, you end up with the binary
search tree shown in Figure 16-3.

dwarfTree

&t

keySleepy

Grumpy

NULL

NULL

&t

keySleepy

dwarfTree

&t

keySleepy

Grumpy

NULL &t

keySleepy

dwarfTree

Grumpy

NULL

Sleepy

NULL

NULL

694 Trees

Removing nodes
The operation of removing a node from a binary search tree is more complicated
than inserting a new node. Finding the node to be removed is the easy part. All you
need to do is use the same binary-search strategy that you use to find a particular
key. Once you find the matching node, however, you have to remove it from the
tree without violating the ordering relationship that defines a binary search tree.
Depending on where the node to be removed appears in the tree, removing it can get
rather tricky.

To get a sense of the problem, suppose that you are working with the binary
search tree containing the names of the seven dwarves:

Removing Sneezy (presumably for creating an unhealthy work environment) is
easy. All you have to do is replace the pointer to the Sneezy node with a NULL
pointer, which produces the following tree:

Grumpy

Doc Sleepy

Bashful Dopey Happy Sneezy

F I G U R E 1 6 - 3 Structural diagram of a binary search tree containing the seven dwarves

Grumpy

Doc Sleepy

Bashful Dopey Happy Sneezy

 16.2 Binary search trees 695

Starting from this configuration, it is also relatively easy to remove Sleepy (who
has trouble staying awake on the job). If either child of the node you want to
remove is NULL, all you have to do is replace it with its non-NULL child, like this:

The problem arises if you try to remove a node with both a left and a right child.
Suppose, for example, that you instead want to remove Grumpy (for failure to
whistle while working) from the original tree containing all seven dwarves. If you
simply remove the Grumpy node, you’re left with two partial search trees, one
rooted at Doc and one rooted at Sleepy, as follows:

At this point, what you would like to do is find a node that can be inserted into
the empty space left behind by the removal of the Grumpy node. To ensure that the
resulting tree remains a binary search tree, there are only two nodes you can use: the
rightmost node in the left subtree or the leftmost node in the right subtree. These
two nodes work equally well. For example, if you choose the rightmost node in the
left subtree, you get the Dopey node, which is guaranteed to be larger than anything
else in the left subtree but smaller than the values in the right subtree. To complete
the removal, all you have to do is replace the Dopey node with its left child—which
may be NULL, as it is in this example—and then move the Dopey node into the
deleted spot. The resulting picture looks like this:

Grumpy

Doc Sleepy

Bashful Dopey Happy

Grumpy

Doc Happy

Bashful Dopey

Doc Sleepy

Bashful Dopey Happy Sneezy

Dopey

Doc Sleepy

Bashful Happy Sneezy

696 Trees

Tree traversals
The structure of a binary search tree makes it easy to go through the nodes of the
tree in the order specified by the keys. For example, you can use the following
function to display the keys in a binary search tree in lexicographic order:

void displayTree(BSTNode *t) {
 if (t != NULL) {
 displayTree(t->left);
 cout << t->key << endl;
 displayTree(t->right);
 }
}

Thus, if you call displayTree on the tree shown in Figure 16-3, you get the
following output:

At each recursive level, displayTree checks to see whether the tree is empty. If it
is, displayTree has no work to do. If not, the ordering of the recursive calls
ensures that the output appears in the correct order. The first recursive call displays
the keys that precede the current node, all of which must appear in the left subtree.
Displaying the nodes in the left subtree before the current one therefore maintains
the correct order. Similarly, it is important to display the key from the current node
before making the last recursive call, which displays the keys that occur later in the
ASCII sequence and therefore appear in the right subtree.

The process of going through the nodes of a tree and performing some operation
at each node is called traversing or walking the tree. In many cases, you will want
to traverse a tree in the order imposed by the keys, as in the displayTree
example. This approach, which consists of processing the current node between the
recursive calls to the left and right subtrees, is called an inorder traversal. There
are, however, two other types of tree traversals that occur frequently in the context
of binary trees, which are called preorder and postorder traversals. In the preorder
traversal, the current node is processed before traversing either of its subtrees, as
illustrated by the following code:

DwarfTree
Bashful
Doc
Dopey
Grumpy
Happy
Sleepy
Sneezy

 16.2 Binary search trees 697

void preorderTraversal(BSTNode *t) {
 if (t != NULL) {
 cout << t->key << endl;
 preorderTraversal(t->left);
 preorderTraversal(t->right);
 }
}

Given the tree from Figure 16-3, the preorder traversal prints the nodes in the order
shown in the following sample run:

In the postorder traversal, the subtrees are processed first, followed by the
current node. The code to display nodes in a postorder traversal is

void postorderTraversal(BSTNode *t) {
 if (t != NULL) {
 postorderTraversal(t->left);
 postorderTraversal(t->right);
 cout << t->key << endl;
 }
}

Running this function on the binary search tree containing the seven dwarves
produces the following output:

PreorderTraversal
Grumpy
Doc
Bashful
Dopey
Sleepy
Happy
Sneezy

PostorderTraversal
Bashful
Dopey
Doc
Happy
Sneezy
Sleepy
Grumpy

698 Trees

 16.3 Balanced trees
Although the recursive strategy used to implement insertNode guarantees that the
nodes are organized as a legal binary search tree, the structure of the tree depends
on the order in which the nodes are inserted. The tree in Figure 16-3, for example,
was generated by inserting the names of the dwarves in the order:

Grumpy, Sleepy, Doc, Bashful, Dopey, Happy, Sneezy

Suppose that you had instead entered the names of the dwarves in alphabetical
order. The first call to insertNode would insert Bashful at the root of the tree.
Subsequent calls would insert Doc after Bashful, Dopey after Doc, and so on,
appending each new node to the right chain of the previously one.

The resulting figure, which is shown in Figure 16-4, looks more like a linked list
than a tree. Nonetheless, the tree in Figure 16-4 maintains the property that the key
field in any node follows all the keys in its left subtree and precedes all the keys in
its right subtree. It therefore fits the definition of a binary search tree, so the
findNode function will operate correctly. The running time of the findNode
algorithm, however, is proportional to the height of the tree, which means that the
structure of the tree can have a significant impact on the algorithmic performance.
If a binary search tree is shaped like the one shown in Figure 16-3, the time required
to find a key in the tree will be O (log N). On the other hand, if the tree is shaped
like the one in Figure 16-4, the running time will deteriorate to O (N).

The binary search algorithm used to implement findNode achieves its ideal
performance only if the left and right subtrees have roughly the same height at each
level of the tree. Trees in which this property holds—such as the tree in
Figure 16-3—are said to be balanced. More formally, a binary tree is defined to be

F I G U R E 1 6 - 4 Unbalanced binary search tree

Bashful

Doc

Dopey

Grumpy

Happy

Sleepy

Sneezy

 16.3 Balanced trees 699

balanced if, at each node, the height of the left and right subtrees differ by at most
one. To illustrate this definition of a balanced binary tree, each of the tree diagrams
in the top row of Figure 16-5 shows a balanced arrangement of a tree with seven
nodes. The diagrams in the bottom row represent unbalanced arrangements. In
each diagram, the nodes at which the balanced-tree definition fails are shown as
open circles. In the leftmost unbalanced tree, for example, the left subtree of the
root node has height 3 while the right subtree has height 1. In the remaining two
examples, the root node is unbalanced because it has an unbalanced child.

The first diagram in Figure 16-5 is optimally balanced in the sense that the
heights of the two subtrees at each node are equal. Such an arrangement is possible,
however, only if the number of nodes is one less than a power of two. If the number
of nodes does not meet this condition, there will be some point in the tree where the
heights of the subtrees differ to some extent. By allowing the heights of the
subtrees to differ by one, the definition of a balanced tree provides some flexibility
in the structure of a tree without adversely affecting its computational performance.

F I G U R E 1 6 - 5 Examples of balanced and unbalanced binary trees

Balanced trees:

Unbalanced trees:

700 Trees

Tree-balancing strategies
Binary search trees are useful in practice only if it is possible to avoid the
worst-case behavior associated with unbalanced trees. As trees become unbalanced,
the findNode and insertNode operations become linear in their running time. If
the performance of binary trees deteriorates to O (N), you might as well use a sorted
array to store the values. With a sorted array, it requires O (log N) time to
implement findNode and O (N) time to implement insertNode. From a
computational perspective, the performance of the array-based algorithm is
therefore superior to one based on unbalanced trees, even though the array
implementation is considerably easier to write.

What makes binary search trees useful as a programming tool is the fact that you
can keep them balanced as you build them. The basic idea is to extend the
implementation of insertNode so that it keeps track of whether the tree is
balanced while inserting new nodes. If the tree ever becomes out of balance,
insertNode must rearrange the nodes in the tree so that the balance is restored
without disturbing the ordering relationships that make the tree a binary search tree.
Assuming that it is possible to rearrange a tree in time proportional to its height,
both findNode and insertNode can be implemented in O (log N) time.

Algorithms for maintaining balance in a binary tree have been studied
extensively in computer science. The algorithms used today to implement balanced
binary trees are the product of extensive theoretical research in computer science.
Most of these algorithms, however, are difficult to explain without reviewing
mathematical results beyond the scope of this text. To demonstrate that such
algorithms are indeed possible, the next few sections present one of the first
tree-balancing algorithms, which was published in 1962 by the Russian
mathematicians Georgii Adelson-Velskii and Evgenii Landis and has since been
known by the initials AVL. Although the AVL algorithm has been largely replaced
in practice by more sophisticated techniques, it has the advantage of being
considerably easier to explain. Moreover, the operations used to implement the
basic strategy reappear in many other algorithms, which makes the AVL algorithm
a good model for more modern techniques.

I l lustrating the AVL idea
Before you attempt to understand the implementation of the AVL algorithm in
detail, it helps to follow through the process of inserting nodes into a binary search
tree to see what can go wrong and, if possible, what steps you can take to fix any
problems that arise. Let’s imagine that you want to create a binary search tree in
which the nodes contain the symbols for the chemical elements. For example, the
first six elements are

 16.3 Balanced trees 701

H (Hydrogen)
He (Helium)
Li (Lithium)
Be (Beryllium)
B (Boron)
C (Carbon)

What happens if you insert the chemical symbols for these elements in the

indicated order, which is how these elements appear in the periodic table? The first
insertion is easy because the tree is initially empty. The node containing the symbol
H becomes the root of the tree. If you call insertNode on the symbol He, the new
node will be added after the node containing H, because He comes after H in
lexicographic order. Thus, the first two nodes in the tree are arranged like this:

To keep track of whether the tree is balanced, the AVL algorithm associates an
integer with each node, which is simply the height of the right subtree minus the
height of the left subtree. This value is called the balance factor of the node. In the
simple tree that contains the symbols for the first two elements, the balance factors,
which are shown here in the upper right corner of each node, look like this:

So far, the tree is balanced because none of the nodes has a balance factor whose
absolute value is greater than 1. That situation changes, however, when you add the
next element. If you follow the standard insertion algorithm, adding Li results in
the following configuration:

H

He

H
+1

He
0

H
+2

He
+1

Li
0

702 Trees

Here, the root node is out of balance because its right subtree has height 2 and its
left subtree has height 0, which differ by more than one.

To fix the imbalance, you need to restructure the tree. For this set of nodes,
there is only one balanced configuration in which the nodes are correctly ordered
with respect to each other. That tree has He at the root, with H and Li in the left and
right subtrees, as follows:

This tree is once again balanced, but an important question remains: how do you
know what operations to perform in order to restore the balance in a tree?

Single rotations
The fundamental insight behind the AVL strategy is that you can always restore
balance to a tree by a simple rearrangement of the nodes. If you think about what
steps were necessary to correct the imbalance in the preceding example, it is clear
that the He node moves upward to become the root while H moves downward to
become its child. To a certain extent, the transformation has the characteristic of
rotating the H and He nodes one position to the left, like this:

The two nodes involved in the rotation operation are called the axis of the
rotation. In the example consisting of the elements H, He, and Li, the rotation was
performed around the H-He axis. Because this operation moves nodes to the left, the
operation illustrated by this diagram is called a left rotation. If a tree is out of
balance in the opposite direction, you can apply a symmetric operation called a
right rotation, in which all the operations are simply reversed. For example, the
symbols for the next two elements—Be and B—each get added at the left edge of
the tree. To rebalance the tree, you must perform a right rotation around the Be-H
axis, as illustrated in the following diagram:

He
0

H
0

Li
0

H
+2

He
+1

Li
0

He
0

H
0

Li
0

 16.3 Balanced trees 703

Unfortunately, simple rotation operations are not always sufficient to restore
balance to a tree. Consider, for example, what happens when you add C to the tree.
Before you perform any balancing operations, the tree looks like this:

The He node at the root of the tree is out of balance. If you try to correct the
imbalance by rotating the tree to the right around the Be-He axis, you get the
following tree:

After the rotation, the tree is just as unbalanced as it was before. The only
difference is that the root node is now unbalanced in the opposite direction.

He
–2

H
–2

Li
0

Be
–1

B
0

He
–1

Be
0

Li
0

B
0

H
0

He
–2

Be
+1

Li
0

B
0

H
–1

C
0

Be
+2

B
0

He
–1

H
–1

Li
0

C
0

704 Trees

Double rotations
The problem in this last example arises because the nodes involved in the rotation
have balance factors with opposite signs. When this situation occurs, a single
rotation is not enough. To fix the problem, you need to make two rotations. Before
rotating the out-of-balance node, you rotate its child in the opposite direction.
Rotating the child gives the balance factors in the parent and child the same sign,
which means that the second rotation will succeed. This pair of operations is called
a double rotation.

As an illustration of the double-rotation operation, consider the preceding
unbalanced tree of elements just after adding the symbol C. The first step is to
rotate the tree to the left around the Be-H axis, like this:

The resulting tree is still out of balance at the root node, but the H and He nodes now
have balance factors that share the same sign. In this configuration, a single rotation
to the right around the H-He axis restores balance to the tree, as follows:

In their paper describing these trees, Adelson-Velskii and Landis demonstrated
the following properties of their tree-balancing algorithm:

He
–2

Be
+1

Li
0

B
0

H
–1

C
0

He
–2

H
–2

Li
0

Be
0

B
0

C
0

He
–2

H
–2

Li
0

Be
0

B
0

C
0

H
0

Be
0

He
+1

B
0

C
0

Li
0

 16.3 Balanced trees 705

• If you insert a new node into an AVL tree, you can always restore its balance by
performing at most one operation, which is either a single or a double rotation.

• After you complete the rotation operation, the height of the subtree at the axis of
rotation is always the same as it was before inserting the new node. This
property ensures that none of the balance factors change at any higher levels of
the tree.

Implementing the AVL algorithm
Although the process involves quite a few details, implementing insertNode for
AVL trees is not as difficult as you might imagine. The first change you need to
make is to include a new field in the node structure that allows you to keep track of
the balance factor, as follows:

struct BSTNode {
 string key;
 BSTNode *left, *right;
 int bf;
};

The code for insertNode itself appears in Figure 16-6. As you can see from the
code, insertNode is implemented as a wrapper to a function insertAVL, which at
first glance seems to have the same prototype. The parameters to the two functions
are indeed the same. The only difference is that insertAVL returns an integer
value that represents the change in the height of the tree after inserting the node.
This return value, which will always be 0 or 1, makes it easy to fix the structure of
the tree as the code makes its way back through the levels of recursive calls. The
simple cases are

1. Adding a node in place of a NULL tree, which increases the height by one

2. Encountering the key in an existing node, which leaves the height unchanged

In the recursive cases, the code first adds the new node to the appropriate subtree,
keeping track of the change in height in the local variable delta. If the height of
the subtree to which the insertion was made has not changed, then the balance factor
in the current node must also remain the same. If, however, the subtree increased in
height, there are three possibilities:

1. That subtree was previously shorter than the other subtree in this node. In this

case, inserting the new node actually makes the tree more balanced than it was
previously. The balance factor of the current node becomes 0, and the height of
the subtree rooted there remains the same as before.

706 Trees

insertNode, p1
F I G U R E 1 6 - 6 Code to insert a node into an AVL tree

/*
 * Function: insertNode
 * Usage: insertNode(t, key);
 * --------------------------
 * Inserts a node with the specified key into the correct position in the
 * binary search tree. If key already exists in the tree, this call has
 * no effect.
 */

void insertNode(BSTNode * & t, string key) {
 insertAVL(t, key);
}

/*
 * Function: insertAVL
 * Usage: delta = insertAVL(t, key);
 * ---------------------------------
 * Enters the key into the tree whose is passed by reference as the first
 * argument. The return value is the change in depth in the tree, which
 * is used to correct the balance factors in ancestor nodes.
 */

int insertAVL(BSTNode * & t, string key) {
 if (t == NULL) {
 t = new BSTNode;
 t->key = key;
 t->bf = 0;
 t->left = t->right = NULL;
 return +1;
 }
 if (key == t->key) return 0;
 if (key < t->key) {
 int delta = insertAVL(t->left, key);
 if (delta == 0) return 0;
 switch (t->bf) {
 case +1: t->bf = 0; return 0;
 case 0: t->bf = -1; return +1;
 case -1: fixLeftImbalance(t); return 0;
 }
 } else {
 int delta = insertAVL(t->right, key);
 if (delta == 0) return 0;
 switch (t->bf) {
 case -1: t->bf = 0; return 0;
 case 0: t->bf = +1; return +1;
 case +1: fixRightImbalance(t); return 0;
 }
 }
}

 16.3 Balanced trees 707

insertNode, p2
F I G U R E 1 6 - 6 Code to insert a node into an AVL tree (continued)

/*
 * Function: fixLeftImbalance
 * Usage: fixLeftImbalance(t);
 * ---------------------------
 * This function is called when a node has been found that is out of
 * balance with the longer subtree on the left. Depending on the balance
 * factor of the left child, the code performs a single or double rotation.
 */

void fixLeftImbalance(BSTNode * & t) {
 BSTNode *child = t->left;
 if (child->bf != t->bf) {
 int oldBF = child->right->bf;
 rotateLeft(t->left);
 rotateRight(t);
 t->bf = 0;
 switch (oldBF) {
 case -1: t->left->bf = 0; t->right->bf = +1; break;
 case 0: t->left->bf = t->right->bf = 0; break;
 case +1: t->left->bf = -1; t->right->bf = 0; break;
 }
 } else {
 rotateRight(t);
 t->right->bf = t->bf = 0;
 }
}

/*
 * Function: rotateLeft
 * Usage: rotateLeft(t);
 * ---------------------
 * Performs a single left rotation of the tree passed by reference as the
 * argument t. The balance factors are unchanged by this function and must
 * be corrected at a higher level of the algorithm.
 */

void rotateLeft(BSTNode * & t) {
 BSTNode *child = t->right;
 if (DEBUG) {
 cout << "rotateLeft(" << t->key << "-" << child->key << ")" << endl;
 }
 t->right = child->left;
 child->left = t;
 t = child;
}

708 Trees

insertNode, p3
F I G U R E 1 6 - 6 Code to insert a node into an AVL tree (continued)

/*
 * Function: fixRightImbalance
 * Usage: fixRightImbalance(t);
 * ----------------------------
 * This function is called when a node has been found that is out of
 * balance with the longer subtree on the right. Depending on the balance
 * factor of the right child, the code performs a single or double rotation.
 */

void fixRightImbalance(BSTNode * & t) {
 BSTNode *child = t->right;
 if (child->bf != t->bf) {
 int oldBF = child->left->bf;
 rotateRight(t->right);
 rotateLeft(t);
 t->bf = 0;
 switch (oldBF) {
 case -1: t->left->bf = 0; t->right->bf = +1; break;
 case 0: t->left->bf = t->right->bf = 0; break;
 case +1: t->left->bf = -1; t->right->bf = 0; break;
 }
 } else {
 rotateLeft(t);
 t->left->bf = t->bf = 0;
 }
}

/*
 * Function: rotateRight
 * Usage: rotateRight(t);
 * ----------------------
 * Performs a single right rotation of the tree passed by reference as the
 * argument t. The balance factors are unchanged by this function and must
 * be corrected at a higher level of the algorithm.
 */

void rotateRight(BSTNode * & t) {
 BSTNode *child = t->left;
 if (DEBUG) {
 cout << "rotateRight(" << t->key << "-" << child->key << ")" << endl;
 }
 t->left = child->right;
 child->right = t;
 t = child;
}

 16.4 Implementing maps using BSTs 709

2. The two subtrees in the current node were previously the same size. In this
case, increasing the size of one of the subtrees makes the current node slightly
out of balance, but not to the point that any corrective action is required. The
balance factor becomes –1 or +1, as appropriate, and the function returns 1 to
show that the height of the subtree rooted at this node has increased.

3. The subtree that grew taller was already taller than the other subtree. When
this situation occurs, the tree is now out of balance, because one subtree is two
nodes taller than the other. At this point, the code must execute the appropriate
rotation operations to correct the imbalance. If the balance factors in the
current node and the root of the expanding subtree have the same sign, a single
rotation is sufficient. If not, the code must perform a double rotation. After
performing the rotations, the code must correct the balance factors in the nodes
whose positions have changed. The effect of the single and double rotation
operations on the balance factors in the node is shown in Figure 16-7.

Using the code for the AVL algorithm shown in Figure 16-6 ensures that the binary
search tree remains in balance as new nodes are added. As a result, both findNode
and insertNode will run in O (log N) time. Even without the AVL extension,
however, the code will continue to work. The advantage of the AVL strategy is that
it guarantees good performance, at some cost in the complexity of the code.

 16.4 Implementing maps using BSTs
As noted in Chapter 15, the Standard Template Library uses binary search trees to
implement the map abstraction. This implementation strategy means that the get
and put methods run in O(log N) time, which is slightly less efficient than the O(1)
average running time offered by the hash table strategy. In practice, that difference
is not all that important. The graph of O(log N) grows extremely slowly and is
much closer to O(1) than it is to O(N). The designers of C++ felt that the ability to
process keys in order more than compensated for the modest additional cost.

The hard parts of implementing the map abstraction using binary search trees are
almost entirely in the code for binary search trees themselves, which you have
already seen in this chapter. To apply this idea to the Map class, there are just a few
tasks left to perform:

• The node structure must include a value field along with the key.

• The code must use templates to parameterize the key and value types.

• The code for manipulating the tree must be embedded in the Map class.

Each of these changes makes a wonderful exercise that will reinforce your
understanding of classes.

710 Trees

AVL rotations
F I G U R E 1 6 - 7 Rotation operations in an AVL tree

N1

–2

N2

–1

T1

h+1
T2

h
T3

h

Single rotation

N2
0

N1
0

T1 T2 T3

N1

–2

N2

+1

N3
?

T1

h

T2 T3

T4

h

Double rotation

N3
0

N2
?

N1
?

T1 T2 T3 T4

Note: At least one of the subtrees T2 and T3 must have height h, the other can have height h or h–1. The
balance factors in the final nodes will need to be adjusted to take account of any difference in height.

 Review questions 711

 Summary
In this chapter, you have been introduced to the concept of trees, which are
hierarchical collections of nodes that obey the following properties:

• There is a single node at the top that forms the root of the hierarchy.

• Every node in the tree is connected to the root by a unique line of descent.

Important points in this chapter include:

• Many of the terms used to describe trees, such as parent, child, ancestor,

descendant, and sibling, come directly from family trees. Other terms, including
root and leaf, are derived from trees in nature. These metaphors make the
terminology used for trees easy to understand because the words have the same
interpretation in computer science as they do in more familiar contexts.

• Trees have a well-defined recursive structure because every node in a tree is the
root of a subtree. Thus, a tree consists of a node together with its set of children,
each of which is a tree. This recursive structure is reflected in the underlying
representation for a tree, which is defined as a pointer to a node; a node, in turn,
is a structure that contains trees.

• Binary trees are a subclass of trees in which nodes have at most two children and
every node except the root is designated as either a left child or a right child of
its parent.

• If a binary tree is organized so that every node in the tree contains a key field
that follows all the keys in its left subtree and precedes all the keys in its right
subtree, that tree is called a binary search tree. As its name implies, the
structure of a binary search tree permits the use of the binary search algorithm,
which makes it possible to find individual keys more efficiently. Because the
keys are ordered, it is always possible to determine whether the key you’re
searching for appears in the left or right subtree of any particular node.

• Using recursion makes it easy to step through the nodes in a binary search tree,
which is called traversing or walking the tree. There are several types of
traversals, depending on the order in which the nodes are processed. If the key
in each node is processed before the recursive calls to process the subtrees, the
result is a preorder traversal. Processing each node after both recursive calls
gives rise to a postorder traversal. Processing the current node between the two
recursive calls represents an inorder traversal. In a binary search tree, the
inorder traversal has the useful property that the keys are processed in order.

• Depending on the order in which nodes are inserted, given the same set of keys,
binary search trees can have radically different structures. If the branches of the
tree differ substantially in height, the tree is said to be unbalanced, which

712 Trees

reduces its efficiency. By using techniques such as the AVL algorithm described
in this chapter, you can keep a tree in balance as new nodes are added.

 Review questions
1. What two conditions must be satisfied for a collection of nodes to be a tree?

2. Give at least four real-world examples that involve tree structures.

3. Define the terms parent, child, ancestor, descendant, and sibling as they apply

to trees.

4. The family tree for the House of Tudor, which ruled England in Shakespeare’s

time, is shown in Figure 16-8. Identify the root, leaf, and interior nodes. What
is the height of this tree?

5. What is it about trees that makes them recursive?

6. Diagram the internal structure of the tree shown in Figure 16-8 when it is

represented using the type FamilyTreeNode.

7. What is the defining property of a binary search tree?

8. Why are different type declarations used for the first argument in findNode

and insertNode?

F I G U R E 1 6 - 8 The House of Tudor

Henry VII

Margaret Henry VIII Arthur Mary

James Mary Elizabeth I Edward VI

Mary Queen of Scots

Frances

Jane Grey Catherine Grey

James I

 Review questions 713

9. In The Hobbit by J. R. R. Tolkien, 13 dwarves arrive at the house of Bilbo
Baggins in the following order: Dwalin, Balin, Kili, Fili, Dori, Nori,
Ori, Oin, Gloin, Bifur, Bofur, Bombur, and Thorin. Diagram the binary
search tree that results from inserting the names of these dwarves into an empty
tree.

10. Given the tree you created in the preceding question, what key comparisons are

made if you call findNode on the name Bombur?

11. Write down the preorder, inorder, and postorder traversals of the binary search

tree you created for question 9.

12. One of the three standard traversal orders—preorder, inorder, or postorder—

does not depend on the order in which the nodes are inserted into the tree.
Which one is it?

13. What does it mean for a binary tree to be balanced?

14. For each of the following tree structures, indicate whether the tree is balanced:

For any tree structure that is out of balance, indicate which nodes are out of
balance.

15. True or false: If a binary search tree becomes unbalanced, the algorithms used

in the functions findNode and insertNode will fail to work correctly.

16. How do you calculate the balance factor of a node?

17. Fill in the balance factors for each node in the following binary search tree:

714 Trees

18. If you use the AVL balancing strategy, what rotation operation must you apply

to the tree in the preceding question to restore its balanced configuration?
What is the structure of the resulting tree, including the updated balance
factors?

19. True or false: When you insert a new node into a balanced binary tree, you can

always correct any resulting imbalance by performing one operation, which
will be either a single or a double rotation.

20. As shown in the section on “Illustrating the AVL idea,” inserting the symbols

for the first six elements into an AVL tree results in the following
configuration:

Show what happens to the tree as you add the next six element symbols:

N (Nitrogen)
O (Oxygen)
F (Fluorine)
Ne (Neon)
Na (Sodium)
Mg (Magnesium)

21. Describe in detail what happens during a call to insertNode.

22. What strategy does the text suggest to avoid having a binary search tree become

disconnected if you remove an interior node?

E

A O

I Y

U

H
0

Be
0

He
+1

B
0

C
0

Li
0

 Exercises 715

 Exercises
1. Working from the definition of FamilyTreeNode given in the section entitled

“Representing family trees in C++,” write a function

FamilyTreeNode *readFamilyTree(string filename);

that reads in a family tree from a data file whose name is supplied as the
argument to the call. The first line of the file should contain a name
corresponding to the root of the tree. All subsequent lines in the data file
should have the following form:

child:parent

where child is the name of the new individual being entered and parent is the
name of that child’s parent, which must appear earlier in the data file. For
example, if the file normandy.dat contains the lines

calling readFamilyTree("normandy.dat") should return the family-tree
structure shown in Figure 16-2.

2. Write a function

void displayFamilyTree(FamilyTreeNode *tree);

that displays all the individuals in a family tree. To record the hierarchy of the
tree, the output of your program should indent each generation so that the name
of each child appears two spaces to the right of the corresponding parent, as
shown in the following sample run:

3. As defined in the chapter, the FamilyTreeNode structure uses a vector to store

the children. Another possibility is to include an extra pointer in these nodes
that will allow them to form a linked list of the children. Thus, in this design,
each node in the tree needs to contain only two pointers: one to its eldest child
and one to its next younger sibling. Using this representation, the House of

FamilyTree
William I
 Robert
 William II
 Adela
 Stephan
 Henry I
 William
 Matilda
 Henry II

716 Trees

Normandy appears as shown in Figure 16-9. In each node, the pointer on the
left always points down to a child; the pointer on the right indicates the next
sibling in the same generation. Thus, the eldest child of William I is Robert,
which you obtain by following the link at the left of the diagram. The
remaining children are linked together through the link cells shown at the right
of the node diagram. The chain of children ends at Henry I, which has the
value NULL in its next-sibling link.

Using the linked design illustrated in this diagram, write new definitions of
FamilyTreeNode, readFamilyTree, and displayFamilyTree.

4. In exercise 3, the changes you made to the FamilyTreeNode structure forced
you to rewrite the functions readFamilyTree and displayFamilyTree
because those functions depend on the internal representation. If the family
tree were instead represented as a class that maintains its interface despite any
changes in representation, you can avoid much of this recoding. Such an
interface appears in Figure 16-10. Write the corresponding implementation
using a vector to store the list of children.

The class exported by the familytree.h interface corresponds to an
individual person rather than to the family tree as a whole. To avoid confusion,
this interface calls that class PersonNode, which emphasizes both the fact that
each node represents a person and a node in a family tree. Given a pointer to a
PersonNode object, you can get the parent using getParent and the children
using getChildren.

F I G U R E 1 6 - 9 The House of Normandy using a list of siblings

William I

Robert William II Adela Henry I

Stephen William Matilda

Henry II

 Exercises 717

familytree.h, p1
F I G U R E 1 6 - 1 0 Interface for the PersonNode class

/*
 * File: familytree.h
 * ------------------
 * This file is an interface to a simple class that represents
 * an individual person in a family tree.
 */

#ifndef _familytree_h
#define _familytree_h

#include <string>
#include "vector.h"

/*
 * Class: PersonNode
 * -----------------
 * This class defines the structure of an individual in the family
 * tree, which consists of a name and a vector of children.
 */

class PersonNode {
 public:

/*
 * Constructor: PersonNode
 * Usage: PersonNode *person = new PersonNode(name);
 * ---
 * This function constructs a new PersonNode with the specified
 * name. The newly constructed entry has no children, but clients
 * can add children by calling the addChild method.
 */

 PersonNode(std::string name);

/*
 * Method: getName
 * Usage: string name = person->getName();
 * ---------------------------------------
 * Returns the name of the person.
 */

 string getName();

/*
 * Method: addChild
 * Usage: person->addChild(child);
 * -------------------------------
 * Adds child to the end of the list of children for person, and
 * makes person the parent of child.
 */

 void addChild(PersonNode *child);

718 Trees

5. Using the familytree.h interface defined in Figure 16-10, write a function

PersonNode *findCommonAncestor(PersonNode *p1,
 PersonNode *p2);

that returns the closest ancestor shared by p1 and p2.

6. Using the definition of BSTNode from section 16.2, write a function

int height(BSTNode *tree);

that takes a binary search tree and returns its height.

7. Write a function

bool isBalanced(BSTNode *tree);

that determines whether a given tree is balanced according to the definition in
the section on “Balanced trees.” To solve this problem, all you really need to
do is translate the definition of a balanced tree more or less directly into code.
If you do so, however, the resulting implementation is likely to be relatively
inefficient because it has to make several passes over the tree. The real

F I G U R E 1 6 - 1 0 Interface for the PersonNode class (continued)

/*
 * Method: getParent
 * Usage: PersonNode *parent = person->getParent();
 * --
 * Returns the parent of the specified person.
 */

 PersonNode *getParent();

/*
 * Method: getChildren
 * Usage: Vector<PersonNode *> children = person->getChildren();
 * ---
 * Returns a vector of the children of the specified person.
 * Note that this vector is a copy of the one in the node, so
 * that the client cannot change the tree by adding or removing
 * children from this vector.
 */

 Vector<PersonNode *> getChildren();

#include "familytreepriv.h"

};

#endif

 Exercises 719

challenge in this problem is to implement the isBalanced function so that it
determines the result without looking at any node more than once.

8. Write a function

bool hasBinarySearchProperty(BSTNode *tree);

that takes a tree and determines whether it maintains the fundamental property
that defines a binary search tree: that the key in each node follows every key in
its left subtree and precedes every key in its right subtree.

9. The discussion of the AVL algorithm in the text offers a strategy for inserting a

node but does not cover the symmetric process of removing a node, which also
requires rebalancing the tree. As it turns out, these two algorithms are quite
similar. Removing a node either may have no effect on the height of a tree or
may shorten it by one. If a tree gets shorter, the balance factor in its parent
node changes. If the parent node is then unbalanced, it is possible to rebalance
the tree at that point by performing either a single or a double rotation.

Implement a function

void removeNode(BSTNode * & t, string key);

that removes the node containing key from the tree while keeping the
underlying AVL tree balanced. Think carefully about the various cases that can
arise and make sure that your implementation handles each of these cases
correctly.

10. Using the discussion in section 16.4 as a guide, implement the map.h interface

using binary search trees as the underlying representation. Start with the
simplified version of the interface presented in Figure 15-1 on page 655. Once
you have that working, implement the remove method and the square-bracket
selection operator.

11. From a practical standpoint, the AVL algorithm is too aggressive. Because it

requires that the heights of the subtrees at each node never differ by more than
one, the AVL algorithm spends quite a bit of time performing rotation
operations to correct imbalances that occur as new nodes are inserted. If you
allow trees to become somewhat more unbalanced—but still keep the subtrees
relatively similar—you can reduce the balancing overhead significantly.

One of the most popular techniques for managing binary search trees is
called red-black trees. The name comes from the fact that every node in the
tree is assigned a color, either red or black. A binary search tree is a legal
red-black tree if all three of the following properties hold:

720 Trees

1. The root node is black.

2. The parent of every red node is black.

3. All paths from the root to a leaf contain the same number of black nodes.

These properties ensure that the longest path from the root to a leaf can never
be more than twice the length of the shortest path. Given the rules, you know
that every such path has the same number of black nodes, which means that the
shortest possible path is composed entirely of black nodes, and the longest has
black and red nodes alternating down the chain. Although this condition is less
strict than the definition of a balanced tree used in the AVL algorithm, it is
sufficient to guarantee that the operations of finding and inserting new nodes
both run in logarithmic time.

The key to making red-black trees work is finding an insertion algorithm
that allows you to add new nodes while maintaining the conditions that define
red-black trees. The algorithm has much in common with the AVL algorithm
and uses the same rotation operations. The first step is to insert the new node
using the standard insertion algorithm with no balancing. The new node always
replaces a NULL entry at some point in the tree. If the node is the first node
entered into the tree, it becomes the root and is therefore colored black. In all
other cases, the new node must initially be colored red to avoid violating the
rule that every path from the root to a leaf must contain the same number of
black nodes.

As long as the parent of the new node is black, the tree as a whole remains a
legal red-black tree. The problem arises if the parent node is also red, which
means that the tree violates the second condition, which requires that every red
node have a black parent. In this case, you need to restructure the tree to
restore the red-black condition. Depending on the relationship of the red-red
pair to the remaining nodes in the tree, you can eliminate the problem by
performing one of the following operations:

1. A single rotation followed by a recoloring that leaves the top node black.

2. A double rotation followed by a recoloring that leaves the top node black.

3. A simple change in node colors that leaves the top node red and may
therefore require further restructuring at a higher level in the tree.

These three operations are illustrated in Figure 16-11. The diagram shows only
the cases in which the imbalance occurs on the left side. Imbalances on the
right side are treated symmetrically.

Reimplement the Map class so that it uses a red-black tree as its underlying
representation.

 Exercises 721

red-black balancing
F I G U R E 1 6 - 1 1 Rotation operations in a red-black tree

Case 1: N4 is black (or nonexistent); N1 and N2 are out of balance in the same direction

N1
B

N2
R

N3
B

N4
B

T1 T2

T3 T4 T5

N1
R

N2
B

N3
B

N4
B

T1 T2 T3

T4 T5

Case 2: N4 is black (or nonexistent); N1 and N2 are out of balance in opposite directions

N1
B

N2
R

N3
B

N4
B

T1

T2 T3

T4 T5

N1
R

N2
B

N3
B

N4
B

T1 T2 T3

T4 T5

Case 3: N4 is red; the relative balance of N1 and N2 doesn’t matter

N1
B

N2
R

N3
B

N4
R

T1

T2 T3

T4 T5

color change N1
R

N2
B

N3
B

N4
B

T1

T2 T3

T4 T5

722 Trees

12. Trees have many applications beyond those listed in this chapter. For example,
trees can be used to implement a lexicon, which was introduced in Chapter 5.
The resulting structure, first developed by Edward Fredkin in 1960, is called a
trie. (Over time, the pronunciation of this word has evolved to the point that it
is now pronounced like try, even though the name comes from the central
letters of retrieval.) The trie-based implementation of a lexicon, while
somewhat inefficient in its use of space, makes it possible to determine whether
a word is in the lexicon much more quickly than you can using a hash table.

At one level, a trie is simply a tree in which each node branches in as many
as 26 ways, one for each possible letter of the alphabet. When you use a trie to
represent a lexicon, the words are stored implicitly in the structure of the tree
and represented as a succession of links moving downward from the root. The
root of the tree corresponds to the empty string, and each successive level of the
tree corresponds to the subset of the entire word list formed by adding one
more letter to the string represented by its parent. For example, the A link
descending from the root leads to the subtree containing all the words
beginning with A, the B link from that node leads to the subtree containing all
the words beginning with AB, and so forth. Each node is also marked with a
flag indicating whether the substring that ends at that particular point is a
legitimate word.

The structure of a trie is much easier to understand by example than by
definition. Figure 16-12 shows a trie containing the symbols for the first six

F I G U R E 1 6 - 1 2 Trie containing the element symbols H, He, Li, Be, B, and C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
no

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
no

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
yes

 Exercises 723

elements—H, He, Li, Be, B, and C. The root of the tree corresponds to the
empty string, which is not a legal symbol, as indicated by the designation no in
the field at the extreme right end of the structure. The link labeled B from the
node at the root of the trie descends to a node corresponding to the string "B".
The rightmost field of this node contains yes, which indicates that the string
"B" is a complete symbol in its own right. From this node, the link labeled E
leads to a new node, which indicates that the string "BE" is a legal symbol as
well. The NULL pointers in the trie indicate that no legal symbols appear in the
subtree beginning with that substring and therefore make it possible to
terminate the search process.

Reimplement the Lexicon class so that it uses a trie as its internal
representation. Your implementation should be able to read text files but not
binary data files such as EnglishWords.dat.

Chapter 17
Expression Trees

“What’s twice eleven?” I said to Pooh.
(“Twice what?” said Pooh to Me.)
“I think it ought to be twenty-two.”
“Just what I think myself,” said Pooh.

— A. A. Milne, “Us Two,” Now We Are Six, 1927

726 Expression Trees

Chapter 16 focused on binary search trees because they provide a simple context for
explaining how trees work. Trees occur in many other programming contexts as
well. In particular, trees often show up in the implementation of compilers because
they are ideal for representing the hierarchical structure of a program. By exploring
this topic in some detail, you will learn quite a bit, not only about trees, but also
about the compilation process itself. Understanding how compilers work removes
some of the mystery surrounding programming and makes it easier to understand
the process as a whole.

Unfortunately, designing a complete compiler is far too complex to serve as a
useful illustration. Typical commercial compilers require many person-years of
programming, much of which is beyond the scope of this text. Even so, it is
possible to give you a sense of how they work—and, in particular, of how trees fit
into the process—by making the following simplifications:

• Having you build an interpreter instead of a compiler. As described in the

section on “The compilation process” in Chapter 1, a compiler translates a
program into machine-language instructions that the computer can then execute
directly. Although it has much in common with a compiler, an interpreter never
actually translates the source code into machine language but simply performs
the operations necessary to achieve the effect of the compiled program.
Interpreters are generally easier to write, but have the disadvantage that
interpreted programs run much more slowly than their compiled counterparts.

• Focusing only on the problem of evaluating arithmetic expressions. A full-scale
language translator for a modern programming language—whether a compiler or
an interpreter—must be able to process control statements, function calls, type
definitions, and many other language constructs. Most of the fundamental
techniques used in language translation, however, are illustrated in the seemingly
simple task of translating arithmetic expressions. For the purpose of this
chapter, arithmetic expressions will be limited to constants and variables
combined using the operators +, –, *, /, and = (assignment). As in C++,
parentheses may be used to define the order of operations, which is otherwise
determined by applying precedence rules.

• Limiting the types used in expressions to integers. Modern programming
languages like C++ allow expressions to manipulate data of many different
types. In this chapter, all data values are assumed to be of type int, which
simplifies the structure of the interpreter considerably.

 17.1 Overview of the interpreter
The goal of this chapter is to show you how to design a program that accepts
arithmetic expressions from the user and then displays the results of evaluating

 17.1 Overview of the interpreter 727

those expressions. The basic operation of the interpreter is therefore to execute the
following steps repeatedly as part of a loop in the main program:

1. Read in an expression and translate it into an appropriate internal form.

2. Evaluate the expression to produce an integer result.

3. Print the result of the evaluation on the console.

This iterated process is called a read-eval-print loop and is characteristic of most
interpreters.

The operation of reading in an expression and translating it into its internal form
can also be decomposed into three phases, as follows:

1. Input. The input phase consists of reading in a line of text from the user, which

can be accomplished with a simple call to the getLine function from
simpio.h.

2. Lexical analysis. The lexical analysis phase consists of dividing the input line
into individual units called tokens, each of which represents a single logical
entity, such as an integer constant, an operator, or a variable name.
Fortunately, all the facilities required to implement lexical analysis are
provided by the TokenScanner class introduced in Chapter 6.

3. Parsing. Once the line has been broken down into its component tokens, the
parsing phase consists of determining whether the individual tokens represent a
legal expression and, if so, what the structure of that expression is. To do so,
the parser must determine how to construct a valid parse tree from the
individual tokens in the input.

The main program for the interpreter that incorporates these phases appears in

Figure 17-1. A sample run of this program might look like this:

Interpreter
=> 2 + 2
4
=> x = 6
6
=> y = 10
10
=> 2 * x + 3 * y
42
=> 2 * (x + 3) * y
180
=> quit

728 Expression Trees

As the sample run makes clear, the interpreter allows assignment to variables and
adheres to C++’s precedence conventions by evaluating multiplication before
addition.

The heart of the implementation is the Expression class which represents an
arithmetic expression in a form that makes it easy to manipulate. At this point,
however, you don’t have a detailed sense of what the Expression class is or how it
is represented. From its declaration, you know that the variable exp is a pointer to
an Expression object, which means that any methods pertaining to the object to
which exp points will use the -> operator rather than the . operator that appears
when objects are used directly. Also, you can infer from the code that the
Expression class has a method called eval, even though you don’t know the

F I G U R E 1 7 - 1 Main module for the interpreter

/*
 * File: Interpreter.cpp
 * ---------------------
 * This program simulates the top level of a programming language
 * interpreter. The program reads an expression, evaluates that
 * expression, and then displays the result.
 */

#include <iostream>
#include <string>
#include "evalstate.h"
#include "exp.h"
#include "parser.h"
#include "simpio.h"
#include "tokenscanner.h"
using namespace std;

/* Main program */

int main() {
 EvalState state;
 TokenScanner scanner;
 scanner.ignoreWhitespace();
 scanner.scanNumbers();
 while (true) {
 string line = getLine("=> ");
 if (line == "quit") break;
 scanner.setInput(line);
 Expression *exp = parseExp(scanner);
 int value = exp->eval(state);
 cout << value << endl;
 delete exp;
 }
 return 0;
}

 17.1 Overview of the interpreter 729

details of that operation. That, of course, is how it should be. As a client of the
expression package, you are less concerned with how expressions are implemented
than you are with how to use them. As a client, you need to think of the
Expression class as an abstract data type. The underlying details become
important only when you have to understand the implementation.

Another thing you might notice from Figure 17-1 is that the eval method takes
a parameter called state, which is an object of type EvalState. This parameter
contains, possibly along with additional information, a symbol table, which maps
each variable name to its corresponding value. Because variables maintain their
values across many calls to eval, the symbol table information must be passed as a
parameter. If the symbol table were the only shared information, it would be
sufficient to pass a Map to the eval method. The advantage of defining a separate
EvalState class is doing so makes it easier to share other information as the
capabilities of the interpreter expand. A minimal definition of the EvalState class
that contains only the symbol table appears in Figures 17-2 and 17-3.

F I G U R E 1 7 - 2 Interface for the EvalState class

/*
 * File: evalstate.h
 * -----------------
 * This interface exports a class called EvalState, which keeps track
 * of additional information required by the evaluator, most notably
 * the values of variables.
 */

#ifndef _evalstate_h
#define _evalstate_h

#include <string>
#include "map.h"

/*
 * Class: EvalState
 * ----------------
 * This class is passed by reference through the recursive levels
 * of the evaluator and contains information from the evaluation
 * environment that the evaluator may need to know. In this
 * version, the only information maintained by the EvalState class
 * is a symbol table that maps variable names into their values.
 * Several of the exercises, however, require you to include
 * additional information in the EvalState class.
 */

class EvalState {

public:

730 Expression Trees

evalstate.h, p2
F I G U R E 1 7 - 2 Interface for the EvalState class (continued)

/*
 * Constructor: EvalState
 * Usage: EvalState state;
 * -----------------------
 * Creates a new EvalState object with no variable bindings.
 */

 EvalState();

/*
 * Destructor: ~EvalState
 * Usage: usually implicit
 * -----------------------
 * Frees all heap storage associated with this object.
 */

 ~EvalState();

/*
 * Method: setValue
 * Usage: state.setValue(var, value);
 * ----------------------------------
 * Sets the value associated with the specified var.
 */

 void setValue(std::string var, int value);

/*
 * Method: getValue
 * Usage: int value = state.getValue(var);
 * ---------------------------------------
 * Returns the value associated with the specified variable.
 */

 int getValue(std::string var);

/*
 * Method: isDefined
 * Usage: if (state.isDefined(var)) . . .
 * --------------------------------------
 * Returns true if the specified variable is defined.
 */

 bool isDefined(std::string var);

private:

 Map<std::string,int> symbolTable;

};

#endif

 17.2 The structure of expressions 731

Although the main program for the interpreter is quite straightforward, you still
have some unfinished business. First, you need to learn more about what
expressions are and how to represent them. You also have to implement the
parseExp function. Because each of these problems involves some subtlety,
completing the interpreter will take up the remainder of the chapter.

 17.2 The structure of expressions
Before you can complete the implementation of the interpreter, your first task is to
understand the concept of an expression and how that concept can be represented as
an object. As is often the case when you are thinking about a programming
abstraction, it makes sense to begin with the insights you have acquired about

F I G U R E 1 7 - 3 Implementation of the EvalState class

/*
 * File: evalstate.cpp
 * -------------------
 * This file implements the EvalState class, which defines a symbol
 * table for keeping track of the value of identifiers. The public
 * methods are simple enough that they need no individual documentation.
 */

#include <string>
#include "evalstate.h"
#include "map.h"
using namespace std;

/* Implementation of the EvalState class */

EvalState::EvalState() {
 /* Empty */
}

EvalState::~EvalState() {
 /* Empty */
}

void EvalState::setValue(string var, int value) {
 symbolTable.put(var, value);
}

int EvalState::getValue(string var) {
 return symbolTable.get(var);
}

bool EvalState::isDefined(string var) {
 return symbolTable.containsKey(var);
}

732 Expression Trees

expressions from your experience as a C++ programmer. For example, you know
that the lines

0

2 * 11

3 * (a + b + c)

x = x + 1

represent legal expressions in C++. At the same time, you also know that the lines

2 * (x - y

17 k

are not expressions; the first has unbalanced parentheses, and the second is missing
an operator. An important part of understanding expressions is articulating what
constitutes an expression so that you can differentiate legal expressions from
malformed ones.

A recursive definit ion of expressions
As it happens, the best way to define the structure of a legal expression is to adopt a
recursive perspective. A sequence of symbols is an expression if it has one of the
following forms:

1. An integer constant

2. A variable name

3. An expression enclosed in parentheses

4. A sequence of two expressions separated by an operator

The first two possibilities represent the simple cases for the recursive definition.
The last two possibilities, however, define an expression in terms of simpler ones.

To see how you might apply this recursive definition, consider the following
sequence of symbols:

y = 3 * (x + 1)

Does this sequence constitute an expression? You know from experience that the
answer is yes, but you can use the recursive definition of an expression to justify
that answer. The integer constants 3 and 1 are expressions according to rule #1.
Similarly, the variable names x and y are expressions as specified by rule #2. Thus,
you already know that the expressions marked by the symbol exp in the following
diagram are expressions, as defined by the simple-case rules:

 17.2 The structure of expressions 733

At this point, you can start to apply the recursive rules. Given that x and 1 are
both expressions, you can tell that the string of symbols x + 1 is an expression by
applying rule #4, because it consists of two expressions separated by an operator.
You can record this observation in the diagram by adding a new expression marker
tied to the parts of the expression that match the rule, as shown:

The parenthesized quantity can now be identified as an expression according to rule
#3, which results in the following diagram:

By applying rule #4 two more times to take care of the remaining operators, you can
show that the entire set of characters is indeed an expression, as follows:

As you can see, this diagram forms a tree. A tree that demonstrates how a sequence
of input symbols fits the syntactic rules of a programming language is called a
parse tree.

y

exp

= 3

exp

* (x

exp

+ 1

exp

)

y

exp

= 3

exp

* (x

exp

+ 1

exp

exp

)

y

exp

= 3

exp

* (x

exp

+ 1

exp

exp

)

exp

y

exp

= 3

exp

* (x

exp

+ 1

exp

exp

)

exp

exp

exp

734 Expression Trees

Ambiguity
Generating a parse tree from a sequence of symbols requires a certain amount of
caution. Given the four rules for expressions outlined in the preceding section, you
can form more than one parse tree for the expression

y = 3 * (x + 1)

Although the tree structure shown at the end of the last section presumably
represents what the programmer intended, it is just as valid to argue that y = 3 is
an expression according to rule #4, and that the entire expression therefore consists
of the expression y = 3, followed by a multiplication sign, followed by the
expression (x + 1). This argument ultimately reaches the same conclusion about
whether the input line represents an expression, but generates a different parse tree.
Both parse trees are shown in Figure 17-4. The parse tree on the left is the one
generated in the last section and corresponds to what a C++ programmer means by
that expression. The parse tree on the right represents a legal application of the
expression rules but reflects an incorrect ordering of the operations, given C++’s
rules of precedence.

The problem with the second parse tree is that it ignores the mathematical rule
specifying that multiplication should be performed before assignment. The
recursive definition of an expression indicates only that a sequence of two
expressions separated by an operator is an expression; it says nothing about the
relative precedence of the different operators and therefore admits both the intended
and unintended interpretations. Because it allows multiple interpretations of the
same string, the informal definition of expression given in the preceding section is
said to be ambiguous. To resolve the ambiguity, the parsing algorithm must
include some mechanism for determining the order in which operators are applied.

F I G U R E 1 7 - 4 Intended parse tree and a legal but incorrect alternative

y

exp

= 3

exp

* (x

exp

+ 1

exp

exp

)

exp

exp

exp

y

exp

= 3

exp

exp

* (x

exp

+ 1

exp

exp

)

exp

exp

 17.2 The structure of expressions 735

The question of how to resolve the ambiguity in an expression during the parsing
phase is discussed in the section on “Parsing an expression” later in this chapter. At
the moment, the point of introducing parse trees is to provide some insight into how
you might represent an expression as a data structure. To this end, it is important to
note that the parse trees in Figure 17-4 are not ambiguous. The structure of each
tree explicitly represents the structure of the expression. The ambiguity exists only
in deciding how to generate the parse tree from the input string. Once you have the
correct parse tree, its structure contains everything you need to understand the order
in which the operators need to be applied.

Expression trees
In fact, parse trees contain more information than you need in the evaluation phase.
Parentheses are useful in determining how to generate the parse tree but play no role
in the evaluation of an expression once its structure is known. If your concern is
simply to find the value of an expression, you do not need to include parentheses
within the structure. This observation allows you to simplify a complete parse tree
into an abstract structure called an expression tree that is more appropriate for the
evaluation phase. In the expression tree, nodes in the parse tree that represent
parenthesized subexpressions are eliminated. Moreover, it is convenient to drop the
exp labels from the tree and instead mark each node in the tree with the appropriate
operator symbol. For example, the intended interpretation of the expression

y = 3 * (x + 1)

corresponds to the following expression tree:

The structure of an expression tree is similar in many ways to the binary search
tree from Chapter 16, but there are also some important differences. In the binary
search tree, every node had the same structure. In an expression tree, there are three
different types of nodes, as follows:

1. Integer nodes represent integer constants, such as 3 and 1 in the example tree.

2. Identifier nodes represent the names of variables, such as x and y.

3. Compound nodes represent the application of an operator to two operands,
each of which is an arbitrary expression tree.

=

y *

3 +

x 1

736 Expression Trees

Each of these node types corresponds to one of the rules in the recursive
formulation of an expression. The definition of the Expression class itself must
make it possible for clients to work with expression nodes of all three types.
Similarly, the underlying implementation must somehow make it possible for
different expression types to coexist within the tree.

To represent such a structure, you need to define a representation for expressions
that allows them to have different structures depending on their type. An integer
expression, for example, must include the value of the integer as part of its internal
structure. An identifier expression must include the name of the identifier. A
compound expression must include the operator along with the left and right
subexpressions. Defining a single abstract type that allows expressions to take on
these different underlying structures requires you to implement a class hierarchy in
which a general Expression class becomes the superclass for three subclasses, one
for each of the expression types.

 17.3 Defining the expression hierarchy
In the preceding section, you learned that expressions come in three different types:
integer constants, identifiers representing variable names, and compound structures
that represent an operator applied to two subexpressions. Each of these expression
types contains a specific set of information and is evaluated differently than the
others. At the same time, all three of these expression types need to be able to
coexist within an expression tree and must behave similarly at an abstract level.

An inheritance hierarchy is an appropriate way to represent the different types of
expression trees. At the top of the hierarchy will be the Expression class that
specifies the features that will be common to each of the expression types. The
Expression class has three subclasses, one for each expression type. The
definitions for all four of these classes—the high-level Expression class and the
lower-level subclasses ConstantExp, IdentifierExp, and CompoundExp—are
all included as part of the exp.h interface.

As is typical for a class hierarchy, many of the most common methods are
defined at the level of the Expression class but implemented individually in each
of the subclasses. Every Expression object implements three methods:

1. The eval method determines the value of the expression, which is always an

integer in this implementation. For constant expressions, the value is simply
the value of the constant stored in the node. For identifier expressions, the
value is determined by looking up the identifier name in a symbol table and
returning the corresponding value. For compound expressions, the value must
be computed by recursively evaluating the subexpressions and then applying
the appropriate operator.

 17.3 Defining the expression hierarchy 737

2. The toString method converts an expression into a string that makes the
structure explicit by adding parentheses around every subexpression, even if
those parentheses are not required. Although the toString method is not used
in the interpreter, it is very useful to have around, particularly during
debugging. If you are unsure whether an expression has the correct form, you
can use toString to verify its structure.

3. The getType method makes it possible to determine the type of an existing
expression. The return value is one of the enumeration constants defined for
the type ExpressionType: CONSTANT, IDENTIFIER, and COMPOUND. Being
able to check the type of an expression—in conjunction with the getter methods
in each of the expression subclasses—makes it possible to create new
expressions from existing ones.

In the Expression class itself, each of these methods is declared using the C++
keyword virtual. The virtual keyword informs the compiler that this method
can be overridden by a subclass. The virtual keyword ensures that the method is
invoked using the dynamic run-time type of the object instead of relying on the
static compile-time type. For example, consider this code fragment

Expression *exp = parseExp(scanner);
int value = exp->eval(state);

In the above code, exp has a compile-time type of “pointer to Expression.” In
reality, however, the variable exp points to a particular expression subclass, which
means that its type might really be “pointer to ConstantExp” or “pointer to
CompoundExp.” When you invoke eval, you want to use the overridden version
that is defined for the specific subclass. By tagging the eval method with the
virtual keyword, you indicate that the method should be chosen based on the
actual type of the object, which is called a dynamic dispatch. Most object-oriented
languages, including Java, always use dynamic dispatch. In C++, you have to use
virtual to get that behavior.

All classes that are subtypes of Expression—integers, identifiers, and
compound nodes—are able to evaluate themselves using the eval method. What
the Expression superclass does is declare the common prototype for that eval
method so that clients can call it for any type of expression. At the same time, it
isn’t possible to evaluate an expression unless you know what type of expression it
is. You can evaluate an integer or an identifier easily enough, but you can’t
evaluate a generic expression without more information. Therefore the method
eval in the Expression class is indicated as pure virtual, which means the
superclass provides no default implementation. Instead, each subclass must supply
an implementation that is appropriate for that node type.

738 Expression Trees

If you think about this problem, you’ll soon realize that the Expression class is
somewhat different from the other classes in this hierarchy. You can’t have an
Expression object that is not also a member of one of its subclasses. It never
makes sense to construct an Expression object in its own right. Whenever you
want to create an expression, you simply construct an object of the appropriate
subclass. Classes, like Expression, that are never constructed are called
abstract classes. In C++, you indicate that a class is abstract by including at least
one pure virtual method in the class interface.

Defining the interface for the Expression subclasses
In C++, the inheritance relationship for a class is declared in the class header as
follows:

class ConstantExp : public Expression {

This class header declares the new class ConstantExp to be a public subclass of
the Expression class. Being a public subclass means that all the public features of
the Expression class are inherited and public in the ConstantExp class. This
definition establishes that a ConstantExp is a subclass of Expression, which
means that a ConstantExp object can be substituted wherever an Expression
object is expected.

Each concrete Expression subclass must provide the implementation for the
three pure virtual methods declared in the superclass: eval, toString, and
getType. Each expression subclass, whether it be an integer constant, an
identifier, or a compound expression, will have its own specific way of
implementing these methods, but must provide that functionality using the exact
prototype specified by the superclass.

Each subclass also declares its own constructor that depends on the expression
type. To construct an integer expression, for example, you need to know the value
of the integer constant. To construct a compound expression, you need to specify
the operator along with the left and right subexpressions.

Figure 17-5 shows the interface for the Expression abstract superclass and its
three subclasses. All Expression objects are immutable, which means that any
Expression object, once created, will never change. Although clients are free to
embed existing expressions in larger ones, the interface offers no facilities for
changing the components of any existing expression. Using an immutable type to
represent expressions helps enforce the separation between the implementation of
the Expression class and its clients. Because those clients are prohibited from
making changes in the underlying representation, they are unable to change the
internal structure in a way that violates the requirements for expression trees.

 17.3 Defining the expression hierarchy 739

exp.h, p1
F I G U R E 1 7 - 5 Interface for the Expression class

/*
 * File: exp.h
 * -----------
 * This interface defines a class hierarchy for expressions,
 * which allows the client to represent and manipulate simple
 * binary expression trees.
 */

#ifndef _exp_h
#define _exp_h

#include "evalstate.h"

/*
 * Type: ExpressionType
 * --------------------
 * This enumerated type is used to differentiate the three different
 * expression types: CONSTANT, IDENTIFIER, and COMPOUND.
 */

enum ExpressionType { CONSTANT, IDENTIFIER, COMPOUND };

/*
 * Class: Expression
 * -----------------
 * This class is used to represent a node in an expression tree.
 * Expression is an example of an abstract class, which defines
 * the structure and behavior of a set of classes but has no
 * objects of its own. Any object must be one of the three
 * concrete subclasses of Expression:
 *
 * 1. ConstantExp -- an integer constant
 * 2. IdentifierExp -- a string representing an identifier
 * 3. CompoundExp -- two expressions combined by an operator
 *
 * The Expression class defines the interface common to all
 * Expression objects; each subclass provides its own specific
 * implementation of the common interface.
 *
 * Note on syntax: Each of the virtual methods in the Expression
 * class is marked with the designation = 0 on the prototype line.
 * This notation is used in C++ to indicate that this method is
 * purely virtual and will always be supplied by the subclass.
 */

class Expression {

public:

740 Expression Trees

exp.h, p2
F I G U R E 1 7 - 5 Interface for the Expression class (continued)

/*
 * Constructor: Expression
 * -----------------------
 * The base class constructor is empty. Each subclass must provide
 * its own constructor.
 */

 Expression();

/*
 * Destructor: ~Expression
 * Usage: delete exp;
 * ------------------
 * The destructor deallocates the storage for this expression.
 * It must be declared virtual to ensure that the correct subclass
 * destructor is called when deleting an expression.
 */

 virtual ~Expression();

/*
 * Method: eval
 * Usage: int value = exp->eval(state);
 * ------------------------------------
 * Evaluates this expression and returns its value in the context of
 * the specified EvalState object.
 */

 virtual int eval(EvalState & state) = 0;

/*
 * Method: toString
 * Usage: string str = exp->toString();
 * ------------------------------------
 * Returns a string representation of this expression.
 */

 virtual std::string toString() = 0;

/*
 * Method: type
 * Usage: ExpressionType type = exp->getType();
 * --
 * Returns the type of the expression, which must be one of the constants
 * CONSTANT, IDENTIFIER, or COMPOUND.
 */

 virtual ExpressionType getType() = 0;

};

 17.3 Defining the expression hierarchy 741

exp.h, p3
F I G U R E 1 7 - 5 Interface for the Expression class (continued)

/*
 * Class: ConstantExp
 * ------------------
 * This subclass represents a constant integer expression.
 */

class ConstantExp: public Expression {

public:

/*
 * Constructor: ConstantExp
 * Usage: Expression *exp = new ConstantExp(value);
 * --
 * The constructor initializes a new integer constant expression
 * to the given value.
 */

 ConstantExp(int value);

/*
 * Prototypes for the virtual methods
 * ----------------------------------
 * These methods have the same prototypes as those in the Expression
 * base class and don't require additional documentation.
 */

 virtual int eval(EvalState & state);
 virtual std::string toString();
 virtual ExpressionType getType();

/*
 * Method: getValue
 * Usage: int value = ((ConstantExp *) exp)->getValue();
 * ---
 * Returns the value field without calling eval and can be applied
 * only to an object known to be a ConstantExp.
 */

 int getValue();

private:

 int value;

};

742 Expression Trees

exp.h, p4
F I G U R E 1 7 - 5 Interface for the Expression class (continued)

/*
 * Class: IdentifierExp
 * --------------------
 * This subclass represents an expression corresponding to a variable.
 */

class IdentifierExp : public Expression {

public:

/*
 * Constructor: IdentifierExp
 * Usage: Expression *exp = new IdentifierExp(name);
 * ---
 * The constructor initializes a new identifier expression
 * for the variable named by name.
 */

 IdentifierExp(std::string name);

/*
 * Prototypes for the virtual methods
 * ----------------------------------
 * These methods have the same prototypes as those in the Expression
 * base class and don't require additional documentation.
 */

 virtual int eval(EvalState & state);
 virtual std::string toString();
 virtual ExpressionType getType();

/*
 * Method: getName
 * Usage: string name = ((IdentifierExp *) exp)->getName();
 * --
 * Returns the name field of the identifier node and can be applied only
 * to an object known to be an IdentifierExp.
 */

 std::string getName();

private:

 std::string name;

};

 17.3 Defining the expression hierarchy 743

exp.h, p5
F I G U R E 1 7 - 5 Interface for the Expression class (continued)

/*
 * Class: CompoundExp
 * ------------------
 * This subclass represents a compound expression consisting of
 * two subexpressions joined by an operator.
 */

class CompoundExp: public Expression {

public:

/*
 * Constructor: CompoundExp
 * Usage: Expression *exp = new CompoundExp(op, lhs, rhs);
 * ---
 * The constructor initializes a new compound expression
 * which is composed of the operator (op) and the left and
 * right subexpression (lhs and rhs).
 */

 CompoundExp(std::string op, Expression *lhs, Expression *rhs);

/*
 * Prototypes for the virtual methods
 * ----------------------------------
 * These methods have the same prototypes as those in the Expression
 * base class and don't require additional documentation.
 */

 virtual ~CompoundExp();
 virtual int eval(EvalState & state);
 virtual std::string toString();
 virtual ExpressionType getType();

/*
 * Methods: getOp, getLHS, getRHS
 * Usage: string op = ((CompoundExp *) exp)->getOp();
 * Expression *lhs = ((CompoundExp *) exp)->getLHS();
 * Expression *rhs = ((CompoundExp *) exp)->getRHS();
 * ---
 * These methods return the components of a compound node and can
 * be applied only to an object known to be a CompoundExp.
 */

 std::string getOp();
 Expression *getLHS();
 Expression *getRHS();

private:

 std::string op;
 Expression *lhs, *rhs;

};

#endif

744 Expression Trees

As written, the Expression classes export constructors, string conversion, and
evaluation functions. There are, however, other operations on expressions that you
might at first think belong in this interface. For example, the main program for the
interpreter calls the function parseExp, which is in some sense part of the behavior
of the expression type. This observation raises the question of whether the exp.h
interface should export that function as well.

Although parseExp must be defined somewhere in the code, exporting it
through the exp.h interface may not be the best design strategy. In a full-scale
interpreter, the parser requires a significant amount of code—enough to warrant
making this phase a complete module in its own right. In the stripped-down version
of the interpreter presented in this chapter, the code is much smaller. Even so, it
makes sense to partition the phases of the interpreter into separate modules for the
following reasons:

1. The resulting modular decomposition resembles more closely the structure you

would tend to encounter in practice. Full-scale interpreters are divided into
separate modules; following this convention even in our restricted example
clarifies how the pieces fit together.

2. The program will be easier to maintain as you add features. Getting the
module structure right early in the implementation of a large system makes it
easier for that system to evolve smoothly over time. If you start with a single
module and later discover that the program is growing too large, it usually takes
more work to separate the modules than it would have earlier in the program
evolution.

3. Using a separate module for the parser makes it easier to substitute new
implementations. One of the principal advantages of using a modular design is
that doing so makes it easier to substitute one implementation of an interface
for another. For example, the section on “Parsing” later in this chapter defines
two different implementations of the parseExp function. If parseExp is
exported by the exp.h interface, it is more difficult to substitute a new
implementation than it would be if parseExp were exported from a separate
module.

For these reasons, the exp.h interface exports only the types needed to represent

expressions, along with the constructor and evaluation functions. The parseExp
function is exported by a separate interface called parser.h.

Implementing the Expression subclasses
The abstract Expression superclass declares no data members. This design makes
sense because no data values are common to all node types. Each specific subclass
has its own unique storage requirements—an integer node needs to store an integer

 17.3 Defining the expression hierarchy 745

constant, a compound node stores pointers to its subexpressions, and so on. Each
subclass declares those specific data members that are required for its particular
expression type.

To reinforce your understanding of how Expression objects are stored, you
can visualize how the concrete structure is represented inside the computer’s
memory. The representation of an Expression object depends on its specific
subclass. You can diagram the structure of an expression tree by considering the
three classes independently. A ConstantExp object simply stores an integer value,
shown here as it would exist for the integer 3:

An IdentifierExp object stores a string representing a variable name, illustrated
here for the variable x:

A CompoundExp object stores the binary operator along with two pointers which
indicate the left and right subexpressions:

Because compound nodes contain subexpressions that can themselves be
compound nodes, expression trees can grow to an arbitrary level of complexity.
Figure 17-6 illustrates the internal data structure for the expression

y = 3 * (x + 1)

which includes three operators and therefore requires three compound nodes. The
parentheses do not appear explicitly in the expression tree because the structure of
the tree correctly reflects the desired order of operations.

Implementing the methods
The methods in the expression classes are straightforward to implement. Each
subclass provides a constructor that takes in appropriate arguments and initializes

CONSTANT

3

IDENTIFIER

x

COMPOUND

+

746 Expression Trees

the data members. The implementation of the toString method uses the
information from the data members to return a string representation of the
expression.

The only remaining task is to implement the evaluation method. Each subclass
has its own strategy for evaluating an expression. The value of a constant
expression is simply the value of the integer stored in that node. To evaluate an
identifier expression, you look up the variable in the variable table and return the
associated value. These are the simple cases of the recursive evaluation.

 The recursive case arises when you have a compound expression. Each
compound expression consists of an operator and two subexpressions. The
evaluation strategy, however, depends slightly on the operators. For the arithmetic
operators (+, –, *, and /), all you have to do is evaluate the left and right
subexpressions recursively and then apply the appropriate operation. For the
assignment operator (=), you need to evaluate the right-hand side and then store that
value into the variable table for the identifier on the left-hand side.

The full implementation of the Expression class hierarchy appears in
Figure 17-7.

F I G U R E 1 7 - 6 The internal structure of the expression y = 3 * (x + 1)

COMPOUND

=

IDENTIFIER

y

COMPOUND

*

CONSTANT

3

COMPOUND

+

IDENTIFIER

x

CONSTANT

1

 17.3 Defining the expression hierarchy 747

exp.cpp, p1
F I G U R E 1 7 - 7 Implementation of the Expression class

/*
 * File: exp.cpp
 * -------------
 * This file implements the Expression class and its subclasses.
 */

#include <string>
#include "error.h"
#include "evalstate.h"
#include "exp.h"
#include "strlib.h"
using namespace std;

/*
 * Implementation notes: the Expression class
 * --
 * The Expression class declares no instance variables and needs no code.
 */

Expression::Expression() {
 /* Empty */
}

Expression::~Expression() {
 /* Empty */
}

/*
 * Implementation notes: the ConstantExp subclass
 * --
 * The ConstantExp subclass declares a single instance variable that
 * stores the value of the constant. The eval method doesn't use the
 * value of state but needs it to match the general prototype for eval.
 */

ConstantExp::ConstantExp(int value) {
 this->value = value;
}

int ConstantExp::eval(EvalState & state) {
 return value;
}

string ConstantExp::toString() {
 return integerToString(value);
}

ExpressionType ConstantExp::getType() {
 return CONSTANT;
}

int ConstantExp::getValue() {
 return value;
}

748 Expression Trees

exp.cpp, p2
F I G U R E 1 7 - 7 Implementation of the Expression class (continued)

/*
 * Implementation notes: the IdentifierExp subclass
 * --
 * The IdentifierExp subclass declares a single instance variable that
 * stores the name of the variable. The implementation of eval must
 * look this variable up in the evaluation state.
 */

IdentifierExp::IdentifierExp(string name) {
 this->name = name;
}

int IdentifierExp::eval(EvalState & state) {
 if (!state.isDefined(name)) error(name + " is undefined");
 return state.getValue(name);
}

string IdentifierExp::toString() {
 return name;
}

ExpressionType IdentifierExp::getType() {
 return IDENTIFIER;
}

string IdentifierExp::getName() {
 return name;
}

/*
 * Implementation notes: the CompoundExp subclass
 * --
 * The CompoundExp subclass declares instance variables for the operator
 * and the left and right subexpressions. The implementation of eval
 * evaluates the subexpressions recursively and then applies the operator.
 */

CompoundExp::CompoundExp(string op, Expression *lhs, Expression *rhs) {
 this->op = op;
 this->lhs = lhs;
 this->rhs = rhs;
}

CompoundExp::~CompoundExp() {
 delete lhs;
 delete rhs;
}

 17.3 Defining the expression hierarchy 749

exp.cpp, p3
F I G U R E 1 7 - 7 Implementation of the Expression class (continued)

/*
 * Implementation notes: eval
 * --------------------------
 * The eval method for the compound expression case must check for the
 * assignment operator as a special case. Unlike the arithmetic operators
 * the assignment operator does not evaluate its left operand.
 */

int CompoundExp::eval(EvalState & state) {
 if (op == "=") {
 if (lhs->getType() != IDENTIFIER) {
 error("Illegal variable in assignment");
 }
 int val = rhs->eval(state);
 state.setValue(((IdentifierExp *) lhs)->getName(), val);
 return val;
 }
 int left = lhs->eval(state);
 int right = rhs->eval(state);
 if (op == "+") return left + right;
 if (op == "-") return left - right;
 if (op == "*") return left * right;
 if (op == "/") return left / right;
 error("Illegal operator in expression");
 return 0;
}

string CompoundExp::toString() {
 return '(' + lhs->toString() + ' ' + op + ' ' + rhs->toString() + ')';
}

ExpressionType CompoundExp::getType() {
 return COMPOUND;
}

string CompoundExp::getOp() {
 return op;
}

Expression *CompoundExp::getLHS() {
 return lhs;
}

Expression *CompoundExp::getRHS() {
 return rhs;
}

750 Expression Trees

 17.4 Parsing an expression
The problem of building the appropriate parse tree from a stream of tokens is not an
easy one. To a large extent, the underlying theory necessary to build an efficient
parser lies beyond the scope of this text. Even so, it is possible to make some
headway on the problem and solve it for the limited case of arithmetic expressions.

Parsing and grammars
In the early days of programming languages, programmers implemented the parsing
phase of a compiler without thinking very hard about the nature of the process. As
a result, early parsing programs were difficult to write and even harder to debug. In
the 1960s, however, computer scientists studied the problem of parsing from a more
theoretical perspective, which simplified it greatly. Today, a computer scientist
who has taken a course on compilers can write a parser for a programming language
with very little work. In fact, most parsers can be generated automatically from a
simple specification of the language for which they are intended. In the field of
computer science, parsing is one of the areas in which it is easiest to see the
profound impact of theory on practice. Without the theoretical work necessary to
simplify the problem, programming languages would have made far less headway
than they have.

The essential theoretical insight necessary to simplify parsing is actually
borrowed from linguistics. Like human languages, programming languages have
rules of syntax that define the grammatical structure of the language. Moreover,
because programming languages are much more regular in structure than human
languages, it is usually easy to describe the syntactic structure of a programming
language in a precise form called a grammar. In the context of a programming
language, a grammar consists of a set of rules that show how a particular language
construct can be derived from simpler ones.

If you start with the English rules for expression formation, it is not hard to write
down a grammar for the simple expressions used in this chapter. Partly because it
simplifies things a little in the parser, it helps to incorporate the notion of a term into
the parser as any single unit that can appear as an operand to a larger expression.
For example, constants and variables are clearly terms. Moreover, an expression in
parentheses acts as a single unit and can therefore also be regarded as a term. Thus,
a term is one of the following possibilities:

• An integer constant

• A variable

• An expression in parentheses

 17.4 Parsing an expression 751

An expression is then either of the following:

• A term

• Two expressions separated by an operator

This informal definition can be translated directly into the following grammar,
presented in what programmers call BNF, which stands for Backus-Naur Form after
its inventors John Backus and Peter Naur:

E → T
E → E op E

T → integer
T → identifier
T → (E)

In the grammar, uppercase letters like E and T are called nonterminal symbols and
stand for an abstract linguistic class, such as an expression or a term. The specific
punctuation marks and the italicized words represent the terminal symbols, which
are those that appear in the token stream. Explicit terminal symbols, such as the
parentheses in the last rule, must appear in the input exactly as written. The
italicized words represent placeholders for tokens that fit their general description.
Thus, the notation integer stands for any string of digits returned by the scanner as a
token. Each terminal corresponds to exactly one token in the scanner stream.
Nonterminals typically correspond to an entire sequence of tokens.

Like the informal rules for defining expressions presented in the section on “A
recursive definition of expressions” earlier in the chapter, grammars can be used to
generate parse trees. Just like those rules, this grammar is ambiguous as written and
can generate several different parse trees for the same sequence of tokens. Once
again, the problem is that the grammar does not take into account the precedence of
the operators and is therefore not immediately useful in constructing a parser.

Parsing without precedence
Before considering how it might be possible to add precedence to the grammar, it
helps to think about circumventing this problem in a simpler way. What if there
were no precedence in the language? Would that make parsing easier? Throwing
away precedence is not as crazy an idea as it might seem. In the 1960s, Ken Iverson
designed a language called APL (an abbreviation for A Programming Language).
Instead of using standard rules of precedence, APL operators all have equal
precedence and are executed in strictly right-to-left order. Thus, the expression

2 * x + y

is interpreted in APL as if it had been written

2 * (x + y)

752 Expression Trees

This precedence rule, which is called Iversonian precedence after its inventor, runs
counter to the conventional mathematical interpretation, at least in this case. To
recover the conventional meaning in APL, you would have to write

(2 * x) + y

The problem of parsing turns out to be much easier for languages that use
Iversonian precedence, mostly because the grammar for expressions can be written
in a form that is both unambiguous and simple to parse:

E → T
E → T op E

T → integer
T → identifier
T → (E)

This grammar is almost the same as the ambiguous grammar presented in the
preceding section. The only difference is the rule

E → T op E

which specifies that the left-hand operand to any operator must be a simple term.

Writing a parser based on the Iversonian expression grammar requires little more
than a direct translation of the grammar into code. For each of the nonterminal
symbols, you write a function that follows the structure of the grammar. For
example, the task of reading an expression is assigned to a function called readE,
whose structure follows the rules for expressions. To parse either of the two
expression forms, the readE function must first call the function readT to read a
term and then check to see whether the next token is an operator. If it is, readE
calls itself recursively to read the expression following the operator and creates a
compound expression node from the parts. If the token is not an operator, readE
calls saveToken to put that token back in the input being scanned where it will be
read at a higher level of the recursive structure. In much the same way, the readT
function implements the rules in the grammar that define a term. The code for
readT begins by reading a token and determining whether it represents an integer,
an identifier, or a parenthesized expression. If it does, readT returns the
corresponding expression. If the token does not correspond to any of these
possibilities, the expression is illegal.

Parsers that are structured as a collection of functions that call themselves
recursively in a fashion guided by a grammar are called recursive-descent parsers.
The readE and readT functions for a recursive-descent parser for expressions with
Iversonian precedence appears in Figure 17-8. The isOperator function simply
checks to see if its argument is one of the defined operators.

 17.4 Parsing an expression 753

Iversonian.cpp, p1
F I G U R E 1 7 - 8 Mutually recursive functions to implement an Iversonian-precedence parser

/*
 * Implementation notes: readE
 * Usage: exp = readE(scanner);
 * ----------------------------
 * This implementation of the readE function uses Iversonian precedence
 * in which all operators are evaluated from right to left.
 */

Expression *readE(TokenScanner & scanner) {
 Expression *exp = readT(scanner);
 string token = scanner.nextToken();
 if (isOperator(token)) {
 Expression *rhs = readE(scanner);
 exp = new CompoundExp(token, exp, rhs);
 } else {
 scanner.saveToken(token);
 }
 return exp;
}

/*
 * Implementation notes: readT
 * ---------------------------
 * This function scans a term, which is either an integer, an identifier,
 * or a parenthesized subexpression.
 */

Expression *readT(TokenScanner & scanner) {
 string token = scanner.nextToken();
 TokenType type = scanner.getTokenType(token);
 if (type == WORD) return new IdentifierExp(token);
 if (type == NUMBER) return new ConstantExp(stringToInteger(token));
 if (token != "(") error("Illegal term in expression");
 Expression *exp = readE(scanner);
 if (scanner.nextToken() != ")") {
 error("Unbalanced parentheses in expression");
 }
 return exp;
}

/*
 * Function: isOperator
 * Usage: if (isOperator(token)) . . .
 * -----------------------------------
 * Returns true if the token is one of the legal operators.
 */

bool isOperator(string token) {
 return token == "=" || token == "+" || token == "-"
 || token == "*" || token == "/";
}

754 Expression Trees

Adding precedence to the parser
Although the Iversonian parser presented in the preceding section illustrates the
techniques of recursive-descent parsing, it is a bit unsatisfying that it doesn’t
interpret expressions in the traditional way. Unfortunately, writing an unambiguous
grammar that supports conventional mathematical precedence is beyond the scope
of this text. Nevertheless, you can incorporate the notion of precedence explicitly
into the design of the recursive-descent parser.

As a start, you can define the precedence of the operators by writing a function
that returns a numeric precedence for each of the legal operators, as follows:

int precedence(string token) {
 if (token == "=") return 1;
 if (token == "+" || token == "-") return 2;
 if (token == "*" || token == "/") return 3;
 return 0;
}

Once you have assigned precedence values to each of the operators, you can then
extend the definition of readE so that it takes the current precedence level as an
argument. As long as the precedence of the operators it encounters is greater than
the current precedence, readE can create the appropriate compound expression
node and then loop back to check the next operator. When readE encounters the
end of the input or an operator whose precedence is less than or equal to the
precedence at this level, it simply returns to the next higher level, where the
prevailing precedence is lower. The code for the revised readE function therefore
looks like this:

Expression *readE(TokenScanner & scanner, int prec) {
 Expression *exp = readT(scanner);
 string token;
 while (true) {
 token = scanner.nextToken();
 int newPrec = getPrecedence(token);
 if (newPrec <= prec) break;
 Expression *rhs = readE(scanner, newPrec);
 exp = new CompoundExp(token[0], exp, rhs);
 }
 scanner.saveToken(token);
 return exp;
}

The complete code for the parser.cpp module appears in Figure 17-9. The
parser.h interface is not listed but exports each of the functions in parser.cpp.

 17.4 Parsing an expression 755

parser.cpp, p1
F I G U R E 1 7 - 9 Implementation of the parser module

/*
 * File: parser.cpp
 * ----------------
 * Implements the parser.h interface.
 */

#include <iostream>
#include <string>
#include "error.h"
#include "exp.h"
#include "parser.h"
#include "strlib.h"
#include "tokenscanner.h"
using namespace std;

/*
 * Implementation notes: parseExp
 * ------------------------------
 * This code just reads an expression and then checks for extra tokens.
 */

Expression *parseExp(TokenScanner & scanner) {
 Expression *exp = readE(scanner, 0);
 if (scanner.hasMoreTokens()) {
 error("parseExp: Found extra token: " + scanner.nextToken());
 }
 return exp;
}

/*
 * Implementation notes: readE
 * Usage: exp = readE(scanner, prec);
 * ----------------------------------
 * This version of readE uses precedence to resolve the ambiguity in
 * the grammar. At each recursive level, the parser reads operators and
 * subexpressions until it finds an operator whose precedence is greater
 * than the prevailing one. When a higher-precedence operator is found,
 * readE calls itself recursively to read in that subexpression as a unit.
 */

Expression *readE(TokenScanner & scanner, int prec) {
 Expression *exp = readT(scanner);
 string token;
 while (true) {
 token = scanner.nextToken();
 int newPrec = precedence(token);
 if (newPrec <= prec) break;
 Expression *rhs = readE(scanner, newPrec);
 exp = new CompoundExp(token, exp, rhs);
 }
 scanner.saveToken(token);
 return exp;
}

756 Expression Trees

 Summary
In this chapter, you have taken your first steps toward understanding how compilers
translate programs into an executable form by considering how to represent
arithmetic expressions. Important points in the chapter include:

• The conventional tools for implementing programming languages fall into two

classes: compilers and interpreters. Compilers translate source code into a set of
instructions that can be executed directly by the hardware. Interpreters do not
actually produce machine-executable code but instead achieve the same effect by
executing the operations directly, as the source program is translated.

F I G U R E 1 7 - 9 Implementation of the parser module (continued)

/*
 * Implementation notes: readT
 * ---------------------------
 * This function scans a term, which is either an integer, an identifier,
 * or a parenthesized subexpression.
 */

Expression *readT(TokenScanner & scanner) {
 string token = scanner.nextToken();
 TokenType type = scanner.getTokenType(token);
 if (type == WORD) return new IdentifierExp(token);
 if (type == NUMBER) return new ConstantExp(stringToInteger(token));
 if (token != "(") error("Illegal term in expression");
 Expression *exp = readE(scanner, 0);
 if (scanner.nextToken() != ")") {
 error("Unbalanced parentheses in expression");
 }
 return exp;
}

/*
 * Implementation notes: precedence
 * --------------------------------
 * This function checks the token against each of the defined operators
 * and returns the appropriate precedence value.
 */

int precedence(string token) {
 if (token == "=") return 1;
 if (token == "+" || token == "-") return 2;
 if (token == "*" || token == "/") return 3;
 return 0;
}

 Exercises 757

• A typical interpreter system operates by repeatedly reading an expression from
the user, evaluating it, and displaying the result. This approach is called a
read-eval-print loop.

• Expressions have a fundamentally recursive structure. There are simple
expressions, which consist of constants and variable names. More complex
expressions are created by combining simpler subexpressions into larger units,
forming a hierarchical structure that can easily be represented as a tree.

• If you define expressions in their most straightforward recursive form, those
involving multiple operators may be ambiguous in the sense that you can come
up with several interpretations that are consistent with the basic form. Despite
the ambiguity of the expression itself, the trees for the different interpretations
are distinct, which means that ambiguity is a property of the written form of the
expression and not its internal representation.

• It is easy to define a class to represent nodes in expression trees. The
corresponding implementation, however, must support multiple representations
to account for the fact that there are several different kinds of expressions. C++
inheritance can be used to define several subclasses that encompass the various
possibilities.

• The process of reading an expression from the user can be divided into the
phases of input, lexical analysis, and parsing. The input phase is the simplest
and consists of reading a string from the user. Lexical analysis involves
breaking a string into component tokens in the way that the token scanner
abstraction in Chapter 6 does. Parsing consists of translating the collection of
tokens returned from the lexical analysis phase into its internal representation,
following a set of syntactic rules called a grammar.

• For many grammars, it is possible to solve the parsing problem using a strategy
called recursive descent. In a recursive-descent parser, the rules of the grammar
are encoded as a set of mutually recursive functions.

• Once parsed, expression trees can be manipulated recursively in much the same
way as the trees in Chapter 16. In the context of the interpreter, one of the most
important operations is evaluating an expression tree, which consists of walking
the tree recursively to determine its value.

 Review questions
1. What is the difference between an interpreter and a compiler?

2. What is a read-eval-print loop?

3. What are the three phases involved in reading an expression?

758 Expression Trees

4. State the recursive definition for an arithmetic expression as given in this
chapter.

5. Identify which of the following lines constitutes an expression according to the

definition used in this chapter:

a. (((0)))

b. 2x + 3y

c. x - (y * (x / y))

d. -y

e. x = (y = 2 * x - 3 * y)

f. 10 - 9 + 8 / 7 * 6 - 5 + 4 * 3 / 2 - 1

6. For each of the legal expressions in the preceding question, draw a parse tree

that reflects the standard precedence assumptions of mathematics.

7. Of the legal expressions in question 5, which ones are ambiguous with respect

to the simple recursive definition of expressions?

8. What are the differences between parse trees and expression trees?

9. What are the three types of expressions that can occur in an expression tree?

10. True or false: The methods in the exp.h interface do not work with

Expression objects directly but instead use pointers to Expression objects.

11. What are the public methods of the Expression class?

12. In your own words, describe the effect of the virtual keyword.

13. What is a pure virtual method? Why is such a construct useful?

14. What is an abstract class? Is it possible for an abstract class to have public

methods?

15. Using Figure 17-6 as a model, draw a complete structure diagram for the

following expression:

y = (x + 1) / (x - 2)

16. Why are grammars useful in translating programming languages?

17. What do the letters in BNF stand for?

 Exercises 759

18. In a grammar, what is the difference between a terminal symbol and a
nonterminal symbol?

19. What is the value of the following expression if parsed using Iversonian

precedence:

1 + 4 * 3 / 2 - 1

20. What is the value of the expression in the preceding question if parsed using

standard mathematical precedence?

21. What is a recursive-descent parser?

22. What is the significance of the second argument to the readE function in the

precedence-based implementation of the parser?

23. If you look at the definition of readT in Figure 15-8, you will see that the

function body does not contain any calls to readT. Is readT a recursive
function?

24. Why is the = operator handled specially in the eval method for the

CompoundExp subclass?

 Exercises
1. Make all the necessary changes to the interpreter program to add the operator

%, which returns the remainder of its arguments as in C++. The precedence of
% is the same as that for * and /.

2. Make the changes you would need to have the interpreter work with values of

type double instead of type int.

3. Once you have finished implementing the change from int to double

described in the previous exercise, extend the interpreter so that it supports
simple mathematical functions, each of which takes an argument of type
double and returns a double result. This change requires several extensions
to the existing framework, including the following:

• The expression structure defined in exp.h will need a new expression
subtype that corresponds to a function call on a single argument.

• The parser module will need to include a new grammatical rule for
expressions that represents a function call with a single argument.

• The evaluator implemented in exp.cpp will need to implement some
mechanism to apply the appropriate mathematical function given its name.

760 Expression Trees

Your implementation should allow functions to be combined and nested just as
they can be in a programming language. For example, if your interpreter
defines the functions sqrt, sin, and cos, your program should be able to
produce the following sample run:

4. In mathematics, there are several common procedures that require you to

replace all instances of a variable in a formula with some other variable.
Working entirely as a client of the exp.h interface, write a function

Expression *changeVariable(Expression *exp,
 string oldName,
 string newName);

that returns a new expression which is the same as exp except that every
occurrence of the identifier oldName is replaced with newName. For example,
if exp is the expression

calling

Expression *newExp = changeVariable(exp, "x", "y");

will assign the following expression tree to newExp:

Interpreter
=> sqrt(2)
1.41421
=> sqrt(sqrt(sqrt(256)))
2
=> cos(0)
1
=> PI = 3.14159265358
3.14159
=> sin(PI / 2)
1
=> sin(PI / 6)
0.5
=> x = 5
5
=> y = 12
12
=> sqrt(x * x + y * y)
13

=

x *

2 +

x z

 Exercises 761

When you implement this function, it is important that the new expression tree
does not share any nodes with the original one. If nodes are shared, it
becomes impossible to free the heap storage using the delete operator
because doing so will free nodes that are needed by the other tree.

5. Write a function

bool expMatch(Expression *e1, Expression *e2);

that returns true if e1 and e2 are matching expressions, which means that
they have exactly the same structure, the same operators, the same constants,
and the same identifier names in the same order. If there are any differences at
any level of the expression tree, your function should return false.

6. In the expression interpreter designed in the chapter, every operator is a binary

operator in the sense that it takes two operands, one on each side. Most
programming languages also allow unary operators, which take a single
operand, which usually follows the operator. The most common example is
the unary minus operation, as in the expression -x. Make whatever changes
you need in the expression interpreter to add the unary minus operator.

7. Write a program that reads expressions from the user in their standard

mathematical form and then writes out those same expressions using reverse
Polish notation, in which the operators follow the operands to which they
apply. (Reverse Polish notation, or RPN, was introduced in the discussion of
the calculator in Chapter 4.) Your program should be able to duplicate this
sample run:

=

y *

2 +

y z

ConvertToRPN
=> 1 + 2 + 3
1 2 + 3 +
=> (2 * x + 3 * y) / 10
2 x * 3 y * + 10 /
=> quit

762 Expression Trees

8. After it parses an expression, a commercial compiler typically looks for ways
to simplify that expression so that it can be computed more efficiently. This
process is called optimization. One common technique used in the
optimization process is constant folding, which consists of identifying
subexpressions that are composed entirely of constants and replacing them
with their value. For example, if a compiler encountered the expression

days = 24 * 60 * 60 * sec

there would be no point in generating code to perform the first two
multiplications when the program was executed. The value of the
subexpression 24 * 60 * 60 is constant and might as well be replaced by its
value (86400) before the compiler actually starts to generate code.

Write a function foldConstants(exp) that takes an expression pointer
and returns a pointer to an entirely new expression in which any
subexpressions composed entirely of constants are replaced by the computed
value.

9. Although the interpreter program that appears in this chapter is considerably

easier to implement than a complete compiler, it is possible to get a sense of
how a compiler works by defining one for a simplified computer system called
a stack machine. A stack machine performs operations on an internal stack,
which is maintained by the hardware, in much the same fashion as the Reverse
Polish calculator from Chapter 5. The instructions executed by the stack
machine for this problem appear in Figure 17-10.

Write a function

void compile(istream & infile, ostream & outfile);

F I G U R E 1 7 - 1 0 Instructions implemented by the stack machine

LOAD #n Pushes the constant n on the stack.

LOAD var Pushes the value of the variable var on the stack.

STORE var Stores the top stack value in var without actually popping it.

DISPLAY Pops the stack and displays the result.

ADD

SUB

MUL

DIV

These instructions pop the top two values from the stack and apply the indicated
operation, pushing the final result back on the stack. The top value is the right
operand; the next one down is the left.

 Exercises 763

that reads expressions from infile and writes to outfile a sequence of
instructions for the stack machine that have the same effect as evaluating each
of the expressions in the input file and displaying their result. For example, if
the file opened as infile contains

calling compile(infile, outfile) should write a file containing the
following code:

10. The process of turning the internal representation of an expression back into

its text form is generally called unparsing the expression. Write a function
unparse(exp) that displays the expression exp on the screen in its standard
mathematical form. Parentheses should be included in the output only if they
are required by the precedence rules. Thus, the expression represented by the
tree

should be unparsed as

y = 3 * (x + 1)

x = 7
y = 5
2 * x + 3 * y

LOAD #7
STORE x
DISPLAY
LOAD #5
STORE y
DISPLAY
LOAD #2
LOAD x
MUL
LOAD #3
LOAD y
MUL
ADD
DISPLAY

=

y *

3 +

x 1

764 Expression Trees

11. Using tree structures to represent expressions makes it possible to perform
sophisticated mathematical operations by transforming the structure of the
tree. For example, it is not very hard to write a function that differentiates an
expression by applying the standard rules from calculus that allow you to
express the derivative of a complex expression in terms of the derivatives of
its parts. The most common rules for differentiating an expression involving
the standard arithmetic operators are shown in Figure 17-11.

Write a recursive function differentiate(exp, var) that uses the rules

from Figure 17-11 to find the derivative of the expression exp with respect to
the variable var. The result of differentiate is an Expression that can
be used in any context in which such values are legal. For example, you could
evaluate it, unparse it, or pass it to differentiate to calculate the second
derivative of the original expression.

F I G U R E 1 7 - 1 1 Standard formulas for differentiation

xʹ′ = 1

cʹ′ = 0

(u + v)ʹ′ = uʹ′ + vʹ′

(u – v)ʹ′ = uʹ′ – vʹ′

(uv)ʹ′ = uvʹ′ + vuʹ′

(u / v)ʹ′ =
uvʹ′ – vuʹ′

v
2

(un)ʹ′ = nu
n–1

uʹ′

where:

x is the variable used as the basis for the differentiation

c is a constant or variable that does not depend on x

u and v are arbitrary expressions

n is an integer constant

Chapter 18
Sets

Dear me, what a wonderfully mixed set!
— George Eliot, Middlemarch, 1871

766 Sets

Although much of Chapter 17 is concerned with the practical problem of
implementing an expression parser, there is another lesson you should take from
that chapter, which is that theory can have a profound effect on practice. In the case
of the expression parser, the theory consists of using a formal grammar to define the
syntactic structure of a programming language. Such situations arise often in
computer science, which has strong theoretical foundations that have direct
application to practical problems. Because theory is so central to computer science
as a discipline, it is useful to learn about theory and practical techniques together.

In this chapter, you will learn more about the mathematical concept of a set,
which you have already explored as an abstract data type. Sets are central to both
the theory and practice of computer science. The next section begins with an
informal presentation of the mathematical theory of sets. The rest of the chapter
then turns to the more practical concern of how to implement sets efficiently.

 18.1 Sets as a mathematical abstraction
In all likelihood, you have already encountered sets at some point in your study of
mathematics. Although the definition is not entirely precise, it is best to think of a
set as an unordered collection of distinct elements. For example, the days of the
week form a set of seven elements that can be written down as follows:

{ Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }

The individual elements are written in this order only because it is conventional. If
you wrote these same names down in some other order, you would still have the
same set. A set, however, never contains multiple copies of the same element.

The set of weekdays is a finite set because it contains a finite number of
elements. In mathematics, there are also infinite sets, such as the set of all integers.
In a computer system, sets are usually finite, even if they correspond to infinite sets
in mathematics. For example, the set of integers that a computer can represent in a
variable of type int is finite because the hardware imposes a limit on the range of
integer values.

To illustrate the fundamental operations on sets, it is important to have a few sets
to use as a foundation. In keeping with mathematical convention, this text uses the
following symbols to refer to the indicated sets:

∅ The empty set, which contains no elements
Z The set of all integers
N The set of natural numbers, ordinarily defined in CS as 0, 1, 2, 3, . . .
R The set of all real numbers

 18.1 Sets as a mathematical abstraction 767

Following mathematical convention, this text uses uppercase letters to refer to sets.
Sets whose membership is defined—like N, Z, and R—are denoted using boldface
letters. Names that refer to some unspecified set are written using italic letters, such
as S and T.

Membership
The fundamental property that defines a set is that of membership, which has the
same intuitive meaning in mathematics that it does in English. Mathematicians
indicate membership symbolically using the notation x ∈ S, which indicates that the
value x is an element of the set S. For example, given the sets defined in the
preceding section, the following statements are true:

 17 ∈ N –4 ∈ Z π ∈ R

Conversely, the notation x ∉ S indicates that x is not an element of S. For example,
–4 ∉ N, because the set of natural numbers does not include the negative integers.

The membership of a set is typically specified in one of the two following ways:

• Enumeration. Defining a set by enumeration is simply a matter of listing its

elements. By convention, the elements in the list are enclosed in curly braces
and separated by commas. For example, the set D of single-digit natural
numbers can be defined by enumeration as follows:

D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

• Rule. You can also define a set by specifying a rule that distinguishes the
members of that set. In most cases, the rule is expressed in two parts: a larger set
that provides the potential candidates and some conditional expression that
identifies the elements that should be selected for inclusion. For example, the set
D from the preceding example can also be defined like this:

D = {x | x ∈ N and x < 10}

 If you read this definition aloud, it comes out sounding like this: “D is defined to
be the set of all elements x such that x is a natural number and x is less than 10.”

Set operations
Mathematical set theory defines several operations on sets, of which the following
are the most important:

768 Sets

• Union. The union of two sets, which is written as A ∪ B, is the set of all
elements belonging to the set A, the set B, or both.

{1, 3, 5, 7, 9} ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 7, 8, 9}
{1, 2, 4, 8} ∪ {2, 3, 5, 7} = {1, 2, 3, 4, 5, 7, 8}
{2, 3} ∪ {1, 2, 3, 4} = {1, 2, 3, 4}

• Intersection. The intersection of two sets is written as A ∩ B and consists of the

elements belonging to both A and B.

{1, 3, 5, 7, 9} ∩ {2, 4, 6, 8} = ∅
{1, 2, 4, 8} ∩ {2, 3, 5, 7} = {2}
{2, 3} ∩ {1, 2, 3, 4} = {2, 3}

• Set difference. The difference of two sets is written as A – B and consists of the

elements belonging to A except for those that are also contained in B.

{1, 3, 5, 7, 9} – {2, 4, 6, 8} = {1, 3, 5, 7, 9}
{1, 2, 4, 8} – {2, 3, 5, 7} = {1, 4, 8}
{2, 3} – {1, 2, 3, 4} = ∅

In addition to set-producing operations like union and intersection, the

mathematical theory of sets also defines several operations that determine whether
some property holds between two sets. Operations that test a particular property are
the mathematical equivalent of predicate functions and are usually called relations.
The most important relations on sets are the following:

• Equality. The sets A and B are equal if they have the same elements. The

equality relation for sets is indicated by the standard equal sign used to denote
equality in other mathematical contexts. Thus, the notation A = B indicates that
the sets A and B contain the same elements.

• Subset. The subset relation is written as A ⊆ B and is true if all the elements of A
are also elements of B. For example, the set {2, 3, 5, 7} is a subset of the set
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Similarly, the set N of natural numbers is a subset of
the set Z of integers. From the definition, it is clear that every set is a subset of
itself. Mathematicians use the notation A ⊂ B to indicate that A is a
proper subset of B, which means that the subset relation holds but that the sets
are not equal.

Set operations are often illustrated by drawing Venn diagrams, which are named

for the British logician John Venn (1834–1923). In a Venn diagram, the individual
sets are represented as geometric figures that overlap to indicate regions in which
they share elements. For example, the results of the set operations union,
intersection, and set difference are indicated by the shaded regions in the following
Venn diagrams:

 18.1 Sets as a mathematical abstraction 769

A ∪ B A ∩ B A – B

Identit ies on sets
One of the useful bits of knowledge you can derive from mathematical set theory is
that the union, intersection, and difference operations are related to each other in
various ways. These relationships are usually expressed as identities, which are
rules indicating that two expressions are invariably equal. In this text, identities are
written in the form

lhs ≡ rhs

which means that the set expressions lhs and rhs are equal by definition and can
therefore be substituted for one another. The most common set identities are shown
in Table 18-1.

You can get a sense of how these identities work by drawing Venn diagrams to
represent individual stages in the computation. Figure 18-1, for example, verifies
the first of De Morgan’s laws listed in Table 18-1. The shaded areas represent the
value of each subexpression in the identity. The fact that the Venn diagrams along
the right edge of Figure 18-1 have the same shaded region demonstrates that the set
A – (B ∪ C) is the same as the set (A – B) ∩ (A – C).

T A B L E 1 8 - 1 Fundamental identities on sets

S ∪ S ≡ S

S ∩ S ≡ S
Idempotence

A ∪ (A ∩ B) ≡ A

A ∩ (A ∪ B) ≡ A
Absorption

A ∪ B ≡ B ∪ A

A ∩ B ≡ B ∩ A
Commutative laws

A ∪ (B ∪ C) ≡ (A ∪ B) ∪ C

A ∩ (B ∩ C) ≡ (A ∩ B) ∩ C
Associative laws

A ∪ (B ∩ C) ≡ (A ∪ B) ∩ (A ∪ C)

A ∩ (B ∪ C) ≡ (A ∩ B) ∪ (A ∩ C)
Distributive laws

A – (B ∩ C) ≡ (A – B) ∪ (A – C)

A – (B ∪ C) ≡ (A – B) ∩ (A – C)
De Morgan’s laws

770 Sets

What may still be unclear, however, is why you as a programmer might ever
need to learn rules that at first seem so complex and arcane. Mathematical
techniques are important to computer science for several reasons. For one thing,
theoretical knowledge is useful in its own right because it deepens your
understanding of the foundations of computing. At the same time, this type of
theoretical knowledge often has direct application to programming practice. By
relying on data structures whose mathematical properties are well established, you
can use the theoretical underpinnings of those structures to your advantage. For
example, if you write a program that uses sets as an abstract type, you may be able
to simplify your code by applying one of the standard set identities shown in
Table 18-1. The justification for making that simplification comes from the abstract
theory of sets. Choosing to use sets as a programming abstraction, as opposed to
designing some less formal structure of your own, makes it easier for you to apply
theory to practice.

 18.2 Expanding the set interface
Although you have already encountered the Set class in the discussion of collection
classes, the set.h interface in the Stanford libraries exports a richer set of methods
and operators extending beyond the description in Chapter 5. Perhaps more
importantly, the library implementation of the Set class offers several features that

F I G U R E 1 8 - 1 Illustration of De Morgan’s law using Venn diagrams

A B

C

A

A B

C

B ∪ C

A B

C

A – (B ∪ C)

A B

C

A – B

A B

C

A – C

A B

C

(A – B) ∩ (A – C)

 18.2 Expanding the set interface 771

are not included in the Standard Template Library. This design decision raises an
important question as to why it makes sense to embed facilities in the Set class
beyond what professional programmers use. The answer to this question is twofold:

1. It is instructive to see at least one example that showcases the enormous

expressive power that C++ offers to the designers of a class.

2. Including high-level methods and operators as part of the Set class makes it
easier to understand set-based algorithms, largely because the implementations
of those algorithms end up looking almost exactly like their mathematical
formulations.

Both of these advantages become particularly relevant in the discussion of graphs in
Chapter 19. Graph algorithms are the most important—not to mention the most
intellectually captivating—algorithms you will learn in this book. Our experience at
Stanford shows that you will learn these algorithms much more easily if the code
uses the high-level operators that the expanded Set class provides.

The interface for the library version of the Set class appears in Figure 18-2,
which extends over the next five pages. The expanded capabilities of the Set class
fall into three categories, as follows:

1. The high-level operations of union, intersection, and set difference are provided

in operator form, thereby enabling clients to express set algorithms in a concise
and easy-to-read form.

2. The Set constructor allows the client to specify a comparison function, making
it possible to create sets even when the value type does not support the standard
relational operators < and ==.

3. Sets support the << operator, which simplifies the task of debugging set-based
applications.

Each of these features is described in one of the following sections.

Defining high-level set operators
The most important extension to the Set class, at least in terms of improving the
readability of code that uses it, is the inclusion of high-level operators for union,
intersection, and set difference. The fact that ∪ and ∩ don’t appear on the standard
keyboard suggests that it would be wise to use more conventional symbols for these
operators, even if C++ allowed programmers to extend the operator set. As it
happens, C++ restricts operator overloading to the existing operators, which means
that it is necessary to choose appropriate symbols from the operators C++ already
defines. Although union and set difference have intuitive representations as the
operators + and -, choosing an operator to represent intersection is a bit harder.

772 Sets

set.h, p1
F I G U R E 1 8 - 2 Interface for the Set class

/*
 * File: set.h
 * -----------
 * This interface exports the Set class, a collection for efficiently
 * storing a set of distinct elements.
 */

#ifndef _set_h
#define _set_h

#include <iostream>
#include "cmpfn.h"
#include "error.h"
#include "foreach.h"
#include "map.h"
#include "vector.h"

/*
 * Class: Set<ValueType>
 * ---------------------
 * This template class stores a collection of distinct elements.
 */

template <typename ValueType>
class Set {

public:

/*
 * Constructor: Set
 * Usage: Set<ValueType> set;
 * Set<ValueType> set(cmpFn);
 * ---------------------------------
 * Initializes a set of the specified element type, which is either empty
 * or initialized to match the elements of the C++ array passed as the
 * initializers parameter. The optional cmpFn argument specifies a
 * comparison function, which is called to compare data values. This
 * argument is typically omitted, in which case the implementation uses the
 * operatorCmp function from cmpfn.h, which applies the built-in operators
 * < and == to determine the ordering.
 */

 Set(int (*cmpFn)(ValueType, ValueType) = operatorCmp);

/*
 * Destructor: ~Set
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with set.
 */

 ~Set();

 18.2 Expanding the set interface 773

set.h, p2
F I G U R E 1 8 - 2 Interface for the Set class (continued)

/*
 * Method: size
 * Usage: count = set.size();
 * --------------------------
 * Returns the number of elements in this set.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (set.isEmpty()) . . .
 * -------------------------------
 * Returns true if this set contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: add
 * Usage: set.add(value);
 * ----------------------
 * Adds an element to this set, if it was not already there. For
 * compatibility with the STL set class, this method is also exported as
 * insert.
 */

 void add(const ValueType & value);
 void insert(const ValueType & value);

/*
 * Method: remove
 * Usage: set.remove(value);
 * -------------------------
 * Removes an element from this set. If the value was not contained in the
 * set, no error is generated and the set remains unchanged.
 */

 void remove(const ValueType & value);

/*
 * Method: contains
 * Usage: if (set.contains(value)) . . .
 * -------------------------------------
 * Returns true if the specified value is in this set.
 */

 bool contains(const ValueType & value) const;

774 Sets

set.h, p3
F I G U R E 1 8 - 2 Interface for the Set class (continued)

/*
 * Method: isSubsetOf
 * Usage: if (set.isSubsetOf(set2)) . . .
 * --------------------------------------
 * Implements the subset relation on sets. It returns true if every
 * element of this set is contained in set2.
 */

 bool isSubsetOf(const Set & set2) const;

/*
 * Method: clear
 * Usage: set.clear();
 * -------------------
 * Removes all elements from this set.
 */

 void clear();

/*
 * Method: first
 * Usage: ValueType value = set.first();
 * -------------------------------------
 * Returns the first value in the set in the order established by the
 * foreach macro. If the set is empty, first generates an error.
 */

 ValueType first() const;

/*
 * Operator: ==
 * Usage: set1 == set2
 * -------------------
 * Returns true if set1 and set2 contain the same elements.
 */

 bool operator==(const Set & set2) const;

/*
 * Operator: !=
 * Usage: set1 != set2
 * -------------------
 * Returns true if set1 and set2 are different.
 */

 bool operator!=(const Set & set2) const;

 18.2 Expanding the set interface 775

set.h, p4
F I G U R E 1 8 - 2 Interface for the Set class (continued)

/*
 * Operator: +
 * Usage: set1 + set2
 * set1 + element
 * ---------------------
 * Returns the union of sets set1 and set2, which is the set of elements
 * that appear in at least one of the two sets. The right hand set can be
 * replaced by an element of the value type, in which case the operator
 * returns a new set formed by adding that element.
 */

 Set operator+(const Set & set2) const;
 Set operator+(const ValueType & element) const;

/*
 * Operator: *
 * Usage: set1 * set2
 * ------------------
 * Returns the intersection of sets set1 and set2, which is the set of all
 * elements that appear in both.
 */

 Set operator*(const Set & set2) const;

/*
 * Operator: -
 * Usage: set1 - set2
 * set1 - element
 * ---------------------
 * Returns the difference of sets set1 and set2, which is all of the
 * elements that appear in set1 but not set2. The right hand set can be
 * replaced by an element of the value type, in which case the operator
 * returns a new set formed by removing that element.
 */

 Set operator-(const Set & set2) const;
 Set operator-(const ValueType & element) const;

/*
 * Operator: +=
 * Usage: set1 += set2;
 * set1 += value;
 * ---------------------
 * Adds all elements from set2 (or the single specified value) to set1.
 */

 Set & operator+=(const Set & set2);
 Set & operator+=(const ValueType & value);

776 Sets

Although we consider other possibilities when we designed the set.h interface,
the library implementation of the Set class uses the * operator to represent
intersection. The * symbol is often used for this purpose in discussions of Boolean
algebra, primarily because the result of applying multiplication to the values 0 and 1
suggests the idea of intersection:

As the binary multiplication table illustrates, the value of the product of two bit
values is a 1 only if both input values are 1s. In a similar way, an element is in the
intersection of two sets only if it is a member of both.

* 0 1

0 0 0

1 0 1

F I G U R E 1 8 - 2 Interface for the Set class (continued)

/*
 * Operator: *=
 * Usage: set1 *= set2;
 * --------------------
 * Removes any elements from set1 that are not present in set2.
 */

 Set & operator*=(const Set & set2);

/*
 * Operator: -=
 * Usage: set1 -= set2;
 * set1 -= value;
 * ---------------------
 * Removes all elements from set2 (or a single value) from set1.
 */

 Set & operator-=(const Set & set2);
 Set & operator-=(const ValueType & value);

#include "setpriv.h"

};

/*
 * Operator: <<
 * Usage: stream << set
 * --------------------
 * Displays the elements of a set surrounded by curly braces and separated
 * by commas. The value type must implement the << operator.
 */

template <typename ValueType>
std::ostream & operator<<(std::ostream & stream, const Set<ValueType> & set);

 18.2 Expanding the set interface 777

Redefining the operators +, *, and - inevitably leads clients to assume that they
can use the shorthand assignment operators +=, *=, and -= as well. The extended
set.h interface therefore includes these operators as well. These operators,
moreover, take either a set or a single element as their right hand side, which makes
it possible, for example, to add the value v to a set s by writing

s += v;

Specifying a comparison function
One of the defining characteristics of a set is that any particular value can appear
only once. If a client tries to add a value to a set that already contains that value, the
implementation must somehow ensure that the value does not appear twice in the
underlying representation. To do so, the implementation must at a minimum be
able to compare two values to determine whether they are the same. Moreover, if
part of the definition of the Set class is that foreach steps through the elements in
order, the implementation must be able to determine whether one element comes
before or after another in the ordering appropriate to that base type.

As long as the elements of a set are primitive values or strings, comparing
elements is easy because those types support the relational operators. If you instead
create a set whose elements are a client-defined type, that comparison is no longer
automatic. For these types, you need to supply a comparison function, as described
on page 511. It would, however, be inconvenient to force all clients to specify a
comparison function, given that most types can rely on the relational operators for
that purpose. The Set class solves this problem by allowing the client to specify a
comparison function in the constructor call, while providing a default comparison
function that uses the standard operators provided by the base type. That function is
called operatorCmp and appears in the definition of cmpfn.h in Figure 18-3.

Overloading the insertion operator
In the earlier chapters, classes have overloaded the << insertion operator to simplify
the process of displaying the value of an object. That same capability is useful in
the collection classes like Set as well. The only subtlety in implementing this
strategy is that Set is a template class, which means that the value type is not
known until the client provides a specific instantiation of the Set template. That
problem, however, disappears if the << operator is allowed to call itself recursively
to display each element. As long as the value type implements <<, the recursive
coding of the insertion operator for Set will work just fine. If you try to display the
value of a Set where the value type does not support this operator, the compiler will
report an error in the instantiation of the template, which is presumably the
appropriate behavior.

778 Sets

 18.3 Implementation strategies for sets
As was the case for maps, there are two common strategies for implementing the
Set class. The approach chosen by the designers of the Standard Template Library
was to use a balanced binary tree as the underlying representation. Other languages,
however, typically implement sets using a hashing strategy, which is somewhat
more efficient. The primary advantage of using a balanced binary tree is that doing
so makes it easy to iterate through the elements of the set in sorted order.

The Java language seeks to satisfy as many clients as possible by offering both a
TreeSet and a HashSet class. The Set class in the Stanford libraries, like its
counterpart in the STL, corresponds to the TreeSet approach, although the
libraries also export a HashSet class, which you will have a chance to implement in
exercise 5.

F I G U R E 1 8 - 3 The cmpfn.h interface

/*
 * File: cmpfn.h
 * -------------
 * This interface exports a template function for comparing values of an
 * unspecified type. Most clients will have no need to use this interface
 * explicitly. Its primary purpose is to provide a default comparison
 * function that allows maps and sets to use the standard operators defined
 * for their base type.
 */

#ifndef _cmpfn_h
#define _cmpfn_h

/*
 * Function: operatorCmp
 * Usage: int sign = operatorCmp(v1, v2);
 * --------------------------------------
 * This template function is a generic function that compares two values
 * using the built-in == and < operators. It is supplied as a convenience
 * for those situations where a comparison function is required, and the
 * type has a built-in ordering that you would like to use.
 */

template <typename Type>
int operatorCmp(Type v1, Type v2) {
 if (v1 == v2) return 0;
 if (v1 < v2) return -1;
 return 1;
}

#endif

 18.3 Implementation strategies for sets 779

The good news is that both the TreeSet and HashSet models are easy to
implement in C++, as long as you make use of the classes you already have. The
fundamental insight you need to develop a simple implementation is that sets and
maps are essentially the same. You can build the Set class as a layered abstraction
on top of the Map class, simply by ignoring the value field altogether. This strategy
of layering the implementation of sets on top of the implementation of maps is not
in itself sufficient to write the code for the Set class, which exports several
high-level operations that are not part of the Map class. It does, however, provide a
good start. The high-level operations, moreover, can be implemented without
knowing the details of the underlying representation. The code for these operators
appears in Figure 18-4.

F I G U R E 1 8 - 4 Implementation of the high-level set operations

/*
 * Implementation notes: The high-level set operators
 * --
 * The union, intersection, and set difference operations (denoted in the
 * Set class by the operators +, *, and -) use iteration, membership
 * testing, and the add method to construct the resulting sets.
 */

template <typename ValueType>
Set<ValueType> Set<ValueType>::operator+(const Set & set2) const {
 if (cmpFn != set2.cmpFn) error("Sets have different comparison functions");
 Set<ValueType> set = *this;
 foreach (ValueType value in set2) {
 set.add(value);
 }
 return set;
}

template <typename ValueType>
Set<ValueType> Set<ValueType>::operator*(const Set & set2) const {
 if (cmpFn != set2.cmpFn) error("Sets have different comparison functions");
 Set<ValueType> set(cmpFn);
 foreach (ValueType value in *this) {
 if (set2.contains(value)) set.add(value);
 }
 return set;
}

template <typename ValueType>
Set<ValueType> Set<ValueType>::operator-(const Set & set2) const {
 if (cmpFn != set2.cmpFn) error("Sets have different comparison functions");
 Set<ValueType> set(cmpFn);
 foreach (ValueType value in *this) {
 if (!set2.contains(value)) set.add(value);
 }
 return set;
}

780 Sets

 18.4 Optimizing sets of small integers
The implementation strategy described in the preceding section works for any type
of value. That implementation, however, can be improved substantially for sets
whose values are represented internally as small integers, such as enumeration types
or characters.

Characteristic vectors
Suppose for the moment that you are working with a set whose elements always lie
between 0 and RANGE_SIZE – 1, where RANGE_SIZE is a constant that specifies the
size of the range to which element values are restricted. You can represent such sets
efficiently using an array of Boolean values. The value at index position k in the
array indicates whether the integer k is in the set. For example, if elements[4]
has the value true, then 4 is in the set represented by the Boolean array elements.
Similarly, if elements[5] is false, then 5 is not an element of that set.

Boolean arrays in which the elements indicate whether the corresponding index
is a member of some set are called characteristic vectors. The following examples
illustrate how the characteristic-vector strategy can be used to represent the
indicated sets, assuming that RANGE_SIZE has the value 10:

The advantage of using characteristic vectors is that doing so makes it possible
to implement the operations add, remove, and contains in constant time. For
example, to add the element k to a set, all you have to do is set the element at index
position k in the characteristic vector to true. Similarly, testing membership is
simply a matter of selecting the appropriate element in the array.

Packed arrays of bits
Even though characteristic vectors allow highly efficient implementations in terms
of their running time, storing characteristic vectors as explicit arrays can require a
large amount of memory, particularly if RANGE_SIZE is large. To reduce the
storage requirements, you can pack the elements of the characteristic vector into

F F F F F F F F F F

∅

0 1 2 3 4 5 6 7 8 9

F T F T F T F T F T

{1, 3, 5, 7, 9}

0 1 2 3 4 5 6 7 8 9

F F T T F T F T F F

{2, 3, 5, 7}

0 1 2 3 4 5 6 7 8 9

 18.4 Optimizing sets of small integers 781

machine words so that the representation uses every bit in the underlying
representation. Suppose, for example, that the type unsigned long is represented
as a 32-bit value on your machine. You can then store 32 elements of a
characteristic vector in a single value of type unsigned long, since each element
of the characteristic vector requires only one bit of information. Moreover, if
RANGE_SIZE is 256, you can store all 256 bits needed for a characteristic vector in
an array of eight unsigned long values.

To understand how characteristic vectors can be packed into an array of machine
words, imagine that you want to represent the integer set consisting of the ASCII
code for the alphabetic characters. That set, which consists of the 26 uppercase
letters with codes between 65 and 90 and the 26 lowercase letters with codes
between 97 and 122, can be encoded as the following characteristic vector:

If you want to find the bit that corresponds to a particular integer value, the simplest
approach is to use integer division and modular arithmetic. For example, suppose
that you want to locate the bit corresponding to the character 'X', which has 88 as
its ASCII code. The row number of the desired bit is 2, because there are 32 bits in
each row and 88 / 32 is 2 using the standard definition of integer division.
Similarly, within the second row, you find the entry for 'X' at bit number 24, which
is the remainder of 88 divided by 32. Thus, the bit in the characteristic vector
corresponding to the character 'X' is the one highlighted in this diagram:

The fact that the highlighted bit is a 1 indicates that 'X' is a member of the set.

0 0

0 1

0 0 0 0 0 1 0 2

0 0 0 0 0 1 0 3

0 4

0 5

0 6

0 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0

0 1

0 0 0 0 0 1 0 2

0 0 0 0 0 1 0 3

0 4

0 5

0 6

0 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

782 Sets

Bitwise operators
In order to write code that works with arrays of bits stored in this tightly packed
form, you need to learn how to use the low-level operators that C++ provides for
manipulating the bits in a memory word. These operators, which are listed in
Table 18-2, are called bitwise operators. They take values of any scalar type and
interpret them as sequences of bits that correspond to their underlying
representation at the hardware level.

To illustrate the behavior of the bitwise operators, let’s consider a specific
example. Suppose that the variables x and y have been declared as follows on a
machine where the data type short requires 16 bits:

unsigned short x = 0x002A;
unsigned short y = 0xFFF3;

If you convert the initial values from hexadecimal to binary as described in
Chapter 11, you can easily determine that the bit patterns for the variables x and y
look like this:

The &, |, and ^ operators each apply the logical operation specified in Table 18-2 to
each bit position in the operand words. The & operator, for example, produces a
result that has a 1 bit only in positions in which both operands have 1 bits. Thus, if
you apply the & operator to the bit patterns in x and y, you get this result:

x 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

y 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

x & y 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

T A B L E 1 8 - 2 Bitwise operators in C++

x & y Logical AND. The result has a 1 bit in positions where both x and y have 1 bits.

x | y Logical OR. The result has a 1 bit in positions where either x or y has a 1 bit.

x ^ y Logical XOR. The result has a 1 bit in positions where the bits in x and y differ.

~x Logical NOT. The result has a 1 bit where x has a 0 bit, and vice versa.

x << n Left shift. The bits in x are shifted left n bit positions.

x >> n Right shift. The bits in x are shifted right n bit positions.

 18.4 Optimizing sets of small integers 783

The | and ^ operators produce the following results:

The ~ operator is a unary operator that reverses the state of every bit in its
operand. For example, if you apply the ~ operator to the bit pattern in x, the result
looks like this:

In programming, applying the ~ operation is called taking the complement of its
operand.

The operators << and >> shift the bits in their left operand the number of
positions specified by their right operand. The only difference between the two
operations is the direction in which the shifting occurs. The << operator shifts bits
to the left; the >> operator shifts them to the right. Thus, the expression x << 1
produces a new value in which every bit in the value of x is shifted one position to
the left, as follows:

Similarly, the expression y >> 2 produces a value in which the bits in y have been
shifted two positions to the right, like this:

As long as the value being shifted is unsigned, bits that are shifted past the end of
the word disappear and are replaced on the opposite end by 0 bits. If the value
being shifted is signed, the behavior of the shift operators depends on the underlying
characteristics of the hardware. For this reason, it is good practice to restrict your
use of the shift operators to unsigned values, thereby increasing the portability of
your code.

x | y 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

x ^ y 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1

x 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

~x 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

x 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

x << 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

y 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

y >> 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0

784 Sets

Implementing characteristic vectors
The bitwise operators introduced in the preceding section make it possible to
implement operations on characteristic vectors in an extremely efficient way. If you
want to test the state of an individual bit in a characteristic vector, all you have to do
is create a value that has a 1 bit in the desired position and 0 bits everywhere else.
Such a value is called a mask because you can use it to hide all the other bits in the
word. If you apply the & operator to the word in the characteristic vector that
contains the bit you’re trying to find and the mask that corresponds to the correct bit
position, all the other bits in that word will be stripped away, leaving you with a
value that reflects the state of the desired bit.

To make this strategy more concrete, it helps to consider the underlying
representation of a characteristic vector in more detail. The following code defines
CharacteristicVector as a structure containing an array of words interpreted as
a sequence of bits.

struct CharacteristicVector {
 unsigned long words[CVEC_WORDS];
};

where CVEC_WORDS is a constant defined as follows:

const int BITS_PER_BYTE = 8;
const int BITS_PER_LONG = BITS_PER_BYTE * sizeof(long);
const int CVEC_WORDS = (RANGE_SIZE + BITS_PER_LONG - 1)
 / BITS_PER_LONG;

Given this structure, you can test a specific bit in a characteristic vector using the
function testBit, which has the following implementation:

bool testBit(CharacteristicVector & cv, int k) {
 if (k < 0 || k >= RANGE_SIZE) {
 error("testBit: Bit index is out of range");
 }
 return cv.words[k / BITS_PER_LONG] & createMask(k);
}

unsigned long createMask(int k) {
 return unsigned long(1) << k % BITS_PER_LONG;
}

Suppose, for example, that you call testBit(cv, 'X'), where cv is bound to

the characteristic vector corresponding to the set of all alphabetic characters. As

 18.4 Optimizing sets of small integers 785

discussed in the section on “Packed arrays of bits” earlier in the chapter, that
characteristic vector looks like this:

The function testBit begins by choosing the appropriate word in the characteristic
vector by evaluating the expression

cv.words[k / BITS_PER_LONG];

The subscript expression k / BITS_PER_LONG determines the index of the word in
the characteristic vector that contains the kth bit in the entire structure. Because the
character 'X' has the ASCII value 88 and BITS_PER_LONG is 32, the subscript
expression selects the word at index position 2, which consists of the following bits:

The function createMask(k) produces a mask that contains a 1 bit in the
appropriate position. If k, for example, has the value 88, k % BITS_PER_LONG is
24, which means that the mask value consists of the value 1 shifted left 24 bit
positions, as follows:

Because the mask has only a single 1 bit, the & operation in the code for testBit
will return a nonzero value only if the corresponding bit in the characteristic vector
is a 1. If the characteristic vector contained a 0 in that bit position, there would be
no bits common to both the vector and the mask, which means that the & operation
would return a word containing only 0 bits. A word composed entirely of 0 bits has
the integer value 0.

The strategy of using a mask also makes it easy to manipulate the state of
individual bits in the characteristic vector. By convention, assigning the value 1 to a
specific bit is called setting that bit; assigning the value 0 is called clearing that bit.
You can set a particular bit in a word by applying the logical OR operation to the old

0 0

0 1

0 0 0 0 0 1 0 2

0 0 0 0 0 1 0 3

0 4

0 5

0 6

0 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

786 Sets

value of that word and a mask containing the desired bit. You can clear a bit by
applying the logical AND operation to the old value of the word and the complement
of the mask. These operations are illustrated by the following definitions of the
functions setBit and clearBit:

void setBit(CharacteristicVector & cv, int k) {
 if (k < 0 || k >= RANGE_SIZE) {
 error("setBit: Bit index is out of range");
 }
 cv.words[k / BITS_PER_LONG] |= createMask(k);
}

void clearBit(CharacteristicVector & cv, int k) {
 if (k < 0 || k >= RANGE_SIZE) {
 error("setBit: Bit index is out of range");
 }
 cv.words[k / BITS_PER_LONG] &= ~createMask(k);
}

Implementing the high-level set operations
Packing characteristic vectors into the bits in a word saves a large amount of space.
As it happens, this same strategy also improves the efficiency of the high-level set
operations of union, intersection, and set difference. The trick is to compute each
word in the new characteristic vector using a single application of the appropriate
bitwise operator.

As an example, the union of two sets consists of all elements that belong to
either of its arguments. If you translate this idea into the realm of characteristic
vectors, it is easy to see that any word in the characteristic vector of the set A ∪ B
can be computed by applying the logical OR operation to the corresponding words in
the characteristic vectors for those sets. The result of the logical OR operation has a
1 bit in those positions in which either of its operands has a 1 bit, which is exactly
what you want to compute the union.

 Summary
In this chapter, you have learned about sets, which are important to computer
science as both a theoretical and a practical abstraction. The fact that sets have a
well-developed mathematical foundation—far from making them too abstract to be
useful—increases their utility as a programming tool. Because of that theoretical
foundation, you can count on sets to exhibit certain properties and obey specific
rules. By coding your algorithms in terms of sets, you can build on that same
theoretical base to write programs that are easier to understand.

 Review questions 787

Important points in this chapter include:

• A set is an unordered collection of distinct elements. The set operations used in

this book appear in Table 18-3, along with their mathematical symbols.

• The interactions among the various set operators are often easier to understand if
you keep in mind certain identities that indicate that two set expressions are
invariably equal. Using these identities can also improve your programming
practice, because they provide you with tools to simplify set operations
appearing in your code.

• The set class is straightforward to implement because much of it can be layered
on top of the Map class, using either the tree-based or hash-based representation.

• Sets of integers can be implemented very efficiently using arrays of Boolean
data called characteristic vectors. If you use the bitwise operators provided by
C++, you can pack characteristic vectors into a small number of machine words
and perform such set operations as union and intersection on many elements of
the vector at a time.

 Review questions
1. True or false: The elements of a set are unordered, so the set {3, 2, 1} and the

set {1, 2, 3} represent the same set.

2. True or false: A set can contain multiple copies of the same element.

3. What sets are denoted by each of the following symbols: ∅, Z, N, and R?

T A B L E 1 8 - 3 Summary of the mathematical notation for sets

Empty set ∅ The set containing no elements

Membership x ∈ S True if x is an element of S

Nonmembership x ∉ S True if x is not an element of S

Equality A = B True if A and B contain exactly the same elements

Subset A ⊆ B True if all elements in A are also in B

Proper subset A ⊂ B True if A is a subset of B but the sets are not equal

Union A ∪ B The set of elements in either A, B, or both

Intersection A ∩ B The set of elements in both A and B

Set difference A – B The set of elements in A that are not also in B

788 Sets

4. What do the symbols ∈ and ∉ mean?

5. Use an enumeration to specify the elements of the following set:

{x | x ∈ N and x ≤ 100 and ∈ N}

6. Write a rule-based definition for the following set:

{0, 9, 18, 27, 36, 45, 54, 63, 72, 81}

7. What are the mathematical symbols for the operations union, intersection, and

set difference?

8. Evaluate the following set expressions:

a. {a, b, c} ∪ {a, c, e}
b. {a, b, c} ∩ {a, c, e}
c. {a, b, c} – {a, c, e}
d. ({a, b, c} – {a, c, e}) ∪ ({a, b, c} – {a, c, e})

9. What is the difference between a subset and a proper subset?

10. Give an example of an infinite set that is a proper subset of some other infinite

set.

11. For each of the following set operations, draw Venn diagrams whose shaded

regions illustrate the contents of the specified set expression:

a. A ∪ (B ∩ C)
b. (A – C) ∩ (B – C)
c. (A – B) ∪ (B – A)
d. (A ∪ B) – (A ∩ B)

12. Write set expressions that describe the shaded region in each of the following

Venn diagrams:

a.

b.

13. Draw Venn diagrams illustrating each of the identities in Table 18-1.

x

A B

C

A B

C

 Review questions 789

14. What is the cardinality of a set?

15. The general implementation of the Set class uses a data structure from an

earlier chapter to represent the elements of a set. What is that structure? What
properties make that structure useful for this purpose?

16. What is a characteristic vector?

17. What restrictions must be placed on a set in order to use characteristic vectors

as an implementation strategy?

18. Assuming that RANGE_SIZE has the value 10, diagram the characteristic

vectors for the following sets:

a. {1, 2, 3, 4, 5, 6, 7, 8, 9}
b. {5}

19. What set is represented by the following characteristic vector:

By consulting the ASCII chart in Table 1-2, identify the function in <cctype>
to which this set corresponds.

20. In the diagrams used to represent characteristic vectors (such as the one in the

preceding exercise), the type unsigned long is shown as taking 32 bits.
Suppose that you are using a machine in which this type is represented using 64
bits instead. Does the code given in the chapter continue to work? Why or
why not?

21. Suppose that the variables x and y are of type unsigned short and contain

the following bit patterns:

0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 2

0 3

0 4

0 5

0 6

0 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

790 Sets

Expressing your answer as a sequence of bits, compute the value of each of the
following expressions:

a. x & y f. x & ~y

b. x | y g. ~x & ~y
c. x ^ y h. y >> 4
d. x ^ x i. x << 3

e. ~x j. (x >> 8) & y

22. Express the values of x and y from the preceding exercise as constants using

both octal and hexadecimal notation.

23. Suppose that the variables x and mask are both declared to be of type

unsigned, and that the value of mask contains a single 1 bit in some position.
What expressions would you use to accomplish each of the following
operations:

a. Test the bit in x corresponding to the bit in mask to see if it is nonzero.
b. Set the bit in x corresponding to the bit in mask.
c. Clear the bit in x corresponding to the bit in mask.
d. Complement the bit in x corresponding to the bit in mask.

24. Write an expression that constructs a mask of type unsigned in which there is

a single 1 bit in bit position k, where bits are numbered from 0 starting at the
right end of the word. For example, if k is 2, the expression should generate
the following mask:

 Exercises
1. To make it easier to write programs that use the Set class, it would be useful

for the set.h interface to export an overloaded version of the >> operator to
read sets from an input stream. Insofar as possible, the >> operator should
maintain symmetry with the << operator described in the chapter. In particular,
the >> operator should require the elements of the set to be enclosed in curly
braces and separated by commas.

2. Write a simple test program that uses the >> operator from the preceding

exercise to read in two sets of strings and then display the result of calling the
union, intersection, and set difference operators on those sets. A sample run of
this program might look like this:

0 1 0 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Exercises 791

3. Write a function

Set<int> createPrimeSet(int max)

that returns a set of the prime numbers between 2 and max. A number N is
prime if it has exactly two divisors, which are always 1 and the number N itself.
Checking for primality, however, doesn’t require you to try every possible
divisor. The only numbers you need to check are the prime numbers between 2
and the square root of N. As it tests whether a number is prime, your code
should make use of the fact that all potential factors must be in the set of primes
you have already constructed.

4. The discussion in the chapter only sketches the implementation of the Set

class. Complete the implementation by supplying the contents of the
setpriv.h and setimpl.cpp files that implement the Set class as a layered
abstraction on top of the tree-based implementation of maps.

5. As discussed in the chapter, the library implementation of sets uses balanced

binary search trees to ensure that iterating over the set produces the keys in
sorted order. If the order of iteration is not a concern, you can achieve better
performance by using a hash table as the underlying representation. Write the
interface and implementation for a HashSet class that uses this design.

6. Write a program that implements the following procedure:

• Read in two strings, each of which represents a sequence of bits. These
strings must consist only of the characters 0 and 1 and must be exactly 16
characters long.

• Convert each of these strings into a value of type unsigned short with
the same internal pattern of bits. Assume that the variables used to store
the converted result are named x and y.

• Display the value of each of the following expressions as a sequence of 16
bits: x & y, x | y, x ^ y, ~y, x & ~y.

The operation of this program is illustrated by the following sample run:

SetOperations
Enter s1: {a, b, c}
Enter s2: {b, a, d}
s1 + s2 = {a, b, c, d}
s1 * s2 = {a, b}
s1 - s2 = {c}

792 Sets

7. On most computer systems, the ANSI <cctype> interface introduced in

Chapter 3 is implemented using the bitwise operators. The strategy is to use
specific bit positions in a word to indicate properties that a character might
have. For example, imagine that the three bits at the right end of a word are
used to indicate whether a character is a digit, a lowercase letter, or an
uppercase letter, as shown in this diagram:

If you create an array consisting of 256 of these words—one for each
character—you can implement the functions from <cctype> so that each
function requires selecting the appropriate element of the array selection,
applying one of the bitwise operators, and testing the result.

Use this strategy to implement a simplified version of the <cctype>

interface that exports the functions isdigit, islower, isupper, isalpha,
and isalnum. In your implementation, it is important to make sure that the
code for isalpha and isalnum requires no more operations than the other
functions do.

BitOperations
Enter x: 0000000000101010
Enter y: 0000000000011011
 x & y = 0000000000001010
 x | y = 0000000000111011
 x ^ y = 0000000000110001
 ~y = 1111111111100100
x & ~y = 0000000000100000

. . . rest of word . . .

indicates a digit
indicates a lowercase letter
indicates an uppercase letter

Chapter 19
Graphs

So I draw the world together link by link:
Yea, from Delos up to Limerick and back!

— Rudyard Kipling, “The Song of the Banjo,” 1894

794 Graphs

Many structures in the real world consist of a set of values connected by a set of
links. Such a structure is called a graph. Common examples of graphs include
cities connected by highways, computers connected by network links, and courses
in a college curriculum connected by prerequisites. Programmers typically refer to
the individual elements—such as the cities, computers, and courses—as nodes and
the interconnections—the highways, network connections, and prerequisites—as
arcs, although mathematicians tend to use the terms vertex and edge instead.

Because they consist of nodes connected by a set of links, graphs are clearly
similar to trees, which were introduced in Chapter 16. In fact, the only difference is
that there are fewer restrictions on the structure of the connections in a graph than
there are in a tree. The arcs in a graph, for example, often form cyclical patterns. In
a tree, cyclical patterns are illegal because of the requirement that every node must
be linked to the root by a unique line of descent. Because trees have restrictions
that do not apply to graphs, graphs are a more general type that includes trees as a
subset. Thus, every tree is a graph, but there are some graphs that are not trees.

In this chapter, you will learn about graphs from both a practical and a
theoretical perspective. Learning to work with graphs as a programming tool is
useful because they come up in a surprising number of contexts. Mastering the
theory is extremely valuable as well, because doing so often makes it possible to
find much more efficient solutions to problems with considerable practical
importance.

 19.1 The structure of a graph
The easiest way to get a sense of the structure of a graph is to consider a simple
example. Suppose that you work for a small airline that serves 10 major cities in
the United States with the routes shown in Figure 19-1. The labeled circles
represent cities and constitute the nodes of the graph. The lines between the cities
represent airline routes and constitute the arcs.

Although graphs are often used to represent geographical relationships, it is
important to keep in mind that the graph is defined purely in terms of the nodes and
connecting arcs. The layout is unimportant to the abstract concept of a graph. For
example, the following diagram represents the same graph as Figure 19-1:

 19.1 The structure of a graph 795

The nodes representing the cities are no longer in the correct positions
geographically, but the connections remain the same.

You can go one step further and eliminate the geometrical relationships
altogether. Mathematicians, for example, use the tools of set theory to define a
graph as the combination of two sets, which are typically called V and E after the
mathematical terms vertex and edge. Using this convention, the airline graph
consists of the following sets:

V = { Atlanta, Boston, Chicago, Dallas, Denver, Los Angeles,
New York, Portland, San Francisco, Seattle }

E = { Atlanta↔Chicago, Atlanta↔Dallas, Atlanta↔New York,
Boston↔New York, Boston↔Seattle, Chicago↔Denver,
Dallas↔Denver, Dallas↔Los Angeles, Dallas↔San Francisco,
Denver↔San Francisco, Portland↔San Francisco,
Portland↔Seattle }

Beyond its theoretical significance as a mathematical formalism, defining a

graph in terms of sets also simplifies the implementation, because the Set class
already implements many of the necessary operations.

F I G U R E 1 9 - 1 Route map for a small airline serving ten cities

San
Francisco

Portland

Los
Angeles

Seattle

Denver

Dallas

Chicago

Atlanta

New York

Boston

796 Graphs

Directed and undirected graphs
Because the diagram gives no indication to the contrary, the arcs in Figure 19-1
represent flights that operate in both directions. Thus, the fact that there is a
connection between Atlanta and Chicago implies that there is also one between
Chicago and Atlanta. A graph in which every connection runs both ways is called
an undirected graph. In many cases, it makes sense to use directed graphs, in
which each arc has a direction. For example, if your airline operates a plane from
San Francisco to Dallas but has the plane stop in Denver on the return flight, that
piece of the route map would look like this in a directed graph:

The diagrams in this text represent directed graphs only if the arcs include an arrow
indicating their direction. If the arrows are missing—as they are in the airline graph
in Figure 19-1—you can assume the graph is undirected.

Arcs in a directed graph are specified using the notation start → finish, where
start and finish are the nodes on each side of the directed arc. Thus, the triangular
route shown in the preceding diagram consists of the following arcs:

San Francisco →Dallas
Dallas →Denver
Denver → San Francisco

Although arcs in an undirected graph are often written using a double-headed arrow,
you don’t actually need a separate symbol. If a graph contains an undirected arc,
you can always represent it as a pair of directed arcs. For example, if a graph
contains a bidirectional arc Portland↔Seattle, you can represent that fact by
including both Portland → Seattle and Seattle→ Portland in the set of arcs. Because it
is always possible to simulate undirected graphs using directed ones, most graph
packages—including the ones introduced in this chapter—define a single graph type
that supports directed graphs. If you want to define an undirected graph, all you
have to do is create two arcs for every connection, one in each direction.

Paths and cycles
The arcs in a graph represent direct connections, which correspond to nonstop
flights in the airline example. The fact that the arc San Francisco → New York does
not exist in the example graph does not mean that you cannot travel between those

San
Francisco

Denver

Dallas

 19.1 The structure of a graph 797

cities on this airline. If you want to fly from San Francisco to New York, you can
use any of the following routes:

San Francisco → Dallas → Atlanta → New York
San Francisco → Denver → Chicago → Atlanta → New York
San Francisco → Portland → Seattle → Boston → New York

A sequence of arcs that allow you to move from one node to another is called a

path. A path that begins and ends at the same node, such as the path

Dallas → Atlanta → Chicago → Denver → Dallas

is called a cycle. A simple path is a path that contains no duplicated nodes.
Similarly, a simple cycle is a cycle that has no duplicated nodes other than the
common node that appears at the beginning and the end.

Nodes in a graph that are connected directly by an arc are called neighbors. If
you count the number of neighbors for a particular node, that number is called the
degree of that node. In the airline graph, for example, Dallas has degree 4 because it
has direct connections to four cities: Atlanta, Denver, Los Angeles, and San Francisco.
By contrast, Los Angeles, has degree 1 because it connects only to Dallas. In the
case of directed graphs, it is useful to differentiate the concepts of in-degree, which
indicates the number of arcs coming into that node, and out-degree, which indicates
the number of arcs leaving that node.

Connectivity
An undirected graph is connected if there is a path from each node to every other
node. For example, the airline graph in Figure 19-1 is connected according to this
rule. The definition of a graph, however, does not require that all nodes be
connected in a single unit. For example, the graph

is an example of an unconnected graph, because no path links the cluster of four
nodes in the interior of the diagram to any of the other nodes.

Given any unconnected graph, you can always decompose it into a unique set of
subgraphs in which each subgraph is connected, but no arcs lead from one subgraph
to another. These subgraphs are called the connected components of the graph.
The connected components of the preceding graph diagram look like this:

798 Graphs

For directed graphs, the concept of connectivity is somewhat more complicated.
If a directed graph contains a path connecting every pair of nodes, the graph is
strongly connected. A directed graph is weakly connected if eliminating the
directions on the arcs creates a connected graph. For example, the graph

is not strongly connected because you cannot travel from the node on the lower
right to the node on the upper left moving only in the directions specified by the
arcs. On the other hand, it is weakly connected because the undirected graph
formed by eliminating the arrows is a connected graph. If you reverse the direction
of the top arc, the resulting graph

is strongly connected.

 19.2 Representation strategies
Like most abstract structures, graphs can be implemented in several different ways.
The primary feature that differentiates these implementations is the strategy used to
represent connections between nodes. In practice, the most common strategies are:

• Storing the connections for each node in an adjacency list.

• Storing the connections for the entire graph in an adjacency matrix.

• Storing the connections for each node as a set of arcs.

These representation strategies are described in greater detail in the sections that
follow.

 19.3 A low-level graph abstraction 799

Representing connections using an adjacency list
The simplest way to represent connections in a graph is to store within the data
structure for each node a list of the nodes to which it is connected. This structure is
called an adjacency list. For example, in the now-familiar airline graph

the adjacency lists for each node look like this:

Atlanta → (Chicago, Dallas, New York)
Boston → (New York, Seattle)
Chicago → (Atlanta, Denver)
Dallas → (Atlanta, Denver, Los Angeles)
Denver → (Chicago, Dallas, San Francisco)
Los Angeles → (Dallas)
New York → (Atlanta, Boston)
Portland → (San Francisco, Seattle)
San Francisco → (Dallas, Denver, Portland)
Seattle → (Boston, Portland)

Representing connections using an adjacency matrix
Although lists provide a convenient way to represent the connections in a graph,
they can be inefficient when an operation requires searching through the list of arcs
associated with a node. For example, if you use the adjacency list representation,
determining whether two nodes are connected requires O (D) time, where D
represents the degree of the originating node. If the nodes in a graph all have a
small number of neighbors, the cost of searching through this list is small. If,
however, the nodes in a graph tend to have a large number of neighbors, this cost
becomes more significant.

If efficiency becomes a concern, you can reduce the cost of checking for
connections to constant time by representing the arcs in a two-dimensional array
called an adjacency matrix that shows which nodes are connected. The adjacency
matrix for the airline graph looks like this:

800 Graphs

For an undirected graph of this sort, the adjacency matrix is symmetric, which
means that the entries match when they are reflected across the main diagonal,
which is shown in the figure as a dotted line.

To use the adjacency matrix approach, you must associate each node with an
index number that specifies the column or row number in that table corresponding
to that node. As part of the concrete structure for the graph, the implementation
needs to allocate a two-dimensional grid with one row and one column for each
node in the graph. The elements of the array are Boolean values. If the entry in
matrix[start][finish] is true, there is an arc start → finish in the graph.

In terms of execution time, using an adjacency matrix is considerably faster than
using an adjacency list. On the other hand, a matrix requires O (N 2) storage space,
where N is the number of nodes. For most graphs, the adjacency list representation
tends to be more efficient in terms of space, although some graphs will violate this
principle. In the adjacency list representation, each node has a list of connections,
which, in the worst case, will be Dmax entries long, where Dmax is the maximum
degree of any node in the graph, which is therefore the maximum number of arcs
emanating from a single node. The space cost for adjacency lists is therefore
O (N × Dmax). If most of the nodes are connected to each other, Dmax will be
relatively close to N, which means that the cost of representing connections is
comparable for the two approaches. If, on the other hand, the graph contains many
nodes but relatively few interconnections, the adjacency list representation can save
considerable space.

Although the dividing line is never precisely defined, graphs for which the value
of Dmax is small in comparison to N are said to be sparse. Graphs in which Dmax is

Atlanta

Boston

Chicago

Dallas

Denver

Los Angeles

New York

Portland

San Francisco

Seattle

A
tl

a
n

ta

B
o

s
to

n

C
h

ic
a
g

o

D
a
ll
a
s

D
e
n

v
e
r

L
o

s
 A

n
g

e
le

s

N
e
w

 Y
o

rk

P
o

rt
la

n
d

S
a
n

 F
ra

n
c
is

c
o

S
e
a
tt

le

 19.3 A low-level graph abstraction 801

comparable to N are considered dense. Often, the algorithms and representation
strategies you use for graphs depend on whether you expect those graphs to be
sparse or dense. The analysis in the preceding paragraph, for example, shows that
the list representation is likely to be more appropriate for sparse graphs; if you are
working with dense graphs, the matrix representation may well be a better choice.

Representing connections using a set of arcs
The motivation behind the third strategy for representing connections in a graph
comes from the mathematical formulation of a graph as a set of nodes coupled with
a set of arcs. If you were content to store no information with each node other than
its name, you could define a graph as a pair of sets, as follows:

struct StringBasedGraph {
 Set<string> nodes;
 Set<string> arcs;
};

The set of nodes contains the names of every node in the graph. The set of arcs
contains pairs of node names connected in some way that makes it easy to separate
the node names representing the beginning and end of each arc.

The primary advantages of this representation are its conceptual simplicity and
the fact that it mirrors so precisely the mathematical definition. It does, however,
have two important limitations. First, finding the neighbors for any particular node
requires going through every arc in the entire graph. Second, most applications
need to associate additional data with the individual nodes and arcs. For example,
many graph algorithms assign a numeric value to each of the arcs that indicates the
cost of traversing that arc, which may or may not refer to actual monetary cost. In
Figure 19-2, for example, each arc in the airline graph is labeled with the distance in
miles between the endpoints. You could use this information to implement a
frequent-flier program that assigns points to travelers based on the distance flown.

Fortunately, neither of these problems is particularly difficult to solve. Iterating
over the nodes and arcs in a graph is easy if you represent them using a collection
class that supports iteration. You can, moreover, incorporate additional data into a
graph by using structures to represent the nodes and arcs.

Given the fact that C++ is an object-oriented language, you would expect that
graphs, nodes, and arcs would be represented as objects, with a new class definition
for each level of the hierarchy. That design is certainly appropriate for this
problem, and one possible implementation along these lines appears in section 19.5.
The following section, however, defines each of these types as structures rather than
classes. There are two reasons behind that decision. First, using structures results

802 Graphs

in a simpler implementation that makes it easier to focus on the high-level
operations rather than the details of object representation. Second, low-level
structures are frequently used in practice because the contexts in which graphs arise
vary so widely that it is hard to fit those applications into a common framework.
For that reason, it often makes sense to add the relevant parts of the graph
abstraction to the underlying implementation of some other data structure. If you do
so, the code will probably resemble the structure-based implementation more
closely than the object-based implementation presented later in the chapter.

 19.3 A low-level graph abstraction
The goal of this section is to design the data structures for a low-level graph
package in which the three levels of the hierarchy—the graph as a whole, the
individual nodes, and the arcs that connect those nodes—are represented using C++
structure types. As a first cut at the final design, this section introduces a
structure-based interface that defines three structures, as follows:

• A structure type called SimpleGraph, where the name is specifically chosen to

differentiate this type from the Graph class introduced later in this chapter. As
in the mathematical definition of a graph, a SimpleGraph contains two sets: one
that specifies the nodes in the graph and one that specifies the arcs. Moreover,
since nodes in this formulation have names, it is useful for the SimpleGraph
structure to include a map that allows clients to translate from names into the
corresponding node structure.

F I G U R E 1 9 - 2 Route map with the associated mileage data

San
Francisco

Portland

Los
Angeles

Seattle

Denver

Dallas

Chicago

Atlanta

New York

Boston

248913
0

5
5
0

954

1468

1240

650

907

725

599 75
6

19
1

 19.3 A low-level graph abstraction 803

• A structure type called Node that contains the name of the node and a set that
indicates which arcs extend from that node to other nodes in the graph.

• A structure type called Arc specifying the endpoints of the arc, along with a
numeric value representing the cost.

This informal description of the data types provides almost enough information

to write the necessary definitions, but there is one important consideration that
needs to be included as part of the design process. The SimpleGraph structure
conceptually “contains” Node values not only as part of its set of nodes but also as
components of the elements in the set of arcs. Similarly, Arc values appear in two
places because both the SimpleGraph and Node structure specify a set of arcs. In
each case, the nodes and arcs that appear in different parts of these structures must
be identical whenever they refer to the same entity in the abstract structure. For
example, the Node corresponding to Atlanta must be the same Node no matter
whether it appears in the top-level set of nodes or in one of the internal arcs. They
cannot simply be copies of one another, because in that case changes to one copy
would not be reflected in the others.

The critical implication of this observation is that the sets and structures used to
represent the graph cannot contain Node and Arc values directly. The need to share
common structures means that all of the internal references to these structures must
specify pointers to Node and Arc values. The sets in the SimpleGraph structure,
therefore, must use Node * and Arc * as their element type and not the underlying
structure types themselves. The same is true for the set of arcs in the Node structure
and the references to nodes in the Arc structure. Figure 19-3 shows the structure of
a low-level graph interface, which is called graphtypes.h to differentiate it from
the more sophisticated graph.h interface that appears in section 19.5.

As Figure 19-3 makes clear, the data that defines the structure of the graph is
stored in the form of sets whose elements are either nodes or arcs. These sets,
moreover, are represented using the parameterized Set class from Chapter 15. One
advantage of doing so is that the data structure closely parallels the mathematical
formulation of a graph, which is defined in terms of sets. Building this interface on
top of the set.h framework also has significant advantages in terms of simplifying
the implementation.

When you define one abstraction in terms of another—as in the current proposal
to define graphs in terms of sets—the resulting abstractions are said to be layered.
Layered abstractions have a number of advantages. For one thing, they are usually
easy to implement because much of the work can be relegated to the existing,
lower-level interface. For example, defining the graphtypes.h interface in terms

804 Graphs

graphtypes.h
F I G U R E 1 9 - 3 Structure-based graph abstraction

/*
 * File: graphtypes.h
 * ------------------
 * This file defines low-level data structures that represent graphs.
 */

#ifndef _graphtypes_h
#define _graphtypes_h

#include <string>
#include "map.h"
#include "set.h"

struct Node; /* Forward references to these two types so */
struct Arc; /* that the C++ compiler can recognize them. */

/*
 * Type: SimpleGraph
 * -----------------
 * This type represents a graph and consists of a set of nodes, a set of
 * arcs, and a map that creates an association between names and nodes.
 */

struct SimpleGraph {
 Set<Node *> nodes;
 Set<Arc *> arcs;
 Map<std::string,Node *> nodeMap;
};

/*
 * Type: Node
 * ----------
 * This type represents an individual node and consists of the
 * name of the node and the set of arcs from this node.
 */

struct Node {
 std::string name;
 Set<Arc *> arcs;
};

/*
 * Type: Arc
 * ---------
 * This type represents an individual arc and consists of pointers
 * to the endpoints, along with the cost of traversing the arc.
 */

struct Arc {
 Node *start;
 Node *finish;
 double cost;
};

#endif

 19.3 A low-level graph abstraction 805

of sets eliminates the need to define a separate iteration facility for graphs, because
sets already support iteration. Thus, if you want to iterate over the nodes in the
graph g, all you need to write is

foreach (Node *node in g.nodes) {
 code to process an individual node
}

In addition to simplifying the process of iteration, defining graphs in terms of

sets makes it possible to apply higher-level set operations like union and
intersection. Theoretical computer scientists often formulate graph algorithms in
terms of these operations, and having them available to clients often makes those
algorithms easier to code.

Using the graphtypes.h interface
Unlike the interface files you’ve seen so far in this book, the graphtypes.h file—
as it currently stands—introduces three structure types but no classes or methods.
As a result, it does not require an implementation, so there is no need for a
graphtypes.cpp file. The fact that the interface does not provide a suite of
methods for working with graphs, nodes, and arcs forces clients to define their own
tools to create the required data structure. For example, the code in Figure 19-4
uses several helper functions to create the airline graph introduced earlier in the
chapter and then calls the printAdjacencyLists function to cycle though each of
the cities and display the names of the cities that can be reached in one step, as
follows:

If you think carefully about the output shown in the sample run, the fact that the
city names appear in alphabetical order might come as a surprise. The sets on
which the graph is built are, at least in their mathematical form, unordered
collections. The Set class allows clients to specify a comparison function that
defines the ordering relationship for the binary search tree used in the set
implementation. In this example, however, no comparison function appears, which

AirlineGraph
Atlanta -> Chicago, Dallas, New York
Boston -> New York, Seattle
Chicago -> Atlanta, Denver
Dallas -> Atlanta, Denver, Los Angeles, San Francisco
Denver -> Chicago, Dallas, San Francisco
Los Angeles -> Dallas
New York -> Atlanta, Boston
Portland -> San Francisco, Seattle
San Francisco -> Dallas, Denver, Portland
Seattle -> Boston, Portland

806 Graphs

AirlineGraph.cpp, p1
F I G U R E 1 9 - 4 Program to create the airline graph

/*
 * File: AirlineGraph.cpp
 * ----------------------
 * This program initializes the graph for the airline example and then
 * prints the adjacency lists for each of the cities.
 */

#include <iostream>
#include <string>
#include "graphtypes.h"
#include "set.h"
using namespace std;

/* Function prototypes */

void printAdjacencyLists(SimpleGraph & g);
void initAirlineGraph(SimpleGraph & airline);
void addFlight(SimpleGraph & airline, string c1, string c2, int miles);
void addNode(SimpleGraph & g, string name);
void addArc(SimpleGraph & g, Node *n1, Node *n2, double cost);

/* Main program */

int main() {
 SimpleGraph airline;
 initAirlineGraph(airline);
 printAdjacencyLists(airline);
 return 0;
}

/*
 * Function: printAdjacencyLists
 * Usage: printAdjacencyLists(g);
 * ------------------------------
 * Prints out the adjacency list for each city in the graph.
 */

void printAdjacencyLists(SimpleGraph & g) {
 foreach (Node *node in g.nodes) {
 cout << node->name << " -> ";
 bool first = true;
 foreach (Arc *arc in node->arcs) {
 if (!first) cout << ", ";
 cout << arc->finish->name;
 first = false;
 }
 cout << endl;
 }
}

 19.3 A low-level graph abstraction 807

AirlineGraph.cpp, p2
F I G U R E 1 9 - 4 Program to create the airline graph (continued)

/*
 * Function: initAirlineGraph
 * Usage: initAirlineGraph(airline);
 * ---------------------------------
 * Initializes the airline graph to hold the flight data from Figure 19-2.
 * In a real application, the program would almost certainly read this
 * information from a data file.
 */

void initAirlineGraph(SimpleGraph & airline) {
 addNode(airline, "Atlanta");
 addNode(airline, "Boston");
 addNode(airline, "Chicago");
 addNode(airline, "Dallas");
 addNode(airline, "Denver");
 addNode(airline, "Los Angeles");
 addNode(airline, "New York");
 addNode(airline, "Portland");
 addNode(airline, "San Francisco");
 addNode(airline, "Seattle");
 addFlight(airline, "Atlanta", "Chicago", 599);
 addFlight(airline, "Atlanta", "Dallas", 725);
 addFlight(airline, "Atlanta", "New York", 756);
 addFlight(airline, "Boston", "New York", 191);
 addFlight(airline, "Boston", "Seattle", 2489);
 addFlight(airline, "Chicago", "Denver", 907);
 addFlight(airline, "Dallas", "Denver", 650);
 addFlight(airline, "Dallas", "Los Angeles", 1240);
 addFlight(airline, "Dallas", "San Francisco", 1468);
 addFlight(airline, "Denver", "San Francisco", 954);
 addFlight(airline, "Portland", "San Francisco", 550);
 addFlight(airline, "Portland", "Seattle", 130);
}

/*
 * Function: addFlight
 * Usage: addFlight(airline, c1, c2, miles);
 * ---
 * Adds an arc in each direction between the cities c1 and c2.
 */

void addFlight(SimpleGraph & airline, string c1, string c2, int miles) {
 Node *n1 = airline.nodeMap[c1];
 Node *n2 = airline.nodeMap[c2];
 addArc(airline, n1, n2, miles);
 addArc(airline, n2, n1, miles);
}

808 Graphs

means that the Node and Arc pointers appear in their default order, which is defined
by the memory addresses at which those structures appear. Since memory
addresses bear no relation to the city names, the alphabetical ordering of the output
is something of a mystery.

The reason for this seemingly odd behavior is that most C++ runtime systems
allocate heap memory in the order in which the requests appear. The initialization
code in Figure 19-4 creates the cities and connection information in alphabetical
order, which means that the node for the second city appears at a higher memory
address than the node for the first. Thus, the fact that the output is so nicely ordered
is simply a coincidence and may not be true in all platforms. As you will see in
section 19.5, it is possible to extend the graph structure so that iteration guarantees
that nodes are processed alphabetically by name.

F I G U R E 1 9 - 4 Program to create the airline graph (continued)

/*
 * Function: addNode
 * Usage: addNode(g, name);
 * ------------------------
 * Adds a new node with the specified name to the graph.
 */

void addNode(SimpleGraph & g, string name) {
 Node *node = new Node;
 node->name = name;
 g.nodes.add(node);
 g.nodeMap[name] = node;
}

/*
 * Function: addArc
 * Usage: addArc(g, n1, n2, cost);
 * -------------------------------
 * Adds a directed arc to the graph connecting n1 to n2.
 */

void addArc(SimpleGraph & g, Node *n1, Node *n2, double cost) {
 Arc *arc = new Arc;
 arc->start = n1;
 arc->finish = n2;
 arc->cost = cost;
 g.arcs.add(arc);
 n1->arcs.add(arc);
}

 19.4 Graph traversals 809

 19.4 Graph traversals
As you saw in the preceding example, it is easy to cycle through the nodes in a
graph, as long as you are content to process the nodes in the order imposed by the
set abstraction. Many graph algorithms, however, require you to process the nodes
in an order that takes the connections into account. Such algorithms typically start
at some node and then advance from node to node by moving along the arcs,
performing some operation on each node. The precise nature of the operation
depends on the algorithm, but the process of performing that operation—whatever it
is—is called visiting the node. The process of visiting each node in a graph by
moving along its arcs is called traversing the graph.

In Chapter 16, you learned that several traversal strategies exist for trees, of
which the most important are preorder, postorder, and inorder traversals. Like trees,
graphs also support more than one traversal strategy. For graphs, the two
fundamental traversal algorithms are depth-first search and breadth-first search,
which are described in the next two sections.

To make the mechanics of the algorithms easier to understand, the
implementations of depth- and breadth-first search assume that the client has
supplied a function called visit that takes care of whatever processing is required
for each individual node. The goal of a traversal is therefore to call visit once—
and only once—on every node in an order determined by the connections. Because
graphs often have many different paths that lead to the same node, ensuring that the
traversal algorithm does not visit the same node many times requires additional
bookkeeping to keep track of which nodes have already been visited. To do so, the
implementations in the next two sections define a set of nodes called visited to
keep track of the nodes that have already been processed.

Depth-first search
The depth-first strategy for traversing a graph is similar to the preorder traversal of
trees and has the same recursive structure. The only additional complication is that
graphs can contain cycles. As a result, it is essential to keep track of the nodes that
have already been visited. The code that implements depth-first search starting at a
particular node appears in Figure 19-5.

In this implementation, depthFirstSearch is a wrapper function whose only
purpose is to introduce the visited set used to keep track of nodes that have
already been processed. The function visitUsingDFS visits the current node and
then calls itself recursively for each node directly accessible from the current one.

810 Graphs

The depth-first strategy is most easily understood by tracing its operation in the

context of a simple example, such as the airline graph introduced at the beginning of
the chapter:

In this rendering of the graph, the nodes are drawn as open circles to indicate that
they have not yet been visited. As the algorithm proceeds, each of these circles will
be marked with a number recording the order in which that node was processed.

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

F I G U R E 1 9 - 5 Code to execute a depth-first search

/*
 * Function: depthFirstSearch
 * Usage: depthFirstSearch(node);
 * ------------------------------
 * Initiates a depth-first search beginning at the specified node.
 */

void depthFirstSearch(Node *node) {
 Set<Node *> visited;
 visitUsingDFS(node, visited);
}

/*
 * Function: visitUsingDFS
 * Usage: visitUsingDFS(node, visited);
 * ------------------------------------
 * Executes a depth-first search beginning at the specified node that
 * avoids revisiting any nodes in the visited set.
 */

void visitUsingDFS(Node *node, Set<Node *> & visited) {
 if (visited.contains(node)) return;
 visit(node);
 visited.add(node);
 foreach (Arc *arc in node->arcs) {
 visitUsingDFS(arc->finish, visited);
 }
}

 19.4 Graph traversals 811

Suppose that you initiate the depth-first search by making the following call:

depthFirstSearch(airline.nodeMap["San Francisco"]);

The call to the depthFirstSearch function itself creates an empty visited set
and then hands control off to the recursive visitUsingDFS function. The first call
visits the San Francisco node, which is recorded in the diagram as follows:

The code then makes several recursive calls to visitUsingDFS, one for each
cycle of the loop

foreach (Arc *arc in node->arcs) {
 visitUsingDFS(arc->finish, visited);
}

The order in which these calls occur depends on the order in which foreach steps
through the arcs. Assuming that foreach processes the nodes in alphabetical
order, the first cycle of the loop calls visitUsingDFS with the Dallas node, leading
to the following state:

Given the way the code is written, the program must complete the entire call
involving the Dallas node before it considers the other possible routes leaving the
San Francisco node. The next node to be visited is therefore the city reachable from
Dallas that appears first alphabetically, which is Atlanta:

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1 2

812 Graphs

The overall effect of the depth-first search algorithm is to explore a single path
in the graph as far as possible before backtracking to complete the exploration of
paths at higher levels. From the Atlanta node, the process will continue to follow
the path by choosing the starting point that appears first in the alphabetical list of
neighbors. The depth-first exploration therefore continues with the nodes Chicago
and Denver, leading to the following situation:

From Denver, however, things get a bit stuck. Every one of the connections from
the Denver node has already been visited and therefore returns immediately. The
recursive process therefore returns to Chicago, where it also finds no connections to
unexplored territory. The recursive backtracking process then returns to Atlanta,
where it can now pick up where it left off and explore the New York link. As
always, the depth-first algorithm explores this path as far as it can, ending up in the
following configuration:

From here, the process will back up all the way to the Dallas node, from which it can
pick up Los Angeles:

If you think about the depth-first algorithm in relation to other algorithms you’ve
seen, you will realize that its operation is exactly the same as that of the
maze-solving algorithm in Chapter 9. In that algorithm, it was also necessary to
mark squares along the path to avoid cycling forever around a loop in the maze.

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1 2

34

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1 2

34

5

678

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1 2

34

5

678

9

 19.4 Graph traversals 813

That marking process is analogous to the visited set in the depth-first search
implementation.

Breadth-first search
Although depth-first search has many important uses, the strategy has drawbacks
that make it inappropriate for certain applications. The biggest problem with the
depth-first approach is that it explores an entire path beginning at one neighbor
before it goes back and looks at the other nearby neighbors. If you are trying to
discover the shortest path between two nodes in a large graph, using depth-first
search would take you all the way to the far reaches of the graph, even if your
destination were one step away along a different path.

The breadth-first search algorithm gets around this problem by visiting each
node in an order determined by how close it is to the starting node, measured in
terms of the number of arcs along the shortest possible path. When you measure
distance by counting arcs, each arc constitutes one hop. Thus, the essence of
breadth-first search is that you visit the starting node first, then the nodes that are
one hop away, followed by the nodes two hops away, and so on.

To get a more concrete sense of this algorithm, suppose that you wanted to apply
a breadth-first traversal to the airline graph, again starting at the San Francisco node.
The first phase of the algorithm simply visits the starting node:

The next phase visits the nodes that are one hop away, as follows:

From here, the algorithm goes on to explore the nodes that are two hops away:

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1

2

3

814 Graphs

In the final phase, the algorithm completes its exploration of the graph by visiting
the nodes that are three hops from the start:

The easiest way to implement the breadth-first algorithm is to use a queue of
unprocessed nodes. At each step in the process, you enqueue the neighbors of the
current node. Because the queue is processed in order, all nodes that are one hop
away from the starting node will appear earlier in the queue than nodes that are two
hops away, and so forth. An implementation of this strategy appears in Figure 19-6.

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1

2

3

45

6

7

Los Angeles

San Francisco

Portland

Dallas

Denver

Seattle

Atlanta

Chicago

New York

Boston

0

1

2

3

45

6

7

8

9

F I G U R E 1 9 - 6 Code to execute a breadth-first search

/*
 * Function: breadthFirstSearch
 * Usage: breadthFirstSearch(node);
 * --------------------------------
 * Initiates a breadth-first search beginning at the specified node.
 */

void breadthFirstSearch(Node *node) {
 Set<Node *> visited;
 Queue<Node *> queue;
 queue.enqueue(node);
 while (!queue.isEmpty()) {
 node = queue.dequeue();
 if (!visited.contains(node)) {
 visit(node);
 visited.add(node);
 foreach (Arc *arc in node->arcs) {
 queue.enqueue(arc->finish);
 }
 }
 }
}

 19.5 Defining a Graph class 815

 19.5 Defining a Graph class
As it appears in Figure 19-3, the graphtypes.h interface leaves much to be
desired. In particular, the existing version of the interface uses low-level structures
to represent a graph and consequently takes no advantage of the object-oriented
features of C++. The use of C-style structures, moreover, means that there are no
methods associated with graphs, forcing clients to develop their own tools.

The sections that follow outline two possible strategies for replacing the
low-level graph package with a more sophisticated object-oriented design. The first
makes more extensive use of the object-oriented features of C++, but is somewhat
difficult to use. The second outlines an intermediate-level strategy that introduces a
Graph class, but allows clients to use either structures or classes for the nodes and
arcs. This design offers greater flexibility and, at the same time, simplifies the
design of client code.

Using classes for graphs, nodes, and arcs
If the primary goal in redesigning the graph.h interface is to take maximum
advantage of object-oriented design, the obvious strategy is to replace each of the
low-level structures with a class. Under this strategy, the interface would export a
Graph class in the place of the SimpleGraph structure, along with classes
corresponding to the Node and Arc types. The private fields in each of those
classes would presumably match those in the corresponding structure. Clients,
however, would gain access to those fields through method calls instead of through
direct references.

Although this design is workable, it turns out to be cumbersome in practice. To
understand why, it is important to note that graphs are typically used in a way that
differs from the more familiar container classes such as arrays, stacks, queues, and
sets. These more conventional collections contain values of some client-defined
type. In this text, for example, you have seen programs that declare variables of
type Stack<double> and Set<string>. The type within the angle brackets
specifies the value type and is used as a template parameter for the class definition.
The value type, however, plays no essential role in the implementation of the
collection class itself.

For graphs, the situation is different. The elements of a graph are the nodes and
arcs. Those structures, however, are an integral part of the graph and contain
information required to maintain the overall data structure. Nodes, for example,
must keep track of the set of arcs to other nodes; arcs need to keep track of their
endpoints. At the same time, clients may want to associate additional data with
each node or arc, depending on the application. Thus, nodes and arcs are hybrid

816 Graphs

structures that contain data required by the client along with data required by the
implementation.

When applications require hybrid structures of this kind, the usual strategy is to
use subclassing. Under this model, the graph package itself would define base
classes for nodes and arcs that contain the information necessary to represent the
graph structure. Clients needing to include additional data would do so by
extending these base classes to create new subclasses with additional fields and
methods.

Suppose, for example, that you need to include flight numbers as part of the data
represented in the airline graph. A flight number is not relevant to the graph
structure itself but instead makes sense only in the context of a particular
application. To accommodate this information, you could define an extension to the
Arc class like this:

class Flight : public Arc {

public:
 int getFlightNumber();
 void setFlightNumber(int number);

private:
 int flightNumber;

};

This definition defines a new class called Flight that inherits all the public
methods from the Arc class. In addition, the Flight class exports getter and setter
methods that allow clients to work with the flight number. The implementation of
the client application for the airline can then use this new data field without
affecting the ability of a Flight object to act as an arc in a graph, because that
behavior is inherited from the superclass. Similarly, you might need to define a
City class that extends Node by adding some information that makes sense only in
the airline context, such as the three-letter code for that city’s airport. Your
application would then work with pointers to City and Flight objects, secure in
the knowledge that these were also valid pointers to the underlying Node and Arc
objects.

Although this design has some advantages in terms of protecting the data in the
graph abstraction from manipulation by the client, it adds complexity to the client
code, mostly because the use of subclasses introduces the need for type casting.
Even though they are as yet unspecified, you can be sure that the methods exported
by the classes in graph.h are defined in terms of the base classes Node and Arc.

 19.5 Defining a Graph class 817

The graph.h interface itself can’t know anything about the City and Flight
subclasses, because those are in the domain of a single client. Whenever one of the
graph methods returns to a Node * or an Arc *, the application will need to cast that
pointer to a City * or Flight *, as appropriate. Having to include all these type
casts in the program introduces so much complexity that it obscures the elegance of
the underlying algorithms.

Adopting an intermediate strategy
Fortunately, it is possible to adopt a slightly less aggressive strategy that takes
advantage of the power of object-oriented design while retaining the simplicity of
the low-level, structure-based approach. The conventional collection classes use
template parameters to specify their element type. The basic idea behind this design
is to export a parameterized Graph class that lets the client choose structure types
for the nodes and arcs. Those structure types, however, cannot be chosen arbitrarily
but instead must adhere to a few basic rules that allow them to function correctly in
the context of a graph. These required fields are essentially the ones that appear in
the low-level structures. Thus, the type the client chooses to represent a node must
contain

• A public string field called name that specifies the name of the node

• A public field called arcs that specifies the set of arcs that begin at this node

The type chosen to represent an arc must contain

• Public fields called start and finish that indicate the endpoints of the arc

Each of these structures types, moreover, must define its internal fields in terms of
the client data structures. Thus, the element type for the set of arcs contained in a
node must be pointers to the client’s arc type. In precisely the same way, the two
node pointers in the arc structure must be declared as pointers to the client’s node
type.

The structure used to represent an arc often contains a cost field that indicates
the cost of traversing that arc, which may or may not refer to actual monetary cost.
For some applications, the cost may correspond to distance, travel time, or level of
danger. The common theme is that algorithms that work with these graphs prefer
arcs with lower cost.

A simple example will prove helpful in clarifying these rules. Drawing on the
discussion from the previous section, suppose that your goal is to define an airline
graph in which the nodes correspond to cities and the arcs correspond to flights.
The type used to represent a city node (City) must contain the name of the city and
the set of flights leaving this city, because these fields are required by the Graph

818 Graphs

class. The City type might also contain additional information such as the
three-letter airport code. The type used to represent a flight (Flight) must contain
fields named start and finish, which are pointers to the City structure for the
origin and destination cities, respectively. This type might also contain the cost of
the flight and a flight number. The definition of these structure types might
therefore look like this:

struct City {
 string name;
 Set<Flight *> arcs;
 string airportCode;
};

struct Flight {
 City *start;
 City *finish;
 double cost;
 int flightNumber;
};

The airline graph itself would then be declared as an instance of the Graph template
class specialized with the appropriate node and arc types, as follows:

Graph<City,Flight> g;

Including the template parameters means that the Graph class has access to the
node and arc types used by the client, which eliminates the need for type casts.

Clients can, moreover, simplify the structure further by defining a Graph
subclass that includes the type parameters. For example, if you define a class

class AirlineGraph : public Graph<City,Flight>

you could then declare variables and parameters of type AirlineGraph, which
would inherit the type information.

Figure 19-7 shows the interface for a graph package that uses this intermediate
strategy of defining Graph as a template class. The corresponding implementation
is reasonably straightforward and is left to the reader as an exercise.

 19.5 Defining a Graph class 819

graph.h, p1
F I G U R E 1 9 - 7 Interface for a parameterized Graph class

/*
 * File: graph.h
 * -------------
 * This file is the interface for a flexible graph package that
 * exports a parameterized Graph class.
 */

#ifndef _graph_h
#define _graph_h

#include <string>
#include "set.h"
#include "map.h"

/*
 * Comparison functions: NodeCompare, ArcCompare
 * ---
 * These functions are the standard versions of the comparison
 * functions used for nodes and arcs, respectively.
 */

template <typename NodeType>
int NodeCompare(NodeType *n1, NodeType *n2);

template <typename NodeType,typename ArcType>
int ArcCompare(ArcType *a1, ArcType *a2);

/*
 * Class: Graph<NodeType,ArcType>
 * ------------------------------
 * This class represents a graph with the specified node and arc
 * types. The NodeType and ArcType parameters indicate the record
 * or object types used for nodes and arcs, respectively. These
 * types can contain any fields or methods required by the client,
 * but must contain the following public fields required by the
 * Graph package itself:
 *
 * The NodeType definition must include:
 * - A string field called name
 * - A Set<ArcType *> field called arcs
 *
 * The ArcType definition must include:
 * - A NodeType * field called start
 * - A NodeType * field called finish
 */

template <typename NodeType,typename ArcType>
class Graph {

public:

820 Graphs

graph.h, p2
F I G U R E 1 9 - 7 Interface for a parameterized Graph class (continued)

/*
 * Constructor: Graph
 * Usage: Graph<NodeType,ArcType> g;
 * ---------------------------------
 * Creates an empty Graph object.
 */

 Graph();

/*
 * Destructor: ~Graph
 * Usage: (usually implicit)
 * -------------------------
 * Frees the internal storage allocated to represent the graph.
 */

 ~Graph();

/*
 * Method: size
 * Usage: int size = g.size();
 * ---------------------------
 * Returns the number of nodes in the graph.
 */

 int size();

/*
 * Method: isEmpty
 * Usage: if (g.isEmpty()) . . .
 * -----------------------------
 * Returns true if the graph is empty.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: g.clear();
 * -----------------
 * Reinitializes the graph to be empty, freeing any heap storage.
 */

 void clear();

 19.5 Defining a Graph class 821

graph.h, p3
F I G U R E 1 9 - 7 Interface for a parameterized Graph class (continued)

/*
 * Method: addNode
 * Usage: NodeType *node = g.addNode(name);
 * NodeType *node = g.addNode(node);
 * --
 * Adds a node to the graph. The first version of this method
 * creates a new node of the appropriate type and initializes its
 * fields; the second assumes that the client has already created
 * the node and simply adds it to the graph. Both versions of this
 * method return a pointer to the node.
 */

 NodeType *addNode(std::string name);
 NodeType *addNode(NodeType *node);

/*
 * Method: removeNode
 * Usage: g.removeNode(name);
 * g.removeNode(node);
 * --------------------------
 * Removes a node from the graph, where the node can be specified
 * either by its name or as a pointer value. Removing a node also
 * removes all arcs that contain that node.
 */

 void removeNode(std::string name);
 void removeNode(NodeType *node);

/*
 * Method: getNode
 * Usage: NodeType *node = g.getNode(name);
 * --
 * Looks up a node in the name table attached to the graph and
 * returns a pointer to that node. If no node with the specified
 * name exists, getNode signals an error.
 */

 NodeType *getNode(std::string name);

/*
 * Method: nodeExists
 * Usage: if (g.nodeExists(name)) . . .
 * ------------------------------------
 * Returns true if a node with the given name exists in the graph.
 */

 bool nodeExists(std::string name);

822 Graphs

graph.h, p4
F I G U R E 1 9 - 7 Interface for a parameterized Graph class (continued)

/*
 * Method: addArc
 * Usage: g.addArc(s1, s2);
 * g.addArc(n1, n2);
 * g.addArc(arc);
 * ---------------------
 * Adds an arc to the graph. The endpoints of the arc can be
 * specified either as strings indicating the names of the nodes
 * or as pointers to the node structures. Alternatively, the
 * client can create the arc structure explicitly and pass that
 * pointer to the addArc method. All three of these versions
 * return a pointer to the arc in case the client needs to
 * capture this value.
 */

 ArcType *addArc(std::string s1, std::string s2);
 ArcType *addArc(NodeType *n1, NodeType *n2);
 ArcType *addArc(ArcType *arc);

/*
 * Method: removeArc
 * Usage: g.removeArc(s1, s2);
 * g.removeArc(n1, n2);
 * g.removeArc(arc);
 * ------------------------
 * Removes an arc from the graph, where the arc can be specified in
 * any of three ways: by the names of its endpoints, by the node
 * pointers at its endpoints, or as an arc pointer. Removing an
 * arc must remove it from the set of arcs in the entire graph as
 * well as the set leaving the start node. If more than one arc
 * connects the specified endpoints, all of them are removed.
 */

 void removeArc(std::string s1, std::string s2);
 void removeArc(NodeType *n1, NodeType *n2);
 void removeArc(ArcType *arc);

/*
 * Method: isConnected
 * Usage: if (g.isConnected(n1, n2)) . . .
 * if (g.isConnected(s1, s2)) . . .
 * ---------------------------------------
 * Returns true if the graph contains an arc from n1 to n2. As
 * in the addArc method, nodes can be specified either as node
 * pointers or by name.
 */

 bool isConnected(NodeType *n1, NodeType *n2);
 bool isConnected(std::string s1, std::string s2);

 19.5 Defining a Graph class 823

graph.h, p5
F I G U R E 1 9 - 7 Interface for a parameterized Graph class (continued)

/*
 * Method: getNodeSet
 * Usage: foreach (NodeType *node in g.getNodeSet()) . . .
 * ---
 * Returns the set of all nodes in the graph.
 */

 Set<NodeType *> & getNodeSet();

/*
 * Method: getArcSet
 * Usage: foreach (ArcType *arc in g.getArcSet()) . . .
 * foreach (ArcType *arc in g.getArcSet(node)) . . .
 * foreach (ArcType *arc in g.getArcSet(name)) . . .
 * --
 * Returns the set of all arcs in the graph or, in the second and
 * third forms, the arcs that start at the specified node, which
 * can be indicated either as a pointer or by name.
 */

 Set<ArcType *> & getArcSet();
 Set<ArcType *> & getArcSet(NodeType *node);
 Set<ArcType *> & getArcSet(std::string name);

/*
 * Method: getNeighbors
 * Usage: foreach (NodeType *node in g.getNeighbors(node)) . . .
 * foreach (NodeType *node in g.getNeighbors(name)) . . .
 * ---
 * Returns the set of nodes that are neighbors of the specified
 * node, which can be indicated either as a pointer or by name.
 */

 Set<NodeType *> getNeighbors(NodeType *node);
 Set<NodeType *> getNeighbors(std::string node);

#include "graphpriv.h"

};

#include "graphimpl.cpp"

#endif

824 Graphs

 19.6 Finding shortest paths
Because graphs arise in many applications areas that have commercial importance, a
considerable amount of research has been invested in developing effective
algorithms for solving graph-related problems. Of these problems, one of the most
interesting is that of finding a path in a graph from one node to another that has the
smallest possible cost when evaluated according to some metric. This metric need
not be economic. Although you might be interested in finding the cheapest path
between two nodes for certain applications, you can use the same algorithm to find
a path with the shortest overall distance, the smallest number of hops, or the least
travel time.

As a concrete example, suppose that you want to find the path from San
Francisco to Boston that has the shortest total distance, as computed by the mileage
values shown on the arcs in Figure 19-2. Is it better to go through Portland and
Seattle, or should you instead go through Dallas, Atlanta, and New York? Or is
there perhaps some less obvious route that is shorter still?

With graphs as simple as the route map of this tiny airline, it is easy to compute
the answer just by adding up the length of the arcs along all possible paths. As the
graph grows larger, however, this approach can become unworkable. In general, the
number of paths between two nodes in a graph grows in an exponential fashion,
which means that the running time of the explore-all-paths approach is O (2N). As
you know from the discussion of computational complexity in Chapter 10, problems
whose solutions require exponential running time are considered to be intractable.
If you want to find the shortest path through a graph in a reasonable time, it is
essential to use a more efficient algorithm.

The most commonly used algorithm for finding shortest paths was discovered by
Edsger W. Dijkstra in 1959. Dijkstra’s algorithm for finding shortest paths is a
particular example of a class of algorithms called greedy algorithms, in which you
find the overall answer by making a series of locally optimal decisions. Greedy
algorithms do not work for every problem, but are quite useful in solving the
problem of finding the shortest path.

At its essence, the core of Dijkstra’s algorithm for finding the shortest path—or,
more generally, the path whose arcs have the minimum total cost—can be expressed
as follows: explore all paths from the starting node in order of increasing total path
cost until you encounter a path that takes you to your destination. This path must be
the best one, because you have already explored all paths beginning at the starting
node that have a lower cost. In the context of the specific problem of finding the
shortest path, Dijkstra’s algorithm can be implemented as shown in Figure 19-8.

 19.6 Finding shortest paths 825

F I G U R E 1 9 - 8 Implementation of Dijkstra’s algorithm for finding the shortest path

/*
 * Function: findShortestPath
 * Usage: Vector<Arc *> path = findShortestPath(start, finish);
 * --
 * Finds the shortest path between the nodes start and finish using
 * Dijkstra's algorithm, which keeps track of the shortest paths in
 * a priority queue. The function returns a vector of arcs, which is
 * empty if start and finish are the same node or if no path exists.
 */

Vector<Arc *> findShortestPath(Node *start, Node *finish) {
 Vector<Arc *> path;
 PriorityQueue< Vector<Arc *> > queue;
 Map<string,double> fixed;
 while (start != finish) {
 if (!fixed.containsKey(start->name)) {
 fixed.put(start->name, getPathCost(path));
 foreach (Arc *arc in start->arcs) {
 if (!fixed.containsKey(arc->finish->name)) {
 path.add(arc);
 queue.enqueue(path, getPathCost(path));
 path.removeAt(path.size() - 1);
 }
 }
 }
 if (queue.isEmpty()) {
 path.clear();
 return path;
 }
 path = queue.dequeue();
 start = path[path.size() - 1]->finish;
 }
 return path;
}

/*
 * Function: getPathCost
 * Usage: double cost = getPathCost(path);
 * ---------------------------------------
 * Returns the total cost of the path, which is just the sum of the
 * costs of the arcs.
 */

double getPathCost(const Vector<Arc *> & path) {
 double cost = 0;
 foreach (Arc *arc in path) {
 cost += arc->cost;
 }
 return cost;
}

826 Graphs

The code for findShortestPath makes more sense if you think carefully
about the data structures it uses. The implementation declares three local variables,
as follows:

• The variable path keeps track of the minimum path and consists of a vector of

arcs. The first arc in the vector will start at the origin and proceed to the first
intermediate stop. Each subsequent path begins where the preceding one left off,
continuing on in this way until the final arc ends at the destination. If there is no
path between the requested nodes, findShortestPath indicates that fact by
returning an empty vector.

• The variable queue is a queue of paths, ordered so that paths in the queue are

sorted in order if increasing cost. This queue therefore differs from the
first-in/first-out discipline of traditional queues and is instead a priority queue,
in which the client can specify a priority value for each element. The code for
findShortestPath assumes that this functionality has been implemented in a
class called PriorityQueue, as described in Chapter 11, exercise 4. This class
operates identically to the standard Queue class with the exception of the
enqueue method, which takes a second argument indicating the priority, as
follows:

void enqueue(ValueType element, double priority);

 As in conventional English usage, smaller priority numbers come first in the
queue, so that elements entered with priority 1 are processed before any elements
with priority 2. By entering each path into the queue using its total distance as a
priority value, each call to dequeue returns the shortest path remaining in the
queue. The Stanford C++ libraries export a PriorityQueue class through the
pqueue.h interface.

• The variable fixed is a map that associates each city name with the minimum
distance to that city, as soon as that distance becomes known. Whenever a path
is dequeued from the priority queue, you know the path must indicate the
shortest route to the node at the end of that path, unless you have already found a
shorter path ending at that node. Thus, whenever you dequeue a path from the
priority queue, you can note that its distance is now known by storing the
minimum distance in the map fixed.

The operation of findShortestPath is illustrated in Figure 19-7, which shows

the steps involved in computing the shortest path from San Francisco to Boston in
the airline graph from Figure 19-2.

 19.6 Finding shortest paths 827

F I G U R E 1 9 - 9 Steps in the execution of Dijkstra’s algorithm

Fix the distance to San Francisco at 0
Process the arcs out of San Francisco (Dallas, Denver, Portland)
 Enqueue the path: San Francisco → Dallas (1468)
 Enqueue the path: San Francisco → Denver (954)
 Enqueue the path: San Francisco → Portland (550)
Dequeue the shortest path: San Francisco → Portland (550)
Fix the distance to Portland at 550
Process the arcs out of Portland (San Francisco, Seattle)
 Ignore San Francisco because its distance is known
 Enqueue the path: San Francisco → Portland → Seattle (680)
Dequeue the shortest path: San Francisco → Portland → Seattle (680)
Fix the distance to Seattle at 680
Process the arcs out of Seattle (Boston, Portland)
 Enqueue the path: San Francisco → Portland → Seattle → Boston (3169)
 Ignore Portland because its distance is known
Dequeue the shortest path: San Francisco → Denver (954)
Fix the distance to Denver at 954
Process the arcs out of Denver (Chicago, Dallas, San Francisco)
 Ignore San Francisco because its distance is known
 Enqueue the path: San Francisco → Denver → Chicago (1861)
 Enqueue the path: San Francisco → Denver → Dallas (1604)
Dequeue the shortest path: San Francisco → Dallas (1468)
Fix the distance to Dallas at 1468
Process the arcs out of Dallas (Atlanta, Denver, Los Angeles, San Francisco)
 Ignore Denver and San Francisco because their distances are known
 Enqueue the path: San Francisco → Dallas → Atlanta (2193)
 Enqueue the path: San Francisco → Dallas → Los Angeles (2708)
Dequeue the shortest path: San Francisco → Denver → Dallas (1604)
Ignore Dallas because its distance is known
Dequeue the shortest path: San Francisco → Denver → Chicago (1861)
Fix the distance to Chicago at 1861
Process the arcs out of Chicago (Atlanta, Denver)
 Ignore Denver because its distance is known
 Enqueue the path: San Francisco → Denver → Chicago → Atlanta (2460)
Dequeue the shortest path: San Francisco → Dallas → Atlanta (2193)
Fix the distance to Atlanta at 2193
Process the arcs out of Atlanta (Chicago, Dallas, New York)
 Ignore Chicago and Dallas because their distances are known
 Enqueue the path: San Francisco → Dallas → Atlanta → New York (2949)
Dequeue the shortest path: San Francisco → Denver → Chicago → Atlanta (2460)
Ignore Atlanta because its distance is known
Dequeue the shortest path: San Francisco → Dallas → Los Angeles (2708)
Fix the distance to Los Angeles at 2708
Process the arcs out of Los Angeles (Dallas)
 Ignore Dallas because its distance is known
Dequeue the shortest path: San Francisco → Dallas → Atlanta → New York (2949)
Fix the distance to New York at 2949
Process the arcs out of New York (Atlanta, Boston)
 Ignore Atlanta because its distance is known
 Enqueue the path: San Francisco → Dallas → Atlanta → New York → Boston (3140)
Dequeue the shortest path: San Francisco → Dallas → Atlanta → New York → Boston (3140)

828 Graphs

As you read through the implementation of Dijkstra’s algorithm, it is useful to
keep the following points in mind:

• Paths are explored in order of the total distance rather than the number of hops.

Thus, the connections beginning with San Francisco → Portland → Seattle are
explored before those of either San Francisco → Denver or San Francisco → Dallas,
because the total distance is shorter.

• The distance to a node is fixed when a path is dequeued, not when it is enqueued.
The first path to Boston stored in the priority queue is the one that goes through
Portland and Seattle, which is not the shortest available path. The total distance
along the path San Francisco → Portland → Seattle → Boston is 3169. Because the
minimum distance is only 3140, the San Francisco → Portland → Seattle → Boston
path is still in the priority queue when the algorithm finishes its operation.

• The arcs from each node are scanned at most once. The inner loop of the
algorithm is executed only when the distance to that node is fixed, which
happens only once for each node. As a result, the total number of cycles
executed within the inner loop is the product of the number of nodes and the
maximum number of arcs leading from a node. A complete analysis of
Dijkstra’s algorithm is beyond the scope of this text, but the running time is
O(M log N), where N is the number of nodes and M is either N or the number of
arcs, whichever is larger.

 19.7 Implementing priority queues
As is often the case, the performance of Dijkstra’s algorithm depends to a large
extent on how well its underlying operations are implemented. For example, if you
can improve the efficiency of the priority queue implementation, Dijkstra’s
algorithm will run more quickly, because it depends on the priority queue package.
If you implement priority queues using the strategy described in exercise 4 from
Chapter 11, the enqueue method in the PriorityQueue class requires O (N) time.
You can improve the performance of the priority queue package to O (log N) by
using a data structure called a partially ordered tree, which is a binary tree in which
the following two properties hold:

1. The nodes of the tree are arranged in a pattern as close to that of a completely

symmetrical tree as possible. Thus, the number of nodes along any path in the
tree can never differ by more than one. Moreover, the bottom level must be
filled in a strictly left-to-right order.

2. Each node contains a key that is always less than or equal to the key in its
children. Thus, the smallest key in the tree is always at the root.

 19.7 Implementing priority queues 829

As an example, the following diagram shows a partially ordered tree with four
nodes, each of which contains a numeric key:

The second level of the tree is completely filled, and the third level is in the process
of being filled from left to right, as required by the first property of partially ordered
trees. The second property holds because the key in each node is always less than
the keys in its children.

Suppose that you want to add a node with the key 2193. It is clear where the
new node goes. The requirement that the lowest level of the tree be filled from left
to right dictates that the new node be added at the following position:

This diagram, however, violates the second property of partially ordered trees,
because the key 2193 is smaller than the 2708 in its parent. To fix the problem, you
begin by exchanging the keys in those nodes, like this:

In general, it is possible that the newly inserted key would have to be exchanged
with its parent in a cascading sequence of changes that proceed up through the
levels of the tree. In this specific case, the process of exchanging keys stops here
because 2193 is greater than 1604. In any event, the structure of the tree guarantees
that the total number of such exchanges will never require more than O (log N) time.

1604

2708 1861

3169

1604

2708 1861

3169 2193

1604

2193 1861

3169 2708

830 Graphs

The structure of the partially ordered tree means that the smallest value in the
tree is always at the root. Removing the root node, however, takes a little more
work because you have to arrange for the node that actually disappears to be the
rightmost node in the bottom level. The standard approach is to replace the key in
the root with the key in the node to be deleted and then swap keys down the tree
until the ordering property is restored. If you wanted, for example, to delete the root
node from the preceding tree diagram, the first step would be to replace the key in
the root node with the 2708 in the rightmost node from the lowest level, as follows:

Then, because the nodes of the tree no longer have correctly ordered keys, you need
to exchange the key 2708 with the smaller of the two keys in its children, like this:

Although a single interchange is enough to restore the ordering property of the tree
in this example, the general process of finding the correct position for the key that
was moved into the root position may require you to swap that element through
each of the levels in the tree. As with insertion, deleting the smallest key requires
O (log N) time.

The operations that define the partially ordered tree are precisely the ones you
need to implement priority queues. The enqueue operation consists of inserting a
new node into the partially ordered tree. The dequeue operation consists of
removing the lowest value. Thus, if you use partially ordered trees as the
underlying representation, you can implement the priority queue package so that it
runs in O (log N) time.

Although you can implement partially ordered trees using a pointer-based
structure, priority queues are usually implemented using an array-based structure
called a heap, which simulates the operation of a partially ordered tree. (The
terminology is confusing at first, because the heap data structure bears no

2708

2193 1861

3169

1861

2193 2708

3169

 Summary 831

relationship to the pool of unused memory available for dynamic allocation, which
is also referred to by the word heap.) The implementation strategy used in a heap
depends on the property that the nodes in a partially ordered tree of size N can be
stored in the first N elements of an array simply by counting off the nodes, level by
level, from left to right.

As an example, the partially ordered tree

can be represented as the following heap:

The heap organization makes it simple to implement tree operations, because
parent and child nodes always appear at an easily computed position. For example,
given a node at index position n, you can find the indices of its parent and children
using the following expressions:

parentIndex(n) is always given by (n - 1) / 2
leftChildIndex(n) is always given by 2 * n + 1
rightChildIndex(n) is always given by 2 * n + 2

The division operator in the calculation of parentIndex is the standard integer
division operator from C++. Thus, the parent of the node at index position 4 in the
array appears at position 1 in the array, because the result of evaluating the
expression (4 - 1) / 2 is 1.

Implementing the heap-based priority queue is an excellent exercise that will
sharpen your programming skills and give you more experience working with many
of the data structures you have seen in this text. You will have the opportunity to do
so in exercise 16 at the end of this chapter.

 Summary
This chapter has introduced you to the idea of a graph, which is defined as a set of
nodes linked together by a set of arcs that connect individual pairs of nodes. Like
sets, graphs are not only important as a theoretical abstraction, but also as a tool for

1604

2193 1861

3169 2708

1604 2193 1861 3169 2708
0 1 2 3 4 5 6

 . . .

832 Graphs

solving practical problems that arise in many application domains. For example,
graph algorithms are useful in studying the properties of connected structures
ranging from the Internet to large-scale transportation systems.

Important points in this chapter include:

• Graphs may be either directed or undirected. The arcs in a directed graph run in
one direction only, so the existence of an arc n1 → n2 does not imply the existence
of an arc n2 → n1. You can represent undirected graphs using directed graphs in
which the connected pairs of nodes are linked by two arcs, one in each direction.

• You can adopt any of several strategies to represent the connections in a graph.
One common approach is to construct an adjacency list, in which the data
structure for each node contains a list of the connected nodes. You can also use
an adjacency matrix, which stores the connections in a two-dimensional array of
Boolean values. The rows and columns of the matrix are indexed by the nodes
in the graph; if two nodes are connected in the graph, the corresponding entry in
the matrix contains the value true.

• The graph.h interface can be implemented easily by layering it on top of the set
package. Although it is possible to define such an interface using either a low-
level, structure-based approach or a high-level, entirely object-oriented style, it is
better to adopt an intermediate approach that defines a Graph class but leaves
the client free to define the structures used for nodes and arcs.

• The two most important traversal orders for a graph are depth-first search and
breadth-first search. The depth-first algorithm chooses one arc from the starting
node and then recursively explores all paths beginning with that arc until no
additional nodes remain. Only at that point does the algorithm return to explore
other arcs from the original node. The breadth-first algorithm explores nodes in
order of their distance from the original node, measured in terms of the number
of arcs along the shortest path. After processing the initial node, breadth-first
search processes all the neighbors of that node before moving on to nodes that
are two hops away.

• You can find the minimum-cost path between two nodes in a graph by using
Dijkstra’s algorithm, which is vastly more efficient than the exponential strategy
of comparing the cost of all possible paths. Dijkstra’s algorithm is an example
of a larger class of algorithms called greedy algorithms, which select the locally
best option at any decision point.

• Priority queues—which are an essential component of Dijkstra’s algorithm—can
be implemented efficiently using a data structure called a heap, which is based
on a special class of binary tree called a partially ordered tree. If you use this
representation, both the enqueue and dequeue operations run in O (log N) time.

 Review questions 833

 Review questions
1. What is a graph?

2. True or false: Trees are a subset of graphs, which form a more general class.

3. What is the difference between a directed and an undirected graph?

4. If you are using a graph package that supports only directed graphs, how can

you represent an undirected graph?

5. Define the following terms as they apply to graphs: path, cycle, simple path,

simple cycle.

6. What is relationship between the terms neighbor and degree?

7. What is the difference between a strongly connected and a weakly connected

graph?

8. True or false: The term weakly connected has no practical relevance to

undirected graphs because all such graphs are automatically strongly
connected if they are connected at all.

9. What terms do mathematicians typically use in place of the words node and

arc?

10. Suppose that the computer science offerings at some university consisted of

eight courses with the following prerequisite structure:

Using the mathematical formulation for graphs described in this chapter,
define this graph as a pair of sets.

CS1 CS2

CS3

CS4

CS5

CS6

CS7

CS8

834 Graphs

11. Draw a diagram showing the adjacency list representation of the graph in the
preceding question.

12. Given the prerequisite graph shown in question 10, what are the contents of

corresponding adjacency matrix?

13. What is the difference between a sparse and a dense graph?

14. If you were asked to choose the underlying representation of a graph for a

particular application, what factors would you consider in deciding whether to
use adjacency lists or adjacency matrices in the implementation?

15. Why is it unnecessary to implement a separate iterator facility for the graph

package?

16. Why do the sets used in either version of the graph.h interface use pointers

to arcs and nodes as their element types?

17. What are the two fundamental traversal strategies for graphs?

18. Write down both the depth-first and the breadth-first traversal of the airline

graph in Figure 19-1, starting from Atlanta. Assume that iteration over nodes
and arcs always occurs in alphabetical order.

19. What problem does this chapter cite as the most significant problem with

including class definitions for Node and Arc in the graph.h interface?

20. What rules does the graph.h interface impose on the client-defined types

used to represent nodes and arcs?

21. What is a greedy algorithm?

22. Explain the operation of Dijkstra’s algorithm for finding minimum-cost paths.

23. Show the contents of the priority queue at each step of the trace of Dijkstra’s

algorithm shown in Figure 19-8.

24. Using Figure 19-9 as a model, trace the execution of Dijkstra’s algorithm to

find the shortest path from Portland to Atlanta.

25. Suppose that you are working with a partially ordered tree that contains the

following data:

 Exercises 835

Show the state of the partially ordered tree after inserting a node with the key
1521.

26. What is the relationship between heaps and partially ordered trees?

 Exercises
1. Using the low-level, structure-based version of the graph.h interface, design

and implement a function

void readGraph(SimpleGraph & g, istream & infile);

that reads a text description of a graph from infile into the graph g passed
by the client. The input stream, which must already be open, consists of lines
that can be in any of these three forms:

x Defines a node with name x
x - y Defines the bidirectional arc x ↔ y
x -> y Defines the directional arc x → y

The names x and y are arbitrary strings that do not contain a hyphen. Either of
the two connection formats should also allow the user to specify the cost of the
arc by enclosing a number in parentheses at the end of the line. If no
parenthesized value appears, the cost of the arc should be initialized to 1. The
definition of the graph ends with a blank line or the end of the file.

New nodes are defined whenever a new name appears in the data file.
Thus, if every node is connected to some other node, it is sufficient to include
only the arcs in the data file because defining an arc automatically defines the
nodes at its endpoints. If you need to represent a graph containing isolated
nodes, you must specify the names of those nodes on separate lines
somewhere in the data file.

When reading in an arc description, your implementation should discard
leading and trailing spaces from the node names, but retain any internal
spaces. The line

San Francisco - Denver (954)

1604

2193 1861

3169 2708

836 Graphs

should therefore define nodes with the names "San Francisco" and
"Denver", and then create connections between the two nodes in each
direction, initializing both arcs to have a cost of 954.

As an example, calling readGraph on the following data file would
produce the airline graph that appears in the chapter as Figure 19-2:

2. Write the counterpart function

void writeGraph(SimpleGraph & g, ostream & outfile);

that writes a text description of a graph to the specified output file. You may
assume that the data field in each node of the graph contains its name, just as if
readGraph had created the graph. The output of the writeGraph function
must be readable using readGraph.

3. Eliminate the recursion from the implementation of depthFirstSearch by

using a stack to store the unexplored nodes. At the beginning of the algorithm,
you simply push the starting node on the stack. Then, until the stack is empty,
you repeat the following operations:

1. Pop the topmost node from the stack.
2. Visit that node.

3. Push its neighbors on the stack

4. Take your solution from the preceding exercise and replace the stack with a

queue. Describe the traversal order implemented by the resulting code.

5. The depthFirstSearch and breadthFirstSearch traversal functions

given in the chapter are written to emphasize the structure of the underlying
algorithms. If you want to include these traversal strategies as part of the
graph package, you need to reimplement the functions so that they no longer

 Exercises 837

depended on a client-supplied visit function. One approach is to implement
these two algorithms by adding the following methods to graph.h:

void mapDFS(void (*fn)(NodeType *), NodeType *start);
void mapBFS(void (*fn)(NodeType *), NodeType *start);

In each case, the functions should call fn(node) for every node reachable
from start in the specified traversal order.

6. The implementation of breadth-first search given in the chapter generates the

correct traversal but ends up adding a large number of unnecessary paths to the
queue. The problem is that the code adds new paths to the queue even when
the final node in the chain has already been visited, which means that it will
simply be ignored whenever that path is removed from the queue. You can fix
this problem simply by checking to see whether the final node has been visited
before adding it to the queue.

Write a program to test assess the relative efficiency of the

implementations with and without this test. Your program should read in
several large graphs that vary in their average degree and then run each of
these algorithms starting at random nodes in each graph. Your program
should keep track of both the average queue length during the execution of the
algorithm and the total running time necessary to visit each of the nodes.

7. Write a function

bool pathExists(Node *n1, Node *n2);

that returns true if there is a path in the graph between the nodes n1 and n2.
Implement this function by using depth-first search to traverse the graph from
n1; if you encounter n2 along the way, then a path exists. Reimplement your
function so that it uses breadth-first search instead. In a large graph, which
implementation is likely to be more efficient?

8. Write a function

int hopCount(Node *n1, Node *n2);

that returns the number of hops in the shortest path between the nodes n1 and
n2. If n1 and n2 are the same node, hopCount should return 0; if no path
exists, hopCount should return –1. This function is easily implemented using
breadth-first search.

838 Graphs

9. Complete the implementation of the Graph class from Figure 19-7 by writing
the files graphpriv.h and graphimpl.cpp.

10. Define and implement a graphio.h interface that exports the methods

readGraph and writeGraph from exercises 1 and 2, updated to use the
template version of the Graph class.

11. Although the section entitled “Finding shortest paths” includes an

implementation of Dijkstra’s algorithm, there is no surrounding infrastructure
to turn that algorithm into an application. Create one by writing a C++
program that performs the following operations:

• Reads in a graph from a file.

• Allows the user to enter the names of two cities.

• Uses Dijkstra’s algorithm to find and display the minimum path.

12. Several important graph algorithms operate on a special class of graphs in

which the nodes can be divided into two sets in such a way that all the arcs
connect nodes in different sets, with none of the arcs running between nodes in
the same set. Such graphs are said to be bipartite. Write a template function

template <NodeType,ArcType>
bool isBipartite(Graph<NodeType,ArcType> & g);

that takes an arbitrary graph and returns true if it has the bipartite property.

13. Although Dijkstra’s algorithm for finding minimum-cost paths has

considerable practical importance, there are other graph algorithms that have
comparable commercial significance. In many cases, finding a minimum-cost
path between two specific nodes is not as important as minimizing the cost of
a network as a whole.

As an example, suppose that you are working for a company that is
building a new cable system that connects 10 large cities in the San Francisco
Bay area. Your preliminary research has provided you with cost estimates for
laying new cable lines along a variety of possible routes. Those routes and
their associated costs are shown in the graph on the left side of Figure 19-10.
Your job is to find the cheapest way to lay new cables so that all the cities are
connected through some path.

To minimize the cost, one of the things you need to avoid is laying a cable
that forms a cycle in the graph. Such a cable would be unnecessary, because
the cities it connects are already linked by some other path. If your goal is to
find a set of arcs that connects the nodes of a graph at a minimum cost, you

 Exercises 839

might as well leave such edges out. The remaining graph, given that it has no
cycles, forms a tree. A tree that links all the nodes of a graph is called a
spanning tree. The spanning tree in which the total cost associated with the
arcs is as small as possible is called a minimum spanning tree. The cable-
network problem described earlier in this exercise is therefore equivalent to
finding the minimum spanning tree of the graph, which is shown in the right
side of Figure 19-10.

There are many algorithms in the literature for finding a minimum
spanning tree. Of these, one of the simplest was devised by Joseph Kruskal in
1956. In Kruskal’s algorithm, all you do is consider the arcs in the graph in
order of increasing cost. If the nodes at the endpoints of the arc are
unconnected, then you include this arc as part of the spanning tree. If,
however, the nodes are already connected by a path, you ignore this arc
entirely. The steps in the construction of the minimum spanning tree for the
graph in Figure 19-10 are shown in the following sample run:

F I G U R E 1 9 - 1 0 A graph and its minimum spanning tree

San Rafael Vallejo

Berkeley

San Francisco Oakland

Hayward

Palo Alto

Fremont

Sunnyvale

San Jose

28

30
19

22
10

19

19

10

10

21

15

13

11

11

San Rafael Vallejo

Berkeley

San Francisco Oakland

Hayward

Palo Alto

Fremont

Sunnyvale

San Jose
19

22
10

19

10

10

15

13

11

840 Graphs

Write a function

Graph<Node,Arc>
 findMinimumSpanningTree(Graph<Node,Arc> & g);

that implements Kruskal’s algorithm to find the minimum spanning tree. The
function should returns a new graph whose nodes match those in the original
graph, but which includes only the arcs that are part of the minimum spanning
tree.

14. A dominating set of a graph is a subset of the nodes such that those nodes

along with their immediate neighbors constitute all graph nodes. That is,
every node in the graph is either in the dominating set or is a neighbor of a
node in the dominating set. In the graph diagrammed below—in which each
node is labeled with the number of neighbors to facilitate tracing the
algorithm—the filled-in nodes constitute a dominating set for the graph. Other
dominating sets are also possible.

MinimumSpanningTree
Process edges in order of cost:
10: Berkeley - Oakland
10: Fremont - Hayward
10: Hayward - Oakland
11: Fremont - San Jose
11: San Jose - Sunnyvale
13: Fremont - Sunnyvale (not needed)
15: Palo Alto - Sunnyvale
19: Oakland - San Francisco
19: Palo Alto - San Francisco (not needed)
19: San Francisco - San Rafael
21: Fremont - Palo Alto (not needed)
22: Berkeley - Vallejo
28: San Rafael - Vallejo (not needed)
30: Berkeley - San Rafael (not needed)

2

2

1

2

5

3

3
3

2

4

1

 Exercises 841

Ideally, you would like to be able to find the smallest possible dominating set,
but that is known to be a computationally difficult task—too expensive for
most graphs. The following algorithm usually finds a relatively small
dominating set, even though it does not always produce the optimal result:

1. Start with an empty set S.

2. Consider each graph node in order of decreasing degree. In other words,
you want to start with the node that has the most neighbors and then work
down through the nodes with fewer neighbors. If two or more nodes have
the same degree, you can process them in any order.

3. If the node you chose in step 2 is not redundant, add it to S. A node is
redundant if it and all of its neighbors are neighbors of some node already
in S.

4. Continue until S dominates the entire graph.

Write a template function

template <NodeType,ArcType>
Set<NodeType *>
 findDominatingSet(Graph<NodeType,ArcType> & g);

that uses this algorithm to find a small dominating set for the graph g.

15. Graph algorithms are often well suited to distributed implementations in which

processing is performed at each node in the graph. In particular, such
algorithms are used to find optimal transmission routes in a computer network.
As an example, the following graph shows the first 10 nodes in the
ARPANET—the network created by the Advanced Research Projects Agency
(ARPA) of the U.S. Department of Defense—which was the forerunner of
today’s much more sophisticated Internet:

Each node in the early ARPANET consisted of a small computer called an
Interface Message Processor, or IMP. As part of the network operation, each
IMP sent messages to its neighbors indicating the number of hops from that

BBN

HARV

MIT

NRL

CMU

UTAH

SRI

STAN

UCLA

RAND

842 Graphs

node to every other node, to the extent that the IMP possessed that
information. By monitoring the messages coming in, each IMP could quickly
develop useful routing information about the network as a whole.

To make this idea more concrete, imagine that every IMP maintains an
array in which each index position corresponds to one of the nodes. When
things are up and running, the array in the Stanford IMP (STAN) should have
the following contents:

The interesting question, however, is not so much what the array contains
as it is how the network computes and maintains these counts. When a node is
restarted, it has no knowledge of the complete network. In fact, the only
information the Stanford node can determine on its own is that its own entry is
0 hops away. Thus, at start-up time, the array in the STAN node looks like this:

The routing algorithm then proceeds by letting each node forward its
routing array to its neighbors. The Stanford IMP, for example, sends its array
off to SRI and UCLA. It also receives similar messages from its neighbors. If
the IMP at UCLA has just started up as well, it might send a message
containing the array

This message provides the Stanford node with some interesting information.
If its neighbor can get to UCLA in 0 hops, then the Stanford node can get there
in 1. As a result, the Stanford node can update its own routing array as
follows:

In general, whenever any node gets a routing array from its neighbor, all it
has to do is go though each of the known entries in the incoming array and
replace the corresponding entry in its own array with the incoming value plus
one, unless its own entry is already smaller. In a very short time, the routing
arrays throughout the entire network will have the correct information.

4

BBN

3

CMU

3

HARV

4

MIT

3

NRL

2

RAND

1

SRI

0

STAN

1

UCLA

2

UTAH

?

BBN

?

CMU

?

HARV

?

MIT

?

NRL

?

RAND

?

SRI

0

STAN

?

UCLA

?

UTAH

?

BBN

?

CMU

?

HARV

?

MIT

?

NRL

?

RAND

?

SRI

?

STAN

0

UCLA

?

UTAH

?

BBN

?

CMU

?

HARV

?

MIT

?

NRL

?

RAND

?

SRI

0

STAN

1

UCLA

?

UTAH

 Exercises 843

Write a program that uses the graph package to simulate the calculations of
this routing algorithm on a network of nodes.

16. Use the algorithm from section 19.7 to implement the PriorityQueue class

so that it uses a heap as its underlying representation.

Appendix A
Library Interfaces

cmpfn.h 846
console.h 847
direction.h 848
error.h 850
filelib.h 851
foreach.h 857
gevents.h 858
graph.h 872
graphics.h 877
grid.h 885
gtypes.h 888
gwindow.h 893
hashmap.h 902
hashset.h 905
lexicon.h 911
map.h 914
point.h 917
pqueue.h 919
queue.h 922
random.h 925
set.h 926
simpio.h 931
sound.h 932
stack.h 934
strlib.h 936
thread.h 939
tokenscanner.h 943
vector.h 949

846 Appendix A. Library Interfaces

F I G U R E A - 1 The cmpfn.h interface (page 1 of 1)

/*
 * File: cmpfn.h
 * -------------
 * This interface exports a template function for comparing values of an
 * unspecified type. Most clients will have no need to use this interface
 * explicitly. Its primary purpose is to provide a default comparison
 * function that allows maps and sets to use the standard operators defined
 * for their base type.
 */

#ifndef _cmpfn_h
#define _cmpfn_h

/*
 * Function: operatorCmp
 * Usage: int sign = operatorCmp(v1, v2);
 * --------------------------------------
 * This template function is a generic function that compares two values
 * using the built-in == and < operators. It is supplied as a convenience
 * for those situations where a comparison function is required, and the
 * type has a built-in ordering that you would like to use.
 */

template <typename Type>
int operatorCmp(Type v1, Type v2);

#include "private/cmpfnimpl.cpp"

#endif

 847

F I G U R E A - 2 The console.h interface (page 1 of 1)

/*
 * File: console.h
 * ---------------
 * This header file redirects the cin, cout, and cerr channels to use a
 * console window. This file must be included in the source file that
 * contains the main method, although it may be included in other source
 * files as well.
 */

#ifndef _console_h
#define _console_h

#include <string>

/*
 * Function: setConsoleFont
 * Usage: setConsoleFont(font);
 * ----------------------------
 * Changes the font used for the console. The font parameter is typically
 * a string in the form family-style-size. In this string, family is the
 * name of the font family; style is either missing (indicating a plain
 * font) or one of the strings Bold, Italic, or BoldItalic; and size is an
 * integer indicating the point size. If any of these components is
 * specified as an asterisk, the existing value is retained. The font
 * parameter can also be a sequence of such specifications separated by
 * semicolons, in which the first available font on the system is used.
 */

void setConsoleFont(const std::string & font);

/*
 * Function: setConsoleSize
 * Usage: setConsoleSize(width, height);
 * -------------------------------------
 * Changes the size of the console to the specified dimensions, measured in
 * pixels.
 */

void setConsoleSize(double width, double height);

#include "private/main.h"

#endif

848 Appendix A. Library Interfaces

F I G U R E A - 3 The direction.h interface (page 1 of 2)

/*
 * File: direction.h
 * -----------------
 * This interface exports an enumerated type called Direction whose
 * elements are the four compass points: NORTH, EAST, SOUTH, and WEST.
 */

#ifndef _direction_h
#define _direction_h

#include <iostream>
#include <string>
#include "foreach.h"

/*
 * Type: Direction
 * ---------------
 * This enumerated type is used to represent the four compass directions.
 */

enum Direction { NORTH, EAST, SOUTH, WEST };

/*
 * Function: leftFrom
 * Usage: Direction newdir = leftFrom(dir);
 * --
 * Returns the direction that is to the left of the argument.
 */

Direction leftFrom(Direction dir);

/*
 * Function: rightFrom
 * Usage: Direction newdir = rightFrom(dir);
 * ---
 * Returns the direction that is to the right of the argument.
 */

Direction rightFrom(Direction dir);

/*
 * Function: opposite
 * Usage: Direction newdir = opposite(dir);
 * --
 * Returns the direction that is opposite to the argument.
 */

Direction opposite(Direction dir);

 849

F I G U R E A - 3 The direction.h interface (page 2 of 2)

/*
 * Function: directionToString
 * Usage: string str = directionToString(dir);
 * ---
 * Returns the name of the direction as a string.
 */

std::string directionToString(Direction dir);

/*
 * Operator: <<
 * Usage: cout << dir;
 * -------------------
 * Overloads the << operator so that it is able to display Direction
 * values.
 */

std::ostream & operator<<(std::ostream & os, const Direction & dir);

/*
 * Operator: ++
 * Usage: dir++
 * ------------
 * Overloads the suffix version of the ++ operator to work with Direction
 * values. The sole purpose of this definition is to support the idiom
 *
 * for (Direction dir = NORTH; dir <= WEST; dir++) . . .
 */

Direction operator++(Direction & dir, int);

#endif

850 Appendix A. Library Interfaces

F I G U R E A - 4 The error.h interface (page 1 of 1)

/*
 * File: error.h
 * -------------
 * This file defines the ErrorException class and the error function.
 */

#ifndef _error_h
#define _error_h

#include <string>
#include <exception>

/*
 * Class: ErrorException
 * ---------------------
 * This exception is thrown by calls to the error function, which makes it
 * possible for clients to respond to error conditions. Typical code for
 * catching errors looks like this:
 *
 * try {
 * . . . code in which an error might occur . . .
 * } catch (ErrorException & ex) {
 * . . . code to handle the error condition . . .
 * }
 *
 * If an ErrorException is thrown at any point in the range of the try
 * (including in functions called from that code), control will jump
 * immediately to the error handler.
 */

class ErrorException : public std::exception {
public:
 ErrorException(std::string msg);
 virtual ~ErrorException() throw ();
 virtual std::string getMessage();
private:
 std::string msg;
};

/*
 * Function: error
 * Usage: error(msg);
 * ------------------
 * Signals an error condition in a program by throwing an ErrorException
 * with the specified message.
 */

void error(std::string str);

#include "private/main.h"

#endif

 851

F I G U R E A - 5 The filelib.h interface (page 1 of 6)

/*
 * File: filelib.h
 * ---------------
 * This file exports a standardized set of tools for working with files.
 * The library offers at least some portability across the file systems
 * used in the three supported platforms: Mac OSX, Windows, and Linux.
 * Directory and search paths are allowed to contain separators in any of
 * the supported styles, which usually makes it possible to use the same
 * code on different platforms.
 */

#ifndef _filelib_h
#define _filelib_h

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include "vector.h"

/*
 * Function: openFile
 * Usage: if (openFile(stream, filename)) . . .
 * --
 * Opens the filestream stream using the specified filename. This function
 * is similar to the open method of the stream classes, but uses a C++
 * string object instead of the older C-style string. If the operation
 * succeeds, openFile returns true; if it fails, openFile sets the failure
 * flag in the stream and returns false.
 */

bool openFile(std::ifstream & stream, std::string filename);
bool openFile(std::ofstream & stream, std::string filename);

/*
 * Function: promptUserForFile
 * Usage: string filename = promptUserForFile(stream, prompt);
 * ---
 * Asks the user for the name of a file. The file is opened using the
 * reference parameter stream, and the function returns the name of the
 * file. If the requested file cannot be opened, the user is given
 * additional chances to enter a valid file. The optional prompt argument
 * provides an input prompt for the user.
 */

std::string promptUserForFile(std::ifstream & stream,
 std::string prompt = "");
std::string promptUserForFile(std::ofstream & stream,
 std::string prompt = "");

852 Appendix A. Library Interfaces

F I G U R E A - 5 The filelib.h interface (page 2 of 6)

/*
 * Function: readEntireFile
 * Usage: readEntireFile(is, lines);
 * ---------------------------------
 * Reads the entire contents of the specified input stream into the string
 * vector lines. The client is responsible for opening and closing the
 * stream. The vector can be either an STL vector or a Vector as defined
 * in the Stanford C++ libraries.
 */

void readEntireFile(std::istream & is, Vector<std::string> & lines);
void readEntireFile(std::istream & is, std::vector<std::string> & lines);

/*
 * Function: getRoot
 * Usage: string root = getRoot(filename);
 * ---------------------------------------
 * Returns the root of filename. The root consists of everything in
 * filename up to the last dot and the subsequent extension. If no dot
 * appears in the final component of the filename, getRoot returns the
 * entire name.
 */

std::string getRoot(std::string filename);

/*
 * Function: getExtension
 * Usage: ext = getExtension(filename);
 * ------------------------------------
 * Returns the extension of filename. The extension consists of the
 * separating dot and all subsequent characters. If no dot exists in the
 * final component, getExtension returns the empty string. These semantics
 * ensure that concatenating the root and the extension always returns the
 * original filename.
 */

std::string getExtension(std::string filename);

/*
 * Function: getHead
 * Usage: head = getHead(filename);
 * --------------------------------
 * Returns all but the last component of a path name. The components of
 * the path name can be separated by any of the directory path separators
 * (forward or reverse slashes). The special cases are illustrated by the
 * following examples:
 *
 * getHead("a/b") = "a" getTail("a/b") = "b"
 * getHead("a") = "" getTail("a") = "a"
 * getHead("/a") = "/" getTail("/a") = "a"
 * getHead("/") = "/" getTail("/") = ""
 */

std::string getHead(std::string filename);

 853

F I G U R E A - 5 The filelib.h interface (page 3 of 6)

/*
 * Function: getTail
 * Usage: tail = getTail(filename);
 * --------------------------------
 * Returns the last component of a path name. The components of the path
 * name can be separated by any of the directory path separators (forward
 * or reverse slashes). For details on the interpretation of special
 * cases, see the comments for the getHead function.
 */

std::string getTail(std::string filename);

/*
 * Function: defaultExtension
 * Usage: string newname = defaultExtension(filename, ext);
 * --
 * Adds an extension to a file name if none already exists. If the
 * extension argument begins with a leading *, any existing extension in
 * filename is replaced by ext.
 */

std::string defaultExtension(std::string filename, std::string ext);

/*
 * Function: openOnPath
 * Usage: string pathname = openOnPath(stream, path, filename);
 * --
 * Opens a file using a search path. If openOnPath is successful, it
 * returns the first path name on the search path for which stream.open
 * succeeds. The path argument consists of a list of directories that are
 * prepended to the filename, unless filename begins with an absolute
 * directory marker, such as / or ~. The directories in the search path
 * may be separated either by colons (Unix or Mac OS) or semicolons
 * (Windows). If the file cannot be opened, the failure bit is set in the
 * stream parameter, and the openOnPath function returns the empty string.
 */

std::string openOnPath(std::ifstream & stream, std::string path,
 std::string filename);
std::string openOnPath(std::ofstream & stream, std::string path,
 std::string filename);

/*
 * Function: findOnPath
 * Usage: string pathname = findOnPath(path, filename);
 * --
 * Returns the canonical name of a file found using a search path. The
 * findOnPath function is similar to openOnPath, except that it doesn't
 * actually return an open stream. If no matching file is found,
 * findOnPath returns the empty string.
 */

std::string findOnPath(std::string path, std::string filename);

854 Appendix A. Library Interfaces

F I G U R E A - 5 The filelib.h interface (page 4 of 6)

/*
 * Function: deleteFile
 * Usage: deleteFile(filename);
 * ----------------------------
 * Deletes the specified file. Errors are reported by calling error.
 */

void deleteFile(std::string filename);

/*
 * Function: renameFile
 * Usage: renameFile(oldname, newname);
 * ------------------------------------
 * Renames a file. Errors are reported by calling error in the
 * implementation.
 */

void renameFile(std::string oldname, std::string newname);

/*
 * Function: fileExists
 * Usage: if (fileExists(filename)) . . .
 * --------------------------------------
 * Returns true if the specified file exists.
 */

bool fileExists(std::string filename);

/*
 * Function: isFile
 * Usage: if (isFile(filename)) . . .
 * ----------------------------------
 * Returns true if the specified file is a regular file.
 */

bool isFile(std::string filename);

/*
 * Function: isSymbolicLink
 * Usage: if (isSymbolicLink(filename)) . . .
 * --
 * Returns true if the specified file is a symbolic link.
 */

bool isSymbolicLink(std::string filename);

/*
 * Function: isDirectory
 * Usage: if (isDirectory(filename)) . . .
 * ---------------------------------------
 * Returns true if the specified file is a directory.
 */

bool isDirectory(std::string filename);

 855

F I G U R E A - 5 The filelib.h interface (page 5 of 6)

/*
 * Function: setCurrentDirectory
 * Usage: setCurrentDirectory(filename);
 * -------------------------------------
 * Changes the current directory to the specified path.
 */

void setCurrentDirectory(std::string path);

/*
 * Function: getCurrentDirectory
 * Usage: string filename = getCurrentDirectory();
 * ---
 * Returns an absolute filename for the current directory.
 */

std::string getCurrentDirectory();

/*
 * Function: createDirectory
 * Usage: createDirectory(path);
 * -----------------------------
 * Creates a new directory for the specified path. The createDirectory
 * function does not report an error if the directory already exists.
 * Unlike createDirectoryPath, createDirectory does not create missing
 * directories along the path. If some component of path does not exist,
 * this function signals an error.
 */

void createDirectory(std::string path);

/*
 * Function: createDirectoryPath
 * Usage: createDirectoryPath(path);
 * ---------------------------------
 * Creates a new directory for the specified path. If intermediate
 * components of path do not exist, this function creates them as needed.
 */

void createDirectoryPath(std::string path);

/*
 * Function: expandPathname
 * Usage: string pathname = expandPathname(filename);
 * --
 * Expands a filename into a canonical name for the platform.
 */

std::string expandPathname(std::string filename);

856 Appendix A. Library Interfaces

F I G U R E A - 5 The filelib.h interface (page 6 of 6)

/*
 * Function: listDirectory
 * Usage: listDirectory(path, list);
 * ---------------------------------
 * Adds an alphabetized list of the files in the specified directory to the
 * string vector list. This list excludes the names . and .. entries.
 */

void listDirectory(std::string path, Vector<std::string> & list);
void listDirectory(std::string path, std::vector<std::string> & list);

/*
 * Function: matchFilenamePattern
 * Usage: if (matchFilenamePattern(filename, pattern)) . . .
 * ---
 * Determines whether the filename matches the specified pattern. The
 * pattern string is interpreted in much the same way that a Unix shell
 * expands filenames and supports the following wildcard options:
 *
 * ? Matches any single character
 * * Matches any sequence of characters
 * [...] Matches any of the specified characters
 * [^...] Matches any character <i>except</i> the specified ones
 *
 * The last two options allow a range of characters to be specified in the
 * form a-z.
 */

bool matchFilenamePattern(std::string filename, std::string pattern);

/*
 * Function: getDirectoryPathSeparator
 * Usage: string sep = getDirectoryPathSeparator();
 * --
 * Returns the standard directory path separator used on this platform.
 */

std::string getDirectoryPathSeparator();

/*
 * Function: getSearchPathSeparator
 * Usage: string sep = getSearchPathSeparator();
 * ---
 * Returns the standard search path separator used on this platform.
 */

std::string getSearchPathSeparator();

#endif

 857

F I G U R E A - 6 The foreach.h interface (page 1 of 1)

/*
 * File: foreach.h
 * ---------------
 * This interface defines the foreach keyword, which is used to simplify
 * iteration. All iterable classes import this interface, so clients never
 * need to do so explicitly. This version of the interface also supports
 * C++ strings and arrays.
 */

#ifndef _foreach_h
#define _foreach_h

/*
 * Statement: foreach
 * Usage: foreach (type var in collection) { . . . }
 * ---
 * The foreach statement steps through the elements in a collection. It
 * works correctly with the collection classes in both the Standard
 * Template Library and the Stanford C++ libraries, but can also be used
 * with C++ strings and statically initialized arrays.
 *
 * The following code, for example, prints every element in the string
 * vector lines:
 *
 * foreach (string str in lines) {
 * cout << str << endl;
 * }
 *
 * Similarly, the following function calculates the sum of the character
 * codes in a string:
 *
 * int sumCharacterCodes(string str) {
 * int sum = 0;
 * foreach (char ch in str) sum += ch;
 * return sum;
 * }
 *
 * As a simplification when iterating over maps, the foreach macro iterates
 * through the keys rather than the key/value pairs.
 */

 /* The foreach and in macros are defined in the foreachpriv.h file */

#include "private/foreachpriv.h"

#endif

858 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 1 of 14)

/*
 * File: gevents.h
 * ---------------
 * This interface defines the event types used in the StanfordCPPLib
 * graphics libraries. The structure of this package is adapted from the
 * Java event model.
 */

#ifndef _gevents_h
#define _gevents_h

#include <string>
#include "gwindow.h"

/*
 * Type: EventClassType
 * --------------------
 * This enumeration type defines the event classes.
 */

enum EventClassType {
 NULL_EVENT, /* Indicates an uninitialized event */
 WINDOW_EVENT, /* Indicates a window-system event */
 ACTION_EVENT, /* Indicates an event with an associated action */
 TIMER_EVENT, /* Indicates an interval timer event */
 MOUSE_EVENT, /* Indicates a mouse event */
 KEY_EVENT /* Indicates an event generated by the keyboard */
};

/*
 * Type: WindowEventType
 * ---------------------
 * This enumeration type defines the event types for window events.
 */

enum WindowEventType {
 WINDOW_ACTIVATED, /* Generated when the window gains focus */
 WINDOW_CLOSED, /* Generated when the window is finally closed */
 WINDOW_CLOSING, /* Generated when the user clicks the close box */
 WINDOW_DEACTIVATED, /* Generated when the window loses focus */
 WINDOW_DEICONIFIED, /* Generated when the window is expanded */
 WINDOW_ICONIFIED, /* Generated when the window is minimized */
 WINDOW_OPENED /* Generated when the window is opened */
};

/*
 * Type: ActionEventType
 * ---------------------
 * This enumeration type defines the event types for action events.
 */

enum ActionEventType {
 ACTION_PERFORMED /* Generated when a user action is performed */
};

 859

F I G U R E A - 7 The gevents.h interface (page 2 of 14)

/*
 * Type: TimerEventType
 * --------------------
 * This enumeration type defines the event types for timer events.
 */

enum TimerEventType {
 TIMER_TICKED /* Generated when the interval timer ticks */
};

/*
 * Type: MouseEventType
 * --------------------
 * This enumeration type defines the event types for mouse events.
 */

enum MouseEventType {
 MOUSE_PRESSED, /* Generated when the mouse button is pressed */
 MOUSE_RELEASED, /* Generated when the mouse button is released */
 MOUSE_CLICKED, /* Generated on clicks after PRESSED and RELEASED */
 MOUSE_MOVED, /* Generated when the mouse is moved */
 MOUSE_DRAGGED /* Generated on mouse motion with the button down */
};

/*
 * Type: KeyEventType
 * ------------------
 * This enumeration type defines the event types for keyboard events.
 */

enum KeyEventType {
 KEY_PRESSED, /* Generated when a key is pressed */
 KEY_RELEASED, /* Generated when a key is released */
 KEY_TYPED /* Generated after PRESSED and RELEASED on a key */
};

/*
 * Type: ModifierCodes
 * -------------------
 * This enumeration type defines a set of constants used to check whether
 * modifiers are in effect.
 */

enum ModifierCodes {
 SHIFT_DOWN = 1 << 0,
 CTRL_DOWN = 1 << 1,
 META_DOWN = 1 << 2,
 ALT_DOWN = 1 << 3,
 ALT_GRAPH_DOWN = 1 << 4,
 BUTTON1_DOWN = 1 << 5,
 BUTTON2_DOWN = 1 << 6,
 BUTTON3_DOWN = 1 << 7
};

860 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 3 of 14)

/*
 * Type: KeyCodes
 * --------------
 * This enumeration type defines the constants for the special keys on the
 * keyboard. These values begin after the char range.
 */

enum KeyCodes {
 ESCAPE_KEY = 256,
 DELETE_KEY,
 TAB_KEY,
 RETURN_KEY,
 CLEAR_KEY,
 ENTER_KEY,
 UP_ARROW_KEY,
 DOWN_ARROW_KEY,
 LEFT_ARROW_KEY,
 RIGHT_ARROW_KEY,
 HELP_KEY,
 HOME_KEY,
 PAGE_UP_KEY,
 PAGE_DOWN_KEY,
 FORWARD_DEL_KEY,
 END_KEY,
 F1_KEY,
 F2_KEY,
 F3_KEY,
 F4_KEY,
 F5_KEY,
 F6_KEY,
 F7_KEY,
 F8_KEY,
 F9_KEY,
 F10_KEY,
 F11_KEY,
 F12_KEY,
 F13_KEY,
 F14_KEY,
 F15_KEY,
};

/* Forward definitions */

class GWindowEvent;
class GActionEvent;
class GTimerEvent;
class GMouseEvent;
class GKeyEvent;

 861

F I G U R E A - 7 The gevents.h interface (page 4 of 14)

/*
 * Class: GEvent
 * -------------
 * This class is the root of the hierarchy for all events. The primary
 * purpose of this general class is as the parameter to the waitForEvent
 * and getNextEvent functions. Code that uses these functions to wait for
 * events of more than one class must typically cast the event to the
 * appropriate subclass, as illustrated in the sample code that accompanies
 * the prototypes for those functions.
 */

class GEvent {

public:

/*
 * Constructor: GEvent
 * Usage: GEvent event;
 * --------------------
 * Ensures that an event is properly initialized to a NULL event.
 */

 GEvent();

/*
 * Method: getEventClass
 * Usage: EventClassType eventClass = e.getEventClass();
 * ---
 * Returns the enumerated type constant indicating the class of the event.
 */

 EventClassType getEventClass() const;

/*
 * Method: getEventTime
 * Usage: double time = e.getEventTime();
 * --------------------------------------
 * Returns the system time in milliseconds at which the event occurred. To
 * ensure portability among systems that represent time in different ways,
 * the StanfordCPPLib packages use type double to represent time, which is
 * always encoded as the number of milliseconds that have elapsed since
 * 00:00:00 UTC on January 1, 1970, which is the conventional zero point
 * for computer-based time systems.
 */

 double getEventTime() const;

862 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 5 of 14)

/*
 * Method: getModifiers
 * Usage: int modifiers = e.getModifiers();
 * --
 * Returns an integer whose bits indicate what modifiers are in effect. To
 * check whether the shift key is down, for example, one could use the
 * following code:
 *
 * if (e.getModifiers() & SHIFT_DOWN) . . .
 */

 int getModifiers() const;

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 virtual std::string toString() const;

/*
 * Operator: bool
 * Usage: if (e) . . .
 * -------------------
 * Converts the event to a Boolean value which is true if the event is
 * valid.
 */

 operator bool() const;

#include "private/geventpriv.h"

};

 863

F I G U R E A - 7 The gevents.h interface (page 6 of 14)

/*
 * Function: startIntervalTimer
 * Usage: startIntervalTimer(delay);
 * startIntervalTimer(delay, count);
 * --
 * Starts an interval timer that fires a timer event repeatedly every delay
 * milliseconds. The count parameter, if specified, indicates the maximum
 * number of events to fire; if this parameter is missing, the timer
 * continues to fire until it is stopped.
 */

void startIntervalTimer(double delay);
void startIntervalTimer(double delay, int count);

/*
 * Function: stopIntervalTimer
 * Usage: stopIntervalTimer();
 * ---------------------------
 * Stops the interval timer.
 */

void stopIntervalTimer();

/*
 * Function: postEvent
 * Usage: postEvent(e);
 * --------------------
 * Adds the event to the end of the event queue.
 */

void postEvent(GEvent e);

864 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 7 of 14)

/*
 * Function: waitForEvent
 * Usage: waitForEvent(e);
 * -----------------------
 * Dismisses the process until an event occurs. When it does, the
 * waitForEvent function returns with the details of the event. The
 * parameter e can be either a general GEvent variable or one of the
 * specific subclasses. In the former case, the function returns when any
 * event occurs. Clients should use this approach if they need to respond
 * to more than one class of event. As an example, the following code is
 * the canonical event loop for an animated application that needs to
 * respond to mouse, key, and timer events:
 *
 * startIntervalTimer(ANIMATION_DELAY_IN_MILLISECONDS);
 * while (true) {
 * GEvent e;
 * waitForEvent(e);
 * switch (e.getEventClass()) {
 * case TIMER_EVENT:
 * takeAnimationStep();
 * break;
 * case MOUSE_EVENT:
 * handleMouseEvent(GMouseEvent(e));
 * break;
 * case KEY_EVENT:
 * handleKeyEvent(GKeyEvent(e));
 * break;
 * }
 * }
 *
 * For applications that are interested only in mouse events, for example,
 * this code can be simplified as follows:
 *
 * while (true) {
 * GMouseEvent e;
 * waitForEvent(e);
 * handleMouseEvent(e);
 * }
 */

void waitForEvent(GEvent & e);
void waitForEvent(GWindowEvent & e);
void waitForEvent(GActionEvent & e);
void waitForEvent(GTimerEvent & e);
void waitForEvent(GMouseEvent & e);
void waitForEvent(GKeyEvent & e);

 865

F I G U R E A - 7 The gevents.h interface (page 8 of 14)

/*
 * Function: waitForClick
 * Usage: waitForClick();
 * waitForClick(mouseEvent);
 * --------------------------------
 * Waits for a mouse click to occur anywhere in the window, discarding any
 * other events. If the client passes a GMouseEvent as a reference
 * parameter, the function will fill in the details of the click event.
 */

void waitForClick();
void waitForClick(GMouseEvent & mouseEvent);

/*
 * Function: getNextEvent
 * Usage: if (getNextEvent(e)) . . .
 * ---------------------------------
 * Checks to see if there are any events waiting on the event queue. If
 * so, getNextEvent fills in the structure of the event with the first
 * event in the queue and returns true. If there are no events,
 * getNextEvent returns false. As with waitForEvent, the parameter e can
 * be either a GEvent variable or one of the specific subclasses. Clients
 * should use this form of the call if they need to support animation in
 * the main thread, as in the following code example:
 *
 * while (true) {
 * GEvent e;
 * if (getNextEvent(e)) {
 * switch (e.getEventClass()) {
 * case MOUSE_EVENT:
 * handleMouseEvent(GMouseEvent(e));
 * break;
 * case KEY_EVENT:
 * handleKeyEvent(GKeyEvent(e));
 * break;
 * }
 * } else {
 * takeAnimationStep();
 * }
 * }
 */

bool getNextEvent(GEvent & e);
bool getNextEvent(GWindowEvent & e);
bool getNextEvent(GActionEvent & e);
bool getNextEvent(GTimerEvent & e);
bool getNextEvent(GMouseEvent & e);
bool getNextEvent(GKeyEvent & e);

866 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 9 of 14)

/*
 * Class: GWindowEvent
 * -------------------
 * This event subclass represents a window event.
 */

class GWindowEvent : public GEvent {

public:

/*
 * Constructor: GWindowEvent
 * Usage: GWindowEvent windowEvent;
 * GWindowEvent windowEvent(e);
 * GWindowEvent windowEvent(type, gw);
 * --
 * Creates a GWindowEvent using the specified parameters or those taken
 * from the more general event e.
 */

 GWindowEvent();
 GWindowEvent(GEvent e);
 GWindowEvent(WindowEventType type, GWindow gw);

/*
 * Method: getEventType
 * Usage: WindowEventType type = e.getEventType();
 * ---
 * Returns the enumerated type constant corresponding to the specific type
 * of window event.
 */

 WindowEventType getEventType() const;

/*
 * Method: getWindow
 * Usage: GWindow gw = e.getWindow();
 * ----------------------------------
 * Returns the graphics window in which this event occurred.
 */

 GWindow getWindow() const;

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 std::string toString() const;

};

 867

F I G U R E A - 7 The gevents.h interface (page 10 of 14)

/*
 * Class: GActionEvent
 * -------------------
 * This event subclass represents an action event.
 */

class GActionEvent : public GEvent {

public:

/*
 * Constructor: GActionEvent
 * Usage: GActionEvent actionEvent;
 * GActionEvent actionEvent(e);
 * GActionEvent actionEvent(type, actionCommand);
 * ---
 * Creates a GActionEvent using the specified parameters or those taken
 * from the more general event e.
 */

 GActionEvent();
 GActionEvent(GEvent e);
 GActionEvent(ActionEventType type, std::string actionCommand);

/*
 * Method: getEventType
 * Usage: ActionEventType type = e.getEventType();
 * ---
 * Returns the enumerated type constant corresponding to the specific type
 * of action event.
 */

 ActionEventType getEventType() const;

/*
 * Method: getActionCommand
 * Usage: string cmd = e.getActionCommand();
 * ---
 * Returns the action command associated with this event.
 */

 std::string getActionCommand() const;

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 std::string toString() const;

};

868 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 11 of 14)

/*
 * Class: GTimerEvent
 * ------------------
 * This event subclass represents a timer event.
 */

class GTimerEvent : public GEvent {

public:

/*
 * Constructor: GTimerEvent
 * Usage: GTimerEvent timerEvent;
 * GTimerEvent timerEvent(e);
 * GTimerEvent timerEvent(type);
 * ------------------------------------
 * Creates a GTimerEvent.
 */

 GTimerEvent();
 GTimerEvent(GEvent e);
 GTimerEvent(TimerEventType type);

/*
 * Method: getEventType
 * Usage: TimerEventType type = e.getEventType();
 * --
 * Returns the enumerated type constant corresponding to the specific type
 * of timer event.
 */

 TimerEventType getEventType() const;

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 std::string toString() const;

};

 869

F I G U R E A - 7 The gevents.h interface (page 12 of 14)

/*
 * Class: GMouseEvent
 * ------------------
 * This event subclass represents a mouse event.
 */

class GMouseEvent : public GEvent {

public:

/*
 * Constructor: GMouseEvent
 * Usage: GMouseEvent mouseEvent;
 * GMouseEvent mouseEvent(e);
 * GMouseEvent mouseEvent(type, x, y);
 * --
 * Creates a GMouseEvent using the specified parameters or those taken from
 * the more general event e.
 */

 GMouseEvent();
 GMouseEvent(GEvent e);
 GMouseEvent(MouseEventType type, double x, double y);

/*
 * Method: getEventType
 * Usage: MouseEventType type = e.getEventType();
 * --
 * Returns the enumerated type constant corresponding to the specific type
 * of mouse event.
 */

 MouseEventType getEventType() const;

/*
 * Method: getX
 * Usage: double x = getX();
 * -------------------------
 * Returns the x coordinate at which the event occurred relative to the
 * window origin at the upper left corner of the window.
 */

 double getX() const;

/*
 * Method: getY
 * Usage: double y = getY();
 * -------------------------
 * Returns the y coordinate at which the event occurred relative to the
 * window origin at the upper left corner of the window.
 */

 double getY() const;

870 Appendix A. Library Interfaces

F I G U R E A - 7 The gevents.h interface (page 13 of 14)

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 std::string toString() const;

};

/*
 * Class: GKeyEvent
 * ----------------
 * This event subclass represents a key event.
 */

class GKeyEvent : public GEvent {

public:

/*
 * Constructor: GKeyEvent
 * Usage: GKeyEvent keyEvent;
 * GKeyEvent keyEvent(e);
 * GKeyEvent keyEvent(type, key);
 * -------------------------------------
 * Creates a GKeyEvent using the specified parameters or those taken from
 * the more general event e.
 */

 GKeyEvent();
 GKeyEvent(GEvent e);
 GKeyEvent(KeyEventType type, int key);

/*
 * Method: getEventType
 * Usage: KeyEventType type = e.getEventType();
 * --
 * Returns the enumerated type constant corresponding to the specific type
 * of key event.
 */

 KeyEventType getEventType() const;

/*
 * Method: getKey
 * Usage: int key = getKey();
 * --------------------------
 * Returns the integer code associated with the key in the event.
 */

 int getKey() const;

 871

F I G U R E A - 7 The gevents.h interface (page 14 of 14)

/*
 * Method: getChar
 * Usage: char ch = e.getChar();
 * -----------------------------
 * Returns the character code for the key value after applying modifier
 * keys. For example, if the user types the 'a' key with the shift key
 * down, getChar will return 'A'. If the key code in the event does not
 * correspond to a character, getChar returns the null character ('\0').
 */

 char getChar() const;

/*
 * Method: toString
 * Usage: string str = e.toString();
 * ---------------------------------
 * Converts the event to a human-readable representation of the event.
 */

 std::string toString() const;

};

#endif

872 Appendix A. Library Interfaces

F I G U R E A - 8 The graph.h interface (page 1 of 5)

/*
 * File: graph.h
 * -------------
 * This interface exports a parameterized Graph class used to represent
 * graphs, which consist of a set of nodes and a set of arcs.
 */

#ifndef _graph_h
#define _graph_h

#include <string>
#include "error.h"
#include "map.h"
#include "set.h"

/*
 * Function: nodeCompare
 * ---------------------
 * Standard comparison function for nodes.
 */

template <typename NodeType>
int nodeCompare(NodeType *n1, NodeType *n2);

/*
 * Function: arcCompare
 * --------------------
 * Standard comparison function for arcs.
 */

template <typename NodeType,typename ArcType>
int arcCompare(ArcType *a1, ArcType *a2);

/*
 * Class: Graph<NodeType,ArcType>
 * ------------------------------
 * This class represents a graph with the specified node and arc types.
 * The NodeType and ArcType parameters indicate the structure type or class
 * used for nodes and arcs, respectively. These types can contain any
 * fields or methods required by the client, but must contain the following
 * public fields required by the Graph package itself:
 *
 * The NodeType definition must include:
 * - A string field called name
 * - A Set<ArcType *> field called arcs
 *
 * The ArcType definition must include:
 * - A NodeType * field called start
 * - A NodeType * field called finish
 */

template <typename NodeType,typename ArcType>
class Graph {

public:

 873

F I G U R E A - 8 The graph.h interface (page 2 of 5)

/*
 * Constructor: Graph
 * Usage: Graph<NodeType,ArcType> g;
 * ---------------------------------
 * Creates an empty Graph object.
 */

 Graph();

/*
 * Destructor: ~Graph
 * Usage: (usually implicit)
 * -------------------------
 * Frees the internal storage allocated to represent the graph.
 */

 ~Graph();

/*
 * Method: size
 * Usage: int size = g.size();
 * ---------------------------
 * Returns the number of nodes in the graph.
 */

 int size();

/*
 * Method: isEmpty
 * Usage: if (g.isEmpty()) . . .
 * -----------------------------
 * Returns true if the graph is empty.
 */

 bool isEmpty();

/*
 * Method: clear
 * Usage: g.clear();
 * -----------------
 * Reinitializes the graph to be empty, freeing any heap storage.
 */

 void clear();

874 Appendix A. Library Interfaces

F I G U R E A - 8 The graph.h interface (page 3 of 5)

/*
 * Method: addNode
 * Usage: NodeType *node = g.addNode(name);
 * NodeType *node = g.addNode(node);
 * --
 * Adds a node to the graph. The first version of this method creates a
 * new node of the appropriate type and initializes its fields; the second
 * assumes that the client has already created the node and simply adds it
 * to the graph. Both versions of this method return a pointer to the
 * node.
 */

 NodeType *addNode(std::string name);
 NodeType *addNode(NodeType *node);

/*
 * Method: removeNode
 * Usage: g.removeNode(name);
 * g.removeNode(node);
 * --------------------------
 * Removes a node from the graph, where the node can be specified either by
 * its name or as a pointer value. Removing a node also removes all arcs
 * that contain that node.
 */

 void removeNode(std::string name);
 void removeNode(NodeType *node);

/*
 * Method: getNode
 * Usage: NodeType *node = g.getNode(name);
 * --
 * Looks up a node in the name table attached to the graph and returns a
 * pointer to that node. If no node with the specified name exists,
 * getNode signals an error.
 */

 NodeType *getNode(std::string name);

/*
 * Method: nodeExists
 * Usage: if (g.nodeExists(name)) . . .
 * ------------------------------------
 * Returns true if a node with the given name exists.
 */

 bool nodeExists(std::string name);

 875

F I G U R E A - 8 The graph.h interface (page 4 of 5)

/*
 * Method: addArc
 * Usage: g.addArc(s1, s2);
 * g.addArc(n1, n2);
 * g.addArc(arc);
 * ---------------------
 * Adds an arc to the graph. The endpoints of the arc can be specified
 * either as strings indicating the names of the nodes or as pointers to
 * the node structures. Alternatively, the client can create the arc
 * structure explicitly and pass that pointer to the addArc method. All
 * three of these versions return a pointer to the arc in case the client
 * needs to capture this value.
 */

 ArcType *addArc(std::string s1, std::string s2);
 ArcType *addArc(NodeType *n1, NodeType *n2);
 ArcType *addArc(ArcType *arc);

/*
 * Method: removeArc
 * Usage: g.removeArc(s1, s2);
 * g.removeArc(n1, n2);
 * g.removeArc(arc);
 * ------------------------
 * Removes an arc from the graph, where the arc can be specified in any of
 * three ways: by the names of its endpoints, by the node pointers at its
 * endpoints, or as an arc pointer. If more than one arc connects the
 * specified endpoints, all of them are removed.
 */

 void removeArc(std::string s1, std::string s2);
 void removeArc(NodeType *n1, NodeType *n2);
 void removeArc(ArcType *arc);

/*
 * Method: isConnected
 * Usage: if (g.isConnected(n1, n2)) . . .
 * if (g.isConnected(s1, s2)) . . .
 * ---------------------------------------
 * Returns true if the graph contains an arc from n1 to n2. As in the
 * addArc method, nodes can be specified either as node pointers or by
 * name.
 */

 bool isConnected(NodeType *n1, NodeType *n2);
 bool isConnected(std::string s1, std::string s2);

876 Appendix A. Library Interfaces

F I G U R E A - 8 The graph.h interface (page 5 of 5)

/*
 * Method: getNodeSet
 * Usage: foreach (NodeType *node in g.getNodeSet()) . . .
 * ---
 * Returns the set of all nodes in the graph.
 */

 Set<NodeType *> & getNodeSet();

/*
 * Method: getArcSet
 * Usage: foreach (ArcType *arc in g.getArcSet()) . . .
 * foreach (ArcType *arc in g.getArcSet(node)) . . .
 * foreach (ArcType *arc in g.getArcSet(name)) . . .
 * --
 * Returns the set of all arcs in the graph or, in the second and third
 * forms, the arcs that start at the specified node, which can be indicated
 * either as a pointer or by name.
 */

 Set<ArcType *> & getArcSet();
 Set<ArcType *> & getArcSet(NodeType *node);
 Set<ArcType *> & getArcSet(std::string name);

/*
 * Method: getNeighbors
 * Usage: foreach (NodeType *node in g.getNeighbors(node)) . . .
 * foreach (NodeType *node in g.getNeighbors(name)) . . .
 * ---
 * Returns the set of nodes that are neighbors of the specified node, which
 * can be indicated either as a pointer or by name.
 */

 Set<NodeType *> getNeighbors(NodeType *node);
 Set<NodeType *> getNeighbors(std::string node);

#include "private/graphpriv.h"

};

#include "private/graphimpl.cpp"

#endif

 877

F I G U R E A - 9 The graphics.h interface (page 1 of 8)

/*
 * File: graphics.h
 * ----------------
 * This interface provides access to a simple graphics library that makes
 * it possible to draw lines, rectangles, ovals, arcs, polygons, images,
 * and strings on a graphical window.
 */

#ifndef _graphics_h
#define _graphics_h

#include <string>
#include "gtypes.h"
#include "vector.h"

/*
 * Function: initGraphics
 * Usage: initGraphics();
 * initGraphics(width, height);
 * -----------------------------------
 * Creates the graphics window on the screen. The first form creates a
 * window with a default size of 500x300; the second allows the client to
 * specify the size of the window. The call to initGraphics must precede
 * any console output or calls to other functions in this interface.
 */

void initGraphics();
void initGraphics(int width, int height);

/*
 * Function: drawArc
 * Usage: drawArc(bounds, start, sweep);
 * drawArc(x, y, width, height, start, sweep);
 * --
 * Draws an elliptical arc inscribed in a rectangle. The parameters x, y,
 * width, and height (or, equivalently, the GRectangle bounds) specify the
 * coordinates and dimensions of the bounding rectangle. The start
 * parameter indicates the angle at which the arc begins and is measured in
 * degrees counterclockwise from the +x axis. Thus, a start angle of 0
 * indicates an arc that begins along the line running eastward from the
 * center, a start angle of 135 begins along the line running northwest,
 * and a start angle of -90 begins along the line running south. The sweep
 * parameter indicates the extent of the arc and is also measured in
 * degrees counterclockwise. A sweep angle of 90 defines a quarter circle
 * extending counterclockwise from the start angle, and a sweep angle of
 * -180 defines a semicircle extending clockwise.
 */

void drawArc(const GRectangle & bounds, double start, double sweep);
void drawArc(double x, double y, double width, double height,
 double start, double sweep);

878 Appendix A. Library Interfaces

F I G U R E A - 9 The graphics.h interface (page 2 of 8)

/*
 * Function: fillArc
 * Usage: fillArc(bounds, start, sweep);
 * fillArc(x, y, width, height, start, sweep);
 * --
 * Fills a wedge-shaped area of an elliptical arc. The parameters are
 * interpreted in the same way as those for drawArc.
 */

void fillArc(const GRectangle & bounds, double start, double sweep);
void fillArc(double x, double y, double width, double height,
 double start, double sweep);

/*
 * Function: drawImage
 * Usage: drawImage(filename, pt);
 * drawImage(filename, x, y);
 * drawImage(filename, bounds);
 * drawImage(filename, x, y, width, height);
 * --
 * Draws the image from the specified file with its upper left corner at
 * the specified point. The forms of the call that include the bounds
 * scale the image so that it fits inside the specified rectangle.
 */

void drawImage(std::string filename, const GPoint & pt);
void drawImage(std::string filename, double x, double y);
void drawImage(std::string filename, const GRectangle & bounds);
void drawImage(std::string filename, double x, double y,
 double width, double height);

/*
 * Function: getImageBounds
 * Usage: GRectangle bounds = getImageBounds(filename);
 * --
 * Returns the bounds of the image contained in the specified file. Only
 * the width and height components of the rectangle are of interest; the x
 * and y components are always 0.
 */

GRectangle getImageBounds(std::string filename);

/*
 * Function: drawLine
 * Usage: drawLine(p0, p1);
 * drawLine(x0, y0, x1, y1);
 * --------------------------------
 * Draws a line connecting the specified points.
 */

void drawLine(const GPoint & p0, const GPoint & p1);
void drawLine(double x0, double y0, double x1, double y1);

 879

F I G U R E A - 9 The graphics.h interface (page 3 of 8)

/*
 * Function: drawPolarLine
 * Usage: GPoint p1 = drawPolarLine(p0, r, theta);
 * GPoint p1 = drawPolarLine(x0, y0, r, theta);
 * ---
 * Draws a line of length r in the direction theta from the initial point.
 * The angle theta is measured in degrees counterclockwise from the +x
 * axis. The function returns the end point of the line.
 */

GPoint drawPolarLine(const GPoint & p0, double r, double theta);
GPoint drawPolarLine(double x0, double y0, double r, double theta);

/*
 * Function: drawOval
 * Usage: drawOval(bounds);
 * drawOval(x, y, width, height);
 * -------------------------------------
 * Draws the frame of a oval with the specified bounds.
 */

void drawOval(const GRectangle & bounds);
void drawOval(double x, double y, double width, double height);

/*
 * Function: fillOval
 * Usage: fillOval(bounds);
 * fillOval(x, y, width, height);
 * -------------------------------------
 * Fills the frame of a oval with the specified bounds.
 */

void fillOval(const GRectangle & bounds);
void fillOval(double x, double y, double width, double height);

/*
 * Function: drawRect
 * Usage: drawRect(bounds);
 * drawRect(x, y, width, height);
 * -------------------------------------
 * Draws the frame of a rectangle with the specified bounds.
 */

void drawRect(const GRectangle & bounds);
void drawRect(double x, double y, double width, double height);

880 Appendix A. Library Interfaces

F I G U R E A - 9 The graphics.h interface (page 4 of 8)

/*
 * Function: fillRect
 * Usage: fillRect(bounds);
 * fillRect(x, y, width, height);
 * -------------------------------------
 * Fills the frame of a rectangle with the specified bounds.
 */

void fillRect(const GRectangle & bounds);
void fillRect(double x, double y, double width, double height);

/*
 * Function: drawPolygon
 * Usage: drawPolygon(polygon);
 * drawPolygon(polygon, pt);
 * drawPolygon(polygon, x, y);
 * ----------------------------------
 * Draws the outline of the specified polygon. The optional pt or x and y
 * parameters shift the origin of the polygon to the specified point.
 */

void drawPolygon(const Vector<GPoint> & polygon);
void drawPolygon(const Vector<GPoint> & polygon, const GPoint & pt);
void drawPolygon(const Vector<GPoint> & polygon, double x, double y);

/*
 * Function: fillPolygon
 * Usage: fillPolygon(polygon);
 * fillPolygon(polygon, pt);
 * fillPolygon(polygon, x, y);
 * ----------------------------------
 * Fills the frame of the specified polygon. The optional pt or x and y
 * parameters shift the origin of the polygon to the specified point.
 */

void fillPolygon(const Vector<GPoint> & polygon);
void fillPolygon(const Vector<GPoint> & polygon, const GPoint & pt);
void fillPolygon(const Vector<GPoint> & polygon, double x, double y);

/*
 * Function: drawString
 * Usage: drawString(str, pt);
 * drawString(str, x, y);
 * -----------------------------
 * Draws the string str so that its baseline origin appears at the
 * specified point. The text appears in the current font and color.
 */

void drawString(std::string str, const GPoint & pt);
void drawString(std::string str, double x, double y);

 881

F I G U R E A - 9 The graphics.h interface (page 5 of 8)

/*
 * Function: getStringWidth
 * Usage: double width = getStringWidth(str);
 * --
 * Returns the width of the string str when displayed in the current font.
 */

double getStringWidth(std::string str);

/*
 * Function: setFont
 * Usage: setFont(font);
 * ---------------------
 * Sets a new font. The font parameter is a string in the form
 * family-style-size. In this string, family is the name of the font
 * family; style is either missing (indicating a plain font) or one of the
 * strings Bold, Italic, or BoldItalic; and size is an integer indicating
 * the point size. If any of these components is specified as an asterisk,
 * the existing value is retained.
 */

void setFont(std::string font);

/*
 * Function: getFont
 * Usage: string font = getFont();
 * -------------------------------
 * Returns the current font.
 */

std::string getFont();

/*
 * Function: getFontHeight
 * Usage: double height = getFontHeight();
 * ---------------------------------------
 * Returns the height of the current font, which is the separation in
 * pixels between successive text lines.
 */

double getFontHeight();

882 Appendix A. Library Interfaces

F I G U R E A - 9 The graphics.h interface (page 6 of 8)

/*
 * Function: getFontAscent
 * Usage: double height = getFontAscent();
 * ---------------------------------------
 * Returns the ascent of the current font, which is defined to be the
 * maximum distance in pixels that characters rise above the baseline.
 */

double getFontAscent();

/*
 * Function: getFontDescent
 * Usage: double height = getFontDescent();
 * --
 * Returns the descent of the current font, which is defined to be the
 * maximum distance in pixels that characters extend below the baseline.
 */

double getFontDescent();

/*
 * Function: setColor
 * Usage: setColor(color);
 * -----------------------
 * Sets the color used for drawing. The color parameter is usually one of
 * the predefined color names from Java: BLACK, BLUE, CYAN, DARK_GRAY,
 * GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, or YELLOW.
 * The case of the individual letters in the color name is ignored, as are
 * spaces and underscores, so that the Java color DARK_GRAY could be
 * written as "Dark Gray".
 *
 * The color can also be specified as a string in the form "#rrggbb" where
 * rr, gg, and bb are pairs of hexadecimal digits indicating the red,
 * green, and blue components of the color.
 */

void setColor(std::string color);

/*
 * Function: getColor
 * Usage: string color = getColor();
 * ---------------------------------
 * Returns the current color as a string in the form "#rrggbb". In this
 * string, the values rr, gg, and bb are two-digit hexadecimal values
 * representing the red, green, and blue components of the color,
 * respectively.
 */

std::string getColor();

 883

F I G U R E A - 9 The graphics.h interface (page 7 of 8)

/*
 * Function: saveGraphicsState
 * Usage: saveGraphicsState();
 * ---------------------------
 * Saves the state of the graphics context. This function is used in
 * conjunction with restoreGraphicsState() to avoid changing the state set
 * up by the client.
 */

void saveGraphicsState();

/*
 * Function: restoreGraphicsState
 * Usage: restoreGraphicsState();
 * ------------------------------
 * Restores the graphics state from the most recent call to
 * saveGraphicsState().
 */

void restoreGraphicsState();

/*
 * Function: getWindowWidth
 * Usage: double width = getWindowWidth();
 * ---------------------------------------
 * Returns the width of the graphics window in pixels.
 */

double getWindowWidth();

/*
 * Function: getWindowHeight
 * Usage: double height = getWindowHeight();
 * ---
 * Returns the height of the graphics window in pixels.
 */

double getWindowHeight();

/*
 * Function: repaint
 * Usage: repaint();
 * -----------------
 * Issues a request to update the graphics window. This function is called
 * automatically when the program pauses, waits for an event, waits for
 * user input on the console, or terminates. As a result, most clients
 * will never need to call repaint explicitly.
 */

void repaint();

884 Appendix A. Library Interfaces

F I G U R E A - 9 The graphics.h interface (page 8 of 8)

/*
 * Function: pause
 * Usage: pause(milliseconds);
 * ---------------------------
 * Pauses for the indicated number of milliseconds. This function is
 * useful for animation where the motion would otherwise be too fast.
 */

void pause(double milliseconds);

/*
 * Function: waitForClick
 * Usage: waitForClick();
 * ----------------------
 * Waits for a mouse click to occur anywhere in the window.
 */

void waitForClick();

/*
 * Function: setWindowTitle
 * Usage: setWindowTitle(title);
 * -----------------------------
 * Sets the title of the primary graphics window.
 */

void setWindowTitle(std::string title);

/*
 * Function: getWindowTitle
 * Usage: string title = getWindowTitle();
 * ---------------------------------------
 * Returns the title of the primary graphics window.
 */

std::string getWindowTitle();

/*
 * Function: exitGraphics
 * Usage: exitGraphics();
 * ----------------------
 * Closes the graphics window and exits from the application without
 * waiting for any additional user interaction.
 */

void exitGraphics();

#endif

 885

F I G U R E A - 1 0 The grid.h interface (page 1 of 3)

/*
 * File: grid.h
 * ------------
 * This interface exports the Grid template class, which provides a
 * convenient abstraction for representing two-dimensional arrays.
 */

#ifndef _grid_h
#define _grid_h

#include "error.h"
#include "foreach.h"
#include "strlib.h"

/*
 * Class: Grid<ValueType>
 * ----------------------
 * The Grid class stores an indexed, two-dimensional array. The following
 * function, for example, creates an identity matrix of size n, in which
 * the elements are 1.0 along the main diagonal and 0.0 everywhere else:
 *
 * Grid<double> createIdentityMatrix(int n) {
 * Grid<double> matrix(n, n);
 * for (int i = 0; i < n; i++) {
 * matrix[i][i] = 1.0;
 * }
 * return matrix;
 * }
 */

template <typename ValueType>
class Grid {

public:

/* Forward reference */
 class GridRow;

/*
 * Constructor: Grid
 * Usage: Grid<ValueType> grid;
 * Grid<ValueType> grid(nRows, nCols);
 * --
 * Initializes a new grid. The second form of the constructor is more
 * common and creates a grid with the specified number of rows and columns.
 * Each element of the grid is initialized to the default value for the
 * type. The default constructor creates an empty grid for which the
 * client must call resize to set the dimensions.
 */

 Grid();
 Grid(int nRows, int nCols);

886 Appendix A. Library Interfaces

F I G U R E A - 1 0 The grid.h interface (page 2 of 3)

/*
 * Destructor: ~Grid
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this grid.
 */

 ~Grid();

/*
 * Method: numRows
 * Usage: int nRows = grid.numRows();
 * ----------------------------------
 * Returns the number of rows in the grid.
 */

 int numRows() const;

/*
 * Method: numCols
 * Usage: int nCols = grid.numCols();
 * ----------------------------------
 * Returns the number of columns in the grid.
 */

 int numCols() const;

/*
 * Method: resize
 * Usage: grid.resize(nRows, nCols);
 * ---------------------------------
 * Reinitializes the grid to have the specified number of rows and columns.
 * Any previous grid contents are discarded.
 */

 void resize(int nRows, int nCols);

/*
 * Method: inBounds
 * Usage: if (grid.inBounds(row, col)) . . .
 * ---
 * Returns true if the specified row and column position is inside the
 * bounds of the grid.
 */

 bool inBounds(int row, int col) const;

 887

F I G U R E A - 1 0 The grid.h interface (page 3 of 3)

/*
 * Method: get
 * Usage: ValueType value = grid.get(row, col);
 * --
 * Returns the element at the specified row/col position in this grid.
 * This method signals an error if the row and col arguments are outside
 * the grid boundaries.
 */

 ValueType get(int row, int col) const;

/*
 * Method: set
 * Usage: grid.set(row, col, value);
 * ---------------------------------
 * Replaces the element at the specified row/col location in this grid with
 * a new value. This method signals an error if the row and col arguments
 * are outside the grid boundaries.
 */

 void set(int row, int col, ValueType value);

/*
 * Operator: []
 * Usage: grid[row][col]
 * ----------------------
 * Overloads [] to select elements from this grid. This extension enables
 * the use of traditional array notation to get or set individual elements.
 * This method signals an error if the row and col arguments are outside
 * the grid boundaries.
 */

 GridRow operator[](int row);

/*
 * Macro: foreach
 * Usage: foreach (ValueType value in grid) . . .
 * --
 * Iterates over the elements of the grid in row-major order, in which all
 * the elements of row 0 are processed, followed by the elements in row 1,
 * and so on.
 */

 /* The foreach macro is defined in foreach.h */

#include "private/gridpriv.h"

};

#include "private/gridimpl.cpp"

#endif

888 Appendix A. Library Interfaces

F I G U R E A - 1 1 The gtypes.h interface (page 1 of 5)

/*
 * File: gtypes.h
 * --------------
 * This file defines three classes (GPoint, GRectangle, and GPolygon) that
 * are used in the graphics library to encapsulate basic geometrical
 * concepts.
 */

#ifndef _gtypes_h
#define _gtypes_h

#include <string>
#include "vector.h"

/*
 * Class: GPoint
 * -------------
 * This class represents a point on the real-valued graphics plane.
 */

class GPoint {

public:

/*
 * Constructor: GPoint
 * Usage: GPoint origin;
 * GPoint pt(x, y);
 * -----------------------
 * Creates a GPoint object with the specified x and y coordinates. If the
 * coordinates are not supplied, the default constructor sets these fields
 * to 0.
 */

 GPoint();
 GPoint(double x, double y);

/*
 * Method: getX
 * Usage: double x = pt.getX();
 * ----------------------------
 * Returns the x component of the point.
 */

 double getX() const;

/*
 * Method: getY
 * Usage: double y = pt.getY();
 * ----------------------------
 * Returns the y component of the point.
 */

 double getY() const;

 889

F I G U R E A - 1 1 The gtypes.h interface (page 2 of 5)

/*
 * Method: toString
 * Usage: string str = pt.toString();
 * ----------------------------------
 * Converts the GPoint to a string in the form "(x, y)".
 */

 std::string toString() const;

#include "private/gpointpriv.h"

};

/*
 * Class: GRectangle
 * -----------------
 * This class represents a rectangle on the graphics plane and is
 * conventionally used to denote the bounding box for an object.
 */

class GRectangle {

public:

/*
 * Constructor: GRectangle
 * Usage: GRectangle empty;
 * GRectangle r(x, y, width, height);
 * ---
 * Creates a GRectangle object with the specified components. If these
 * parameters are not supplied, the default constructor sets these fields
 * to 0.
 */

 GRectangle();
 GRectangle(double x, double y, double width, double height);

/*
 * Method: getX
 * Usage: double x = r.getX();
 * ---------------------------
 * Returns the x component of the rectangle.
 */

 double getX() const;

/*
 * Method: getY
 * Usage: double y = pt.getY();
 * ----------------------------
 * Returns the y component of the rectangle.
 */

 double getY() const;

890 Appendix A. Library Interfaces

F I G U R E A - 1 1 The gtypes.h interface (page 3 of 5)

/*
 * Method: getWidth
 * Usage: double width = r.getWidth();
 * -----------------------------------
 * Returns the width component of the rectangle.
 */

 double getWidth() const;

/*
 * Method: getHeight
 * Usage: double height = pt.getHeight();
 * --------------------------------------
 * Returns the height component of the rectangle.
 */

 double getHeight() const;

/*
 * Method: isEmpty
 * Usage: if (r.isEmpty()) . . .
 * -----------------------------
 * Returns true if the rectangle is empty.
 */

 bool isEmpty() const;

/*
 * Method: contains
 * Usage: if (r.contains(pt)) . . .
 * if (r.contains(x, y)) . . .
 * ----------------------------------
 * Returns true if the rectangle contains the given point, which may be
 * specified either as a point or as distinct coordinates.
 */

 bool contains(GPoint pt) const;
 bool contains(double x, double y) const;

/*
 * Method: toString
 * Usage: string str = r.toString();
 * ---------------------------------
 * Converts the GRectangle to a string in the form "(x, y, width, height)".
 */

 std::string toString() const;

#include "private/grectanglepriv.h"

};

 891

F I G U R E A - 1 1 The gtypes.h interface (page 4 of 5)

/*
 * Class: GPolygon
 * ---------------
 * This class represents a polygon and consists of a vector of the
 * vertices.
 */

class GPolygon : public Vector<GPoint> {

public:

/*
 * Constructor: GPolygon
 * Usage: GPolygon poly;
 * ---------------------
 * Creates a GPolygon object with no internal vertices. The vertices must
 * be added using vector operations or the methods addVertex, addEdge, or
 * addPolarEdge.
 */

 GPolygon();

/*
 * Method: addVertex
 * Usage: poly.addVertex(pt);
 * poly.addVertex(x, y);
 * ----------------------------
 * Adds a new vertex to the polygon.
 */

 void addVertex(GPoint pt);
 void addVertex(double x, double y);

/*
 * Method: addEdge
 * Usage: poly.addEdge(dx, dy);
 * ----------------------------
 * Adds a new vertex to the polygon whose coordinates are displaced by dx
 * and dy from the last vertex.
 */

 void addEdge(double dx, double dy);

/*
 * Method: addPolarEdge
 * Usage: poly.addPolarEdge(r, theta);
 * -----------------------------------
 * Adds a new vertex to the polygon whose coordinates are r pixels away
 * from the last point in the direction specified by theta.
 */

 void addPolarEdge(double r, double theta);

892 Appendix A. Library Interfaces

F I G U R E A - 1 1 The gtypes.h interface (page 5 of 5)

/*
 * Method: contains
 * Usage: if (poly.contains(pt)) . . .
 * if (poly.contains(x, y)) . . .
 * -------------------------------------
 * Returns true if the polygon contains the given point, which may be
 * specified either as a point or as distinct coordinates.
 */

 bool contains(GPoint pt) const;
 bool contains(double x, double y) const;

/*
 * Method: toString
 * Usage: string str = poly.toString();
 * ------------------------------------
 * Converts the GPolygon to a string.
 */

 std::string toString() const;

};

#include "private/gtypescompare.h"

#endif

 893

F I G U R E A - 1 2 The gwindow.h interface (page 1 of 9)

/*
 * File: gwindow.h
 * ---------------
 * This class defines a graphics window.
 */

#ifndef _gwindow_h
#define _gwindow_h

#include <string>
#include "gtypes.h"
#include "vector.h"

/*
 * Class: GWindow
 * --------------
 * This class represents a graphics window that can be displayed on the
 * screen.
 */

class GWindow {

public:

/*
 * Constructor: GWindow
 * Usage: GWindow gw(width, height);
 * ---------------------------------
 * Creates a window of the specified size but does not display it on the
 * screen until the client calls setVisible(true).
 */

 GWindow(double width, double height);

/*
 * Method: close
 * Usage: gw.close();
 * ------------------
 * Deletes the window from the screen. Calling any method on a window that
 * has been closed generates an error.
 */

 void close();

/*
 * Method: clear
 * Usage: gw.clear();
 * ------------------
 * Clears the contents of the graphics window.
 */

 void clear();

894 Appendix A. Library Interfaces

F I G U R E A - 1 2 The gwindow.h interface (page 2 of 9)

/*
 * Method: setVisible
 * Usage: gw.setVisible(flag);
 * ---------------------------
 * Determines whether the window is visible on the screen. Windows start
 * out in an invisible state and must be made visible before they appear.
 */

 void setVisible(bool flag);

/*
 * Method: isVisible
 * Usage: if (gw.isVisible()) . . .
 * --------------------------------
 * Tests whether the window is visible.
 */

 bool isVisible() const;

/*
 * Method: drawArc
 * Usage: gw.drawArc(bounds, start, sweep);
 * gw.drawArc(x, y, width, height, start, sweep);
 * ---
 * Draws an elliptical arc inscribed in a rectangle. The parameters x, y,
 * width, and height (or, equivalently, the GRectangle bounds) specify the
 * coordinates and dimensions of the bounding rectangle. The start
 * parameter indicates the angle at which the arc begins and is measured in
 * degrees counterclockwise from the +x axis. Thus, a start angle of 0
 * indicates an arc that begins along the line running eastward from the
 * center, a start angle of 135 begins along the line running northwest,
 * and a start angle of -90 begins along the line running south. The sweep
 * parameter indicates the extent of the arc and is also measured in
 * degrees counterclockwise. A sweep angle of 90 defines a quarter circle
 * extending counterclockwise from the start angle, and a sweep angle of
 * -180 defines a semicircle extending clockwise.
 */

 void drawArc(const GRectangle & bounds, double start, double sweep);
 void drawArc(double x, double y, double width, double height,
 double start, double sweep);

/*
 * Method: fillArc
 * Usage: gw.fillArc(bounds, start, sweep);
 * gw.fillArc(x, y, width, height, start, sweep);
 * ---
 * Fills a wedge-shaped area of an elliptical arc. The parameters are
 * interpreted in the same way as those for drawArc.
 */

 void fillArc(const GRectangle & bounds, double start, double sweep);
 void fillArc(double x, double y, double width, double height,
 double start, double sweep);

 895

F I G U R E A - 1 2 The gwindow.h interface (page 3 of 9)

/*
 * Method: drawImage
 * Usage: gw.drawImage(filename, pt);
 * gw.drawImage(filename, x, y);
 * gw.drawImage(filename, bounds);
 * gw.drawImage(filename, x, y, width, height);
 * ---
 * Draws the image from the specified file with its upper left corner at
 * the specified point. The forms of the call that include the bounds
 * scale the image so that it fits inside the specified rectangle.
 */

 void drawImage(std::string filename, const GPoint & pt);
 void drawImage(std::string filename, double x, double y);
 void drawImage(std::string filename, const GRectangle & bounds);
 void drawImage(std::string filename, double x, double y,
 double width, double height);

/*
 * Method: drawLine
 * Usage: gw.drawLine(p0, p1);
 * gw.drawLine(x0, y0, x1, y1);
 * -----------------------------------
 * Draws a line connecting the specified points.
 */

 void drawLine(const GPoint & p0, const GPoint & p1);
 void drawLine(double x0, double y0, double x1, double y1);

/*
 * Method: drawPolarLine
 * Usage: GPoint p1 = gw.drawPolarLine(p0, r, theta);
 * GPoint p1 = gw.drawPolarLine(x0, y0, r, theta);
 * --
 * Draws a line of length r in the direction theta from the initial point.
 * The angle theta is measured in degrees counterclockwise from the +x
 * axis. The method returns the end point of the line.
 */

GPoint drawPolarLine(const GPoint & p0, double r, double theta);
GPoint drawPolarLine(double x0, double y0, double r, double theta);

/*
 * Method: drawOval
 * Usage: gw.drawOval(bounds);
 * gw.drawOval(x, y, width, height);
 * --
 * Draws the frame of a oval with the specified bounds.
 */

 void drawOval(const GRectangle & bounds);
 void drawOval(double x, double y, double width, double height);

896 Appendix A. Library Interfaces

F I G U R E A - 1 2 The gwindow.h interface (page 4 of 9)

/*
 * Method: fillOval
 * Usage: gw.fillOval(bounds);
 * gw.fillOval(x, y, width, height);
 * --
 * Fills the frame of a oval with the specified bounds.
 */

 void fillOval(const GRectangle & bounds);
 void fillOval(double x, double y, double width, double height);

/*
 * Method: drawRect
 * Usage: gw.drawRect(bounds);
 * gw.drawRect(x, y, width, height);
 * --
 * Draws the frame of a rectangle with the specified bounds.
 */

 void drawRect(const GRectangle & bounds);
 void drawRect(double x, double y, double width, double height);

/*
 * Method: fillRect
 * Usage: gw.fillRect(bounds);
 * gw.fillRect(x, y, width, height);
 * --
 * Fills the frame of a rectangle with the specified bounds.
 */

 void fillRect(const GRectangle & bounds);
 void fillRect(double x, double y, double width, double height);

/*
 * Method: drawPolygon
 * Usage: gw.drawPolygon(polygon);
 * gw.drawPolygon(polygon, pt);
 * gw.drawPolygon(polygon, x, y);
 * -------------------------------------
 * Draws the outline of the specified polygon. The optional pt or x and y
 * parameters shift the origin of the polygon to the specified point.
 */

 void drawPolygon(const Vector<GPoint> & polygon);
 void drawPolygon(const Vector<GPoint> & polygon, const GPoint & pt);
 void drawPolygon(const Vector<GPoint> & polygon, double x, double y);

 897

F I G U R E A - 1 2 The gwindow.h interface (page 5 of 9)

/*
 * Method: fillPolygon
 * Usage: gw.fillPolygon(polygon);
 * gw.fillPolygon(polygon, pt);
 * gw.fillPolygon(polygon, x, y);
 * -------------------------------------
 * Fills the frame of the specified polygon. The optional pt or x and y
 * parameters shift the origin of the polygon to the specified point.
 */

 void fillPolygon(const Vector<GPoint> & polygon);
 void fillPolygon(const Vector<GPoint> & polygon, const GPoint & pt);
 void fillPolygon(const Vector<GPoint> & polygon, double x, double y);

/*
 * Method: drawString
 * Usage: gw.drawString(str, pt);
 * gw.drawString(str, x, y);
 * --------------------------------
 * Draws the string str so that its origin appears at the specified point.
 * The text appears in the current font and color.
 */

 void drawString(std::string str, const GPoint & pt);
 void drawString(std::string str, double x, double y);

/*
 * Method: getStringWidth
 * Usage: double width = gw.getStringWidth(str);
 * ---
 * Returns the width of the string str when displayed in the current font.
 */

 double getStringWidth(std::string str);

/*
 * Method: setFont
 * Usage: gw.setFont(font);
 * ------------------------
 * Sets a new font. The font parameter is a string in the form
 * family-style-size. In this string, family is the name of the font
 * family; style is either missing (indicating a plain font) or one of the
 * strings Bold, Italic, or BoldItalic; and size is an integer indicating
 * the point size. If any of these components is specified as an asterisk,
 * the existing value is retained.
 */

 void setFont(std::string font);

898 Appendix A. Library Interfaces

F I G U R E A - 1 2 The gwindow.h interface (page 6 of 9)

/*
 * Method: getFont
 * Usage: string font = gw.getFont();
 * ----------------------------------
 * Returns the current font.
 */

 std::string getFont() const;

/*
 * Method: getFontHeight
 * Usage: double height = getFontHeight();
 * ---------------------------------------
 * Returns the height of the current font, which is the separation in
 * pixels between successive text lines.
 */

 double getFontHeight() const;

/*
 * Method: getFontAscent
 * Usage: double height = getFontAscent();
 * ---------------------------------------
 * Returns the ascent of the current font, which is defined to be the
 * maximum distance in pixels that characters rise above the baseline.
 */

 double getFontAscent() const;

/*
 * Method: getFontDescent
 * Usage: double height = getFontDescent();
 * --
 * Returns the descent of the current font, which is defined to be the
 * maximum distance in pixels that characters extend below the baseline.
 */

 double getFontDescent() const;

 899

F I G U R E A - 1 2 The gwindow.h interface (page 7 of 9)

/*
 * Method: setColor
 * Usage: gw.setColor(color);
 * --------------------------
 * Sets the color used for drawing. The color parameter is usually one of
 * the predefined color names from Java: BLACK, BLUE, CYAN, DARK_GRAY,
 * GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE, or YELLOW.
 * The case of the individual letters in the color name is ignored, as are
 * spaces and underscores, so that the Java color DARK_GRAY could be
 * written as "Dark Gray".
 *
 * The color can also be specified as a string in the form "#rrggbb" where
 * rr, gg, and bb are pairs of hexadecimal digits indicating the red,
 * green, and blue components of the color.
 */

 void setColor(std::string color);

/*
 * Method: getColor
 * Usage: string color = gw.getColor();
 * ------------------------------------
 * Returns the current color as a string in the form "#rrggbb". In this
 * string, the values rr, gg, and bb are two-digit hexadecimal values
 * representing the red, green, and blue components of the color,
 * respectively.
 */

 std::string getColor() const;

/*
 * Method: saveGraphicsState
 * Usage: gw.saveGraphicsState();
 * ------------------------------
 * Saves the state of the graphics context. This function is used in
 * conjunction with restoreGraphicsState() to avoid changing the state set
 * up by the client.
 */

 void saveGraphicsState();

/*
 * Method: restoreGraphicsState
 * Usage: gw.restoreGraphicsState();
 * ---------------------------------
 * Restores the graphics state from the most recent call to
 * saveGraphicsState().
 */

 void restoreGraphicsState();

900 Appendix A. Library Interfaces

F I G U R E A - 1 2 The gwindow.h interface (page 8 of 9)

/*
 * Method: getWindowWidth
 * Usage: double width = gw.getWindowWidth();
 * --
 * Returns the width of the graphics window in pixels.
 */

 double getWindowWidth() const;

/*
 * Method: getWindowHeight
 * Usage: double height = gw.getWindowHeight();
 * --
 * Returns the height of the graphics window in pixels.
 */

 double getWindowHeight() const;

/*
 * Method: repaint
 * Usage: gw.repaint();
 * --------------------
 * Schedule a repaint on this window.
 */

 void repaint();

/*
 * Method: setWindowTitle
 * Usage: gw.setWindowTitle(title);
 * --------------------------------
 * Sets the title of the graphics window.
 */

 void setWindowTitle(std::string title);

/*
 * Method: getWindowTitle
 * Usage: string title = gw.getWindowTitle();
 * --
 * Returns the title of the graphics window.
 */

 std::string getWindowTitle() const;

#include "private/gwindowpriv.h"

};

 901

F I G U R E A - 1 2 The gwindow.h interface (page 9 of 9)

/*
 * Function: getFullScreenWidth
 * Usage: width = getFullScreenWidth();
 * ------------------------------------
 * Returns the width of the entire display screen.
 */

double getFullScreenWidth();

/*
 * Function: getFullScreenHeight
 * Usage: height = getFullScreenHeight();
 * --------------------------------------
 * Returns the height of the entire display screen.
 */

double getFullScreenHeight();

/*
 * Function: getGraphicsWindow
 * Usage: getGraphicsWindow();
 * ---------------------------
 * Returns a reference to the graphics window created by initGraphics.
 * Because GWindow objects cannot be copied, the result of
 * getGraphicsWindow must be used directly and cannot be assigned to a
 * variable.
 */

GWindow & getGraphicsWindow();

/*
 * Function: convertColorToRGB
 * Usage: int rgb = convertColorToRGB(colorName);
 * --
 * Converts a color name into an integer that encodes the red, green, and
 * blue components of the color.
 */

int convertColorToRGB(std::string colorName);

/*
 * Function: convertRGBToColor
 * Usage: int colorName = convertRGBToColor(rgb);
 * --
 * Converts an rgb value into a color name in the form "#rrggbb". Each of
 * the rr, gg, and bb values are two-digit hexadecimal numbers indicating
 * the intensity of that component.
 */

std::string convertRGBToColor(int rgb);

#endif

902 Appendix A. Library Interfaces

F I G U R E A - 1 3 The hashmap.h interface (page 1 of 3)

/*
 * File: hashmap.h
 * ---------------
 * This interface exports the HashMap class, which is identical to the Map
 * class except for the fact that it uses a hash table as its underlying
 * representation. Although the HashMap class operates in constant time,
 * the iterator for HashMap returns the values in a seemingly random order.
 */

#ifndef _hashmap_h
#define _hashmap_h

#include <cstdlib>
#include <string>
#include "error.h"
#include "foreach.h"
#include "vector.h"

/*
 * Class: HashMap<KeyType,ValueType>
 * ---------------------------------
 * The HashMap class maintains an association between keys and values.
 */

template <typename KeyType, typename ValueType>
class HashMap {

public:

/*
 * Constructor: HashMap
 * Usage: HashMap<KeyType,ValueType> map;
 * --------------------------------------
 * Initializes a new empty map that associates keys and values of the
 * specified types. The type used for the key must define the == operator,
 * and there must be a free function with the following signature:
 *
 * int hashCode(KeyType key);
 *
 * that returns a positive integer determined by the key. This interface
 * exports hashCode functions for string and the C++ primitive types.
 */

 HashMap();

/*
 * Destructor: ~HashMap
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this map.
 */

 ~HashMap();

 903

F I G U R E A - 1 3 The hashmap.h interface (page 2 of 3)

/*
 * Method: size
 * Usage: int nEntries = map.size();
 * ---------------------------------
 * Returns the number of entries in this map.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (map.isEmpty()) . . .
 * -------------------------------
 * Returns true if this map contains no entries.
 */

 bool isEmpty() const;

/*
 * Method: put
 * Usage: map.put(key, value);
 * ---------------------------
 * Associates key with value in this map. Any previous value associated
 * with key is replaced by the new value.
 */

 void put(KeyType key, ValueType value);

/*
 * Method: get
 * Usage: ValueType value = map.get(key);
 * --------------------------------------
 * Returns the value associated with key in this map. If key is not found,
 * the get method signals an error.
 */

 ValueType get(KeyType key) const;

/*
 * Method: containsKey
 * Usage: if (map.containsKey(key)) . . .
 * --------------------------------------
 * Returns true if there is an entry for key in this map.
 */

 bool containsKey(KeyType key) const;

/*
 * Method: remove
 * Usage: map.remove(key);
 * -----------------------
 * Removes any entry for key from this map.
 */

 void remove(KeyType key);

904 Appendix A. Library Interfaces

F I G U R E A - 1 3 The hashmap.h interface (page 3 of 3)

/*
 * Method: clear
 * Usage: map.clear();
 * -------------------
 * Removes all entries from this map.
 */

 void clear();

/*
 * Operator: []
 * Usage: map[key]
 * ---------------
 * Selects the value associated with key. This syntax makes it easy to
 * think of a map as an "associative array" indexed by the key type. If
 * key is already present in the map, this function returns a reference to
 * its associated value. If key is not present in the map, a new entry is
 * created whose value is set to the default for the value type.
 */

 ValueType & operator[](KeyType key);

/*
 * Macro: foreach
 * Usage: foreach (KeyType key in map) . . .
 * ---
 * Iterates over the keys in the map. In a HashMap, the keys are processed
 * in an order determined by the internal structure, which will have no
 * obvious relationship to the keys.
 */

 /* The foreach macro is defined in foreach.h */

#include "private/hashmappriv.h"

};

#include "private/hashmapimpl.cpp"

/*
 * Function: hashCode
 * Usage: int hash = hashCode(key);
 * --------------------------------
 * Returns a hash code for the specified key, which is always a nonnegative
 * integer. This function is overloaded to support all of the primitive
 * types and the C++ string type.
 */

int hashCode(std::string key);
int hashCode(int key);
int hashCode(char key);
int hashCode(long key);
int hashCode(double key);

#endif

 905

F I G U R E A - 1 4 The hashset.h interface (page 1 of 6)

/*
 * File: hashset.h
 * ---------------
 * This interface exports the HashSet class, which is identical to the Set
 * class except for the fact that it uses a hash table as its underlying
 * representation. The advantage of the HashSet class is that it operates
 * in constant time, as opposed to the O(log N) time for the Set class.
 * The disadvantage of HashSet is that iterators return the values in a
 * seemingly random order.
 */

#ifndef _hashset_h
#define _hashset_h

#include <iostream>
#include "cmpfn.h"
#include "error.h"
#include "foreach.h"
#include "hashmap.h"
#include "vector.h"

/*
 * Class: HashSet<ValueType>
 * -------------------------
 * This template class stores a collection of distinct elements.
 */

template <typename ValueType>
class HashSet {

public:

/*
 * Constructor: HashSet
 * Usage: HashSet<ValueType> set;
 * ------------------------------
 * Initializes a set of the specified element type, which is either empty
 * or initialized to match the elements of the C++ array passed as the
 * initializers parameter. The value type must support the == operator,
 * and there must be a free function available with the following
 * signature:
 *
 * int hashCode(ValueType value);
 *
 * that returns a positive integer determined by the value.
 */

 HashSet();

906 Appendix A. Library Interfaces

F I G U R E A - 1 4 The hashset.h interface (page 2 of 6)

/*
 * Destructor: ~HashSet
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this set.
 */

 ~HashSet();

/*
 * Method: size
 * Usage: count = set.size();
 * --------------------------
 * Returns the number of elements in this set.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (set.isEmpty()) . . .
 * -------------------------------
 * Returns true if this set contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: add
 * Usage: set.add(value);
 * ----------------------
 * Adds an element to this set, if it was not already there. For
 * compatibility with the STL set class, this method is also exported as
 * insert.
 */

 void add(const ValueType & value);
 void insert(const ValueType & value);

/*
 * Method: remove
 * Usage: set.remove(value);
 * -------------------------
 * Removes an element from this set. If the value was not contained in the
 * set, no error is generated and the set remains unchanged.
 */

 void remove(const ValueType & value);

 907

F I G U R E A - 1 4 The hashset.h interface (page 3 of 6)

/*
 * Method: contains
 * Usage: if (set.contains(value)) . . .
 * -------------------------------------
 * Returns true if the specified value is in this set.
 */

 bool contains(const ValueType & value) const;

/*
 * Method: isSubsetOf
 * Usage: if (set.isSubsetOf(set2)) . . .
 * --------------------------------------
 * Implements the subset relation on sets. It returns true if every
 * element of this set is contained in set2.
 */

 bool isSubsetOf(const HashSet & set2) const;

/*
 * Method: clear
 * Usage: set.clear();
 * -------------------
 * Removes all elements from this set.
 */

 void clear();

/*
 * Operator: ==
 * Usage: set1 == set2
 * -------------------
 * Returns true if set1 and set2 contain the same elements.
 */

 bool operator==(const HashSet & set2) const;

/*
 * Operator: !=
 * Usage: set1 != set2
 * -------------------
 * Returns true if set1 and set2 are different.
 */

 bool operator!=(const HashSet & set2) const;

908 Appendix A. Library Interfaces

 909

910 Appendix A. Library Interfaces

 911

F I G U R E A - 1 5 The lexicon.h interface (page 1 of 3)

/*
 * File: lexicon.h
 * ---------------
 * This interface exports the Lexicon class, which is a compact structure
 * for storing a list of words.
 */

#ifndef _lexicon_h
#define _lexicon_h

#include <string>
#include "foreach.h"
#include "set.h"
#include "stack.h"

/*
 * Class: Lexicon
 * --------------
 * This class is used to represent a lexicon, or word list. The main
 * difference between a lexicon and a dictionary is that a lexicon does not
 * provide any mechanism for storing definitions; the lexicon contains only
 * words, with no associated information. It is therefore similar to a set
 * of strings, but with a more space-efficient internal representation.
 * The Lexicon class supports efficient lookup operations for words and
 * prefixes.
 */

#include <cctype>

class Lexicon {

public:

/*
 * Constructor: Lexicon
 * Usage: Lexicon lex;
 * Lexicon lex(filename);
 * -----------------------------
 * Initializes a new lexicon. The default constructor creates an empty
 * lexicon. The second form reads in the contents of the lexicon from the
 * specified data file. The data file must be in one of two formats: (1) a
 * space-efficient precompiled binary format or (2) a text file containing
 * one word per line. The Stanford library distribution includes a binary
 * lexicon file named English.dat containing a list of words in English.
 * The standard code pattern to initialize that lexicon looks like this:
 *
 * Lexicon english("English.dat");
 */

 Lexicon();
 Lexicon(std::string filename);

912 Appendix A. Library Interfaces

F I G U R E A - 1 5 The lexicon.h interface (page 2 of 3)

/*
 * Destructor: ~Lexicon
 * Usage: (usually implicit)
 * -------------------------
 * The destructor deallocates any storage associated with the lexicon.
 */

 ~Lexicon();

/*
 * Method: size
 * Usage: int n = lex.size();
 * --------------------------
 * Returns the number of words contained in the lexicon.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (lex.isEmpty()) . . .
 * -------------------------------
 * Returns true if the lexicon contains no words.
 */

 bool isEmpty() const;

/*
 * Method: clear
 * Usage: lex.clear();
 * -------------------
 * Removes all words from the lexicon.
 */

 void clear();

/*
 * Method: add
 * Usage: lex.add(word);
 * ---------------------
 * Adds the specified word to the lexicon.
 */

 void add(std::string word);

/*
 * Method: addWordsFromFile
 * Usage: lex.addWordsFromFile(filename);
 * --------------------------------------
 * Reads the file and adds all of its words to the lexicon.
 */

 void addWordsFromFile(std::string filename);

 913

F I G U R E A - 1 5 The lexicon.h interface (page 3 of 3)

/*
 * Method: contains
 * Usage: if (lex.contains(word)) . . .
 * ------------------------------------
 * Returns true if word is contained in the lexicon. In the Lexicon class,
 * the case of letters is ignored, so "Zoo" is the same as "ZOO" or "zoo".
 */

 bool contains(std::string word) const;

/*
 * Method: containsPrefix
 * Usage: if (lex.containsPrefix(prefix)) . . .
 * --
 * Returns true if any words in the lexicon begin with prefix. Like
 * containsWord, this method ignores the case of letters so that "MO" is a
 * prefix of "monkey" or "Monday".
 */

 bool containsPrefix(std::string prefix) const;

/*
 * Macro: foreach
 * Usage: foreach (string word in lexicon) . . .
 * ---
 * Iterates over the words in the lexicon in alphabetical order.
 */

 /* The foreach macro is defined in foreach.h */

#include "private/lexiconpriv.h"

};

#include "private/lexiconimpl.cpp"

#endif

914 Appendix A. Library Interfaces

F I G U R E A - 1 6 The map.h interface (page 1 of 3)

/*
 * File: map.h
 * -----------
 * This interface exports the template class Map, which maintains a
 * collection of key-value pairs.
 */

#ifndef _map_h
#define _map_h

#include <cstdlib>
#include "cmpfn.h"
#include "error.h"
#include "foreach.h"
#include "stack.h"

/*
 * Class: Map<KeyType,ValueType>
 * -----------------------------
 * The Map class maintains an association between keys and values. The
 * types used for keys and values are specified using templates, which
 * makes it possible to use this structure with any data type.
 */

template <typename KeyType, typename ValueType>
class Map {

public:

/*
 * Constructor: Map
 * Usage: Map<KeyType,ValueType> map;
 * Map<KeyType,ValueType> map(cmpFn);
 * ---
 * Initializes a new empty map that associates keys and values of the
 * specified types. The optional argument specifies a comparison function,
 * which is called to compare data values. This argument is typically
 * omitted, in which case the implementation uses the operatorCmp function
 * from cmpfn.h, which applies the built-in operators < and == to determine
 * the ordering.
 */

 Map(int (*cmpFn)(KeyType, KeyType) = operatorCmp);

/*
 * Destructor: ~Map
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this map.
 */

 ~Map();

 915

F I G U R E A - 1 6 The map.h interface (page 2 of 3)

/*
 * Method: size
 * Usage: int nEntries = map.size();
 * ---------------------------------
 * Returns the number of entries in this map.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (map.isEmpty()) . . .
 * -------------------------------
 * Returns true if this map contains no entries.
 */

 bool isEmpty() const;

/*
 * Method: put
 * Usage: map.put(key, value);
 * ---------------------------
 * Associates key with value in this map. Any previous value associated
 * with key is replaced by the new value.
 */

 void put(KeyType key, ValueType value);

/*
 * Method: get
 * Usage: ValueType value = map.get(key);
 * --------------------------------------
 * Returns the value associated with key in this map. If key is not found,
 * the get method signals an error.
 */

 ValueType get(KeyType key) const;

/*
 * Method: containsKey
 * Usage: if (map.containsKey(key)) . . .
 * --------------------------------------
 * Returns true if there is an entry for key in this map.
 */

 bool containsKey(KeyType key) const;

/*
 * Method: remove
 * Usage: map.remove(key);
 * -----------------------
 * Removes any entry for key from this map.
 */

 void remove(KeyType key);

916 Appendix A. Library Interfaces

F I G U R E A - 1 6 The map.h interface (page 3 of 3)

/*
 * Method: clear
 * Usage: map.clear();
 * -------------------
 * Removes all entries from this map.
 */

 void clear();

/*
 * Operator: []
 * Usage: map[key]
 * ---------------
 * Selects the value associated with key. This syntax makes it easy to
 * think of a map as an "associative array" indexed by the key type. If
 * key is already present in the map, this function returns a reference to
 * its associated value. If key is not present in the map, a new entry is
 * created whose value is set to the default for the value type.
 */

 ValueType & operator[](KeyType key);

/*
 * Macro: foreach
 * Usage: foreach (KeyType key in map) . . .
 * ---
 * Iterates over the keys in the map. The keys are processed in ascending
 * order, as defined by the comparison function.
 */

 /* The foreach macro is defined in foreach.h */

#include "private/mappriv.h"

};

#include "private/mapimpl.cpp"

#endif

 917

F I G U R E A - 1 7 The point.h interface (page 1 of 2)

/*
 * File: point.h
 * -------------
 * This interface exports a class representing an integer-valued x-y pair.
 */

#ifndef _point_h
#define _point_h

#include <string>

/*
 * Class: Point
 * ------------
 * This class represents an x-y coordinate point on a two-dimensional
 * integer grid. If you need to work with real-valued points, you should
 * use the gtypes.h interface instead.
 */

class Point {

public:

/*
 * Constructor: Point
 * Usage: Point origin;
 * Point pt(x, y);
 * ----------------------
 * Creates a Point object with the specified x and y coordinates. If the
 * coordinates are not supplied, the default constructor sets these fields
 * to 0.
 */

 Point();
 Point(int x, int y);

/*
 * Method: getX
 * Usage: int x = pt.getX();
 * -------------------------
 * Returns the x-coordinate of the point.
 */

 int getX() const;

/*
 * Method: getY
 * Usage: int y = pt.getY();
 * -------------------------
 * Returns the y-coordinate of the point.
 */

 int getY() const;

918 Appendix A. Library Interfaces

F I G U R E A - 1 7 The point.h interface (page 2 of 2)

/*
 * Method: toString
 * Usage: string str = pt.toString();
 * ----------------------------------
 * Returns a string representation of the Point in the form "(x, y)".
 */

 std::string toString() const;

/*
 * Operator: ==
 * Usage: if (p1 == p2) . . .
 * --------------------------
 * Returns true if p1 and p2 are the same point.
 */

 bool operator==(const Point & p2) const;

/*
 * Operator: !=
 * Usage: if (p1 != p2) . . .
 * --------------------------
 * Returns true if p1 and p2 are different
 */

 bool operator!=(const Point & p2) const;

#include "private/pointpriv.h"

};

/*
 * Operator: <<
 * Usage: cout << pt;
 * ------------------
 * Overloads the << operator so that it is able to display Point values.
 */

std::ostream & operator<<(std::ostream & os, const Point & pt);

#endif

 919

F I G U R E A - 1 8 The pqueue.h interface (page 1 of 3)

/*
 * File: pqueue.h
 * --------------
 * This interface exports the PriorityQueue class, a collection in which
 * values are processed in priority order.
 */

#ifndef _pqueue_h
#define _pqueue_h

#include "error.h"
#include "vector.h"

/*
 * Class: PriorityQueue<ValueType>
 * -------------------------------
 * This class models a linear structure called a priority queue in which
 * values are processed in order of priority. As in conventional English
 * usage, lower priority numbers correspond to higher effective priorities,
 * so that a priority 1 item takes precedence over a priority 2 item.
 */

template <typename ValueType>
class PriorityQueue {

public:

/*
 * Constructor: PriorityQueue
 * Usage: PriorityQueue<ValueType> pq;
 * -----------------------------------
 * Initializes a new priority queue, which is initially empty.
 */

 PriorityQueue();

/*
 * Destructor: ~PriorityQueue
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this priority queue.
 */

 ~PriorityQueue();

920 Appendix A. Library Interfaces

F I G U R E A - 1 8 The pqueue.h interface (page 2 of 3)

/*
 * Method: size
 * Usage: int n = pq.size();
 * -------------------------
 * Returns the number of values in the priority queue.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (pq.isEmpty()) . . .
 * ------------------------------
 * Returns true if the priority queue contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: clear
 * Usage: pq.clear();
 * ------------------
 * Removes all elements from the priority queue.
 */

 void clear();

/*
 * Method: enqueue
 * Usage: pq.enqueue(value, priority);
 * -----------------------------------
 * Adds value to the queue with the specified priority. Lower priority
 * numbers correspond to higher priorities, which means that all priority 1
 * elements are dequeued before any priority 2 elements.
 */

 void enqueue(ValueType value, double priority);

/*
 * Method: dequeue
 * Usage: ValueType first = pq.dequeue();
 * --------------------------------------
 * Removes and returns the highest priority value. If multiple entries in
 * the queue have the same priority, those values are dequeued in the same
 * order in which they were enqueued.
 */

 ValueType dequeue();

 921

F I G U R E A - 1 8 The pqueue.h interface (page 3 of 3)

/*
 * Method: peek
 * Usage: ValueType first = pq.peek();
 * -----------------------------------
 * Returns the value of highest priority in the queue, without removing it.
 */

 ValueType peek() const;

#include "private/pqueuepriv.h"

};

#include "private/pqueueimpl.cpp"

#endif

922 Appendix A. Library Interfaces

F I G U R E A - 1 9 The queue.h interface (page 1 of 3)

/*
 * File: queue.h
 * -------------
 * This interface exports the Queue class, a collection in which values are
 * ordinarily processed in a first-in/first-out (FIFO) order.
 */

#ifndef _queue_h
#define _queue_h

#include "error.h"
#include "vector.h"

/*
 * Class: Queue<ValueType>
 * -----------------------
 * This class models a linear structure called a queue in which values are
 * added at one end and removed from the other. This discipline gives rise
 * to a first-in/first-out behavior (FIFO) that is the defining feature of
 * queues.
 */

template <typename ValueType>
class Queue {

public:

/*
 * Constructor: Queue
 * Usage: Queue<ValueType> queue;
 * ------------------------------
 * Initializes a new empty queue.
 */

 Queue();

/*
 * Destructor: ~Queue
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this queue.
 */

 ~Queue();

 923

F I G U R E A - 1 9 The queue.h interface (page 2 of 3)

/*
 * Method: size
 * Usage: int n = queue.size();
 * ----------------------------
 * Returns the number of values in the queue.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (queue.isEmpty()) . . .
 * ---------------------------------
 * Returns true if the queue contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: clear
 * Usage: queue.clear();
 * ---------------------
 * Removes all elements from the queue.
 */

 void clear();

/*
 * Method: enqueue
 * Usage: queue.enqueue(value);
 * ----------------------------
 * Adds value to the end of the queue.
 */

 void enqueue(ValueType value);

/*
 * Method: dequeue
 * Usage: ValueType first = queue.dequeue();
 * ---
 * Removes and returns the first item in the queue.
 */

 ValueType dequeue();

924 Appendix A. Library Interfaces

F I G U R E A - 1 9 The queue.h interface (page 3 of 3)

/*
 * Method: peek
 * Usage: ValueType first = queue.peek();
 * --------------------------------------
 * Returns the first value in the queue, without removing it. For
 * compatibility with the STL classes, this method is also exported under
 * the name front, in which case it returns the value by reference.
 */

 ValueType peek() const;

/*
 * Method: front
 * Usage: ValueType first = queue.front();
 * ---------------------------------------
 * Returns the first value in the queue by reference.
 */

 ValueType & front();

/*
 * Method: back
 * Usage: ValueType last = queue.back();
 * -------------------------------------
 * Returns the last value in the queue by reference.
 */

 ValueType & back();

#include "private/queuepriv.h"

};

#include "private/queueimpl.cpp"

#endif

 925

F I G U R E A - 2 0 The random.h interface (page 1 of 1)

/*
 * File: random.h
 * --------------
 * This interface exports functions for generating pseudorandom numbers.
 */

#ifndef _random_h
#define _random_h

/*
 * Function: randomInteger
 * Usage: int n = randomInteger(low, high);
 * --
 * Returns a random integer in the range low to high, inclusive.
 */

int randomInteger(int low, int high);

/*
 * Function: randomReal
 * Usage: double d = randomReal(low, high);
 * --
 * Returns a random real number in the half-open interval [low .. high). A
 * half-open interval includes the first endpoint but not the second, which
 * means that the result is always greater than or equal to low but
 * strictly less than high.
 */

double randomReal(double low, double high);

/*
 * Function: randomChance
 * Usage: if (randomChance(p)) . . .
 * ---------------------------------
 * Returns true with the probability indicated by p. The argument p must
 * be a floating-point number between 0 (never) and 1 (always). For
 * example, calling randomChance(.30) returns true 30 percent of the time.
 */

bool randomChance(double p);

/*
 * Function: setRandomSeed
 * Usage: setRandomSeed(seed);
 * ---------------------------
 * Sets the internal random number seed to the specified value. You can
 * use this function to set a specific starting point for the pseudorandom
 * sequence or to ensure that program behavior is repeatable during the
 * debugging phase.
 */

void setRandomSeed(int seed);

#endif

926 Appendix A. Library Interfaces

F I G U R E A - 2 1 The set.h interface (page 1 of 6)

/*
 * File: set.h
 * -----------
 * This interface exports the Set class, a collection for efficiently
 * storing a set of distinct elements.
 */

#ifndef _set_h
#define _set_h

#include <iostream>
#include "cmpfn.h"
#include "error.h"
#include "foreach.h"
#include "map.h"
#include "vector.h"

/*
 * Class: Set<ValueType>
 * ---------------------
 * This template class stores a collection of distinct elements.
 */

template <typename ValueType>
class Set {

public:

/*
 * Constructor: Set
 * Usage: Set<ValueType> set;
 * Set<ValueType> set(cmpFn);
 * ---------------------------------
 * Initializes a set of the specified element type, which is either empty
 * or initialized to match the elements of the C++ array passed as the
 * initializers parameter. The optional cmpFn argument specifies a
 * comparison function, which is called to compare data values. This
 * argument is typically omitted, in which case the implementation uses the
 * operatorCmp function from cmpfn.h, which applies the built-in operators
 * < and == to determine the ordering.
 */

 explicit Set(int (*cmpFn)(ValueType, ValueType) = operatorCmp);

 927

F I G U R E A - 2 1 The set.h interface (page 2 of 6)

/*
 * Destructor: ~Set
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this set.
 */

 ~Set();

/*
 * Method: size
 * Usage: count = set.size();
 * --------------------------
 * Returns the number of elements in this set.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (set.isEmpty()) . . .
 * -------------------------------
 * Returns true if this set contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: add
 * Usage: set.add(value);
 * ----------------------
 * Adds an element to this set, if it was not already there. For
 * compatibility with the STL set class, this method is also exported as
 * insert.
 */

 void add(const ValueType & value);
 void insert(const ValueType & value);

/*
 * Method: remove
 * Usage: set.remove(value);
 * -------------------------
 * Removes an element from this set. If the value was not contained in the
 * set, no error is generated and the set remains unchanged.
 */

 void remove(const ValueType & value);

928 Appendix A. Library Interfaces

F I G U R E A - 2 1 The set.h interface (page 3 of 6)

/*
 * Method: contains
 * Usage: if (set.contains(value)) . . .
 * -------------------------------------
 * Returns true if the specified value is in this set.
 */

 bool contains(const ValueType & value) const;

/*
 * Method: isSubsetOf
 * Usage: if (set.isSubsetOf(set2)) . . .
 * --------------------------------------
 * Implements the subset relation on sets. It returns true if every
 * element of this set is contained in set2.
 */

 bool isSubsetOf(const Set & set2) const;

/*
 * Method: clear
 * Usage: set.clear();
 * -------------------
 * Removes all elements from this set.
 */

 void clear();

/*
 * Operator: ==
 * Usage: set1 == set2
 * -------------------
 * Returns true if set1 and set2 contain the same elements.
 */

 bool operator==(const Set & set2) const;

/*
 * Operator: !=
 * Usage: set1 != set2
 * -------------------
 * Returns true if set1 and set2 are different.
 */

 bool operator!=(const Set & set2) const;

 929

F I G U R E A - 2 1 The set.h interface (page 4 of 6)

/*
 * Operator: +
 * Usage: set1 + set2
 * set1 + element
 * ---------------------
 * Returns the union of sets set1 and set2, which is the set of elements
 * that appear in at least one of the two sets. The right hand set can be
 * replaced by an element of the value type, in which case the operator
 * returns a new set formed by adding that element.
 */

 Set operator+(const Set & set2) const;
 Set operator+(const ValueType & element) const;

/*
 * Operator: *
 * Usage: set1 * set2
 * ------------------
 * Returns the intersection of sets set1 and set2, which is the set of all
 * elements that appear in both.
 */

 Set operator*(const Set & set2) const;

/*
 * Operator: -
 * Usage: set1 - set2
 * set1 - element
 * ---------------------
 * Returns the difference of sets set1 and set2, which is all of the
 * elements that appear in set1 but not set2. The right hand set can be
 * replaced by an element of the value type, in which case the operator
 * returns a new set formed by removing that element.
 */

 Set operator-(const Set & set2) const;
 Set operator-(const ValueType & element) const;

/*
 * Operator: +=
 * Usage: set1 += set2;
 * set1 += value;
 * ---------------------
 * Adds all of the elements from set2 (or the single specified value) to
 * set1. As a convenience, the Set package also overloads the comma
 * operator so that it is possible to initialize a set like this:
 *
 * Set<int> digits;
 * digits += 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
 */

 Set & operator+=(const Set & set2);
 Set & operator+=(const ValueType & value);

930 Appendix A. Library Interfaces

F I G U R E A - 2 1 The set.h interface (page 5 of 6)

/*
 * Operator: *=
 * Usage: set1 *= set2;
 * --------------------
 * Removes any elements from set1 that are not present in set2.
 */

 Set & operator*=(const Set & set2);

/*
 * Operator: -=
 * Usage: set1 -= set2;
 * set1 -= value;
 * ---------------------
 * Removes the elements from set2 (or the single specified value) from
 * set1. As a convenience, the Set package also overloads the comma
 * operator so that it is possible to remove multiple elements from a set
 * like this:
 *
 * digits -= 0, 2, 4, 6, 8;
 *
 * which removes the values 0, 2, 4, 6, and 8 from the set digits.
 */

 Set & operator-=(const Set & set2);
 Set & operator-=(const ValueType & value);

/*
 * Macro: foreach
 * Usage: foreach (ValueType value in set) . . .
 * ---
 * Iterates over the elements of the set. The values are returned in
 * ascending order, as defined by the comparison function.
 */

 /* The foreach macro is defined in foreach.h */

/*
 * Method: first
 * Usage: ValueType value = set.first();
 * -------------------------------------
 * Returns the first value in the set in the order established by the
 * foreach macro. If the set is empty, first generates an error.
 */

 ValueType first() const;

#include "private/setpriv.h"

};

 931

F I G U R E A - 2 2 The simpio.h interface (page 1 of 1)

/*
 * File: simpio.h
 * --------------
 * This interface exports a set of functions that simplify input/output
 * operations in C++ and provide some error-checking on console input.
 */

#ifndef _simpio_h
#define _simpio_h

#include <string>

/*
 * Function: getInteger
 * Usage: int n = getInteger(prompt);
 * ----------------------------------
 * Reads a complete line from cin and scans it as an integer. If the scan
 * succeeds, the integer value is returned. If the argument is not a legal
 * integer or if extraneous characters (other than whitespace) appear in
 * the string, the user is given a chance to reenter the value. If
 * supplied, the optional prompt string is printed before reading the
 * value.
 */

int getInteger(std::string prompt = "");

/*
 * Function: getReal
 * Usage: double x = getReal(prompt);
 * ----------------------------------
 * Reads a complete line from cin and scans it as a floating-point number.
 * If the scan succeeds, the floating-point value is returned. If the
 * input is not a legal number or if extraneous characters (other than
 * whitespace) appear in the string, the user is given a chance to reenter
 * the value. If supplied, the optional prompt string is printed before
 * reading the value.
 */

double getReal(std::string prompt = "");

/*
 * Function: getLine
 * Usage: string line = getLine(prompt);
 * -------------------------------------
 * Reads a line of text from cin and returns that line as a string. The
 * newline character that terminates the input is not stored as part of the
 * return value. If supplied, the optional prompt string is printed before
 * reading the value.
 */

std::string getLine(std::string prompt = "");

#endif

932 Appendix A. Library Interfaces

F I G U R E A - 2 3 The sound.h interface (page 1 of 2)

/*
 * File: sound.h
 * -------------
 * This interface defines a class that represents a sound.
 */

#ifndef _sound_h
#define _sound_h

/*
 * Class: Sound
 * ------------
 * This class encapsulates a sound file, which is typically specified in
 * the constructor.
 */

class Sound {

public:

/*
 * Constructor: Sound
 * Usage: Sound sound;
 * Sound sound(filename);
 * -----------------------------
 * Creates a Sound object. The default constructor creates an empty sound
 * that cannot be played. The second form initializes the sound by reading
 * in the contents of the specified file.
 */

 Sound();
 Sound(std::string filename);

/*
 * Destructor: ~Sound
 * Usage: (usually implicit)
 * -------------------------
 * Frees the memory associated with the sound.
 */

 ~Sound();

/*
 * Method: play
 * Usage: sound.play();
 * --------------------
 * Plays the sound synchronously and waits for the sound to finish before
 * returning.
 */

 void play();

 933

F I G U R E A - 2 3 The sound.h interface (page 2 of 2)

/*
 * Method: start
 * Usage: sound.start();
 * ---------------------
 * Starts playing the sound asynchronously.
 */

 void start();

/*
 * Method: stop
 * Usage: sound.stop();
 * --------------------
 * Stops playing the sound.
 */

 void stop();

#include "private/soundpriv.h"

};

#endif

934 Appendix A. Library Interfaces

F I G U R E A - 2 4 The stack.h interface (page 1 of 2)

/*
 * File: stack.h
 * -------------
 * This interface exports the Stack class, which implements a collection
 * that processes values in a last-in/first-out (LIFO) order.
 */

#ifndef _stack_h
#define _stack_h

#include "error.h"
#include "vector.h"

/*
 * Class: Stack<ValueType>
 * -----------------------
 * This class models a linear structure called a stack in which values are
 * added and removed only from one end. This discipline gives rise to a
 * last-in/first-out behavior (LIFO) that is the defining feature of
 * stacks. The fundamental stack operations are push (add to top) and pop
 * (remove from top).
 */

template <typename ValueType>
class Stack {

public:

/*
 * Constructor: Stack
 * Usage: Stack<ValueType> stack;
 * ------------------------------
 * Initializes a new empty stack.
 */

 Stack();

/*
 * Destructor: ~Stack
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with this stack.
 */

 ~Stack();

/*
 * Method: size
 * Usage: int n = stack.size();
 * ----------------------------
 * Returns the number of values in this stack.
 */

 int size() const;

 935

F I G U R E A - 2 4 The stack.h interface (page 2 of 2)

/*
 * Method: isEmpty
 * Usage: if (stack.isEmpty()) . . .
 * ---------------------------------
 * Returns true if this stack contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: clear
 * Usage: stack.clear();
 * ---------------------
 * Removes all elements from this stack.
 */

 void clear();

/*
 * Method: push
 * Usage: stack.push(value);
 * -------------------------
 * Pushes the specified value onto this stack.
 */

 void push(ValueType value);

/*
 * Method: pop
 * Usage: ValueType top = stack.pop();
 * -----------------------------------
 * Removes the top element from this stack and returns it. This method
 * signals an error if called on an empty stack.
 */

 ValueType pop();

/*
 * Method: peek
 * Usage: ValueType top = stack.peek();
 * ------------------------------------
 * Returns the value of top element from this stack, without removing it.
 * This method signals an error if called on an empty stack. For
 * compatibility with the STL classes, this method is also exported under
 * the name top, in which case it returns the value by reference.
 */

 ValueType peek() const;
 ValueType & top();

#include "private/stackpriv.h"

};

#include "private/stackimpl.cpp"

#endif

936 Appendix A. Library Interfaces

F I G U R E A - 2 5 The strlib.h interface (page 1 of 3)

/*
 * File: strlib.h
 * --------------
 * This interface exports several useful string functions that are not
 * included in the C++ string library.
 */

#ifndef _strlib_h
#define _strlib_h

#include <string>

/*
 * Function: integerToString
 * Usage: string s = integerToString(n);
 * -------------------------------------
 * Converts an integer into the corresponding string of digits. For
 * example, calling integerToString(123) returns the string "123".
 */

std::string integerToString(int n);

/*
 * Function: stringToInteger
 * Usage: int n = stringToInteger(str);
 * ------------------------------------
 * Converts a string of digits into an integer. If the string is not a
 * legal integer or contains extraneous characters other than whitespace,
 * stringToInteger calls error with an appropriate message.
 */

int stringToInteger(std::string str);

/*
 * Function: realToString
 * Usage: string s = realToString(d);
 * ----------------------------------
 * Converts a floating-point number into the corresponding string form.
 * For example, calling realToString(23.45) returns the string "23.45".
 */

std::string realToString(double d);

/*
 * Function: stringToReal
 * Usage: double d = stringToReal(str);
 * ------------------------------------
 * Converts a string representing a real number into its corresponding
 * value. If the string is not a legal floating-point number or contains
 * extraneous characters other than whitespace, stringToReal calls error
 * with an appropriate message.
 */

double stringToReal(std::string str);

 937

F I G U R E A - 2 5 The strlib.h interface (page 2 of 3)

/*
 * Function: toUpperCase
 * Usage: string s = toUpperCase(str);
 * -----------------------------------
 * Returns a new string in which all lowercase characters have been
 * converted into their uppercase equivalents.
 */

std::string toUpperCase(std::string str);

/*
 * Function: toLowerCase
 * Usage: string s = toLowerCase(str);
 * -----------------------------------
 * Returns a new string in which all uppercase characters have been
 * converted into their lowercase equivalents.
 */

std::string toLowerCase(std::string str);

/*
 * Function: equalsIgnoreCase
 * Usage: if (equalsIgnoreCase(s1, s2)) . . .
 * --
 * Returns true if s1 and s2 are equal discounting differences in case.
 */

bool equalsIgnoreCase(std::string s1, std::string s2);

938 Appendix A. Library Interfaces

F I G U R E A - 2 5 The strlib.h interface (page 3 of 3)

/*
 * Function: startsWith
 * Usage: if (startsWith(str, prefix)) . . .
 * ---
 * Returns true if the string str starts with the specified prefix, which
 * may be either a string or a character.
 */

bool startsWith(std::string str, std::string prefix);
bool startsWith(std::string str, char prefix);

/*
 * Function: endsWith
 * Usage: if (endsWith(str, suffix)) . . .
 * ---------------------------------------
 * Returns true if the string str ends with the specified suffix, which may
 * be either a string or a character.
 */

bool endsWith(std::string str, std::string suffix);
bool endsWith(std::string str, char suffix);

/*
 * Function: trim
 * Usage: string trimmed = trim(str);
 * ----------------------------------
 * Returns a new string after removing any whitespace characters from the
 * beginning and end of the argument.
 */

std::string trim(std::string str);

#endif

 939

F I G U R E A - 2 6 The thread.h interface (page 1 of 4)

/*
 * File: thread.h
 * --------------
 * This interface exports a simple, platform-independent thread
 * abstraction, along with simple tools for concurrency control.
 */

#ifndef _thread_h
#define _thread_h

#include <string>

/* Forward definition */

class Lock;

/*
 * Class: Thread
 * -------------
 * The Thread class encapsulates a lightweight process running in the same
 * address space as the creator. The class itself is opaque and is
 * manipulated by top-level functions as illustrated in the following
 * paradigm:
 *
 * Thread child = fork(fn);
 * . . . code for the parent thread . . .
 * join(child);
 *
 * This code calls fn so that it runs in parallel with the parent code.
 */

class Thread {

public:

/*
 * Constructor: Thread
 * Usage: Thread thread;
 * ---------------------
 * Creates an inactive thread variable that will typically be overwritten
 * by the result of a fork call.
 */

 Thread();

/*
 * Destructor: ~Thread
 * Usage: (usually implicit)
 * -------------------------
 * Frees any dynamic storage associated with the thread.
 */

 ~Thread();

940 Appendix A. Library Interfaces

F I G U R E A - 2 6 The thread.h interface (page 2 of 4)

/*
 * Method: toString
 * Usage: string str = thread.toString();
 * --------------------------------------
 * Converts the thread to a string.
 */

 std::string toString();

#include "private/threadpriv.h"

};

/*
 * Function: fork
 * Usage: Thread child = fork(fn);
 * Thread child = fork(fn, data);
 * -------------------------------------
 * Creates a child thread that calls fn in an address space shared with the
 * current thread. The second form makes it possible to pass an argument
 * to fn, which may be of any type.
 */

Thread fork(void (*fn)());

template <typename ClientType>
Thread fork(void (*fn)(ClientType & data), ClientType & data);

/*
 * Function: join
 * Usage: join(thread);
 * --------------------
 * Waits for the specified thread to finish before proceeding.
 */

void join(Thread & thread);

/*
 * Function: yield
 * Usage: yield();
 * ---------------
 * Yields the processor to allow another thread to run.
 */

void yield();

/*
 * Function: getCurrentThread
 * Usage: Thread self = getCurrentThread();
 * --
 * Returns the currently executing thread.
 */

Thread getCurrentThread();

 941

F I G U R E A - 2 6 The thread.h interface (page 3 of 4)

/*
 * Class: Lock
 * -----------
 * This class represents a simple lock used to control concurrency. The
 * usual strategy for using locks is to use the synchronized macro
 * described later in this interface.
 */

class Lock {

public:

/*
 * Constructor: Lock
 * Usage: Lock lock;
 * -----------------
 * Initializes a lock, which is initially in the unlocked state.
 */

 Lock();

/*
 * Destructor: ~Lock
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage associated with the lock.
 */

 ~Lock();

/*
 * Method: wait
 * Usage: lock.wait();
 * -------------------
 * Waits for some other thread to call signal on this lock. This call
 * requires that the lock be held by the calling thread. The effect of the
 * wait method is to release the lock and then wait until the desired
 * signal operation occurs, at which point the lock is reacquired and
 * control returns from the wait call. The wait method is typically used
 * inside a critical section containing a while loop to check for a
 * specific condition. The standard paradigm for using the waitThread
 * function looks like this:
 *
 * synchronized (lock) {
 * while (conditional test) {
 * lock.wait();
 * }
 * . . . code to manipulate the locked resource . . .
 * }
 */

 void wait();

942 Appendix A. Library Interfaces

F I G U R E A - 2 6 The thread.h interface (page 4 of 4)

/*
 * Method: signal
 * Usage: lock.signal();
 * ---------------------
 * Signals all threads waiting on the lock so that they wake up and recheck
 * the corresponding condition.
 */

 void signal();

#include "private/lockpriv.h"

};

/*
 * Statement: synchronized
 * Usage: synchronized (lock) . . .
 * --------------------------------
 * Defines a critical section protected by the specified lock. The general
 * strategy for using this facility is shown in the following paradigmatic
 * pattern:
 *
 * synchronized (lock) {
 * . . . statements in the critical section . . .
 * }
 */

#include "private/synchronized.h"

#include "private/threadimpl.cpp"

#endif

 943

F I G U R E A - 2 7 The tokenscanner.h interface (page 1 of 6)

/*
 * File: tokenscanner.h
 * --------------------
 * This file exports a TokenScanner class that divides a string into
 * individual logical units called tokens.
 */

#ifndef _scanner_h
#define _scanner_h

#include <iostream>
#include <string>
#include "lexicon.h"
#include "stack.h"

/*
 * Type: TokenType
 * ---------------
 * This enumerated type defines the values of the getTokenType method.
 */

enum TokenType { SEPARATOR, WORD, NUMBER, STRING, OPERATOR };

/*
 * Class: TokenScanner
 * -------------------
 * This class divides a string into individual tokens. The typical use of
 * the TokenScanner class is illustrated by the following pattern, which
 * reads the tokens in the string variable input:
 *
 * TokenScanner scanner;
 * scanner.setInput(input);
 * while (scanner.hasMoreTokens()) {
 * string token = scanner.nextToken();
 * . . . process the token . . .
 * }
 *
 * The TokenScanner class exports several additional methods that give
 * clients more control over its behavior. Those methods are described
 * individually in the documentation.
 */

class TokenScanner {

public:

944 Appendix A. Library Interfaces

F I G U R E A - 2 7 The tokenscanner.h interface (page 2 of 6)

/*
 * Constructor: TokenScanner
 * Usage: TokenScanner scanner;
 * TokenScanner scanner(str);
 * TokenScanner scanner(infile);
 * ------------------------------------
 * Initializes a scanner object. The initial token stream comes from the
 * specified string or input stream, if supplied. The default constructor
 * creates a scanner with an empty token stream.
 */

 TokenScanner();
 TokenScanner(std::string str);
 TokenScanner(std::istream & infile);

/*
 * Destructor: ~TokenScanner
 * Usage: (usually implicit)
 * -------------------------
 * Deallocates the storage associated with this scanner.
 */

 ~TokenScanner();

/*
 * Method: setInput
 * Usage: scanner.setInput(str);
 * scanner.setInput(infile);
 * --------------------------------
 * Sets the token stream for this scanner to the specified string or input
 * stream. Any previous token stream is discarded.
 */

 void setInput(std::string str);
 void setInput(std::istream & infile);

/*
 * Method: hasMoreTokens
 * Usage: if (scanner.hasMoreTokens()) . . .
 * ---
 * Returns true if there are additional tokens for this scanner to read.
 */

 bool hasMoreTokens();

/*
 * Method: nextToken
 * Usage: token = scanner.nextToken();
 * -----------------------------------
 * Returns the next token from this scanner. If nextToken is called when
 * no tokens are available, it returns the empty string.
 */

 std::string nextToken();

 945

F I G U R E A - 2 7 The tokenscanner.h interface (page 3 of 6)

/*
 * Method: saveToken
 * Usage: scanner.saveToken(token);
 * --------------------------------
 * Pushes the specified token back into this scanner's input stream. On
 * the next call to nextToken, the scanner will return the saved token
 * without reading any additional characters from the token stream.
 */

 void saveToken(std::string token);

/*
 * Method: ignoreWhitespace()
 * Usage: scanner.ignoreWhitespace();
 * ----------------------------------
 * Tells the scanner to ignore whitespace characters. By default, the
 * nextToken method treats whitespace characters (typically spaces and
 * tabs) just like any other punctuation mark and returns them as
 * single-character tokens. Calling
 *
 * scanner.ignoreWhitespace();
 *
 * changes this behavior so that the scanner ignore whitespace characters.
 */

 void ignoreWhitespace();

/*
 * Method: ignoreComments
 * Usage: scanner.ignoreComments();
 * --------------------------------
 * Tells the scanner to ignore comments. The scanner package recognizes
 * both the slash-star and slash-slash comment format from the C-based
 * family of languages. Calling
 *
 * scanner.ignoreComments();
 *
 * sets the parser to ignore comments.
 */

 void ignoreComments();

946 Appendix A. Library Interfaces

F I G U R E A - 2 7 The tokenscanner.h interface (page 4 of 6)

/*
 * Method: scanNumbers
 * Usage: scanner.scanNumbers();
 * -----------------------------
 * Controls how the scanner treats tokens that begin with a digit. By
 * default, the nextToken method treats numbers and letters identically and
 * therefore does not provide any special processing for numbers. Calling
 *
 * scanner.scanNumbers();
 *
 * changes this behavior so that nextToken returns the longest substring
 * that can be interpreted as a real number.
 */

 void scanNumbers();

/*
 * Method: scanStrings
 * Usage: scanner.scanStrings();
 * -----------------------------
 * Controls how the scanner treats tokens enclosed in quotation marks. By
 * default, quotation marks (either single or double) are treated just like
 * any other punctuation character. Calling
 *
 * scanner.scanStrings();
 *
 * changes this assumption so that nextToken returns a single token
 * consisting of all characters through the matching quotation mark. The
 * quotation marks are returned as part of the scanned token so that
 * clients can differentiate strings from other token types.
 */

 void scanStrings();

/*
 * Method: addWordCharacters
 * Usage: scanner.addWordCharacters(str);
 * --------------------------------------
 * Adds the characters in str to the set of characters legal in a word.
 * For example, calling addWordCharacters("_") adds the underscore to the
 * set of word characters.
 */

 void addWordCharacters(std::string str);

 947

F I G U R E A - 2 7 The tokenscanner.h interface (page 5 of 6)

/*
 * Method: addOperator
 * Usage: scanner.addOperator(op);
 * -------------------------------
 * Defines a new multicharacter operator. Whenever you call nextToken when
 * the input stream contains operator characters, the scanner returns the
 * longest possible operator string that can be read at that point.
 */

 void addOperator(std::string op);

/*
 * Method: getPosition
 * Usage: int pos = scanner.getPosition();
 * ---------------------------------------
 * Returns the current position of the scanner in the input stream. If
 * saveToken has been called, this position corresponds to the beginning of
 * the saved token. If saveToken is called more than once, the position is
 * unavailable.
 */

 int getPosition() const;

/*
 * Method: isWordCharacter
 * Usage: if (scanner.isWordCharacter(ch)) . . .
 * ---
 * Returns true if the character is valid in a word.
 */

 bool isWordCharacter(char ch) const;

/*
 * Method: verifyToken
 * Usage: scanner.verifyToken(expected);
 * -------------------------------------
 * Reads the next token and makes sure it matches the string expected. If
 * it does not, verifyToken throws an error.
 */

 void verifyToken(std::string expected);

948 Appendix A. Library Interfaces

F I G U R E A - 2 7 The tokenscanner.h interface (page 6 of 6)

/*
 * Method: getTokenType
 * Usage: TokenType type = scanner.getTokenType(token);
 * --
 * Returns the type of this token. This type will match one of the
 * following enumerated type constants:
 *
 * EOF,
 * SEPARATOR,
 * WORD,
 * NUMBER,
 * STRING, or
 * OPERATOR.
 */

TokenType getTokenType(std::string token) const;

#include "private/tokenscannerpriv.h"

};

#endif

 949

F I G U R E A - 2 8 The vector.h interface (page 1 of 4)

/*
 * File: vector.h
 * --------------
 * This interface exports the Vector template class, which provides an
 * efficient, safe, convenient replacement for the array type in C++.
 */

#ifndef _vector_h
#define _vector_h

#include <iterator>
#include "error.h"
#include "foreach.h"

/*
 * Class: Vector<ValueType>
 * ------------------------
 * This class stores an ordered list of values similar to an array. It
 * supports traditional array selection using square brackets, but also
 * supports inserting and deleting elements.
 */

template <typename ValueType>
class Vector {

public:

/*
 * Constructor: Vector
 * Usage: Vector<ValueType> vec;
 * Vector<ValueType> vec(n, value);
 * ---------------------------------------
 * Initializes a new vector. The default constructor creates an empty
 * vector. The second form creates an array with n elements, each of which
 * is initialized to value; if value is missing, the elements are
 * initialized to the default value for the type.
 */

 Vector();
 explicit Vector(int n, ValueType value = ValueType());

/*
 * Destructor: ~Vector
 * Usage: (usually implicit)
 * -------------------------
 * Frees any heap storage allocated by this vector.
 */

 ~Vector();

950 Appendix A. Library Interfaces

F I G U R E A - 2 8 The vector.h interface (page 2 of 4)

/*
 * Method: size
 * Usage: int nElems = vec.size();
 * -------------------------------
 * Returns the number of elements in this vector.
 */

 int size() const;

/*
 * Method: isEmpty
 * Usage: if (vec.isEmpty()) . . .
 * -------------------------------
 * Returns true if this vector contains no elements.
 */

 bool isEmpty() const;

/*
 * Method: clear
 * Usage: vec.clear();
 * -------------------
 * Removes all elements from this vector.
 */

 void clear();

/*
 * Method: get
 * Usage: ValueType val = vec.get(index);
 * --------------------------------------
 * Returns the element at the specified index in this vector. This method
 * signals an error if the index is not in the array range.
 */

 ValueType get(int index) const;

/*
 * Method: set
 * Usage: vec.set(index, value);
 * -----------------------------
 * Replaces the element at the specified index in this vector with a new
 * value. The previous value at that index is overwritten. This method
 * signals an error if the index is not in the array range.
 */

 void set(int index, ValueType value);

 951

F I G U R E A - 2 8 The vector.h interface (page 3 of 4)

/*
 * Method: insertAt
 * Usage: vec.insertAt(0, value);
 * ------------------------------
 * Inserts the element into this vector before the specified index. All
 * subsequent elements are shifted one position to the right. This method
 * signals an error if the index is outside the range from 0 up to and
 * including the length of the vector.
 */

 void insertAt(int index, ValueType value);

/*
 * Method: removeAt
 * Usage: vec.removeAt(index);
 * ---------------------------
 * Removes the element at the specified index from this vector. All
 * subsequent elements are shifted one position to the left. This method
 * signals an error if the index is outside the array range.
 */

 void removeAt(int index);

/*
 * Method: add
 * Usage: vec.add(value);
 * ----------------------
 * Adds a new value to the end of this vector. To ensure compatibility
 * with the vector class in the Standard Template Library, this method is
 * also called push_back.
 */

 void add(ValueType value);
 void push_back(ValueType value);

/*
 * Operator: []
 * Usage: vec[index]
 * -----------------
 * Overloads [] to select elements from this vector. This extension
 * enables the use of traditional array notation to get or set individual
 * elements. This method signals an error if the index is outside the
 * array range.
 */

 ValueType & operator[](int index);

952 Appendix A. Library Interfaces

 F I G U R E A - 2 8 The vector.h interface (page 4 of 4)

/*
 * Operator: []
 * Usage: vec[index]
 * -----------------
 * Overloads [] to select elements from this vector. This extension
 * enables the use of traditional array notation to get or set individual
 * elements. This method signals an error if the index is outside the
 * array range.
 */

 ValueType & operator[](int index);

/*
 * Operator: +
 * Usage: v1 + v2
 * --------------
 * Concatenates two vectors.
 */

 Vector operator+(const Vector & v2) const;

/*
 * Operator: +=
 * Usage: v1 += v2;
 * v1 += value;
 * -------------------
 * Adds all of the elements from v2 (or the single specified value) to v1.
 * As a convenience, the Vector package also overloads the comma operator
 * so that it is possible to initialize a vector like this:
 *
 * Vector<int> digits;
 * digits += 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
 */

 Vector & operator+=(const Vector & v2);
 Vector & operator+=(const ValueType & value);

/*
 * Macro: foreach
 * Usage: foreach (ValueType value in vec) . . .
 * ---
 * Iterates over the elements of the vector in ascending index order.
 */

 /* The foreach macro is defined in foreach.h */

#include "private/vectorpriv.h"

};

#include "private/vectorimpl.cpp"

#endif

Index

! operator, 35
#define directive, 81
#ifndef directive, 81
& operator, 490
&& operator, 35
* operator, 490
*p++ idiom, 507
++ operator, 33
+= operator, 32
-- operator, 33
-= operator, 32
-> operator, 494
. operator, 265
/* . . . */ comment, 8
// comment, 8
:: qualifier, 270
<< operator, 11, 160, 169
>> operator, 169
?: operator, 36
|| operator, 35
[] operator, 648

abs function, 63, 65
abstract class, 738
abstract data type, 198

abstraction, 88, 411
abstraction boundary, 90
accessor, 267
acronym, 152
add method, 201, 234, 237
AddIntegerList.cpp, 44
additive sequence, 334
additiveSequence , 336
addOperator method, 298
address, 483
AddThreeNumbers.cpp, 15
addWordCharacters, 298
addWordsFromFile, 237
Adelson-Velskii, Georgii, 700
adjacency list, 799
adjacency matrix, 797
adjacentPoint function, 401
ADT, 198
Aesop, 88
AirportCodes.cpp, 232
al-Khowârizmî, 60
algebra, 60
algorithm, 60
Alice in Wonderland, 2
allocated size, 502

954 Index

allocation, 504
alphanumeric, 139
ambiguity, 734
amortized analysis, 543
anagram, 368
analysis of algorithms, 434
ancestor, 683
APL, 751
arc, 794
area code, 260
argument, 59
Ariadne, 394
ARPANET, 18, 841
array, 498
array selection, 500
array-based editor, 570
ArrayBuffer.cpp, 574
ASCII, 22
assignment operator, 30
assignment statement, 31
associative array, 232
associativity, 28
at function, 132
AT&T Bell Laboratories, 5
atan function, 63
atan2 function, 63
atomic type, 19
Austen, Jane, 197, 611
automatic allocation, 528
average-case complexity, 444
AVL tree, 700
axis of rotation, 702

Bachmann, Paul, 439
backtracking algorithm, 394
Backus-Naur Form, 751
Backus, John, 4, 751
balance factor, 701
balanced tree, 698
base type, 200, 489
basis, 464
Bernstein, Daniel J., 671

big-O notation, 439
binary logarithm, 452
binary notation, 479
binary operator, 27
binary search, 339
binary search tree, 664, 686
binary tree, 686
biological hierarchy, 181
bipartite graph, 838
bit, 478
bitwise operator, 782
block, 36
BNF, 751
Bode, Johann Elert, 348
body, 12, 59
boilerplate, 80
bool type, 21
boolalpha manipulator, 162
Boole, George, 21
Boolean data, 21
Borges, Jorge Luis, 57
bounds-checking, 203
Brando, Marlon, 263
Braque, Georges, 372
breadth-first search, 813
break statement, 39, 42
bucket, 665
buffer, 564
buffer.h interface, 568
byte, 479

C programming language, 2
c_str function, 132
C-style string, 141
C(n, k), 68
Caesar cipher, 157
Caesar, Julius, 157
calculator, 215
call by reference, 76
calling a function, 59
capitalize function, 152
Card class, 312

 Index 955

cardinal number, 154
Carl Linnaeus, 682
Carmichael, Stokely, 1
Carroll, Lewis, 2, 167
Cather, Willa, 681
<cctype> library, 139, 235
ceil function, 63
Cell type, 585
cell, 584
cerr stream, 77
characteristic vector, 780
CharStack class, 533
charstack.h interface, 534
CheckoutLineClass.cpp, 306
chess, 413
child, 683
Churchill, Winston, 91
cin stream, 12
class, 131
clear method, 169, 214, 220, 229,

234
clearing a bit, 785
client, 63
close method, 169
closing a file, 170
<cmath> library, 63
cmpfn.h interface, 777, 846
Coin type, 25
collectContributions , 321
collection class, 198
collision, 665
combinations function, 68
Combinations.cpp, 70
combinatorics, 122
comment, 8
compare function, 132
comparison function, 513
compiler, 5
complement, 783
complexity class, 453
compound statement, 37
computational complexity, 439

concatenation, 133
conditional execution, 37
connected component, 797
connected graph, 797
console input stream, 12
console output stream, 11
console.h interface, 48, 847
constant, 17, 85
constant call by reference, 554
constant folding, 762
constant time, 442, 454
constructor, 209, 267
contains method, 234, 237
containsKey method, 227
containsPrefix method, 237
control expression, 38
convert, 103
copy constructor, 552
copying objects, 550
cos function, 63
cosDegrees function, 86
cout stream, 11
Craps.cpp, 99
Cribbage, 383
crossover point, 473
<cstddef> library, 495
<cstdlib> library, 77, 93
cubic time, 454
Cubism, 372
cursor, 11, 564
cycle, 41, 797
cyclic cypher, 157

Daedalus, 394
Dahl, Ole-Johan, 4
data members, 266
data structure, 198
data type, 14, 19
daysInMonth function, 40
de Moivre, Abraham, 475
declaring a variable, 11, 14
decomposition, 60

956 Index

decrement operator, 33
Deep Blue, 413
deep copy, 551
default constructor, 207, 267
default parameter, 66
default value, 209
defaultExtension function, 193
definite integral, 524
degree, 797
delete operator, 531
deleteCharacter method, 569
dense graph, 801
depth-first search, 809
dereferencing a pointer, 490
descendant, 683
destructor, 532
Dickens, Charles, 382
digital root, 350
Dijkstra, Edsger W., 824
directed graph, 796
Direction type, 24, 82
direction.h interface, 83, 848
directionToString function, 40
discrete time, 220
Disney, Walt, 259, 687
displayTree function, 696
distribution, 248
divide-and-conquer algorithm, 322
DNA, 159
domain, 19, 126
dominating set, 838
Domino class, 311
dominos, 311, 427
dot operator, 265
double rotation, 704
double type, 14, 21
double-precision, 15
doubly linked list, 600
drawImage function, 112
drawLine function, 112
drawOval function, 112
drawPolarLine function, 112, 377

drawRect function, 112
drawString function, 112
dummy cell, 586
Dürer, Albrecht, 252
Dylan, Bob, 257
dynamic allocation, 528
dynamic array, 530
dynamic dispatch, 737

Easter date algorithm, 119
edge, 794
editor, 564
EditorBuffer class, 566
effective size, 502
Einstein, Albert, 90, 121
Eliot, George, 192, 208, 653, 765
Eliot, T. S., 127
embedded assignment, 31
empty set, 766
empty vector, 201
encapsulation, 180
endl manipulator, 11, 162
endsWith function, 138, 148
Engels, Friedrich, 433
EnglishWords.dat, 237
enqueue method, 220
enumerated type, 24
enumeration, 767
EOF constant, 170
eof method, 169
equalsIgnoreCase function, 140
erase method, 132
Eratosthenes, 251
error function, 77
error.h interface, 80, 850
escape sequence, 23
Euclid, 60, 349
eval method, 736
evalstate.h interface, 729
evaluatePosition method, 417
executable file, 5
exit function, 77

 Index 957

EXIT_FAILURE constant, 77
exp function, 63
exp.h interface, 739
exponential time, 454
exporting constants, 85
expression, 26
expression tree, 735
ExpressionType type, 737
extending an interface, 92
extern keyword, 85

fact function, 45, 323
factorial, 45, 322
fail method, 169
fib function, 335
Fibonacci sequence, 330
Fibonacci, Leonardo, 329
field, 264
FIFO, 219
file, 167
filelib.h interface, 187, 851
filename extension, 193
filename root, 193
fillOval function, 112
fillRect function, 112
final state, 317
find method, 132, 136
findBestMove method, 417
findGoodMove method, 406
findNode function, 689
finite set, 766
finite-state machine, 317
first method, 232
fixed manipulator, 162
FlipCoin.cpp, 98
float type, 21
floating-point, 15, 21
floor function, 63
Floyd, Robert W., 609
for statement, 43
foreach macro, 240
foreach.h interface, 857

formatted input, 165
formatted output, 160
FORTRAN, 4
fractal, 374
fractal snowflake, 374
fractal tree, 389
fraction, 284
Fredkin, Edward, 722
free function, 131
friend keyword, 278
<fstream> library, 168
function, 10, 58, 59, 63

game trees, 413
garbage collection, 531
Gauss, Carl Friedrich, 52, 119
gcd function, 61
generateMoveList method, 419
get method, 169, 202, 227
getColor function, 114
getFont function, 114
getInteger function, 48, 179, 188
getline function, 169, 173, 188
getLine function, 48, 130
getPosition method, 298
getReal function, 48, 188
getStringWidth function, 112
getters, 267
getTokenType method, 298
getType method, 737
getWindowHeight function, 112
getWindowWidth function, 112
getX method, 268
getY method, 268
gevents.h interface, 858
giga, 479
global variable, 17
gmath.cpp, 87
gmath.h, 86
go out of scope, 532
Gödel, Escher, Bach, 54
Goldberg, Adele, 5

958 Index

golden ratio, 474
Gould, Charles, 107
GPoint class, 310
grammar, 750
graph, 794
graph.h interface, 819, 872
graphical recursion, 372
GraphicHelloWorld.cpp, 110
graphics.h interface, 110, 877
Gray code, 521
Gray, Frank, 521
greatest common divisor, 60, 349
GRectangle class, 310
greedy algorithms, 822
Grid class, 212
grid.h interface, 885
gtypes.h interface, 888
gwindow.h interface, 893

hailstone sequence, 54
half-life, 122
half-open interval, 96
Hamilton, Charles V, 1
Hanoi.cpp, 360
Harry Potter, 53
hash code, 664
hash function, 664, 671
hash table, 654, 664
hashing, 664
HashMap class, 664
hashmap.h interface, 664, 902
HashSet class, 778
hashset.h interface, 905
hasMoreTokens method, 298
head of a queue, 219
header file, 9, 80
header line, 12
heap-stack diagram, 544
heap, 528, 828
height, 683
Hellman, Lillian, 91
HelloWorld.cpp, 2

hexadecimal, 20, 480
higher-level language, 4
histogram, 250
Hoare, C. A. R., 456
Hofstadter, Douglas, 54
holism, 342
hop, 811
hybrid strategy, 473

IATA, 230
IBM, 413
identifier, 16
identity, 769
if statement, 37
ifstream class, 168
ignoreComments method, 298
ignoreWhitespace method, 298
immutable class, 269
implementation, 80
implementor, 63
in-degree, 797
inBounds method, 212
inclusion/exclusion pattern, 368
increment operator, 33
index, 133
inductive hypothesis, 464
infinite set, 766
information hiding, 90
inheritance, 181
initGraphics function, 110
initializer, 16
inorder traversal, 696
input manipulators, 166
insert method, 132
insertAt method, 201
insertCharacter method, 569
insertion operator, 160
insertion sort, 470
insertNode function, 690
instance, 131
instance variable, 266
Instant Insanity, 426

 Index 959

int type, 14, 19
integer division, 29
integerToString function, 148
integral, 524
interface boilerplate, 80
interface entry, 80
Interface Message Processor, 841
interface, 80, 87
interior node, 683
Internet, 18, 841
interpreter, 726
intersection, 768
intractable, 456
ios class, 183
<iostream> library, 9, 160
isalnum function, 139
isalpha function, 139
isBadPosition method, 406
isdigit function, 139
isDigitString function, 140
isEmpty method, 212, 218, 227, 234
isEven function, 341
isLeapYear function, 41
islower function, 139
isMeasurable function, 382
isOdd function, 341
isPalindrome function, 143, 337
isprint function, 139
ispunct function, 139
isspace function, 139
isSubsetOf method, 234
istringstream class, 177
isupper function, 139
isVowel function, 40
isWordCharacter method, 298
isxdigit function, 139
iteration order, 240
iterative statement, 41
iterative, 323
iterator, 236, 508
Iverson, Ken, 751
Iversonian precedence, 752

Jabberwocky, 167
James, William, 319
Juster, Norton, 316

Kasparov, Garry, 413
Kernighan, Brian, 2
key, 228, 686
KeyValuePair type, 654
kilo, 479
King, Martin Luther, Jr., 159
Kipling, Rudyard, 793
knight’s tour, 426
Koch snowflake, 374
Koch, Helge von, 374
Kruskal, Joseph, 839
Kuhn, Thomas, 4

Landis, Evgenii, 700
Lao-tzu, 89
layered abstraction, 803
leaf node, 683
left manipulator, 162
left rotation, 702
left-associative, 28
leftFrom function, 82
Leibniz, Gottfried Wilhelm, 55
length method, 132
letter-substitution cipher, 158
LetterFrequency.cpp, 207
lexical analysis, 727
lexicographic order, 132, 241, 339
lexicographic order, 687
lexicon, 235
Lexicon class, 237
lexicon.h interface, 911
library, 5
LIFO, 214
linear probing, 678
linear search, 339
linear structures, 612
linear time, 442, 454
link, 584

960 Index

linked list, 584
linked structure, 488
linking, 6
Linnaeus, Carl, 181
list-based editor, 583
ListBuffer.cpp, 597
load factor, 673
local variable, 17
log function, 63
log10 function, 63
logarithm, 452
logarithmic time, 454
logical and, 35
logical not, 35
logical operator, 35
logical or, 35
long double type, 21
long type, 19
lookup table, 660
loop, 41
loop-and-a-half problem, 42
Lucas, Édouard, 354
lvalue, 489

machine language, 3
Magdalen College, 389
magic square, 252
majority element, 475
makeMove method, 419
manipulator, 161
map, 228
Map class, 228, 654
map.h interface, 655, 914
mask, 784
mathematical induction, 464
max function, 613
maze.h interface, 399
mean, 248
mega, 479
member, 264
membership, 767
memory allocation, 504

memory leak, 531
memory management, 528
merge sort algorithm, 449
merging, 448
method, 131
metric, 343
Milne, A. A., 725
minimax algorithm, 413
minimum spanning tree, 839
Minotaur, 394
mnemonic, 385
model, 221
modular arithmetic, 631
Mondrian, Piet, 372
Mondrian.cpp, 375
Monte Carlo integration, 123
Month type, 25
More, Thomas, 107
Morse code, 261
Morse, Samuel F. B., 261
move in a game, 411
moveCursorBackward method, 568
moveCursorForward method, 568
moveCursorToEnd method, 569
moveCursorToStart method, 569
moveSingleDisk function, 359
moveTower function, 359
multiple assignment, 32
mutator, 269
mutual recursion, 341

N log N time, 454
N-queens problem, 425
namespace, 9
natural number, 766
Naur, Peter, 751
neighbor, 797
new operator, 529
nextToken method, 298
Nim game, 405, 430
Nim.cpp, 407
noboolalpha manipulator, 162

 Index 961

node, 682, 794
nondeterministic programs, 92
nonterminal symbol, 751
nonterminating recursion, 343
normalization, 101
noshowpoint manipulator, 162
noshowpos manipulator, 162
noskipws manipulator, 166
nouppercase manipulator, 162
NP-complete problem, 456
NULL constant, 495, 585
null pointer, 495
numCols method, 212
numRows method, 212
Nygaard, Kristen, 4

Obenglobish, 156
object file, 5
object-oriented paradigm, 4
object, 131
octal, 20
ofstream class, 168
Olson, Tillie, 563
open addressing, 678
open method, 169
opening a file, 168
operator overloading, 133, 273
operator, 26, 165
operator!=, 278
operator+, 295
operator<<, 274
operator==, 276
operator[], 648
operatorCmp function, 777
optimization, 762
ordinal number, 154
origin, 111
ostringstream class, 177
out-degree, 797
output manipulators, 162
overloading, 65, 610
Oxford University, 389

palindrome, 143, 336
paradigm shift, 4
parameter, 63
parameterized classes, 200
parent, 683
parse tree, 733
parsing an expression, 727, 750
partially ordered tree, 828
partitioning, 458
Parville, Henri De, 354
Pascal, Blaise, 351
Pascal’s Triangle, 351
path, 797
pattern, 136
pause function, 112
peek method, 212, 220
peg solitaire, 427
perfect number, 118
permutation, 120, 368
persistent property, 161
PersonNode class, 717
PI constant, 17, 85, 86
Picasso, Pablo, 372
Pig Latin, 144
pigeonhole principle, 476
PigLatin.cpp, 145
pixel, 110, 424
plot function, 512
plotting a function, 509
ply, 415
pocket calculator, 213
point, 264
Point type, 264
point.cpp, 281
point.h interface, 279, 917
pointer arithmetic, 504
pointer assignment, 493
pointer to a function, 509
pointer, 488
Poisson distribution, 223
polar coordinates, 377
polymorphism, 612

962 Index

polynomial algorithm, 455
pop method, 215
portability, 20
postfix, 33
postorder traversal, 696
PostScript, 258
pow function, 63
PowersOfTwo.cpp, 8
pqueue.h interface, 919
precedence, 27
PrecisionExample.cpp, 164
predicate function, 64
prefix, 33
preorder traversal, 696
prime factorization, 54
prime number, 118
primitive type, 19
priority queue, 651, 826
private section, 266
procedural paradigm, 4
procedure, 64
programming abstraction, 88
prompt, 11
promptUserForFile function, 171
proper subset, 768
prototype, 10, 64
pseudorandom number, 93
public section, 266
pure virtual method, 737
push method, 214
put method, 169, 170, 231

quadratic equation, 76
quadratic time, 443, 454
Quadratic.cpp, 78
qualifier, 270
question-mark colon, 36
queue, 219
Queue class, 219, 626
queue.h interface, 627, 922
Quicksort, 456

radioactive decay, 124
raiseToPower function, 8, 348
RAM, 478
rand function, 93
RAND_MAX constant, 93
random number, 93
random.cpp, 110
random.h interface, 925
rational arithmetic, 285
Rational class, 291
rational number, 284
rational.cpp, 293
rational.h, 291
read-eval-print loop, 727
real number, 766
realToString function, 148
receiver, 131
record, 264
recurrence relation, 330
recursion, 320
recursive decomposition, 322
recursive descent, 752
recursive leap of faith, 328
recursive paradigm, 322
recursive type, 585
red-black tree, 719
reductionism, 342
reference parameter, 76, 75
rehashing, 674
relation, 768
relational operator, 34
remove method, 229, 234
removeAt method, 202
repaint function, 112
repeatChar function, 138
replace function, 132
replaceAll function, 153
reserved word, 16
resize method, 212
retractMove method, 419
return by reference, 275
RETURN key, 12

 Index 963

return statement, 47
returning a value, 59
reverse function, 139
Reverse Polish Notation (RPN), 216
right manipulator, 162
right rotation, 702
right-associative, 28
right-hand rule, 394
rightFrom function, 82
ring buffer, 630
Ritchie, Dennis, 2, 4
Robson, David, 5
Roman numerals, 677
root, 682
row-major order, 244
Rowling, J. K., 53
RPN, 216
RPNCalculator.cpp, 218

sample run, 8
saveToken method, 298
scalar type, 39
scaling, 101
scanNumbers method, 298
scanStrings method, 298
scientific manipulator, 162
scope, 14, 532
Scrabble, 152
searching, 339
seed, 105
selection sort algorithm, 435
sender, 131
sentinel, 42
separate chaining, 664
set, 232, 766
Set class, 232
set difference, 768
set equality, 768
set method, 202
set.h interface, 772, 926
setColor function, 112
setfill manipulator, 162

setFont function, 112
setInput method, 298
setprecision manipulator, 162
setter, 269
setting a bit, 785
setw manipulator, 162
shadowing, 269
shallow copy, 551
Shaw, George Bernard, 153
Shelley, Mary, 527
short type, 19
short-circuit evaluation, 35
shorthand assignment, 32
showContents method, 569
ShowFileContents.cpp, 172
showpoint manipulator, 162
showpos manipulator, 162
sibling, 683
Sierpinski Triangle, 390
Sierpiński, Wacław, 390
sieve of Eratosthenes, 252
simpio.h interface, 48, 187, 931
simple case, 322
simple cycle, 797
simple path, 797
simple statement, 36
SimpleTextEditor.cpp, 571
simplifications of big-O, 440
SIMULA, 4
simulation, 221
sin function, 63
sinDegrees function, 86
sine function, 509
single rotation, 702
size method, 214, 220, 229, 234, 237
size_t type, 134
sizeof operator, 483
skipws manipulator, 166
Smalltalk, 5
Snowflake.cpp, 378
solveMaze function, 401
sort function, 514

964 Index

sortIgnoringCase function, 513
sorting, 434
sound.h interface, 932
source file, 5
spanning tree, 839
sparse graph, 800
sqrt function, 63
srand, 107
<sstream> library, 177
stack, 213
Stack class, 213, 615
stack frame, 67, 485
stack machine, 762
stack-based editor, 578
stack.h interface, 616, 934
standard deviation, 249
Standard Template Library (STL), 199
Stanford libraries, 87, 187
startsWith function, 137, 148
state, 411
statement, 36
static allocation, 528
static analysis, 417
static initialization, 500
static keyword, 107
static local variable, 107
std namespace, 9, 81
stepwise refinement, 60
STL, 199
stock-cutting problem, 428
Stoppard, Tom, 123
str function, 178
stream, 9
string class, 24, 126
string comparison, 132
string constructor, 132
string library, 24
string literal, 126
string methods, 132
string stream, 177
string::npos constant, 136
stringToInteger function, 148

stringToReal function, 148
strlib.h interface, 148, 187, 936
strongly connected, 798
Stroustrup, Bjarne, 5
structure, 264
subclass, 183
subset-sum problem, 365
subset, 768
subsetSumExists function, 367
substr method, 132, 135
substring, 135
subtree, 684
successive approximation, 118
sudoku, 211, 254
Suetonius, 157
sumArray function, 508
Sun Tzu, 353
superclass, 183
swap function, 496
switch statement, 38
symbol table, 228, 729
symmetric matrix, 800

tail of a queue, 219
template, 200, 612
template class, 615
term, 26
terminal symbol, 751
termination condition, 41
text data, 126
text file, 167
Theseus, 394
this keyword, 494
thread.h interface, 939
three-pile Nim, 430
Thurber, James, 194
tic-tac-toe, 430
time function, 106
time-space tradeoff, 601
Titius-Bode law, 348
Titius, Johann Daniel, 348
toDegrees function, 86

 Index 965

token, 295, 727
TokenScanner class, 295
tokenscanner.h interface, 301, 943
tolower function, 139
toLowerCase function, 148
top-down design, 60
toRadians function, 86
tortoise and hare algorithm, 610
toupper function, 139
toUpperCase function, 148
Towers of Hanoi puzzle, 354
tractable, 456
transient property, 161
translation, 101
traveling salesman problem, 456
traversing a graph, 809
traversing a list, 594
traversing a tree, 696
tree, 682
trie, 722
trim function, 148
truncation, 29
truth table, 35
two’s complement arithmetic, 482
TwoLetterWords.cpp, 239
type cast, 30
type conversion hierarchy, 28
typename keyword, 613

UML diagram, 184
unary operator, 27
undirected graph, 796
unget method, 169, 173
union, 768
universal modeling language, 184

unparsing, 763
unsigned type, 20
uppercase manipulator, 162

value assignment, 493
value parameter, 76
variable, 14
Vector class, 199, 640
vector.h interface, 641, 949
Venerable Bede, 119
Venn diagram, 768
Venn, John, 768
verifyToken method, 298
vertex, 794
virtual keyword, 737
visiting a node, 809
von Neumann architecture, 509
von Neumann, John, 509

Wallinger, Mark, 389
wchar_t type, 482
weakly connected, 798
Weil, Simone, 393
while statement, 41
whitespace character, 129, 139
wildcard pattern, 429
Woolf, Virginia, 477
word, 479
WordFrequency.cpp, 243
worst-case complexity, 444
wrapper, 335
ws manipulator, 166
wysiwyg, 564

Xerox PARC, 5

