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Preface
ØMQ in a Hundred Words

ØMQ (also known as ZeroMQ, ØMQ, or zmq) looks like an embeddable networking 
library but acts like a concurrency framework. It gives you sockets that carry atomic 
messages across various transports like in-process, inter-process, TCP, and multicast. 
You can connect sockets N-to-N with patterns like fan-out, pub-sub, task distribution, 
and request-reply. It’ s fast enough to be the fabric for clustered products. Its 
asynchronous I/O model gives you scalable multicore applications, built as 
asynchronous message-processing tasks. It has a score of language APIs and runs on 
most operating systems. ØMQ is from iMatix1 and is LGPLv3 open source.

How It Began
We took a normal TCP socket, injected it with a mix of radioactive isotopes stolen 

from a secret Soviet atomic research project, bombarded it with 1950-era cosmic rays, 
and put it into the hands of a drug-addled comic book author with a badly-disguised 
fetish for bulging muscles clad in spandex (see figure 1). Yes, ØMQ sockets are the 
world-saving superheroes of the networking world.

The Zen of Zero
The Ø in ØMQ is all about 

tradeoffs. On the one hand this 
strange name lowers ØMQ’ s 
visibility on Google and 
Twitter. On the other hand it 
annoys the heck out of some 
Danish folk who write us things 
like “ ØMG røtfl” , and “ Ø is not 
a funny looking zero!”  and 
“ Rødgrød med Fløde! ” , which is 
apparently an insult that means 
“ may your neighbours be the 
direct descendants of Grendel!”  
Seems like a fair trade.

1 http://www.imatix.com
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Originally the zero in ØMQ was meant as “ zero broker”  and (as close to) “ zero 
latency”  (as possible). Since then, it has come to encompass different goals: zero 
administration, zero cost, zero waste. More generally, “ zero”  refers to the culture of 
minimalism that permeates the project. We add power by removing complexity rather 
than by exposing new functionality.

How This Book Came To Be
In the summer of 2010, ØMQ was still a little-known niche library described by its 

rather terse reference manual and a living but sparse wiki. Martin Sustrik and myself 
were sitting in the bar of the Hotel Kyjev in Bratislava plotting how to make ØMQ 
more widely popular. Martin had written most of the ØMQ code, and I’ d put up the 
funding and organized the community. Over some Zlaty Bazants, we agreed that ØMQ 
needed a new, simpler web site and a basic guide for new users.

Martin collected some ideas for topics to explain. I’ d never written a line of ØMQ 
code before this, so it became a live learning documentary. As I worked through simple 
examples to more complex ones, I tried to answer many of the questions I’ d seen on the 
mailing list. Because I’ d been building large-scale architectures for 30 years, there were 
a lot of problems at which I was keen to throw ØMQ. Amazingly the results were 
mostly simple and elegant, even when working in C. I felt a pure joy learning ØMQ and 
using it to solve real problems, which brought me back to programming after a few 
years' pause. And often, not knowing how it was “ supposed”  to be done, we improved 
ØMQ as we went along.

From the start, I wanted the ØMQ guide to be a community project, so I put it onto 
GitHub and let others contribute with pull requests. This was considered a radical, even 
vulgar approach by some. We came to a division of labor: I’ d do the writing and make 
the original C examples, and others would help fix the text and translate the examples 
into other languages.

This worked better than I dared hope. You can now find all the examples in several 
languages and many in a dozen languages. It’ s a kind of programming language Rosetta 
stone and a valuable outcome in itself. We set up a high score: reach 80% translation 
and your language got its own Guide. PHP, Python, Lua, and Haxe reached this goal. 
People asked for PDFs, and we created those. People asked for ebooks, and got those. 
About a hundred people contributed to the examples to date.

The book, in its on-line version “ The Guide” , achieved its goal of popularizing ØMQ. 
The style pleases most and annoys some, which is how it should be. In December 2010, 
my work on ØMQ and this guide stopped, as I found myself going through late-stage 
cancer, heavy surgery, and six months of chemotherapy. When I picked up work again 
in mid-2011, it was to start using ØMQ in anger for one of the largest use cases 
imaginable: on the mobile phones and tablets of the world’ s biggest electronics 
company.

But the goal of the ØMQ book was, from the start, a printed work. So it was exciting 
to get an email from Bill Lubanovic in January 2012 introducing me to his editor, Andy 
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Oram, at O’ Reilly, suggesting a ØMQ book. Of course! Where do I sign? How much do 
I have to pay? Oh, I get money for this? All I have to do is finish it?

Of course as soon as O’ Reilly announced a ØMQ book, other publishers started 
sending out emails to potential authors. You’ ll probably see a rash of ØMQ books 
coming out next year. That’ s good. Our niche library has hit the mainstream and 
deserves its six inches of shelf space. My apologies to the other ØMQ authors. We’ ve set 
the bar horribly high, and my advice is to make your books complementary. Perhaps 
focus on a specific language, platform, or pattern.

This is the magic and power of communities: be the first community in a space, stay 
healthy, and you own that space for ever.

Audience
This book is written for professional programmers who want to learn how to make 

the massively distributed software that will dominate the future of computing. We 
assume you can read C code, because most of the examples here are in C even though 
ØMQ is used in many languages. We assume you care about scale, because ØMQ solves 
that problem above all others. We assume you need the best possible results with the 
least possible cost, because otherwise you won’ t appreciate the trade-offs that ØMQ 
makes. Other than that basic background, we try to present all the concepts in 
networking and distributed computing you will need to use ØMQ.

Code Connected
This book, “ Code Connected Volume 1” , is the first volume covering the theme of 

how to build distributed software over ØMQ. In this book, you’ ll learn how to use the 
ØMQ library. We’ ll cover the basics, the API, the different socket types and how they 
work, reliability, and a host of patterns you can use in your applications. You’ ll get the 
best results by working through the examples and text from start to end.

This is the Professional Edition for C/C++ developers. But whatever your 
programming language, the patterns and techniques that Code Connected explains are 
relevant to you. Get the examples online in C, C++, C#, Clojure, Delphi, Erlang, Go, 
Haskell, Haxe, Java, Lisp, Lua, Node.js, Objective-C, Perl, PHP, Python, Ruby, Scala, 
and Tcl.





Chapter 1. Basics
Fixing the World

How to explain ØMQ? Some of us start by saying all the wonderful things it does. 
It’ s sockets on steroids. It’ s like mailboxes with routing. It’ s fast!  Others try to share 
their moment of enlightenment, that zap-pow-kaboom satori paradigm-shift moment 
when it all became obvious. Things just become simpler. Complexity goes away. It opens  
the mind. Others try to explain by comparison. It’ s smaller, simpler, but still looks 
familiar. Personally, I like to remember why we made ØMQ at all, because that’ s most 
likely where you, the reader, still are today.

Programming is science dressed up as art because most of us don’ t understand the 
physics of software and it’ s rarely, if ever, taught. The physics of software is not 
algorithms, data structures, languages and abstractions. These are just tools we make, 
use, throw away. The real physics of software is the physics of people— specifically, our 
limitations when it comes to complexity, and our desire to work together to solve large 
problems in pieces. This is the science of programming: make building blocks that 
people can understand and use easily, and people will work together to solve the very 
largest problems.

We live in a connected world, and modern software has to navigate this world. So the 
building blocks for tomorrow’ s very largest solutions are connected and massively 
parallel. It’ s not enough for code to be “ strong and silent”  any more. Code has to talk 
to code. Code has to be chatty, sociable, well-connected. Code has to run like the 
human brain, trillions of individual neurons firing off messages to each other, a 
massively parallel network with no central control, no single point of failure, yet able to 
solve immensely difficult problems. And it’ s no accident that the future of code looks 
like the human brain, because the endpoints of every network are, at some level, human 
brains.

If you’ ve done any work with threads, protocols, or networks, you’ ll realize this is 
pretty much impossible. It’ s a dream. Even connecting a few programs across a few 
sockets is plain nasty when you start to handle real life situations. Trillions? The cost 
would be unimaginable. Connecting computers is so difficult that software and services 
to do this is a multi-billion dollar business.

So we live in a world where the wiring is years ahead of our ability to use it. We had 
a software crisis in the 1980s, when leading software engineers like Fred Brooks believed 
there was no “ Silver Bullet” 2 to “ promise even one order of magnitude of improvement 
in productivity, reliability, or simplicity” .

2 http://en.wikipedia.org/wiki/No_Silver_Bullet
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Brooks missed free and open source software, which solved that crisis, enabling us to 
share knowledge efficiently. Today we face another software crisis, but it’ s one we don’ t 
talk about much. Only the largest, richest firms can afford to create connected 
applications. There is a cloud, but it’ s proprietary. Our data and our knowledge is 
disappearing from our personal computers into clouds that we cannot access and with 
which we cannot compete. Who owns our social networks? It is like the mainframe-PC 
revolution in reverse.

We can leave the political philosophy for another book3. The point is that while the 
Internet offers the potential of massively connected code, the reality is that this is out 
of reach for most of us, and so large interesting problems (in health, education, 
economics, transport, and so on) remain unsolved because there is no way to connect 
the code, and thus no way to connect the brains that could work together to solve these 
problems.

There have been many attempts to solve the challenge of connected code. There are 
thousands of IETF specifications, each solving part of the puzzle. For application 
developers, HTTP is perhaps the one solution to have been simple enough to work, but 
it arguably makes the problem worse by encouraging developers and architects to think 
in terms of big servers and thin, stupid clients.

So today people are still connecting applications using raw UDP and TCP, 
proprietary protocols, HTTP, and Websockets. It remains painful, slow, hard to scale, 
and essentially centralized. Distributed P2P architectures are mostly for play, not work. 
How many applications use Skype or Bittorrent to exchange data?

Which brings us back to the science of programming. To fix the world, we needed to 
do two things. One, to solve the general problem of “ how to connect any code to any 
code, anywhere” . Two, to wrap that up in the simplest possible building blocks that 
people could understand and use easily.

It sounds ridiculously simple. And maybe it is. That’ s kind of the whole point.

Starting Assumptions
We assume you are using at least version 3.2 of ØMQ. We assume you are using a 

Linux box or something similar. We assume you can read C code, more or less, as that’ s 
the default language for the examples. We assume that when we write constants like 
PUSH or SUBSCRIBE, you can imagine they are really called ZMQ_PUSH or ZMQ_SUBSCRIBE 
if the programming language needs it.

3 http://swsi.info
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Getting the Examples
The examples live in a public GitHub repository4. The simplest way to get all the 

examples is to clone this repository:

git clone --depth=1 git://github.com/imatix/zguide.git

Next, browse the examples subdirectory. You’ ll find examples by language. If there 
are examples missing in a language you use, you’ re encouraged to submit a translation5. 
This is how this text became so useful, thanks to the work of many people. All 
examples are licensed under MIT/X11.

Ask and Ye Shall Receive
So let’ s start with some code. We start of course with a Hello World example. We’ ll 

make a client and a server. The client sends “ Hello”  to the server, which replies with 
“ World”  (see figure 2). Here’ s the server in C, which opens a ØMQ socket on port 5555, 
reads requests on it, and replies with “ World”  to each request:

Example 1. Hello World server (hwserver.c)

//  Hello World server

#include <zmq.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>

int main (void)
{
    //  Socket to talk to clients
    void *context = zmq_ctx_new ();
    void *responder = zmq_socket (context, ZMQ_REP);
    int rc = zmq_bind (responder, "tcp://*:5555");
    assert (rc == 0);

    while (1) {
        char buffer [10];
        zmq_recv (responder, buffer, 10, 0);
        printf ("Received Hello\n");
        zmq_send (responder, "World", 5, 0);
        sleep (1);          //  Do some 'work'
    }
    return 0;
}

4 https://github.com/imatix/zguide
5 http://zguide.zeromq.org/main:translate
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The REQ-REP socket pair is in lockstep. The client issues 
zmq_send() and then zmq_recv(), in a loop (or once if that’ s all it 
needs). Doing any other sequence (e.g., sending two messages in 
a row) will result in a return code of -1 from the send or recv 
call. Similarly, the service issues zmq_recv() and then zmq_send() 
in that order, as often as it needs to.

ØMQ uses C as its reference language and this is the main 
language we’ ll use for examples. If you’ re reading this online, 
the link below the example takes you to translations into other 
programming languages. Let’ s compare the same server in C+
+:

Example 2. Hello World server (hwserver.cpp)

//
//  Hello World server in C++
//  Binds REP socket to tcp://*:5555
//  Expects "Hello" from client, replies with "World"
//
#include <zmq.hpp>
#include <string>
#include <iostream>
#include <unistd.h>

int main () {
    //  Prepare our context and socket
    zmq::context_t context (1);
    zmq::socket_t socket (context, ZMQ_REP);
    socket.bind ("tcp://*:5555");

    while (true) {
        zmq::message_t request;

        //  Wait for next request from client
        socket.recv (&request);
        std::cout << "Received Hello" << std::endl;

        //  Do some 'work'
        sleep (1);

        //  Send reply back to client
        zmq::message_t reply (5);
        memcpy ((void *) reply.data (), "World", 5);
        socket.send (reply);
    }
    return 0;
}
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You can see that the ØMQ API is similar in C and C++. In a language like PHP, we 
can hide even more and the code becomes even easier to read:

Example 3. Hello World server (hwserver.php)

<?php
/*
 *  Hello World server
 *  Binds REP socket to tcp://*:5555
 *  Expects "Hello" from client, replies with "World"
 * @author Ian Barber <ian(dot)barber(at)gmail(dot)com>
 */

$context = new ZMQContext(1);

//  Socket to talk to clients
$responder = new ZMQSocket($context, ZMQ::SOCKET_REP);
$responder->bind("tcp://*:5555");

while (true) {
    //  Wait for next request from client
    $request = $responder->recv();
    printf ("Received request: [%s]\n", $request);

    //  Do some 'work'
    sleep (1);

    //  Send reply back to client
    $responder->send("World");
}

Here’ s the client code:

Example 4. Hello World client (hwclient.c)

//  Hello World client
#include <zmq.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>

int main (void)
{
    printf ("Connecting to hello world server...\n");
    void *context = zmq_ctx_new ();
    void *requester = zmq_socket (context, ZMQ_REQ);
    zmq_connect (requester, "tcp://localhost:5555");

    int request_nbr;
    for (request_nbr = 0; request_nbr != 10; request_nbr++) {
        char buffer [10];
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        printf ("Sending Hello %d...\n", request_nbr);
        zmq_send (requester, "Hello", 5, 0);
        zmq_recv (requester, buffer, 10, 0);
        printf ("Received World %d\n", request_nbr);
    }
    zmq_close (requester);
    zmq_ctx_destroy (context);
    return 0;
}

Now this looks too simple to be realistic, but ØMQ sockets have, as we already 
learned, superpowers. You could throw thousands of clients at this server, all at once, 
and it would continue to work happily and quickly. For fun, try starting the client and 
then starting the server, see how it all still works, then think for a second what this 
means.

Let us explain briefly what these two programs are actually doing. They create a 
ØMQ context to work with, and a socket. Don’ t worry what the words mean. You’ ll 
pick it up. The server binds its REP (reply) socket to port 5555. The server waits for a 
request in a loop, and responds each time with a reply. The client sends a request and 
reads the reply back from the server.

If you kill the server (Ctrl-C) and restart it, the client won’ t recover properly. 
Recovering from crashing processes isn’ t quite that easy. Making a reliable request-reply 
flow is complex enough that we won’ t cover it until “ Reliable Request-Reply Patterns” .

There is a lot happening behind the scenes but what matters to us programmers is 
how short and sweet the code is, and how often it doesn’ t crash, even under a heavy 
load. This is the request-reply pattern, probably the simplest way to use ØMQ. It maps 
to RPC and the classic client/server model.

A Minor Note on Strings
ØMQ doesn’ t know anything about the data you send except its size in bytes. That 

means you are responsible for formatting it safely so that applications can read it back. 
Doing this for objects and complex data types is a job for specialized libraries like 
Protocol Buffers. But even for strings, you need to take care.

In C and some other languages, strings are terminated with a null byte. We could 
send a string like “ HELLO”  with that extra null byte:

zmq_send (requester, "Hello", 6, 0);

However, if you send a string from another language, it probably will not include that 
null byte. For example, when we send that same string in Python, we do this:

socket.send ("Hello")

Then what goes onto the wire is a length (one byte for shorter strings) and the string 
contents as individual characters (see figure 3).
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When you receive string data from ØMQ in C, you simply cannot trust that it’ s 
safely terminated. Every single time you read a string, you should allocate a new buffer 
with space for an extra byte, copy the string, and terminate it properly with a null.

So let’ s establish the rule that ØMQ strings are length-specified and are sent 
on the wire without a trailing null. In the simplest case (and we’ ll do this in our 
examples), a ØMQ string maps neatly to a ØMQ message frame, which looks like the 
above figure— a length and some bytes.

Here is what we need to do, in C, to receive a ØMQ string and deliver it to the 
application as a valid C string:

//  Receive 0MQ string from socket and convert into C string
//  Chops string at 255 chars, if it's longer
static char *
s_recv (void *socket) {
    char buffer [256];
    int size = zmq_recv (socket, buffer, 255, 0);
    if (size == -1)
        return NULL;
    if (size > 255)
        size = 255;
    buffer [size] = 0;
    return strdup (buffer);
}

This makes a handy helper function and in the spirit of making things we can reuse 
profitably, let’ s write a similar s_send function that sends strings in the correct ØMQ 
format, and package this into a header file we can reuse.

The result is zhelpers.h, which lets us write sweeter and shorter ØMQ applications in 
C. It is a fairly long source, and only fun for C developers, so read it at leisure6.

Version Reporting
ØMQ does come in several versions and quite often, if you hit a problem, it’ ll be 

something that’ s been fixed in a later version. So it’ s a useful trick to know exactly 
what version of ØMQ you’ re actually linking with.

6 https://github.com/imatix/zguide/blob/master/examples/C/zhelpers.h
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Here is a tiny program that does that:

Example 5. ØMQ version reporting (version.c)

//  Report 0MQ version

#include <zmq.h>

int main (void)
{
    int major, minor, patch;
    zmq_version (&major, &minor, &patch);
    printf ("Current 0MQ version is %d.%d.%d\n", major, minor, patch);
    return 0;
}

Getting the Message Out
The second classic pattern is one-way data distribution, in which a server pushes 

updates to a set of clients. Let’ s see an example that pushes out weather updates 
consisting of a zip code, temperature, and relative humidity. We’ ll generate random 
values, just like the real weather stations do.

Here’ s the server. We’ ll use port 5556 for this application:

Example 6. Weather update server (wuserver.c)

//  Weather update server
//  Binds PUB socket to tcp://*:5556
//  Publishes random weather updates

#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and publisher
    void *context = zmq_ctx_new ();
    void *publisher = zmq_socket (context, ZMQ_PUB);
    int rc = zmq_bind (publisher, "tcp://*:5556");
    assert (rc == 0);
    rc = zmq_bind (publisher, "ipc://weather.ipc");
    assert (rc == 0);

    //  Initialize random number generator
    srandom ((unsigned) time (NULL));
    while (1) {
        //  Get values that will fool the boss
        int zipcode, temperature, relhumidity;
        zipcode     = randof (100000);
        temperature = randof (215) - 80;
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        relhumidity = randof (50) + 10;

        //  Send message to all subscribers
        char update [20];
        sprintf (update, "%05d %d %d", zipcode, temperature, relhumidity);
        s_send (publisher, update);
    }
    zmq_close (publisher);
    zmq_ctx_destroy (context);
    return 0;
}

There’ s no start and no end to this stream of updates, it’ s like a never ending 
broadcast (see figure 4).

Here is the client application, which listens to the stream of updates and grabs 
anything to do with a specified zip code, by default New York City because that’ s a 
great place to start any adventure:

Example 7. Weather update client (wuclient.c)

//  Weather update client
//  Connects SUB socket to tcp://localhost:5556
//  Collects weather updates and finds avg temp in zipcode

#include "zhelpers.h"

int main (int argc, char *argv [])
{
    //  Socket to talk to server
    printf ("Collecting updates from weather server...\n");
    void *context = zmq_ctx_new ();
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    int rc = zmq_connect (subscriber, "tcp://localhost:5556");
    assert (rc == 0);

    //  Subscribe to zipcode, default is NYC, 10001
    char *filter = (argc > 1)? argv [1]: "10001 ";
    rc = zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE,
                         filter, strlen (filter));
    assert (rc == 0);

    //  Process 100 updates
    int update_nbr;
    long total_temp = 0;
    for (update_nbr = 0; update_nbr < 100; update_nbr++) {
        char *string = s_recv (subscriber);

        int zipcode, temperature, relhumidity;
        sscanf (string, "%d %d %d",
            &zipcode, &temperature, &relhumidity);
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        total_temp += temperature;
        free (string);
    }
    printf ("Average temperature for zipcode '%s' was %dF\n",
        filter, (int) (total_temp / update_nbr));

    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

Note that when you use a 
SUB socket you must set a 
subscription using 
zmq_setsockopt() and 
SUBSCRIBE, as in this code. 
If you don’ t set any 
subscription, you won’ t get 
any messages. It’ s a common 
mistake for beginners. The 
subscriber can set many 
subscriptions, which are added 
together. That is, if an update 
matches ANY subscription, 
the subscriber receives it. The 
subscriber can also cancel 
specific subscriptions. A 
subscription is often, but not 
necessarily a printable string. See zmq_setsockopt() for how this works.

The PUB-SUB socket pair is asynchronous. The client does zmq_recv(), in a loop (or 
once if that’ s all it needs). Trying to send a message to a SUB socket will cause an 
error. Similarly, the service does zmq_send() as often as it needs to, but must not do 
zmq_recv() on a PUB socket.

In theory with ØMQ sockets, it does not matter which end connects and which end 
binds. However, in practice there are undocumented differences that I’ ll come to later. 
For now, bind the PUB and connect the SUB, unless your network design makes that 
impossible.

There is one more important thing to know about PUB-SUB sockets: you do not 
know precisely when a subscriber starts to get messages. Even if you start a subscriber, 
wait a while, and then start the publisher, the subscriber will always miss the 
first messages that the publisher sends. This is because as the subscriber connects 
to the publisher (something that takes a small but non-zero time), the publisher may 
already be sending messages out.
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This “ slow joiner”  symptom hits enough people often enough that we’ re going to 
explain it in detail. Remember that ØMQ does asynchronous I/O, i.e., in the 
background. Say you have two nodes doing this, in this order:

• Subscriber connects to an endpoint and receives and counts messages.
• Publisher binds to an endpoint and immediately sends 1,000 messages.

Then the subscriber will most likely not receive anything. You’ ll blink, check that you 
set a correct filter and try again, and the subscriber will still not receive anything.

Making a TCP connection involves to and from handshaking that takes several 
milliseconds depending on your network and the number of hops between peers. In that 
time, ØMQ can send many messages. For sake of argument assume it takes 5 msecs to 
establish a connection, and that same link can handle 1M messages per second. During 
the 5 msecs that the subscriber is connecting to the publisher, it takes the publisher 
only 1 msec to send out those 1K messages.

In “ Sockets and Patterns”  we’ ll explain how to synchronize a publisher and 
subscribers so that you don’ t start to publish data until the subscribers really are 
connected and ready. There is a simple and stupid way to delay the publisher, which is 
to sleep. Don’ t do this in a real application, though, because it is extremely fragile as 
well as inelegant and slow. Use sleeps to prove to yourself what’ s happening, and then 
wait for “ Sockets and Patterns”  to see how to do this right.

The alternative to synchronization is to simply assume that the published data 
stream is infinite and has no start and no end. One also assumes that the subscriber 
doesn’ t care what transpired before it started up. This is how we built our weather 
client example.

So the client subscribes to its chosen zip code and collects a thousand updates for 
that zip code. That means about ten million updates from the server, if zip codes are 
randomly distributed. You can start the client, and then the server, and the client will 
keep working. You can stop and restart the server as often as you like, and the client 
will keep working. When the client has collected its thousand updates, it calculates the 
average, prints it, and exits.

Some points about the publish-subscribe (pub-sub) pattern:
• A subscriber can connect to more than one publisher, using one connect call 

each time. Data will then arrive and be interleaved (“ fair-queued” ) so that no 
single publisher drowns out the others.

• If a publisher has no connected subscribers, then it will simply drop all 
messages.

• If you’ re using TCP and a subscriber is slow, messages will queue up on the 
publisher. We’ ll look at how to protect publishers against this using the “ high-
water mark”  later.

• From ØMQ v3.x, filtering happens at the publisher side when using a connected 
protocol (tcp:// or ipc://). Using the epgm:// protocol, filtering happens at the 
subscriber side. In ØMQ v2.x, all filtering happened at the subscriber side.
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This is how long it takes to receive and filter 10M messages on my laptop, which is an 
2011-era Intel i5, decent but nothing special:

$ time wuclient
Collecting updates from weather server...
Average temperature for zipcode '10001 ' was 28F

real    0m4.470s
user    0m0.000s
sys     0m0.008s

Divide and Conquer

Example 8. Parallel task ventilator (taskvent.c)

//  Task ventilator
//  Binds PUSH socket to tcp://localhost:5557
//  Sends batch of tasks to workers via that socket

#include "zhelpers.h"
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int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to send messages on
    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_bind (sender, "tcp://*:5557");

    //  Socket to send start of batch message on
    void *sink = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sink, "tcp://localhost:5558");

    printf ("Press Enter when the workers are ready: ");
    getchar ();
    printf ("Sending tasks to workers...\n");

    //  The first message is "0" and signals start of batch
    s_send (sink, "0");

    //  Initialize random number generator
    srandom ((unsigned) time (NULL));

    //  Send 100 tasks
    int task_nbr;
    int total_msec = 0;     //  Total expected cost in msecs
    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        int workload;
        //  Random workload from 1 to 100msecs
        workload = randof (100) + 1;
        total_msec += workload;
        char string [10];
        sprintf (string, "%d", workload);
        s_send (sender, string);
    }
    printf ("Total expected cost: %d msec\n", total_msec);
    sleep (1);              //  Give 0MQ time to deliver

    zmq_close (sink);
    zmq_close (sender);
    zmq_ctx_destroy (context);
    return 0;
}

Here is the worker application. It receives a message, sleeps for that number of 
seconds, and then signals that it’ s finished:

Example 9. Parallel task worker (taskwork.c)

//  Task worker
//  Connects PULL socket to tcp://localhost:5557
//  Collects workloads from ventilator via that socket



24 Code Connected Volume 1 - Chapter 1. Basics

//  Connects PUSH socket to tcp://localhost:5558
//  Sends results to sink via that socket

#include "zhelpers.h"

int main (void) 
{
    //  Socket to receive messages on
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Socket to send messages to
    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sender, "tcp://localhost:5558");

    //  Process tasks forever
    while (1) {
        char *string = s_recv (receiver);
        printf ("%s.", string);     //  Show progress
        fflush (stdout);
        s_sleep (atoi (string));    //  Do the work
        free (string);
        s_send (sender, "");        //  Send results to sink
    }
    zmq_close (receiver);
    zmq_close (sender);
    zmq_ctx_destroy (context);
    return 0;
}

Here is the sink application. It collects the 100 tasks, then calculates how long the 
overall processing took, so we can confirm that the workers really were running in 
parallel if there are more than one of them:

Example 10. Parallel task sink (tasksink.c)

//  Task sink
//  Binds PULL socket to tcp://localhost:5558
//  Collects results from workers via that socket

#include "zhelpers.h"

int main (void) 
{
    //  Prepare our context and socket
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_bind (receiver, "tcp://*:5558");

    //  Wait for start of batch
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    char *string = s_recv (receiver);
    free (string);

    //  Start our clock now
    int64_t start_time = s_clock ();

    //  Process 100 confirmations
    int task_nbr;
    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        char *string = s_recv (receiver);
        free (string);
        if ((task_nbr / 10) * 10 == task_nbr)
            printf (":");
        else
            printf (".");
        fflush (stdout);
    }
    //  Calculate and report duration of batch
    printf ("Total elapsed time: %d msec\n", 
        (int) (s_clock () - start_time));

    zmq_close (receiver);
    zmq_ctx_destroy (context);
    return 0;
}

The average cost of a batch is 5 seconds. When we start 1, 2, or 4 workers we get 
results like this from the sink:

• 1 worker: total elapsed time: 5034 msecs.
• 2 workers: total elapsed time: 2421 msecs.
• 4 workers: total elapsed time: 1018 msecs.

Let’ s look at some aspects of this code in more detail:
• The workers connect upstream to the ventilator, and downstream to the sink. 

This means you can add workers arbitrarily. If the workers bound to their 
endpoints, you would need (a) more endpoints and (b) to modify the ventilator 
and/or the sink each time you added a worker. We say that the ventilator and 
sink are stable parts of our architecture and the workers are dynamic parts of it.

• We have to synchronize the start of the batch with all workers being up and 
running. This is a fairly common gotcha in ØMQ and there is no easy solution. 
The zmq_connect method takes a certain time. So when a set of workers connect 
to the ventilator, the first one to successfully connect will get a whole load of 
messages in that short time while the others are also connecting. If you don’ t 
synchronize the start of the batch somehow, the system won’ t run in parallel at 
all. Try removing the wait in the ventilator, and see what happens.
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• The ventilator’ s PUSH socket distributes tasks to workers (assuming they are 
all connected before the batch starts going out) evenly. This is called load 
balancing and it’ s something we’ ll look at again in more detail.

• The sink’ s PULL socket collects results from workers evenly. This is called fair-
queuing (see figure 6).

The pipeline pattern also exhibits 
the “ slow joiner”  syndrome, leading to 
accusations that PUSH sockets don’ t 
load balance properly. If you are using 
PUSH and PULL, and one of your 
workers gets way more messages than 
the others, it’ s because that PULL 
socket has joined faster than the 
others, and grabs a lot of messages 
before the others manage to connect. If 
you want proper load balancing, you 
probably want to look at the The load 
balancing pattern in “ Advanced 
Request-Reply Patterns” .

Programming with ØMQ
Having seen some examples, you must be eager to start using ØMQ in some apps. 

Before you start that, take a deep breath, chillax, and reflect on some basic advice that 
will save you much stress and confusion.

• Learn ØMQ step-by-step. It’ s just one simple API, but it hides a world of 
possibilities. Take the possibilities slowly and master each one.

• Write nice code. Ugly code hides problems and makes it hard for others to help 
you. You might get used to meaningless variable names, but people reading your 
code won’ t. Use names that are real words, that say something other than “ I’ m 
too careless to tell you what this variable is really for” . Use consistent 
indentation and clean layout. Write nice code and your world will be more 
comfortable.

• Test what you make as you make it. When your program doesn’ t work, you 
should know what five lines are to blame. This is especially true when you do 
ØMQ magic, which just won’ t work the first few times you try it.

• When you find that things don’ t work as expected, break your code into pieces, 
test each one, see which one is not working. ØMQ lets you make essentially 
modular code; use that to your advantage.

• Make abstractions (classes, methods, whatever) as you need them. If you 
copy/paste a lot of code, you’ re going to copy/paste errors, too.
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Getting the Context Right
ØMQ applications always start by creating a context, and then using that for creating 

sockets. In C, it’ s the zmq_ctx_new() call. You should create and use exactly one context 
in your process. Technically, the context is the container for all sockets in a single 
process, and acts as the transport for inproc sockets, which are the fastest way to 
connect threads in one process. If at runtime a process has two contexts, these are like 
separate ØMQ instances. If that’ s explicitly what you want, OK, but otherwise 
remember:

Do one zmq_ctx_new() at the start of your main line code, and one 
zmq_ctx_destroy() at the end.

If you’ re using the fork() system call, each process needs its own context. If you do 
zmq_ctx_new() in the main process before calling fork(), the child processes get their own 
contexts. In general, you want to do the interesting stuff in the child processes and just 
manage these from the parent process.

Making a Clean Exit
Classy programmers share the same motto as classy hit men: always clean-up when 

you finish the job. When you use ØMQ in a language like Python, stuff gets 
automatically freed for you. But when using C, you have to carefully free objects when 
you’ re finished with them or else you get memory leaks, unstable applications, and 
generally bad karma.

Memory leaks are one thing, but ØMQ is quite finicky about how you exit an 
application. The reasons are technical and painful, but the upshot is that if you leave 
any sockets open, the zmq_ctx_destroy() function will hang forever. And even if you 
close all sockets, zmq_ctx_destroy() will by default wait forever if there are pending 
connects or sends unless you set the LINGER to zero on those sockets before closing 
them.

The ØMQ objects we need to worry about are messages, sockets, and contexts. 
Luckily it’ s quite simple, at least in simple programs:

• Use zmq_send() and zmq_recv() when you can, it avoids the need to work with 
zmq_msg_t objects.

• If you do use zmq_msg_recv(), always release the received message as soon as 
you’ re done with it, by calling zmq_msg_close().

• If you are opening and closing a lot of sockets, that’ s probably a sign that you 
need to redesign your application. In some cases socket handles won’ t be freed 
until you destroy the context.

• When you exit the program, close your sockets and then call zmq_ctx_destroy(). 
This destroys the context.

This is at least the case for C development. In a language with automatic object 
destruction, sockets and contexts will be destroyed as you leave the scope. If you use 
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exceptions you’ ll have to do the clean-up in something like a “ final”  block, the same as 
for any resource.

If you’ re doing multithreaded work, it gets rather more complex than this. We’ ll get 
to multithreading in the next chapter, but because some of you will, despite warnings, 
try to run before you can safely walk, below is the quick and dirty guide to making a 
clean exit in a multithreaded ØMQ application.

First, do not try to use the same socket from multiple threads. Please don’ t explain 
why you think this would be excellent fun, just please don’ t do it. Next, you need to 
shut down each socket that has ongoing requests. The proper way is to set a low 
LINGER value (1 second), and then close the socket. If your language binding doesn’ t 
do this for you automatically when you destroy a context, I’ d suggest sending a patch.

Finally, destroy the context. This will cause any blocking receives or polls or sends in 
attached threads (i.e., which share the same context) to return with an error. Catch 
that error, and then set linger on, and close sockets in that thread, and exit. Do not 
destroy the same context twice. The zmq_ctx_destroy in the main thread will block until 
all sockets it knows about are safely closed.

Voila! It’ s complex and painful enough that any language binding author worth his or 
her salt will do this automatically and make the socket closing dance unnecessary.

Why We Needed ØMQ
Now that you’ ve seen ØMQ in action, let’ s go back to the “ why” .
Many applications these days consist of components that stretch across some kind of 

network, either a LAN or the Internet. So many application developers end up doing 
some kind of messaging. Some developers use message queuing products, but most of 
the time they do it themselves, using TCP or UDP. These protocols are not hard to 
use, but there is a great difference between sending a few bytes from A to B, and doing 
messaging in any kind of reliable way.

Let’ s look at the typical problems we face when we start to connect pieces using raw 
TCP. Any reusable messaging layer would need to solve all or most of these:

• How do we handle I/O? Does our application block, or do we handle I/O in the 
background? This is a key design decision. Blocking I/O creates architectures 
that do not scale well. But background I/O can be very hard to do right.

• How do we handle dynamic components, i.e., pieces that go away temporarily? 
Do we formally split components into “ clients”  and “ servers”  and mandate that 
servers cannot disappear? What then if we want to connect servers to servers? 
Do we try to reconnect every few seconds?

• How do we represent a message on the wire? How do we frame data so it’ s easy 
to write and read, safe from buffer overflows, efficient for small messages, yet 
adequate for the very largest videos of dancing cats wearing party hats?
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• How do we handle messages that we can’ t deliver immediately? Particularly, if 
we’ re waiting for a component to come back online? Do we discard messages, 
put them into a database, or into a memory queue?

• Where do we store message queues? What happens if the component reading 
from a queue is very slow and causes our queues to build up? What’ s our 
strategy then?

• How do we handle lost messages? Do we wait for fresh data, request a resend, or 
do we build some kind of reliability layer that ensures messages cannot be lost? 
What if that layer itself crashes?

• What if we need to use a different network transport. Say, multicast instead of 
TCP unicast? Or IPv6? Do we need to rewrite the applications, or is the 
transport abstracted in some layer?

• How do we route messages? Can we send the same message to multiple peers? 
Can we send replies back to an original requester?

• How do we write an API for another language? Do we re-implement a wire-level 
protocol or do we repackage a library? If the former, how can we guarantee 
efficient and stable stacks? If the latter, how can we guarantee interoperability?

• How do we represent data so that it can be read between different 
architectures? Do we enforce a particular encoding for data types? How far is 
this the job of the messaging system rather than a higher layer?

• How do we handle network errors? Do we wait and retry, ignore them silently, 
or abort?

Take a typical open source project like Hadoop Zookeeper7 and read the C API code 
in src/c/src/zookeeper.c8. When I read this code, in January 2013, it was 4,200 lines of 
mystery and in there is an undocumented, client/server network communication 
protocol. I see it’ s efficient because it uses poll instead of select. But really, Zookeeper 
should be using a generic messaging layer and an explicitly documented wire level 
protocol. It is incredibly wasteful for teams to be building this particular wheel over 
and over.

But how to make a reusable messaging layer? Why, when so many projects need this 
technology, are people still doing it the hard way by driving TCP sockets in their code, 
and solving the problems in that long list over and over (see figure 7)?

It turns out that building reusable messaging systems is really difficult, which is why 
few FOSS projects ever tried, and why commercial messaging products are complex, 
expensive, inflexible, and brittle. In 2006, iMatix designed AMQP9 which started to give 
FOSS developers perhaps the first reusable recipe for a messaging system. AMQP works 
better than many other designs, but remains relatively complex, expensive, and brittle10. 

7 http://hadoop.apache.org/zookeeper/
8 http://github.com/apache/zookeeper/blob/trunk/src/c/src/zookeeper.c
9 http://www.amqp.org
10 http://www.imatix.com/articles:whats-wrong-with-amqp
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It takes weeks to learn to use, and months to create stable architectures that don’ t 
crash when things get hairy.
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And this is ØMQ: an efficient, embeddable library that solves most of the problems 
an application needs to become nicely elastic across a network, without much cost.

Specifically:
• It handles I/O asynchronously, in background threads. These communicate with 

application threads using lock-free data structures, so concurrent ØMQ 
applications need no locks, semaphores, or other wait states.

• Components can come and go dynamically and ØMQ will automatically 
reconnect. This means you can start components in any order. You can create 
“ service-oriented architectures”  (SOAs) where services can join and leave the 
network at any time.

• It queues messages automatically when needed. It does this intelligently, 
pushing messages as close as possible to the receiver before queuing them.

• It has ways of dealing with over-full queues (called “ high water mark” ). When a 
queue is full, ØMQ automatically blocks senders, or throws away messages, 
depending on the kind of messaging you are doing (the so-called “ pattern” ).

• It lets your applications talk to each other over arbitrary transports: TCP, 
multicast, in-process, inter-process. You don’ t need to change your code to use a 
different transport.

• It handles slow/blocked readers safely, using different strategies that depend on 
the messaging pattern.

• It lets you route messages using a variety of patterns such as request-reply and 
pub-sub. These patterns are how you create the topology, the structure of your 
network.

• It lets you create proxies to queue, forward, or capture messages with a single 
call. Proxies can reduce the interconnection complexity of a network.

• It delivers whole messages exactly as they were sent, using a simple framing on 
the wire. If you write a 10k message, you will receive a 10k message.

• It does not impose any format on messages. They are blobs of zero to gigabytes 
large. When you want to represent data you choose some other product on top, 
such as msgpack, Google’ s protocol buffers, and others.

• It handles network errors intelligently, by retrying automatically in cases where 
it makes sense.

• It reduces your carbon footprint. Doing more with less CPU means your boxes 
use less power, and you can keep your old boxes in use for longer. Al Gore 
would love ØMQ.

Actually ØMQ does rather more than this. It has a subversive effect on how you 
develop network-capable applications. Superficially, it’ s a socket-inspired API on which 
you do zmq_recv() and zmq_send(). But message processing rapidly becomes the central 
loop, and your application soon breaks down into a set of message processing tasks. It is 
elegant and natural. And it scales: each of these tasks maps to a node, and the nodes 
talk to each other across arbitrary transports. Two nodes in one process (node is a 
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thread), two nodes on one box (node is a process), or two boxes on one network (node 
is a box)— it’ s all the same, with no application code changes.

Socket Scalability
Let’ s see ØMQ’ s scalability in action. Here is a shell script that starts the weather 

server and then a bunch of clients in parallel:

wuserver &
wuclient 12345 &
wuclient 23456 &
wuclient 34567 &
wuclient 45678 &
wuclient 56789 &

As the clients run, we take a look at the active processes using the top command', 
and we see something like (on a 4-core box):

PID  USER  PR  NI  VIRT  RES  SHR S %CPU %MEM   TIME+  COMMAND
7136  ph   20   0 1040m 959m 1156 R  157 12.0 16:25.47 wuserver
7966  ph   20   0 98608 1804 1372 S   33  0.0  0:03.94 wuclient
7963  ph   20   0 33116 1748 1372 S   14  0.0  0:00.76 wuclient
7965  ph   20   0 33116 1784 1372 S    6  0.0  0:00.47 wuclient
7964  ph   20   0 33116 1788 1372 S    5  0.0  0:00.25 wuclient
7967  ph   20   0 33072 1740 1372 S    5  0.0  0:00.35 wuclient

Let’ s think for a second about what is happening here. The weather server has a 
single socket, and yet here we have it sending data to five clients in parallel. We could 
have thousands of concurrent clients. The server application doesn’ t see them, doesn’ t 
talk to them directly. So the ØMQ socket is acting like a little server, silently accepting 
client requests and shoving data out to them as fast as the network can handle it. And 
it’ s a multithreaded server, squeezing more juice out of your CPU.

Upgrading from ØMQ v2.2 to ØMQ v3.2
Compatible Changes

These changes don’ t impact existing application code directly:
• Pub-sub filtering is now done at the publisher side instead of subscriber side. 

This improves performance significantly in many pub-sub use cases. You can 
mix v3.2 and v2.1/v2.2 publishers and subscribers safely.

• ØMQ v3.2 has many new API methods (zmq_disconnect(), zmq_unbind(), 
zmq_monitor(), zmq_ctx_set(), etc.)
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Incompatible Changes
These are the main areas of impact on applications and language bindings:
• Changed send/recv methods: zmq_send() and zmq_recv() have a different, simpler 

interface, and the old functionality is now provided by zmq_msg_send() and 
zmq_msg_recv(). Symptom: compile errors. Solution: fix up your code.

• These two methods return positive values on success, and -1 on error. In v2.x 
they always returned zero on success. Symptom: apparent errors when things 
actually work fine. Solution: test strictly for return code = -1, not non-zero.

• zmq_poll() now waits for milliseconds, not microseconds. Symptom: application 
stops responding (in fact responds 1000 times slower). Solution: use the 
ZMQ_POLL_MSEC macro defined below, in all zmq_poll calls.

• ZMQ_NOBLOCK is now called ZMQ_DONTWAIT. Symptom: compile failures on the 
ZMQ_NOBLOCK macro.

• The ZMQ_HWM socket option is now broken into ZMQ_SNDHWM and ZMQ_RCVHWM. 
Symptom: compile failures on the ZMQ_HWM macro.

• Most but not all zmq_getsockopt() options are now integer values. Symptom: 
runtime error returns on zmq_setsockopt and zmq_getsockopt.

• The ZMQ_SWAP option has been removed. Symptom: compile failures on ZMQ_SWAP. 
Solution: redesign any code that uses this functionality.

Suggested Shim Macros
For applications that want to run on both v2.x and v3.2, such as language bindings, 

our advice is to emulate c3.2 as far as possible. Here are C macro definitions that help 
your C/C++ code to work across both versions (taken from CZMQ11):

#ifndef ZMQ_DONTWAIT
#   define ZMQ_DONTWAIT     ZMQ_NOBLOCK
#endif
#if ZMQ_VERSION_MAJOR == 2
#   define zmq_msg_send(msg,sock,opt) zmq_send (sock, msg, opt)
#   define zmq_msg_recv(msg,sock,opt) zmq_recv (sock, msg, opt)
#   define zmq_ctx_destroy(context) zmq_term(context)
#   define ZMQ_POLL_MSEC    1000        //  zmq_poll is usec
#   define ZMQ_SNDHWM ZMQ_HWM
#   define ZMQ_RCVHWM ZMQ_HWM
#elif ZMQ_VERSION_MAJOR == 3
#   define ZMQ_POLL_MSEC    1           //  zmq_poll is msec
#endif

11 http://czmq.zeromq.org



34 Code Connected Volume 1 - Chapter 1. Basics

Warning: Unstable Paradigms!
Traditional network programming is built on the general assumption that one socket 

talks to one connection, one peer. There are multicast protocols, but these are exotic. 
When we assume “ one socket = one connection” , we scale our architectures in certain 
ways. We create threads of logic where each thread work with one socket, one peer. We 
place intelligence and state in these threads.

In the ØMQ universe, sockets are doorways to fast little background communications 
engines that manage a whole set of connections automagically for you. You can’ t see, 
work with, open, close, or attach state to these connections. Whether you use blocking 
send or receive, or poll, all you can talk to is the socket, not the connections it manages 
for you. The connections are private and invisible, and this is the key to ØMQ’ s 
scalability.

This is because your code, talking to a socket, can then handle any number of 
connections across whatever network protocols are around, without change. A 
messaging pattern sitting in ØMQ scales more cheaply than a messaging pattern sitting 
in your application code.

So the general assumption no longer applies. As you read the code examples, your 
brain will try to map them to what you know. You will read “ socket”  and think “ ah, 
that represents a connection to another node” . That is wrong. You will read “ thread”  
and your brain will again think, “ ah, a thread represents a connection to another node” , 
and again your brain will be wrong.

If you’ re reading this Guide for the first time, realize that until you actually write 
ØMQ code for a day or two (and maybe three or four days), you may feel confused, 
especially by how simple ØMQ makes things for you, and you may try to impose that 
general assumption on ØMQ, and it won’ t work. And then you will experience your 
moment of enlightenment and trust, that zap-pow-kaboom satori paradigm-shift moment 
when it all becomes clear.



Chapter 2. Sockets and Patterns
In “ Basics”  we took ØMQ for a drive, with some basic examples of the main ØMQ 

patterns: request-reply, pub-sub, and pipeline. In this chapter, we’ re going to get our 
hands dirty and start to learn how to use these tools in real programs.

We’ ll cover:
• How to create and work with ØMQ sockets.
• How to send and receive messages on sockets.
• How to build your apps around ØMQ’ s asynchronous I/O model.
• How to handle multiple sockets in one thread.
• How to handle fatal and nonfatal errors properly.
• How to handle interrupt signals like Ctrl-C.
• How to shut down a ØMQ application cleanly.
• How to check a ØMQ application for memory leaks.
• How to send and receive multipart messages.
• How to forward messages across networks.
• How to build a simple message queuing broker.
• How to write multithreaded applications with ØMQ.
• How to use ØMQ to signal between threads.
• How to use ØMQ to coordinate a network of nodes.
• How to create and use message envelopes for pub-sub.
• Using the HWM (high-water mark) to protect against memory overflows.

The Socket API
To be perfectly honest, ØMQ does a kind of switch-and-bait on you, for which we we 

don’ t apologize. It’ s for your own good and it hurts us more than it hurts you. ØMQ 
presents a familiar socket-based API, which requires great effort for us to hide a bunch 
of message-processing engines. However, the result will slowly fix your world view about 
how to design and write distributed software.

Sockets are the de facto standard API for network programming, as well as being 
useful for stopping your eyes from falling onto your cheeks. One thing that makes ØMQ 
especially tasty to developers is that it uses sockets and messages instead of some other 
arbitrary set of concepts. Kudos to Martin Sustrik for pulling this off. It turns “ Message 
Oriented Middleware” , a phrase guaranteed to send the whole room off to Catatonia, 
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into “ Extra Spicy Sockets!” , which leaves us with a strange craving for pizza and a 
desire to know more.

Like a favorite dish, ØMQ sockets are easy to digest. Sockets have a life in four parts, 
just like BSD sockets:

• Creating and destroying sockets, which go together to form a karmic circle of 
socket life (see zmq_socket(), zmq_close()).

• Configuring sockets by setting options on them and checking them if necessary 
(see zmq_setsockopt(), zmq_getsockopt()).

• Plugging sockets onto the network topology by creating ØMQ connections to 
and from them (see zmq_bind(), zmq_connect()).

• Using the sockets to carry data by writing and receiving messages on them (see 
zmq_send(), zmq_recv()).

Note that sockets are always void pointers, and messages (which we’ ll come to very 
soon) are structures. So in C you pass sockets as-such, but you pass addresses of 
messages in all functions that work with messages, like zmq_send() and zmq_recv(). As a 
mnemonic, realize that “ in ØMQ, all your sockets are belong to us” , but messages are 
things you actually own in your code.

Creating, destroying, and configuring sockets works as you’ d expect for any object. 
But remember that ØMQ is an asynchronous, elastic fabric. This has some impact on 
how we plug sockets into the network topology and how we use the sockets after that.

Plugging Sockets into the Topology
To create a connection between two nodes, you use zmq_bind() in one node and 

zmq_connect() in the other. As a general rule of thumb, the node that does zmq_bind() is 
a “ server” , sitting on a well-known network address, and the node which does 
zmq_connect() is a “ client” , with unknown or arbitrary network addresses. Thus we say 
that we “ bind a socket to an endpoint”  and “ connect a socket to an endpoint” , the 
endpoint being that well-known network address.

ØMQ connections are somewhat different from classic TCP connections. The main 
notable differences are:

• They go across an arbitrary transport (inproc, ipc, tcp, pgm, or epgm). See 
zmq_inproc(), zmq_ipc(), zmq_tcp(), zmq_pgm(), and zmq_epgm().

• One socket may have many outgoing and many incoming connections.
• There is no zmq_accept() method. When a socket is bound to an endpoint it 

automatically starts accepting connections.
• The network connection itself happens in the background, and ØMQ will 

automatically reconnect if the network connection is broken (e.g., if the peer 
disappears and then comes back).

• Your application code cannot work with these connections directly; they are 
encapsulated under the socket.
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Many architectures follow some kind of client/server model, where the server is the 
component that is most static, and the clients are the components that are most 
dynamic, i.e., they come and go the most. There are sometimes issues of addressing: 
servers will be visible to clients, but not necessarily vice versa. So mostly it’ s obvious 
which node should be doing zmq_bind() (the server) and which should be doing 
zmq_connect() (the client). It also depends on the kind of sockets you’ re using, with 
some exceptions for unusual network architectures. We’ ll look at socket types later.

Now, imagine we start the client before we start the server. In traditional networking, 
we get a big red Fail flag. But ØMQ lets us start and stop pieces arbitrarily. As soon as 
the client node does zmq_connect(), the connection exists and that node can start to 
write messages to the socket. At some stage (hopefully before messages queue up so 
much that they start to get discarded, or the client blocks), the server comes alive, does 
a zmq_bind(), and ØMQ starts to deliver messages.

A server node can bind to many endpoints (that is, a combination of protocol and 
address) and it can do this using a single socket. This means it will accept connections 
across different transports:

zmq_bind (socket, "tcp://*:5555");
zmq_bind (socket, "tcp://*:9999");
zmq_bind (socket, "inproc://somename");

With most transports, you cannot bind to the same endpoint twice, unlike for 
example in UDP. The ipc transport does, however, let one process bind to an endpoint 
already used by a first process. It’ s meant to allow a process to recover after a crash.

Although ØMQ tries to be neutral about which side binds and which side connects, 
there are differences. We’ ll see these in more detail later. The upshot is that you should 
usually think in terms of “ servers”  as static parts of your topology that bind to more or 
less fixed endpoints, and “ clients”  as dynamic parts that come and go and connect to 
these endpoints. Then, design your application around this model. The chances that it 
will “ just work”  are much better like that.

Sockets have types. The socket type defines the semantics of the socket, its policies 
for routing messages inwards and outwards, queuing, etc. You can connect certain types 
of socket together, e.g., a publisher socket and a subscriber socket. Sockets work 
together in “ messaging patterns” . We’ ll look at this in more detail later.

It’ s the ability to connect sockets in these different ways that gives ØMQ its basic 
power as a message queuing system. There are layers on top of this, such as proxies, 
which we’ ll get to later. But essentially, with ØMQ you define your network 
architecture by plugging pieces together like a child’ s construction toy.

Sending and Receiving Messages
To send and receive messages you use the zmq_msg_send() and zmq_msg_recv() methods. 

The names are conventional, but ØMQ’ s I/O model is different enough from the classic 
TCP model (see figure 9) that you will need time to get your head around it.
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Unicast Transports
ØMQ provides a set of unicast transports (inproc, ipc, and tcp) and multicast 

transports (epgm, pgm). Multicast is an advanced technique that we’ ll come to later. 
Don’ t even start using it unless you know that your fan-out ratios will make 1-to-N 
unicast impossible.

For most common cases, use tcp, which is a disconnected TCP transport. It is elastic, 
portable, and fast enough for most cases. We call this disconnected because ØMQ’ s tcp 
transport doesn’ t require that the endpoint exists before you connect to it. Clients and 
servers can connect and bind at any time, can go and come back, and it remains 
transparent to applications.

The inter-process ipc transport is disconnected, like tcp. It has one limitation: it does 
not yet work on Windows. By convention we use endpoint names with an “ .ipc”  
extension to avoid potential conflict with other file names. On UNIX systems, if you use 
ipc endpoints you need to create these with appropriate permissions otherwise they may 
not be shareable between processes running under different user IDs. You must also 
make sure all processes can access the files, e.g., by running in the same working 
directory.

The inter-thread transport, inproc, is a connected signaling transport. It is much 
faster than tcp or ipc. This transport has a specific limitation compared to tpc and icp: 
the server must issue a bind before any client issues a connect. This is 
something future versions of ØMQ may fix, but at present this defines how you use 
inproc sockets. We create and bind one socket and start the child threads, which create 
and connect the other sockets.
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ØMQ is Not a Neutral Carrier
A common question that newcomers to ØMQ ask (it’ s one I’ ve asked myself) is, “ how 

do I write an XYZ server in ØMQ?”  For example, “ how do I write an HTTP server in 
ØMQ?”  The implication is that if we use normal sockets to carry HTTP requests and 
responses, we should be able to use ØMQ sockets to do the same, only much faster and 
better.

The answer used to be “ this is not how it works” . ØMQ is not a neutral carrier, it 
imposes a framing on the transport protocols it uses. This framing is not compatible 
with existing protocols, which tend to use their own framing. For example, compare an 
HTTP request and a ØMQ request, both over TCP/IP.

I/O Threads
We said that ØMQ does I/O in a background thread. One I/O thread (for all sockets) 

is sufficient for all but the most extreme applications. When you create a new context, 
it starts with one I/O thread. The general rule of thumb is to allow one I/O thread per 
gigabyte of data in or out per second. To raise the number of I/O threads, use the 
zmq_ctx_set() call before creating any sockets:

int io-threads = 4;
void *context = zmq_ctx_new ();
zmq_ctx_set (context, ZMQ_IO_THREADS, io_threads);
assert (zmq_ctx_get (context, ZMQ_IO_THREADS) == io_threads);

We’ ve seen that one socket can handle dozens, even thousands of connections at once. 
This has a fundamental impact on how you write applications. A traditional networked 
application has one process or one thread per remote connection, and that process or 
thread handles one socket. ØMQ lets you collapse this entire structure into a single 
process and then break it up as necessary for scaling.
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If you are using ØMQ for inter-thread communications only (i.e., a multithreaded 
application that does no external socket I/O) you can set the I/O threads to zero. It’ s 
not a significant optimization though, more of a curiosity.

Messaging Patterns
Underneath the brown paper wrapping of ØMQ’ s socket API lies the world of 

messaging patterns. If you have a background in enterprise messaging, or know UDP 
well, these will be vaguely familiar. But to most ØMQ newcomers, they are a surprise. 
We’ re so used to the TCP paradigm where a socket maps one-to-one to another node.

Let’ s recap briefly what ØMQ does for you. It delivers blobs of data (messages) to 
nodes, quickly and efficiently. You can map nodes to threads, processes, or nodes. ØMQ 
gives your applications a single socket API to work with, no matter what the actual 
transport (like in-process, inter-process, TCP, or multicast). It automatically reconnects 
to peers as they come and go. It queues messages at both sender and receiver, as 
needed. It manages these queues carefully to ensure processes don’ t run out of memory, 
overflowing to disk when appropriate. It handles socket errors. It does all I/O in 
background threads. It uses lock-free techniques for talking between nodes, so there are 
never locks, waits, semaphores, or deadlocks.

But cutting through that, it routes and queues messages according to precise recipes 
called patterns. It is these patterns that provide ØMQ’ s intelligence. They encapsulate 
our hard-earned experience of the best ways to distribute data and work. ØMQ’ s 
patterns are hard-coded but future versions may allow user-definable patterns.

ØMQ patterns are implemented by pairs of sockets with matching types. In other 
words, to understand ØMQ patterns you need to understand socket types and how they 
work together. Mostly, this just takes study; there is little that is obvious at this level.

The built-in core ØMQ patterns are:
• Request-reply, which connects a set of clients to a set of services. This is a 

remote procedure call and task distribution pattern.
• Pub-sub, which connects a set of publishers to a set of subscribers. This is a 

data distribution pattern.
• Pipeline, which connects nodes in a fan-out/fan-in pattern that can have 

multiple steps and loops. This is a parallel task distribution and collection 
pattern.

• Exclusive pair, which connects two sockets exclusively. This is a pattern for 
connecting two threads in a process, not to be confused with “ normal”  pairs of 
sockets.

We looked at the first three of these in “ Basics” , and we’ ll see the exclusive pair 
pattern later in this chapter. The zmq_socket() man page is fairly clear about the 
patterns, it’ s worth reading several times until it starts to make sense. These are the 
socket combinations that are valid for a connect-bind pair (either side can bind):

• PUB and SUB
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• REQ and REP
• REQ and ROUTER
• DEALER and REP
• DEALER and ROUTER
• DEALER and DEALER
• ROUTER and ROUTER
• PUSH and PULL
• PAIR and PAIR

You’ ll also see references to XPUB and XSUB sockets, which we’ ll come to later 
(they’ re like raw versions of PUB and SUB). Any other combination will produce 
undocumented and unreliable results, and future versions of ØMQ will probably return 
errors if you try them. You can and will, of course, bridge other socket types via code, 
i.e., read from one socket type and write to another.

High-Level Messaging Patterns
These four core patterns are cooked into ØMQ. They are part of the ØMQ API, 

implemented in the core C++ library, and are guaranteed to be available in all fine 
retail stores.

On top of those, we add high-level messaging patterns. We build these high-level 
patterns on top of ØMQ and implement them in whatever language we’ re using for our 
application. They are not part of the core library, do not come with the ØMQ package, 
and exist in their own space as part of the ØMQ community. For example the 
Majordomo pattern, which we explore in “ Reliable Request-Reply Patterns” , sits in the 
GitHub Majordomo project in the ZeroMQ organization.

One of the things we aim to provide you with in this guide are a set of such high-level 
patterns, both small (how to handle messages sanely) and large (how to make a reliable 
pub-sub architecture).

Working with Messages
The libzmq core library has in fact two APIs to send and receive messages. The 

zmq_send() and zmq_recv() methods that we’ ve already seen and used are simple one-
liners. We will use these often, but zmq_recv() is bad at dealing with arbitrary message 
sizes: it truncates messages to whatever buffer size you provide. So there’ s a second API 
that works with zmq_msg_t structures, with a richer but more difficult API:

• Initialise a message: zmq_msg_init(), zmq_msg_init_size(), zmq_msg_init_data().
• Sending and receiving a message: zmq_msg_send(), zmq_msg_recv().
• Release a message: zmq_msg_close().
• Access message content: zmq_msg_data(), zmq_msg_size(), zmq_msg_more().
• Work with message properties: zmq_msg_get(), zmq_msg_set().
• Message manipulation: zmq_msg_copy(), zmq_msg_move().
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On the wire, ØMQ messages are blobs of any size from zero upwards that fit in 
memory. You do your own serialization using protocol buffers, msgpack, JSON, or 
whatever else your applications need to speak. It’ s wise to choose a data representation 
that is portable, but you can make your own decisions about trade-offs.

In memory, ØMQ messages are zmq_msg_t structures (or classes depending on your 
language). Here are the basic ground rules for using ØMQ messages in C:

• You create and pass around zmq_msg_t objects, not blocks of data.
• To read a message, you use zmq_msg_init() to create an empty message, and 

then you pass that to zmq_msg_recv().
• To write a message from new data, you use zmq_msg_init_size() to create a 

message and at the same time allocate a block of data of some size. You then fill 
that data using memcpy, and pass the message to zmq_msg_send().

• To release (not destroy) a message, you call zmq_msg_close(). This drops a 
reference, and eventually ØMQ will destroy the message.

• To access the message content, you use zmq_msg_data(). To know how much data 
the message contains, use zmq_msg_size().

• Do not use zmq_msg_move(), zmq_msg_copy(), or zmq_msg_init_data() unless you 
read the man pages and know precisely why you need these.

• After you pass a message to zmq_msg_send(), ØMQ will clear the message, i.e., 
set the size to zero. You cannot send the same message twice, and you cannot 
access the message data after sending it.

• These rules don’ t apply if you use zmq_send() and zmq_recv(), to which you pass 
byte arrays, not message structures.

If you want to send the same message more than once, and it’ s sizable, create a 
second message, initialize it using zmq_msg_init(), and then use zmq_msg_copy() to create 
a copy of the first message. This does not copy the data but copies a reference. You can 
then send the message twice (or more, if you create more copies) and the message will 
only be finally destroyed when the last copy is sent or closed.

ØMQ also supports multipart messages, which let you send or receive a list of frames 
as a single on-the-wire message. This is widely used in real applications and we’ ll look 
at that later in this chapter and in “ Advanced Request-Reply Patterns” .

Frames (also called “ message parts”  in the ØMQ reference manual pages) are the 
basic wire format for ØMQ messages. A frame is a length-specified block of data. The 
length can be zero upwards. If you’ ve done any TCP programming you’ ll appreciate 
why frames are a useful answer to the question “ how much data am I supposed to read 
of this network socket now?”

There is a wire-level protocol called ZMTP12 that defines how ØMQ reads and writes 
frames on a TCP connection. If you’ re interested in how this works, the spec is quite 
short.

12 http://rfc.zeromq.org/spec:15
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Originally, a ØMQ message was one frame, like UDP. We later extended this with 
multipart messages, which are quite simply series of frames with a “ more”  bit set to 
one, followed by one with that bit set to zero. The ØMQ API then lets you write 
messages with a “ more”  flag and when you read messages, it lets you check if there’ s 
“ more” .

In the low-level ØMQ API and the reference manual, therefore, there’ s some fuzziness 
about messages versus frames. So here’ s a useful lexicon:

• A message can be one or more parts.
• These parts are also called “ frames” .
• Each part is a zmq_msg_t object.
• You send and receive each part separately, in the low-level API.
• Higher-level APIs provide wrappers to send entire multipart messages.

Some other things that are worth knowing about messages:
• You may send zero-length messages, e.g., for sending a signal from one thread to 

another.
• ØMQ guarantees to deliver all the parts (one or more) for a message, or none of 

them.
• ØMQ does not send the message (single or multipart) right away, but at some 

indeterminate later time. A multipart message must therefore fit in memory.
• A message (single or multipart) must fit in memory. If you want to send files of 

arbitrary sizes, you should break them into pieces and send each piece as 
separate single-part messages. Using multipart data will not reduce memory 
consumption.

• You must call zmq_msg_close() when finished with a received message, in 
languages that don’ t automatically destroy objects when a scope closes. You 
don’ t call this method after sending a message.

And to be repetitive, do not use zmq_msg_init_data() yet. This is a zero-copy method 
and is guaranteed to create trouble for you. There are far more important things to 
learn about ØMQ before you start to worry about shaving off microseconds.

This rich API can be tiresome to work with. The methods are optimized for 
performance, not simplicity. If you start using these you will almost definitely get them 
wrong until you’ ve read the man pages with some care. So one of the main jobs of a 
good language binding is to wrap this API up in classes that are easier to use.

Handling Multiple Sockets
In all the examples so far, the main loop of most examples has been:

1. Wait for message on socket.
2. Process message.
3. Repeat.
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What if we want to read from multiple endpoints at the same time? The simplest way 
is to connect one socket to all the endpoints and get ØMQ to do the fan-in for us. This 
is legal if the remote endpoints are in the same pattern, but it would be wrong to 
connect a PULL socket to a PUB endpoint.

To actually read from multiple sockets all at once, use zmq_poll(). An even better way 
might be to wrap zmq_poll() in a framework that turns it into a nice event-driven 
reactor, but it’ s significantly more work than we want to cover here.

Let’ s start with a dirty hack, partly for the fun of not doing it right, but mainly 
because it lets me show you how to do non-blocking socket reads. Here is a simple 
example of reading from two sockets using non-blocking reads. This rather confused 
program acts both as a subscriber to weather updates, and a worker for parallel tasks:

Example 11. Multiple socket reader (msreader.c)

//  Reading from multiple sockets
//  This version uses a simple recv loop

#include "zhelpers.h"

int main (void) 
{
    //  Connect to task ventilator
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Connect to weather server
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5556");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "10001 ", 6);

    //  Process messages from both sockets
    //  We prioritize traffic from the task ventilator
    while (1) {
        char msg [256];
        while (1) {
            int size = zmq_recv (receiver, msg, 255, ZMQ_DONTWAIT);
            if (size != -1) {
                //  Process task
            }
            else
                break;
        }
        while (1) {
            int size = zmq_recv (subscriber, msg, 255, ZMQ_DONTWAIT);
            if (size != -1) {
                //  Process weather update
            }
            else
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                break;
        }
        //  No activity, so sleep for 1 msec
        s_sleep (1);
    }
    zmq_close (receiver);
    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

The cost of this approach is some additional latency on the first message (the sleep at 
the end of the loop, when there are no waiting messages to process). This would be a 
problem in applications where submillisecond latency was vital. Also, you need to check 
the documentation for nanosleep() or whatever function you use to make sure it does 
not busy-loop.

You can treat the sockets fairly by reading first from one, then the second rather than 
prioritizing them as we did in this example.

Now let’ s see the same senseless little application done right, using zmq_poll():

Example 12. Multiple socket poller (mspoller.c)

//  Reading from multiple sockets
//  This version uses zmq_poll()

#include "zhelpers.h"

int main (void) 
{
    //  Connect to task ventilator
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Connect to weather server
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5556");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "10001 ", 6);

    //  Process messages from both sockets
    while (1) {
        char msg [256];
        zmq_pollitem_t items [] = {
            { receiver,   0, ZMQ_POLLIN, 0 },
            { subscriber, 0, ZMQ_POLLIN, 0 }
        };
        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            int size = zmq_recv (receiver, msg, 255, 0);
            if (size != -1) {
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                //  Process task
            }
        }
        if (items [1].revents & ZMQ_POLLIN) {
            int size = zmq_recv (subscriber, msg, 255, 0);
            if (size != -1) {
                //  Process weather update
            }
        }
    }
    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

The items structure has these four members:

typedef struct {
    void *socket;       //  0MQ socket to poll on
    int fd;             //  OR, native file handle to poll on
    short events;       //  Events to poll on
    short revents;      //  Events returned after poll
} zmq_pollitem_t;

Multipart Messages
ØMQ lets us compose a message out of several frames, giving us a “ multipart 

message” . Realistic applications use multipart messages heavily, both for wrapping 
messages with address information and for simple serialization. We’ ll look at reply 
envelopes later.

What we’ ll learn now is simply how to blindly and safely read and write multipart 
messages in any application (such as a proxy) that needs to forward messages without 
inspecting them.

When you work with multipart messages, each part is a zmq_msg item. E.g., if you are 
sending a message with five parts, you must construct, send, and destroy five zmq_msg 
items. You can do this in advance (and store the zmq_msg items in an array or other 
structure), or as you send them, one-by-one.

Here is how we send the frames in a multipart message (we receive each frame into a 
message object):

zmq_msg_send (socket, &message, ZMQ_SNDMORE);
...
zmq_msg_send (socket, &message, ZMQ_SNDMORE);
...
zmq_msg_send (socket, &message, 0);
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Here is how we receive and process all the parts in a message, be it single part or 
multipart:

while (1) {
    zmq_msg_t message;
    zmq_msg_init (&message);
    zmq_msg_recv (socket, &message, 0);
    //  Process the message frame
    ...
    zmq_msg_close (&message);
    if (!zmq_msg_more (&message))
        break;      //  Last message frame
}

Some things to know about multipart messages:
• When you send a multipart message, the first part (and all following parts) are 

only actually sent on the wire when you send the final part.
• If you are using zmq_poll(), when you receive the first part of a message, all the 

rest has also arrived.
• You will receive all parts of a message, or none at all.
• Each part of a message is a separate zmq_msg item.
• You will receive all parts of a message whether or not you check the more 

property.
• On sending, ØMQ queues message frames in memory until the last is received, 

then sends them all.
• There is no way to cancel a partially sent message, except by closing the socket.

Intermediaries and Proxies
ØMQ aims for decentralized intelligence, but that doesn’ t mean your network is 

empty space in the middle. It’ s filled with message-aware infrastructure and quite often, 
we build that infrastructure with ØMQ. The ØMQ plumbing can range from tiny pipes 
to full-blown service-oriented brokers. The messaging industry calls this intermediation, 
meaning that the stuff in the middle deals with either side. In ØMQ, we call these 
proxies, queues, forwarders, device, or brokers, depending on the context.

This pattern is extremely common in the real world and is why our societies and 
economies are filled with intermediaries who have no other real function than to reduce 
the complexity and scaling costs of larger networks. Real-world intermediaries are 
typically called wholesalers, distributors, managers, and so on.

The Dynamic Discovery Problem
One of the problems you will hit as you design larger distributed architectures is 

discovery. That is, how do pieces know about each other? It’ s especially difficult if 
pieces come and go, thus we can call this the “ dynamic discovery problem” .
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There are several solutions to dynamic discovery. The simplest is to entirely avoid it 
by hard-coding (or configuring) the network architecture so discovery is done by hand. 
That is, when you add a new piece, you reconfigure the network to know about it.
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It’ s better to think of intermediaries as simple stateless message switches. A good 
analogy is an HTTP proxy; it’ s there, but doesn’ t have any special role. Adding a pub-
sub proxy solves the dynamic discovery problem in our example. We set the proxy in 
the “ middle”  of the network (see figure 13). The proxy opens an XSUB socket, an 
XPUB socket, and binds each to well-known IP addresses and ports. Then, all other 
processes connect to the proxy, instead of to each other. It becomes trivial to add more 
subscribers or publishers.

We need XPUB and XSUB sockets 
because ØMQ does subscription 
forwarding from subscribers to 
publishers. XSUB and XPUB are 
exactly like SUB and PUB except they 
expose subscriptions as special 
messages. The proxy has to forward 
these subscription messages from 
subscriber side to publisher side, by 
reading them from the XPUB socket 
and writing them to the XSUB socket. 
This is the main use case for XSUB 
and XPUB (see figure 14).

Shared Queue (DEALER and 
ROUTER sockets)

In the Hello World client/server application, we have one client that talks to one 
service. However, in real cases we usually need to allow multiple services as well as 
multiple clients. This lets us scale up the power of the service (many threads or 
processes or nodes rather than just one). The only constraint is that services must be 
stateless, all state being in the request or in some shared storage such as a database.

There are two ways to connect 
multiple clients to multiple servers. 
The brute force way is to connect each 
client socket to multiple service 
endpoints. One client socket can 
connect to multiple service sockets, 
and the REQ socket will then 
distribute requests among these 
services. Let’ s say you connect a client 
socket to three service endpoints; A, B, 
and C. The client makes requests R1, 
R2, R3, R4. R1 and R4 go to service 
A, R2 goes to B, and R3 goes to 
service C (see figure 15).
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This design lets you add more clients cheaply. You can also add more services. Each 
client will distribute its requests to the services. But each client has to know the service 
topology. If you have 100 clients and then you decide to add three more services, you 
need to reconfigure and restart 100 clients in order for the clients to know about the 
three new services.

That’ s clearly not the kind of thing we want to be doing at 3 a.m. when our 
supercomputing cluster has run out of resources and we desperately need to add a 
couple of hundred of new service nodes. Too many static pieces are like liquid concrete: 
knowledge is distributed and the more static pieces you have, the more effort it is to 
change the topology. What we want is something sitting in between clients and services 
that centralizes all knowledge of the topology. Ideally, we should be able to add and 
remove services or clients at any time without touching any other part of the topology.

So we’ ll write a little message queuing broker that gives us this flexibility. The broker 
binds to two endpoints, a frontend for clients and a backend for services. It then uses 
zmq_poll() to monitor these two sockets for activity and when it has some, it shuttles 
messages between its two sockets. It doesn’ t actually manage any queues explicitly—
ØMQ does that automatically on each socket.

When you use REQ to talk to REP, you get a strictly synchronous request-reply 
dialog. The client sends a request. The service reads the request and sends a reply. The 
client then reads the reply. If either the client or the service try to do anything else 
(e.g., sending two requests in a row without waiting for a response), they will get an 
error.

But our broker has to be non-blocking. Obviously, we can use zmq_poll() to wait for 
activity on either socket, but we can’ t use REP and REQ.
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The request-reply broker binds to two endpoints, one for clients to connect to (the 
frontend socket) and one for workers to connect to (the backend). To test this broker, 
you will want to change your workers so they connect to the backend socket. Here is a 
client that shows what I mean:

Example 13. Request-reply client (rrclient.c)

//  Hello World client
//  Connects REQ socket to tcp://localhost:5559
//  Sends "Hello" to server, expects "World" back

#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to server
    void *requester = zmq_socket (context, ZMQ_REQ);
    zmq_connect (requester, "tcp://localhost:5559");

    int request_nbr;
    for (request_nbr = 0; request_nbr != 10; request_nbr++) {
        s_send (requester, "Hello");
        char *string = s_recv (requester);
        printf ("Received reply %d [%s]\n", request_nbr, string);
        free (string);
    }
    zmq_close (requester);
    zmq_ctx_destroy (context);
    return 0;
}

Here is the worker:

Example 14. Request-reply worker (rrworker.c)

//  Hello World worker
//  Connects REP socket to tcp://*:5560
//  Expects "Hello" from client, replies with "World"

#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *responder = zmq_socket (context, ZMQ_REP);
    zmq_connect (responder, "tcp://localhost:5560");
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    while (1) {
        //  Wait for next request from client
        char *string = s_recv (responder);
        printf ("Received request: [%s]\n", string);
        free (string);

        //  Do some 'work'
        sleep (1);

        //  Send reply back to client
        s_send (responder, "World");
    }
    //  We never get here, but clean up anyhow
    zmq_close (responder);
    zmq_ctx_destroy (context);
    return 0;
}

And here is the broker, which properly handles multipart messages:

Example 15. Request-reply broker (rrbroker.c)

//  Simple request-reply broker

#include "zhelpers.h"

int main (void) 
{
    //  Prepare our context and sockets
    void *context = zmq_ctx_new ();
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    void *backend  = zmq_socket (context, ZMQ_DEALER);
    zmq_bind (frontend, "tcp://*:5559");
    zmq_bind (backend,  "tcp://*:5560");

    //  Initialize poll set
    zmq_pollitem_t items [] = {
        { frontend, 0, ZMQ_POLLIN, 0 },
        { backend,  0, ZMQ_POLLIN, 0 }
    };
    //  Switch messages between sockets
    while (1) {
        zmq_msg_t message;
        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            while (1) {
                //  Process all parts of the message
                zmq_msg_init (&message);
                zmq_msg_recv (&message, frontend, 0);
                zmq_msg_send (&message, backend,
                    zmq_msg_more (&message)? ZMQ_SNDMORE: 0);
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                zmq_msg_close (&message);
                if (!zmq_msg_more (&message))
                    break;      //  Last message part
            }
        }
        if (items [1].revents & ZMQ_POLLIN) {
            while (1) {
                //  Process all parts of the message
                zmq_msg_init (&message);
                zmq_msg_recv (&message, backend, 0);
                zmq_msg_send (&message, frontend,
                    zmq_msg_more (&message)? ZMQ_SNDMORE: 0);
                zmq_msg_close (&message);
                if (!zmq_msg_more (&message))
                    break;      //  Last message part
            }
        }
    }
    //  We never get here, but clean up anyhow
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

Using a request-reply broker makes 
your client/server architectures easier 
to scale because clients don’ t see 
workers, and workers don’ t see clients. 
The only static node is the broker in 
the middle (see figure 17).

ØMQ’ s Built-In Proxy Function
It turns out that the core loop in the 

previous section’ s rrbroker is very 
useful, and reusable. It lets us build 
pub-sub forwarders and shared queues 
and other little intermediaries with 
very little effort. ØMQ wraps this up 
in a single method, zmq_proxy():

zmq_proxy (frontend, backend, 
capture);
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The two (or three sockets, if we want to capture data) must be properly connected, 
bound, and configured. When we call the zmq_proxy, method it’ s exactly like starting the 
main loop of rrbroker. Let’ s rewrite the request-reply broker to call zmq_proxy, and re-
badge this as an expensive-sounding “ message queue”  (people have charged houses for 
code that did less):

Example 16. Message queue broker (msgqueue.c)

//  Simple message queuing broker
//  Same as request-reply broker but using QUEUE device

#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();

    //  Socket facing clients
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    int rc = zmq_bind (frontend, "tcp://*:5559");
    assert (rc == 0);

    //  Socket facing services
    void *backend = zmq_socket (context, ZMQ_DEALER);
    rc = zmq_bind (backend, "tcp://*:5560");
    assert (rc == 0);

    //  Start the proxy
    zmq_proxy (frontend, backend, NULL);

    //  We never get here...
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}

If you’ re like most ØMQ users, at this stage your mind is starting to think, “ What 
kind of evil stuff can I do if I plug random socket types into the proxy?”  The short 
answer is: try it and work out what is happening. In practice, you would usually stick 
to ROUTER/DEALER, XSUB/XPUB, or PULL/PUSH.

Transport Bridging
A frequent request from ØMQ users is, “ How do I connect my ØMQ network with 

technology X?”  where X is some other networking or messaging technology.
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Example 17. Weather update proxy (wuproxy.c)

//  Weather proxy device

#include "zhelpers.h"

int main (void)
{
    void *context = zmq_ctx_new ();

    //  This is where the weather server sits
    void *frontend = zmq_socket (context, ZMQ_XSUB);
    zmq_connect (frontend, "tcp://192.168.55.210:5556");

    //  This is our public endpoint for subscribers
    void *backend = zmq_socket (context, ZMQ_XPUB);
    zmq_bind (backend, "tcp://10.1.1.0:8100");

    //  Run the proxy until the user interrupts us
    zmq_proxy (frontend, backend, NULL);
    
    zmq_close (frontend);
    zmq_close (backend);
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    zmq_ctx_destroy (context);
    return 0;
}

It looks very similar to the earlier proxy example, but the key part is that the 
frontend and backend sockets are on two different networks (see figure 18). We can use 
this model for example to connect a multicast network (pgm transport) to a tcp 
publisher.

Handling Errors and ETERM
ØMQ’ s error handling philosophy is a mix of fail-fast and resilience. Processes, we 

believe, should be as vulnerable as possible to internal errors, and as robust as possible 
against external attacks and errors. To give an analogy, a living cell will self-destruct if 
it detects a single internal error, yet it will resist attack from the outside by all means 
possible.

Assertions, which pepper the ØMQ code, are absolutely vital to robust code; they 
just have to be on the right side of the cellular wall. And there should be such a wall. If 
it is unclear whether a fault is internal or external, that is a design flaw to be fixed. In 
C/C++, assertions stop the application immediately with an error. In other languages, 
you may get exceptions or halts.

When ØMQ detects an external fault it returns an error to the calling code. In some 
rare cases, it drops messages silently if there is no obvious strategy for recovering from 
the error.

In most of the C examples we’ ve seen so far there’ s been no error handling. Real 
code should do error handling on every single ØMQ call. If you’ re using a 
language binding other than C, the binding may handle errors for you. In C, you do 
need to do this yourself. There are some simple rules, starting with POSIX conventions:

• Methods that create objects return NULL if they fail.
• Methods that process data may return the number of bytes processed, or -1 on 

an error or failure.
• Other methods return 0 on success and -1 on an error or failure.
• The error code is provided in errno or zmq_errno().
• A descriptive error text for logging is provided by zmq_strerror().
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For example:

void *context = zmq_ctx_new ();
assert (context);
void *socket = zmq_socket (context, ZMQ_REP);
assert (socket);
int rc = zmq_bind (socket, "tcp://*:5555");
if (rc == -1) {
    printf ("E: bind failed: %s\n", strerror (errno));
    return -1;
}

There are two main exceptional conditions that you should handle as nonfatal:
• When your code receives a message with the ZMQ_DONTWAIT option and there is no 

waiting data, ØMQ will return -1 and set errno to EAGAIN.
• When one thread calls zmq_ctx_destroy(), and other threads are still doing 

blocking work, the zmq_ctx_destroy() call closes the context and all blocking 
calls exit with -1, and errno set to ETERM.

In C/C++, asserts can be removed entirely in optimized code, so don’ t make the 
mistake of wrapping the whole ØMQ call in an assert(). It looks neat; then the 
optimizer removes all the asserts and the calls you want to make, and your application 
breaks in impressive ways.

Let’ s see how to shut 
down a process cleanly. 
We’ ll take the parallel 
pipeline example from the 
previous section. If we’ ve 
started a whole lot of 
workers in the 
background, we now want 
to kill them when the 
batch is finished. Let’ s do 
this by sending a kill 
message to the workers. 
The best place to do this 
is the sink because it 
really knows when the 
batch is done.
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How do we connect the sink to the workers? The PUSH/PULL sockets are one-way 
only. We could switch to another socket type, or we could mix multiple socket flows. 
Let’ s try the latter: using a pub-sub model to send kill messages to the workers (see 
figure 19):

• The sink creates a PUB socket on a new endpoint.
• Workers bind their input socket to this endpoint.
• When the sink detects the end of the batch, it sends a kill to its PUB socket.
• When a worker detects this kill message, it exits.

It doesn’ t take much new code in the sink:

void *control = zmq_socket (context, ZMQ_PUB);
zmq_bind (control, "tcp://*:5559");
...
//  Send kill signal to workers
s_send (controller, "KILL");

Here is the worker process, which manages two sockets (a PULL socket getting tasks, 
and a SUB socket getting control commands), using the zmq_poll() technique we saw 
earlier:

Example 18. Parallel task worker with kill signaling (taskwork2.c)

//  Task worker - design 2
//  Adds pub-sub flow to receive and respond to kill signal

#include "zhelpers.h"

int main (void) 
{
    //  Socket to receive messages on
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_connect (receiver, "tcp://localhost:5557");

    //  Socket to send messages to
    void *sender = zmq_socket (context, ZMQ_PUSH);
    zmq_connect (sender, "tcp://localhost:5558");

    //  Socket for control input
    void *controller = zmq_socket (context, ZMQ_SUB);
    zmq_connect (controller, "tcp://localhost:5559");
    zmq_setsockopt (controller, ZMQ_SUBSCRIBE, "", 0);

    //  Process messages from either socket
    while (1) {
        zmq_pollitem_t items [] = {
            { receiver, 0, ZMQ_POLLIN, 0 },
            { controller, 0, ZMQ_POLLIN, 0 }
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        };
        zmq_poll (items, 2, -1);
        if (items [0].revents & ZMQ_POLLIN) {
            char *string = s_recv (receiver);
            printf ("%s.", string);     //  Show progress
            fflush (stdout);
            s_sleep (atoi (string));    //  Do the work
            free (string);
            s_send (sender, "");        //  Send results to sink
        }
        //  Any waiting controller command acts as 'KILL'
        if (items [1].revents & ZMQ_POLLIN)
            break;                      //  Exit loop
    }
    zmq_close (receiver);
    zmq_close (sender);
    zmq_close (controller);
    zmq_ctx_destroy (context);
    return 0;
}

Here is the modified sink application. When it’ s finished collecting results, it 
broadcasts a kill message to all workers:

Example 19. Parallel task sink with kill signaling (tasksink2.c)

//  Task sink - design 2
//  Adds pub-sub flow to send kill signal to workers

#include "zhelpers.h"

int main (void) 
{
    //  Socket to receive messages on
    void *context = zmq_ctx_new ();
    void *receiver = zmq_socket (context, ZMQ_PULL);
    zmq_bind (receiver, "tcp://*:5558");

    //  Socket for worker control
    void *controller = zmq_socket (context, ZMQ_PUB);
    zmq_bind (controller, "tcp://*:5559");

    //  Wait for start of batch
    char *string = s_recv (receiver);
    free (string);
    
    //  Start our clock now
    int64_t start_time = s_clock ();

    //  Process 100 confirmations
    int task_nbr;



60 Code Connected Volume 1 - Chapter 2. Sockets and Patterns

    for (task_nbr = 0; task_nbr < 100; task_nbr++) {
        char *string = s_recv (receiver);
        free (string);
        if ((task_nbr / 10) * 10 == task_nbr)
            printf (":");
        else
            printf (".");
        fflush (stdout);
    }
    printf ("Total elapsed time: %d msec\n", 
        (int) (s_clock () - start_time));

    //  Send kill signal to workers
    s_send (controller, "KILL");
    sleep (1);              //  Give 0MQ time to deliver

    zmq_close (receiver);
    zmq_close (controller);
    zmq_ctx_destroy (context);
    return 0;
}

Handling Interrupt Signals
Realistic applications need to shut down cleanly when interrupted with Ctrl-C or 

another signal such as SIGTERM. By default, these simply kill the process, meaning 
messages won’ t be flushed, files won’ t be closed cleanly, and so on.

Here is how we handle a signal in various languages:

Example 20. Handling Ctrl-C cleanly (interrupt.c)

//  Shows how to handle Ctrl-C

#include <zmq.h>
#include <stdio.h>
#include <signal.h>

//  Signal handling
//
//  Call s_catch_signals() in your application at startup, and then
//  exit your main loop if s_interrupted is ever 1. Works especially
//  well with zmq_poll.

static int s_interrupted = 0;
static void s_signal_handler (int signal_value)
{
    s_interrupted = 1;
}
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static void s_catch_signals (void)
{
    struct sigaction action;
    action.sa_handler = s_signal_handler;
    action.sa_flags = 0;
    sigemptyset (&action.sa_mask);
    sigaction (SIGINT, &action, NULL);
    sigaction (SIGTERM, &action, NULL);
}

int main (void)
{
    void *context = zmq_ctx_new ();
    void *socket = zmq_socket (context, ZMQ_REP);
    zmq_bind (socket, "tcp://*:5555");

    s_catch_signals ();
    while (1) {
        //  Blocking read will exit on a signal
        char buffer [255];
        zmq_recv (socket, buffer, 255, 0);
        if (s_interrupted) {
            printf ("W: interrupt received, killing server...\n");
            break;
        }
    }
    zmq_close (socket);
    zmq_ctx_destroy (context);
    return 0;
}

The program provides s_catch_signals(), which traps Ctrl-C (SIGINT) and SIGTERM. 
When either of these signals arrive, the s_catch_signals() handler sets the global 
variable s_interrupted. Thanks to your signal handler, your application will not die 
automatically. Instead, you have a chance to clean up and exit gracefully. You have to 
now explicitly check for an interrupt and handle it properly. Do this by calling 
s_catch_signals() (copy this from interrupt.c) at the start of your main code. This sets 
up the signal handling. The interrupt will affect ØMQ calls as follows:

• If your code is blocking in a blocking call (sending a message, receiving a 
message, or polling), then when a signal arrives, the call will return with EINTR.

• Wrappers like s_recv() return NULL if they are interrupted.
So check for an EINTR return code, a NULL return, and/or s_interrupted.
Here is a typical code fragment:

s_catch_signals ();
client = zmq_socket (...);
while (!s_interrupted) {
    char *message = s_recv (client);
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    if (!message)
        break;          //  Ctrl-C used
}
zmq_close (client);

If you call s_catch_signals() and don’ t test for interrupts, then your application will 
become immune to Ctrl-C and SIGTERM, which may be useful, but is usually not.

Detecting Memory Leaks
Any long-running application has to manage memory correctly, or eventually it’ ll use 

up all available memory and crash. If you use a language that handles this 
automatically for you, congratulations. If you program in C or C++ or any other 
language where you’ re responsible for memory management, here’ s a short tutorial on 
using valgrind, which among other things will report on any leaks your programs have.

• To install valgrind, e.g., on Ubuntu or Debian, issue this command:

sudo apt-get install valgrind

• By default, ØMQ will cause valgrind to complain a lot. To remove these 
warnings, create a file called vg.supp that contains this:

{
   <socketcall_sendto>
   Memcheck:Param
   socketcall.sendto(msg)
   fun:send
   ...
}
{
   <socketcall_sendto>
   Memcheck:Param
   socketcall.send(msg)
   fun:send
   ...
}

• Fix your applications to exit cleanly after Ctrl-C. For any application that exits 
by itself, that’ s not needed, but for long-running applications, this is essential, 
otherwise valgrind will complain about all currently allocated memory.

• Build your application with -DDEBUG if it’ s not your default setting. That ensures 
valgrind can tell you exactly where memory is being leaked.

• Finally, run valgrind thus:

valgrind --tool=memcheck --leak-check=full --suppressions=vg.supp 
someprog



Code Connected Volume 1 - Chapter 2. Sockets and Patterns 63

And after fixing any errors it reported, you should get the pleasant message:

==30536== ERROR SUMMARY: 0 errors from 0 contexts...

Multithreading with ØMQ
ØMQ is perhaps the nicest way ever to write multithreaded (MT) applications. 

Whereas ØMQ sockets require some readjustment if you are used to traditional sockets, 
ØMQ multithreading will take everything you know about writing MT applications, 
throw it into a heap in the garden, pour gasoline over it, and set it alight. It’ s a rare 
book that deserves burning, but most books on concurrent programming do.

To make utterly perfect MT programs (and I mean that literally), we don’ t need 
mutexes, locks, or any other form of inter-thread communication except 
messages sent across ØMQ sockets.

By “ perfect MT programs” , I mean code that’ s easy to write and understand, that 
works with the same design approach in any programming language, and on any 
operating system, and that scales across any number of CPUs with zero wait states and 
no point of diminishing returns.

If you’ ve spent years learning tricks to make your MT code work at all, let alone 
rapidly, with locks and semaphores and critical sections, you will be disgusted when you 
realize it was all for nothing. If there’ s one lesson we’ ve learned from 30+ years of 
concurrent programming, it is: just don’ t share state. It’ s like two drunkards trying to 
share a beer. It doesn’ t matter if they’ re good buddies. Sooner or later, they’ re going to 
get into a fight. And the more drunkards you add to the table, the more they fight each 
other over the beer. The tragic majority of MT applications look like drunken bar 
fights.

The list of weird problems that you need to fight as you write classic shared-state MT 
code would be hilarious if it didn’ t translate directly into stress and risk, as code that 
seems to work suddenly fails under pressure. A large firm with world-beating experience 
in buggy code released its list of “ 11 Likely Problems In Your Multithreaded Code” , 
which covers forgotten synchronization, incorrect granularity, read and write tearing, 
lock-free reordering, lock convoys, two-step dance, and priority inversion.

Yeah, we counted seven problems, not eleven. That’ s not the point though. The point 
is, do you really want that code running the power grid or stock market to start getting 
two-step lock convoys at 3 p.m. on a busy Thursday? Who cares what the terms 
actually mean? This is not what turned us on to programming, fighting ever more 
complex side effects with ever more complex hacks.

Some widely used models, despite being the basis for entire industries, are 
fundamentally broken, and shared state concurrency is one of them. Code that wants to 
scale without limit does it like the Internet does, by sending messages and sharing 
nothing except a common contempt for broken programming models.
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You should follow some rules to write happy multithreaded code with ØMQ:
• Isolate data privately within its thread and never share data in multiple 

threads. The only exception to this are ØMQ contexts, which are threadsafe.
• Stay away from the classic concurrency mechanisms like as mutexes, critical 

sections, semaphores, etc. These are an anti-pattern in ØMQ applications.
• Create one ØMQ context at the start of your process, and pass that to all 

threads that you want to connect via inproc sockets.
• Use attached threads to create structure within your application, and connect 

these to their parent threads using PAIR sockets over inproc. The pattern is: 
bind parent socket, then create child thread which connects its socket.

• Use detached threads to simulate independent tasks, with their own contexts. 
Connect these over tcp. Later you can move these to stand-alone processes 
without changing the code significantly.

• All interaction between threads happens as ØMQ messages, which you can 
define more or less formally.

• Don’ t share ØMQ sockets between threads. ØMQ sockets are not threadsafe. 
Technically it’ s possible to migrate a socket from one thread to another but it 
demands skill. The only place where it’ s remotely sane to share sockets between 
threads are in language bindings that need to do magic like garbage collection 
on sockets.

If you need to start more than one proxy in an application, for example, you will 
want to run each in their own thread. It is easy to make the error of creating the proxy 
frontend and backend sockets in one thread, and then passing the sockets to the proxy 
in another thread. This may appear to work at first but will fail randomly in real use. 
Remember: Do not use or close sockets except in the thread that created them.

If you follow these rules, you can quite easily build elegant multithreaded 
applications, and later split off threads into separate processes as you need to. 
Application logic can sit in threads, processes, or nodes: whatever your scale needs.

ØMQ uses native OS threads rather than virtual “ green”  threads. The advantage is 
that you don’ t need to learn any new threading API, and that ØMQ threads map 
cleanly to your operating system. You can use standard tools like Intel’ s ThreadChecker 
to see what your application is doing. The disadvantages are that native threading APIs 
are not always portable, and that if you have a huge number of threads (in the 
thousands), some operating systems will get stressed.

Let’ s see how this works in practice. We’ ll turn our old Hello World server into 
something more capable. The original server ran in a single thread. If the work per 
request is low, that’ s fine: one ØMQ thread can run at full speed on a CPU core, with 
no waits, doing an awful lot of work. But realistic servers have to do nontrivial work per 
request. A single core may not be enough when 10,000 clients hit the server all at once. 
So a realistic server will start multiple worker threads. It then accepts requests as fast 
as it can and distributes these to its worker threads. The worker threads grind through 
the work and eventually send their replies back.
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You can, of course, do all this using a proxy broker and external worker processes, 
but often it’ s easier to start one process that gobbles up sixteen cores than sixteen 
processes, each gobbling up one core. Further, running workers as threads will cut out a 
network hop, latency, and network traffic.

The MT version of the Hello World service basically collapses the broker and workers 
into a single process:

Example 21. Multithreaded service (mtserver.c)

//  Multithreaded Hello World server

#include "zhelpers.h"
#include <pthread.h>

static void *
worker_routine (void *context) {
    //  Socket to talk to dispatcher
    void *receiver = zmq_socket (context, ZMQ_REP);
    zmq_connect (receiver, "inproc://workers");

    while (1) {
        char *string = s_recv (receiver);
        printf ("Received request: [%s]\n", string);
        free (string);
        //  Do some 'work'
        sleep (1);
        //  Send reply back to client
        s_send (receiver, "World");
    }
    zmq_close (receiver);
    return NULL;
}

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *clients = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (clients, "tcp://*:5555");

    //  Socket to talk to workers
    void *workers = zmq_socket (context, ZMQ_DEALER);
    zmq_bind (workers, "inproc://workers");

    //  Launch pool of worker threads
    int thread_nbr;
    for (thread_nbr = 0; thread_nbr < 5; thread_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_routine, context);
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    }
    //  Connect work threads to client threads via a queue proxy
    zmq_proxy (clients, workers, NULL);

    //  We never get here, but clean up anyhow
    zmq_close (clients);
    zmq_close (workers);
    zmq_ctx_destroy (context);
    return 0;
}

• The server starts a proxy that connects the two sockets. The proxy pulls 
incoming requests fairly from all clients, and distributes those out to workers. It 
also routes replies back to their origin.

Note that creating threads is not portable in most programming languages. The 
POSIX library is pthreads, but on Windows you have to use a different API. In our 
example, the pthread_create call starts up a new thread running the worker_routine 
function we defined. We’ ll see in “ Advanced Request-Reply Patterns”  how to wrap this 
in a portable API.

Here the “ work”  is just a one-second pause. We could do anything in the workers, 
including talking to other nodes. This is what the MT server looks like in terms of 
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ØMQ sockets and nodes. Note how the request-reply chain is REQ-ROUTER-queue-DEALER-
REP (see figure 20).

Signaling Between Threads (PAIR Sockets)
When you start making multithreaded applications with ØMQ, you’ ll encounter the 

question of how to coordinate your threads. Though you might be tempted to insert 
“ sleep”  statements, or use multithreading techniques such as semaphores or mutexes, 
the only mechanism that you should use are ØMQ messages. Remember the 
story of The Drunkards and The Beer Bottle.

Let’ s make three threads that signal each other when they are ready (see figure 21). 
In this example, we use PAIR sockets over the inproc transport:

Example 22. Multithreaded relay (mtrelay.c)

//  Multithreaded relay

#include "zhelpers.h"
#include <pthread.h>

static void *
step1 (void *context) {
    //  Connect to step2 and tell it we're ready
    void *xmitter = zmq_socket (context, ZMQ_PAIR);
    zmq_connect (xmitter, "inproc://step2");
    printf ("Step 1 ready, signaling step 2\n");
    s_send (xmitter, "READY");
    zmq_close (xmitter);

    return NULL;
}

static void *
step2 (void *context) {
    //  Bind inproc socket before starting step1
    void *receiver = zmq_socket (context, ZMQ_PAIR);
    zmq_bind (receiver, "inproc://step2");
    pthread_t thread;
    pthread_create (&thread, NULL, step1, context);

    //  Wait for signal and pass it on
    char *string = s_recv (receiver);
    free (string);
    zmq_close (receiver);

    //  Connect to step3 and tell it we're ready
    void *xmitter = zmq_socket (context, ZMQ_PAIR);
    zmq_connect (xmitter, "inproc://step3");
    printf ("Step 2 ready, signaling step 3\n");
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    s_send (xmitter, "READY");
    zmq_close (xmitter);

    return NULL;
}

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Bind inproc socket before starting step2
    void *receiver = zmq_socket (context, ZMQ_PAIR);
    zmq_bind (receiver, "inproc://step3");
    pthread_t thread;
    pthread_create (&thread, NULL, step2, context);

    //  Wait for signal
    char *string = s_recv (receiver);
    free (string);
    zmq_close (receiver);

    printf ("Test successful!\n");
    zmq_ctx_destroy (context);
    return 0;
}

This is a classic pattern for multithreading with ØMQ:
1. Two threads communicate over inproc, using a shared 

context.
2. The parent thread creates one socket, binds it to an 

inproc:// endpoint, and then starts the child thread, passing 
the context to it.

3. The child thread creates the second socket, connects it to 
that inproc:// endpoint, and then signals to the parent 
thread that it’ s ready.

Note that multithreading code using this pattern is not scalable 
out to processes. If you use inproc and socket pairs, you are building 
a tightly-bound application, i.e., one where your threads are 
structurally interdependent. Do this when low latency is really vital. 
The other design pattern is a loosely bound application, where 
threads have their own context and communicate over ipc or tcp. 
You can easily break loosely bound threads into separate processes.
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This is the first time we’ ve shown an example using PAIR sockets. Why use PAIR? 
Other socket combinations might seem to work, but they all have side effects that could 
interfere with signaling:

• You can use PUSH for the sender and PULL for the receiver. This looks simple 
and will work, but remember that PUSH will distribute messages to all available 
receivers. If you by accident start two receivers (e.g., you already have one 
running and you start a second), you’ ll “ lose”  half of your signals. PAIR has the 
advantage of refusing more than one connection; the pair is exclusive.

• You can use DEALER for the sender and ROUTER for the receiver. ROUTER, 
however, wraps your message in an “ envelope” , meaning your zero-size signal 
turns into a multipart message. If you don’ t care about the data and treat 
anything as a valid signal, and if you don’ t read more than once from the 
socket, that won’ t matter. If, however, you decide to send real data, you will 
suddenly find ROUTER providing you with “ wrong”  messages. DEALER also 
distributes outgoing messages, giving the same risk as PUSH.

• You can use PUB for the sender and SUB for the receiver. This will correctly 
deliver your messages exactly as you sent them and PUB does not distribute as 
PUSH or DEALER do. However, you need to configure the subscriber with an 
empty subscription, which is annoying.

For these reasons, PAIR makes the best choice for coordination between pairs of 
threads.

Node Coordination
When you want to coordinate a set of nodes on a network, PAIR sockets won’ t work 

well any more. This is one of the few areas where the strategies for threads and nodes 
are different. Principally, nodes come and go whereas threads are usually static. PAIR 
sockets do not automatically reconnect if the remote node goes away and comes back.

The second significant difference between threads and nodes is 
that you typically have a fixed number of threads but a more 
variable number of nodes. Let’ s take one of our earlier scenarios (the 
weather server and clients) and use node coordination to ensure that 
subscribers don’ t lose data when starting up.

This is how the application will work:
• The publisher knows in advance how many subscribers it 

expects. This is just a magic number it gets from 
somewhere.

• The publisher starts up and waits for all subscribers to 
connect. This is the node coordination part. Each subscriber 
subscribes and then tells the publisher it’ s ready via another 
socket.

• When the publisher has all subscribers connected, it starts to publish data.
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In this case, we’ ll use a REQ-REP socket flow to synchronize subscribers and 
publisher (see figure 22). Here is the publisher:

Example 23. Synchronized publisher (syncpub.c)

//  Synchronized publisher

#include "zhelpers.h"
#define SUBSCRIBERS_EXPECTED  10  //  We wait for 10 subscribers 

int main (void)
{
    void *context = zmq_ctx_new ();

    //  Socket to talk to clients
    void *publisher = zmq_socket (context, ZMQ_PUB);
    zmq_bind (publisher, "tcp://*:5561");

    //  Socket to receive signals
    void *syncservice = zmq_socket (context, ZMQ_REP);
    zmq_bind (syncservice, "tcp://*:5562");

    //  Get synchronization from subscribers
    printf ("Waiting for subscribers\n");
    int subscribers = 0;
    while (subscribers < SUBSCRIBERS_EXPECTED) {
        //  - wait for synchronization request
        char *string = s_recv (syncservice);
        free (string);
        //  - send synchronization reply
        s_send (syncservice, "");
        subscribers++;
    }
    //  Now broadcast exactly 1M updates followed by END
    printf ("Broadcasting messages\n");
    int update_nbr;
    for (update_nbr = 0; update_nbr < 1000000; update_nbr++)
        s_send (publisher, "Rhubarb");

    s_send (publisher, "END");

    zmq_close (publisher);
    zmq_close (syncservice);
    zmq_ctx_destroy (context);
    return 0;
}
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And here is the subscriber:

Example 24. Synchronized subscriber (syncsub.c)

//  Synchronized subscriber

#include "zhelpers.h"

int main (void)
{
    void *context = zmq_ctx_new ();

    //  First, connect our subscriber socket
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5561");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "", 0);

    //  0MQ is so fast, we need to wait a while...
    sleep (1);

    //  Second, synchronize with publisher
    void *syncclient = zmq_socket (context, ZMQ_REQ);
    zmq_connect (syncclient, "tcp://localhost:5562");

    //  - send a synchronization request
    s_send (syncclient, "");

    //  - wait for synchronization reply
    char *string = s_recv (syncclient);
    free (string);

    //  Third, get our updates and report how many we got
    int update_nbr = 0;
    while (1) {
        char *string = s_recv (subscriber);
        if (strcmp (string, "END") == 0) {
            free (string);
            break;
        }
        free (string);
        update_nbr++;
    }
    printf ("Received %d updates\n", update_nbr);

    zmq_close (subscriber);
    zmq_close (syncclient);
    zmq_ctx_destroy (context);
    return 0;
}
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This Bash shell script will start ten subscribers and then the publisher:

echo "Starting subscribers..."
for ((a=0; a<10; a++)); do
    syncsub &
done
echo "Starting publisher..."
syncpub

Which gives us this satisfying output:

Starting subscribers...
Starting publisher...
Received 1000000 updates
Received 1000000 updates
...
Received 1000000 updates
Received 1000000 updates

We can’ t assume that the SUB connect will be finished by the time the REQ/REP 
dialog is complete. There are no guarantees that outbound connects will finish in any 
order whatsoever, if you’ re using any transport except inproc. So, the example does a 
brute force sleep of one second between subscribing, and sending the REQ/REP 
synchronization.

A more robust model could be:
• Publisher opens PUB socket and starts sending “ Hello”  messages (not data).
• Subscribers connect SUB socket and when they receive a Hello message they tell 

the publisher via a REQ/REP socket pair.
• When the publisher has had all the necessary confirmations, it starts to send 

real data.

Zero-Copy
ØMQ’ s message API lets you can send and receive messages directly from and to 

application buffers without copying data. We call zero-copy, and it can improve 
performance in some applications.

You should think about using zero-copy in the specific case where you are sending 
large blocks of memory (thousands of bytes), at a high frequency. For short messages, or 
for lower message rates, using zero-copy will make your code messier and more complex 
with no measurable benefit. Like all optimizations, use this when you know it helps, 
and measure before and after.
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To do zero-copy, you use zmq_msg_init_data() to create a message that refers to a 
block of data already allocated with malloc() or some other allocator, and then you pass 
that to zmq_msg_send(). When you create the message, you also pass a function that 
ØMQ will call to free the block of data, when it has finished sending the message. This 
is the simplest example, assuming buffer is a block of 1,000 bytes allocated on the heap:

void my_free (void *data, void *hint) {
    free (data);
}
//  Send message from buffer, which we allocate and 0MQ will free for us
zmq_msg_t message;
zmq_msg_init_data (&message, buffer, 1000, my_free, NULL);
zmq_msg_send (socket, &message, 0);

Note that you don’ t call zmq_msg_close() after sending a message— libzmq will do this 
automatically when it’ s actually done sending the message.

There is no way to do zero-copy on receive: ØMQ delivers you a buffer that you can 
store as long as you wish, but it will not write data directly into application buffers.

On writing, ØMQ’ s multipart messages work nicely together with zero-copy. In 
traditional messaging, you need to marshal different buffers together into one buffer 
that you can send. That means copying data. With ØMQ, you can send multiple buffers 
coming from different sources as individual message frames. Send each field as a length-
delimited frame. To the application, it looks like a series of send and receive calls. But 
internally, the multiple parts get written to the network and read back with single 
system calls, so it’ s very efficient.

Pub-Sub Message Envelopes
In the pub-sub pattern, we can split the key into a separate message frame that we 

call an envelope (see figure 23). If you want to use pub-sub envelopes, make them 
yourself. It’ s optional, and in previous pub-sub examples we didn’ t do this. Using a 
pub-sub envelope is a little more work for simple cases, but it’ s cleaner especially for 
real cases, where the key and the data are naturally separate things.
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The envelope holds the message type:

Example 25. Pub-Sub envelope publisher (psenvpub.c)

//  Pubsub envelope publisher
//  Note that the zhelpers.h file also provides s_sendmore

#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and publisher
    void *context = zmq_ctx_new ();
    void *publisher = zmq_socket (context, ZMQ_PUB);
    zmq_bind (publisher, "tcp://*:5563");

    while (1) {
        //  Write two messages, each with an envelope and content
        s_sendmore (publisher, "A");
        s_send (publisher, "We don't want to see this");
        s_sendmore (publisher, "B");
        s_send (publisher, "We would like to see this");
        sleep (1);
    }
    //  We never get here, but clean up anyhow
    zmq_close (publisher);
    zmq_ctx_destroy (context);
    return 0;
}

The subscriber wants only messages of type B:

Example 26. Pub-Sub envelope subscriber (psenvsub.c)

//  Pubsub envelope subscriber

#include "zhelpers.h"

int main (void)
{
    //  Prepare our context and subscriber
    void *context = zmq_ctx_new ();
    void *subscriber = zmq_socket (context, ZMQ_SUB);
    zmq_connect (subscriber, "tcp://localhost:5563");
    zmq_setsockopt (subscriber, ZMQ_SUBSCRIBE, "B", 1);

    while (1) {
        //  Read envelope with address
        char *address = s_recv (subscriber);
        //  Read message contents
        char *contents = s_recv (subscriber);
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        printf ("[%s] %s\n", address, contents);
        free (address);
        free (contents);
    }
    //  We never get here, but clean up anyhow
    zmq_close (subscriber);
    zmq_ctx_destroy (context);
    return 0;
}

When you run the two programs, the subscriber should show you this:

[B] We would like to see this
[B] We would like to see this
[B] We would like to see this
...

High-Water Marks
When you can send messages rapidly from process to process, you soon discover that 

memory is a precious resource, and one that can be trivially filled up. A few seconds of 
delay somewhere in a process can turn into a backlog that blows up a server unless you 
understand the problem and take precautions.

The problem is this: imagine you have process A sending messages at high frequency 
to process B, which is processing them. Suddenly B gets very busy (garbage collection, 
CPU overload, whatever), and can’ t process the messages for a short period. It could be 
a few seconds for some heavy garbage collection, or it could be much longer, if there’ s a 
more serious problem. What happens to the messages that process A is still trying to 
send frantically? Some will sit in B’ s network buffers. Some will sit on the Ethernet wire 
itself. Some will sit in A’ s network buffers. And the rest will accumulate in A’ s memory, 
as rapidly as the application behind A sends them. If you don’ t take some precaution, 
A can easily run out of memory and crash.

It is a consistent, classic problem with message brokers. What makes it hurt more is 
that it’ s B’ s fault, superficially, and B is typically a user-written application which A 
has no control over.
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What are the answers? One is to pass the problem upstream. A is getting the 
messages from somewhere else. So tell that process, “ Stop!”  And so on. This is called 
flow control. It sounds plausible, but what if you’ re sending out a Twitter feed? Do you 
tell the whole world to stop tweeting while B gets its act together?

Flow control works in some cases, but not in others. The transport layer can’ t tell the 
application layer to “ stop”  any more than a subway system can tell a large business, 
“ please keep your staff at work for another half an hour. I’ m too busy” . The answer for 
messaging is to set limits on the size of buffers, and then when we reach those limits, to 
take some sensible action. In some cases (not for a subway system, though), the answer 
is to throw away messages. In a others, the best strategy is to wait.

ØMQ uses the concept of HWM (high-water mark) to define the capacity of its 
internal pipes. Each connection out of a socket or into a socket has its own pipe, and 
HWM for sending, and/or receiving, depending on the socket type. Some sockets (PUB, 
PUSH) only have send buffers. Some (SUB, PULL, REQ, REP) only have receive 
buffers. Some (DEALER, ROUTER, PAIR) have both send and receive buffers.

In ØMQ v2.x, the HWM was infinite by default. This was easy but also typically 
fatal for high-volume publishers. In ØMQ v3.x, it’ s set to 1,000 by default, which is 
more sensible. If you’ re still using ØMQ v2.x, you should always set a HWM on your 
sockets, be it 1,000 to match ØMQ v3.x or another figure that takes into account your 
message sizes and expected subscriber performance.

When your socket reaches its HWM, it will either block or drop data depending on 
the socket type. PUB and ROUTER sockets will drop data if they reach their HWM, 
while other socket types will block. Over the inproc transport, the sender and receiver 
share the same buffers, so the real HWM is the sum of the HWM set by both sides.

Lastly, the HWMs are not exact; while you may get up to 1,000 messages by default, 
the real buffer size may be much lower (as little as half), due to the way libzmq 
implements its queues.

Missing Message Problem Solver
As you build applications with ØMQ, you will come across this problem more than 

once: losing messages that you expect to receive. We have put together a diagram (see 
figure 25) that walks through the most common causes for this.
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Here’ s a summary of what the graphic says:
• On SUB sockets, set a subscription using zmq_setsockopt() with ZMQ_SUBSCRIBE, 

or you won’ t get messages. Because you subscribe to messages by prefix, if you 
subscribe to "" (an empty subscription), you will get everything.

• If you start the SUB socket (i.e., establish a connection to a PUB socket) after 
the PUB socket has started sending out data, you will lose whatever it 
published before the connection was made. If this is a problem, set up your 
architecture so the SUB socket starts first, then the PUB socket starts 
publishing.

• Even if you synchronize a SUB and PUB socket, you may still lose messages. 
It’ s due to the fact that internal queues aren’ t created until a connection is 
actually created. If you can switch the bind/connect direction so the SUB socket 
binds, and the PUB socket connects, you may find it works more as you’ d 
expect.

• If you’ re using REP and REQ sockets, and you’ re not sticking to the 
synchronous send/recv/send/recv order, ØMQ will report errors, which you 
might ignore. Then, it would look like you’ re losing messages. If you use REQ or 
REP, stick to the send/recv order, and always, in real code, check for errors on 
ØMQ calls.

• If you’ re using PUSH sockets, you’ ll find that the first PULL socket to connect 
will grab an unfair share of messages. The accurate rotation of messages only 
happens when all PULL sockets are successfully connected, which can take some 
milliseconds. As an alternative to PUSH/PULL, for lower data rates, consider 
using ROUTER/DEALER and the load balancing pattern.

• If you’ re sharing sockets across threads, don’ t. It will lead to random weirdness, 
and crashes.

• If you’ re using inproc, make sure both sockets are in the same context. 
Otherwise the connecting side will in fact fail. Also, bind first, then connect. 
inproc is not a disconnected transport like tcp.

• If you’ re using ROUTER sockets, it’ s remarkably easy to lose messages by 
accident, by sending malformed identity frames (or forgetting to send an 
identity frame). In general setting the ZMQ_ROUTER_MANDATORY option on ROUTER 
sockets is a good idea, but do also check the return code on every send call.

• Lastly, if you really can’ t figure out what’ s going wrong, make a minimal test 
case that reproduces the problem, and ask for help from the ØMQ community.



Chapter 3. Advanced Request-Reply 
Patterns

In “ Sockets and Patterns”  we worked through the basics of using ØMQ by developing 
a series of small applications, each time exploring new aspects of ØMQ. We’ ll continue 
this approach in this chapter as we explore advanced patterns built on top of ØMQ’ s 
core request-reply pattern.

We’ ll cover:
• How the request-reply mechanisms work.
• How to combine REQ, REP, DEALER, and ROUTER sockets.
• How ROUTER sockets work, in detail.
• The load balancing pattern.
• Building a simple load balancing message broker.
• Designing a high-level API for ØMQ.
• Building an asynchronous request-reply server.
• A detailed inter-broker routing example.

The Request-Reply Mechanisms
We already looked briefly at multipart messages. Let’ s now look at a major use case, 

which is reply message envelopes. An envelope is a way of safely packaging up data with 
an address, without touching the data itself. By separating reply addresses into an 
envelope we make it possible to write general purpose intermediaries such as APIs and 
proxies that create, read, and remove addresses no matter what the message payload or 
structure.

In the request-reply pattern, the envelope holds the return address for replies. It is 
how a ØMQ network with no state can create round-trip request-reply dialogs.

When you use REQ and REP sockets you don’ t even see envelopes; these sockets deal 
with them automatically. But for most of the interesting request-reply patterns, you’ ll 
want to understand envelopes and particularly ROUTER sockets. We’ ll work through 
this step-by-step.

The Simple Reply Envelope
A request-reply exchange consists of a request message, and an eventual reply 

message. In the simple request-reply pattern, there’ s one reply for each request. In more 
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advanced patterns, requests and replies can flow asynchronously. However, the reply 
envelope always works the same way.

The ØMQ reply envelope formally consists of zero or more reply addresses, followed 
by an empty frame (the envelope delimiter), followed by the message body (zero or 
more frames). The envelope is created by multiple sockets working together in a chain. 
We’ ll break this down.

We’ ll start by sending “ Hello”  through a REQ socket. The REQ socket creates the 
simplest possible reply envelope, which has no addresses, just an empty delimiter frame 
and the message frame containing the “ Hello”  string. This is a two-frame message (see 
figure 26).

If you spy on the network data flowing between hwclient and hwserver, this is what 
you’ ll see: every request and every reply is in fact two frames, an empty frame and then 
the body. It doesn’ t seem to make much sense for a simple REQ-REP dialog. However 
you’ ll see the reason when we explore how ROUTER and DEALER handle envelopes.

The Extended Reply Envelope
Now let’ s extend the REQ-REP pair with a ROUTER-DEALER proxy in the middle 

and see how this affects the reply envelope. This is the extended request-reply pattern we 
already saw in “ Sockets and Patterns” . We can, in fact, insert any number of proxy 
steps (see figure 27). The mechanics are the same.



Code Connected Volume 1 - Chapter 3. Advanced Request-Reply Patterns 81

The proxy does this, in pseudo-code:

prepare context, frontend and backend sockets
while true:
    poll on both sockets
    if frontend had input:
        read all frames from frontend
        send to backend
    if backend had input:
        read all frames from backend
        send to frontend

The ROUTER socket, unlike other sockets, tracks every connection it has, and tells 
the caller about these. The way it tells the caller is to stick the connection identity in 
front of each message received. An identity, sometimes called an address, is just a 
binary string with no meaning except “ this is a unique handle to the connection” . Then, 
when you send a message via a ROUTER socket, you first send an identity frame.

The zmq_socket() man page describes it thus:
When receiving messages a ZMQ_ROUTER socket shall prepend a message part 
containing the identity of the originating peer to the message before passing it to 
the application. Messages received are fair-queued from among all connected 
peers. When sending messages a ZMQ_ROUTER socket shall remove the first 
part of the message and use it to determine the identity of the peer the message 
shall be routed to.

As a historical note, ØMQ v2.2 and earlier use UUIDs as identities, and ØMQ v3.0 
and later use short integers. There’ s some impact on network performance, but only 
when you use multiple proxy hops, which is rare. Mostly the change was to simplify 
building libzmq by removing the dependency on a UUID library.

Identies are a difficult concept to understand, but it’ s essential if you want to become 
a ØMQ expert. The ROUTER socket invents a random identity for each connection 
with which it works. If there are three REQ sockets connected to a ROUTER socket, it 
will invent three random identities, one for each REQ socket.

So if we continue our worked example, let’ s say the REQ socket has a 3-byte identity 
ABC". Internally, this means the ROUTER socket keeps a hash table where it can search 
for ABC and find the TCP connection for the REQ socket.

When we receive the message off the ROUTER socket, we get three frames (see figure 
28).

The core of the proxy 
loop is “ read from one 
socket, write to the other” , 
so we literally send these 
three frames out on the 
DEALER socket. If you 
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now sniffed the network traffic, you would see these three frames flying from the 
DEALER socket to the REP socket. The REP socket does as before, strips off the 
whole envelope including the new reply address, and once again delivers the “ Hello”  to 
the caller.

Incidentally the REP socket can only deal with one request-reply exchange at a time, 
which is why if you try to read multiple requests or send multiple replies without 
sticking to a strict recv-send cycle, it gives an error.

You should now be able to visualize the return path. When hwserver sends “ World”  
back, the REP socket wraps that with the envelope it saved, and sends a three-frame 
reply message across the wire to the DEALER socket (see figure 29).

What’ s This Good For?
To be honest, the use cases for strict request-reply or extended request-reply are 

somewhat limited. For one thing, there’ s no easy way to recover from common failures 
like the server crashing due to buggy application code. We’ ll see more about this in 
“ Reliable Request-Reply Patterns” . However once you grasp the way these four sockets 
deal with envelopes, and how they talk to each other, you can do very useful things. We 
saw how ROUTER uses the reply envelope to decide which client REQ socket to route 
a reply back to. Now let’ s express this another way:

• Each time ROUTER gives you a message, it tells you what peer that came 
from, as an identity.

• You can use this with a hash table (with the identity as key) to track new peers 
as they arrive.

• ROUTER will route messages asynchronously to any peer connected to it, if you 
prefix the identity as the first frame of the message.
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ROUTER sockets don’ t care about the whole envelope. They don’ t know anything 
about the empty delimiter. All they care about is that one identity frame that lets them 
figure out which connection to send a message to.

Recap of Request-Reply Sockets
Let’ s recap this:
• The REQ socket sends, to the network, an empty delimiter frame in front of the 

message data. REQ sockets are synchronous. REQ sockets always send one 
request and then wait for one reply. REQ sockets talk to one peer at a time. If 
you connect a REQ socket to multiple peers, requests are distributed to and 
replies expected from each peer one turn at a time.

• The REP socket reads and saves all identity frames up to and including the 
empty delimiter, then passes the following frame or frames to the caller. REP 
sockets are synchronous and talk to one peer at a time. If you connect a REP 
socket to multiple peers, requests are read from peers in fair fashion, and replies 
are always sent to the same peer that made the last request.

• The DEALER socket is oblivious to the reply envelope and handles this like any 
multipart message. DEALER sockets are asynchronous and like PUSH and 
PULL combined. They distribute sent messages among all connections, and fair-
queue received messages from all connections.

• The ROUTER socket is oblivious to the reply envelope, like DEALER. It 
creates identities for its connections, and passes these identities to the caller as 
a first frame in any received message. Conversely, when the caller sends a 
message, it use the first message frame as an identity to look up the connection 
to send to. ROUTERS are asynchronous.

Request-Reply Combinations
We have four request-reply sockets, each with a certain behavior. We’ ve seen how 

they connect in simple and extended request-reply patterns. But these sockets are 
building blocks that you can use to solve many problems.

These are the legal combinations:
• REQ to REP
• DEALER to REP
• REQ to ROUTER
• DEALER to ROUTER
• DEALER to DEALER
• ROUTER to ROUTER

And these combinations are invalid (and I’ ll explain why):
• REQ to REQ
• REQ to DEALER
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• REP to REP
• REP to ROUTER

Here are some tips for remembering the semantics. DEALER is like an asynchronous 
REQ socket, and ROUTER is like an asynchronous REP socket. Where we use a REQ 
socket, we can use a DEALER; we just have to read and write the envelope ourselves. 
Where we use a REP socket, we can stick a ROUTER; we just need to manage the 
identities ourselves.

Think of REQ and DEALER sockets as “ clients”  and REP and ROUTER sockets as 
“ servers” . Mostly, you’ ll want to bind REP and ROUTER sockets, and connect REQ 
and DEALER sockets to them. It’ s not always going to be this simple, but it is a clean 
and memorable place to start.

The REQ to REP Combination
We’ ve already covered a REQ client talking to a REP server but let’ s take one aspect: 

the REQ client must initiate the message flow. A REP server cannot talk to a REQ 
client that hasn’ t first sent it a request. Technically, it’ s not even possible, and the API 
also returns an EFSM error if you try it.

The DEALER to REP Combination
Now, let’ s replace the REQ client with a DEALER. This gives us an asynchronous 

client that can talk to multiple REP servers. If we rewrote the “ Hello World”  client 
using DEALER, we’ d be able to send off any number of “ Hello”  requests without 
waiting for replies.

When we use a DEALER to talk to a REP socket, we must accurately emulate the 
envelope that the REQ socket would have sent, otherwise the REP socket will discard 
the message as invalid. So, to send a message, we:

• Send an empty message frame with the MORE flag set; then
• Send the message body.

And when we receive a message, we:
• Receive the first frame and if it’ s not empty, discard the whole message;
• Receive the next frame and pass that to the application.

The REQ to ROUTER Combination
In the same way that we can replace REQ with DEALER, we can replace REP with 

ROUTER. This gives us an asynchronous server that can talk to multiple REQ clients 
at the same time. If we rewrote the “ Hello World”  server using ROUTER, we’ d be able 
to process any number of “ Hello”  requests in parallel. We saw this in the “ Sockets and 
Patterns”  mtserver example.

We can use ROUTER in two distinct ways:
• As a proxy that switches messages between frontend and backend sockets.
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• As an application that reads the message and acts on it.
In the first case, the ROUTER simply reads all frames, including the artificial 

identity frame, and passes them on blindly. In the second case the ROUTER must know 
the format of the reply envelope it’ s being sent. As the other peer is a REQ socket, the 
ROUTER gets the identity frame, an empty frame, and then the data frame.

The DEALER to ROUTER Combination
Now we can switch out both REQ and REP with DEALER and ROUTER to get the 

most powerful socket combination, which is DEALER talking to ROUTER. It gives us 
asynchronous clients talking to asynchronous servers, where both sides have full control 
over the message formats.

Because both DEALER and ROUTER can work with arbitrary message formats, if 
you hope to use these safely, you have to become a little bit of a protocol designer. At 
the very least you must decide whether you wish to emulate the REQ/REP reply 
envelope. It depends on whether you actually need to send replies or not.

The DEALER to DEALER Combination
You can swap a REP with a ROUTER, but you can also swap a REP with a 

DEALER, if the DEALER is talking to one and only one peer.
When you replace a REP with a DEALER, your worker can suddenly go full 

asynchronous, sending any number of replies back. The cost is that you have to manage 
the reply envelopes yourself, and get them right, or nothing at all will work. We’ ll see a 
worked example later. Let’ s just say for now that DEALER to DEALER is one of the 
trickier patterns to get right, and happily it’ s rare that we need it.

The ROUTER to ROUTER Combination
This sounds perfect for N-to-N connections, but it’ s the most difficult combination to 

use. You should avoid it until you are well advanced with ØMQ. We’ ll see one example 
it in the Freelance pattern in “ Reliable Request-Reply Patterns” , and an alternative 
DEALER to ROUTER design for peer-to-peer work in Code Connected Volume 2.

Invalid Combinations
Mostly, trying to connect clients to clients, or servers to servers is a bad idea and 

won’ t work. However, rather than give general vague warnings, I’ ll explain in detail:
• REQ to REQ: both sides want to start by sending messages to each other, and 

this could only work if you timed things so that both peers exchanged messages 
at the same time. It hurts my brain to even think about it.

• REQ to DEALER: you could in theory do this, but it would break if you added 
a second REQ because DEALER has no way of sending a reply to the original 
peer. Thus the REQ socket would get confused, and/or return messages meant 
for another client.
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• REP to REP: both sides would wait for the other to send the first message.
• REP to ROUTER: the ROUTER socket can in theory initiate the dialog and 

send a properly-formatted request, if it knows the REP socket has connected 
and it knows the identity of that connection. It’ s messy and adds nothing over 
DEALER to ROUTER.

The common thread in this valid versus invalid breakdown is that a ØMQ socket 
connection is always biased towards one peer that binds to an endpoint, and another 
that connects to that. Further, that which side binds and which side connects is not 
arbitrary, but follows natural patterns. The side which we expect to “ be there”  binds: 
it’ ll be a server, a broker, a publisher, a collector. The side that “ comes and goes”  
connects: it’ ll be clients and workers. Remembering this will help you design better 
ØMQ architectures.

Exploring ROUTER Sockets
Identities and Addresses

The identity concept in ØMQ refers specifically to ROUTER sockets and how they 
identify the connections they have to other sockets. More broadly, identities are used as 
addresses in the reply envelope. In most cases, the identity is arbitrary and local to the 
ROUTER socket: it’ s a lookup key in a hash table. Independently, a peer can have an 
address that is physical (a network endpoint like “ tcp://192.168.55.117:5670” ) or logical 
(a UUID or email address or other unique key).

An application that uses a ROUTER socket to talk to specific peers can convert a 
logical address to an identity if it has built the necessary hash table. Because ROUTER 
sockets only announce the identity of a connection (to a specific peer) when that peer 
sends a message, you can only really reply to a message, not spontaneously talk to a 
peer.

This is true even if you flip the rules and make the ROUTER connect to the peer 
rather than wait for the peer to connect to the ROUTER. However you can force the 
ROUTER socket to use a logical address in place of its identity. The zmq_setsockopt 
reference page calls this setting the socket identity. It works as follows:

• The peer application sets the ZMQ_IDENTITY option of its peer socket (DEALER 
or REQ) before binding or connecting.

• Usually the peer then connects to the already-bound ROUTER socket. But the 
ROUTER can also connect to the peer.

• At connection time, the peer socket tells the router socket, “ please use this 
identity for this connection” .

• If the peer socket doesn’ t say that, the router generates its usual arbitrary 
random identity for the connection.

• The ROUTER socket now provides this logical address to the application as a 
prefix identity frame for any messages coming in from that peer.
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• The ROUTER also expects the logical address as the prefix identity frame for 
any outgoing messages.

Here is a simple example of two peers that connect to a ROUTER socket, one that 
imposes a logical address “ PEER2” :

Example 27. Identity check (identity.c)

//  Demonstrate request-reply identities

#include "zhelpers.h"

int main (void) 
{
    void *context = zmq_ctx_new ();
    void *sink = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (sink, "inproc://example");

    //  First allow 0MQ to set the identity
    void *anonymous = zmq_socket (context, ZMQ_REQ);
    zmq_connect (anonymous, "inproc://example");
    s_send (anonymous, "ROUTER uses a generated UUID");
    s_dump (sink);

    //  Then set the identity ourselves
    void *identified = zmq_socket (context, ZMQ_REQ);
    zmq_setsockopt (identified, ZMQ_IDENTITY, "PEER2", 5);
    zmq_connect (identified, "inproc://example");
    s_send (identified, "ROUTER socket uses REQ's socket identity");
    s_dump (sink);

    zmq_close (sink);
    zmq_close (anonymous);
    zmq_close (identified);
    zmq_ctx_destroy (context);
    return 0;
}

Here is what the program prints:

----------------------------------------
[005] 006B8B4567
[000]
[026] ROUTER uses a generated UUID
----------------------------------------
[005] PEER2
[000]
[038] ROUTER uses REQ's socket identity
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ROUTER Error Handling
ROUTER sockets do have a somewhat brutal way of dealing with messages they can’ t 

send anywhere: they drop them silently. It’ s an attitude that makes sense in working 
code, but it makes debugging hard. The “ send identity as first frame”  approach is tricky 
enough that we often get this wrong when we’ re learning, and the ROUTER’ s stony 
silence when we mess up isn’ t very constructive.

Since ØMQ v3.2 there’ s a socket option you can set to catch this error: 
ZMQ_ROUTER_MANDATORY. Set that on the ROUTER socket and then when you provide an 
unroutable identity on a send call, the socket will signal an EHOSTUNREACH error.

The Load Balancing Pattern
Now let’ s look at some code. We’ ll see how to connect a ROUTER socket to a REQ 

socket, and then to a DEALER socket. These two examples follow the same logic, which 
is a load balancing pattern. This pattern is our first exposure to using the ROUTER 
socket for deliberate routing, rather than simply acting as a reply channel.

The load balancing pattern is very common and we’ ll see it several times in this book. 
It solves the main problem with simple round robin routing (as PUSH and DEALER 
offer) which is that round robin becomes inefficient if tasks do not all roughly take the 
same time.

It’ s the post office analogy. If you have one queue per counter, and you have some 
people buying stamps (a fast, simple transaction), and some people opening new 
accounts (a very slow transaction), then you will find stamp buyers getting unfairly 
stuck in queues. Just as in a post office, if your messaging architecture is unfair, people 
will get annoyed.

The solution in the post office is to create a single queue so that even if one or two 
counters get stuck with slow work, other counters will continue to serve clients on a 
first-come, first-serve basis.

One reason PUSH and DEALER use the simplistic approach is sheer performance. If 
you arrive in any major US airport, you’ ll find long queues of people waiting at 
immigration. The border patrol officials will send people in advance to queue up at each 
counter, rather than using a single queue. Having people walk fifty yards in advance 
saves a minute or two per passenger. And because every passport check takes roughly 
the same time, it’ s more or less fair. This is the strategy for PUSH and DEALER: send 
work loads ahead of time so that there is less travel distance.

This is a recurring theme with ØMQ: the world’ s problems are diverse and you can 
benefit from solving different problems each in the right way. The airport isn’ t the post 
office and one size fits no one, really well.

Let’ s return to the scenario of a worker (DEALER or REQ) connected to a broker 
(ROUTER). The broker has to know when the worker is ready, and keep a list of 
workers so that it can take the least recently used worker each time.
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The solution is really simple, in fact: workers send a “ ready”  message when they 
start, and after they finish each task. The broker reads these messages one-by-one. Each 
time it reads a message, it is from the last used worker. And because we’ re using a 
ROUTER socket, we get an identity that we can then use to send a task back to the 
worker.

It’ s a twist on request-reply because the task is sent with the reply, and any response 
for the task is sent as a new request. The following code examples should make it 
clearer.

ROUTER Broker and REQ Workers
Here is an example of the load balancing pattern using a ROUTER broker talking to 

a set of REQ workers:

Example 28. ROUTER-to-REQ (rtreq.c)

//  ROUTER-to-REQ example

#include "zhelpers.h"
#include <pthread.h>
#define NBR_WORKERS 10

static void *
worker_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_REQ);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "tcp://localhost:5671");

    int total = 0;
    while (1) {
        //  Tell the broker we're ready for work
        s_send (worker, "Hi Boss");

        //  Get workload from broker, until finished
        char *workload = s_recv (worker);
        int finished = (strcmp (workload, "Fired!") == 0);
        free (workload);
        if (finished) {
            printf ("Completed: %d tasks\n", total);
            break;
        }
        total++;

        //  Do some random work
        s_sleep (randof (500) + 1);
    }
    zmq_close (worker);
    zmq_ctx_destroy (context);
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    return NULL;
}

While this example runs in a single process, that is only to make it easier to start and 
stop the example. Each thread has its own context and conceptually acts as a separate 
process.

Example 28-1. ROUTER-to-REQ (rtreq.c) - main task

int main (void)
{
    void *context = zmq_ctx_new ();
    void *broker = zmq_socket (context, ZMQ_ROUTER);

    zmq_bind (broker, "tcp://*:5671");
    srandom ((unsigned) time (NULL));

    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_task, NULL);
    }
    //  Run for five seconds and then tell workers to end
    int64_t end_time = s_clock () + 5000;
    int workers_fired = 0;
    while (1) {
        //  Next message gives us least recently used worker
        char *identity = s_recv (broker);
        s_sendmore (broker, identity);
        free (identity);
        free (s_recv (broker));     //  Envelope delimiter
        free (s_recv (broker));     //  Response from worker
        s_sendmore (broker, "");

        //  Encourage workers until it's time to fire them
        if (s_clock () < end_time)
            s_send (broker, "Work harder");
        else {
            s_send (broker, "Fired!");
            if (++workers_fired == NBR_WORKERS)
                break;
        }
    }
    zmq_close (broker);
    zmq_ctx_destroy (context);
    return 0;
}
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The example runs for five seconds and then each worker prints how many tasks they 
handled. If the routing worked, we’ d expect a fair distribution of work:

Completed: 20 tasks
Completed: 18 tasks
Completed: 21 tasks
Completed: 23 tasks
Completed: 19 tasks
Completed: 21 tasks
Completed: 17 tasks
Completed: 17 tasks
Completed: 25 tasks
Completed: 19 tasks

To talk to the workers 
in this example, we have 
to create a REQ-friendly 
envelope consisting of an 
identity plus an empty 
envelope delimiter frame 
(see figure 31).

ROUTER Broker and DEALER Workers
Anywhere you can use REQ, you can use DEALER. There are two specific 

differences:
• The REQ socket always sends an empty delimiter frame before any data frames; 

the DEALER does not.
• The REQ socket will send only one message before it receives a reply; the 

DEALER is fully asynchronous.
The synchronous versus asynchronous behavior has no effect on our example because 

we’ re doing strict request-reply. It is more relevant when we address recovering from 
failures, which we’ ll come to in “ Reliable Request-Reply Patterns” .

Now let’ s look at exactly the same example but with the REQ socket replaced by a 
DEALER socket:

Example 29. ROUTER-to-DEALER (rtdealer.c)

//  ROUTER-to-DEALER example

#include "zhelpers.h"
#include <pthread.h>
#define NBR_WORKERS 10

static void *
worker_task (void *args)
{
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    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_DEALER);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "tcp://localhost:5671");

    int total = 0;
    while (1) {
        //  Tell the broker we're ready for work
        s_sendmore (worker, "");
        s_send (worker, "Hi Boss");

        //  Get workload from broker, until finished
        free (s_recv (worker));     //  Envelope delimiter
        char *workload = s_recv (worker);
...

The code is almost identical except that the worker uses a DEALER socket, and 
reads and writes that empty frame before the data frame. This is the approach I use 
when I want to keep compatibility with REQ workers.

However, remember the reason for that empty delimiter frame: it’ s to allow multihop 
extended requests that terminate in a REP socket, which uses that delimiter to split off 
the reply envelope so it can hand the data frames to its application.

If we never need to pass the message along to a REP socket, we can simply drop the 
empty delimiter frame at both sides, which makes things simpler. This is usually the 
design I use for pure DEALER to ROUTER protocols.

A Load Balancing Message Broker
The previous example is half-complete. 

It can manage a set of workers with 
dummy requests and replies, but it has 
no way to talk to clients.

If we add a second frontend ROUTER 
socket that accepts client requests, and 
turn our example into a proxy that can 
switch messages from frontend to 
backend, we get a useful and reusable 
tiny load balancing message broker (see 
figure 32).

This broker does the following:
• Accepts connections from a set of 

clients.
• Accepts connections from a set of 

workers.
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• Accepts requests from clients and holds these in a single queue.
• Sends these requests to workers using the load balancing pattern.
• Receives replies back from workers.
• Sends these replies back to the original requesting client.

The broker code is fairly long, but worth understanding:

Example 30. Load balancing broker (lbbroker.c)

//  Load-balancing broker
//  Clients and workers are shown here in-process

#include "zhelpers.h"
#include <pthread.h>
#define NBR_CLIENTS 10
#define NBR_WORKERS 3

//  Dequeue operation for queue implemented as array of anything
#define DEQUEUE(q) memmove (&(q)[0], &(q)[1], sizeof (q) - sizeof (q [0]))

//  Basic request-reply client using REQ socket
//  Because s_send and s_recv can't handle 0MQ binary identities, we
//  set a printable text identity to allow routing.
//
static void *
client_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *client = zmq_socket (context, ZMQ_REQ);
    s_set_id (client);          //  Set a printable identity
    zmq_connect (client, "ipc://frontend.ipc");

    //  Send request, get reply
    s_send (client, "HELLO");
    char *reply = s_recv (client);
    printf ("Client: %s\n", reply);
    free (reply);
    zmq_close (client);
    zmq_ctx_destroy (context);
    return NULL;
}

While this example runs in a single process, that is just to make it easier to start and 
stop the example. Each thread has its own context and conceptually acts as a separate 
process. This is the worker task, using a REQ socket to do load-balancing. Because 
s_send and s_recv can’ t handle ØMQ binary identities, we set a printable text identity 
to allow routing.
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Example 30-1. Load balancing broker (lbbroker.c) - worker task

static void *
worker_task (void *args)
{
    void *context = zmq_ctx_new ();
    void *worker = zmq_socket (context, ZMQ_REQ);
    s_set_id (worker);          //  Set a printable identity
    zmq_connect (worker, "ipc://backend.ipc");

    //  Tell broker we're ready for work
    s_send (worker, "READY");

    while (1) {
        //  Read and save all frames until we get an empty frame
        //  In this example there is only 1, but there could be more
        char *identity = s_recv (worker);
        char *empty = s_recv (worker);
        assert (*empty == 0);
        free (empty);

        //  Get request, send reply
        char *request = s_recv (worker);
        printf ("Worker: %s\n", request);
        free (request);

        s_sendmore (worker, identity);
        s_sendmore (worker, "");
        s_send     (worker, "OK");
        free (identity);
    }
    zmq_close (worker);
    zmq_ctx_destroy (context);
    return NULL;
}

This is the main task. It starts the clients and workers, and then routes requests 
between the two layers. Workers signal READY when they start; after that we treat 
them as ready when they reply with a response back to a client. The load-balancing 
data structure is just a queue of next available workers.

Example 30-2. Load balancing broker (lbbroker.c) - main task

int main (void)
{
    //  Prepare our context and sockets
    void *context = zmq_ctx_new ();
    void *frontend = zmq_socket (context, ZMQ_ROUTER);
    void *backend  = zmq_socket (context, ZMQ_ROUTER);
    zmq_bind (frontend, "ipc://frontend.ipc");
    zmq_bind (backend,  "ipc://backend.ipc");
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    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++) {
        pthread_t client;
        pthread_create (&client, NULL, client_task, NULL);
    }
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++) {
        pthread_t worker;
        pthread_create (&worker, NULL, worker_task, NULL);
    }

Here is the main loop for the least-recently-used queue. It has two sockets; a frontend 
for clients and a backend for workers. It polls the backend in all cases, and polls the 
frontend only when there are one or more workers ready. This is a neat way to use 
ØMQ’ s own queues to hold messages we’ re not ready to process yet. When we get a 
client reply, we pop the next available worker and send the request to it, including the 
originating client identity. When a worker replies, we requeue that worker and forward 
the reply to the original client using the reply envelope.

Example 30-3. Load balancing broker (lbbroker.c) - main task body

   //  Queue of available workers
    int available_workers = 0;
    char *worker_queue [10];

    while (1) {
        zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, available_workers ? 2 : 1, -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Queue worker identity for load-balancing
            char *worker_id = s_recv (backend);
            assert (available_workers < NBR_WORKERS);
            worker_queue [available_workers++] = worker_id;

            //  Second frame is empty
            char *empty = s_recv (backend);
            assert (empty [0] == 0);
            free (empty);

            //  Third frame is READY or else a client reply identity
            char *client_id = s_recv (backend);
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            //  If client reply, send rest back to frontend
            if (strcmp (client_id, "READY") != 0) {
                empty = s_recv (backend);
                assert (empty [0] == 0);
                free (empty);
                char *reply = s_recv (backend);
                s_sendmore (frontend, client_id);
                s_sendmore (frontend, "");
                s_send     (frontend, reply);
                free (reply);
                if (--client_nbr == 0)
                    break;      //  Exit after N messages
            }
            free (client_id);
        }

Here is how we handle a client request:

Example 30-4. Load balancing broker (lbbroker.c) - handling a client request

       if (items [1].revents & ZMQ_POLLIN) {
            //  Now get next client request, route to last-used worker
            //  Client request is [identity][empty][request]
            char *client_id = s_recv (frontend);
            char *empty = s_recv (frontend);
            assert (empty [0] == 0);
            free (empty);
            char *request = s_recv (frontend);

            s_sendmore (backend, worker_queue [0]);
            s_sendmore (backend, "");
            s_sendmore (backend, client_id);
            s_sendmore (backend, "");
            s_send     (backend, request);

            free (client_id);
            free (request);

            //  Dequeue and drop the next worker identity
            free (worker_queue [0]);
            DEQUEUE (worker_queue);
            available_workers--;
        }
    }
    zmq_close (frontend);
    zmq_close (backend);
    zmq_ctx_destroy (context);
    return 0;
}
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The difficult part of this program is (a) the envelopes that each socket reads and 
writes, and (b) the load balancing algorithm. We’ ll take these in turn, starting with the 
message envelope formats.

The worker has to save the envelope (which is all the parts up to and including the 
empty message frame) and then it can do what’ s needed with the data part. Note that 
a REP socket would do this automatically, but we’ re using the REQ-ROUTER pattern 
so that we can get proper load balancing.
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Now let’ s look at the load balancing algorithm. It requires that both clients and 
workers use REQ sockets, and that workers correctly store and replay the envelope on 
messages they get. The algorithm is:

• Create a pollset that always polls the backend, and polls the frontend only if 
there are one or more workers available.

• Poll for activity with infinite timeout.
• If there is activity on the backend, we either have a “ ready”  message or a reply 

for a client. In either case, we store the worker address (the first part) on our 
worker queue, and if the rest is a client reply, we send it back to that client via 
the frontend.

• If there is activity on the frontend, we take the client request, pop the next 
worker (which is the last used), and send the request to the backend. This 
means sending the worker address, empty part, and then the three parts of the 
client request.

You should now see that you can reuse and extend the load balancing algorithm with 
variations based on the information the worker provides in its initial “ ready”  message. 
For example, workers might start up and do a performance self test, then tell the broker 
how fast they are. The broker can then choose the fastest available worker rather than 
the oldest.

A High-Level API for ØMQ
Making a Detour

We’ re going to push request-reply onto the stack and open a different area, which is 
the ØMQ API itself. There’ s a reason for this detour: as we write more complex 
examples, the low-level ØMQ API starts to look increasingly clumsy. Look at the core 
of the worker thread from our load balancing broker:

while (true) {
    //  Get one address frame and empty delimiter
    char *address = s_recv (worker);
    char *empty = s_recv (worker);
    assert (*empty == 0);
    free (empty);

    //  Get request, send reply
    char *request = s_recv (worker);
    printf ("Worker: %s\n", request);
    free (request);

    s_sendmore (worker, address);
    s_sendmore (worker, "");
    s_send     (worker, "OK");
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    free (address);
}

That code isn’ t even reusable because it can only handle one reply address in the 
envelope, and it already does some wrapping around the ØMQ API. If we used the 
libzmq simple message API this is what we’ d have to write:

while (true) {
    //  Get one address frame and empty delimiter
    char address [255];
    int address_size = zmq_recv (worker, address, 255, 0);
    if (address_size == -1)
        break;

    char empty [1];
    int empty_size = zmq_recv (worker, empty, 1, 0);
    zmq_recv (worker, &empty, 0);
    assert (empty_size <= 0);
    if (empty_size == -1)
        break;

    //  Get request, send reply
    char request [256];
    int request_size = zmq_recv (worker, request, 255, 0);
    if (request_size == -1)
        return NULL;
    request [request_size] = 0;
    printf ("Worker: %s\n", request);
    
    zmq_send (worker, address, address_size, ZMQ_SNDMORE);
    zmq_send (worker, empty, 0, ZMQ_SNDMORE);
    zmq_send (worker, "OK", 2, 0);
}

And when code is too long to write quickly, it’ s also too long to understand. Up until 
now, I’ ve stuck to the native API because, as ØMQ users, we need to know that 
intimately. But when it gets in our way, we have to treat it as a problem to solve.

We can’ t of course just change the ØMQ API, which is a documented public contract 
on which thousands of people agree and depend. Instead, we construct a higher-level 
API on top based on our experience so far, and most specifically, our experience from 
writing more complex request-reply patterns.

What we want is an API that lets us receive and send an entire message in one shot, 
including the reply envelope with any number of reply addresses. One that lets us do 
what we want with the absolute least lines of code.

Making a good message API is fairly difficult. We have a problem of terminology: 
ØMQ uses “ message”  to describe both multipart messages, and individual message 
frames. We have a problem of expectations: sometimes it’ s natural to see message 
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content as printable string data, sometimes as binary blobs. And we have technical 
challenges, especially if we want to avoid copying data around too much.

The challenge of making a good API affects all languages, though my specific use case 
is C. Whatever language you use, think about how you could contribute to your 
language binding to make it as good (or better) than the C binding I’ m going to 
describe.

Features of a Higher-Level API
My solution is to use three fairly natural and obvious concepts: string (already the 

basis for our s_send and s_recv) helpers, frame (a message frame), and message (a list of 
one or more frames). Here is the worker code, rewritten onto an API using these 
concepts:

while (true) {
    zmsg_t *msg = zmsg_recv (worker);
    zframe_reset (zmsg_last (msg), "OK", 2);
    zmsg_send (&msg, worker);
}

Cutting the amount of code we need to read and write complex messages is great: the 
results are easy to read and understand. Let’ s continue this process for other aspects of 
working with ØMQ. Here’ s a wish list of things I’ d like in a higher-level API, based on 
my experience with ØMQ so far:

• Automatic handling of sockets. I find it cumbersome to have to close sockets 
manually, and to have to explicitly define the linger timeout in some (but not 
all) cases. It’ d be great to have a way to close sockets automatically when I 
close the context.

• Portable thread management. Every nontrivial ØMQ application uses threads, 
but POSIX threads aren’ t portable. So a decent high-level API should hide this 
under a portable layer.

• Piping from parent to child threads. It’ s a recurrent problem: how to signal 
between parent and child threads. Our API should provide a ØMQ message 
pipe (using PAIR sockets and inproc automatically.

• Portable clocks. Even getting the time to a millisecond resolution, or sleeping for 
some milliseconds, is not portable. Realistic ØMQ applications need portable 
clocks, so our API should provide them.

• A reactor to replace zmq_poll(). The poll loop is simple, but clumsy. Writing a 
lot of these, we end up doing the same work over and over: calculating timers, 
and calling code when sockets are ready. A simple reactor with socket readers 
and timers would save a lot of repeated work.

• Proper handling of Ctrl-C. We already saw how to catch an interrupt. It would 
be useful if this happened in all applications.
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The CZMQ High-Level API
Turning this wish list into reality for the C language gives us CZMQ13, a ØMQ 

language binding for C. This high-level binding, in fact, developed out of earlier versions 
of the examples. It combines nicer semantics for working with ØMQ with some 
portability layers, and (importantly for C, but less for other languages) containers like 
hashes and lists. CZMQ also uses an elegant object model that leads to frankly lovely 
code.

Here is the load balancing broker rewritten to use a higher-level API (CZMQ for the 
C case):

Example 31. Load balancing broker using high-level API (lbbroker2.c)

//  Load-balancing broker
//  Demonstrates use of the CZMQ API

#include "czmq.h"

#define NBR_CLIENTS 10
#define NBR_WORKERS 3
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Basic request-reply client using REQ socket
//
static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://frontend.ipc");

    //  Send request, get reply
    while (true) {
        zstr_send (client, "HELLO");
        char *reply = zstr_recv (client);
        if (!reply)
            break;
        printf ("Client: %s\n", reply);
        free (reply);
        sleep (1);
    }
    zctx_destroy (&ctx);
    return NULL;
}

//  Worker using REQ socket to do load-balancing
//
static void *

13 http://zero.mq/c
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worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://backend.ipc");

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted
        zframe_reset (zmsg_last (msg), "OK", 2);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

Now we come to the main task. This has the identical functionality to the previous 
lbbroker broker example, but uses CZMQ to start child threads, to hold the list of 
workers, and to read and send messages:

Example 31-1. Load balancing broker using high-level API (lbbroker2.c) - main 
task

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "ipc://frontend.ipc");
    zsocket_bind (backend, "ipc://backend.ipc");

    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Queue of available workers
    zlist_t *workers = zlist_new ();
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Here is the main loop for the load balancer. It works the same way as the previous 
example, but is a lot shorter because CZMQ gives us an API that does more with fewer 
calls:

Example 31-2. Load balancing broker using high-level API (lbbroker2.c) - main 
load-balancer loop

       zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, zlist_size (workers)? 2: 1, -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Use worker identity for load-balancing
            zmsg_t *msg = zmsg_recv (backend);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);

            //  Forward message to client if it's not a READY
            zframe_t *frame = zmsg_first (msg);
            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
            else
                zmsg_send (&msg, frontend);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Get client request, route to first available worker
            zmsg_t *msg = zmsg_recv (frontend);
            if (msg) {
                zmsg_wrap (msg, (zframe_t *) zlist_pop (workers));
                zmsg_send (&msg, backend);
            }
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return 0;
}
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One thing CZMQ provides is clean interrupt handling. This means that Ctrl-C will 
cause any blocking ØMQ call to exit with a return code -1 and errno set to EINTR. 
The high-level recv methods will return NULL in such cases. So, you can cleanly exit a 
loop like this:

while (true) {
    zstr_send (client, "Hello");
    char *reply = zstr_recv (client);
    if (!reply)
        break;              //  Interrupted
    printf ("Client: %s\n", reply);
    free (reply);
    sleep (1);
}

Or, if you’ re calling zmq_poll(), test on the return code:

if (zmq_poll (items, 2, 1000 * 1000) == -1)
    break;              //  Interrupted

The previous example still uses zmq_poll(). So how about reactors? The CZMQ zloop 
reactor is simple but functional. It lets you:

• Set a reader on any socket, i.e., code that is called whenever the socket has 
input.

• Cancel a reader on a socket.
• Set a timer that goes off once or multiple times at specific intervals.
• Cancel a timer.

zloop of course uses zmq_poll() internally. It rebuilds its poll set each time you add or 
remove readers, and it calculates the poll timeout to match the next timer. Then, it 
calls the reader and timer handlers for each socket and timer that need attention.

When we use a reactor pattern, our code turns inside out. The main logic looks like 
this:

zloop_t *reactor = zloop_new ();
zloop_reader (reactor, self->backend, s_handle_backend, self);
zloop_start (reactor);
zloop_destroy (&reactor);

The actual handling of messages sits inside dedicated functions or methods. You may 
not like the style— it’ s a matter of taste. What it does help with is mixing timers and 
socket activity. In the rest of this text, we’ ll use zmq_poll() in simpler cases, and zloop 
in more complex examples.

Here is the load balancing broker rewritten once again, this time to use zloop:

Example 32. Load balancing broker using zloop (lbbroker3.c)

//  Load-balancing broker
//  Demonstrates use of the CZMQ API and reactor style
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//
//  The client and worker tasks are identical from the previous example.
...
//  Our load-balancer structure, passed to reactor handlers
typedef struct {
    void *frontend;             //  Listen to clients
    void *backend;              //  Listen to workers
    zlist_t *workers;           //  List of ready workers
} lbbroker_t;

In the reactor design, each time a message arrives on a socket, the reactor passes it to 
a handler function. We have two handlers; one for the frontend, one for the backend:

Example 32-1. Load balancing broker using zloop (lbbroker3.c) - reactor design

//  Handle input from client, on frontend
int s_handle_frontend (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    lbbroker_t *self = (lbbroker_t *) arg;
    zmsg_t *msg = zmsg_recv (self->frontend);
    if (msg) {
        zmsg_wrap (msg, (zframe_t *) zlist_pop (self->workers));
        zmsg_send (&msg, self->backend);

        //  Cancel reader on frontend if we went from 1 to 0 workers
        if (zlist_size (self->workers) == 0) {
            zmq_pollitem_t poller = { self->frontend, 0, ZMQ_POLLIN };
            zloop_poller_end (loop, &poller);
        }
    }
    return 0;
}

//  Handle input from worker, on backend
int s_handle_backend (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    //  Use worker identity for load-balancing
    lbbroker_t *self = (lbbroker_t *) arg;
    zmsg_t *msg = zmsg_recv (self->backend);
    if (msg) {
        zframe_t *identity = zmsg_unwrap (msg);
        zlist_append (self->workers, identity);

        //  Enable reader on frontend if we went from 0 to 1 workers
        if (zlist_size (self->workers) == 1) {
            zmq_pollitem_t poller = { self->frontend, 0, ZMQ_POLLIN };
            zloop_poller (loop, &poller, s_handle_frontend, self);
        }
        //  Forward message to client if it's not a READY
        zframe_t *frame = zmsg_first (msg);
        if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
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            zmsg_destroy (&msg);
        else
            zmsg_send (&msg, self->frontend);
    }
    return 0;
}

And the main task now sets up child tasks, then starts its reactor. If you press Ctrl-
C, the reactor exits and the main task shuts down. Because the reactor is a CZMQ 
class, this example may not translate into all languages equally well.

Example 32-2. Load balancing broker using zloop (lbbroker3.c) - main task

int main (void)
{
    zctx_t *ctx = zctx_new ();
    lbbroker_t *self = (lbbroker_t *) zmalloc (sizeof (lbbroker_t));
    self->frontend = zsocket_new (ctx, ZMQ_ROUTER);
    self->backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (self->frontend, "ipc://frontend.ipc");
    zsocket_bind (self->backend, "ipc://backend.ipc");

    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Queue of available workers
    self->workers = zlist_new ();

    //  Prepare reactor and fire it up
    zloop_t *reactor = zloop_new ();
    zmq_pollitem_t poller = { self->backend, 0, ZMQ_POLLIN };
    zloop_poller (reactor, &poller, s_handle_backend, self);
    zloop_start  (reactor);
    zloop_destroy (&reactor);

    //  When we're done, clean up properly
    while (zlist_size (self->workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (self->workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&self->workers);
    zctx_destroy (&ctx);
    free (self);
    return 0;
}
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Getting applications to properly shut down when you send them Ctrl-C can be tricky. 
If you use the zctx class it’ ll automatically set up signal handling, but your code still 
has to cooperate. You must break any loop if zmq_poll returns -1 or if any of the 
zstr_recv, zframe_recv, or zmsg_recv methods return NULL. If you have nested loops, it 
can be useful to make the outer ones conditional on !zctx_interrupted.

The Asynchronous Client/Server Pattern
In the ROUTER to DEALER example, we saw a 

1-to-N use case where one server talks 
asynchronously to multiple workers. We can turn this 
upside down to get a very useful N-to-1 architecture 
where various clients talk to a single server, and do 
this asynchronously (see figure 37).

Here’ s how it works:
• Clients connect to the server and send 

requests.
• For each request, the server sends 0 or more 

replies.
• Clients can send multiple requests without 

waiting for a reply.
• Servers can send multiple replies without waiting for new requests.

Here’ s code that shows how this works:

Example 33. Asynchronous client/server (asyncsrv.c)

//  Asynchronous client-to-server (DEALER to ROUTER)
//
//  While this example runs in a single process, that is to make
//  it easier to start and stop the example. Each task has its own
//  context and conceptually acts as a separate process.

#include "czmq.h"

//  This is our client task
//  It connects to the server, and then sends a request once per second
//  It collects responses as they arrive, and it prints them out. We will
//  run several client tasks in parallel, each with a different random ID.

static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_DEALER);

    //  Set random identity to make tracing easier
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    char identity [10];
    sprintf (identity, "%04X-%04X", randof (0x10000), randof (0x10000));
    zsockopt_set_identity (client, identity);
    zsocket_connect (client, "tcp://localhost:5570");

    zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
    int request_nbr = 0;
    while (true) {
        //  Tick once per second, pulling in arriving messages
        int centitick;
        for (centitick = 0; centitick < 100; centitick++) {
            zmq_poll (items, 1, 10 * ZMQ_POLL_MSEC);
            if (items [0].revents & ZMQ_POLLIN) {
                zmsg_t *msg = zmsg_recv (client);
                zframe_print (zmsg_last (msg), identity);
                zmsg_destroy (&msg);
            }
        }
        zstr_send (client, "request #%d", ++request_nbr);
    }
    zctx_destroy (&ctx);
    return NULL;
}

This is our server task. It uses the multithreaded server model to deal requests out to 
a pool of workers and route replies back to clients. One worker can handle one request 
at a time but one client can talk to multiple workers at once.

Example 33-1. Asynchronous client/server (asyncsrv.c) - server task

static void server_worker (void *args, zctx_t *ctx, void *pipe);

void *server_task (void *args)
{
    //  Frontend socket talks to clients over TCP
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5570");

    //  Backend socket talks to workers over inproc
    void *backend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (backend, "inproc://backend");

    //  Launch pool of worker threads, precise number is not critical
    int thread_nbr;
    for (thread_nbr = 0; thread_nbr < 5; thread_nbr++)
        zthread_fork (ctx, server_worker, NULL);

    //  Connect backend to frontend via a proxy
    zmq_proxy (frontend, backend, NULL);
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    zctx_destroy (&ctx);
    return NULL;
}

Each worker task works on one request at a time and sends a random number of 
replies back, with random delays between replies:

Example 33-2. Asynchronous client/server (asyncsrv.c) - worker task

static void
server_worker (void *args, zctx_t *ctx, void *pipe)
{
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "inproc://backend");

    while (true) {
        //  The DEALER socket gives us the reply envelope and message
        zmsg_t *msg = zmsg_recv (worker);
        zframe_t *identity = zmsg_pop (msg);
        zframe_t *content = zmsg_pop (msg);
        assert (content);
        zmsg_destroy (&msg);

        //  Send 0..4 replies back
        int reply, replies = randof (5);
        for (reply = 0; reply < replies; reply++) {
            //  Sleep for some fraction of a second
            zclock_sleep (randof (1000) + 1);
            zframe_send (&identity, worker, ZFRAME_REUSE + ZFRAME_MORE);
            zframe_send (&content, worker, ZFRAME_REUSE);
        }
        zframe_destroy (&identity);
        zframe_destroy (&content);
    }
}

//  The main thread simply starts several clients and a server, and then
//  waits for the server to finish.

int main (void)
{
    zthread_new (client_task, NULL);
    zthread_new (client_task, NULL);
    zthread_new (client_task, NULL);
    zthread_new (server_task, NULL);
    zclock_sleep (5 * 1000);    //  Run for 5 seconds then quit
    return 0;
}

The example runs in one process, with multiple threads simulating a real multiprocess 
architecture. When you run the example, you’ ll see three clients (each with a random 
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ID), printing out the replies they get from the server. Look carefully and you’ ll see each 
client task gets 0 or more replies per request.

Note that we’ re doing DEALER to ROUTER dialog between client and server, but 
internally between the server main thread and workers, we’ re doing DEALER to 
DEALER. If the workers were strictly synchronous, we’ d use REP. However, because we 
want to send multiple replies, we need an async socket. We do not want to route replies, 
they always go to the single server thread that sent us the request.

Let’ s think about the routing envelope. The client sends a message consisting of a 
single frame. The server thread receives a two-frame message (original message prefixed 
by client identity). We send these two frames on to the worker, which treats it as a 
normal reply envelope, returns that to us as a two frame message. We then use the first 
frame as an identity to route the second frame back to the client as a reply.

It looks something like this:

    client          server       frontend       worker
   [ DEALER ]<---->[ ROUTER <----> DEALER <----> DEALER ]
             1 part         2 parts       2 parts
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Now for the sockets: we could use the load balancing ROUTER to DEALER pattern 
to talk to workers, but it’ s extra work. In this case, a DEALER to DEALER pattern is 
probably fine: the trade-off is lower latency for each request, but higher risk of 
unbalanced work distribution. Simplicity wins in this case.

When you build servers that maintain stateful conversations with clients, you will run 
into a classic problem. If the server keeps some state per client, and clients keep coming 
and going, eventually it will run out of resources. Even if the same clients keep 
connecting, if you’ re using default identities, each connection will look like a new one.

We cheat in the above example by keeping state only for a very short time (the time 
it takes a worker to process a request) and then throwing away the state. But that’ s not 
practical for many cases. To properly manage client state in a stateful asynchronous 
server, you have to:

• Do heartbeating from client to server. In our example, we send a request once 
per second, which can reliably be used as a heartbeat.

• Store state using the client identity (whether generated or explicit) as key.
• Detect a stopped heartbeat. If there’ s no request from a client within, say, two 

seconds, the server can detect this and destroy any state it’ s holding for that 
client.

Worked Example: Inter-Broker Routing
Let’ s take everything we’ ve seen so far, and scale things up to a real application. 

We’ ll build this step-by-step over several iterations. Our best client calls us urgently and 
asks for a design of a large cloud computing facility. He has this vision of a cloud that 
spans many data centers, each a cluster of clients and workers, and that works together 
as a whole. Because we’ re smart enough to know that practice always beats theory, we 
propose to make a working simulation using ØMQ. Our client, eager to lock down the 
budget before his own boss changes his mind, and having read great things about ØMQ 
on Twitter, agrees.

Establishing the Details
Several espressos later, we want to jump into writing code, but a little voice tells us 

to get more details before making a sensational solution to entirely the wrong problem. 
“ What kind of work is the cloud doing?” , we ask.

The client explains:
• Workers run on various kinds of hardware, but they are all able to handle any 

task. There are several hundred workers per cluster, and as many as a dozen 
clusters in total.

• Clients create tasks for workers. Each task is an independent unit of work and 
all the client wants is to find an available worker, and send it the task, as soon 
as possible. There will be a lot of clients and they’ ll come and go arbitrarily.
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• The real difficulty is to be able to add and remove clusters at any time. A 
cluster can leave or join the cloud instantly, bringing all its workers and clients 
with it.

• If there are no workers in their own cluster, clients' tasks will go off to other 
available workers in the cloud.

• Clients send out one task at a time, waiting for a reply. If they don’ t get an 
answer within X seconds, they’ ll just send out the task again. This isn’ t our 
concern; the client API does it already.

• Workers process one task at a time; they are very simple beasts. If they crash, 
they get restarted by whatever script started them.

So we double-check to make sure that we understood this correctly:
• “ There will be some kind of super-duper network interconnect between clusters, 

right?” , we ask. The client says, “ Yes, of course, we’ re not idiots.”
• “ What kind of volumes are we talking about?” , we ask. The client replies, “ Up 

to a thousand clients per cluster, each doing at most ten requests per second. 
Requests are small, and replies are also small, no more than 1K bytes each.”

So we do a little calculation and see that this will work nicely over plain TCP. 2,500 
clients x 10/second x 1,000 bytes x 2 directions = 50MB/sec or 400Mb/sec, not a 
problem for a 1Gb network.

It’ s a straightforward problem that requires no exotic hardware or protocols, just 
some clever routing algorithms and careful design. We start by designing one cluster 
(one data center) and then we figure out how to connect clusters together.

Architecture of a Single Cluster
Workers and clients are synchronous. We 

want to use the load balancing pattern to 
route tasks to workers. Workers are all 
identical; our facility has no notion of 
different services. Workers are anonymous; 
clients never address them directly. We make 
no attempt here to provide guaranteed 
delivery, retry, and so on.

For reasons we already examined, clients 
and workers won’ t speak to each other 
directly. It makes it impossible to add or 
remove nodes dynamically. So our basic 
model consists of the request-reply message 
broker we saw earlier (see figure 39).
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Scaling to Multiple Clusters
Now we scale this out to more than one cluster. Each cluster has a set of clients and 

workers, and a broker that joins these together (see figure 40).

• Workers might connect directly to both brokers. But REQ workers can’ t do 
that, they can only reply to one broker. We might use REPs but REPs don’ t 
give us customizable broker-to-worker routing like load balancing does, only the 
built-in load balancing. That’ s a fail; if we want to distribute work to idle 
workers, we precisely need load balancing. One solution would be to use 
ROUTER sockets for the worker nodes. Let’ s label this “ Idea #1” .

• Brokers could connect to each other. This looks neatest because it creates the 
fewest additional connections. We can’ t add clusters on the fly, but that is 
probably out of scope. Now clients and workers remain ignorant of the real 
network topology, and brokers tell each other when they have spare capacity. 
Let’ s label this “ Idea #2” .

Let’ s explore Idea #1. In this model, we have workers connecting to both brokers and 
accepting jobs from either one (see figure 41).

It looks feasible. However, it doesn’ t provide what we wanted, which was that clients 
get local workers if possible and remote workers only if it’ s better than waiting. Also 
workers will signal “ ready”  to both brokers and can get two jobs at once, while other 
workers remain idle. It seems this design fails because again we’ re putting routing logic 
at the edges.

So, idea #2 then. We interconnect the brokers and don’ t touch the clients or workers, 
which are REQs like we’ re used to (see figure 42).
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• It treats the common case (clients and workers on the same cluster) as default 
and does extra work for the exceptional case (shuffling jobs between clusters).

• It lets us use different message flows for the different types of work. That means 
we can handle them differently, e.g., using different types of network connection.

• It feels like it would scale smoothly. Interconnecting three or more brokers 
doesn’ t get overly complex. If we find this to be a problem, it’ s easy to solve by 
adding a super-broker.

We know the basic model well by now:
• The REQ client (REQ) threads create workloads and pass them to the broker 

(ROUTER).
• The REQ worker (REQ) threads process workloads and return the results to 

the broker (ROUTER).



Code Connected Volume 1 - Chapter 3. Advanced Request-Reply Patterns 115

• The broker queues and distributes workloads using the load balancing pattern.

Federation Versus Peering
There are several possible ways to interconnect brokers. What we want is to be able 

to tell other brokers, “ we have capacity” , and then receive multiple tasks. We also need 
to be able to tell other brokers, “ stop, we’ re full” . It doesn’ t need to be perfect; 
sometimes we may accept jobs we can’ t process immediately, then we’ ll do them as soon 
as possible.

The federation model is perfect for other kinds of routing, especially service-oriented 
architectures (SOAs), which route by service name and proximity rather than load 
balancing or round robin. So don’ t dismiss it as useless, it’ s just not right for all use 
cases.

Instead of federation, let’ s look at a peering approach in which brokers are explicitly 
aware of each other and talk over privileged channels. Let’ s break this down, assuming 
we want to interconnect N brokers. Each broker has (N - 1) peers, and all brokers are 
using exactly the same code and logic. There are two distinct flows of information 
between brokers:

• Each broker needs to tell its peers how many workers it has available at any 
time. This can be fairly simple information— just a quantity that is updated 
regularly. The obvious (and correct) socket pattern for this is pub-sub. So every 
broker opens a PUB socket and publishes state information on that, and every 
broker also opens a SUB socket and connects that to the PUB socket of every 
other broker to get state information from its peers.
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• Each broker needs a way to delegate tasks to a peer and get replies back, 
asynchronously. We’ ll do this using ROUTER sockets; no other combination 
works. Each broker has two such sockets: one for tasks it receives and one for 
tasks it delegates. If we didn’ t use two sockets, it would be more work to know 
whether we were reading a request or a reply each time. That would mean 
adding more information to the message envelope.

And there is also the flow of information between a broker and its local clients and 
workers.

The Naming Ceremony

• A state flow between the broker and its peer brokers.
Finding meaningful names that are all the same length means our code will align 

nicely. It’ s not a big thing, but attention to details helps. For each flow the broker has 
two sockets that we can orthogonally call the frontend and backend. We’ ve used these 
names quite often. A frontend receives information or tasks. A backend sends those out 
to other peers. The conceptual flow is from front to back (with replies going in the 
opposite direction from back to front).
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So in all the code we write for this tutorial, we will use these socket names:
• localfe and localbe for the local flow.
• cloudfe and cloudbe for the cloud flow.
• statefe and statebe for the state flow.

For our transport and because we’ re simulating the whole thing on one box, we’ ll use 
ipc for everything. This has the advantage of working like tcp in terms of connectivity 
(i.e., it’ s a disconnected transport, unlike inproc), yet we don’ t need IP addresses or 
DNS names, which would be a pain here. Instead, we will use ipc endpoints called 
something-local, something-cloud, and something-state, where something is the name of 
our simulated cluster.

You might be thinking that this is a lot of work for some names. Why not call them 
s1, s2, s3, s4, etc.? The answer is that if your brain is not a perfect machine, you need a 
lot of help when reading code, and we’ ll see that these names do help. It’ s easier to 
remember “ three flows, two directions”  than “ six different sockets”  (see figure 44).

Note that we connect the cloudbe in each broker to the cloudfe in every other broker, 
and likewise we connect the statebe in each broker to the statefe in every other broker.

Prototyping the State Flow
Because each socket flow has its own little traps for the unwary, we will test them in 

real code one-by-one, rather than try to throw the whole lot into code in one go. When 
we’ re happy with each flow, we can put them together into a full program. We’ ll start 
with the state flow (see figure 45).

Here is how this works in code:

Example 34. Prototype state flow (peering1.c)

//  Broker peering simulation (part 1)
//  Prototypes the state flow

#include "czmq.h"

int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    //
    if (argc < 2) {
        printf ("syntax: peering1 me {you}...\n");
        return 0;
    }
    char *self = argv [1];
    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    zctx_t *ctx = zctx_new ();
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    //  Bind state backend to endpoint
    void *statebe = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (statebe, "ipc://%s-state.ipc", self);
    
    //  Connect statefe to all peers
    void *statefe = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statefe, "");
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to state backend at '%s'\n", peer);
        zsocket_connect (statefe, "ipc://%s-state.ipc", peer);
    }

The main loop sends out status messages to peers, and collects status messages back 
from peers. The zmq_poll timeout defines our own heartbeat:

Example 34-1. Prototype state flow (peering1.c) - main loop

   while (true) {
        //  Poll for activity, or 1 second timeout
        zmq_pollitem_t items [] = { { statefe, 0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, 1000 * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle incoming status messages
        if (items [0].revents & ZMQ_POLLIN) {
            char *peer_name = zstr_recv (statefe);
            char *available = zstr_recv (statefe);
            printf ("%s - %s workers free\n", peer_name, available);
            free (peer_name);
            free (available);
        }
        else {
            //  Send random values for worker availability
            zstr_sendm (statebe, self);
            zstr_send  (statebe, "%d", randof (10));
        }
    }
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}
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Notes about this code:
• Each broker has an identity that we use to 

construct ipc endpoint names. A real broker would 
need to work with TCP and a more sophisticated 
configuration scheme. We’ ll look at such schemes 
later in this book, but for now, using generated ipc 
names lets us ignore the problem of where to get 
TCP/IP addresses or names.

• We use a zmq_poll() loop as the core of the 
program. This processes incoming messages and 
sends out state messages. We send a state message 
only if we did not get any incoming messages and 
we waited for a second. If we send out a state 
message each time we get one in, we’ ll get message 
storms.

• We use a two-part pub-sub message consisting of 
sender address and data. Note that we will need to 
know the address of the publisher in order to send 
it tasks, and the only way is to send this explicitly 
as a part of the message.

• We don’ t set identities on subscribers because if we 
did then we’ d get outdated state information when 
connecting to running brokers.

• We don’ t set a HWM on the publisher, but if we were using ØMQ v2.x that 
would be a wise idea.

We can build this little program and run it three times to simulate three clusters. 
Let’ s call them DC1, DC2, and DC3 (the names are arbitrary). We run these three 
commands, each in a separate window:

peering1 DC1 DC2 DC3  #  Start DC1 and connect to DC2 and DC3
peering1 DC2 DC1 DC3  #  Start DC2 and connect to DC1 and DC3
peering1 DC3 DC1 DC2  #  Start DC3 and connect to DC1 and DC2

You’ ll see each cluster report the state of its peers, and after a few seconds they will 
all happily be printing random numbers once per second. Try this and satisfy yourself 
that the three brokers all match up and synchronize to per-second state updates.

In real life, we’ d not send out state messages at regular intervals, but rather whenever 
we had a state change, i.e., whenever a worker becomes available or unavailable. That 
may seem like a lot of traffic, but state messages are small and we’ ve established that 
the inter-cluster connections are super fast.

If we wanted to send state messages at precise intervals, we’ d create a child thread 
and open the statebe socket in that thread. We’ d then send irregular state updates to 
that child thread from our main thread and allow the child thread to conflate them into 
regular outgoing messages. This is more work than we need here.
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Prototyping the Local and Cloud Flows
Let’ s now prototype at the flow of tasks via the 

local and cloud sockets (see figure 46). This code 
pulls requests from clients and then distributes 
them to local workers and cloud peers on a random 
basis.

Before we jump into the code, which is getting a 
little complex, let’ s sketch the core routing logic 
and break it down into a simple yet robust design.

We need two queues, one for requests from local 
clients and one for requests from cloud clients. One 
option would be to pull messages off the local and 
cloud frontends, and pump these onto their 
respective queues. But this is kind of pointless 
because ØMQ sockets are queues already. So let’ s 
use the ØMQ socket buffers as queues.

This was the technique we used in the load 
balancing broker, and it worked nicely. We only 
read from the two frontends when there is 
somewhere to send the requests. We can always 
read from the backends, as they give us replies to 
route back. As long as the backends aren’ t talking 
to us, there’ s no point in even looking at the 
frontends.

So our main loop becomes:
• Poll the backends for activity. When we get a message, it may be “ ready”  from 

a worker or it may be a reply. If it’ s a reply, route back via the local or cloud 
frontend.

• If a worker replied, it became available, so we queue it and count it.
• While there are workers available, take a request, if any, from either frontend 

and route to a local worker, or randomly, to a cloud peer.
Randomly sending tasks to a peer broker rather than a worker simulates work 

distribution across the cluster. It’ s dumb, but that is fine for this stage.
We use broker identities to route messages between brokers. Each broker has a name 

that we provide on the command line in this simple prototype. As long as these names 
don’ t overlap with the ØMQ-generated UUIDs used for client nodes, we can figure out 
whether to route a reply back to a client or to a broker.

Here is how this works in code. The interesting part starts around the comment 
“ Interesting part” .
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Example 35. Prototype local and cloud flow (peering2.c)

//  Broker peering simulation (part 2)
//  Prototypes the request-reply flow

#include "czmq.h"
#define NBR_CLIENTS 10
#define NBR_WORKERS 3
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Our own name; in practice this would be configured per node
static char *self;

The client task does a request-reply dialog using a standard synchronous REQ socket:

Example 35-1. Prototype local and cloud flow (peering2.c) - client task

static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://%s-localfe.ipc", self);

    while (true) {
        //  Send request, get reply
        zstr_send (client, "HELLO");
        char *reply = zstr_recv (client);
        if (!reply)
            break;              //  Interrupted
        printf ("Client: %s\n", reply);
        free (reply);
        sleep (1);
    }
    zctx_destroy (&ctx);
    return NULL;
}

The worker task plugs into the load-balancer using a REQ socket:

Example 35-2. Prototype local and cloud flow (peering2.c) - worker task

static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://%s-localbe.ipc", self);

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);
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    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        zframe_print (zmsg_last (msg), "Worker: ");
        zframe_reset (zmsg_last (msg), "OK", 2);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}

The main task begins by setting-up its frontend and backend sockets and then 
starting its client and worker tasks:

Example 35-3. Prototype local and cloud flow (peering2.c) - main task

int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    //
    if (argc < 2) {
        printf ("syntax: peering2 me {you}...\n");
        return 0;
    }
    self = argv [1];
    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    zctx_t *ctx = zctx_new ();

    //  Bind cloud frontend to endpoint
    void *cloudfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudfe, self);
    zsocket_bind (cloudfe, "ipc://%s-cloud.ipc", self);

    //  Connect cloud backend to all peers
    void *cloudbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudbe, self);
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to cloud frontend at '%s'\n", peer);
        zsocket_connect (cloudbe, "ipc://%s-cloud.ipc", peer);
    }
    //  Prepare local frontend and backend
    void *localfe = zsocket_new (ctx, ZMQ_ROUTER);
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    zsocket_bind (localfe, "ipc://%s-localfe.ipc", self);
    void *localbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localbe, "ipc://%s-localbe.ipc", self);

    //  Get user to tell us when we can start...
    printf ("Press Enter when all brokers are started: ");
    getchar ();

    //  Start local workers
    int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Start local clients
    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);

Here, we handle the request-reply flow. We’ re using load-balancing to poll workers at 
all times, and clients only when there are one or more workers available.

Example 35-4. Prototype local and cloud flow (peering2.c) - request-reply handling

   //  Least recently used queue of available workers
    int capacity = 0;
    zlist_t *workers = zlist_new ();

    while (true) {
        //  First, route any waiting replies from workers
        zmq_pollitem_t backends [] = {
            { localbe, 0, ZMQ_POLLIN, 0 },
            { cloudbe, 0, ZMQ_POLLIN, 0 }
        };
        //  If we have no workers, wait indefinitely
        int rc = zmq_poll (backends, 2,
            capacity? 1000 * ZMQ_POLL_MSEC: -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle reply from local worker
        zmsg_t *msg = NULL;
        if (backends [0].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (localbe);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);
            capacity++;

            //  If it's READY, don't route the message any further
            zframe_t *frame = zmsg_first (msg);
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            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
        }
        //  Or handle reply from peer broker
        else
        if (backends [1].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (cloudbe);
            if (!msg)
                break;          //  Interrupted
            //  We don't use peer broker identity for anything
            zframe_t *identity = zmsg_unwrap (msg);
            zframe_destroy (&identity);
        }
        //  Route reply to cloud if it's addressed to a broker
        for (argn = 2; msg && argn < argc; argn++) {
            char *data = (char *) zframe_data (zmsg_first (msg));
            size_t size = zframe_size (zmsg_first (msg));
            if (size == strlen (argv [argn])
            &&  memcmp (data, argv [argn], size) == 0)
                zmsg_send (&msg, cloudfe);
        }
        //  Route reply to client if we still need to
        if (msg)
            zmsg_send (&msg, localfe);

Now we route as many client requests as we have worker capacity for. We may 
reroute requests from our local frontend, but not from the cloud frontend. We reroute 
randomly now, just to test things out. In the next version, we’ ll do this properly by 
calculating cloud capacity:

Example 35-5. Prototype local and cloud flow (peering2.c) - route client requests

       while (capacity) {
            zmq_pollitem_t frontends [] = {
                { localfe, 0, ZMQ_POLLIN, 0 },
                { cloudfe, 0, ZMQ_POLLIN, 0 }
            };
            rc = zmq_poll (frontends, 2, 0);
            assert (rc >= 0);
            int reroutable = 0;
            //  We'll do peer brokers first, to prevent starvation
            if (frontends [1].revents & ZMQ_POLLIN) {
                msg = zmsg_recv (cloudfe);
                reroutable = 0;
            }
            else
            if (frontends [0].revents & ZMQ_POLLIN) {
                msg = zmsg_recv (localfe);
                reroutable = 1;
            }
            else
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                break;      //  No work, go back to backends

            //  If reroutable, send to cloud 20% of the time
            //  Here we'd normally use cloud status information
            //
            if (reroutable && argc > 2 && randof (5) == 0) {
                //  Route to random broker peer
                int peer = randof (argc - 2) + 2;
                zmsg_pushmem (msg, argv [peer], strlen (argv [peer]));
                zmsg_send (&msg, cloudbe);
            }
            else {
                zframe_t *frame = (zframe_t *) zlist_pop (workers);
                zmsg_wrap (msg, frame);
                zmsg_send (&msg, localbe);
                capacity--;
            }
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}

Run this by, for instance, starting two instances of the broker in two windows:

peering2 me you
peering2 you me

Some comments on this code:
• In the C code at least, using the zmsg class makes life much easier, and our 

code much shorter. It’ s obviously an abstraction that works. If you build ØMQ 
applications in C, you should use CZMQ.

• Because we’ re not getting any state information from peers, we naively assume 
they are running. The code prompts you to confirm when you’ ve started all the 
brokers. In the real case, we’ d not send anything to brokers who had not told us 
they exist.

You can satisfy yourself that the code works by watching it run forever. If there were 
any misrouted messages, clients would end up blocking, and the brokers would stop 
printing trace information. You can prove that by killing either of the brokers. The 
other broker tries to send requests to the cloud, and one-by-one its clients block, 
waiting for an answer.
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Putting it All Together
Let’ s put this together into a single package. As before, we’ ll run an entire cluster as 

one process. We’ re going to take the two previous examples and merge them into one 
properly working design that lets you simulate any number of clusters.

This code is the size of both previous prototypes together, at 270 LoC. That’ s pretty 
good for a simulation of a cluster that includes clients and workers and cloud workload 
distribution. Here is the code:

Example 36. Full cluster simulation (peering3.c)

//  Broker peering simulation (part 3)
//  Prototypes the full flow of status and tasks

#include "czmq.h"
#define NBR_CLIENTS 10
#define NBR_WORKERS 5
#define WORKER_READY   "\001"      //  Signals worker is ready

//  Our own name; in practice, this would be configured per node
static char *self;

This is the client task. It issues a burst of requests and then sleeps for a few seconds. 
This simulates sporadic activity; when a number of clients are active at once, the local 
workers should be overloaded. The client uses a REQ socket for requests and also 
pushes statistics to the monitor socket:

Example 36-1. Full cluster simulation (peering3.c) - client task

static void *
client_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, "ipc://%s-localfe.ipc", self);
    void *monitor = zsocket_new (ctx, ZMQ_PUSH);
    zsocket_connect (monitor, "ipc://%s-monitor.ipc", self);

    while (true) {
        sleep (randof (5));
        int burst = randof (15);
        while (burst--) {
            char task_id [5];
            sprintf (task_id, "%04X", randof (0x10000));

            //  Send request with random hex ID
            zstr_send (client, task_id);

            //  Wait max ten seconds for a reply, then complain
            zmq_pollitem_t pollset [1] = { { client, 0, ZMQ_POLLIN, 0 } };
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            int rc = zmq_poll (pollset, 1, 10 * 1000 * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

            if (pollset [0].revents & ZMQ_POLLIN) {
                char *reply = zstr_recv (client);
                if (!reply)
                    break;              //  Interrupted
                //  Worker is supposed to answer us with our task id
                assert (streq (reply, task_id));
                zstr_send (monitor, "%s", reply);
                free (reply);
            }
            else {
                zstr_send (monitor,
                    "E: CLIENT EXIT - lost task %s", task_id);
                return NULL;
            }
        }
    }
    zctx_destroy (&ctx);
    return NULL;
}

This is the worker task, which uses a REQ socket to plug into the load-balancer. It’ s 
the same stub worker task that you’ ve seen in other examples:

Example 36-2. Full cluster simulation (peering3.c) - worker task

static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (worker, "ipc://%s-localbe.ipc", self);

    //  Tell broker we're ready for work
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    //  Process messages as they arrive
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        //  Workers are busy for 0/1 seconds
        sleep (randof (2));
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
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    return NULL;
}

The main task begins by setting up all its sockets. The local frontend talks to clients, 
and our local backend talks to workers. The cloud frontend talks to peer brokers as if 
they were clients, and the cloud backend talks to peer brokers as if they were workers. 
The state backend publishes regular state messages, and the state frontend subscribes 
to all state backends to collect these messages. Finally, we use a PULL monitor socket 
to collect printable messages from tasks:

Example 36-3. Full cluster simulation (peering3.c) - main task

int main (int argc, char *argv [])
{
    //  First argument is this broker's name
    //  Other arguments are our peers' names
    if (argc < 2) {
        printf ("syntax: peering3 me {you}...\n");
        return 0;
    }
    self = argv [1];
    printf ("I: preparing broker at %s...\n", self);
    srandom ((unsigned) time (NULL));

    //  Prepare local frontend and backend
    zctx_t *ctx = zctx_new ();
    void *localfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localfe, "ipc://%s-localfe.ipc", self);

    void *localbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (localbe, "ipc://%s-localbe.ipc", self);

    //  Bind cloud frontend to endpoint
    void *cloudfe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudfe, self);
    zsocket_bind (cloudfe, "ipc://%s-cloud.ipc", self);
    
    //  Connect cloud backend to all peers
    void *cloudbe = zsocket_new (ctx, ZMQ_ROUTER);
    zsockopt_set_identity (cloudbe, self);
    int argn;
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to cloud frontend at '%s'\n", peer);
        zsocket_connect (cloudbe, "ipc://%s-cloud.ipc", peer);
    }
    //  Bind state backend to endpoint
    void *statebe = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (statebe, "ipc://%s-state.ipc", self);
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    //  Connect state frontend to all peers
    void *statefe = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statefe, "");
    for (argn = 2; argn < argc; argn++) {
        char *peer = argv [argn];
        printf ("I: connecting to state backend at '%s'\n", peer);
        zsocket_connect (statefe, "ipc://%s-state.ipc", peer);
    }
    //  Prepare monitor socket
    void *monitor = zsocket_new (ctx, ZMQ_PULL);
    zsocket_bind (monitor, "ipc://%s-monitor.ipc", self);

After binding and connecting all our sockets, we start our child tasks - workers and 
clients:

Example 36-4. Full cluster simulation (peering3.c) - start child tasks

   int worker_nbr;
    for (worker_nbr = 0; worker_nbr < NBR_WORKERS; worker_nbr++)
        zthread_new (worker_task, NULL);

    //  Start local clients
    int client_nbr;
    for (client_nbr = 0; client_nbr < NBR_CLIENTS; client_nbr++)
        zthread_new (client_task, NULL);

    //  Queue of available workers
    int local_capacity = 0;
    int cloud_capacity = 0;
    zlist_t *workers = zlist_new ();

The main loop has two parts. First, we poll workers and our two service sockets 
(statefe and monitor), in any case. If we have no ready workers, then there’ s no point in 
looking at incoming requests. These can remain on their internal ØMQ queues:

Example 36-5. Full cluster simulation (peering3.c) - main loop

   while (true) {
        zmq_pollitem_t primary [] = {
            { localbe, 0, ZMQ_POLLIN, 0 },
            { cloudbe, 0, ZMQ_POLLIN, 0 },
            { statefe, 0, ZMQ_POLLIN, 0 },
            { monitor, 0, ZMQ_POLLIN, 0 }
        };
        //  If we have no workers ready, wait indefinitely
        int rc = zmq_poll (primary, 4,
            local_capacity? 1000 * ZMQ_POLL_MSEC: -1);
        if (rc == -1)
            break;              //  Interrupted

        //  Track if capacity changes during this iteration
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        int previous = local_capacity;
        zmsg_t *msg = NULL;     //  Reply from local worker

        if (primary [0].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (localbe);
            if (!msg)
                break;          //  Interrupted
            zframe_t *identity = zmsg_unwrap (msg);
            zlist_append (workers, identity);
            local_capacity++;

            //  If it's READY, don't route the message any further
            zframe_t *frame = zmsg_first (msg);
            if (memcmp (zframe_data (frame), WORKER_READY, 1) == 0)
                zmsg_destroy (&msg);
        }
        //  Or handle reply from peer broker
        else
        if (primary [1].revents & ZMQ_POLLIN) {
            msg = zmsg_recv (cloudbe);
            if (!msg)
                break;          //  Interrupted
            //  We don't use peer broker identity for anything
            zframe_t *identity = zmsg_unwrap (msg);
            zframe_destroy (&identity);
        }
        //  Route reply to cloud if it's addressed to a broker
        for (argn = 2; msg && argn < argc; argn++) {
            char *data = (char *) zframe_data (zmsg_first (msg));
            size_t size = zframe_size (zmsg_first (msg));
            if (size == strlen (argv [argn])
            &&  memcmp (data, argv [argn], size) == 0)
                zmsg_send (&msg, cloudfe);
        }
        //  Route reply to client if we still need to
        if (msg)
            zmsg_send (&msg, localfe);

If we have input messages on our statefe or monitor sockets, we can process these 
immediately:

Example 36-6. Full cluster simulation (peering3.c) - handle state messages

       if (primary [2].revents & ZMQ_POLLIN) {
            char *peer = zstr_recv (statefe);
            char *status = zstr_recv (statefe);
            cloud_capacity = atoi (status);
            free (peer);
            free (status);
        }
        if (primary [3].revents & ZMQ_POLLIN) {
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            char *status = zstr_recv (monitor);
            printf ("%s\n", status);
            free (status);
        }

Now route as many clients requests as we can handle. If we have local capacity, we 
poll both localfe and cloudfe. If we have cloud capacity only, we poll just localfe. We 
route any request locally if we can, else we route to the cloud.

Example 36-7. Full cluster simulation (peering3.c) - route client requests

       while (local_capacity + cloud_capacity) {
            zmq_pollitem_t secondary [] = {
                { localfe, 0, ZMQ_POLLIN, 0 },
                { cloudfe, 0, ZMQ_POLLIN, 0 }
            };
            if (local_capacity)
                rc = zmq_poll (secondary, 2, 0);
            else
                rc = zmq_poll (secondary, 1, 0);
            assert (rc >= 0);

            if (secondary [0].revents & ZMQ_POLLIN)
                msg = zmsg_recv (localfe);
            else
            if (secondary [1].revents & ZMQ_POLLIN)
                msg = zmsg_recv (cloudfe);
            else
                break;      //  No work, go back to primary

            if (local_capacity) {
                zframe_t *frame = (zframe_t *) zlist_pop (workers);
                zmsg_wrap (msg, frame);
                zmsg_send (&msg, localbe);
                local_capacity--;
            }
            else {
                //  Route to random broker peer
                int peer = randof (argc - 2) + 2;
                zmsg_pushmem (msg, argv [peer], strlen (argv [peer]));
                zmsg_send (&msg, cloudbe);
            }
        }

We broadcast capacity messages to other peers; to reduce chatter, we do this only if 
our capacity changed.

Example 36-8. Full cluster simulation (peering3.c) - broadcast capacity

       if (local_capacity != previous) {
            //  We stick our own identity onto the envelope
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            zstr_sendm (statebe, self);
            //  Broadcast new capacity
            zstr_send (statebe, "%d", local_capacity);
        }
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        zframe_t *frame = (zframe_t *) zlist_pop (workers);
        zframe_destroy (&frame);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return EXIT_SUCCESS;
}

It’ s a nontrivial program and took about a day to get working. These are the 
highlights:

• The client threads detect and report a failed request. They do this by polling 
for a response and if none arrives after a while (10 seconds), printing an error 
message.

• Client threads don’ t print directly, but instead send a message to a monitor 
socket (PUSH) that the main loop collects (PULL) and prints off. This is the 
first case we’ ve seen of using ØMQ sockets for monitoring and logging; this is a 
big use case that we’ ll come back to later.

• Clients simulate varying loads to get the cluster 100% at random moments, so 
that tasks are shifted over to the cloud. The number of clients and workers, and 
delays in the client and worker threads control this. Feel free to play with them 
to see if you can make a more realistic simulation.

• The main loop uses two pollsets. It could in fact use three: information, 
backends, and frontends. As in the earlier prototype, there is no point in taking 
a frontend message if there is no backend capacity.

These are some of the problems that arose during development of this program:
• Clients would freeze, due to requests or replies getting lost somewhere. Recall 

that the ROUTER socket drops messages it can’ t route. The first tactic here 
was to modify the client thread to detect and report such problems. Secondly, I 
put zmsg_dump() calls after every receive and before every send in the main loop, 
until the origin of the problems was clear.

• The main loop was mistakenly reading from more than one ready socket. This 
caused the first message to be lost. I fixed that by reading only from the first 
ready socket.

• The zmsg class was not properly encoding UUIDs as C strings. This caused 
UUIDs that contain 0 bytes to be corrupted. I fixed that by modifying zmsg to 
encode UUIDs as printable hex strings.
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This simulation does not detect disappearance of a cloud peer. If you start several 
peers and stop one, and it was broadcasting capacity to the others, they will continue to 
send it work even if it’ s gone. You can try this, and you will get clients that complain of 
lost requests. The solution is twofold: first, only keep the capacity information for a 
short time so that if a peer does disappear, its capacity is quickly set to zero. Second, 
add reliability to the request-reply chain. We’ ll look at reliability in the next chapter.





Chapter 4. Reliable Request-Reply 
Patterns

“ Advanced Request-Reply Patterns”  covered advanced uses of ØMQ’ s request-reply 
pattern with working examples. This chapter looks at the general question of reliability 
and builds a set of reliable messaging patterns on top of ØMQ’ s core request-reply 
pattern.

In this chapter, we focus heavily on user-space request-reply patterns, reusable models 
that help you design your own ØMQ architectures:

• The Lazy Pirate pattern: reliable request-reply from the client side
• The Simple Pirate pattern: reliable request-reply using load balancing
• The Paranoid Pirate pattern: reliable request-reply with heartbeating
• The Majordomo pattern: service-oriented reliable queuing
• The Titanic pattern: disk-based/disconnected reliable queuing
• The Binary Star pattern: primary-backup server failover
• The Freelance pattern: brokerless reliable request-reply

What is “ Reliability” ?
Most people who speak of “ reliability”  don’ t really know what they mean. We can 

only define reliability in terms of failure. That is, if we can handle a certain set of well-
defined and understood failures, then we are reliable with respect to those failures. No 
more, no less. So let’ s look at the possible causes of failure in a distributed ØMQ 
application, in roughly descending order of probability:

• Application code is the worst offender. It can crash and exit, freeze and stop 
responding to input, run too slowly for its input, exhaust all memory, and so on.

• System code— such as brokers we write using ØMQ— can die for the same 
reasons as application code. System code should be more reliable than 
application code, but it can still crash and burn, and especially run out of 
memory if it tries to queue messages for slow clients.

• Message queues can overflow, typically in system code that has learned to deal 
brutally with slow clients. When a queue overflows, it starts to discard 
messages. So we get “ lost”  messages.

135 
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• Networks can fail (e.g., WiFi gets switched off or goes out of range). ØMQ will 
automatically reconnect in such cases, but in the meantime, messages may get 
lost.

• Hardware can fail and take with it all the processes running on that box.
• Networks can fail in exotic ways, e.g., some ports on a switch may die and those 

parts of the network become inaccessible.
• Entire data centers can be struck by lightning, earthquakes, fire, or more 

mundane power or cooling failures.
To make a software system fully reliable against all of these possible failures is an 

enormously difficult and expensive job and goes beyond the scope of this modest guide.
Because the first five cases in the above list cover 99.9% of real world requirements 

outside large companies (according to a highly scientific study I just ran, which also 
told me that 78% of statistics are made up on the spot, and moreover never to trust a 
statistic that we didn’ t falsify ourselves), that’ s what we’ ll examine. If you’ re a large 
company with money to spend on the last two cases, contact my company immediately! 
There’ s a large hole behind my beach house waiting to be converted into an executive 
swimming pool.

Designing Reliability
So to make things brutally simple, reliability is “ keeping things working properly 

when code freezes or crashes” , a situation we’ ll shorten to “ dies” . However, the things 
we want to keep working properly are more complex than just messages. We need to 
take each core ØMQ messaging pattern and see how to make it work (if we can) even 
when code dies.

Let’ s take them one-by-one:
• Request-reply: if the server dies (while processing a request), the client can 

figure that out because it won’ t get an answer back. Then it can give up in a 
huff, wait and try again later, find another server, and so on. As for the client 
dying, we can brush that off as “ someone else’ s problem”  for now.

• Pub-sub: if the client dies (having gotten some data), the server doesn’ t know 
about it. Pub-sub doesn’ t send any information back from client to server. But 
the client can contact the server out-of-band, e.g., via request-reply, and ask, 
“ please resend everything I missed” . As for the server dying, that’ s out of scope 
for here. Subscribers can also self-verify that they’ re not running too slowly, and 
take action (e.g., warn the operator and die) if they are.

• Pipeline: if a worker dies (while working), the ventilator doesn’ t know about it. 
Pipelines, like the grinding gears of time, only work in one direction. But the 
downstream collector can detect that one task didn’ t get done, and send a 
message back to the ventilator saying, “ hey, resend task 324!”  If the ventilator 
or collector dies, whatever upstream client originally sent the work batch can 
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get tired of waiting and resend the whole lot. It’ s not elegant, but system code 
should really not die often enough to matter.

In this chapter we’ ll focus on just on request-reply, which is the low-hanging fruit of 
reliable messaging.

The basic request-reply pattern (a REQ client socket doing a blocking send/receive to 
a REP server socket) scores low on handling the most common types of failure. If the 
server crashes while processing the request, the client just hangs forever. If the network 
loses the request or the reply, the client hangs forever.

Request-reply is still much better than TCP, thanks to ØMQ’ s ability to reconnect 
peers silently, to load balance messages, and so on. But it’ s still not good enough for 
real work. The only case where you can really trust the basic request-reply pattern is 
between two threads in the same process where there’ s no network or separate server 
process to die.

However, with a little extra work, this humble pattern becomes a good basis for real 
work across a distributed network, and we get a set of reliable request-reply (RRR) 
patterns that I like to call the Pirate patterns (you’ ll eventually get the joke, I hope).

There are, in my experience, roughly three ways to connect clients to servers. Each 
needs a specific approach to reliability:

• Multiple clients talking directly to a single server. Use case: a single well-known 
server to which clients need to talk. Types of failure we aim to handle: server 
crashes and restarts, and network disconnects.

• Multiple clients talking to a broker proxy that distributes work to multiple 
workers. Use case: service-oriented transaction processing. Types of failure we 
aim to handle: worker crashes and restarts, worker busy looping, worker 
overload, queue crashes and restarts, and network disconnects.

• Multiple clients talking to multiple servers with no intermediary proxies. Use 
case: distributed services such as name resolution. Types of failure we aim to 
handle: service crashes and restarts, service busy looping, service overload, and 
network disconnects.

Each of these approaches has its trade-offs and often you’ ll mix them. We’ ll look at 
all three in detail.

Client-Side Reliability (Lazy Pirate Pattern)
We can get very simple reliable request-reply with some changes to the client. We call 

this the Lazy Pirate pattern (see figure 47). Rather than doing a blocking receive, we:
• Poll the REQ socket and receive from it only when it’ s sure a reply has arrived.
• Resend a request, if no reply has arrived within a timeout period.
• Abandon the transaction if there is still no reply after several requests.

If you try to use a REQ socket in anything other than a strict send/receive fashion, 
you’ ll get an error (technically, the REQ socket implements a small finite-state machine 
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to enforce the send/receive ping-pong, and so the error code is called “ EFSM” ). This is 
slightly annoying when we want to use REQ in a pirate pattern, because we may send 
several requests before getting a reply.

The pretty good brute force solution is to close and reopen the REQ socket after an 
error:

Example 37. Lazy Pirate client (lpclient.c)

//  Lazy Pirate client
//  Use zmq_poll to do a safe request-reply
//  To run, start lpserver and then randomly kill/restart it

#include "czmq.h"
#define REQUEST_TIMEOUT     2500    //  msecs, (> 1000!)
#define REQUEST_RETRIES     3       //  Before we abandon
#define SERVER_ENDPOINT     "tcp://localhost:5555"

int main (void)
{
    zctx_t *ctx = zctx_new ();
    printf ("I: connecting to server...\n");
    void *client = zsocket_new (ctx, ZMQ_REQ);
    assert (client);
    zsocket_connect (client, SERVER_ENDPOINT);

    int sequence = 0;
    int retries_left = REQUEST_RETRIES;
    while (retries_left && !zctx_interrupted) {
        //  We send a request, then we work to get a reply
        char request [10];
        sprintf (request, "%d", ++sequence);
        zstr_send (client, request);

        int expect_reply = 1;
        while (expect_reply) {
            //  Poll socket for a reply, with timeout
            zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
            int rc = zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

Here we process a server reply and exit our loop if the reply is valid. If we didn’ t a 
reply we close the client socket and resend the request. We try a number of times before 
finally abandoning:

Example 37-1. Lazy Pirate client (lpclient.c) - process server reply

           if (items [0].revents & ZMQ_POLLIN) {
                //  We got a reply from the server, must match sequence
                char *reply = zstr_recv (client);
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                if (!reply)
                    break;      //  Interrupted
                if (atoi (reply) == sequence) {
                    printf ("I: server replied OK (%s)\n", reply);
                    retries_left = REQUEST_RETRIES;
                    expect_reply = 0;
                }
                else
                    printf ("E: malformed reply from server: %s\n",
                        reply);

                free (reply);
            }
            else
            if (--retries_left == 0) {
                printf ("E: server seems to be offline, abandoning\n");
                break;
            }
            else {
                printf ("W: no response from server, retrying...\n");
                //  Old socket is confused; close it and open a new one
                zsocket_destroy (ctx, client);
                printf ("I: reconnecting to server...\n");
                client = zsocket_new (ctx, ZMQ_REQ);
                zsocket_connect (client, SERVER_ENDPOINT);
                //  Send request again, on new socket
                zstr_send (client, request);
            }
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

Run this together with the matching server:

Example 38. Lazy Pirate server (lpserver.c)

//  Lazy Pirate server
//  Binds REQ socket to tcp://*:5555
//  Like hwserver except:
//   - echoes request as-is
//   - randomly runs slowly, or exits to simulate a crash.

#include "zhelpers.h"

int main (void)
{
    srandom ((unsigned) time (NULL));

    void *context = zmq_ctx_new ();
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    void *server = zmq_socket (context, ZMQ_REP);
    zmq_bind (server, "tcp://*:5555");

    int cycles = 0;
    while (1) {
        char *request = s_recv (server);
        cycles++;

        //  Simulate various problems, after a few cycles
        if (cycles > 3 && randof (3) == 0) {
            printf ("I: simulating a crash\n");
            break;
        }
        else
        if (cycles > 3 && randof (3) == 0) {
            printf ("I: simulating CPU overload\n");
            sleep (2);
        }
        printf ("I: normal request (%s)\n", request);
        sleep (1);              //  Do some heavy work
        s_send (server, request);
        free (request);
    }
    zmq_close (server);
    zmq_ctx_destroy (context);
    return 0;
}

And here is the client’ s response:

I: connecting to server...
I: server replied OK (1)
I: server replied OK (2)
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I: server replied OK (3)
W: no response from server, retrying...
I: connecting to server...
W: no response from server, retrying...
I: connecting to server...
E: server seems to be offline, abandoning

The client sequences each message and checks that replies come back exactly in order: 
that no requests or replies are lost, and no replies come back more than once, or out of 
order. Run the test a few times until you’ re convinced that this mechanism actually 
works. You don’ t need sequence numbers in a production application; they just help us 
trust our design.

The client uses a REQ socket, and does the brute force close/reopen because REQ 
sockets impose that strict send/receive cycle. You might be tempted to use a DEALER 
instead, but it would not be a good decision. First, it would mean emulating the secret 
sauce that REQ does with envelopes (if you’ ve forgotten what that is, it’ s a good sign 
you don’ t want to have to do it). Second, it would mean potentially getting back replies 
that you didn’ t expect.

Handling failures only at the client works when we have a set of clients talking to a 
single server. It can handle a server crash, but only if recovery means restarting that 
same server. If there’ s a permanent error, such as a dead power supply on the server 
hardware, this approach won’ t work. Because the application code in servers is usually 
the biggest source of failures in any architecture, depending on a single server is not a 
great idea.

So, pros and cons:
• Pro: simple to understand and implement.
• Pro: works easily with existing client and server application code.
• Pro: ØMQ automatically retries the actual reconnection until it works.
• Con: doesn’ t failover to backup or alternate servers.

Basic Reliable Queuing (Simple Pirate Pattern)
Our second approach extends the Lazy Pirate pattern with a queue proxy that lets us 

talk, transparently, to multiple servers, which we can more accurately call “ workers” . 
We’ ll develop this in stages, starting with a minimal working model, the Simple Pirate 
pattern.

In all these Pirate patterns, workers are stateless. If the application requires some 
shared state, such as a shared database, we don’ t know about it as we design our 
messaging framework. Having a queue proxy means workers can come and go without 
clients knowing anything about it. If one worker dies, another takes over. This is a nice, 
simple topology with only one real weakness, namely the central queue itself, which can 
become a problem to manage, and a single point of failure.
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The basis for the queue proxy 
is the load balancing broker 
from “ Advanced Request-Reply 
Patterns” . What is the very 
minimum we need to do to 
handle dead or blocked 
workers? Turns out, it’ s 
surprisingly little. We already 
have a retry mechanism in the 
client. So using the load 
balancing pattern will work 
pretty well. This fits with 
ØMQ’ s philosophy that we can 
extend a peer-to-peer pattern 
like request-reply by plugging 
naive proxies in the middle (see 
figure 48).

We don’ t need a special 
client; we’ re still using the Lazy 
Pirate client. Here is the queue, 
which is identical to the main 
task of the load balancing broker:

Example 39. Simple Pirate queue (spqueue.c)

//  Simple Pirate broker
//  This is identical to load-balancing pattern, with no reliability
//  mechanisms. It depends on the client for recovery. Runs forever.

#include "czmq.h"
#define WORKER_READY   "\001"      //  Signals worker is ready

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5555");    //  For clients
    zsocket_bind (backend,  "tcp://*:5556");    //  For workers

    //  Queue of available workers
    zlist_t *workers = zlist_new ();
    
    //  The body of this example is exactly the same as lbbroker2.
...
}
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Here is the worker, which takes the Lazy Pirate server and adapts it for the load 
balancing pattern (using the REQ “ ready”  signaling):

Example 40. Simple Pirate worker (spworker.c)

//  Simple Pirate worker
//  Connects REQ socket to tcp://*:5556
//  Implements worker part of load-balancing

#include "czmq.h"
#define WORKER_READY   "\001"      //  Signals worker is ready

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_REQ);

    //  Set random identity to make tracing easier
    srandom ((unsigned) time (NULL));
    char identity [10];
    sprintf (identity, "%04X-%04X", randof (0x10000), randof (0x10000));
    zmq_setsockopt (worker, ZMQ_IDENTITY, identity, strlen (identity));
    zsocket_connect (worker, "tcp://localhost:5556");

    //  Tell broker we're ready for work
    printf ("I: (%s) worker ready\n", identity);
    zframe_t *frame = zframe_new (WORKER_READY, 1);
    zframe_send (&frame, worker, 0);

    int cycles = 0;
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        if (!msg)
            break;              //  Interrupted

        //  Simulate various problems, after a few cycles
        cycles++;
        if (cycles > 3 && randof (5) == 0) {
            printf ("I: (%s) simulating a crash\n", identity);
            zmsg_destroy (&msg);
            break;
        }
        else
        if (cycles > 3 && randof (5) == 0) {
            printf ("I: (%s) simulating CPU overload\n", identity);
            sleep (3);
            if (zctx_interrupted)
                break;
        }
        printf ("I: (%s) normal reply\n", identity);
        sleep (1);              //  Do some heavy work
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        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return 0;
}

To test this, start a handful of workers, a Lazy Pirate client, and the queue, in any 
order. You’ ll see that the workers eventually all crash and burn, and the client retries 
and then gives up. The queue never stops, and you can restart workers and clients ad 
nauseam. This model works with any number of clients and workers.

Robust Reliable Queuing (Paranoid Pirate Pattern)
The Simple Pirate Queue 

pattern works pretty well, 
especially because it’ s just a 
combination of two existing 
patterns. Still, it does have 
some weaknesses:

• It’ s not robust in the 
face of a queue crash 
and restart. The client 
will recover, but the 
workers won’ t. While 
ØMQ will reconnect 
workers' sockets 
automatically, as far as 
the newly started queue 
is concerned, the 
workers haven’ t signaled 
ready, so don’ t exist. To 
fix this, we have to do 
heartbeating from queue 
to worker so that the 
worker can detect when 
the queue has gone 
away.

• The queue does not detect worker failure, so if a worker dies while idle, the 
queue can’ t remove it from its worker queue until the queue sends it a request. 
The client waits and retries for nothing. It’ s not a critical problem, but it’ s not 
nice. To make this work properly, we do heartbeating from worker to queue, so 
that the queue can detect a lost worker at any stage.

We’ ll fix these in a properly pedantic Paranoid Pirate Pattern.
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We previously used a REQ socket for the worker. For the Paranoid Pirate worker, 
we’ ll switch to a DEALER socket (see figure 49). This has the advantage of letting us 
send and receive messages at any time, rather than the lock-step send/receive that REQ 
imposes. The downside of DEALER is that we have to do our own envelope 
management (re-read “ Advanced Request-Reply Patterns”  for background on this 
concept).

We’ re still using the Lazy Pirate client. Here is the Paranoid Pirate queue proxy:

Example 41. Paranoid Pirate queue (ppqueue.c)

//  Paranoid Pirate queue

#include "czmq.h"
#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msecs

//  Paranoid Pirate Protocol constants
#define PPP_READY       "\001"      //  Signals worker is ready
#define PPP_HEARTBEAT   "\002"      //  Signals worker heartbeat

Here we define the worker class; a structure and a set of functions that act as 
constructor, destructor, and methods on worker objects:

Example 41-1. Paranoid Pirate queue (ppqueue.c) - worker class structure

typedef struct {
    zframe_t *identity;         //  Identity of worker
    char *id_string;            //  Printable identity
    int64_t expiry;             //  Expires at this time
} worker_t;

//  Construct new worker
static worker_t *
s_worker_new (zframe_t *identity)
{
    worker_t *self = (worker_t *) zmalloc (sizeof (worker_t));
    self->identity = identity;
    self->id_string = zframe_strdup (identity);
    self->expiry = zclock_time ()
                 + HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS;
    return self;
}

//  Destroy specified worker object, including identity frame.
static void
s_worker_destroy (worker_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        worker_t *self = *self_p;



146 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

        zframe_destroy (&self->identity);
        free (self->id_string);
        free (self);
        *self_p = NULL;
    }
}

The ready method puts a worker to the end of the ready list:

Example 41-2. Paranoid Pirate queue (ppqueue.c) - worker ready method

static void
s_worker_ready (worker_t *self, zlist_t *workers)
{
    worker_t *worker = (worker_t *) zlist_first (workers);
    while (worker) {
        if (streq (self->id_string, worker->id_string)) {
            zlist_remove (workers, worker);
            s_worker_destroy (&worker);
            break;
        }
        worker = (worker_t *) zlist_next (workers);
    }
    zlist_append (workers, self);
}

The next method returns the next available worker identity:

Example 41-3. Paranoid Pirate queue (ppqueue.c) - get next available worker

static zframe_t *
s_workers_next (zlist_t *workers)
{
    worker_t *worker = zlist_pop (workers);
    assert (worker);
    zframe_t *frame = worker->identity;
    worker->identity = NULL;
    s_worker_destroy (&worker);
    return frame;
}

The purge method looks for and kills expired workers. We hold workers from oldest to 
most recent, so we stop at the first alive worker:

Example 41-4. Paranoid Pirate queue (ppqueue.c) - purge expired workers

static void
s_workers_purge (zlist_t *workers)
{
    worker_t *worker = (worker_t *) zlist_first (workers);
    while (worker) {
        if (zclock_time () < worker->expiry)
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            break;              //  Worker is alive, we're done here

        zlist_remove (workers, worker);
        s_worker_destroy (&worker);
        worker = (worker_t *) zlist_first (workers);
    }
}

The main task is a load-balancer with heartbeating on workers so we can detect 
crashed or blocked worker tasks:

Example 41-5. Paranoid Pirate queue (ppqueue.c) - main task

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    void *backend = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (frontend, "tcp://*:5555");    //  For clients
    zsocket_bind (backend,  "tcp://*:5556");    //  For workers

    //  List of available workers
    zlist_t *workers = zlist_new ();

    //  Send out heartbeats at regular intervals
    uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

    while (true) {
        zmq_pollitem_t items [] = {
            { backend,  0, ZMQ_POLLIN, 0 },
            { frontend, 0, ZMQ_POLLIN, 0 }
        };
        //  Poll frontend only if we have available workers
        int rc = zmq_poll (items, zlist_size (workers)? 2: 1,
            HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Handle worker activity on backend
        if (items [0].revents & ZMQ_POLLIN) {
            //  Use worker identity for load-balancing
            zmsg_t *msg = zmsg_recv (backend);
            if (!msg)
                break;          //  Interrupted

            //  Any sign of life from worker means it's ready
            zframe_t *identity = zmsg_unwrap (msg);
            worker_t *worker = s_worker_new (identity);
            s_worker_ready (worker, workers);

            //  Validate control message, or return reply to client



148 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

            if (zmsg_size (msg) == 1) {
                zframe_t *frame = zmsg_first (msg);
                if (memcmp (zframe_data (frame), PPP_READY, 1)
                &&  memcmp (zframe_data (frame), PPP_HEARTBEAT, 1)) {
                    printf ("E: invalid message from worker");
                    zmsg_dump (msg);
                }
                zmsg_destroy (&msg);
            }
            else
                zmsg_send (&msg, frontend);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Now get next client request, route to next worker
            zmsg_t *msg = zmsg_recv (frontend);
            if (!msg)
                break;          //  Interrupted
            zmsg_push (msg, s_workers_next (workers));
            zmsg_send (&msg, backend);
        }

We handle heartbeating after any socket activity. First, we send heartbeats to any 
idle workers if it’ s time. Then, we purge any dead workers:

Example 41-6. Paranoid Pirate queue (ppqueue.c) - handle heartbeating

           worker_t *worker = (worker_t *) zlist_first (workers);
            while (worker) {
                zframe_send (&worker->identity, backend,
                             ZFRAME_REUSE + ZFRAME_MORE);
                zframe_t *frame = zframe_new (PPP_HEARTBEAT, 1);
                zframe_send (&frame, backend, 0);
                worker = (worker_t *) zlist_next (workers);
            }
            heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        }
        s_workers_purge (workers);
    }
    //  When we're done, clean up properly
    while (zlist_size (workers)) {
        worker_t *worker = (worker_t *) zlist_pop (workers);
        s_worker_destroy (&worker);
    }
    zlist_destroy (&workers);
    zctx_destroy (&ctx);
    return 0;
}

The queue extends the load balancing pattern with heartbeating of workers. 
Heartbeating is one of those “ simple”  things that can be difficult to get right. I’ ll 
explain more about that in a second.
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Here is the Paranoid Pirate worker:

Example 42. Paranoid Pirate worker (ppworker.c)

//  Paranoid Pirate worker

#include "czmq.h"
#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msecs
#define INTERVAL_INIT       1000    //  Initial reconnect
#define INTERVAL_MAX       32000    //  After exponential backoff

//  Paranoid Pirate Protocol constants
#define PPP_READY       "\001"      //  Signals worker is ready
#define PPP_HEARTBEAT   "\002"      //  Signals worker heartbeat

//  Helper function that returns a new configured socket
//  connected to the Paranoid Pirate queue

static void *
s_worker_socket (zctx_t *ctx) {
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "tcp://localhost:5556");

    //  Tell queue we're ready for work
    printf ("I: worker ready\n");
    zframe_t *frame = zframe_new (PPP_READY, 1);
    zframe_send (&frame, worker, 0);

    return worker;
}

We have a single task that implements the worker side of the Paranoid Pirate 
Protocol (PPP). The interesting parts here are the heartbeating, which lets the worker 
detect if the queue has died, and vice versa:

Example 42-1. Paranoid Pirate worker (ppworker.c) - main task

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *worker = s_worker_socket (ctx);

    //  If liveness hits zero, queue is considered disconnected
    size_t liveness = HEARTBEAT_LIVENESS;
    size_t interval = INTERVAL_INIT;

    //  Send out heartbeats at regular intervals
    uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

    srandom ((unsigned) time (NULL));
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    int cycles = 0;
    while (true) {
        zmq_pollitem_t items [] = { { worker,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        if (items [0].revents & ZMQ_POLLIN) {
            //  Get message
            //  - 3-part envelope + content -> request
            //  - 1-part HEARTBEAT -> heartbeat
            zmsg_t *msg = zmsg_recv (worker);
            if (!msg)
                break;          //  Interrupted

To test the robustness of the queue implementation we simulate various typical 
problems, such as the worker crashing or running very slowly. We do this after a few 
cycles so that the architecture can get up and running first:

Example 42-2. Paranoid Pirate worker (ppworker.c) - simulating problems

               cycles++;
                if (cycles > 3 && randof (5) == 0) {
                    printf ("I: simulating a crash\n");
                    zmsg_destroy (&msg);
                    break;
                }
                else
                if (cycles > 3 && randof (5) == 0) {
                    printf ("I: simulating CPU overload\n");
                    sleep (3);
                    if (zctx_interrupted)
                        break;
                }
                printf ("I: normal reply\n");
                zmsg_send (&msg, worker);
                liveness = HEARTBEAT_LIVENESS;
                sleep (1);              //  Do some heavy work
                if (zctx_interrupted)
                    break;
            }
            else

When we get a heartbeat message from the queue, it means the queue was (recently) 
alive, so we must reset our liveness indicator:

Example 42-3. Paranoid Pirate worker (ppworker.c) - handle heartbeats

               zframe_t *frame = zmsg_first (msg);
                if (memcmp (zframe_data (frame), PPP_HEARTBEAT, 1) == 0)
                    liveness = HEARTBEAT_LIVENESS;
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                else {
                    printf ("E: invalid message\n");
                    zmsg_dump (msg);
                }
                zmsg_destroy (&msg);
            }
            else {
                printf ("E: invalid message\n");
                zmsg_dump (msg);
            }
            interval = INTERVAL_INIT;
        }
        else

If the queue hasn’ t sent us heartbeats in a while, destroy the socket and reconnect. 
This is the simplest most brutal way of discarding any messages we might have sent in 
the meantime:

Example 42-4. Paranoid Pirate worker (ppworker.c) - detecting a dead queue

           printf ("W: heartbeat failure, can't reach queue\n");
            printf ("W: reconnecting in %zd msec...\n", interval);
            zclock_sleep (interval);

            if (interval < INTERVAL_MAX)
                interval *= 2;
            zsocket_destroy (ctx, worker);
            worker = s_worker_socket (ctx);
            liveness = HEARTBEAT_LIVENESS;
        }
        //  Send heartbeat to queue if it's time
        if (zclock_time () > heartbeat_at) {
            heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
            printf ("I: worker heartbeat\n");
            zframe_t *frame = zframe_new (PPP_HEARTBEAT, 1);
            zframe_send (&frame, worker, 0);
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

Some comments about this example:
• The code includes simulation of failures, as before. This makes it (a) very hard 

to debug, and (b) dangerous to reuse. When you want to debug this, disable the 
failure simulation.

• The worker uses a reconnect strategy similar to the one we designed for the 
Lazy Pirate client, with two major differences: (a) it does an exponential back-
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off, and (b) it retries indefinitely (whereas the client retries a few times before 
reporting a failure).

Try the client, queue, and workers, such as by using a script like this:

ppqueue &
for i in 1 2 3 4; do
    ppworker &
    sleep 1
done
lpclient &

You should see the workers die one-by-one as they simulate a crash, and the client 
eventually give up. You can stop and restart the queue and both client and workers will 
reconnect and carry on. And no matter what you do to queues and workers, the client 
will never get an out-of-order reply: the whole chain either works, or the client 
abandons.

Heartbeating
Heartbeating solves the problem of knowing whether a peer is alive or dead. This is 

not an issue specific to ØMQ. TCP has a long timeout (30 minutes or so), that means 
that it can be impossible to know whether a peer has died, been disconnected, or gone 
on a weekend to Prague with a case of vodka, a redhead, and a large expense account.

It’ s is not easy to get heartbeating right. When writing the Paranoid Pirate examples, 
it took about five hours to get the heartbeating working properly. The rest of the 
request-reply chain took perhaps ten minutes. It is especially easy to create “ false 
failures” , i.e., when peers decide that they are disconnected because the heartbeats 
aren’ t sent properly.

We’ ll look at the three main answers people use for heartbeating with ØMQ.

Shrugging It Off
The most common approach is to do no heartbeating at all and hope for the best. 

Many if not most ØMQ applications do this. ØMQ encourages this by hiding peers in 
many cases. What problems does this approach cause?

• When we use a ROUTER socket in an application that tracks peers, as peers 
disconnect and reconnect, the application will leak memory (resources that the 
application holds for each peer) and get slower and slower.

• When we use SUB- or DEALER-based data recipients, we can’ t tell the 
difference between good silence (there’ s no data) and bad silence (the other end 
died). When a recipient knows the other side died, it can for example switch 
over to a backup route.

• If we use a TCP connection that stays silent for a long while, it will, in some 
networks, just die. Sending something (technically, a “ keep-alive”  more than a 
heartbeat), will keep the network alive.
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One-Way Heartbeats
A second option is to send a heartbeat message from each node to its peers every 

second or so. When one node hears nothing from another within some timeout (several 
seconds, typically), it will treat that peer as dead. Sounds good, right? Sadly, no. This 
works in some cases but has nasty edge cases in others.

For pub-sub, this does work, and it’ s the only model you can use. SUB sockets cannot 
talk back to PUB sockets, but PUB sockets can happily send “ I’ m alive”  messages to 
their subscribers.

As an optimization, you can send heartbeats only when there is no real data to send. 
Furthermore, you can send heartbeats progressively slower and slower, if network 
activity is an issue (e.g., on mobile networks where activity drains the battery). As long 
as the recipient can detect a failure (sharp stop in activity), that’ s fine.

Here are the typical problems with this design:
• It can be inaccurate when we send large amounts of data, as heartbeats will be 

delayed behind that data. If heartbeats are delayed, you can get false timeouts 
and disconnections due to network congestion. Thus, always treat any incoming 
data as a heartbeat, whether or not the sender optimizes out heartbeats.

• While the pub-sub pattern will drop messages for disappeared recipients, PUSH 
and DEALER sockets will queue them. So if you send heartbeats to a dead peer 
and it comes back, it will get all the heartbeats you sent, which can be 
thousands. Whoa, whoa!

• This design assumes that heartbeat timeouts are the same across the whole 
network. But that won’ t be accurate. Some peers will want very aggressive 
heartbeating in order to detect faults rapidly. And some will want very relaxed 
heartbeating, in order to let sleeping networks lie and save power.

Ping-Pong Heartbeats
The third option is to use a ping-pong dialog. One peer sends a ping command to the 

other, which replies with a pong command. Neither command has any payload. Pings 
and pongs are not correlated. Because the roles of “ client”  and “ server”  are arbitrary in 
some networks, we usually specify that either peer can in fact send a ping and expect a 
pong in response. However, because the timeouts depend on network topologies known 
best to dynamic clients, it is usually the client that pings the server.

This works for all ROUTER-based brokers. The same optimizations we used in the 
second model make this work even better: treat any incoming data as a pong, and only 
send a ping when not otherwise sending data.

Heartbeating for Paranoid Pirate
For Paranoid Pirate, we chose the second approach. It might not have been the 

simplest option: if designing this today, I’ d probably try a ping-pong approach instead. 
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However the principles are similar. The heartbeat messages flow asynchronously in both 
directions, and either peer can decide the other is “ dead”  and stop talking to it.

In the worker, this is how we handle heartbeats from the queue:
• We calculate a liveness, which is how many heartbeats we can still miss before 

deciding the queue is dead. It starts at three and we decrement it each time we 
miss a heartbeat.

• We wait, in the zmq_poll loop, for one second each time, which is our heartbeat 
interval.

• If there’ s any message from the queue during that time, we reset our liveness to 
three.

• If there’ s no message during that time, we count down our liveness.
• If the liveness reaches zero, we consider the queue dead.
• If the queue is dead, we destroy our socket, create a new one, and reconnect.
• To avoid opening and closing too many sockets, we wait for a certain interval 

before reconnecting, and we double the interval each time until it reaches 32 
seconds.

And this is how we handle heartbeats to the queue:
• We calculate when to send the next heartbeat; this is a single variable because 

we’ re talking to one peer, the queue.
• In the zmq_poll loop, whenever we pass this time, we send a heartbeat to the 

queue.
Here’ s the essential heartbeating code for the worker:

#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  1000    //  msecs
#define INTERVAL_INIT       1000    //  Initial reconnect
#define INTERVAL_MAX       32000    //  After exponential backoff

...
//  If liveness hits zero, queue is considered disconnected
size_t liveness = HEARTBEAT_LIVENESS;
size_t interval = INTERVAL_INIT;

//  Send out heartbeats at regular intervals
uint64_t heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;

while (true) {
    zmq_pollitem_t items [] = { { worker,  0, ZMQ_POLLIN, 0 } };
    int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);

    if (items [0].revents & ZMQ_POLLIN) {
        //  Receive any message from queue
        liveness = HEARTBEAT_LIVENESS;
        interval = INTERVAL_INIT;
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    }
    else
    if (--liveness == 0) {
        zclock_sleep (interval);
        if (interval < INTERVAL_MAX)
            interval *= 2;
        zsocket_destroy (ctx, worker);
        ...
        liveness = HEARTBEAT_LIVENESS;
    }
    //  Send heartbeat to queue if it's time
    if (zclock_time () > heartbeat_at) {
        heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        //  Send heartbeat message to queue
    }
}

The queue does the same, but manages an expiration time for each worker.
Here are some tips for your own heartbeating implementation:
• Use zmq_poll or a reactor as the core of your application’ s main task.
• Start by building the heartbeating between peers, test it by simulating failures, 

and then build the rest of the message flow. Adding heartbeating afterwards is 
much trickier.

• Use simple tracing, i.e., print to console, to get this working. To help you trace 
the flow of messages between peers, use a dump method such as zmsg offers, 
and number your messages incrementally so you can see if there are gaps.

• In a real application, heartbeating must be configurable and usually negotiated 
with the peer. Some peers will want aggressive heartbeating, as low as 10 msecs. 
Other peers will be far away and want heartbeating as high as 30 seconds.

• If you have different heartbeat intervals for different peers, your poll timeout 
should be the lowest (shortest time) of these. Do not use an infinite timeout.

• Do heartbeating on the same socket you use for messages, so your heartbeats 
also act as a keep-alive to stop the network connection from going stale (some 
firewalls can be unkind to silent connections).

Contracts and Protocols
If you’ re paying attention, you’ ll realize that Paranoid Pirate is not interoperable 

with Simple Pirate, because of the heartbeats. But how do we define “ interoperable” ? 
To guarantee interoperability, we need a kind of contract, an agreement that lets 
different teams in different times and places write code that is guaranteed to work 
together. We call this a “ protocol” .

It’ s fun to experiment without specifications, but that’ s not a sensible basis for real 
applications. What happens if we want to write a worker in another language? Do we 
have to read code to see how things work? What if we want to change the protocol for 
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some reason? Even a simple protocol will, if it’ s successful, evolve and become more 
complex.

Lack of contracts is a sure sign of a disposable application. So let’ s write a contract 
for this protocol. How do we do that?

There’ s a wiki at rfc.zeromq.org14 that we made especially as a home for public ØMQ 
contracts.

To create a new specification, register on the wiki if needed, and follow the 
instructions. It’ s fairly straightforward, though writing technical texts is not everyone’ s 
cup of tea.

It took me about fifteen minutes to draft the new Pirate Pattern Protocol15. It’ s not a 
big specification, but it does capture enough to act as the basis for arguments (“ your 
queue isn’ t PPP compatible; please fix it!” ).

Turning PPP into a real protocol would take more work:
• There should be a protocol version number in the READY command so that it’ s 

possible to distinguish between different versions of PPP.
• Right now, READY and HEARTBEAT are not entirely distinct from requests 

and replies. To make them distinct, we would need a message structure that 
includes a “ message type”  part.

Service-Oriented Reliable Queuing (Majordomo Pattern)

14 http://rfc.zeromq.org
15 http://rfc.zeromq.org/spec:6
16 http://rfc.zeromq.org/spec:7
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(PPP), and a precise set of improvements that each solved a clear problem. This made 
it easy to draft.

To implement Majordomo, we need to write a framework for clients and workers. It’ s 
really not sane to ask every application developer to read the spec and make it work, 
when they could be using a simpler API that does the work for them.

So while our first contract (MDP itself) defines how the pieces of our distributed 
architecture talk to each other, our second contract defines how user applications talk 
to the technical framework we’ re going to design.

Majordomo has two halves, a client side and a worker side. Because we’ ll write both 
client and worker applications, we will need two APIs. Here is a sketch for the client 
API, using a simple object-oriented approach:

mdcli_t *mdcli_new     (char *broker);
void     mdcli_destroy (mdcli_t **self_p);
zmsg_t  *mdcli_send    (mdcli_t *self, char *service, zmsg_t **request_p);

That’ s it. We open a session to the broker, send a request message, get a reply 
message back, and eventually close the connection. Here’ s a sketch for the worker API:

mdwrk_t *mdwrk_new     (char *broker,char *service);
void     mdwrk_destroy (mdwrk_t **self_p);
zmsg_t  *mdwrk_recv    (mdwrk_t *self, zmsg_t *reply);

It’ s more or less symmetrical, but the worker dialog is a little different. The first time 
a worker does a recv(), it passes a null reply. Thereafter, it passes the current reply, and 
gets a new request.

The client and worker APIs were fairly simple to construct because they’ re heavily 
based on the Paranoid Pirate code we already developed. Here is the client API:

Example 43. Majordomo client API (mdcliapi.c)

//  mdcliapi class - Majordomo Protocol Client API
//  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.

#include "mdcliapi.h"

//  Structure of our class
//  We access these properties only via class methods

struct _mdcli_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    void *client;               //  Socket to broker
    int verbose;                //  Print activity to stdout
    int timeout;                //  Request timeout
    int retries;                //  Request retries
};

//  Connect or reconnect to broker
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void s_mdcli_connect_to_broker (mdcli_t *self)
{
    if (self->client)
        zsocket_destroy (self->ctx, self->client);
    self->client = zsocket_new (self->ctx, ZMQ_REQ);
    zmq_connect (self->client, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);
}

Here we have the constructor and destructor for our class:

Example 43-1. Majordomo client API (mdcliapi.c) - constructor and destructor

//  Constructor

mdcli_t *
mdcli_new (char *broker, int verbose)
{
    assert (broker);

    mdcli_t *self = (mdcli_t *) zmalloc (sizeof (mdcli_t));
    self->ctx = zctx_new ();
    self->broker = strdup (broker);
    self->verbose = verbose;
    self->timeout = 2500;           //  msecs
    self->retries = 3;              //  Before we abandon

    s_mdcli_connect_to_broker (self);
    return self;
}

//  Destructor

void
mdcli_destroy (mdcli_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        mdcli_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self->broker);
        free (self);
        *self_p = NULL;
    }
}
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These are the class methods. We can set the request timeout and number of retry 
attempts before sending requests:

Example 43-2. Majordomo client API (mdcliapi.c) - configure retry behavior

//  Set request timeout

void
mdcli_set_timeout (mdcli_t *self, int timeout)
{
    assert (self);
    self->timeout = timeout;
}

//  Set request retries

void
mdcli_set_retries (mdcli_t *self, int retries)
{
    assert (self);
    self->retries = retries;
}

Here is the send method. It sends a request to the broker and gets a reply even if it 
has to retry several times. It takes ownership of the request message, and destroys it 
when sent. It returns the reply message, or NULL if there was no reply after multiple 
attempts:

Example 43-3. Majordomo client API (mdcliapi.c) - send request and wait for 
reply

zmsg_t *
mdcli_send (mdcli_t *self, char *service, zmsg_t **request_p)
{
    assert (self);
    assert (request_p);
    zmsg_t *request = *request_p;

    //  Prefix request with protocol frames
    //  Frame 1: "MDPCxy" (six bytes, MDP/Client x.y)
    //  Frame 2: Service name (printable string)
    zmsg_pushstr (request, service);
    zmsg_pushstr (request, MDPC_CLIENT);
    if (self->verbose) {
        zclock_log ("I: send request to '%s' service:", service);
        zmsg_dump (request);
    }
    int retries_left = self->retries;
    while (retries_left && !zctx_interrupted) {
        zmsg_t *msg = zmsg_dup (request);
        zmsg_send (&msg, self->client);
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        zmq_pollitem_t items [] = {
            { self->client, 0, ZMQ_POLLIN, 0 }
        };

On any blocking call, libzmq will return -1 if there was an error; we could in theory 
check for different error codes, but in practice it’ s OK to assume it was EINTR (Ctrl-C):

Example 43-4. Majordomo client API (mdcliapi.c) - body of send 

       int rc = zmq_poll (items, 1, self->timeout * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;          //  Interrupted

        //  If we got a reply, process it
        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->client);
            if (self->verbose) {
                zclock_log ("I: received reply:");
                zmsg_dump (msg);
            }
            //  We would handle malformed replies better in real code
            assert (zmsg_size (msg) >= 3);

            zframe_t *header = zmsg_pop (msg);
            assert (zframe_streq (header, MDPC_CLIENT));
            zframe_destroy (&header);

            zframe_t *reply_service = zmsg_pop (msg);
            assert (zframe_streq (reply_service, service));
            zframe_destroy (&reply_service);

            zmsg_destroy (&request);
            return msg;     //  Success
        }
        else
        if (--retries_left) {
            if (self->verbose)
                zclock_log ("W: no reply, reconnecting...");
            s_mdcli_connect_to_broker (self);
        }
        else {
            if (self->verbose)
                zclock_log ("W: permanent error, abandoning");
            break;          //  Give up
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, killing client...\n");
    zmsg_destroy (&request);
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    return NULL;
}

Let’ s see how the client API looks in action, with an example test program that does 
100K request-reply cycles:

Example 44. Majordomo client application (mdclient.c)

//  Majordomo Protocol client example
//  Uses the mdcli API to hide all MDP aspects

//  Lets us build this source without creating a library
#include "mdcliapi.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    int count;
    for (count = 0; count < 100000; count++) {
        zmsg_t *request = zmsg_new ();
        zmsg_pushstr (request, "Hello world");
        zmsg_t *reply = mdcli_send (session, "echo", &request);
        if (reply)
            zmsg_destroy (&reply);
        else
            break;              //  Interrupt or failure
    }
    printf ("%d requests/replies processed\n", count);
    mdcli_destroy (&session);
    return 0;
}

And here is the worker API:

Example 45. Majordomo worker API (mdwrkapi.c)

//  mdwrkapi class - Majordomo Protocol Worker API
//  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.

#include "mdwrkapi.h"

//  Reliability parameters
#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
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This is the structure of a worker API instance. We use a pseudo-OO approach in a lot 
of the C examples, as well as the CZMQ binding:

Example 45-1. Majordomo worker API (mdwrkapi.c) - worker class structure

//  Structure of our class
//  We access these properties only via class methods

struct _mdwrk_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    char *service;
    void *worker;               //  Socket to broker
    int verbose;                //  Print activity to stdout

    //  Heartbeat management
    uint64_t heartbeat_at;      //  When to send HEARTBEAT
    size_t liveness;            //  How many attempts left
    int heartbeat;              //  Heartbeat delay, msecs
    int reconnect;              //  Reconnect delay, msecs

    int expect_reply;           //  Zero only at start
    zframe_t *reply_to;         //  Return identity, if any
};

We have two utility functions; to send a message to the broker and to (re)connect to 
the broker:

Example 45-2. Majordomo worker API (mdwrkapi.c) - utility functions

//  Send message to broker
//  If no msg is provided, creates one internally

static void
s_mdwrk_send_to_broker (mdwrk_t *self, char *command, char *option,
                        zmsg_t *msg)
{
    msg = msg? zmsg_dup (msg): zmsg_new ();

    //  Stack protocol envelope to start of message
    if (option)
        zmsg_pushstr (msg, option);
    zmsg_pushstr (msg, command);
    zmsg_pushstr (msg, MDPW_WORKER);
    zmsg_pushstr (msg, "");

    if (self->verbose) {
        zclock_log ("I: sending %s to broker",
            mdps_commands [(int) *command]);
        zmsg_dump (msg);
    }
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    zmsg_send (&msg, self->worker);
}

//  Connect or reconnect to broker

void s_mdwrk_connect_to_broker (mdwrk_t *self)
{
    if (self->worker)
        zsocket_destroy (self->ctx, self->worker);
    self->worker = zsocket_new (self->ctx, ZMQ_DEALER);
    zmq_connect (self->worker, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);

    //  Register service with broker
    s_mdwrk_send_to_broker (self, MDPW_READY, self->service, NULL);

    //  If liveness hits zero, queue is considered disconnected
    self->liveness = HEARTBEAT_LIVENESS;
    self->heartbeat_at = zclock_time () + self->heartbeat;
}

Here we have the constructor and destructor for our mdwrk class:

Example 45-3. Majordomo worker API (mdwrkapi.c) - constructor and destructor

//  Constructor

mdwrk_t *
mdwrk_new (char *broker,char *service, int verbose)
{
    assert (broker);
    assert (service);

    mdwrk_t *self = (mdwrk_t *) zmalloc (sizeof (mdwrk_t));
    self->ctx = zctx_new ();
    self->broker = strdup (broker);
    self->service = strdup (service);
    self->verbose = verbose;
    self->heartbeat = 2500;     //  msecs
    self->reconnect = 2500;     //  msecs

    s_mdwrk_connect_to_broker (self);
    return self;
}

//  Destructor

void
mdwrk_destroy (mdwrk_t **self_p)
{



164 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

    assert (self_p);
    if (*self_p) {
        mdwrk_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self->broker);
        free (self->service);
        free (self);
        *self_p = NULL;
    }
}

We provide two methods to configure the worker API. You can set the heartbeat 
interval and retries to match the expected network performance.

Example 45-4. Majordomo worker API (mdwrkapi.c) - configure worker

//  Set heartbeat delay

void
mdwrk_set_heartbeat (mdwrk_t *self, int heartbeat)
{
    self->heartbeat = heartbeat;
}

//  Set reconnect delay

void
mdwrk_set_reconnect (mdwrk_t *self, int reconnect)
{
    self->reconnect = reconnect;
}

This is the recv method; it’ s a little misnamed since it first sends any reply and then 
waits for a new request. If you have a better name for this, let me know.

Example 45-5. Majordomo worker API (mdwrkapi.c) - recv method

//  Send reply, if any, to broker and wait for next request.

zmsg_t *
mdwrk_recv (mdwrk_t *self, zmsg_t **reply_p)
{
    //  Format and send the reply if we were provided one
    assert (reply_p);
    zmsg_t *reply = *reply_p;
    assert (reply || !self->expect_reply);
    if (reply) {
        assert (self->reply_to);
        zmsg_wrap (reply, self->reply_to);
        s_mdwrk_send_to_broker (self, MDPW_REPLY, NULL, reply);
        zmsg_destroy (reply_p);
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    }
    self->expect_reply = 1;

    while (true) {
        zmq_pollitem_t items [] = {
            { self->worker,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, self->heartbeat * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->worker);
            if (!msg)
                break;          //  Interrupted
            if (self->verbose) {
                zclock_log ("I: received message from broker:");
                zmsg_dump (msg);
            }
            self->liveness = HEARTBEAT_LIVENESS;

            //  Don't try to handle errors, just assert noisily
            assert (zmsg_size (msg) >= 3);

            zframe_t *empty = zmsg_pop (msg);
            assert (zframe_streq (empty, ""));
            zframe_destroy (&empty);

            zframe_t *header = zmsg_pop (msg);
            assert (zframe_streq (header, MDPW_WORKER));
            zframe_destroy (&header);

            zframe_t *command = zmsg_pop (msg);
            if (zframe_streq (command, MDPW_REQUEST)) {
                //  We should pop and save as many addresses as there are
                //  up to a null part, but for now, just save one...
                self->reply_to = zmsg_unwrap (msg);
                zframe_destroy (&command);

Here is where we actually have a message to process; we return it to the caller 
application:

Example 45-6. Majordomo worker API (mdwrkapi.c) - process message

               return msg;     //  We have a request to process
            }
            else
            if (zframe_streq (command, MDPW_HEARTBEAT))
                ;               //  Do nothing for heartbeats
            else
            if (zframe_streq (command, MDPW_DISCONNECT))
                s_mdwrk_connect_to_broker (self);
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            else {
                zclock_log ("E: invalid input message");
                zmsg_dump (msg);
            }
            zframe_destroy (&command);
            zmsg_destroy (&msg);
        }
        else
        if (--self->liveness == 0) {
            if (self->verbose)
                zclock_log ("W: disconnected from broker - retrying...");
            zclock_sleep (self->reconnect);
            s_mdwrk_connect_to_broker (self);
        }
        //  Send HEARTBEAT if it's time
        if (zclock_time () > self->heartbeat_at) {
            s_mdwrk_send_to_broker (self, MDPW_HEARTBEAT, NULL, NULL);
            self->heartbeat_at = zclock_time () + self->heartbeat;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, killing worker...\n");
    return NULL;
}

Let’ s see how the worker API looks in action, with an example test program that 
implements an echo service:

Example 46. Majordomo worker application (mdworker.c)

//  Majordomo Protocol worker example
//  Uses the mdwrk API to hide all MDP aspects

//  Lets us build this source without creating a library
#include "mdwrkapi.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdwrk_t *session = mdwrk_new (
        "tcp://localhost:5555", "echo", verbose);

    zmsg_t *reply = NULL;
    while (true) {
        zmsg_t *request = mdwrk_recv (session, &reply);
        if (request == NULL)
            break;              //  Worker was interrupted
        reply = request;        //  Echo is complex... :-)
    }
    mdwrk_destroy (&session);
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    return 0;
}

Here are some things to note about the worker API code:
• The APIs are single-threaded. This means, for example, that the worker won’ t 

send heartbeats in the background. Happily, this is exactly what we want: if the 
worker application gets stuck, heartbeats will stop and the broker will stop 
sending requests to the worker.

• The worker API doesn’ t do an exponential back-off; it’ s not worth the extra 
complexity.

• The APIs don’ t do any error reporting. If something isn’ t as expected, they 
raise an assertion (or exception depending on the language). This is ideal for a 
reference implementation, so any protocol errors show immediately. For real 
applications, the API should be robust against invalid messages.

You might wonder why the worker API is manually closing its socket and opening a 
new one, when ØMQ will automatically reconnect a socket if the peer disappears and 
comes back. Look back at the Simple Pirate and Paranoid Pirate workers to 
understand. Although ØMQ will automatically reconnect workers if the broker dies and 
comes back up, this isn’ t sufficient to re-register the workers with the broker. I know of 
at least two solutions. The simplest, which we use here, is for the worker to monitor the 
connection using heartbeats, and if it decides the broker is dead, to close its socket and 
start afresh with a new socket. The alternative is for the broker to challenge unknown 
workers when it gets a heartbeat from the worker and ask them to re-register. That 
would require protocol support.

Now let’ s design the Majordomo broker. Its core structure is a set of queues, one per 
service. We will create these queues as workers appear (we could delete them as workers 
disappear, but forget that for now because it gets complex). Additionally, we keep a 
queue of workers per service.

And here is the broker:

Example 47. Majordomo broker (mdbroker.c)

//  Majordomo Protocol broker
//  A minimal C implementation of the Majordomo Protocol as defined in
//  http://rfc.zeromq.org/spec:7 and http://rfc.zeromq.org/spec:8.

#include "czmq.h"
#include "mdp.h"

//  We'd normally pull these from config data

#define HEARTBEAT_LIVENESS  3       //  3-5 is reasonable
#define HEARTBEAT_INTERVAL  2500    //  msecs
#define HEARTBEAT_EXPIRY    HEARTBEAT_INTERVAL * HEARTBEAT_LIVENESS
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The broker class defines a single broker instance:

Example 47-1. Majordomo broker (mdbroker.c) - broker class structure

typedef struct {
    zctx_t *ctx;                //  Our context
    void *socket;               //  Socket for clients & workers
    int verbose;                //  Print activity to stdout
    char *endpoint;             //  Broker binds to this endpoint
    zhash_t *services;          //  Hash of known services
    zhash_t *workers;           //  Hash of known workers
    zlist_t *waiting;           //  List of waiting workers
    uint64_t heartbeat_at;      //  When to send HEARTBEAT
} broker_t;

static broker_t *
    s_broker_new (int verbose);
static void
    s_broker_destroy (broker_t **self_p);
static void
    s_broker_bind (broker_t *self, char *endpoint);
static void
    s_broker_worker_msg (broker_t *self, zframe_t *sender, zmsg_t *msg);
static void
    s_broker_client_msg (broker_t *self, zframe_t *sender, zmsg_t *msg);
static void
    s_broker_purge (broker_t *self);

The service class defines a single service instance:

Example 47-2. Majordomo broker (mdbroker.c) - service class structure

typedef struct {
    broker_t *broker;           //  Broker instance
    char *name;                 //  Service name
    zlist_t *requests;          //  List of client requests
    zlist_t *waiting;           //  List of waiting workers
    size_t workers;             //  How many workers we have
} service_t;

static service_t *
    s_service_require (broker_t *self, zframe_t *service_frame);
static void
    s_service_destroy (void *argument);
static void
    s_service_dispatch (service_t *service, zmsg_t *msg);
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The worker class defines a single worker, idle or active:

Example 47-3. Majordomo broker (mdbroker.c) - worker class structure

typedef struct {
    broker_t *broker;           //  Broker instance
    char *id_string;            //  Identity of worker as string
    zframe_t *identity;         //  Identity frame for routing
    service_t *service;         //  Owning service, if known
    int64_t expiry;             //  When worker expires, if no heartbeat
} worker_t;

static worker_t *
    s_worker_require (broker_t *self, zframe_t *identity);
static void
    s_worker_delete (worker_t *self, int disconnect);
static void
    s_worker_destroy (void *argument);
static void
    s_worker_send (worker_t *self, char *command, char *option,
                   zmsg_t *msg);
static void
    s_worker_waiting (worker_t *self);

Here are the constructor and destructor for the broker:

Example 47-4. Majordomo broker (mdbroker.c) - broker constructor and destructor

static broker_t *
s_broker_new (int verbose)
{
    broker_t *self = (broker_t *) zmalloc (sizeof (broker_t));

    //  Initialize broker state
    self->ctx = zctx_new ();
    self->socket = zsocket_new (self->ctx, ZMQ_ROUTER);
    self->verbose = verbose;
    self->services = zhash_new ();
    self->workers = zhash_new ();
    self->waiting = zlist_new ();
    self->heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
    return self;
}

static void
s_broker_destroy (broker_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        broker_t *self = *self_p;
        zctx_destroy (&self->ctx);
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        zhash_destroy (&self->services);
        zhash_destroy (&self->workers);
        zlist_destroy (&self->waiting);
        free (self);
        *self_p = NULL;
    }
}

This method binds the broker instance to an endpoint. We can call this multiple 
times. Note that MDP uses a single socket for both clients and workers:

Example 47-5. Majordomo broker (mdbroker.c) - broker bind method

void
s_broker_bind (broker_t *self, char *endpoint)
{
    zsocket_bind (self->socket, endpoint);
    zclock_log ("I: MDP broker/0.2.0 is active at %s", endpoint);
}

This method processes one READY, REPLY, HEARTBEAT, or DISCONNECT 
message sent to the broker by a worker:

Example 47-6. Majordomo broker (mdbroker.c) - broker worker_msg method

static void
s_broker_worker_msg (broker_t *self, zframe_t *sender, zmsg_t *msg)
{
    assert (zmsg_size (msg) >= 1);     //  At least, command

    zframe_t *command = zmsg_pop (msg);
    char *id_string = zframe_strhex (sender);
    int worker_ready = (zhash_lookup (self->workers, id_string) != NULL);
    free (id_string);
    worker_t *worker = s_worker_require (self, sender);

    if (zframe_streq (command, MDPW_READY)) {
        if (worker_ready)               //  Not first command in session
            s_worker_delete (worker, 1);
        else
        if (zframe_size (sender) >= 4  //  Reserved service name
        &&  memcmp (zframe_data (sender), "mmi.", 4) == 0)
            s_worker_delete (worker, 1);
        else {
            //  Attach worker to service and mark as idle
            zframe_t *service_frame = zmsg_pop (msg);
            worker->service = s_service_require (self, service_frame);
            worker->service->workers++;
            s_worker_waiting (worker);
            zframe_destroy (&service_frame);
        }
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    }
    else
    if (zframe_streq (command, MDPW_REPLY)) {
        if (worker_ready) {
            //  Remove and save client return envelope and insert the
            //  protocol header and service name, then rewrap envelope.
            zframe_t *client = zmsg_unwrap (msg);
            zmsg_pushstr (msg, worker->service->name);
            zmsg_pushstr (msg, MDPC_CLIENT);
            zmsg_wrap (msg, client);
            zmsg_send (&msg, self->socket);
            s_worker_waiting (worker);
        }
        else
            s_worker_delete (worker, 1);
    }
    else
    if (zframe_streq (command, MDPW_HEARTBEAT)) {
        if (worker_ready)
            worker->expiry = zclock_time () + HEARTBEAT_EXPIRY;
        else
            s_worker_delete (worker, 1);
    }
    else
    if (zframe_streq (command, MDPW_DISCONNECT))
        s_worker_delete (worker, 0);
    else {
        zclock_log ("E: invalid input message");
        zmsg_dump (msg);
    }
    free (command);
    zmsg_destroy (&msg);
}

Process a request coming from a client. We implement MMI requests directly here (at 
present, we implement only the mmi.service request):

Example 47-7. Majordomo broker (mdbroker.c) - broker client_msg method

static void
s_broker_client_msg (broker_t *self, zframe_t *sender, zmsg_t *msg)
{
    assert (zmsg_size (msg) >= 2);     //  Service name + body

    zframe_t *service_frame = zmsg_pop (msg);
    service_t *service = s_service_require (self, service_frame);

    //  Set reply return identity to client sender
    zmsg_wrap (msg, zframe_dup (sender));

    //  If we got a MMI service request, process that internally
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    if (zframe_size (service_frame) >= 4
    &&  memcmp (zframe_data (service_frame), "mmi.", 4) == 0) {
        char *return_code;
        if (zframe_streq (service_frame, "mmi.service")) {
            char *name = zframe_strdup (zmsg_last (msg));
            service_t *service =
                (service_t *) zhash_lookup (self->services, name);
            return_code = service && service->workers? "200": "404";
            free (name);
        }
        else
            return_code = "501";

        zframe_reset (zmsg_last (msg), return_code, strlen (return_code));

        //  Remove & save client return envelope and insert the
        //  protocol header and service name, then rewrap envelope.
        zframe_t *client = zmsg_unwrap (msg);
        zmsg_push (msg, zframe_dup (service_frame));
        zmsg_pushstr (msg, MDPC_CLIENT);
        zmsg_wrap (msg, client);
        zmsg_send (&msg, self->socket);
    }
    else
        //  Else dispatch the message to the requested service
        s_service_dispatch (service, msg);
    zframe_destroy (&service_frame);
}

This method deletes any idle workers that haven’ t pinged us in a while. We hold 
workers from oldest to most recent so we can stop scanning whenever we find a live 
worker. This means we’ ll mainly stop at the first worker, which is essential when we 
have large numbers of workers (we call this method in our critical path):

Example 47-8. Majordomo broker (mdbroker.c) - broker purge method

static void
s_broker_purge (broker_t *self)
{
    worker_t *worker = (worker_t *) zlist_first (self->waiting);
    while (worker) {
        if (zclock_time () < worker->expiry)
            break;                  //  Worker is alive, we're done here
        if (self->verbose)
            zclock_log ("I: deleting expired worker: %s",
                        worker->id_string);

        s_worker_delete (worker, 0);
        worker = (worker_t *) zlist_first (self->waiting);
    }
}
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Here is the implementation of the methods that work on a service:

Example 47-9. Majordomo broker (mdbroker.c) - service methods

//  Lazy constructor that locates a service by name or creates a new
//  service if there is no service already with that name.

static service_t *
s_service_require (broker_t *self, zframe_t *service_frame)
{
    assert (service_frame);
    char *name = zframe_strdup (service_frame);

    service_t *service =
        (service_t *) zhash_lookup (self->services, name);
    if (service == NULL) {
        service = (service_t *) zmalloc (sizeof (service_t));
        service->broker = self;
        service->name = name;
        service->requests = zlist_new ();
        service->waiting = zlist_new ();
        zhash_insert (self->services, name, service);
        zhash_freefn (self->services, name, s_service_destroy);
        if (self->verbose)
            zclock_log ("I: added service: %s", name);
    }
    else
        free (name);

    return service;
}

//  Service destructor is called automatically whenever the service is
//  removed from broker->services.

static void
s_service_destroy (void *argument)
{
    service_t *service = (service_t *) argument;
    while (zlist_size (service->requests)) {
        zmsg_t *msg = zlist_pop (service->requests);
        zmsg_destroy (&msg);
    }
    zlist_destroy (&service->requests);
    zlist_destroy (&service->waiting);
    free (service->name);
    free (service);
}
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This method sends requests to waiting workers:

Example 47-10. Majordomo broker (mdbroker.c) - service dispatch method

static void
s_service_dispatch (service_t *self, zmsg_t *msg)
{
    assert (self);
    if (msg)                    //  Queue message if any
        zlist_append (self->requests, msg);

    s_broker_purge (self->broker);
    while (zlist_size (self->waiting) && zlist_size (self->requests)) {
        worker_t *worker = zlist_pop (self->waiting);
        zlist_remove (self->broker->waiting, worker);
        zmsg_t *msg = zlist_pop (self->requests);
        s_worker_send (worker, MDPW_REQUEST, NULL, msg);
        zmsg_destroy (&msg);
    }
}

Here is the implementation of the methods that work on a worker:

Example 47-11. Majordomo broker (mdbroker.c) - worker methods

//  Lazy constructor that locates a worker by identity, or creates a new
//  worker if there is no worker already with that identity.

static worker_t *
s_worker_require (broker_t *self, zframe_t *identity)
{
    assert (identity);

    //  self->workers is keyed off worker identity
    char *id_string = zframe_strhex (identity);
    worker_t *worker =
        (worker_t *) zhash_lookup (self->workers, id_string);

    if (worker == NULL) {
        worker = (worker_t *) zmalloc (sizeof (worker_t));
        worker->broker = self;
        worker->id_string = id_string;
        worker->identity = zframe_dup (identity);
        zhash_insert (self->workers, id_string, worker);
        zhash_freefn (self->workers, id_string, s_worker_destroy);
        if (self->verbose)
            zclock_log ("I: registering new worker: %s", id_string);
    }
    else
        free (id_string);
    return worker;
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}

//  This method deletes the current worker.

static void
s_worker_delete (worker_t *self, int disconnect)
{
    assert (self);
    if (disconnect)
        s_worker_send (self, MDPW_DISCONNECT, NULL, NULL);

    if (self->service) {
        zlist_remove (self->service->waiting, self);
        self->service->workers--;
    }
    zlist_remove (self->broker->waiting, self);
    //  This implicitly calls s_worker_destroy
    zhash_delete (self->broker->workers, self->id_string);
}

//  Worker destructor is called automatically whenever the worker is
//  removed from broker->workers.

static void
s_worker_destroy (void *argument)
{
    worker_t *self = (worker_t *) argument;
    zframe_destroy (&self->identity);
    free (self->id_string);
    free (self);
}

This method formats and sends a command to a worker. The caller may also provide 
a command option, and a message payload:

Example 47-12. Majordomo broker (mdbroker.c) - worker send method

static void
s_worker_send (worker_t *self, char *command, char *option, zmsg_t *msg)
{
    msg = msg? zmsg_dup (msg): zmsg_new ();

    //  Stack protocol envelope to start of message
    if (option)
        zmsg_pushstr (msg, option);
    zmsg_pushstr (msg, command);
    zmsg_pushstr (msg, MDPW_WORKER);

    //  Stack routing envelope to start of message
    zmsg_wrap (msg, zframe_dup (self->identity));
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    if (self->broker->verbose) {
        zclock_log ("I: sending %s to worker",
            mdps_commands [(int) *command]);
        zmsg_dump (msg);
    }
    zmsg_send (&msg, self->broker->socket);
}

//  This worker is now waiting for work

static void
s_worker_waiting (worker_t *self)
{
    //  Queue to broker and service waiting lists
    assert (self->broker);
    zlist_append (self->broker->waiting, self);
    zlist_append (self->service->waiting, self);
    self->expiry = zclock_time () + HEARTBEAT_EXPIRY;
    s_service_dispatch (self->service, NULL);
}

Finally, here is the main task. We create a new broker instance and then process 
messages on the broker socket:

Example 47-13. Majordomo broker (mdbroker.c) - main task

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));

    broker_t *self = s_broker_new (verbose);
    s_broker_bind (self, "tcp://*:5555");

    //  Get and process messages forever or until interrupted
    while (true) {
        zmq_pollitem_t items [] = {
            { self->socket,  0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, HEARTBEAT_INTERVAL * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted

        //  Process next input message, if any
        if (items [0].revents & ZMQ_POLLIN) {
            zmsg_t *msg = zmsg_recv (self->socket);
            if (!msg)
                break;          //  Interrupted
            if (self->verbose) {
                zclock_log ("I: received message:");
                zmsg_dump (msg);
            }
            zframe_t *sender = zmsg_pop (msg);
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            zframe_t *empty  = zmsg_pop (msg);
            zframe_t *header = zmsg_pop (msg);

            if (zframe_streq (header, MDPC_CLIENT))
                s_broker_client_msg (self, sender, msg);
            else
            if (zframe_streq (header, MDPW_WORKER))
                s_broker_worker_msg (self, sender, msg);
            else {
                zclock_log ("E: invalid message:");
                zmsg_dump (msg);
                zmsg_destroy (&msg);
            }
            zframe_destroy (&sender);
            zframe_destroy (&empty);
            zframe_destroy (&header);
        }
        //  Disconnect and delete any expired workers
        //  Send heartbeats to idle workers if needed
        if (zclock_time () > self->heartbeat_at) {
            s_broker_purge (self);
            worker_t *worker = (worker_t *) zlist_first (self->waiting);
            while (worker) {
                s_worker_send (worker, MDPW_HEARTBEAT, NULL, NULL);
                worker = (worker_t *) zlist_next (self->waiting);
            }
            self->heartbeat_at = zclock_time () + HEARTBEAT_INTERVAL;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupt received, shutting down...\n");

    s_broker_destroy (&self);
    return 0;
}

This is by far the most complex example we’ ve seen. It’ s almost 500 lines of code. To 
write this and make it somewhat robust took two days. However, this is still a short 
piece of code for a full service-oriented broker.

Here are some things to note about the broker code:
• The Majordomo Protocol lets us handle both clients and workers on a single 

socket. This is nicer for those deploying and managing the broker: it just sits on 
one ØMQ endpoint rather than the two that most proxies need.

• The broker implements all of MDP/0.1 properly (as far as I know), including 
disconnection if the broker sends invalid commands, heartbeating, and the rest.

• It can be extended to run multiple threads, each managing one socket and one 
set of clients and workers. This could be interesting for segmenting large 
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architectures. The C code is already organized around a broker class to make 
this trivial.

• A primary/failover or live/live broker reliability model is easy, as the broker 
essentially has no state except service presence. It’ s up to clients and workers to 
choose another broker if their first choice isn’ t up and running.

• The examples use five-second heartbeats, mainly to reduce the amount of 
output when you enable tracing. Realistic values would be lower for most LAN 
applications. However, any retry has to be slow enough to allow for a service to 
restart, say 10 seconds at least.

We later improved and extended the protocol and the Majordomo implementation, 
which now sits in its own Github project. If you want a properly usable Majordomo 
stack, use the GitHub project.

Asynchronous Majordomo Pattern
The Majordomo implementation in the previous section is simple and stupid. The 

client is just the original Simple Pirate, wrapped up in a sexy API. When I fire up a 
client, broker, and worker on a test box, it can process 100,000 requests in about 14 
seconds. That is partially due to the code, which cheerfully copies message frames 
around as if CPU cycles were free. But the real problem is that we’ re doing network 
round-trips. ØMQ disables Nagle’ s algorithm17, but round-tripping is still slow.

Theory is great in theory, but in practice, practice is better. Let’ s measure the actual 
cost of round-tripping with a simple test program. This sends a bunch of messages, first 
waiting for a reply to each message, and second as a batch, reading all the replies back 
as a batch. Both approaches do the same work, but they give very different results. We 
mock up a client, broker, and worker:

Example 48. Round-trip demonstrator (tripping.c)

//  Round-trip demonstrator
//  While this example runs in a single process, that is just to make
//  it easier to start and stop the example. The client task signals to
//  main when it's ready.

#include "czmq.h"

static void
client_task (void *args, zctx_t *ctx, void *pipe)
{
    void *client = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (client, "tcp://localhost:5555");
    printf ("Setting up test...\n");
    zclock_sleep (100);

    int requests;

17 http://en.wikipedia.org/wiki/Nagles_algorithm
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    int64_t start;

    printf ("Synchronous round-trip test...\n");
    start = zclock_time ();
    for (requests = 0; requests < 10000; requests++) {
        zstr_send (client, "hello");
        char *reply = zstr_recv (client);
        free (reply);
    }
    printf (" %d calls/second\n",
        (1000 * 10000) / (int) (zclock_time () - start));

    printf ("Asynchronous round-trip test...\n");
    start = zclock_time ();
    for (requests = 0; requests < 100000; requests++)
        zstr_send (client, "hello");
    for (requests = 0; requests < 100000; requests++) {
        char *reply = zstr_recv (client);
        free (reply);
    }
    printf (" %d calls/second\n",
        (1000 * 100000) / (int) (zclock_time () - start));
    zstr_send (pipe, "done");
}

Here is the worker task. All it does is receive a message, and bounce it back the way 
it came:

Example 48-1. Round-trip demonstrator (tripping.c) - worker task

static void *
worker_task (void *args)
{
    zctx_t *ctx = zctx_new ();
    void *worker = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (worker, "tcp://localhost:5556");
    
    while (true) {
        zmsg_t *msg = zmsg_recv (worker);
        zmsg_send (&msg, worker);
    }
    zctx_destroy (&ctx);
    return NULL;
}
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Here is the broker task. It uses the zmq_proxy function to switch messages between 
frontend and backend:

Example 48-2. Round-trip demonstrator (tripping.c) - broker task

static void *
broker_task (void *args)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *frontend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (frontend, "tcp://*:5555");
    void *backend = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_bind (backend, "tcp://*:5556");
    zmq_proxy (frontend, backend, NULL);
    zctx_destroy (&ctx);
    return NULL;
}

Finally, here’ s the main task, which starts the client, worker, and broker, and then 
runs until the client signals it to stop:

Example 48-3. Round-trip demonstrator (tripping.c) - main task

int main (void)
{
    //  Create threads
    zctx_t *ctx = zctx_new ();
    void *client = zthread_fork (ctx, client_task, NULL);
    zthread_new (worker_task, NULL);
    zthread_new (broker_task, NULL);

    //  Wait for signal on client pipe
    char *signal = zstr_recv (client);
    free (signal);

    zctx_destroy (&ctx);
    return 0;
}

On my development box, this program says:

Setting up test...
Synchronous round-trip test...
 9057 calls/second
Asynchronous round-trip test...
 173010 calls/second

Note that the client thread does a small pause before starting. This is to get around 
one of the “ features”  of the router socket: if you send a message with the address of a 
peer that’ s not yet connected, the message gets discarded. In this example we don’ t use 



Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns 181

the load balancing mechanism, so without the sleep, if the worker thread is too slow to 
connect, it will lose messages, making a mess of our test.

As we see, round-tripping in the simplest case is 20 times slower than the 
asynchronous, “ shove it down the pipe as fast as it’ ll go”  approach. Let’ s see if we can 
apply this to Majordomo to make it faster.

First, we modify the client API to send and receive in two separate methods:

mdcli_t *mdcli_new     (char *broker);
void     mdcli_destroy (mdcli_t **self_p);
int      mdcli_send    (mdcli_t *self, char *service, zmsg_t **request_p);
zmsg_t  *mdcli_recv    (mdcli_t *self);

It’ s literally a few minutes' work to refactor the synchronous client API to become 
asynchronous:

Example 49. Majordomo asynchronous client API (mdcliapi2.c)

//  mdcliapi2 class - Majordomo Protocol Client API
//  Implements the MDP/Worker spec at http://rfc.zeromq.org/spec:7.

#include "mdcliapi2.h"

//  Structure of our class
//  We access these properties only via class methods

struct _mdcli_t {
    zctx_t *ctx;                //  Our context
    char *broker;
    void *client;               //  Socket to broker
    int verbose;                //  Print activity to stdout
    int timeout;                //  Request timeout
};

//  Connect or reconnect to broker. In this asynchronous class we use a
//  DEALER socket instead of a REQ socket; this lets us send any number
//  of requests without waiting for a reply.

void s_mdcli_connect_to_broker (mdcli_t *self)
{
    if (self->client)
        zsocket_destroy (self->ctx, self->client);
    self->client = zsocket_new (self->ctx, ZMQ_DEALER);
    zmq_connect (self->client, self->broker);
    if (self->verbose)
        zclock_log ("I: connecting to broker at %s...", self->broker);
}

//  The constructor and destructor are the same as in mdcliapi, except
//  we don't do retries, so there's no retries property.
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...

...

The differences are:
• We use a DEALER socket instead of REQ, so we emulate REQ with an empty 

delimiter frame before each request and each response.
• We don’ t retry requests; if the application needs to retry, it can do this itself.
• We break the synchronous send method into separate send and recv methods.
• The send method is asynchronous and returns immediately after sending. The 

caller can thus send a number of messages before getting a response.
• The recv method waits for (with a timeout) one response and returns that to 

the caller.
And here’ s the corresponding client test program, which sends 100,000 messages and 

then receives 100,00 back:

Example 50. Majordomo client application (mdclient2.c)

//  Majordomo Protocol client example - asynchronous
//  Uses the mdcli API to hide all MDP aspects

//  Lets us build this source without creating a library
#include "mdcliapi2.c"

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    int count;
    for (count = 0; count < 100000; count++) {
        zmsg_t *request = zmsg_new ();
        zmsg_pushstr (request, "Hello world");
        mdcli_send (session, "echo", &request);
    }
    for (count = 0; count < 100000; count++) {
        zmsg_t *reply = mdcli_recv (session);
        if (reply)
            zmsg_destroy (&reply);
        else
            break;              //  Interrupted by Ctrl-C
    }
    printf ("%d replies received\n", count);
    mdcli_destroy (&session);
    return 0;
}
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The broker and worker are unchanged because we’ ve not modified the protocol at all. 
We see an immediate improvement in performance. Here’ s the synchronous client 
chugging through 100K request-reply cycles:

$ time mdclient
100000 requests/replies processed

real    0m14.088s
user    0m1.310s
sys     0m2.670s

And here’ s the asynchronous client, with a single worker:

$ time mdclient2
100000 replies received

real    0m8.730s
user    0m0.920s
sys     0m1.550s

Twice as fast. Not bad, but let’ s fire up 10 workers and see how it handles the traffic

$ time mdclient2
100000 replies received

real    0m3.863s
user    0m0.730s
sys     0m0.470s

It isn’ t fully asynchronous because workers get their messages on a strict last-used 
basis. But it will scale better with more workers. On my PC, after eight or so workers, 
it doesn’ t get any faster. Four cores only stretches so far. But we got a 4x improvement 
in throughput with just a few minutes' work. The broker is still unoptimized. It spends 
most of its time copying message frames around, instead of doing zero-copy, which it 
could. But we’ re getting 25K reliable request/reply calls a second, with pretty low 
effort.

However, the asynchronous Majordomo pattern isn’ t all roses. It has a fundamental 
weakness, namely that it cannot survive a broker crash without more work. If you look 
at the mdcliapi2 code you’ ll see it does not attempt to reconnect after a failure. A 
proper reconnect would require the following:

• A number on every request and a matching number on every reply, which would 
ideally require a change to the protocol to enforce.

• Tracking and holding onto all outstanding requests in the client API, i.e., those 
for which no reply has yet been received.

• In case of failover, for the client API to resend all outstanding requests to the 
broker.
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It’ s not a deal breaker, but it does show that performance often means complexity. Is 
this worth doing for Majordomo? It depends on your use case. For a name lookup 
service you call once per session, no. For a web frontend serving thousands of clients, 
probably yes.

Service Discovery
So, we have a nice service-oriented broker, but we have no way of knowing whether a 

particular service is available or not. We know whether a request failed, but we don’ t 
know why. It is useful to be able to ask the broker, “ is the echo service running?”  The 
most obvious way would be to modify our MDP/Client protocol to add commands to 
ask this. But MDP/Client has the great charm of being simple. Adding service 
discovery to it would make it as complex as the MDP/Worker protocol.

Another option is to do what email does, and ask that undeliverable requests be 
returned. This can work well in an asynchronous world, but it also adds complexity. We 
need ways to distinguish returned requests from replies and to handle these properly.

Let’ s try to use what we’ ve already built, building on top of MDP instead of 
modifying it. Service discovery is, itself, a service. It might indeed be one of several 
management services, such as “ disable service X” , “ provide statistics” , and so on. What 
we want is a general, extensible solution that doesn’ t affect the protocol or existing 
applications.

So here’ s a small RFC that layers this on top of MDP: the Majordomo Management 
Interface (MMI)18. We already implemented it in the broker, though unless you read the 
whole thing you probably missed that. I’ ll explain how it works in the broker:

• When a client requests a service that starts with mmi., instead of routing this to 
a worker, we handle it internally.

• We handle just one service in this broker, which is mmi.service, the service 
discovery service.

• The payload for the request is the name of an external service (a real one, 
provided by a worker).

• The broker returns “ 200”  (OK) or “ 404”  (Not found), depending on whether 
there are workers registered for that service or not.

Here’ s how we use the service discovery in an application:

Example 51. Service discovery over Majordomo (mmiecho.c)

//  MMI echo query example

//  Lets us build this source without creating a library
#include "mdcliapi.c"

int main (int argc, char *argv [])
{

18 http://rfc.zeromq.org/spec:8
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    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    //  This is the service we want to look up
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "echo");

    //  This is the service we send our request to
    zmsg_t *reply = mdcli_send (session, "mmi.service", &request);

    if (reply) {
        char *reply_code = zframe_strdup (zmsg_first (reply));
        printf ("Lookup echo service: %s\n", reply_code);
        free (reply_code);
        zmsg_destroy (&reply);
    }
    else
        printf ("E: no response from broker, make sure it's running\n");

    mdcli_destroy (&session);
    return 0;
}

Try this with and without a worker running, and you should see the little program 
report “ 200”  or “ 404”  accordingly. The implementation of MMI in our example broker 
is flimsy. For example, if a worker disappears, services remain “ present” . In practice, a 
broker should remove services that have no workers after some configurable timeout.

Idempotent Services
Idempotency is not something you take a pill for. What it means is that it’ s safe to 

repeat an operation. Checking the clock is idempotent. Lending ones credit card to ones 
children is not. While many client-to-server use cases are idempotent, some are not. 
Examples of idempotent use cases include:

• Stateless task distribution, i.e., a pipeline where the servers are stateless workers 
that compute a reply based purely on the state provided by a request. In such a 
case, it’ s safe (though inefficient) to execute the same request many times.

• A name service that translates logical addresses into endpoints to bind or 
connect to. In such a case, it’ s safe to make the same lookup request many 
times.

And here are examples of a non-idempotent use cases:
• A logging service. One does not want the same log information recorded more 

than once.
• Any service that has impact on downstream nodes, e.g., sends on information to 

other nodes. If that service gets the same request more than once, downstream 
nodes will get duplicate information.
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• Any service that modifies shared data in some non-idempotent way; e.g., a 
service that debits a bank account is not idempotent without extra work.

When our server applications are not idempotent, we have to think more carefully 
about when exactly they might crash. If an application dies when it’ s idle, or while it’ s 
processing a request, that’ s usually fine. We can use database transactions to make sure 
a debit and a credit are always done together, if at all. If the server dies while sending 
its reply, that’ s a problem, because as far as it’ s concerned, it has done its work.

If the network dies just as the reply is making its way back to the client, the same 
problem arises. The client will think the server died and will resend the request, and the 
server will do the same work twice, which is not what we want.

To handle non-idempotent operations, use the fairly standard solution of detecting 
and rejecting duplicate requests. This means:

• The client must stamp every request with a unique client identifier and a unique 
message number.

• The server, before sending back a reply, stores it using the combination of client 
ID and message number as a key.

• The server, when getting a request from a given client, first checks whether it 
has a reply for that client ID and message number. If so, it does not process the 
request, but just resends the reply.

Disconnected Reliability (Titanic Pattern)
Once you realize that Majordomo is a “ reliable”  message broker, you might be 

tempted to add some spinning rust (that is, ferrous-based hard disk platters). After all, 
this works for all the enterprise messaging systems. It’ s such a tempting idea that it’ s a 
little sad to have to be negative toward it. But brutal cynicism is one of my specialties. 
So, some reasons you don’ t want rust-based brokers sitting in the center of your 
architecture are:

• As you’ ve seen, the Lazy Pirate client performs surprisingly well. It works across 
a whole range of architectures, from direct client-to-server to distributed queue 
proxies. It does tend to assume that workers are stateless and idempotent. But 
we can work around that limitation without resorting to rust.

• Rust brings a whole set of problems, from slow performance to additional pieces 
that you have to manage, repair, and handle 6 a.m. panics from, as they 
inevitably break at the start of daily operations. The beauty of the Pirate 
patterns in general is their simplicity. They won’ t crash. And if you’ re still 
worried about the hardware, you can move to a peer-to-peer pattern that has no 
broker at all. I’ ll explain later in this chapter.

Having said this, however, there is one sane use case for rust-based reliability, which 
is an asynchronous disconnected network. It solves a major problem with Pirate, namely 
that a client has to wait for an answer in real time. If clients and workers are only 
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sporadically connected (think of email as an analogy), we can’ t use a stateless network 
between clients and workers. We have to put state in the middle.

So, here’ s the Titanic pattern (see figure 51), in which we write messages to disk to 
ensure they never get lost, no matter how sporadically clients and workers are 
connected. As we did for service discovery, we’ re going to layer Titanic on top of MDP 
rather than extend it. It’ s wonderfully lazy because it means we can implement our fire-
and-forget reliability in a specialized worker, rather than in the broker. This is excellent 
for several reasons:

• It is much easier because we divide and conquer: the broker handles message 
routing and the worker handles reliability.

• It lets us mix brokers written in one language with workers written in another.
• It lets us evolve the fire-and-forget technology independently.

The only downside is that there’ s an extra network hop between broker and hard 
disk. The benefits are easily worth it.

There are many ways to make a persistent request-reply architecture. We’ ll aim for 
one that is simple and painless. The simplest design I could come up with, after playing 
with this for a few hours, is a “ proxy service” . That is, Titanic doesn’ t affect workers at 
all. If a client wants a reply immediately, it talks directly to a service and hopes the 
service is available. If a client is happy to wait a while, it talks to Titanic instead and 
asks, “ hey, buddy, would you take care of this for me while I go buy my groceries?”

Titanic is thus both a worker and a client. The dialog between client and Titanic goes 
along these lines:

• Client: Please accept this request for me. Titanic: OK, done.
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• Client: Do you have a reply for me? Titanic: Yes, here it is. Or, no, not yet.
• Client: OK, you can wipe that request now, I’ m happy. Titanic: OK, done.

Whereas the dialog between Titanic and broker and worker goes like this:
• Titanic: Hey, Broker, is there an coffee service? Broker: Uhm, Yeah, seems like.
• Titanic: Hey, coffee service, please handle this for me.
• Coffee: Sure, here you are.
• Titanic: Sweeeeet!

You can work through this and the possible failure scenarios. If a worker crashes 
while processing a request, Titanic retries indefinitely. If a reply gets lost somewhere, 
Titanic will retry. If the request gets processed but the client doesn’ t get the reply, it 
will ask again. If Titanic crashes while processing a request or a reply, the client will try 
again. As long as requests are fully committed to safe storage, work can’ t get lost.

The handshaking is pedantic, but can be pipelined, i.e., clients can use the 
asynchronous Majordomo pattern to do a lot of work and then get the responses later.

We need some way for a client to request its replies. We’ ll have many clients asking 
for the same services, and clients disappear and reappear with different identities. Here 
is a simple, reasonably secure solution:

• Every request generates a universally unique ID (UUID), which Titanic returns 
to the client after it has queued the request.

• When a client asks for a reply, it must specify the UUID for the original 
request.

In a realistic case, the client would want to store its request UUIDs safely, e.g., in a 
local database.

Before we jump off and write yet another formal specification (fun, fun!), let’ s 
consider how the client talks to Titanic. One way is to use a single service and send it 
three different request types. Another way, which seems simpler, is to use three services:

• titanic.request: store a request message, and return a UUID for the request.
• titanic.reply: fetch a reply, if available, for a given request UUID.
• titanic.close: confirm that a reply has been stored and processed.

We’ ll just make a multithreaded worker, which as we’ ve seen from our multithreading 
experience with ØMQ, is trivial. However, let’ s first sketch what Titanic would look like 
in terms of ØMQ messages and frames. This gives us the Titanic Service Protocol 
(TSP)19.

Using TSP is clearly more work for client applications than accessing a service 
directly via MDP. Here’ s the shortest robust “ echo”  client example:

Example 52. Titanic client example (ticlient.c)

//  Titanic client example
//  Implements client side of http://rfc.zeromq.org/spec:9

19 http://rfc.zeromq.org/spec:9
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//  Lets build this source without creating a library
#include "mdcliapi.c"

//  Calls a TSP service
//  Returns response if successful (status code 200 OK), else NULL
//
static zmsg_t *
s_service_call (mdcli_t *session, char *service, zmsg_t **request_p)
{
    zmsg_t *reply = mdcli_send (session, service, request_p);
    if (reply) {
        zframe_t *status = zmsg_pop (reply);
        if (zframe_streq (status, "200")) {
            zframe_destroy (&status);
            return reply;
        }
        else
        if (zframe_streq (status, "400")) {
            printf ("E: client fatal error, aborting\n");
            exit (EXIT_FAILURE);
        }
        else
        if (zframe_streq (status, "500")) {
            printf ("E: server fatal error, aborting\n");
            exit (EXIT_FAILURE);
        }
    }
    else
        exit (EXIT_SUCCESS);    //  Interrupted or failed

    zmsg_destroy (&reply);
    return NULL;        //  Didn't succeed; don't care why not
}

The main task tests our service call by sending an echo request:

Example 52-1. Titanic client example (ticlient.c) - main task

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    mdcli_t *session = mdcli_new ("tcp://localhost:5555", verbose);

    //  1. Send 'echo' request to Titanic
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "echo");
    zmsg_addstr (request, "Hello world");
    zmsg_t *reply = s_service_call (
        session, "titanic.request", &request);
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    zframe_t *uuid = NULL;
    if (reply) {
        uuid = zmsg_pop (reply);
        zmsg_destroy (&reply);
        zframe_print (uuid, "I: request UUID ");
    }
    //  2. Wait until we get a reply
    while (!zctx_interrupted) {
        zclock_sleep (100);
        request = zmsg_new ();
        zmsg_add (request, zframe_dup (uuid));
        zmsg_t *reply = s_service_call (
            session, "titanic.reply", &request);

        if (reply) {
            char *reply_string = zframe_strdup (zmsg_last (reply));
            printf ("Reply: %s\n", reply_string);
            free (reply_string);
            zmsg_destroy (&reply);

            //  3. Close request
            request = zmsg_new ();
            zmsg_add (request, zframe_dup (uuid));
            reply = s_service_call (session, "titanic.close", &request);
            zmsg_destroy (&reply);
            break;
        }
        else {
            printf ("I: no reply yet, trying again...\n");
            zclock_sleep (5000);     //  Try again in 5 seconds
        }
    }
    zframe_destroy (&uuid);
    mdcli_destroy (&session);
    return 0;
}

Of course this can be, and should be, wrapped up in some kind of framework or API. 
It’ s not healthy to ask average application developers to learn the full details of 
messaging: it hurts their brains, costs time, and offers too many ways to make buggy 
complexity. Additionally, it makes it hard to add intelligence.

For example, this client blocks on each request whereas in a real application, we’ d 
want to be doing useful work while tasks are executed. This requires some nontrivial 
plumbing to build a background thread and talk to that cleanly. It’ s the kind of thing 
you want to wrap in a nice simple API that the average developer cannot misuse. It’ s 
the same approach that we used for Majordomo.
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Here’ s the Titanic implementation. This server handles the three services using three 
threads, as proposed. It does full persistence to disk using the most brutal approach 
possible: one file per message. It’ s so simple, it’ s scary. The only complex part is that it 
keeps a separate queue of all requests, to avoid reading the directory over and over:

Example 53. Titanic broker example (titanic.c)

//  Titanic service
//  Implements server side of http://rfc.zeromq.org/spec:9

//  Lets us build this source without creating a library
#include "mdwrkapi.c"
#include "mdcliapi.c"

#include "zfile.h"
#include <uuid/uuid.h>

//  Return a new UUID as a printable character string
//  Caller must free returned string when finished with it

static char *
s_generate_uuid (void)
{
    char hex_char [] = "0123456789ABCDEF";
    char *uuidstr = zmalloc (sizeof (uuid_t) * 2 + 1);
    uuid_t uuid;
    uuid_generate (uuid);
    int byte_nbr;
    for (byte_nbr = 0; byte_nbr < sizeof (uuid_t); byte_nbr++) {
        uuidstr [byte_nbr * 2 + 0] = hex_char [uuid [byte_nbr] >> 4];
        uuidstr [byte_nbr * 2 + 1] = hex_char [uuid [byte_nbr] & 15];
    }
    return uuidstr;
}

//  Returns freshly allocated request filename for given UUID

#define TITANIC_DIR ".titanic"

static char *
s_request_filename (char *uuid) {
    char *filename = malloc (256);
    snprintf (filename, 256, TITANIC_DIR "/%s.req", uuid);
    return filename;
}

//  Returns freshly allocated reply filename for given UUID

static char *
s_reply_filename (char *uuid) {
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    char *filename = malloc (256);
    snprintf (filename, 256, TITANIC_DIR "/%s.rep", uuid);
    return filename;
}

The titanic.request task waits for requests to this service. It writes each request to 
disk and returns a UUID to the client. The client picks up the reply asynchronously 
using the titanic.reply service:

Example 53-1. Titanic broker example (titanic.c) - Titanic request service

static void
titanic_request (void *args, zctx_t *ctx, void *pipe)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.request", 0);
    zmsg_t *reply = NULL;

    while (true) {
        //  Send reply if it's not null
        //  And then get next request from broker
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        //  Ensure message directory exists
        zfile_mkdir (TITANIC_DIR);

        //  Generate UUID and save message to disk
        char *uuid = s_generate_uuid ();
        char *filename = s_request_filename (uuid);
        FILE *file = fopen (filename, "w");
        assert (file);
        zmsg_save (request, file);
        fclose (file);
        free (filename);
        zmsg_destroy (&request);

        //  Send UUID through to message queue
        reply = zmsg_new ();
        zmsg_addstr (reply, uuid);
        zmsg_send (&reply, pipe);

        //  Now send UUID back to client
        //  Done by the mdwrk_recv() at the top of the loop
        reply = zmsg_new ();
        zmsg_addstr (reply, "200");
        zmsg_addstr (reply, uuid);
        free (uuid);
    }
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    mdwrk_destroy (&worker);
}

The titanic.reply task checks if there’ s a reply for the specified request (by UUID), 
and returns a 200 (OK), 300 (Pending), or 400 (Unknown) accordingly:

Example 53-2. Titanic broker example (titanic.c) - Titanic reply service

static void *
titanic_reply (void *context)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.reply", 0);
    zmsg_t *reply = NULL;

    while (true) {
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        char *uuid = zmsg_popstr (request);
        char *req_filename = s_request_filename (uuid);
        char *rep_filename = s_reply_filename (uuid);
        if (zfile_exists (rep_filename)) {
            FILE *file = fopen (rep_filename, "r");
            assert (file);
            reply = zmsg_load (NULL, file);
            zmsg_pushstr (reply, "200");
            fclose (file);
        }
        else {
            reply = zmsg_new ();
            if (zfile_exists (req_filename))
                zmsg_pushstr (reply, "300"); //Pending
            else
                zmsg_pushstr (reply, "400"); //Unknown
        }
        zmsg_destroy (&request);
        free (uuid);
        free (req_filename);
        free (rep_filename);
    }
    mdwrk_destroy (&worker);
    return 0;
}
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The titanic.close task removes any waiting replies for the request (specified by 
UUID). It’ s idempotent, so it is safe to call more than once in a row:

Example 53-3. Titanic broker example (titanic.c) - Titanic close task

static void *
titanic_close (void *context)
{
    mdwrk_t *worker = mdwrk_new (
        "tcp://localhost:5555", "titanic.close", 0);
    zmsg_t *reply = NULL;

    while (true) {
        zmsg_t *request = mdwrk_recv (worker, &reply);
        if (!request)
            break;      //  Interrupted, exit

        char *uuid = zmsg_popstr (request);
        char *req_filename = s_request_filename (uuid);
        char *rep_filename = s_reply_filename (uuid);
        zfile_delete (req_filename);
        zfile_delete (rep_filename);
        free (uuid);
        free (req_filename);
        free (rep_filename);

        zmsg_destroy (&request);
        reply = zmsg_new ();
        zmsg_addstr (reply, "200");
    }
    mdwrk_destroy (&worker);
    return 0;
}

This is the main thread for the Titanic worker. It starts three child threads; for the 
request, reply, and close services. It then dispatches requests to workers using a simple 
brute force disk queue. It receives request UUIDs from the titanic.request service, 
saves these to a disk file, and then throws each request at MDP workers until it gets a 
response.

Example 53-4. Titanic broker example (titanic.c) - worker task

static int s_service_success (char *uuid);

int main (int argc, char *argv [])
{
    int verbose = (argc > 1 && streq (argv [1], "-v"));
    zctx_t *ctx = zctx_new ();

    void *request_pipe = zthread_fork (ctx, titanic_request, NULL);
    zthread_new (titanic_reply, NULL);
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    zthread_new (titanic_close, NULL);

    //  Main dispatcher loop
    while (true) {
        //  We'll dispatch once per second, if there's no activity
        zmq_pollitem_t items [] = { { request_pipe, 0, ZMQ_POLLIN, 0 } };
        int rc = zmq_poll (items, 1, 1000 * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Interrupted
        if (items [0].revents & ZMQ_POLLIN) {
            //  Ensure message directory exists
            zfile_mkdir (TITANIC_DIR);

            //  Append UUID to queue, prefixed with '-' for pending
            zmsg_t *msg = zmsg_recv (request_pipe);
            if (!msg)
                break;          //  Interrupted
            FILE *file = fopen (TITANIC_DIR "/queue", "a");
            char *uuid = zmsg_popstr (msg);
            fprintf (file, "-%s\n", uuid);
            fclose (file);
            free (uuid);
            zmsg_destroy (&msg);
        }
        //  Brute force dispatcher
        char entry [] = "?.......:.......:.......:.......:";
        FILE *file = fopen (TITANIC_DIR "/queue", "r+");
        while (file && fread (entry, 33, 1, file) == 1) {
            //  UUID is prefixed with '-' if still waiting
            if (entry [0] == '-') {
                if (verbose)
                    printf ("I: processing request %s\n", entry + 1);
                if (s_service_success (entry + 1)) {
                    //  Mark queue entry as processed
                    fseek (file, -33, SEEK_CUR);
                    fwrite ("+", 1, 1, file);
                    fseek (file, 32, SEEK_CUR);
                }
            }
            //  Skip end of line, LF or CRLF
            if (fgetc (file) == '\r')
                fgetc (file);
            if (zctx_interrupted)
                break;
        }
        if (file)
            fclose (file);
    }
    return 0;
}
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Here, we first check if the requested MDP service is defined or not, using a MMI 
lookup to the Majordomo broker. If the service exists, we send a request and wait for a 
reply using the conventional MDP client API. This is not meant to be fast, just very 
simple:

Example 53-5. Titanic broker example (titanic.c) - try to call a service

static int
s_service_success (char *uuid)
{
    //  Load request message, service will be first frame
    char *filename = s_request_filename (uuid);
    FILE *file = fopen (filename, "r");
    free (filename);

    //  If the client already closed request, treat as successful
    if (!file)
        return 1;

    zmsg_t *request = zmsg_load (NULL, file);
    fclose (file);
    zframe_t *service = zmsg_pop (request);
    char *service_name = zframe_strdup (service);

    //  Create MDP client session with short timeout
    mdcli_t *client = mdcli_new ("tcp://localhost:5555", FALSE);
    mdcli_set_timeout (client, 1000);  //  1 sec
    mdcli_set_retries (client, 1);     //  only 1 retry

    //  Use MMI protocol to check if service is available
    zmsg_t *mmi_request = zmsg_new ();
    zmsg_add (mmi_request, service);
    zmsg_t *mmi_reply = mdcli_send (client, "mmi.service", &mmi_request);
    int service_ok = (mmi_reply
        && zframe_streq (zmsg_first (mmi_reply), "200"));
    zmsg_destroy (&mmi_reply);

    int result = 0;
    if (service_ok) {
        zmsg_t *reply = mdcli_send (client, service_name, &request);
        if (reply) {
            filename = s_reply_filename (uuid);
            FILE *file = fopen (filename, "w");
            assert (file);
            zmsg_save (reply, file);
            fclose (file);
            free (filename);
            result = 1;
        }
        zmsg_destroy (&reply);
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    }
    else
        zmsg_destroy (&request);

    mdcli_destroy (&client);
    free (service_name);
    return result;
}

To test this, start mdbroker and titanic, and then run ticlient. Now start mdworker 
arbitrarily, and you should see the client getting a response and exiting happily.

Some notes about this code:
• Note that some loops start by sending, others by receiving messages. This is 

because Titanic acts both as a client and a worker in different roles.
• We send requests only to services that appear to be running, using MMI. This 

works as well as the MMI implementation in the broker.
• We use an inproc connection to send new request data from the titanic.request 

service through to the main dispatcher. This saves the dispatcher from having 
to scan the disk directory, load all request files, and sort them by date/time.

The important thing about this example is not performance (which, although I 
haven’ t tested it, is surely terrible), but how well it implements the reliability contract. 
To try it, start the mdbroker and titanic programs. Then start the ticlient, and then 
start the mdworker echo service. You can run all four of these using the -v option to do 
verbose activity tracing. You can stop and restart any piece except the client and 
nothing will get lost.

If you want to use Titanic in real cases, you’ ll rapidly be asking “ how do we make 
this faster?”

Here’ s what I’ d do, starting with the example implementation:
• Use a single disk file for all data, rather than multiple files. Operating systems 

are usually better at handling a few large files than many smaller ones.
• Organize that disk file as a circular buffer so that new requests can be written 

contiguously (with very occasional wraparound). One thread, writing full speed 
to a disk file, can work rapidly.

• Keep the index in memory and rebuild the index at startup time, from the disk 
buffer. This saves the extra disk head flutter needed to keep the index fully safe 
on disk. You would want an fsync after every message, or every N milliseconds if 
you were prepared to lose the last M messages in case of a system failure.

• Use a solid-state drive rather than spinning iron oxide platters.
• Pre-allocate the entire file, or allocate it in large chunks, which allows the 

circular buffer to grow and shrink as needed. This avoids fragmentation and 
ensures that most reads and writes are contiguous.

And so on. What I’ d not recommend is storing messages in a database, not even a 
“ fast”  key/value store, unless you really like a specific database and don’ t have 



198 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

performance worries. You will pay a steep price for the abstraction, ten to a thousand 
times over a raw disk file.

If you want to make Titanic even more reliable, duplicate the requests to a second 
server, which you’ d place in a second location just far away enough to survive a nuclear 
attack on your primary location, yet not so far that you get too much latency.

If you want to make Titanic much faster and less reliable, store requests and replies 
purely in memory. This will give you the functionality of a disconnected network, but 
requests won’ t survive a crash of the Titanic server itself.

High-Availability Pair (Binary Star Pattern)
The Binary Star pattern puts two 

servers in a primary-backup high-
availability pair (see figure 52). At any 
given time, one of these (the active) 
accepts connections from client 
applications. The other (the passive) 
does nothing, but the two servers 
monitor each other. If the active 
disappears from the network, after a 
certain time the passive takes over as 
active.

We developed the Binary Star 
pattern at iMatix for our OpenAMQ 
server20. We designed it:

• To provide a straightforward high-availability solution.
• To be simple enough to actually understand and use.
• To fail over reliably when needed, and only when needed.

Assuming we have a Binary Star pair running, here are the different scenarios that 
will result in a failover (see figure 53):

• The hardware running the primary server has a fatal problem (power supply 
explodes, machine catches fire, or someone simply unplugs it by mistake), and 
disappears. Applications see this, and reconnect to the backup server.

• The network segment on which the primary server sits crashes— perhaps a 
router gets hit by a power spike— and applications start to reconnect to the 
backup server.

• The primary server crashes or is killed by the operator and does not restart 
automatically.

20 http://www.openamq.org
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Recovery (to using the primary server as active) is a manual operation. Painful 
experience teaches us that automatic recovery is undesirable. There are several reasons:

• Failover creates an interruption of service to applications, possibly lasting 10-30 
seconds. If there is a real emergency, this is much better than total outage. But 
if recovery creates a further 10-30 second outage, it is better that this happens 
off-peak, when users have gone off the network.

• When there is an emergency, the absolute first priority is certainty for those 
trying to fix things. Automatic recovery creates uncertainty for system 
administrators, who can no longer be sure which server is in charge without 
double-checking.

• Automatic recovery can create situations where networks fail over and then 
recover, placing operators in the difficult position of analyzing what happened. 
There was an interruption of service, but the cause isn’ t clear.

Having said this, the Binary Star pattern will fail back to the primary server if this is 
running (again) and the backup server fails. In fact, this is how we provoke recovery.

The shutdown process for a Binary Star pair is to either:
1. Stop the passive server and then stop the active server at any later time, or
2. Stop both servers in any order but within a few seconds of each other.

Stopping the active and then the passive server with any delay longer than the 
failover timeout will cause applications to disconnect, then reconnect, and then 
disconnect again, which may disturb users.

Detailed Requirements
Binary Star is as simple as it can be, while still working accurately. In fact, the 

current design is the third complete redesign. Each of the previous designs we found to 
be too complex, trying to do too much, and we stripped out functionality until we came 
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to a design that was understandable, easy to use, and reliable enough to be worth 
using.

These are our requirements for a high-availability architecture:
• The failover is meant to provide insurance against catastrophic system failures, 

such as hardware breakdown, fire, accident, and so on. There are simpler ways 
to recover from ordinary server crashes and we already covered these.

• Failover time should be under 60 seconds and preferably under 10 seconds.
• Failover has to happen automatically, whereas recovery must happen manually. 

We want applications to switch over to the backup server automatically, but we 
do not want them to switch back to the primary server except when the 
operators have fixed whatever problem there was and decided that it is a good 
time to interrupt applications again.

• The semantics for client applications should be simple and easy for developers 
to understand. Ideally, they should be hidden in the client API.

• There should be clear instructions for network architects on how to avoid 
designs that could lead to split brain syndrome, in which both servers in a 
Binary Star pair think they are the active server.

• There should be no dependencies on the order in which the two servers are 
started.

• It must be possible to make planned stops and restarts of either server without 
stopping client applications (though they may be forced to reconnect).

• Operators must be able to monitor both servers at all times.
• It must be possible to connect the two servers using a high-speed dedicated 

network connection. That is, failover synchronization must be able to use a 
specific IP route.

We make the following assumptions:
• A single backup server provides enough insurance; we don’ t need multiple levels 

of backup.
• The primary and backup servers are equally capable of carrying the application 

load. We do not attempt to balance load across the servers.
• There is sufficient budget to cover a fully redundant backup server that does 

nothing almost all the time.
We don’ t attempt to cover the following:
• The use of an active backup server or load balancing. In a Binary Star pair, the 

backup server is inactive and does no useful work until the primary server goes 
offline.

• The handling of persistent messages or transactions in any way. We assume the 
existence of a network of unreliable (and probably untrusted) servers or Binary 
Star pairs.
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• Any automatic exploration of the network. The Binary Star pair is manually 
and explicitly defined in the network and is known to applications (at least in 
their configuration data).

• Replication of state or messages between servers. All server-side state must be 
recreated by applications when they fail over.

Here is the key terminology that we use in Binary Star:
• Primary: the server that is normally or initially active.
• Backup: the server that is normally passive. It will become active if and when 

the primary server disappears from the network, and when client applications 
ask the backup server to connect.

• Active: the server that accepts client connections. There is at most one active 
server.

• Passive: the server that takes over if the active disappears. Note that when a 
Binary Star pair is running normally, the primary server is active, and the 
backup is passive. When a failover has happened, the roles are switched.

To configure a Binary Star pair, you need to:
1. Tell the primary server where the backup server is located.
2. Tell the backup server where the primary server is located.
3. Optionally, tune the failover response times, which must be the same for both 

servers.
The main tuning concern is how frequently you want the servers to check their 

peering status, and how quickly you want to activate failover. In our example, the 
failover timeout value defaults to 2,000 msec. If you reduce this, the backup server will 
take over as active more rapidly but may take over in cases where the primary server 
could recover. For example, you may have wrapped the primary server in a shell script 
that restarts it if it crashes. In that case, the timeout should be higher than the time 
needed to restart the primary server.

For client applications to work properly with a Binary Star pair, they must:
1. Know both server addresses.
2. Try to connect to the primary server, and if that fails, to the backup server.
3. Detect a failed connection, typically using heartbeating.
4. Try to reconnect to the primary, and then backup (in that order), with a delay 

between retries that is at least as high as the server failover timeout.
5. Recreate all of the state they require on a server.
6. Retransmit messages lost during a failover, if messages need to be reliable.

It’ s not trivial work, and we’ d usually wrap this in an API that hides it from real 
end-user applications.

These are the main limitations of the Binary Star pattern:
• A server process cannot be part of more than one Binary Star pair.
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• A primary server can have a single backup server, and no more.
• The passive server does no useful work, and is thus wasted.
• The backup server must be capable of handling full application loads.
• Failover configuration cannot be modified at runtime.
• Client applications must do some work to benefit from failover.

Preventing Split-Brain Syndrome
Split-brain syndrome occurs when different parts of a cluster think they are active at 

the same time. It causes applications to stop seeing each other. Binary Star has an 
algorithm for detecting and eliminating split brain, which is based on a three-way 
decision mechanism (a server will not decide to become active until it gets application 
connection requests and it cannot see its peer server).

However, it is still possible to (mis)design a network to fool this algorithm. A typical 
scenario would be a Binary Star pair, that is distributed between two buildings, where 
each building also had a set of applications and where there was a single network link 
between both buildings. Breaking this link would create two sets of client applications, 
each with half of the Binary Star pair, and each failover server would become active.

To prevent split-brain situations, we must connect a Binary Star pair using a 
dedicated network link, which can be as simple as plugging them both into the same 
switch or, better, using a crossover cable directly between two machines.

We must not split a Binary Star architecture into two islands, each with a set of 
applications. While this may be a common type of network architecture, you should use 
federation, not high-availability failover, in such cases.

A suitably paranoid network configuration would use two private cluster 
interconnects, rather than a single one. Further, the network cards used for the cluster 
would be different from those used for message traffic, and possibly even on different 
paths on the server hardware. The goal is to separate possible failures in the network 
from possible failures in the cluster. Network ports can have a relatively high failure 
rate.

Binary Star Implementation
Without further ado, here is a proof-of-concept implementation of the Binary Star 

server. The primary and backup servers run the same code, you choose their roles when 
you run the code:

Example 54. Binary Star server (bstarsrv.c)

//  Binary Star server proof-of-concept implementation. This server does no
//  real work; it just demonstrates the Binary Star failover model.

#include "czmq.h"

//  States we can be in at any point in time
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typedef enum {
    STATE_PRIMARY = 1,          //  Primary, waiting for peer to connect
    STATE_BACKUP = 2,           //  Backup, waiting for peer to connect
    STATE_ACTIVE = 3,           //  Active - accepting connections
    STATE_PASSIVE = 4           //  Passive - not accepting connections
} state_t;

//  Events, which start with the states our peer can be in
typedef enum {
    PEER_PRIMARY = 1,           //  HA peer is pending primary
    PEER_BACKUP = 2,            //  HA peer is pending backup
    PEER_ACTIVE = 3,            //  HA peer is active
    PEER_PASSIVE = 4,           //  HA peer is passive
    CLIENT_REQUEST = 5          //  Client makes request
} event_t;

//  Our finite state machine
typedef struct {
    state_t state;              //  Current state
    event_t event;              //  Current event
    int64_t peer_expiry;        //  When peer is considered 'dead'
} bstar_t;

//  We send state information this often
//  If peer doesn't respond in two heartbeats, it is 'dead'
#define HEARTBEAT 1000          //  In msecs

The heart of the Binary Star design is its finite-state machine (FSM). The FSM runs 
one event at a time. We apply an event to the current state, which checks if the event is 
accepted, and if so, sets a new state:

Example 54-1. Binary Star server (bstarsrv.c) - Binary Star state machine

static Bool
s_state_machine (bstar_t *fsm)
{
    Bool exception = FALSE;
    
    //  These are the PRIMARY and BACKUP states; we're waiting to become
    //  ACTIVE or PASSIVE depending on events we get from our peer:
    if (fsm->state == STATE_PRIMARY) {
        if (fsm->event == PEER_BACKUP) {
            printf ("I: connected to backup (passive), ready active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_ACTIVE) {
            printf ("I: connected to backup (active), ready passive\n");
            fsm->state = STATE_PASSIVE;
        }
        //  Accept client connections
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    }
    else
    if (fsm->state == STATE_BACKUP) {
        if (fsm->event == PEER_ACTIVE) {
            printf ("I: connected to primary (active), ready passive\n");
            fsm->state = STATE_PASSIVE;
        }
        else
        //  Reject client connections when acting as backup
        if (fsm->event == CLIENT_REQUEST)
            exception = TRUE;
    }
    else

These are the ACTIVE and PASSIVE states:

Example 54-2. Binary Star server (bstarsrv.c) - active and passive states

   if (fsm->state == STATE_ACTIVE) {
        if (fsm->event == PEER_ACTIVE) {
            //  Two actives would mean split-brain
            printf ("E: fatal error - dual actives, aborting\n");
            exception = TRUE;
        }
    }
    else
    //  Server is passive
    //  CLIENT_REQUEST events can trigger failover if peer looks dead
    if (fsm->state == STATE_PASSIVE) {
        if (fsm->event == PEER_PRIMARY) {
            //  Peer is restarting - become active, peer will go passive
            printf ("I: primary (passive) is restarting, ready active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_BACKUP) {
            //  Peer is restarting - become active, peer will go passive
            printf ("I: backup (passive) is restarting, ready active\n");
            fsm->state = STATE_ACTIVE;
        }
        else
        if (fsm->event == PEER_PASSIVE) {
            //  Two passives would mean cluster would be non-responsive
            printf ("E: fatal error - dual passives, aborting\n");
            exception = TRUE;
        }
        else
        if (fsm->event == CLIENT_REQUEST) {
            //  Peer becomes active if timeout has passed
            //  It's the client request that triggers the failover
            assert (fsm->peer_expiry > 0);
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            if (zclock_time () >= fsm->peer_expiry) {
                //  If peer is dead, switch to the active state
                printf ("I: failover successful, ready active\n");
                fsm->state = STATE_ACTIVE;
            }
            else
                //  If peer is alive, reject connections
                exception = TRUE;
        }
    }
    return exception;
}

This is our main task. First we bind/connect our sockets with our peer and make sure 
we will get state messages correctly. We use three sockets; one to publish state, one to 
subscribe to state, and one for client requests/replies:

Example 54-3. Binary Star server (bstarsrv.c) - main task

int main (int argc, char *argv [])
{
    //  Arguments can be either of:
    //      -p  primary server, at tcp://localhost:5001
    //      -b  backup server, at tcp://localhost:5002
    zctx_t *ctx = zctx_new ();
    void *statepub = zsocket_new (ctx, ZMQ_PUB);
    void *statesub = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (statesub, "");
    void *frontend = zsocket_new (ctx, ZMQ_ROUTER);
    bstar_t fsm = { 0 };

    if (argc == 2 && streq (argv [1], "-p")) {
        printf ("I: Primary active, waiting for backup (passive)\n");
        zsocket_bind (frontend, "tcp://*:5001");
        zsocket_bind (statepub, "tcp://*:5003");
        zsocket_connect (statesub, "tcp://localhost:5004");
        fsm.state = STATE_PRIMARY;
    }
    else
    if (argc == 2 && streq (argv [1], "-b")) {
        printf ("I: Backup passive, waiting for primary (active)\n");
        zsocket_bind (frontend, "tcp://*:5002");
        zsocket_bind (statepub, "tcp://*:5004");
        zsocket_connect (statesub, "tcp://localhost:5003");
        fsm.state = STATE_BACKUP;
    }
    else {
        printf ("Usage: bstarsrv { -p | -b }\n");
        zctx_destroy (&ctx);
        exit (0);
    }
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We now process events on our two input sockets, and process these events one at a 
time via our finite-state machine. Our “ work”  for a client request is simply to echo it 
back:

Example 54-4. Binary Star server (bstarsrv.c) - handling socket input

   //  Set timer for next outgoing state message
    int64_t send_state_at = zclock_time () + HEARTBEAT;
    while (!zctx_interrupted) {
        zmq_pollitem_t items [] = {
            { frontend, 0, ZMQ_POLLIN, 0 },
            { statesub, 0, ZMQ_POLLIN, 0 }
        };
        int time_left = (int) ((send_state_at - zclock_time ()));
        if (time_left < 0)
            time_left = 0;
        int rc = zmq_poll (items, 2, time_left * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN) {
            //  Have a client request
            zmsg_t *msg = zmsg_recv (frontend);
            fsm.event = CLIENT_REQUEST;
            if (s_state_machine (&fsm) == FALSE)
                //  Answer client by echoing request back
                zmsg_send (&msg, frontend);
            else
                zmsg_destroy (&msg);
        }
        if (items [1].revents & ZMQ_POLLIN) {
            //  Have state from our peer, execute as event
            char *message = zstr_recv (statesub);
            fsm.event = atoi (message);
            free (message);
            if (s_state_machine (&fsm))
                break;          //  Error, so exit
            fsm.peer_expiry = zclock_time () + 2 * HEARTBEAT;
        }
        //  If we timed out, send state to peer
        if (zclock_time () >= send_state_at) {
            char message [2];
            sprintf (message, "%d", fsm.state);
            zstr_send (statepub, message);
            send_state_at = zclock_time () + HEARTBEAT;
        }
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    //  Shutdown sockets and context
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    zctx_destroy (&ctx);
    return 0;
}

And here is the client:

Example 55. Binary Star client (bstarcli.c)

//  Binary Star client proof-of-concept implementation. This client does no
//  real work; it just demonstrates the Binary Star failover model.

#include "czmq.h"
#define REQUEST_TIMEOUT     1000    //  msecs
#define SETTLE_DELAY        2000    //  Before failing over

int main (void)
{
    zctx_t *ctx = zctx_new ();

    char *server [] = { "tcp://localhost:5001", "tcp://localhost:5002" };
    uint server_nbr = 0;

    printf ("I: connecting to server at %s...\n", server [server_nbr]);
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, server [server_nbr]);

    int sequence = 0;
    while (!zctx_interrupted) {
        //  We send a request, then we work to get a reply
        char request [10];
        sprintf (request, "%d", ++sequence);
        zstr_send (client, request);

        int expect_reply = 1;
        while (expect_reply) {
            //  Poll socket for a reply, with timeout
            zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
            int rc = zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
            if (rc == -1)
                break;          //  Interrupted

We use a Lazy Pirate strategy in the client. If there’ s no reply within our timeout, we 
close the socket and try again. In Binary Star, it’ s the client vote that decides which 
server is primary; the client must therefore try to connect to each server in turn:

Example 55-1. Binary Star client (bstarcli.c) - main body of client

           if (items [0].revents & ZMQ_POLLIN) {
                //  We got a reply from the server, must match sequence
                char *reply = zstr_recv (client);
                if (atoi (reply) == sequence) {
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                    printf ("I: server replied OK (%s)\n", reply);
                    expect_reply = 0;
                    sleep (1);  //  One request per second
                }
                else
                    printf ("E: bad reply from server: %s\n", reply);
                free (reply);
            }
            else {
                printf ("W: no response from server, failing over\n");
                
                //  Old socket is confused; close it and open a new one
                zsocket_destroy (ctx, client);
                server_nbr = (server_nbr + 1) % 2;
                zclock_sleep (SETTLE_DELAY);
                printf ("I: connecting to server at %s...\n",
                        server [server_nbr]);
                client = zsocket_new (ctx, ZMQ_REQ);
                zsocket_connect (client, server [server_nbr]);

                //  Send request again, on new socket
                zstr_send (client, request);
            }
        }
    }
    zctx_destroy (&ctx);
    return 0;
}

To test Binary Star, start the servers and client in any order:

bstarsrv -p     # Start primary
bstarsrv -b     # Start backup
bstarcli

You can then provoke failover by killing the primary server, and recovery by 
restarting the primary and killing the backup. Note how it’ s the client vote that triggers 
failover, and recovery.

Binary star is driven by a finite state machine (see figure 54). Events are the peer 
state, so “ Peer Active”  means the other server has told us it’ s active. “ Client Request”  
means we’ ve received a client request. “ Client Vote”  means we’ ve received a client 
request AND our peer is inactive for two heartbeats.

Note that the servers use PUB-SUB sockets for state exchange. No other socket 
combination will work here. PUSH and DEALER block if there is no peer ready to 
receive a message. PAIR does not reconnect if the peer disappears and comes back. 
ROUTER needs the address of the peer before it can send it a message.
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Binary Star Reactor
Binary Star is useful and generic enough to package up as a reusable reactor class. 

The reactor then runs and calls our code whenever it has a message to process. This is 
much nicer than copying/pasting the Binary Star code into each server where we want 
that capability.

In C, we wrap the CZMQ zloop class that we saw before. zloop lets you register 
handlers to react on socket and timer events. In the Binary Star reactor, we provide 
handlers for voters and for state changes (active to passive, and vice versa). Here is the 
bstar API:

//  Create a new Binary Star instance, using local (bind) and
//  remote (connect) endpoints to set up the server peering.
bstar_t *bstar_new (int primary, char *local, char *remote);

//  Destroy a Binary Star instance
void bstar_destroy (bstar_t **self_p);

//  Return underlying zloop reactor, for timer and reader
//  registration and cancelation.
zloop_t *bstar_zloop (bstar_t *self);

//  Register voting reader
int bstar_voter (bstar_t *self, char *endpoint, int type,
                 zloop_fn handler, void *arg);

//  Register main state change handlers
void bstar_new_active (bstar_t *self, zloop_fn handler, void *arg);
void bstar_new_passive (bstar_t *self, zloop_fn handler, void *arg);
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//  Start the reactor, which ends if a callback function returns -1, 
//  or the process received SIGINT or SIGTERM.
int bstar_start (bstar_t *self);

And here is the class implementation:

Example 56. Binary Star core class (bstar.c)

//  bstar class - Binary Star reactor

#include "bstar.h"

//  States we can be in at any point in time
typedef enum {
    STATE_PRIMARY = 1,          //  Primary, waiting for peer to connect
    STATE_BACKUP = 2,           //  Backup, waiting for peer to connect
    STATE_ACTIVE = 3,           //  Active - accepting connections
    STATE_PASSIVE = 4           //  Passive - not accepting connections
} state_t;

//  Events, which start with the states our peer can be in
typedef enum {
    PEER_PRIMARY = 1,           //  HA peer is pending primary
    PEER_BACKUP = 2,            //  HA peer is pending backup
    PEER_ACTIVE = 3,            //  HA peer is active
    PEER_PASSIVE = 4,           //  HA peer is passive
    CLIENT_REQUEST = 5          //  Client makes request
} event_t;

//  Structure of our class

struct _bstar_t {
    zctx_t *ctx;                //  Our private context
    zloop_t *loop;              //  Reactor loop
    void *statepub;             //  State publisher
    void *statesub;             //  State subscriber
    state_t state;              //  Current state
    event_t event;              //  Current event
    int64_t peer_expiry;        //  When peer is considered 'dead'
    zloop_fn *voter_fn;         //  Voting socket handler
    void *voter_arg;            //  Arguments for voting handler
    zloop_fn *active_fn;        //  Call when become active
    void *active_arg;           //  Arguments for handler
    zloop_fn *passive_fn;         //  Call when become passive
    void *passive_arg;            //  Arguments for handler
};

//  The finite-state machine is the same as in the proof-of-concept server.
//  To understand this reactor in detail, first read the CZMQ zloop class.
...
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This is the constructor for our bstar class. We have to tell it whether we’ re primary 
or backup server, as well as our local and remote endpoints to bind and connect to:

Example 56-1. Binary Star core class (bstar.c) - constructor

bstar_t *
bstar_new (int primary, char *local, char *remote)
{
    bstar_t
        *self;

    self = (bstar_t *) zmalloc (sizeof (bstar_t));

    //  Initialize the Binary Star
    self->ctx = zctx_new ();
    self->loop = zloop_new ();
    self->state = primary? STATE_PRIMARY: STATE_BACKUP;

    //  Create publisher for state going to peer
    self->statepub = zsocket_new (self->ctx, ZMQ_PUB);
    zsocket_bind (self->statepub, local);

    //  Create subscriber for state coming from peer
    self->statesub = zsocket_new (self->ctx, ZMQ_SUB);
    zsockopt_set_subscribe (self->statesub, "");
    zsocket_connect (self->statesub, remote);

    //  Set-up basic reactor events
    zloop_timer (self->loop, BSTAR_HEARTBEAT, 0, s_send_state, self);
    zmq_pollitem_t poller = { self->statesub, 0, ZMQ_POLLIN };
    zloop_poller (self->loop, &poller, s_recv_state, self);
    return self;
}

The destructor shuts down the bstar reactor:

Example 56-2. Binary Star core class (bstar.c) - destructor

void
bstar_destroy (bstar_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        bstar_t *self = *self_p;
        zloop_destroy (&self->loop);
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}
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This method returns the underlying zloop reactor, so we can add additional timers 
and readers:

Example 56-3. Binary Star core class (bstar.c) - zloop method

zloop_t *
bstar_zloop (bstar_t *self)
{
    return self->loop;
}

This method registers a client voter socket. Messages received on this socket provide 
the CLIENT_REQUEST events for the Binary Star FSM and are passed to the 
provided application handler. We require exactly one voter per bstar instance:

Example 56-4. Binary Star core class (bstar.c) - voter method

int
bstar_voter (bstar_t *self, char *endpoint, int type, zloop_fn handler,
             void *arg)
{
    //  Hold actual handler+arg so we can call this later
    void *socket = zsocket_new (self->ctx, type);
    zsocket_bind (socket, endpoint);
    assert (!self->voter_fn);
    self->voter_fn = handler;
    self->voter_arg = arg;
    zmq_pollitem_t poller = { socket, 0, ZMQ_POLLIN };
    return zloop_poller (self->loop, &poller, s_voter_ready, self);
}

Register handlers to be called each time there’ s a state change:

Example 56-5. Binary Star core class (bstar.c) - register state-change handlers

void
bstar_new_active (bstar_t *self, zloop_fn handler, void *arg)
{
    assert (!self->active_fn);
    self->active_fn = handler;
    self->active_arg = arg;
}

void
bstar_new_passive (bstar_t *self, zloop_fn handler, void *arg)
{
    assert (!self->passive_fn);
    self->passive_fn = handler;
    self->passive_arg = arg;
}
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Enable/disable verbose tracing, for debugging:

Example 56-6. Binary Star core class (bstar.c) - enable/disable tracing

void bstar_set_verbose (bstar_t *self, Bool verbose)
{
    zloop_set_verbose (self->loop, verbose);
}

Finally, start the configured reactor. It will end if any handler returns -1 to the 
reactor, or if the process receives SIGINT or SIGTERM:

Example 56-7. Binary Star core class (bstar.c) - start the reactor

int
bstar_start (bstar_t *self)
{
    assert (self->voter_fn);
    s_update_peer_expiry (self);
    return zloop_start (self->loop);
}

This gives us the following short main program for the server:

Example 57. Binary Star server, using core class (bstarsrv2.c)

//  Binary Star server, using bstar reactor

//  Lets us build this source without creating a library
#include "bstar.c"

//  Echo service
int s_echo (zloop_t *loop, zmq_pollitem_t *poller, void *arg)
{
    zmsg_t *msg = zmsg_recv (poller->socket);
    zmsg_send (&msg, poller->socket);
    return 0;
}

int main (int argc, char *argv [])
{
    //  Arguments can be either of:
    //      -p  primary server, at tcp://localhost:5001
    //      -b  backup server, at tcp://localhost:5002
    bstar_t *bstar;
    if (argc == 2 && streq (argv [1], "-p")) {
        printf ("I: Primary active, waiting for backup (passive)\n");
        bstar = bstar_new (BSTAR_PRIMARY,
            "tcp://*:5003", "tcp://localhost:5004");
        bstar_voter (bstar, "tcp://*:5001", ZMQ_ROUTER, s_echo, NULL);
    }
    else
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    if (argc == 2 && streq (argv [1], "-b")) {
        printf ("I: Backup passive, waiting for primary (active)\n");
        bstar = bstar_new (BSTAR_BACKUP,
            "tcp://*:5004", "tcp://localhost:5003");
        bstar_voter (bstar, "tcp://*:5002", ZMQ_ROUTER, s_echo, NULL);
    }
    else {
        printf ("Usage: bstarsrvs { -p | -b }\n");
        exit (0);
    }
    bstar_start (bstar);
    bstar_destroy (&bstar);
    return 0;
}

Brokerless Reliability (Freelance Pattern)
It might seem ironic to focus so much on broker-based reliability, when we often 

explain ØMQ as “ brokerless messaging” . However, in messaging, as in real life, the 
middleman is both a burden and a benefit. In practice, most messaging architectures 
benefit from a mix of distributed and brokered messaging. You get the best results 
when you can decide freely what trade-offs you want to make. This is why I can drive 
twenty minutes to a wholesaler to buy five cases of wine for a party, but I can also walk 
ten minutes to a corner store to buy one bottle for a dinner. Our highly context-
sensitive relative valuations of time, energy, and cost are essential to the real world 
economy. And they are essential to an optimal message-based architecture.

This is why ØMQ does not impose a broker-centric architecture, though it does give 
you the tools to build brokers, aka proxies, and we’ ve built a dozen or so different ones 
so far, just for practice.

So we’ ll end this chapter by deconstructing the broker-based reliability we’ ve built so 
far, and turning it back into a distributed peer-to-peer architecture I call the Freelance 
pattern. Our use case will be a name resolution service. This is a common problem with 
ØMQ architectures: how do we know the endpoint to connect to? Hard-coding TCP/IP 
addresses in code is insanely fragile. Using configuration files creates an administration 
nightmare. Imagine if you had to hand-configure your web browser, on every PC or 
mobile phone you used, to realize that “ google.com”  was “ 74.125.230.82” .

A ØMQ name service (and we’ ll make a simple implementation) must do the 
following:

• Resolve a logical name into at least a bind endpoint, and a connect endpoint. A 
realistic name service would provide multiple bind endpoints, and possibly 
multiple connect endpoints as well.

• Allow us to manage multiple parallel environments, e.g., “ test”  versus 
“ production” , without modifying code.
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• Be reliable, because if it is unavailable, applications won’ t be able to connect to 
the network.

Putting a name service behind a service-oriented Majordomo broker is clever from 
some points of view. However, it’ s simpler and much less surprising to just expose the 
name service as a server to which clients can connect directly. If we do this right, the 
name service becomes the only global network endpoint we need to hard-code in our 
code or configuration files.

The types of failure we aim to 
handle are server crashes and 
restarts, server busy looping, 
server overload, and network 
issues. To get reliability, we’ ll 
create a pool of name servers so 
if one crashes or goes away, 
clients can connect to another, 
and so on. In practice, two 
would be enough. But for the 
example, we’ ll assume the pool 
can be any size (see figure 55).

In this architecture, a large set of clients connect to a small set of servers directly. 
The servers bind to their respective addresses. It’ s fundamentally different from a 
broker-based approach like Majordomo, where workers connect to the broker. Clients 
have a couple of options:

• Use REQ sockets and the Lazy Pirate pattern. Easy, but would need some 
additional intelligence so clients don’ t stupidly try to reconnect to dead servers 
over and over.

• Use DEALER sockets and blast out requests (which will be load balanced to all 
connected servers) until they get a reply. Effective, but not elegant.

• Use ROUTER sockets so clients can address specific servers. But how does the 
client know the identity of the server sockets? Either the server has to ping the 
client first (complex), or the server has to use a hard-coded, fixed identity 
known to the client (nasty).

We’ ll develop each of these in the following subsections.

Model One: Simple Retry and Failover
So our menu appears to offer: simple, brutal, complex, or nasty. Let’ s start with 

simple and then work out the kinks. We take Lazy Pirate and rewrite it to work with 
multiple server endpoints.
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Start one or several servers first, specifying a bind endpoint as the argument:

Example 58. Freelance server, Model One (flserver1.c)

//  Freelance server - Model 1
//  Trivial echo service

#include "czmq.h"

int main (int argc, char *argv [])
{
    if (argc < 2) {
        printf ("I: syntax: %s <endpoint>\n", argv [0]);
        return 0;
    }
    zctx_t *ctx = zctx_new ();
    void *server = zsocket_new (ctx, ZMQ_REP);
    zsocket_bind (server, argv [1]);

    printf ("I: echo service is ready at %s\n", argv [1]);
    while (true) {
        zmsg_t *msg = zmsg_recv (server);
        if (!msg)
            break;          //  Interrupted
        zmsg_send (&msg, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}

Then start the client, specifying one or more connect endpoints as arguments:

Example 59. Freelance client, Model One (flclient1.c)

//  Freelance client - Model 1
//  Uses REQ socket to query one or more services

#include "czmq.h"
#define REQUEST_TIMEOUT     1000
#define MAX_RETRIES         3       //  Before we abandon

static zmsg_t *
s_try_request (zctx_t *ctx, char *endpoint, zmsg_t *request)
{
    printf ("I: trying echo service at %s...\n", endpoint);
    void *client = zsocket_new (ctx, ZMQ_REQ);
    zsocket_connect (client, endpoint);



Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns 217

    //  Send request, wait safely for reply
    zmsg_t *msg = zmsg_dup (request);
    zmsg_send (&msg, client);
    zmq_pollitem_t items [] = { { client, 0, ZMQ_POLLIN, 0 } };
    zmq_poll (items, 1, REQUEST_TIMEOUT * ZMQ_POLL_MSEC);
    zmsg_t *reply = NULL;
    if (items [0].revents & ZMQ_POLLIN)
        reply = zmsg_recv (client);

    //  Close socket in any case, we're done with it now
    zsocket_destroy (ctx, client);
    return reply;
}

The client uses a Lazy Pirate strategy if it only has one server to talk to. If it has two 
or more servers to talk to, it will try each server just once:

Example 59-1. Freelance client, Model One (flclient1.c) - client task

int main (int argc, char *argv [])
{
    zctx_t *ctx = zctx_new ();
    zmsg_t *request = zmsg_new ();
    zmsg_addstr (request, "Hello world");
    zmsg_t *reply = NULL;

    int endpoints = argc - 1;
    if (endpoints == 0)
        printf ("I: syntax: %s <endpoint> ...\n", argv [0]);
    else
    if (endpoints == 1) {
        //  For one endpoint, we retry N times
        int retries;
        for (retries = 0; retries < MAX_RETRIES; retries++) {
            char *endpoint = argv [1];
            reply = s_try_request (ctx, endpoint, request);
            if (reply)
                break;          //  Successful
            printf ("W: no response from %s, retrying...\n", endpoint);
        }
    }
    else {
        //  For multiple endpoints, try each at most once
        int endpoint_nbr;
        for (endpoint_nbr = 0; endpoint_nbr < endpoints; endpoint_nbr++) {
            char *endpoint = argv [endpoint_nbr + 1];
            reply = s_try_request (ctx, endpoint, request);
            if (reply)
                break;          //  Successful
            printf ("W: no response from %s\n", endpoint);
        }
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    }
    if (reply)
        printf ("Service is running OK\n");

    zmsg_destroy (&request);
    zmsg_destroy (&reply);
    zctx_destroy (&ctx);
    return 0;
}

A sample run is:

flserver1 tcp://*:5555 &
flserver1 tcp://*:5556 &
flclient1 tcp://localhost:5555 tcp://localhost:5556

Although the basic approach is Lazy Pirate, the client aims to just get one successful 
reply. It has two techniques, depending on whether you are running a single server or 
multiple servers:

• With a single server, the client will retry several times, exactly as for Lazy 
Pirate.

• With multiple servers, the client will try each server at most once until it’ s 
received a reply or has tried all servers.

This solves the main weakness of Lazy Pirate, namely that it could not fail over to 
backup or alternate servers.

However, this design won’ t work well in a real application. If we’ re connecting many 
sockets and our primary name server is down, we’ re going to experience this painful 
timeout each time.

Model Two: Brutal Shotgun Massacre
Let’ s switch our client to using a DEALER socket. Our goal here is to make sure we 

get a reply back within the shortest possible time, no matter whether a particular 
server is up or down. Our client takes this approach:

• We set things up, connecting to all servers.
• When we have a request, we blast it out as many times as we have servers.
• We wait for the first reply, and take that.
• We ignore any other replies.

What will happen in practice is that when all servers are running, ØMQ will 
distribute the requests so that each server gets one request and sends one reply. When 
any server is offline and disconnected, ØMQ will distribute the requests to the 
remaining servers. So a server may in some cases get the same request more than once.

What’ s more annoying for the client is that we’ ll get multiple replies back, but there’ s 
no guarantee we’ ll get a precise number of replies. Requests and replies can get lost 
(e.g., if the server crashes while processing a request).
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So we have to number requests and ignore any replies that don’ t match the request 
number. Our Model One server will work because it’ s an echo server, but coincidence is 
not a great basis for understanding. So we’ ll make a Model Two server that chews up 
the message and returns a correctly numbered reply with the content “ OK” . We’ ll use 
messages consisting of two parts: a sequence number and a body.

Start one or more servers, specifying a bind endpoint each time:

Example 60. Freelance server, Model Two (flserver2.c)

//  Freelance server - Model 2
//  Does some work, replies OK, with message sequencing

#include "czmq.h"

int main (int argc, char *argv [])
{
    if (argc < 2) {
        printf ("I: syntax: %s <endpoint>\n", argv [0]);
        return 0;
    }
    zctx_t *ctx = zctx_new ();
    void *server = zsocket_new (ctx, ZMQ_REP);
    zsocket_bind (server, argv [1]);

    printf ("I: service is ready at %s\n", argv [1]);
    while (true) {
        zmsg_t *request = zmsg_recv (server);
        if (!request)
            break;          //  Interrupted
        //  Fail nastily if run against wrong client
        assert (zmsg_size (request) == 2);

        zframe_t *identity = zmsg_pop (request);
        zmsg_destroy (&request);

        zmsg_t *reply = zmsg_new ();
        zmsg_add (reply, identity);
        zmsg_addstr (reply, "OK");
        zmsg_send (&reply, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}
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Then start the client, specifying the connect endpoints as arguments:

Example 61. Freelance client, Model Two (flclient2.c)

//  Freelance client - Model 2
//  Uses DEALER socket to blast one or more services

#include "czmq.h"

//  We design our client API as a class, using the CZMQ style
#ifdef __cplusplus
extern "C" {
#endif

typedef struct _flclient_t flclient_t;
flclient_t *flclient_new (void);
void        flclient_destroy (flclient_t **self_p);
void        flclient_connect (flclient_t *self, char *endpoint);
zmsg_t     *flclient_request (flclient_t *self, zmsg_t **request_p);

#ifdef __cplusplus
}
#endif

//  If not a single service replies within this time, give up
#define GLOBAL_TIMEOUT 2500

int main (int argc, char *argv [])
{
    if (argc == 1) {
        printf ("I: syntax: %s <endpoint> ...\n", argv [0]);
        return 0;
    }
    //  Create new freelance client object
    flclient_t *client = flclient_new ();

    //  Connect to each endpoint
    int argn;
    for (argn = 1; argn < argc; argn++)
        flclient_connect (client, argv [argn]);

    //  Send a bunch of name resolution 'requests', measure time
    int requests = 10000;
    uint64_t start = zclock_time ();
    while (requests--) {
        zmsg_t *request = zmsg_new ();
        zmsg_addstr (request, "random name");
        zmsg_t *reply = flclient_request (client, &request);
        if (!reply) {
            printf ("E: name service not available, aborting\n");
            break;
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        }
        zmsg_destroy (&reply);
    }
    printf ("Average round trip cost: %d usec\n",
        (int) (zclock_time () - start) / 10);

    flclient_destroy (&client);
    return 0;
}

Here is the flclient class implementation. Each instance has a context, a DEALER 
socket it uses to talk to the servers, a counter of how many servers it’ s connected to, 
and a request sequence number:

Example 61-1. Freelance client, Model Two (flclient2.c) - class implementation

struct _flclient_t {
    zctx_t *ctx;        //  Our context wrapper
    void *socket;       //  DEALER socket talking to servers
    size_t servers;     //  How many servers we have connected to
    uint sequence;      //  Number of requests ever sent
};

//  Constructor

flclient_t *
flclient_new (void)
{
    flclient_t
        *self;

    self = (flclient_t *) zmalloc (sizeof (flclient_t));
    self->ctx = zctx_new ();
    self->socket = zsocket_new (self->ctx, ZMQ_DEALER);
    return self;
}

//  Destructor

void
flclient_destroy (flclient_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        flclient_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}
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//  Connect to new server endpoint

void
flclient_connect (flclient_t *self, char *endpoint)
{
    assert (self);
    zsocket_connect (self->socket, endpoint);
    self->servers++;
}

This method does the hard work. It sends a request to all connected servers in 
parallel (for this to work, all connections must be successful and completed by this 
time). It then waits for a single successful reply, and returns that to the caller. Any 
other replies are just dropped:

Example 61-2. Freelance client, Model Two (flclient2.c) - request method

zmsg_t *
flclient_request (flclient_t *self, zmsg_t **request_p)
{
    assert (self);
    assert (*request_p);
    zmsg_t *request = *request_p;

    //  Prefix request with sequence number and empty envelope
    char sequence_text [10];
    sprintf (sequence_text, "%u", ++self->sequence);
    zmsg_pushstr (request, sequence_text);
    zmsg_pushstr (request, "");

    //  Blast the request to all connected servers
    int server;
    for (server = 0; server < self->servers; server++) {
        zmsg_t *msg = zmsg_dup (request);
        zmsg_send (&msg, self->socket);
    }
    //  Wait for a matching reply to arrive from anywhere
    //  Since we can poll several times, calculate each one
    zmsg_t *reply = NULL;
    uint64_t endtime = zclock_time () + GLOBAL_TIMEOUT;
    while (zclock_time () < endtime) {
        zmq_pollitem_t items [] = { { self->socket, 0, ZMQ_POLLIN, 0 } };
        zmq_poll (items, 1, (endtime - zclock_time ()) * ZMQ_POLL_MSEC);
        if (items [0].revents & ZMQ_POLLIN) {
            //  Reply is [empty][sequence][OK]
            reply = zmsg_recv (self->socket);
            assert (zmsg_size (reply) == 3);
            free (zmsg_popstr (reply));
            char *sequence = zmsg_popstr (reply);
            int sequence_nbr = atoi (sequence);
            free (sequence);
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            if (sequence_nbr == self->sequence)
                break;
            zmsg_destroy (&reply);
        }
    }
    zmsg_destroy (request_p);
    return reply;
}

Here are some things to note about the client implementation:
• The client is structured as a nice little class-based API that hides the dirty work 

of creating ØMQ contexts and sockets and talking to the server. That is, if a 
shotgun blast to the midriff can be called “ talking” .

• The client will abandon the chase if it can’ t find any responsive server within a 
few seconds.

• The client has to create a valid REP envelope, i.e., add an empty message frame 
to the front of the message.

The client performs 10,000 name resolution requests (fake ones, as our server does 
essentially nothing) and measures the average cost. On my test box, talking to one 
server, this requires about 60 microseconds. Talking to three servers, it takes about 80 
microseconds.

The pros and cons of our shotgun approach are:
• Pro: it is simple, easy to make and easy to understand.
• Pro: it does the job of failover, and works rapidly, so long as there is at least 

one server running.
• Con: it creates redundant network traffic.
• Con: we can’ t prioritize our servers, i.e., Primary, then Secondary.
• Con: the server can do at most one request at a time, period.

Model Three: Complex and Nasty
The shotgun approach seems too good to be true. Let’ s be scientific and work 

through all the alternatives. We’ re going to explore the complex/nasty option, even if 
it’ s only to finally realize that we preferred brutal. Ah, the story of my life.

We can solve the main problems of the client by switching to a ROUTER socket. 
That lets us send requests to specific servers, avoid servers we know are dead, and in 
general be as smart as we want to be. We can also solve the main problem of the server 
(single-threadedness) by switching to a ROUTER socket.

But doing ROUTER to ROUTER between two anonymous sockets (which haven’ t set 
an identity) is not possible. Both sides generate an identity (for the other peer) only 
when they receive a first message, and thus neither can talk to the other until it has 
first received a message. The only way out of this conundrum is to cheat, and use hard-
coded identities in one direction. The proper way to cheat, in a client/server case, is to 
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let the client “ know”  the identity of the server. Doing it the other way around would be 
insane, on top of complex and nasty, because any number of clients should be able to 
arise independently. Insane, complex, and nasty are great attributes for a genocidal 
dictator, but terrible ones for software.

Rather than invent yet another concept to manage, we’ ll use the connection endpoint 
as identity. This is a unique string on which both sides can agree without more prior 
knowledge than they already have for the shotgun model. It’ s a sneaky and effective 
way to connect two ROUTER sockets.

Remember how ØMQ identities work. The server ROUTER socket sets an identity 
before it binds its socket. When a client connects, they do a little handshake to 
exchange identities, before either side sends a real message. The client ROUTER socket, 
having not set an identity, sends a null identity to the server. The server generates a 
random UUID to designate the client for its own use. The server sends its identity 
(which we’ ve agreed is going to be an endpoint string) to the client.

This means that our client can route a message to the server (i.e., send on its 
ROUTER socket, specifying the server endpoint as identity) as soon as the connection 
is established. That’ s not immediately after doing a zmq_connect(), but some random 
time thereafter. Herein lies one problem: we don’ t know when the server will actually be 
available and complete its connection handshake. If the server is online, it could be after 
a few milliseconds. If the server is down and the sysadmin is out to lunch, it could be 
an hour from now.

There’ s a small paradox here. We need to know when servers become connected and 
available for work. In the Freelance pattern, unlike the broker-based patterns we saw 
earlier in this chapter, servers are silent until spoken to. Thus we can’ t talk to a server 
until it’ s told us it’ s online, which it can’ t do until we’ ve asked it.

My solution is to mix in a little of the shotgun approach from model 2, meaning we’ ll 
fire (harmless) shots at anything we can, and if anything moves, we know it’ s alive. 
We’ re not going to fire real requests, but rather a kind of ping-pong heartbeat.

This brings us to the realm of protocols again, so here’ s a short spec that defines how 
a Freelance client and server exchange ping-pong commands and request-reply 
commands21.

It is short and sweet to implement as a server. Here’ s our echo server, Model Three, 
now speaking FLP:

Example 62. Freelance server, Model Three (flserver3.c)

//  Freelance server - Model 3
//  Uses an ROUTER/ROUTER socket but just one thread

#include "czmq.h"

int main (int argc, char *argv [])
{

21 http://rfc.zeromq.org/spec:10
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    int verbose = (argc > 1 && streq (argv [1], "-v"));

    zctx_t *ctx = zctx_new ();

    //  Prepare server socket with predictable identity
    char *bind_endpoint = "tcp://*:5555";
    char *connect_endpoint = "tcp://localhost:5555";
    void *server = zsocket_new (ctx, ZMQ_ROUTER);
    zmq_setsockopt (server,
        ZMQ_IDENTITY, connect_endpoint, strlen (connect_endpoint));
    zsocket_bind (server, bind_endpoint);
    printf ("I: service is ready at %s\n", bind_endpoint);

    while (!zctx_interrupted) {
        zmsg_t *request = zmsg_recv (server);
        if (verbose && request)
            zmsg_dump (request);
        if (!request)
            break;          //  Interrupted

        //  Frame 0: identity of client
        //  Frame 1: PING, or client control frame
        //  Frame 2: request body
        zframe_t *identity = zmsg_pop (request);
        zframe_t *control = zmsg_pop (request);
        zmsg_t *reply = zmsg_new ();
        if (zframe_streq (control, "PING"))
            zmsg_addstr (reply, "PONG");
        else {
            zmsg_add (reply, control);
            zmsg_addstr (reply, "OK");
        }
        zmsg_destroy (&request);
        zmsg_push (reply, identity);
        if (verbose && reply)
            zmsg_dump (reply);
        zmsg_send (&reply, server);
    }
    if (zctx_interrupted)
        printf ("W: interrupted\n");

    zctx_destroy (&ctx);
    return 0;
}



226 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

The Freelance client, however, has gotten large. For clarity, it’ s split into an example 
application and a class that does the hard work. Here’ s the top-level application:

Example 63. Freelance client, Model Three (flclient3.c)

//  Freelance client - Model 3
//  Uses flcliapi class to encapsulate Freelance pattern

//  Lets us build this source without creating a library
#include "flcliapi.c"

int main (void)
{
    //  Create new freelance client object
    flcliapi_t *client = flcliapi_new ();

    //  Connect to several endpoints
    flcliapi_connect (client, "tcp://localhost:5555");
    flcliapi_connect (client, "tcp://localhost:5556");
    flcliapi_connect (client, "tcp://localhost:5557");

    //  Send a bunch of name resolution 'requests', measure time
    int requests = 1000;
    uint64_t start = zclock_time ();
    while (requests--) {
        zmsg_t *request = zmsg_new ();
        zmsg_addstr (request, "random name");
        zmsg_t *reply = flcliapi_request (client, &request);
        if (!reply) {
            printf ("E: name service not available, aborting\n");
            break;
        }
        zmsg_destroy (&reply);
    }
    printf ("Average round trip cost: %d usec\n",
        (int) (zclock_time () - start) / 10);

    flcliapi_destroy (&client);
    return 0;
}

And here, almost as complex and large as the Majordomo broker, is the client API 
class:

Example 64. Freelance client API (flcliapi.c)

//  flcliapi class - Freelance Pattern agent class
//  Implements the Freelance Protocol at http://rfc.zeromq.org/spec:10

#include "flcliapi.h"
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//  If no server replies within this time, abandon request
#define GLOBAL_TIMEOUT  3000    //  msecs
//  PING interval for servers we think are alive
#define PING_INTERVAL   2000    //  msecs
//  Server considered dead if silent for this long
#define SERVER_TTL      6000    //  msecs

This API works in two halves, a common pattern for APIs that need to run in the 
background. One half is an frontend object our application creates and works with; the 
other half is a backend “ agent”  that runs in a background thread. The frontend talks to 
the backend over an inproc pipe socket:

Example 64-1. Freelance client API (flcliapi.c) - API structure

//  Structure of our frontend class

struct _flcliapi_t {
    zctx_t *ctx;        //  Our context wrapper
    void *pipe;         //  Pipe through to flcliapi agent
};

//  This is the thread that handles our real flcliapi class
static void flcliapi_agent (void *args, zctx_t *ctx, void *pipe);

//  Constructor

flcliapi_t *
flcliapi_new (void)
{
    flcliapi_t
        *self;

    self = (flcliapi_t *) zmalloc (sizeof (flcliapi_t));
    self->ctx = zctx_new ();
    self->pipe = zthread_fork (self->ctx, flcliapi_agent, NULL);
    return self;
}

//  Destructor

void
flcliapi_destroy (flcliapi_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        flcliapi_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}



228 Code Connected Volume 1 - Chapter 4. Reliable Request-Reply Patterns

To implement the connect method, the frontend object sends a multipart message to 
the backend agent. The first part is a string “ CONNECT” , and the second part is the 
endpoint. It waits 100msec for the connection to come up, which isn’ t pretty, but saves 
us from sending all requests to a single server, at startup time:

Example 64-2. Freelance client API (flcliapi.c) - connect method

void
flcliapi_connect (flcliapi_t *self, char *endpoint)
{
    assert (self);
    assert (endpoint);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, endpoint);
    zmsg_send (&msg, self->pipe);
    zclock_sleep (100);      //  Allow connection to come up
}

To implement the request method, the frontend object sends a message to the 
backend, specifying a command “ REQUEST”  and the request message:

Example 64-3. Freelance client API (flcliapi.c) - request method

zmsg_t *
flcliapi_request (flcliapi_t *self, zmsg_t **request_p)
{
    assert (self);
    assert (*request_p);

    zmsg_pushstr (*request_p, "REQUEST");
    zmsg_send (request_p, self->pipe);
    zmsg_t *reply = zmsg_recv (self->pipe);
    if (reply) {
        char *status = zmsg_popstr (reply);
        if (streq (status, "FAILED"))
            zmsg_destroy (&reply);
        free (status);
    }
    return reply;
}

Here we see the backend agent. It runs as an attached thread, talking to its parent 
over a pipe socket. It is a fairly complex piece of work so we’ ll break it down into pieces. 
First, the agent manages a set of servers, using our familiar class approach:

Example 64-4. Freelance client API (flcliapi.c) - backend agent

//  Simple class for one server we talk to

typedef struct {
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    char *endpoint;             //  Server identity/endpoint
    uint alive;                 //  1 if known to be alive
    int64_t ping_at;            //  Next ping at this time
    int64_t expires;            //  Expires at this time
} server_t;

server_t *
server_new (char *endpoint)
{
    server_t *self = (server_t *) zmalloc (sizeof (server_t));
    self->endpoint = strdup (endpoint);
    self->alive = 0;
    self->ping_at = zclock_time () + PING_INTERVAL;
    self->expires = zclock_time () + SERVER_TTL;
    return self;
}

void
server_destroy (server_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        server_t *self = *self_p;
        free (self->endpoint);
        free (self);
        *self_p = NULL;
    }
}

int
server_ping (const char *key, void *server, void *socket)
{
    server_t *self = (server_t *) server;
    if (zclock_time () >= self->ping_at) {
        zmsg_t *ping = zmsg_new ();
        zmsg_addstr (ping, self->endpoint);
        zmsg_addstr (ping, "PING");
        zmsg_send (&ping, socket);
        self->ping_at = zclock_time () + PING_INTERVAL;
    }
    return 0;
}

int
server_tickless (const char *key, void *server, void *arg)
{
    server_t *self = (server_t *) server;
    uint64_t *tickless = (uint64_t *) arg;
    if (*tickless > self->ping_at)
        *tickless = self->ping_at;
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    return 0;
}

We build the agent as a class that’ s capable of processing messages coming in from its 
various sockets:

Example 64-5. Freelance client API (flcliapi.c) - backend agent class

//  Simple class for one background agent

typedef struct {
    zctx_t *ctx;                //  Own context
    void *pipe;                 //  Socket to talk back to application
    void *router;               //  Socket to talk to servers
    zhash_t *servers;           //  Servers we've connected to
    zlist_t *actives;           //  Servers we know are alive
    uint sequence;              //  Number of requests ever sent
    zmsg_t *request;            //  Current request if any
    zmsg_t *reply;              //  Current reply if any
    int64_t expires;            //  Timeout for request/reply
} agent_t;

agent_t *
agent_new (zctx_t *ctx, void *pipe)
{
    agent_t *self = (agent_t *) zmalloc (sizeof (agent_t));
    self->ctx = ctx;
    self->pipe = pipe;
    self->router = zsocket_new (self->ctx, ZMQ_ROUTER);
    self->servers = zhash_new ();
    self->actives = zlist_new ();
    return self;
}

void
agent_destroy (agent_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        agent_t *self = *self_p;
        zhash_destroy (&self->servers);
        zlist_destroy (&self->actives);
        zmsg_destroy (&self->request);
        zmsg_destroy (&self->reply);
        free (self);
        *self_p = NULL;
    }
}
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This method processes one message from our frontend class (it’ s going to be 
CONNECT or REQUEST):

Example 64-6. Freelance client API (flcliapi.c) - control messages

//  Callback when we remove server from agent 'servers' hash table

static void
s_server_free (void *argument)
{
    server_t *server = (server_t *) argument;
    server_destroy (&server);
}

void
agent_control_message (agent_t *self)
{
    zmsg_t *msg = zmsg_recv (self->pipe);
    char *command = zmsg_popstr (msg);

    if (streq (command, "CONNECT")) {
        char *endpoint = zmsg_popstr (msg);
        printf ("I: connecting to %s...\n", endpoint);
        int rc = zmq_connect (self->router, endpoint);
        assert (rc == 0);
        server_t *server = server_new (endpoint);
        zhash_insert (self->servers, endpoint, server);
        zhash_freefn (self->servers, endpoint, s_server_free);
        zlist_append (self->actives, server);
        server->ping_at = zclock_time () + PING_INTERVAL;
        server->expires = zclock_time () + SERVER_TTL;
        free (endpoint);
    }
    else
    if (streq (command, "REQUEST")) {
        assert (!self->request);    //  Strict request-reply cycle
        //  Prefix request with sequence number and empty envelope
        char sequence_text [10];
        sprintf (sequence_text, "%u", ++self->sequence);
        zmsg_pushstr (msg, sequence_text);
        //  Take ownership of request message
        self->request = msg;
        msg = NULL;
        //  Request expires after global timeout
        self->expires = zclock_time () + GLOBAL_TIMEOUT;
    }
    free (command);
    zmsg_destroy (&msg);
}
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This method processes one message from a connected server:

Example 64-7. Freelance client API (flcliapi.c) - router messages

void
agent_router_message (agent_t *self)
{
    zmsg_t *reply = zmsg_recv (self->router);

    //  Frame 0 is server that replied
    char *endpoint = zmsg_popstr (reply);
    server_t *server =
        (server_t *) zhash_lookup (self->servers, endpoint);
    assert (server);
    free (endpoint);
    if (!server->alive) {
        zlist_append (self->actives, server);
        server->alive = 1;
    }
    server->ping_at = zclock_time () + PING_INTERVAL;
    server->expires = zclock_time () + SERVER_TTL;

    //  Frame 1 may be sequence number for reply
    char *sequence = zmsg_popstr (reply);
    if (atoi (sequence) == self->sequence) {
        zmsg_pushstr (reply, "OK");
        zmsg_send (&reply, self->pipe);
        zmsg_destroy (&self->request);
    }
    else
        zmsg_destroy (&reply);
}

Finally, here’ s the agent task itself, which polls its two sockets and processes incoming 
messages:

Example 64-8. Freelance client API (flcliapi.c) - backend agent implementation

static void
flcliapi_agent (void *args, zctx_t *ctx, void *pipe)
{
    agent_t *self = agent_new (ctx, pipe);

    zmq_pollitem_t items [] = {
        { self->pipe, 0, ZMQ_POLLIN, 0 },
        { self->router, 0, ZMQ_POLLIN, 0 }
    };
    while (!zctx_interrupted) {
        //  Calculate tickless timer, up to 1 hour
        uint64_t tickless = zclock_time () + 1000 * 3600;
        if (self->request
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        &&  tickless > self->expires)
            tickless = self->expires;
        zhash_foreach (self->servers, server_tickless, &tickless);

        int rc = zmq_poll (items, 2,
            (tickless - zclock_time ()) * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN)
            agent_control_message (self);

        if (items [1].revents & ZMQ_POLLIN)
            agent_router_message (self);

        //  If we're processing a request, dispatch to next server
        if (self->request) {
            if (zclock_time () >= self->expires) {
                //  Request expired, kill it
                zstr_send (self->pipe, "FAILED");
                zmsg_destroy (&self->request);
            }
            else {
                //  Find server to talk to, remove any expired ones
                while (zlist_size (self->actives)) {
                    server_t *server =
                        (server_t *) zlist_first (self->actives);
                    if (zclock_time () >= server->expires) {
                        zlist_pop (self->actives);
                        server->alive = 0;
                    }
                    else {
                        zmsg_t *request = zmsg_dup (self->request);
                        zmsg_pushstr (request, server->endpoint);
                        zmsg_send (&request, self->router);
                        break;
                    }
                }
            }
        }
        //  Disconnect and delete any expired servers
        //  Send heartbeats to idle servers if needed
        zhash_foreach (self->servers, server_ping, self->router);
    }
    agent_destroy (&self);
}

This API implementation is fairly sophisticated and uses a couple of techniques that 
we’ ve not seen before.
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• Multithreaded API: the client API consists of two parts, a synchronous 
flcliapi class that runs in the application thread, and an asynchronous agent 
class that runs as a background thread. Remember how ØMQ makes it easy to 
create multithreaded apps. The flcliapi and agent classes talk to each other with 
messages over an inproc socket. All ØMQ aspects (such as creating and 
destroying a context) are hidden in the API. The agent in effect acts like a 
mini-broker, talking to servers in the background, so that when we make a 
request, it can make a best effort to reach a server it believes is available.

• Tickless poll timer: in previous poll loops we always used a fixed tick 
interval, e.g., 1 second, which is simple enough but not excellent on power-
sensitive clients (such as notebooks or mobile phones), where waking the CPU 
costs power. For fun, and to help save the planet, the agent uses a tickless 
timer, which calculates the poll delay based on the next timeout we’ re 
expecting. A proper implementation would keep an ordered list of timeouts. We 
just check all timeouts and calculate the poll delay until the next one.

Conclusion
In this chapter, we’ ve seen a variety of reliable request-reply mechanisms, each with 

certain costs and benefits. The example code is largely ready for real use, though it is 
not optimized. Of all the different patterns, the two that stand out for production use 
are the Majordomo pattern, for broker-based reliability, and the Freelance pattern, for 
brokerless reliability.



Chapter 5. Advanced Pub-Sub 
Patterns

In “ Advanced Request-Reply Patterns”  and “ Reliable Request-Reply Patterns”  we 
looked at advanced use of ØMQ’ s request-reply pattern. If you managed to digest all 
that, congratulations. In this chapter we’ ll focus on publish-subscribe and extend 
ØMQ’ s core pub-sub pattern with higher-level patterns for performance, reliability, 
state distribution, and monitoring.

We’ ll cover:
• When to use publish-subscribe.
• How to handle too-slow subscribers (the Suicidal Snail pattern).
• How to design high-speed subscribers (the Black Box pattern).
• How to monitor a pub-sub network (the Espresso pattern).
• How to build a shared key-value store (the Clone pattern).
• How to use reactors to simplify complex servers.
• How to use the Binary Star pattern to add failover to a server.

Pros and Cons of Pub-Sub
ØMQ’ s low-level patterns have their different characters. Pub-sub addresses an old 

messaging problem, which is multicast or group messaging. It has that unique mix of 
meticulous simplicity and brutal indifference that characterizes ØMQ. It’ s worth 
understanding the trade-offs that pub-sub makes, how these benefit us, and how we can 
work around them if needed.

First, PUB sends each message to “ all of many” , whereas PUSH and DEALER rotate 
messages to “ one of many” . You cannot simply replace PUSH with PUB or vice versa 
and hope that things will work. This bears repeating because people seem to quite often 
suggest doing this.

More profoundly, pub-sub is aimed at scalability. This means large volumes of data, 
sent rapidly to many recipients. If you need millions of messages per second sent to 
thousands of points, you’ ll appreciate pub-sub a lot more than if you need a few 
messages a second sent to a handful of recipients.

To get scalability, pub-sub uses the same trick as push-pull, which is to get rid of 
back-chatter. This means that recipients don’ t talk back to senders. There are some 
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exceptions, e.g., SUB sockets will send subscriptions to PUB sockets, but it’ s 
anonymous and infrequent.

Killing back-chatter is essential to real scalability. With pub-sub, it’ s how the pattern 
can map cleanly to the PGM multicast protocol, which is handled by the network 
switch. In other words, subscribers don’ t connect to the publisher at all, they connect to 
a multicast group on the switch, to which the publisher sends its messages.

When we remove back-chatter, our overall message flow becomes much simpler, which 
lets us make simpler APIs, simpler protocols, and in general reach many more people. 
But we also remove any possibility to coordinate senders and receivers. What this 
means is:

• Publishers can’ t tell when subscribers are successfully connected, both on initial 
connections, and on reconnections after network failures.

• Subscribers can’ t tell publishers anything that would allow publishers to control 
the rate of messages they send. Publishers only have one setting, which is full-
speed, and subscribers must either keep up or lose messages.

• Publishers can’ t tell when subscribers have disappeared due to processes 
crashing, networks breaking, and so on.

The downside is that we actually need all of these if we want to do reliable multicast. 
The ØMQ pub-sub pattern will lose messages arbitrarily when a subscriber is 
connecting, when a network failure occurs, or just if the subscriber or network can’ t 
keep up with the publisher.

The upside is that there are many use cases where almost reliable multicast is just 
fine. When we need this back-chatter, we can either switch to using ROUTER-
DEALER (which I tend to do for most normal volume cases), or we can add a separate 
channel for synchronization (we’ ll see an example of this later in this chapter).

Pub-sub is like a radio broadcast; you miss everything before you join, and then how 
much information you get depends on the quality of your reception. Surprisingly, this 
model is useful and widespread because it maps perfectly to real world distribution of 
information. Think of Facebook and Twitter, the BBC World Service, and the sports 
results.

As we did for request-reply, let’ s define reliability in terms of what can go wrong. 
Here are the classic failure cases for pub-sub:

• Subscribers join late, so they miss messages the server already sent.
• Subscribers can fetch messages too slowly, so queues build up and then overflow.
• Subscribers can drop off and lose messages while they are away.
• Subscribers can crash and restart, and lose whatever data they already received.
• Networks can become overloaded and drop data (specifically, for PGM).
• Networks can become too slow, so publisher-side queues overflow and publishers 

crash.
A lot more can go wrong but these are the typical failures we see in a realistic 

system. Since v3.x, ØMQ forces default limits on its internal buffers (the so-called high-
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water mark or HWM), so publisher crashes are rarer unless you deliberately set the 
HWM to infinite.

All of these failure cases have answers, though not always simple ones. Reliability 
requires complexity that most of us don’ t need, most of the time, which is why ØMQ 
doesn’ t attempt to provide it out of the box (even if there was one global design for 
reliability, which there isn’ t).

Pub-Sub Tracing (Espresso Pattern)
Let’ s start this chapter by looking at a way to trace pub-sub networks. In “ Sockets 

and Patterns”  we saw a simple proxy that used these to do transport bridging. The 
zmq_proxy() method has three arguments: a frontend and backend socket that it bridges 
together, and a capture socket to which it will send all messages.

The code is deceptively simple:

Example 65. Espresso Pattern (espresso.c)

//  Espresso Pattern
//  This shows how to capture data using a pub-sub proxy

#include "czmq.h"

//  The subscriber thread requests messages starting with
//  A and B, then reads and counts incoming messages.

static void
subscriber_thread (void *args, zctx_t *ctx, void *pipe)
{
    //  Subscribe to "A" and "B"
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsocket_connect (subscriber, "tcp://localhost:6001");
    zsockopt_set_subscribe (subscriber, "A");
    zsockopt_set_subscribe (subscriber, "B");

    int count = 0;
    while (count < 5) {
        char *string = zstr_recv (subscriber);
        if (!string)
            break;              //  Interrupted
        free (string);
        count++;
    }
    zsocket_destroy (ctx, subscriber);
}
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The publisher sends random messages starting with A-J:

Example 65-1. Espresso Pattern (espresso.c) - publisher thread

static void
publisher_thread (void *args, zctx_t *ctx, void *pipe)
{
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:6000");

    while (!zctx_interrupted) {
        char string [10];
        sprintf (string, "%c-%05d", randof (10) + 'A', randof (100000));
        if (zstr_send (publisher, string) == -1)
            break;              //  Interrupted
        zclock_sleep (100);     //  Wait for 1/10th second
    }
}

The listener receives all messages flowing through the proxy, on its pipe. In CZMQ, 
the pipe is a pair of ZMQ_PAIR sockets that connect attached child threads. In other 
languages your mileage may vary:

Example 65-2. Espresso Pattern (espresso.c) - listener thread

static void
listener_thread (void *args, zctx_t *ctx, void *pipe)
{
    //  Print everything that arrives on pipe
    while (true) {
        zframe_t *frame = zframe_recv (pipe);
        if (!frame)
            break;              //  Interrupted
        zframe_print (frame, NULL);
        zframe_destroy (&frame);
    }
}

The main task starts the subscriber and publisher, and then sets itself up as a 
listening proxy. The listener runs as a child thread:

Example 65-3. Espresso Pattern (espresso.c) - main thread

int main (void)
{
    //  Start child threads
    zctx_t *ctx = zctx_new ();
    zthread_fork (ctx, publisher_thread, NULL);
    zthread_fork (ctx, subscriber_thread, NULL);

    void *subscriber = zsocket_new (ctx, ZMQ_XSUB);
    zsocket_connect (subscriber, "tcp://localhost:6000");
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    void *publisher = zsocket_new (ctx, ZMQ_XPUB);
    zsocket_bind (publisher, "tcp://*:6001");
    void *listener = zthread_fork (ctx, listener_thread, NULL);
    zmq_proxy (subscriber, publisher, listener);

    puts (" interrupted");
    //  Tell attached threads to exit
    zctx_destroy (&ctx);
    return 0;
}

Espresso works by creating a listener thread that reads a PAIR socket and prints 
anything it gets. That PAIR socket is one end of a pipe; the other end (another PAIR) 
is the socket we pass to zmq_proxy(). In practice, you’ d filter interesting messages to get 
the essence of what you want to track (hence the name of the pattern).

The subscriber thread subscribes to “ A”  and “ B” , receives five messages, and then 
destroys its socket. When you run the example, the listener prints two subscription 
messages, five data messages, two unsubscribe messages, and then silence:

[002] 0141
[002] 0142
[007] B-91164
[007] B-12979
[007] A-52599
[007] A-06417
[007] A-45770
[002] 0041
[002] 0042

This shows neatly how the publisher socket stops sending data when there are no 
subscribers for it. The publisher thread is still sending messages. The socket just drops 
them silently.

Last Value Caching
If you’ ve used commercial pub-sub systems, you may be used to some features that 

are missing in the fast and cheerful ØMQ pub-sub model. One of these is last value 
caching (LVC). This solves the problem of how a new subscriber catches up when it 
joins the network. The theory is that publishers get notified when a new subscriber 
joins and subscribes to some specific topics. The publisher can then rebroadcast the last 
message for those topics.

I’ ve already explained why publishers don’ t get notified when there are new 
subscribers, because in large pub-sub systems, the volumes of data make it pretty much 
impossible. To make really large-scale pub-sub networks, you need a protocol like PGM 
that exploits an upscale Ethernet switch’ s ability to multicast data to thousands of 
subscribers. Trying to do a TCP unicast from the publisher to each of thousands of 
subscribers just doesn’ t scale. You get weird spikes, unfair distribution (some 
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subscribers getting the message before others), network congestion, and general 
unhappiness.

PGM is a one-way protocol: the publisher sends a message to a multicast address at 
the switch, which then rebroadcasts that to all interested subscribers. The publisher 
never sees when subscribers join or leave: this all happens in the switch, which we don’ t 
really want to start reprogramming.

However, in a lower-volume network with a few dozen subscribers and a limited 
number of topics, we can use TCP and then the XSUB and XPUB sockets do talk to 
each other as we just saw in the Espresso pattern.

Can we make an LVC using ØMQ? The answer is yes, if we make a proxy that sits 
between the publisher and subscribers; an analog for the PGM switch, but one we can 
program ourselves.

I’ ll start by making a publisher and subscriber that highlight the worst case scenario. 
This publisher is pathological. It starts by immediately sending messages to each of a 
thousand topics, and then it sends one update a second to a random topic. A subscriber 
connects, and subscribes to a topic. Without LVC, a subscriber would have to wait an 
average of 500 seconds to get any data. To add some drama, let’ s pretend there’ s an 
escaped convict called Gregor threatening to rip the head off Roger the toy bunny if we 
can’ t fix that 8.3 minutes' delay.

Here’ s the publisher code. Note that it has the command line option to connect to 
some address, but otherwise binds to an endpoint. We’ ll use this later to connect to our 
last value cache:

Example 66. Pathologic Publisher (pathopub.c)

//  Pathological publisher
//  Sends out 1,000 topics and then one random update per second

#include "czmq.h"

int main (int argc, char *argv [])
{
    zctx_t *context = zctx_new ();
    void *publisher = zsocket_new (context, ZMQ_PUB);
    if (argc == 2)
        zsocket_connect (publisher, argv [1]);
    else
        zsocket_bind (publisher, "tcp://*:5556");

    //  Ensure subscriber connection has time to complete
    sleep (1);

    //  Send out all 1,000 topic messages
    int topic_nbr;
    for (topic_nbr = 0; topic_nbr < 1000; topic_nbr++) {
        zstr_sendm (publisher, "%03d", topic_nbr, ZMQ_SNDMORE);
        zstr_send (publisher, "Save Roger");
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    }
    //  Send one random update per second
    srandom ((unsigned) time (NULL));
    while (!zctx_interrupted) {
        sleep (1);
        zstr_sendm (publisher, "%03d", randof (1000), ZMQ_SNDMORE);
        zstr_send (publisher, "Off with his head!");
    }
    zctx_destroy (&context);
    return 0;
}

And here’ s the subscriber:

Example 67. Pathologic Subscriber (pathosub.c)

//  Pathological subscriber
//  Subscribes to one random topic and prints received messages

#include "czmq.h"

int main (int argc, char *argv [])
{
    zctx_t *context = zctx_new ();
    void *subscriber = zsocket_new (context, ZMQ_SUB);
    if (argc == 2)
        zsocket_connect (subscriber, argv [1]);
    else
        zsocket_connect (subscriber, "tcp://localhost:5556");

    srandom ((unsigned) time (NULL));
    char subscription [5];
    sprintf (subscription, "%03d", randof (1000));
    zsocket_set_subscribe (subscriber, subscription);
    
    while (true) {
        char *topic = zstr_recv (subscriber);
        if (!topic)
            break;
        char *data = zstr_recv (subscriber);
        assert (streq (topic, subscription));
        puts (data);
        free (topic);
        free (data);
    }
    zctx_destroy (&context);
    return 0;
}
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Try building and running these: first the subscriber, then the publisher. You’ ll see the 
subscriber reports getting “ Save Roger”  as you’ d expect:

./pathosub &

./pathopub

It’ s when you run a second subscriber that you understand Roger’ s predicament. You 
have to leave it an awful long time before it reports getting any data. So, here’ s our last 
value cache. As I promised, it’ s a proxy that binds to two sockets and then handles 
messages on both:

Example 68. Last Value Caching Proxy (lvcache.c)

//  Last value cache
//  Uses XPUB subscription messages to re-send data

#include "czmq.h"

int main (void)
{
    zctx_t *context = zctx_new ();
    void *frontend = zsocket_new (context, ZMQ_SUB);
    zsocket_bind (frontend, "tcp://*:5557");
    void *backend = zsocket_new (context, ZMQ_XPUB);
    zsocket_bind (backend, "tcp://*:5558");

    //  Subscribe to every single topic from publisher
    zsocket_set_subscribe (frontend, "");

    //  Store last instance of each topic in a cache
    zhash_t *cache = zhash_new ();

We route topic updates from frontend to backend, and we handle subscriptions by 
sending whatever we cached, if anything:

Example 68-1. Last Value Caching Proxy (lvcache.c) - main poll loop

       zmq_pollitem_t items [] = {
            { frontend, 0, ZMQ_POLLIN, 0 },
            { backend,  0, ZMQ_POLLIN, 0 }
        };
        if (zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC) == -1)
            break;              //  Interrupted

        //  Any new topic data we cache and then forward
        if (items [0].revents & ZMQ_POLLIN) {
            char *topic = zstr_recv (frontend);
            char *current = zstr_recv (frontend);
            if (!topic)
                break;
            char *previous = zhash_lookup (cache, topic);
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            if (previous) {
                zhash_delete (cache, topic);
                free (previous);
            }
            zhash_insert (cache, topic, current);
            zstr_sendm (backend, topic);
            zstr_send (backend, current);
            free (topic);
        }

When we get a new subscription, we pull data from the cache:

Example 68-2. Last Value Caching Proxy (lvcache.c) - handle subscriptions

           zframe_t *frame = zframe_recv (backend);
            if (!frame)
                break;
            //  Event is one byte 0=unsub or 1=sub, followed by topic
            byte *event = zframe_data (frame);
            if (event [0] == 1) {
                char *topic = zmalloc (zframe_size (frame));
                memcpy (topic, event + 1, zframe_size (frame) - 1);
                printf ("Sending cached topic %s\n", topic);
                char *previous = zhash_lookup (cache, topic);
                if (previous) {
                    zstr_sendm (backend, topic);
                    zstr_send (backend, previous);
                }
                free (topic);
            }
            zframe_destroy (&frame);
        }
    }
    zctx_destroy (&context);
    zhash_destroy (&cache);
    return 0;
}

Now, run the proxy, and then the publisher:

./lvcache &

./pathopub tcp://localhost:5557

And now run as many instances of the subscriber as you want to try, each time 
connecting to the proxy on port 5558:

./pathosub tcp://localhost:5558

Each subscriber happily reports “ Save Roger” , and Gregor the Escaped Convict slinks 
back to his seat for dinner and a nice cup of hot milk, which is all he really wanted in 
the first place.
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One note: by default, the XPUB socket does not report duplicate subscriptions, which 
is what you want when you’ re naively connecting an XPUB to an XSUB. Our example 
sneakily gets around this by using random topics so the chance of it not working is one 
in a million. In a real LVC proxy, you’ ll want to use the ZMQ_XPUB_VERBOSE option that we 
implement in Code Connected Volume 2 as an exercise.

Slow Subscriber Detection (Suicidal Snail Pattern)
A common problem you will hit when using the pub-sub pattern in real life is the 

slow subscriber. In an ideal world, we stream data at full speed from publishers to 
subscribers. In reality, subscriber applications are often written in interpreted 
languages, or just do a lot of work, or are just badly written, to the extent that they 
can’ t keep up with publishers.

How do we handle a slow subscriber? The ideal fix is to make the subscriber faster, 
but that might take work and time. Some of the classic strategies for handling a slow 
subscriber are:

• Queue messages on the publisher. This is what Gmail does when I don’ t 
read my email for a couple of hours. But in high-volume messaging, pushing 
queues upstream has the thrilling but unprofitable result of making publishers 
run out of memory and crash— especially if there are lots of subscribers and it’ s 
not possible to flush to disk for performance reasons.

• Queue messages on the subscriber. This is much better, and it’ s what 
ØMQ does by default if the network can keep up with things. If anyone’ s going 
to run out of memory and crash, it’ ll be the subscriber rather than the 
publisher, which is fair. This is perfect for “ peaky”  streams where a subscriber 
can’ t keep up for a while, but can catch up when the stream slows down. 
However, it’ s no answer to a subscriber that’ s simply too slow in general.

• Stop queuing new messages after a while. This is what Gmail does when 
my mailbox overflows its precious gigabytes of space. New messages just get 
rejected or dropped. This is a great strategy from the perspective of the 
publisher, and it’ s what ØMQ does when the publisher sets a HWM. However, 
it still doesn’ t help us fix the slow subscriber. Now we just get gaps in our 
message stream.

• Punish slow subscribers with disconnect. This is what Hotmail (remember 
that?) did when I didn’ t log in for two weeks, which is why I was on my 
fifteenth Hotmail account when it hit me that there was perhaps a better way. 
It’ s a nice brutal strategy that forces subscribers to sit up and pay attention 
and would be ideal, but ØMQ doesn’ t do this, and there’ s no way to layer it on 
top because subscribers are invisible to publisher applications.

None of these classic strategies fit, so we need to get creative. Rather than disconnect 
the publisher, let’ s convince the subscriber to kill itself. This is the Suicidal Snail 
pattern. When a subscriber detects that it’ s running too slowly (where “ too slowly”  is 
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presumably a configured option that really means “ so slowly that if you ever get here, 
shout really loudly because I need to know, so I can fix this!” ), it croaks and dies.

How can a subscriber detect this? One way would be to sequence messages (number 
them in order) and use a HWM at the publisher. Now, if the subscriber detects a gap 
(i.e., the numbering isn’ t consecutive), it knows something is wrong. We then tune the 
HWM to the “ croak and die if you hit this”  level.

There are two problems with this solution. One, if we have many publishers, how do 
we sequence messages? The solution is to give each publisher a unique ID and add that 
to the sequencing. Second, if subscribers use ZMQ_SUBSCRIBE filters, they will get gaps by 
definition. Our precious sequencing will be for nothing.

Some use cases won’ t use filters, and sequencing will work for them. But a more 
general solution is that the publisher timestamps each message. When a subscriber gets 
a message, it checks the time, and if the difference is more than, say, one second, it does 
the “ croak and die”  thing, possibly firing off a squawk to some operator console first.

The Suicide Snail pattern works especially when subscribers have their own clients 
and service-level agreements and need to guarantee certain maximum latencies. 
Aborting a subscriber may not seem like a constructive way to guarantee a maximum 
latency, but it’ s the assertion model. Abort today, and the problem will be fixed. Allow 
late data to flow downstream, and the problem may cause wider damage and take 
longer to appear on the radar.

Here is a minimal example of a Suicidal Snail:

Example 69. Suicidal Snail (suisnail.c)

//  Suicidal Snail

#include "czmq.h"

//  This is our subscriber. It connects to the publisher and subscribes
//  to everything. It sleeps for a short time between messages to
//  simulate doing too much work. If a message is more than one second
//  late, it croaks.

#define MAX_ALLOWED_DELAY   1000    //  msecs

static void
subscriber (void *args, zctx_t *ctx, void *pipe)
{
    //  Subscribe to everything
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5556");

    //  Get and process messages
    while (true) {
        char *string = zstr_recv (subscriber);
        printf("%s\n", string);
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        int64_t clock;
        int terms = sscanf (string, "%" PRId64, &clock);
        assert (terms == 1);
        free (string);

        //  Suicide snail logic
        if (zclock_time () - clock > MAX_ALLOWED_DELAY) {
            fprintf (stderr, "E: subscriber cannot keep up, aborting\n");
            break;
        }
        //  Work for 1 msec plus some random additional time
        zclock_sleep (1 + randof (2));
    }
    zstr_send (pipe, "gone and died");
}

This is our publisher task. It publishes a time-stamped message to its PUB socket 
every millisecond:

Example 69-1. Suicidal Snail (suisnail.c) - publisher task

static void
publisher (void *args, zctx_t *ctx, void *pipe)
{
    //  Prepare publisher
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5556");

    while (true) {
        //  Send current clock (msecs) to subscribers
        char string [20];
        sprintf (string, "%" PRId64, zclock_time ());
        zstr_send (publisher, string);
        char *signal = zstr_recv_nowait (pipe);
        if (signal) {
            free (signal);
            break;
        }
        zclock_sleep (1);            //  1msec wait
    }
}

The main task simply starts a client and a server, and then waits for the client to 
signal that it has died:

Example 69-2. Suicidal Snail (suisnail.c) - main task

int main (void)
{
    zctx_t *ctx = zctx_new ();
    void *pubpipe = zthread_fork (ctx, publisher, NULL);
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    void *subpipe = zthread_fork (ctx, subscriber, NULL);
    free (zstr_recv (subpipe));
    zstr_send (pubpipe, "break");
    zclock_sleep (100);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about the Suicidal Snail example:
• The message here consists simply of the current system clock as a number of 

milliseconds. In a realistic application, you’ d have at least a message header 
with the timestamp and a message body with data.

• The example has subscriber and publisher in a single process as two threads. In 
reality, they would be separate processes. Using threads is just convenient for 
the demonstration.

High-Speed Subscribers (Black Box Pattern)
Now lets look at one way to make our subscribers faster. A common use case for pub-

sub is distributing large data streams like market data coming from stock exchanges. A 
typical setup would have a publisher connected to a stock exchange, taking price 
quotes, and sending them out to a number of subscribers. If there are a handful of 
subscribers, we could use TCP. If we have a larger number of subscribers, we’ d probably 
use reliable multicast, i.e., PGM.

Let’ s imagine our feed has an 
average of 100,000 100-byte 
messages a second. That’ s a typical 
rate, after filtering market data we 
don’ t need to send on to 
subscribers. Now we decide to 
record a day’ s data (maybe 250 GB 
in 8 hours), and then replay it to a 
simulation network, i.e., a small 
group of subscribers. While 100K 
messages a second is easy for a 
ØMQ application, we want to 
replay it much faster.

So we set up our architecture 
with a bunch of boxes— one for the 
publisher and one for each 
subscriber. These are well-specified 
boxes— eight cores, twelve for the 
publisher.
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And as we pump data into our subscribers, we notice two things:
1. When we do even the slightest amount of work with a message, it slows down 

our subscriber to the point where it can’ t catch up with the publisher again.
2. We’ re hitting a ceiling, at both publisher and subscriber, to around 6M 

messages a second, even after careful optimization and TCP tuning.
The first thing we have to do is break our subscriber into a multithreaded design so 

that we can do work with messages in one set of threads, while reading messages in 
another. Typically, we don’ t want to process every message the same way. Rather, the 
subscriber will filter some messages, perhaps by prefix key. When a message matches 
some criteria, the subscriber will call a worker to deal with it. In ØMQ terms, this 
means sending the message to a worker thread.

So the subscriber looks something like a queue device. We could use various sockets 
to connect the subscriber and workers. If we assume one-way traffic and workers that 
are all identical, we can use PUSH and PULL and delegate all the routing work to 
ØMQ (see figure 56). This is the simplest and fastest approach.

The subscriber talks to the publisher over TCP or PGM. The subscriber talks to its 
workers, which are all in the same process, over inproc://.

Now to break that ceiling. The 
subscriber thread hits 100% of 
CPU and because it is one thread, 
it cannot use more than one core. 
A single thread will always hit a 
ceiling, be it at 2M, 6M, or more 
messages per second. We want to 
split the work across multiple 
threads that can run in parallel.

The approach used by many 
high-performance products, which 
works here, is sharding. Using 
sharding, we split the work into 
parallel and independent streams, 
such as half of the topic keys in one 
stream, and half in another. We 
could use many streams, but 
performance won’ t scale unless we 
have free cores. So let’ s see how to 
shard into two streams (see figure 
57).

With two streams, working at full speed, we would configure ØMQ as follows:
• Two I/O threads, rather than one.
• Two network interfaces (NIC), one per subscriber.
• Each I/O thread bound to a specific NIC.
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• Two subscriber threads, bound to specific cores.
• Two SUB sockets, one per subscriber thread.
• The remaining cores assigned to worker threads.
• Worker threads connected to both subscriber PUSH sockets.

Ideally, we want to match the number of fully-loaded threads in our architecture with 
the number of cores. When threads start to fight for cores and CPU cycles, the cost of 
adding more threads outweighs the benefits. There would be no benefit, for example, in 
creating more I/O threads.

Reliable Pub-Sub (Clone Pattern)
As a larger worked example, we’ ll take the problem of making a reliable pub-sub 

architecture. We’ ll develop this in stages. The goal is to allow a set of applications to 
share some common state. Here are our technical challenges:

• We have a large set of client applications, say thousands or tens of thousands.
• They will join and leave the network arbitrarily.
• These applications must share a single eventually-consistent state.
• Any application can update the state at any point in time.

Let’ s say that updates are reasonably low-volume. We don’ t have real time goals. The 
whole state can fit into memory. Some plausible use cases are:

• A configuration that is shared by a group of cloud servers.
• Some game state shared by a group of players.
• Exchange rate data that is updated in real time and available to applications.

Centralized Versus Decentralized
A first decision we have to make is whether we work with a central server or not. It 

makes a big difference in the resulting design. The trade-offs are these:
• Conceptually, a central server is simpler to understand because networks are not 

naturally symmetrical. With a central server, we avoid all questions of discovery, 
bind versus connect, and so on.

• Generally, a fully-distributed architecture is technically more challenging but 
ends up with simpler protocols. That is, each node must act as server and client 
in the right way, which is delicate. When done right, the results are simpler 
than using a central server. We saw this in the Freelance pattern in “ Reliable 
Request-Reply Patterns” .

• A central server will become a bottleneck in high-volume use cases. If handling 
scale in the order of millions of messages a second is required, we should aim for 
decentralization right away.
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• Ironically, a centralized architecture will scale to more nodes more easily than a 
decentralized one. That is, it’ s easier to connect 10,000 nodes to one server than 
to each other.

So, for the Clone pattern we’ ll work with a server that publishes state updates and a 
set of clients that represent applications.

Representing State as Key-Value Pairs
We’ ll develop Clone in stages, solving one problem at a time. First, let’ s look at how 

to update a shared state across a set of clients. We need to decide how to represent our 
state, as well as the updates. The simplest plausible format is a key-value store, where 
one key-value pair represents an atomic unit of change in the shared state.

We have a simple pub-sub example in “ Basics” , the weather server and client. Let’ s 
change the server to send key-value pairs, and the client to store these in a hash table. 
This lets us send updates from one server to a set of clients using the classic pub-sub 
model (see figure 58).

An update is either a new key-value pair, a modified value for an existing key, or a 
deleted key. We can assume for now that the whole store fits in memory and that 
applications access it by key, such as by using a hash table or dictionary. For larger 
stores and some kind of persistence we’ d probably store the state in a database, but 
that’ s not relevant here.

This is the server:

Example 70. Clone server, Model One (clonesrv1.c)

//  Clone server Model One

#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and publisher socket
    zctx_t *ctx = zctx_new ();
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5556");
    zclock_sleep (200);

    zhash_t *kvmap = zhash_new ();
    int64_t sequence = 0;
    srandom ((unsigned) time (NULL));

    while (!zctx_interrupted) {
        //  Distribute as key-value message
        kvmsg_t *kvmsg = kvmsg_new (++sequence);
        kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
        kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
        kvmsg_send     (kvmsg, publisher);
        kvmsg_store   (&kvmsg, kvmap);
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    }
    printf (" Interrupted\n%d messages out\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

And here is the client:

Example 71. Clone client, Model One (clonecli1.c)

//  Clone client Model One

#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and updates socket
    zctx_t *ctx = zctx_new ();
    void *updates = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (updates, "");
    zsocket_connect (updates, "tcp://localhost:5556");

    zhash_t *kvmap = zhash_new ();
    int64_t sequence = 0;

    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (updates);
        if (!kvmsg)
            break;          //  Interrupted
        kvmsg_store (&kvmsg, kvmap);
        sequence++;
    }
    printf (" Interrupted\n%d messages in\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}
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Here are some things to note about this 
first model:

• All the hard work is done in a kvmsg 
class. This class works with key-value 
message objects, which are multipart 
ØMQ messages structured as three 
frames: a key (a ØMQ string), a 
sequence number (64-bit value, in 
network byte order), and a binary 
body (holds everything else).

• The server generates messages with a 
randomized 4-digit key, which lets us 
simulate a large but not enormous 
hash table (10K entries).

• We don’ t implement deletions in this version: all messages are inserts or 
updates.

• The server does a 200 millisecond pause after binding its socket. This is to 
prevent slow joiner syndrome, where the subscriber loses messages as it connects 
to the server’ s socket. We’ ll remove that in later versions of the Clone code.

• We’ ll use the terms publisher and subscriber in the code to refer to sockets. This 
will help later when we have multiple sockets doing different things.

Here is the kvmsg class, in the simplest form that works for now:

Example 72. Key-value message class (kvsimple.c)

//  kvsimple class - key-value message class for example applications

#include "kvsimple.h"
#include "zlist.h"

//  Keys are short strings
#define KVMSG_KEY_MAX   255

//  Message is formatted on wire as 4 frames:
//  frame 0: key (0MQ string)
//  frame 1: sequence (8 bytes, network order)
//  frame 2: body (blob)
#define FRAME_KEY       0
#define FRAME_SEQ       1
#define FRAME_BODY      2
#define KVMSG_FRAMES    3

//  The kvmsg class holds a single key-value message consisting of a
//  list of 0 or more frames:

struct _kvmsg {
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    //  Presence indicators for each frame
    int present [KVMSG_FRAMES];
    //  Corresponding 0MQ message frames, if any
    zmq_msg_t frame [KVMSG_FRAMES];
    //  Key, copied into safe C string
    char key [KVMSG_KEY_MAX + 1];
};

Here are the constructor and destructor for the class:

Example 72-1. Key-value message class (kvsimple.c) - constructor and destructor

//  Constructor, takes a sequence number for the new kvmsg instance:
kvmsg_t *
kvmsg_new (int64_t sequence)
{
    kvmsg_t
        *self;

    self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
    kvmsg_set_sequence (self, sequence);
    return self;
}

//  zhash_free_fn callback helper that does the low level destruction:
void
kvmsg_free (void *ptr)
{
    if (ptr) {
        kvmsg_t *self = (kvmsg_t *) ptr;
        //  Destroy message frames if any
        int frame_nbr;
        for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
            if (self->present [frame_nbr])
                zmq_msg_close (&self->frame [frame_nbr]);

        //  Free object itself
        free (self);
    }
}

//  Destructor
void
kvmsg_destroy (kvmsg_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_free (*self_p);
        *self_p = NULL;
    }
}
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This method reads a key-value message from socket, and returns a new kvmsg 
instance:

Example 72-2. Key-value message class (kvsimple.c) - recv method

kvmsg_t *
kvmsg_recv (void *socket)
{
    assert (socket);
    kvmsg_t *self = kvmsg_new (0);

    //  Read all frames off the wire, reject if bogus
    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        if (self->present [frame_nbr])
            zmq_msg_close (&self->frame [frame_nbr]);
        zmq_msg_init (&self->frame [frame_nbr]);
        self->present [frame_nbr] = 1;
        if (zmq_msg_recv (&self->frame [frame_nbr], socket, 0) == -1) {
            kvmsg_destroy (&self);
            break;
        }
        //  Verify multipart framing
        int rcvmore = (frame_nbr < KVMSG_FRAMES - 1)? 1: 0;
        if (zsockopt_rcvmore (socket) != rcvmore) {
            kvmsg_destroy (&self);
            break;
        }
    }
    return self;
}

This method sends a multiframe key-value message to a socket:

Example 72-3. Key-value message class (kvsimple.c) - send method

void
kvmsg_send (kvmsg_t *self, void *socket)
{
    assert (self);
    assert (socket);

    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        zmq_msg_t copy;
        zmq_msg_init (&copy);
        if (self->present [frame_nbr])
            zmq_msg_copy (&copy, &self->frame [frame_nbr]);
        zmq_msg_send (&copy, socket, 
            (frame_nbr < KVMSG_FRAMES - 1)? ZMQ_SNDMORE: 0);
        zmq_msg_close (&copy);
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    }
}

These methods let the caller get and set the message key, as a fixed string and as a 
printf formatted string:

Example 72-4. Key-value message class (kvsimple.c) - key methods

char *
kvmsg_key (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_KEY]) {
        if (!*self->key) {
            size_t size = zmq_msg_size (&self->frame [FRAME_KEY]);
            if (size > KVMSG_KEY_MAX)
                size = KVMSG_KEY_MAX;
            memcpy (self->key,
                zmq_msg_data (&self->frame [FRAME_KEY]), size);
            self->key [size] = 0;
        }
        return self->key;
    }
    else
        return NULL;
}

void
kvmsg_set_key (kvmsg_t *self, char *key)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_KEY];
    if (self->present [FRAME_KEY])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, strlen (key));
    memcpy (zmq_msg_data (msg), key, strlen (key));
    self->present [FRAME_KEY] = 1;
}

void
kvmsg_fmt_key (kvmsg_t *self, char *format, ...)
{
    char value [KVMSG_KEY_MAX + 1];
    va_list args;

    assert (self);
    va_start (args, format);
    vsnprintf (value, KVMSG_KEY_MAX, format, args);
    va_end (args);
    kvmsg_set_key (self, value);
}
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These two methods let the caller get and set the message sequence number:

Example 72-5. Key-value message class (kvsimple.c) - sequence methods

int64_t
kvmsg_sequence (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_SEQ]) {
        assert (zmq_msg_size (&self->frame [FRAME_SEQ]) == 8);
        byte *source = zmq_msg_data (&self->frame [FRAME_SEQ]);
        int64_t sequence = ((int64_t) (source [0]) << 56)
                         + ((int64_t) (source [1]) << 48)
                         + ((int64_t) (source [2]) << 40)
                         + ((int64_t) (source [3]) << 32)
                         + ((int64_t) (source [4]) << 24)
                         + ((int64_t) (source [5]) << 16)
                         + ((int64_t) (source [6]) << 8)
                         +  (int64_t) (source [7]);
        return sequence;
    }
    else
        return 0;
}

void
kvmsg_set_sequence (kvmsg_t *self, int64_t sequence)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_SEQ];
    if (self->present [FRAME_SEQ])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, 8);

    byte *source = zmq_msg_data (msg);
    source [0] = (byte) ((sequence >> 56) & 255);
    source [1] = (byte) ((sequence >> 48) & 255);
    source [2] = (byte) ((sequence >> 40) & 255);
    source [3] = (byte) ((sequence >> 32) & 255);
    source [4] = (byte) ((sequence >> 24) & 255);
    source [5] = (byte) ((sequence >> 16) & 255);
    source [6] = (byte) ((sequence >> 8)  & 255);
    source [7] = (byte) ((sequence)       & 255);

    self->present [FRAME_SEQ] = 1;
}
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These methods let the caller get and set the message body as a fixed string and as a 
printf formatted string:

Example 72-6. Key-value message class (kvsimple.c) - message body methods

byte *
kvmsg_body (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_BODY])
        return (byte *) zmq_msg_data (&self->frame [FRAME_BODY]);
    else
        return NULL;
}

void
kvmsg_set_body (kvmsg_t *self, byte *body, size_t size)
{
    assert (self);
    zmq_msg_t *msg = &self->frame [FRAME_BODY];
    if (self->present [FRAME_BODY])
        zmq_msg_close (msg);
    self->present [FRAME_BODY] = 1;
    zmq_msg_init_size (msg, size);
    memcpy (zmq_msg_data (msg), body, size);
}

void
kvmsg_fmt_body (kvmsg_t *self, char *format, ...)
{
    char value [255 + 1];
    va_list args;

    assert (self);
    va_start (args, format);
    vsnprintf (value, 255, format, args);
    va_end (args);
    kvmsg_set_body (self, (byte *) value, strlen (value));
}

This method returns the body size of the most recently read message, if any exists:

Example 72-7. Key-value message class (kvsimple.c) - size method

size_t
kvmsg_size (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_BODY])
        return zmq_msg_size (&self->frame [FRAME_BODY]);
    else
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        return 0;
}

This method stores the key-value message into a hash map, unless the key and value 
are both null. It nullifies the kvmsg reference so that the object is owned by the hash 
map, not the caller:

Example 72-8. Key-value message class (kvsimple.c) - store method

void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_t *self = *self_p;
        assert (self);
        if (self->present [FRAME_KEY]
        &&  self->present [FRAME_BODY]) {
            zhash_update (hash, kvmsg_key (self), self);
            zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
        }
        *self_p = NULL;
    }
}

This method prints the key-value message to stderr for debugging and tracing:

Example 72-9. Key-value message class (kvsimple.c) - dump method

void
kvmsg_dump (kvmsg_t *self)
{
    if (self) {
        if (!self) {
            fprintf (stderr, "NULL");
            return;
        }
        size_t size = kvmsg_size (self);
        byte  *body = kvmsg_body (self);
        fprintf (stderr, "[seq:%" PRId64 "]", kvmsg_sequence (self));
        fprintf (stderr, "[key:%s]", kvmsg_key (self));
        fprintf (stderr, "[size:%zd] ", size);
        int char_nbr;
        for (char_nbr = 0; char_nbr < size; char_nbr++)
            fprintf (stderr, "%02X", body [char_nbr]);
        fprintf (stderr, "\n");
    }
    else
        fprintf (stderr, "NULL message\n");
}
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It’ s good practice to have a self-test method that tests the class; this also shows how 
it’ s used in applications:

Example 72-10. Key-value message class (kvsimple.c) - test method

int
kvmsg_test (int verbose)
{
    kvmsg_t
        *kvmsg;

    printf (" * kvmsg: ");

    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *output = zsocket_new (ctx, ZMQ_DEALER);
    int rc = zmq_bind (output, "ipc://kvmsg_selftest.ipc");
    assert (rc == 0);
    void *input = zsocket_new (ctx, ZMQ_DEALER);
    rc = zmq_connect (input, "ipc://kvmsg_selftest.ipc");
    assert (rc == 0);

    zhash_t *kvmap = zhash_new ();

    //  Test send and receive of simple message
    kvmsg = kvmsg_new (1);
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_store (&kvmsg, kvmap);

    kvmsg = kvmsg_recv (input);
    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    kvmsg_store (&kvmsg, kvmap);

    //  Shutdown and destroy all objects
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);

    printf ("OK\n");
    return 0;
}

Later, we’ ll make a more sophisticated kvmsg class that will work in in real 
applications.
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Both the server and client maintain hash tables, but this first model only works 
properly if we start all clients before the server and the clients never crash. That’ s very 
artificial.

Getting an Out-of-Band Snapshot
So now we have our second problem: how to deal with late-joining clients or clients 

that crash and then restart.
In order to allow a late (or recovering) client to catch up with a server, it has to get a 

snapshot of the server’ s state. Just as we’ ve reduced “ message”  to mean “ a sequenced 
key-value pair” , we can reduce “ state”  to mean “ a hash table” . To get the server state, 
a client opens a DEALER socket and asks for it explicitly (see figure 59).

To make this work, we have to solve a problem of timing. Getting a state snapshot 
will take a certain time, possibly fairly long if the snapshot is large. We need to 
correctly apply updates to the snapshot. But the server won’ t know when to start 
sending us updates. One way would be to start subscribing, get a first update, and then 
ask for “ state for update N” . This would require the server storing one snapshot for 
each update, which isn’ t practical.

So we will do the synchronization in the client, as follows:
• The client first subscribes to updates and then makes a state request. This 

guarantees that the state is going to be newer than the oldest update it has.
• The client waits for the server to reply with state, and meanwhile queues all 

updates. It does this simply by not reading them: ØMQ keeps them queued on 
the socket queue.

• When the client receives its state update, it begins once again to read updates. 
However, it discards any updates that are older than the state update. So if the 
state update includes updates up to 200, the client will discard updates up to 
201.

• The client then applies updates to its own state snapshot.
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It’ s a simple model that exploits ØMQ’ s own internal queues. Here’ s the server:

Example 73. Clone server, Model Two (clonesrv2.c)

//  Clone server - Model Two

//  Lets us build this source without creating a library
#include "kvsimple.c"

static int s_send_single (const char *key, void *data, void *args);
static void state_manager (void *args, zctx_t *ctx, void *pipe);

int main (void)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5557");

    int64_t sequence = 0;
    srandom ((unsigned) time (NULL));

    //  Start state manager and wait for synchronization signal
    void *updates = zthread_fork (ctx, state_manager, NULL);
    free (zstr_recv (updates));

    while (!zctx_interrupted) {
        //  Distribute as key-value message
        kvmsg_t *kvmsg = kvmsg_new (++sequence);
        kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
        kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
        kvmsg_send     (kvmsg, publisher);
        kvmsg_send     (kvmsg, updates);
        kvmsg_destroy (&kvmsg);
    }
    printf (" Interrupted\n%d messages out\n", (int) sequence);
    zctx_destroy (&ctx);
    return 0;
}

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
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    kvroute_t *kvroute = (kvroute_t *) args;
    //  Send identity of recipient first
    zframe_send (&kvroute->identity,
        kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    kvmsg_send (kvmsg, kvroute->socket);
    return 0;
}

The state manager task maintains the state and handles requests from clients for 
snapshots:

Example 73-1. Clone server, Model Two (clonesrv2.c) - state manager

static void
state_manager (void *args, zctx_t *ctx, void *pipe)
{
    zhash_t *kvmap = zhash_new ();

    zstr_send (pipe, "READY");
    void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (snapshot, "tcp://*:5556");

    zmq_pollitem_t items [] = {
        { pipe, 0, ZMQ_POLLIN, 0 },
        { snapshot, 0, ZMQ_POLLIN, 0 }
    };
    int64_t sequence = 0;       //  Current snapshot version number
    while (!zctx_interrupted) {
        int rc = zmq_poll (items, 2, -1);
        if (rc == -1 && errno == ETERM)
            break;              //  Context has been shut down

        //  Apply state update from main thread
        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (pipe);
            if (!kvmsg)
                break;          //  Interrupted
            sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, kvmap);
        }
        //  Execute state snapshot request
        if (items [1].revents & ZMQ_POLLIN) {
            zframe_t *identity = zframe_recv (snapshot);
            if (!identity)
                break;          //  Interrupted

            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            if (streq (request, "ICANHAZ?"))
                free (request);
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            else {
                printf ("E: bad request, aborting\n");
                break;
            }
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity };

            //  For each entry in kvmap, send kvmsg to client
            zhash_foreach (kvmap, s_send_single, &routing);

            //  Now send END message with sequence number
            printf ("Sending state shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) "", 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
        }
    }
    zhash_destroy (&kvmap);
}

And here is the client:

Example 74. Clone client, Model Two (clonecli2.c)

//  Clone client - Model Two

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and subscriber
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (snapshot, "tcp://localhost:5556");
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5557");

    zhash_t *kvmap = zhash_new ();

    //  Get state snapshot
    int64_t sequence = 0;
    zstr_send (snapshot, "ICANHAZ?");
    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (snapshot);
        if (!kvmsg)
            break;          //  Interrupted
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        if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
            sequence = kvmsg_sequence (kvmsg);
            printf ("Received snapshot=%d\n", (int) sequence);
            kvmsg_destroy (&kvmsg);
            break;          //  Done
        }
        kvmsg_store (&kvmsg, kvmap);
    }
    //  Now apply pending updates, discard out-of-sequence messages
    while (!zctx_interrupted) {
        kvmsg_t *kvmsg = kvmsg_recv (subscriber);
        if (!kvmsg)
            break;          //  Interrupted
        if (kvmsg_sequence (kvmsg) > sequence) {
            sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, kvmap);
        }
        else
            kvmsg_destroy (&kvmsg);
    }
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about these two programs:
• The server uses two tasks. One thread produces the updates (randomly) and 

sends these to the main PUB socket, while the other thread handles state 
requests on the ROUTER socket. The two communicate across PAIR sockets 
over an inproc:// connection.

• The client is really simple. In C, it consists of about fifty lines of code. A lot of 
the heavy lifting is done in the kvmsg class. Even so, the basic Clone pattern is 
easier to implement than it seemed at first.

• We don’ t use anything fancy for serializing the state. The hash table holds a set 
of kvmsg objects, and the server sends these, as a batch of messages, to the client 
requesting state. If multiple clients request state at once, each will get a 
different snapshot.

• We assume that the client has exactly one server to talk to. The server must be 
running; we do not try to solve the question of what happens if the server 
crashes.

Right now, these two programs don’ t do anything real, but they correctly synchronize 
state. It’ s a neat example of how to mix different patterns: PAIR-PAIR, PUB-SUB, and 
ROUTER-DEALER.
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Republishing Updates from Clients
In our second model, changes to the key-value store came from the server itself. This 

is a centralized model that is useful, for example if we have a central configuration file 
we want to distribute, with local caching on each node. A more interesting model takes 
updates from clients, not the server. The server thus becomes a stateless broker. This 
gives us some benefits:

• We’ re less worried about the reliability of the server. If it crashes, we can start a 
new instance and feed it new values.

• We can use the key-value store to share knowledge between active peers.
To send updates from clients back to the server, we could use a variety of socket 

patterns. The simplest plausible solution is a PUSH-PULL combination (see figure 60).
Why don’ t we allow clients to publish updates directly to each other? While this 

would reduce latency, it would remove the guarantee of consistency. You can’ t get 
consistent shared state if you allow the order of updates to change depending on who 
receives them. Say we have two clients, changing different keys. This will work fine. But 
if the two clients try to change the same key at roughly the same time, they’ ll end up 
with different notions of its value.

There are a few strategies for obtaining consistency when changes happen in multiple 
places at once. We’ ll use the approach of centralizing all change. No matter the precise 
timing of the changes that clients make, they are all pushed through the server, which 
enforces a single sequence according to the order in which it gets updates.
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We’ ll now generate state updates in the client. Here’ s the server:

Example 75. Clone server, Model Three (clonesrv3.c)

//  Clone server - Model Three

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    //  Send identity of recipient first
    zframe_send (&kvroute->identity,
        kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    kvmsg_send (kvmsg, kvroute->socket);
    return 0;
}

int main (void)
{
    //  Prepare our context and sockets
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_ROUTER);
    zsocket_bind (snapshot, "tcp://*:5556");
    void *publisher = zsocket_new (ctx, ZMQ_PUB);
    zsocket_bind (publisher, "tcp://*:5557");
    void *collector = zsocket_new (ctx, ZMQ_PULL);
    zsocket_bind (collector, "tcp://*:5558");

The body of the main task collects updates from clients and publishes them back out 
to clients:

Example 75-1. Clone server, Model Three (clonesrv3.c) - body of main task

   int64_t sequence = 0;
    zhash_t *kvmap = zhash_new ();

    zmq_pollitem_t items [] = {
        { collector, 0, ZMQ_POLLIN, 0 },
        { snapshot, 0, ZMQ_POLLIN, 0 }
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    };
    while (!zctx_interrupted) {
        int rc = zmq_poll (items, 2, 1000 * ZMQ_POLL_MSEC);

        //  Apply state update sent from client
        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (collector);
            if (!kvmsg)
                break;          //  Interrupted
            kvmsg_set_sequence (kvmsg, ++sequence);
            kvmsg_send (kvmsg, publisher);
            kvmsg_store (&kvmsg, kvmap);
            printf ("I: publishing update %5d\n", (int) sequence);
        }
        //  Execute state snapshot request
        if (items [1].revents & ZMQ_POLLIN) {
            zframe_t *identity = zframe_recv (snapshot);
            if (!identity)
                break;          //  Interrupted

            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            if (streq (request, "ICANHAZ?"))
                free (request);
            else {
                printf ("E: bad request, aborting\n");
                break;
            }
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity };

            //  For each entry in kvmap, send kvmsg to client
            zhash_foreach (kvmap, s_send_single, &routing);

            //  Now send END message with sequence number
            printf ("I: sending shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) "", 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
        }
    }
    printf (" Interrupted\n%d messages handled\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);

    return 0;
}
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And here is the client:

Example 76. Clone client, Model Three (clonecli3.c)

//  Clone client - Model Three

//  Lets us build this source without creating a library
#include "kvsimple.c"

int main (void)
{
    //  Prepare our context and subscriber
    zctx_t *ctx = zctx_new ();
    void *snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (snapshot, "tcp://localhost:5556");
    void *subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsockopt_set_subscribe (subscriber, "");
    zsocket_connect (subscriber, "tcp://localhost:5557");
    void *publisher = zsocket_new (ctx, ZMQ_PUSH);
    zsocket_connect (publisher, "tcp://localhost:5558");

    zhash_t *kvmap = zhash_new ();
    srandom ((unsigned) time (NULL));

We first request a state snapshot:

Example 76-1. Clone client, Model Three (clonecli3.c) - getting a state snapshot

   zstr_send (snapshot, "ICANHAZ?");
    while (true) {
        kvmsg_t *kvmsg = kvmsg_recv (snapshot);
        if (!kvmsg)
            break;          //  Interrupted
        if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
            sequence = kvmsg_sequence (kvmsg);
            printf ("I: received snapshot=%d\n", (int) sequence);
            kvmsg_destroy (&kvmsg);
            break;          //  Done
        }
        kvmsg_store (&kvmsg, kvmap);
    }

Now we wait for updates from the server and every so often, we send a random key-
value update to the server:

Example 76-2. Clone client, Model Three (clonecli3.c) - processing state updates

   int64_t alarm = zclock_time () + 1000;
    while (!zctx_interrupted) {
        zmq_pollitem_t items [] = { { subscriber, 0, ZMQ_POLLIN, 0 } };
        int tickless = (int) ((alarm - zclock_time ()));
        if (tickless < 0)
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            tickless = 0;
        int rc = zmq_poll (items, 1, tickless * ZMQ_POLL_MSEC);
        if (rc == -1)
            break;              //  Context has been shut down

        if (items [0].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (subscriber);
            if (!kvmsg)
                break;          //  Interrupted

            //  Discard out-of-sequence kvmsgs, incl. heartbeats
            if (kvmsg_sequence (kvmsg) > sequence) {
                sequence = kvmsg_sequence (kvmsg);
                kvmsg_store (&kvmsg, kvmap);
                printf ("I: received update=%d\n", (int) sequence);
            }
            else
                kvmsg_destroy (&kvmsg);
        }
        //  If we timed out, generate a random kvmsg
        if (zclock_time () >= alarm) {
            kvmsg_t *kvmsg = kvmsg_new (0);
            kvmsg_fmt_key  (kvmsg, "%d", randof (10000));
            kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
            kvmsg_send     (kvmsg, publisher);
            kvmsg_destroy (&kvmsg);
            alarm = zclock_time () + 1000;
        }
    }
    printf (" Interrupted\n%d messages in\n", (int) sequence);
    zhash_destroy (&kvmap);
    zctx_destroy (&ctx);
    return 0;
}

Here are some things to note about this third design:
• The server has collapsed to a single task. It manages a PULL socket for 

incoming updates, a ROUTER socket for state requests, and a PUB socket for 
outgoing updates.

• The client uses a simple tickless timer to send a random update to the server 
once a second. In a real implementation, we would drive updates from 
application code.

Working with Subtrees
As we grow the number of clients, the size of our shared store will also grow. It stops 

being reasonable to send everything to every client. This is the classic story with pub-
sub: when you have a very small number of clients, you can send every message to all 
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clients. As you grow the architecture, this becomes inefficient. Clients specialize in 
different areas.

So even when working with a shared store, some clients will want to work only with a 
part of that store, which we call a subtree. The client has to request the subtree when it 
makes a state request, and it must specify the same subtree when it subscribes to 
updates.

There are a couple of common syntaxes for trees. One is the path hierarchy, and 
another is the topic tree. These look like this:

• Path hierarchy: /some/list/of/paths
• Topic tree: some.list.of.topics

We’ ll use the path hierarchy, and extend our client and server so that a client can 
work with a single subtree. Once you see how to work with a single subtree you’ ll be 
able to extend this yourself to handle multiple subtrees, if your use case demands it.

Here’ s the server implementing subtrees, a small variation on Model Three:

Example 77. Clone server, Model Four (clonesrv4.c)

//  Clone server - Model Four

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
    char *subtree;          //  Client subtree specification
} kvroute_t;

//  Send one state snapshot key-value pair to a socket
//  Hash item data is our kvmsg object, ready to send
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
    &&  memcmp (kvroute->subtree,
                kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
        //  Send identity of recipient first
        zframe_send (&kvroute->identity,
            kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
        kvmsg_send (kvmsg, kvroute->socket);
    }
    return 0;
}
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//  The main task is identical to clonesrv3 except for where it
//  handles subtrees.
...
            //  Request is in second frame of message
            char *request = zstr_recv (snapshot);
            char *subtree = NULL;
            if (streq (request, "ICANHAZ?")) {
                free (request);
                subtree = zstr_recv (snapshot);
            }
...
            //  Send state snapshot to client
            kvroute_t routing = { snapshot, identity, subtree };
...
            //  Now send END message with sequence number
            printf ("I: sending shapshot=%d\n", (int) sequence);
            zframe_send (&identity, snapshot, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) subtree, 0);
            kvmsg_send     (kvmsg, snapshot);
            kvmsg_destroy (&kvmsg);
            free (subtree);
        }
    }
...

And here is the corresponding client:

Example 78. Clone client, Model Four (clonecli4.c)

//  Clone client - Model Four

//  Lets us build this source without creating a library
#include "kvsimple.c"

//  This client is identical to clonecli3 except for where we
//  handles subtrees.
#define SUBTREE "/client/"
...
    zsocket_connect (subscriber, "tcp://localhost:5557");
    zsockopt_set_subscribe (subscriber, SUBTREE);
...
    //  We first request a state snapshot:
    int64_t sequence = 0;
    zstr_sendm (snapshot, "ICANHAZ?");
    zstr_send  (snapshot, SUBTREE);
...
        //  If we timed out, generate a random kvmsg
        if (zclock_time () >= alarm) {
            kvmsg_t *kvmsg = kvmsg_new (0);
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            kvmsg_fmt_key  (kvmsg, "%s%d", SUBTREE, randof (10000));
            kvmsg_fmt_body (kvmsg, "%d", randof (1000000));
            kvmsg_send     (kvmsg, publisher);
            kvmsg_destroy (&kvmsg);
            alarm = zclock_time () + 1000;
        }
...

Ephemeral Values
An ephemeral value is one that expires automatically unless regularly refreshed. If 

you think of Clone being used for a registration service, then ephemeral values would let 
you do dynamic values. A node joins the network, publishes its address, and refreshes 
this regularly. If the node dies, its address eventually gets removed.

The usual abstraction for ephemeral values is to attach them to a session, and delete 
them when the session ends. In Clone, sessions would be defined by clients, and would 
end if the client died. A simpler alternative is to attach a time to live (TTL) to 
ephemeral values, which the server uses to expire values that haven’ t been refreshed in 
time.

A good design principle that I use whenever possible is to not invent concepts that 
are not absolutely essential. If we have very large numbers of ephemeral values, sessions 
will offer better performance. If we use a handful of ephemeral values, it’ s fine to set a 
TTL on each one. If we use masses of ephemeral values, it’ s more efficient to attach 
them to sessions and expire them in bulk. This isn’ t a problem we face at this stage, 
and may never face, so sessions go out the window.

Now we will implement ephemeral values. First, we need a way to encode the TTL in 
the key-value message. We could add a frame. The problem with using ØMQ frames for 
properties is that each time we want to add a new property, we have to change the 
message structure. It breaks compatibility. So let’ s add a properties frame to the 
message, and write the code to let us get and put property values.

Next, we need a way to say, “ delete this value” . Up until now, servers and clients have 
always blindly inserted or updated new values into their hash table. We’ ll say that if 
the value is empty, that means “ delete this key” .

Here’ s a more complete version of the kvmsg class, which implements the properties 
frame (and adds a UUID frame, which we’ ll need later on). It also handles empty values 
by deleting the key from the hash, if necessary:

Example 79. Key-value message class: full (kvmsg.c)

//  kvmsg class - key-value message class for example applications

#include "kvmsg.h"
#include <uuid/uuid.h>
#include "zlist.h"

//  Keys are short strings
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#define KVMSG_KEY_MAX   255

//  Message is formatted on wire as 4 frames:
//  frame 0: key (0MQ string)
//  frame 1: sequence (8 bytes, network order)
//  frame 2: uuid (blob, 16 bytes)
//  frame 3: properties (0MQ string)
//  frame 4: body (blob)
#define FRAME_KEY       0
#define FRAME_SEQ       1
#define FRAME_UUID      2
#define FRAME_PROPS     3
#define FRAME_BODY      4
#define KVMSG_FRAMES    5

//  Structure of our class
struct _kvmsg {
    //  Presence indicators for each frame
    int present [KVMSG_FRAMES];
    //  Corresponding 0MQ message frames, if any
    zmq_msg_t frame [KVMSG_FRAMES];
    //  Key, copied into safe C string
    char key [KVMSG_KEY_MAX + 1];
    //  List of properties, as name=value strings
    zlist_t *props;
    size_t props_size;
};

These two helpers serialize a list of properties to and from a message frame:

Example 79-1. Key-value message class: full (kvmsg.c) - property encoding

static void
s_encode_props (kvmsg_t *self)
{
    zmq_msg_t *msg = &self->frame [FRAME_PROPS];
    if (self->present [FRAME_PROPS])
        zmq_msg_close (msg);

    zmq_msg_init_size (msg, self->props_size);
    char *prop = zlist_first (self->props);
    char *dest = (char *) zmq_msg_data (msg);
    while (prop) {
        strcpy (dest, prop);
        dest += strlen (prop);
        *dest++ = '\n';
        prop = zlist_next (self->props);
    }
    self->present [FRAME_PROPS] = 1;
}
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static void
s_decode_props (kvmsg_t *self)
{
    zmq_msg_t *msg = &self->frame [FRAME_PROPS];
    self->props_size = 0;
    while (zlist_size (self->props))
        free (zlist_pop (self->props));

    size_t remainder = zmq_msg_size (msg);
    char *prop = (char *) zmq_msg_data (msg);
    char *eoln = memchr (prop, '\n', remainder);
    while (eoln) {
        *eoln = 0;
        zlist_append (self->props, strdup (prop));
        self->props_size += strlen (prop) + 1;
        remainder -= strlen (prop) + 1;
        prop = eoln + 1;
        eoln = memchr (prop, '\n', remainder);
    }
}

Here are the constructor and destructor for the class:

Example 79-2. Key-value message class: full (kvmsg.c) - constructor and 
destructor

//  Constructor, takes a sequence number for the new kvmsg instance:
kvmsg_t *
kvmsg_new (int64_t sequence)
{
    kvmsg_t
        *self;

    self = (kvmsg_t *) zmalloc (sizeof (kvmsg_t));
    self->props = zlist_new ();
    kvmsg_set_sequence (self, sequence);
    return self;
}

//  zhash_free_fn callback helper that does the low level destruction:
void
kvmsg_free (void *ptr)
{
    if (ptr) {
        kvmsg_t *self = (kvmsg_t *) ptr;
        //  Destroy message frames if any
        int frame_nbr;
        for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++)
            if (self->present [frame_nbr])
                zmq_msg_close (&self->frame [frame_nbr]);
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        //  Destroy property list
        while (zlist_size (self->props))
            free (zlist_pop (self->props));
        zlist_destroy (&self->props);

        //  Free object itself
        free (self);
    }
}

//  Destructor
void
kvmsg_destroy (kvmsg_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_free (*self_p);
        *self_p = NULL;
    }
}

This method reads a key-value message from the socket and returns a new kvmsg 
instance:

Example 79-3. Key-value message class: full (kvmsg.c) - recv method

kvmsg_t *
kvmsg_recv (void *socket)
{
    //  This method is almost unchanged from kvsimple
...
    if (self)
        s_decode_props (self);
    return self;
}

//  Send key-value message to socket; any empty frames are sent as such.
void
kvmsg_send (kvmsg_t *self, void *socket)
{
    assert (self);
    assert (socket);

    s_encode_props (self);
    //  The rest of the method is unchanged from kvsimple
...
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This method duplicates a kvmsg instance, returns the new instance:

Example 79-4. Key-value message class: full (kvmsg.c) - dup method

kvmsg_t *
kvmsg_dup (kvmsg_t *self)
{
    kvmsg_t *kvmsg = kvmsg_new (0);
    int frame_nbr;
    for (frame_nbr = 0; frame_nbr < KVMSG_FRAMES; frame_nbr++) {
        if (self->present [frame_nbr]) {
            zmq_msg_t *src = &self->frame [frame_nbr];
            zmq_msg_t *dst = &kvmsg->frame [frame_nbr];
            zmq_msg_init_size (dst, zmq_msg_size (src));
            memcpy (zmq_msg_data (dst),
                    zmq_msg_data (src), zmq_msg_size (src));
            kvmsg->present [frame_nbr] = 1;
        }
    }
    kvmsg->props_size = zlist_size (self->props);
    char *prop = (char *) zlist_first (self->props);
    while (prop) {
        zlist_append (kvmsg->props, strdup (prop));
        prop = (char *) zlist_next (self->props);
    }
    return kvmsg;
}

//  The key, sequence, body, and size methods are the same as in kvsimple.
...

These methods get and set the UUID for the key-value message:

Example 79-5. Key-value message class: full (kvmsg.c) - UUID methods

byte *
kvmsg_uuid (kvmsg_t *self)
{
    assert (self);
    if (self->present [FRAME_UUID]
    &&  zmq_msg_size (&self->frame [FRAME_UUID]) == sizeof (uuid_t))
        return (byte *) zmq_msg_data (&self->frame [FRAME_UUID]);
    else
        return NULL;
}

//  Sets the UUID to a randomly generated value
void
kvmsg_set_uuid (kvmsg_t *self)
{
    assert (self);
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    zmq_msg_t *msg = &self->frame [FRAME_UUID];
    uuid_t uuid;
    uuid_generate (uuid);
    if (self->present [FRAME_UUID])
        zmq_msg_close (msg);
    zmq_msg_init_size (msg, sizeof (uuid));
    memcpy (zmq_msg_data (msg), uuid, sizeof (uuid));
    self->present [FRAME_UUID] = 1;
}

These methods get and set a specified message property:

Example 79-6. Key-value message class: full (kvmsg.c) - property methods

//  Get message property, return "" if no such property is defined.
char *
kvmsg_get_prop (kvmsg_t *self, char *name)
{
    assert (strchr (name, '=') == NULL);
    char *prop = zlist_first (self->props);
    size_t namelen = strlen (name);
    while (prop) {
        if (strlen (prop) > namelen
        &&  memcmp (prop, name, namelen) == 0
        &&  prop [namelen] == '=')
            return prop + namelen + 1;
        prop = zlist_next (self->props);
    }
    return "";
}

//  Set message property. Property name cannot contain '='. Max length of
//  value is 255 chars.
void
kvmsg_set_prop (kvmsg_t *self, char *name, char *format, ...)
{
    assert (strchr (name, '=') == NULL);

    char value [255 + 1];
    va_list args;
    assert (self);
    va_start (args, format);
    vsnprintf (value, 255, format, args);
    va_end (args);

    //  Allocate name=value string
    char *prop = malloc (strlen (name) + strlen (value) + 2);

    //  Remove existing property if any
    sprintf (prop, "%s=", name);
    char *existing = zlist_first (self->props);
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    while (existing) {
        if (memcmp (prop, existing, strlen (prop)) == 0) {
            self->props_size -= strlen (existing) + 1;
            zlist_remove (self->props, existing);
            free (existing);
            break;
        }
        existing = zlist_next (self->props);
    }
    //  Add new name=value property string
    strcat (prop, value);
    zlist_append (self->props, prop);
    self->props_size += strlen (prop) + 1;
}

This method stores the key-value message into a hash map, unless the key and value 
are both null. It nullifies the kvmsg reference so that the object is owned by the hash 
map, not the caller:

Example 79-7. Key-value message class: full (kvmsg.c) - store method

void
kvmsg_store (kvmsg_t **self_p, zhash_t *hash)
{
    assert (self_p);
    if (*self_p) {
        kvmsg_t *self = *self_p;
        assert (self);
        if (kvmsg_size (self)) {
            if (self->present [FRAME_KEY]
            &&  self->present [FRAME_BODY]) {
                zhash_update (hash, kvmsg_key (self), self);
                zhash_freefn (hash, kvmsg_key (self), kvmsg_free);
            }
        }
        else
            zhash_delete (hash, kvmsg_key (self));

        *self_p = NULL;
    }
}

This method extends the kvsimple implementation with support for message 
properties:

Example 79-8. Key-value message class: full (kvmsg.c) - dump method

void
kvmsg_dump (kvmsg_t *self)
{
...
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        fprintf (stderr, "[size:%zd] ", size);
        if (zlist_size (self->props)) {
            fprintf (stderr, "[");
            char *prop = zlist_first (self->props);
            while (prop) {
                fprintf (stderr, "%s;", prop);
                prop = zlist_next (self->props);
            }
            fprintf (stderr, "]");
        }
...

This method is the same as in kvsimple with added support for the uuid and property 
features of kvmsg:

Example 79-9. Key-value message class: full (kvmsg.c) - test method

int
kvmsg_test (int verbose)
{
...
    //  Test send and receive of simple message
    kvmsg = kvmsg_new (1);
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_uuid (kvmsg);
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_store (&kvmsg, kvmap);

    kvmsg = kvmsg_recv (input);
    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    kvmsg_store (&kvmsg, kvmap);

    //  Test send and receive of message with properties
    kvmsg = kvmsg_new (2);
    kvmsg_set_prop (kvmsg, "prop1", "value1");
    kvmsg_set_prop (kvmsg, "prop2", "value1");
    kvmsg_set_prop (kvmsg, "prop2", "value2");
    kvmsg_set_key  (kvmsg, "key");
    kvmsg_set_uuid (kvmsg);
    kvmsg_set_body (kvmsg, (byte *) "body", 4);
    assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
    if (verbose)
        kvmsg_dump (kvmsg);
    kvmsg_send (kvmsg, output);
    kvmsg_destroy (&kvmsg);
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    kvmsg = kvmsg_recv (input);
    if (verbose)
        kvmsg_dump (kvmsg);
    assert (streq (kvmsg_key (kvmsg), "key"));
    assert (streq (kvmsg_get_prop (kvmsg, "prop2"), "value2"));
    kvmsg_destroy (&kvmsg);
...

The Model Five client is almost identical to Model Four. It uses the full kvmsg class 
now, and sets a randomized ttl property (measured in seconds) on each message:

kvmsg_set_prop (kvmsg, "ttl", "%d", randof (30));

Using a Reactor
Until now, we have used a poll loop in the server. In this next model of the server, we 

switch to using a reactor. In C, we use CZMQ’ s zloop class. Using a reactor makes the 
code more verbose, but easier to understand and build out because each piece of the 
server is handled by a separate reactor handler.

We use a single thread and pass a server object around to the reactor handlers. We 
could have organized the server as multiple threads, each handling one socket or timer, 
but that works better when threads don’ t have to share data. In this case all work is 
centered around the server’ s hashmap, so one thread is simpler.

There are three reactor handlers:
• One to handle snapshot requests coming on the ROUTER socket;
• One to handle incoming updates from clients, coming on the PULL socket;
• One to expire ephemeral values that have passed their TTL.

Example 80. Clone server, Model Five (clonesrv5.c)

//  Clone server - Model Five

//  Lets us build this source without creating a library
#include "kvmsg.c"

//  zloop reactor handlers
static int s_snapshots (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_collector (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int s_flush_ttl (zloop_t *loop, zmq_pollitem_t *poller, void *args);

//  Our server is defined by these properties
typedef struct {
    zctx_t *ctx;                //  Context wrapper
    zhash_t *kvmap;             //  Key-value store
    zloop_t *loop;              //  zloop reactor
    int port;                   //  Main port we're working on
    int64_t sequence;           //  How many updates we're at
    void *snapshot;             //  Handle snapshot requests



Code Connected Volume 1 - Chapter 5. Advanced Pub-Sub Patterns 281

    void *publisher;            //  Publish updates to clients
    void *collector;            //  Collect updates from clients
} clonesrv_t;

int main (void)
{
    clonesrv_t *self = (clonesrv_t *) zmalloc (sizeof (clonesrv_t));
    self->port = 5556;
    self->ctx = zctx_new ();
    self->kvmap = zhash_new ();
    self->loop = zloop_new ();
    zloop_set_verbose (self->loop, FALSE);

    //  Set up our clone server sockets
    self->snapshot  = zsocket_new (self->ctx, ZMQ_ROUTER);
    zsocket_bind (self->snapshot,  "tcp://*:%d", self->port);
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    zsocket_bind (self->publisher, "tcp://*:%d", self->port + 1);
    self->collector = zsocket_new (self->ctx, ZMQ_PULL);
    zsocket_bind (self->collector, "tcp://*:%d", self->port + 2);

    //  Register our handlers with reactor
    zmq_pollitem_t poller = { 0, 0, ZMQ_POLLIN };
    poller.socket = self->snapshot;
    zloop_poller (self->loop, &poller, s_snapshots, self);
    poller.socket = self->collector;
    zloop_poller (self->loop, &poller, s_collector, self);
    zloop_timer (self->loop, 1000, 0, s_flush_ttl, self);

    //  Run reactor until process interrupted
    zloop_start (self->loop);

    zloop_destroy (&self->loop);
    zhash_destroy (&self->kvmap);
    zctx_destroy (&self->ctx);
    free (self);
    return 0;
}

We handle ICANHAZ? requests by sending snapshot data to the client that requested 
it:

Example 80-1. Clone server, Model Five (clonesrv5.c) - send snapshots

//  Routing information for a key-value snapshot
typedef struct {
    void *socket;           //  ROUTER socket to send to
    zframe_t *identity;     //  Identity of peer who requested state
    char *subtree;          //  Client subtree specification
} kvroute_t;
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//  We call this function for each key-value pair in our hash table
static int
s_send_single (const char *key, void *data, void *args)
{
    kvroute_t *kvroute = (kvroute_t *) args;
    kvmsg_t *kvmsg = (kvmsg_t *) data;
    if (strlen (kvroute->subtree) <= strlen (kvmsg_key (kvmsg))
    &&  memcmp (kvroute->subtree,
                kvmsg_key (kvmsg), strlen (kvroute->subtree)) == 0) {
        zframe_send (&kvroute->identity,    //  Choose recipient
            kvroute->socket, ZFRAME_MORE + ZFRAME_REUSE);
        kvmsg_send (kvmsg, kvroute->socket);
    }
    return 0;
}

This is the reactor handler for the snapshot socket; it accepts just the ICANHAZ? 
request and replies with a state snapshot ending with a KTHXBAI message:

Example 80-2. Clone server, Model Five (clonesrv5.c) - snapshot handler

static int
s_snapshots (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    zframe_t *identity = zframe_recv (poller->socket);
    if (identity) {
        //  Request is in second frame of message
        char *request = zstr_recv (poller->socket);
        char *subtree = NULL;
        if (streq (request, "ICANHAZ?")) {
            free (request);
            subtree = zstr_recv (poller->socket);
        }
        else
            printf ("E: bad request, aborting\n");

        if (subtree) {
            //  Send state socket to client
            kvroute_t routing = { poller->socket, identity, subtree };
            zhash_foreach (self->kvmap, s_send_single, &routing);

            //  Now send END message with sequence number
            zclock_log ("I: sending shapshot=%d", (int) self->sequence);
            zframe_send (&identity, poller->socket, ZFRAME_MORE);
            kvmsg_t *kvmsg = kvmsg_new (self->sequence);
            kvmsg_set_key  (kvmsg, "KTHXBAI");
            kvmsg_set_body (kvmsg, (byte *) subtree, 0);
            kvmsg_send     (kvmsg, poller->socket);
            kvmsg_destroy (&kvmsg);
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            free (subtree);
        }
        zframe_destroy(&identity);
    }
    return 0;
}

We store each update with a new sequence number, and if necessary, a time-to-live. 
We publish updates immediately on our publisher socket:

Example 80-3. Clone server, Model Five (clonesrv5.c) - collect updates

static int
s_collector (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (kvmsg) {
        kvmsg_set_sequence (kvmsg, ++self->sequence);
        kvmsg_send (kvmsg, self->publisher);
        int ttl = atoi (kvmsg_get_prop (kvmsg, "ttl"));
        if (ttl)
            kvmsg_set_prop (kvmsg, "ttl",
                "%" PRId64, zclock_time () + ttl * 1000);
        kvmsg_store (&kvmsg, self->kvmap);
        zclock_log ("I: publishing update=%d", (int) self->sequence);
    }
    return 0;
}

At regular intervals, we flush ephemeral values that have expired. This could be slow 
on very large data sets:

Example 80-4. Clone server, Model Five (clonesrv5.c) - flush ephemeral values

//  If key-value pair has expired, delete it and publish the
//  fact to listening clients.
static int
s_flush_single (const char *key, void *data, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = (kvmsg_t *) data;
    int64_t ttl;
    sscanf (kvmsg_get_prop (kvmsg, "ttl"), "%" PRId64, &ttl);
    if (ttl && zclock_time () >= ttl) {
        kvmsg_set_sequence (kvmsg, ++self->sequence);
        kvmsg_set_body (kvmsg, (byte *) "", 0);
        kvmsg_send (kvmsg, self->publisher);
        kvmsg_store (&kvmsg, self->kvmap);
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        zclock_log ("I: publishing delete=%d", (int) self->sequence);
    }
    return 0;
}

static int
s_flush_ttl (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;
    if (self->kvmap)
        zhash_foreach (self->kvmap, s_flush_single, args);
    return 0;
}

Adding the Binary Star Pattern for Reliability
The Clone models we’ ve explored up to now have been relatively simple. Now we’ re 

going to get into unpleasantly complex territory, which has me getting up for another 
espresso. You should appreciate that making “ reliable”  messaging is complex enough 
that you always need to ask, “ Do we actually need this?”  before jumping into it. If you 
can get away with unreliable or with “ good enough”  reliability, you can make a huge 
win in terms of cost and complexity. Sure, you may lose some data now and then. It is 
often a good trade-off. Having said, that, and... sips... because the espresso is really 
good, let’ s jump in.

As you play with the last model, you’ ll stop and restart the server. It might look like 
it recovers, but of course it’ s applying updates to an empty state instead of the proper 
current state. Any new client joining the network will only get the latest updates 
instead of the full historical record.

What we want is a way for the server to recover from being killed, or crashing. We 
also need to provide backup in case the server is out of commission for any length of 
time. When someone asks for “ reliability” , ask them to list the failures they want to 
handle. In our case, these are:

• The server process crashes and is automatically or manually restarted. The 
process loses its state and has to get it back from somewhere.

• The server machine dies and is offline for a significant time. Clients have to 
switch to an alternate server somewhere.

• The server process or machine gets disconnected from the network, e.g., a 
switch dies or a datacenter gets knocked out. It may come back at some point, 
but in the meantime clients need an alternate server.

Our first step is to add a second server. We can use the Binary Star pattern from 
“ Reliable Request-Reply Patterns”  to organize these into primary and backup. Binary 
Star is a reactor, so it’ s useful that we already refactored the last server model into a 
reactor style.

We need to ensure that updates are not lost if the primary server crashes. The 
simplest technique is to send them to both servers. The backup server can then act as a 
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client, and keep its state synchronized by receiving updates as all clients do. It’ ll also 
get new updates from clients. It can’ t yet store these in its hash table, but it can hold 
onto them for a while.

So, Model Six introduces the following changes over Model Five:
• We use a pub-sub flow instead of a push-pull flow for client updates sent to the 

servers. This takes care of fanning out the updates to both servers. Otherwise 
we’ d have to use two DEALER sockets.

• We add heartbeats to server updates (to clients), so that a client can detect 
when the primary server has died. It can then switch over to the backup server.

• We connect the two servers using the Binary Star bstar reactor class. Binary 
Star relies on the clients to vote by making an explicit request to the server 
they consider active. We’ ll use snapshot requests as the voting mechanism.

• We make all update messages uniquely identifiable by adding a UUID field. The 
client generates this, and the server propagates it back on republished updates.

• The passive server keeps a “ pending list”  of updates that it has received from 
clients, but not yet from the active server; or updates it’ s received from the 
active server, but not yet from the clients. The list is ordered from oldest to 
newest, so that it is easy to remove updates off the head.

It’ s useful to design the client logic as 
a finite state machine. The client cycles 
through three states:

• The client opens and connects 
its sockets, and then requests a 
snapshot from the first server. 
To avoid request storms, it will 
ask any given server only twice. 
One request might get lost, 
which would be bad luck. Two 
getting lost would be 
carelessness.

• The client waits for a reply 
(snapshot data) from the 
current server, and if it gets it, 
it stores it. If there is no reply 
within some timeout, it fails 
over to the next server.

• When the client has gotten its snapshot, it waits for and processes updates. 
Again, if it doesn’ t hear anything from the server within some timeout, it fails 
over to the next server.

The client loops forever. It’ s quite likely during startup or failover that some clients 
may be trying to talk to the primary server while others are trying to talk to the 
backup server. The Binary Star state machine handles this (see figure 61), hopefully 
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accurately. It’ s hard to prove software correct; instead we hammer it until we can’ t 
prove it wrong.

Failover happens as follows:
• The client detects that primary server is no longer sending heartbeats, and 

concludes that it has died. The client connects to the backup server and 
requests a new state snapshot.

• The backup server starts to receive snapshot requests from clients, and detects 
that primary server has gone, so it takes over as primary.

• The backup server applies its pending list to its own hash table, and then starts 
to process state snapshot requests.

When the primary server comes back online, it will:
• Start up as passive server, and connect to the backup server as a Clone client.
• Start to receive updates from clients, via its SUB socket.

We make a few assumptions:
• At least one server will keep running. If both servers crash, we lose all server 

state and there’ s no way to recover it.
• Multiple clients do not update the same hash keys at the same time. Client 

updates will arrive at the two servers in a different order. Therefore, the backup 
server may apply updates from its pending list in a different order than the 
primary server would or did. Updates from one client will always arrive in the 
same order on both servers, so that is safe.

Thus the architecture for our high-availability server pair using the Binary Star 
pattern has two servers and a set of clients that talk to both servers (see figure 62).
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Here is the sixth and last model of the Clone server:

Example 81. Clone server, Model Six (clonesrv6.c)

//  Clone server Model Six

//  Lets us build this source without creating a library
#include "bstar.c"
#include "kvmsg.c"

We define a set of reactor handlers and our server object structure:

Example 81-1. Clone server, Model Six (clonesrv6.c) - definitions

//  Bstar reactor handlers
static int
    s_snapshots   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_collector   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_flush_ttl   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_send_hugz   (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_new_active  (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_new_passive (zloop_t *loop, zmq_pollitem_t *poller, void *args);
static int
    s_subscriber  (zloop_t *loop, zmq_pollitem_t *poller, void *args);

//  Our server is defined by these properties
typedef struct {
    zctx_t *ctx;                //  Context wrapper
    zhash_t *kvmap;             //  Key-value store
    bstar_t *bstar;             //  Bstar reactor core
    int64_t sequence;           //  How many updates we're at
    int port;                   //  Main port we're working on
    int peer;                   //  Main port of our peer
    void *publisher;            //  Publish updates and hugz
    void *collector;            //  Collect updates from clients
    void *subscriber;           //  Get updates from peer
    zlist_t *pending;           //  Pending updates from clients
    Bool primary;               //  TRUE if we're primary
    Bool active;                //  TRUE if we're active
    Bool passive;                 //  TRUE if we're passive
} clonesrv_t;
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The main task parses the command line to decide whether to start as a primary or 
backup server. We’ re using the Binary Star pattern for reliability. This interconnects 
the two servers so they can agree on which one is primary and which one is backup. To 
allow the two servers to run on the same box, we use different ports for primary and 
backup. Ports 5003/5004 are used to interconnect the servers. Ports 5556/5566 are used 
to receive voting events (snapshot requests in the clone pattern). Ports 5557/5567 are 
used by the publisher, and ports 5558/5568 are used by the collector:

Example 81-2. Clone server, Model Six (clonesrv6.c) - main task setup

int main (int argc, char *argv [])
{
    clonesrv_t *self = (clonesrv_t *) zmalloc (sizeof (clonesrv_t));
    if (argc == 2 && streq (argv [1], "-p")) {
        zclock_log ("I: primary active, waiting for backup (passive)");
        self->bstar = bstar_new (BSTAR_PRIMARY, "tcp://*:5003",
                                 "tcp://localhost:5004");
        bstar_voter (self->bstar, "tcp://*:5556",
                     ZMQ_ROUTER, s_snapshots, self);
        self->port = 5556;
        self->peer = 5566;
        self->primary = TRUE;
    }
    else
    if (argc == 2 && streq (argv [1], "-b")) {
        zclock_log ("I: backup passive, waiting for primary (active)");
        self->bstar = bstar_new (BSTAR_BACKUP, "tcp://*:5004",
                                 "tcp://localhost:5003");
        bstar_voter (self->bstar, "tcp://*:5566",
                     ZMQ_ROUTER, s_snapshots, self);
        self->port = 5566;
        self->peer = 5556;
        self->primary = FALSE;
    }
    else {
        printf ("Usage: clonesrv4 { -p | -b }\n");
        free (self);
        exit (0);
    }
    //  Primary server will become first active
    if (self->primary)
        self->kvmap = zhash_new ();

    self->ctx = zctx_new ();
    self->pending = zlist_new ();
    bstar_set_verbose (self->bstar, TRUE);

    //  Set up our clone server sockets
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    self->collector = zsocket_new (self->ctx, ZMQ_SUB);
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    zsockopt_set_subscribe (self->collector, "");
    zsocket_bind (self->publisher, "tcp://*:%d", self->port + 1);
    zsocket_bind (self->collector, "tcp://*:%d", self->port + 2);

    //  Set up our own clone client interface to peer
    self->subscriber = zsocket_new (self->ctx, ZMQ_SUB);
    zsockopt_set_subscribe (self->subscriber, "");
    zsocket_connect (self->subscriber,
                     "tcp://localhost:%d", self->peer + 1);

After we’ ve setup our sockets, we register our binary star event handlers, and then 
start the bstar reactor. This finishes when the user presses Ctrl-C or when the process 
receives a SIGINT interrupt:

Example 81-3. Clone server, Model Six (clonesrv6.c) - main task body

   //  Register state change handlers
    bstar_new_active (self->bstar, s_new_active, self);
    bstar_new_passive (self->bstar, s_new_passive, self);

    //  Register our other handlers with the bstar reactor
    zmq_pollitem_t poller = { self->collector, 0, ZMQ_POLLIN };
    zloop_poller (bstar_zloop (self->bstar), &poller, s_collector, self);
    zloop_timer  (bstar_zloop (self->bstar), 1000, 0, s_flush_ttl, self);
    zloop_timer  (bstar_zloop (self->bstar), 1000, 0, s_send_hugz, self);

    //  Start the bstar reactor
    bstar_start (self->bstar);

    //  Interrupted, so shut down
    while (zlist_size (self->pending)) {
        kvmsg_t *kvmsg = (kvmsg_t *) zlist_pop (self->pending);
        kvmsg_destroy (&kvmsg);
    }
    zlist_destroy (&self->pending);
    bstar_destroy (&self->bstar);
    zhash_destroy (&self->kvmap);
    zctx_destroy (&self->ctx);
    free (self);

    return 0;
}

//  We handle ICANHAZ? requests exactly as in the clonesrv5 example.
...



290 Code Connected Volume 1 - Chapter 5. Advanced Pub-Sub Patterns

The collector is more complex than in the clonesrv5 example because the way it 
processes updates depends on whether we’ re active or passive. The active applies them 
immediately to its kvmap, whereas the passive queues them as pending:

Example 81-4. Clone server, Model Six (clonesrv6.c) - collect updates

//  If message was already on pending list, remove it and return TRUE,
//  else return FALSE.
static int
s_was_pending (clonesrv_t *self, kvmsg_t *kvmsg)
{
    kvmsg_t *held = (kvmsg_t *) zlist_first (self->pending);
    while (held) {
        if (memcmp (kvmsg_uuid (kvmsg),
                    kvmsg_uuid (held), sizeof (uuid_t)) == 0) {
            zlist_remove (self->pending, held);
            return TRUE;
        }
        held = (kvmsg_t *) zlist_next (self->pending);
    }
    return FALSE;
}

static int
s_collector (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (kvmsg) {
        if (self->active) {
            kvmsg_set_sequence (kvmsg, ++self->sequence);
            kvmsg_send (kvmsg, self->publisher);
            int ttl = atoi (kvmsg_get_prop (kvmsg, "ttl"));
            if (ttl)
                kvmsg_set_prop (kvmsg, "ttl",
                    "%" PRId64, zclock_time () + ttl * 1000);
            kvmsg_store (&kvmsg, self->kvmap);
            zclock_log ("I: publishing update=%d", (int) self->sequence);
        }
        else {
            //  If we already got message from active, drop it, else
            //  hold on pending list
            if (s_was_pending (self, kvmsg))
                kvmsg_destroy (&kvmsg);
            else
                zlist_append (self->pending, kvmsg);
        }
    }
    return 0;
}
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//  We purge ephemeral values using exactly the same code as in
//  the previous clonesrv5 example.
...

We send a HUGZ message once a second to all subscribers so that they can detect if 
our server dies. They’ ll then switch over to the backup server, which will become active:

Example 81-5. Clone server, Model Six (clonesrv6.c) - heartbeating

static int
s_send_hugz (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    kvmsg_t *kvmsg = kvmsg_new (self->sequence);
    kvmsg_set_key  (kvmsg, "HUGZ");
    kvmsg_set_body (kvmsg, (byte *) "", 0);
    kvmsg_send     (kvmsg, self->publisher);
    kvmsg_destroy (&kvmsg);

    return 0;
}

When we switch from passive to active, we apply our pending list so that our kvmap 
is up-to-date. When we switch to passive, we wipe our kvmap and grab a new snapshot 
from the active server:

Example 81-6. Clone server, Model Six (clonesrv6.c) - handling state changes

static int
s_new_active (zloop_t *loop, zmq_pollitem_t *unused, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    self->active = TRUE;
    self->passive = FALSE;

    //  Stop subscribing to updates
    zmq_pollitem_t poller = { self->subscriber, 0, ZMQ_POLLIN };
    zloop_poller_end (bstar_zloop (self->bstar), &poller);

    //  Apply pending list to own hash table
    while (zlist_size (self->pending)) {
        kvmsg_t *kvmsg = (kvmsg_t *) zlist_pop (self->pending);
        kvmsg_set_sequence (kvmsg, ++self->sequence);
        kvmsg_send (kvmsg, self->publisher);
        kvmsg_store (&kvmsg, self->kvmap);
        zclock_log ("I: publishing pending=%d", (int) self->sequence);
    }
    return 0;
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}

static int
s_new_passive (zloop_t *loop, zmq_pollitem_t *unused, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;

    zhash_destroy (&self->kvmap);
    self->active = FALSE;
    self->passive = TRUE;

    //  Start subscribing to updates
    zmq_pollitem_t poller = { self->subscriber, 0, ZMQ_POLLIN };
    zloop_poller (bstar_zloop (self->bstar), &poller, s_subscriber, self);

    return 0;
}

When we get an update, we create a new kvmap if necessary, and then add our 
update to our kvmap. We’ re always passive in this case:

Example 81-7. Clone server, Model Six (clonesrv6.c) - subscriber handler

static int
s_subscriber (zloop_t *loop, zmq_pollitem_t *poller, void *args)
{
    clonesrv_t *self = (clonesrv_t *) args;
    //  Get state snapshot if necessary
    if (self->kvmap == NULL) {
        self->kvmap = zhash_new ();
        void *snapshot = zsocket_new (self->ctx, ZMQ_DEALER);
        zsocket_connect (snapshot, "tcp://localhost:%d", self->peer);
        zclock_log ("I: asking for snapshot from: tcp://localhost:%d",
                    self->peer);
        zstr_sendm (snapshot, "ICANHAZ?");
        zstr_send (snapshot, ""); // blank subtree to get all
        while (true) {
            kvmsg_t *kvmsg = kvmsg_recv (snapshot);
            if (!kvmsg)
                break;          //  Interrupted
            if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
                self->sequence = kvmsg_sequence (kvmsg);
                kvmsg_destroy (&kvmsg);
                break;          //  Done
            }
            kvmsg_store (&kvmsg, self->kvmap);
        }
        zclock_log ("I: received snapshot=%d", (int) self->sequence);
        zsocket_destroy (self->ctx, snapshot);
    }
    //  Find and remove update off pending list
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    kvmsg_t *kvmsg = kvmsg_recv (poller->socket);
    if (!kvmsg)
        return 0;

    if (strneq (kvmsg_key (kvmsg), "HUGZ")) {
        if (!s_was_pending (self, kvmsg)) {
            //  If active update came before client update, flip it
            //  around, store active update (with sequence) on pending
            //  list and use to clear client update when it comes later
            zlist_append (self->pending, kvmsg_dup (kvmsg));
        }
        //  If update is more recent than our kvmap, apply it
        if (kvmsg_sequence (kvmsg) > self->sequence) {
            self->sequence = kvmsg_sequence (kvmsg);
            kvmsg_store (&kvmsg, self->kvmap);
            zclock_log ("I: received update=%d", (int) self->sequence);
        }
        else
            kvmsg_destroy (&kvmsg);
    }
    else
        kvmsg_destroy (&kvmsg);

    return 0;
}

This model is only a few hundred lines of code, but it took quite a while to get 
working. To be accurate, building Model Six took about a full week of “ Sweet god, this 
is just too complex for an example”  hacking. We’ ve assembled pretty much everything 
and the kitchen sink into this small application. We have failover, ephemeral values, 
subtrees, and so on. What surprised me was that the upfront design was pretty 
accurate. Still the details of writing and debugging so many socket flows is quite 
challenging.

The reactor-based design removes a lot of the grunt work from the code, and what 
remains is simpler and easier to understand. We reuse the bstar reactor from “ Reliable 
Request-Reply Patterns” . The whole server runs as one thread, so there’ s no inter-
thread weirdness going on— just a structure pointer (self) passed around to all 
handlers, which can do their thing happily. One nice side effect of using reactors is that 
the code, being less tightly integrated into a poll loop, is much easier to reuse. Large 
chunks of Model Six are taken from Model Five.

I built it piece by piece, and got each piece working properly before going onto the 
next one. Because there are four or five main socket flows, that meant quite a lot of 
debugging and testing. I debugged just by dumping messages to the console. Don’ t use 
classic debuggers to step through ØMQ applications; you need to see the message flows 
to make any sense of what is going on.

For testing, I always try to use Valgrind, which catches memory leaks and invalid 
memory accesses. In C, this is a major concern, as you can’ t delegate to a garbage 
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collector. Using proper and consistent abstractions like kvmsg and CZMQ helps 
enormously.

The Clustered Hashmap Protocol
While the server is pretty much a mashup of the previous model plus the Binary Star 

pattern, the client is quite a lot more complex. But before we get to that, let’ s look at 
the final protocol. I’ ve written this up as a specification on the ZeroMQ RFC website as 
the Clustered Hashmap Protocol22.

Roughly, there are two ways to design a complex protocol such as this one. One way 
is to separate each flow into its own set of sockets. This is the approach we used here. 
The advantage is that each flow is simple and clean. The disadvantage is that managing 
multiple socket flows at once can be quite complex. Using a reactor makes it simpler, 
but still, it makes a lot of moving pieces that have to fit together correctly.

The second way to make such a protocol is to use a single socket pair for everything. 
In this case, I’ d have used ROUTER for the server and DEALER for the clients, and 
then done everything over that connection. It makes for a more complex protocol but at 
least the complexity is all in one place. In Code Connected Volume 2 we’ ll look at an 
example of a protocol done over a ROUTER-DEALER combination.

Let’ s look at CHP in more detail now. Note that “ SHOULD” , “ MUST”  and “ MAY”  
are key words we use in protocol specifications to indicate requirement levels.

Goals
CHP is meant to provide a basis for reliable pub-sub across a cluster of clients 

connected over a ØMQ network. It defines a “ hashmap”  abstraction consisting of key-
value pairs. Any client can modify any key-value pair at any time, and changes are 
propagated to all clients. A client can join the network at any time.

Architecture
CHP connects a set of client applications and a set of servers. Clients connect to the 

server. Clients do not see each other. Clients can come and go arbitrarily.
Ports and Connections
The server MUST open three ports as follows:
• A SNAPSHOT port (ØMQ ROUTER socket) at port number P.
• A PUBLISHER port (ØMQ PUB socket) at port number P + 1.
• A COLLECTOR port (ØMQ SUB socket) at port number P + 2.

The client SHOULD open at least two connections:
• A SNAPSHOT connection (ØMQ DEALER socket) to port number P.
• A SUBSCRIBER connection (ØMQ SUB socket) to port number P + 1.

The client MAY open a third connection, if it wants to update the hashmap:
• A PUBLISHER connection (ØMQ PUB socket) to port number P + 2.

22 http://rfc.zeromq.org/spec:12
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This extra frame is not shown in the commands explained below.
State Synchronization
The client MUST start by sending a ICANHAZ command to its snapshot connection. 

This command consists of two frames as follows:

ICANHAZ command
-----------------------------------
Frame 0: "ICANHAZ?"
Frame 1: subtree specification

Both frames are ØMQ strings. The subtree specification MAY be empty. If not 
empty, it consists of a slash followed by one or more path segments, ending in a slash.

The server MUST respond to a ICANHAZ command by sending zero or more 
KVSYNC commands to its snapshot port, followed with a KTHXBAI command. The 
server MUST prefix each command with the identity of the client, as provided by ØMQ 
with the ICANHAZ command. The KVSYNC command specifies a single key-value pair 
as follows:

KVSYNC command
-----------------------------------
Frame 0: key, as 0MQ string
Frame 1: sequence number, 8 bytes in network order
Frame 2: <empty>
Frame 3: <empty>
Frame 4: value, as blob

The sequence number has no significance and may be zero.
The KTHXBAI command takes this form:

KTHXBAI command
-----------------------------------
Frame 0: "KTHXBAI"
Frame 1: sequence number, 8 bytes in network order
Frame 2: <empty>
Frame 3: <empty>
Frame 4: subtree specification

The sequence number MUST be the highest sequence number of the KVSYNC 
commands previously sent.

When the client has received a KTHXBAI command, it SHOULD start to receive 
messages from its subscriber connection and apply them.

Server-to-Client Updates
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When the server has an update for its hashmap it MUST broadcast this on its 
publisher socket as a KVPUB command. The KVPUB command has this form:

KVPUB command
-----------------------------------
Frame 0: key, as 0MQ string
Frame 1: sequence number, 8 bytes in network order
Frame 2: UUID, 16 bytes
Frame 3: properties, as 0MQ string
Frame 4: value, as blob

The sequence number MUST be strictly incremental. The client MUST discard any 
KVPUB commands whose sequence numbers are not strictly greater than the last 
KTHXBAI or KVPUB command received.

The UUID is optional and frame 2 MAY be empty (size zero). The properties field is 
formatted as zero or more instances of “ name=value”  followed by a newline character. If 
the key-value pair has no properties, the properties field is empty.

If the value is empty, the client SHOULD delete its key-value entry with the specified 
key.

In the absence of other updates the server SHOULD send a HUGZ command at 
regular intervals, e.g., once per second. The HUGZ command has this format:

HUGZ command
-----------------------------------
Frame 0: "HUGZ"
Frame 1: 00000000
Frame 2: <empty>
Frame 3: <empty>
Frame 4: <empty>

The client MAY treat the absence of HUGZ as an indicator that the server has 
crashed (see Reliability below).

Client-to-Server Updates
When the client has an update for its hashmap, it MAY send this to the server via its 

publisher connection as a KVSET command. The KVSET command has this form:

KVSET command
-----------------------------------
Frame 0: key, as 0MQ string
Frame 1: sequence number, 8 bytes in network order
Frame 2: UUID, 16 bytes
Frame 3: properties, as 0MQ string
Frame 4: value, as blob

The sequence number has no significance and may be zero. The UUID SHOULD be a 
universally unique identifier, if a reliable server architecture is used.
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If the value is empty, the server MUST delete its key-value entry with the specified 
key.

The server SHOULD accept the following properties:
• ttl: specifies a time-to-live in seconds. If the KVSET command has a ttl 

property, the server SHOULD delete the key-value pair and broadcast a 
KVPUB with an empty value in order to delete this from all clients when the 
TTL has expired.

Reliability
CHP may be used in a dual-server configuration where a backup server takes over if 

the primary server fails. CHP does not specify the mechanisms used for this failover but 
the Binary Star pattern may be helpful.

To assist server reliability, the client MAY:
• Set a UUID in every KVSET command.
• Detect the lack of HUGZ over a time period and use this as an indicator that 

the current server has failed.
• Connect to a backup server and re-request a state synchronization.

Scalability and Performance
CHP is designed to be scalable to large numbers (thousands) of clients, limited only 

by system resources on the broker. Because all updates pass through a single server, the 
overall throughput will be limited to some millions of updates per second at peak, and 
probably less.

Security
CHP does not implement any authentication, access control, or encryption 

mechanisms and should not be used in any deployment where these are required.

Building a Multithreaded Stack and API
The client stack we’ ve used so far isn’ t smart enough to handle this protocol properly. 

As soon as we start doing heartbeats, we need a client stack that can run in a 
background thread. In the Freelance pattern at the end of “ Reliable Request-Reply 
Patterns”  we used a multithreaded API but didn’ t explain it in detail. It turns out that 
multithreaded APIs are quite useful when you start to make more complex ØMQ 
protocols like CHP.
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If you make a nontrivial protocol and you 
expect applications to implement it 
properly, most developers will get it wrong 
most of the time. You’ re going to be left 
with a lot of unhappy people complaining 
that your protocol is too complex, too 
fragile, and too hard to use. Whereas if you 
give them a simple API to call, you have 
some chance of them buying in.

Our multithreaded API consists of a 
frontend object and a background agent, 
connected by two PAIR sockets (see figure 
63). Connecting two PAIR sockets like this 
is so useful that your high-level binding 
should probably do what CZMQ does, 
which is package a “ create new thread with 
a pipe that I can use to send messages to 
it”  method.

The multithreaded APIs that we see in this book all take the same form:
• The constructor for the object (clone_new) creates a context and starts a 

background thread connected with a pipe. It holds onto one end of the pipe so 
it can send commands to the background thread.

• The background thread starts an agent that is essentially a zmq_poll loop 
reading from the pipe socket and any other sockets (here, the DEALER and 
SUB sockets).

• The main application thread and the background thread now communicate only 
via ØMQ messages. By convention, the frontend sends string commands so that 
each method on the class turns into a message sent to the backend agent, like 
this:

void
clone_connect (clone_t *self, char *address, char *service)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, address);
    zmsg_addstr (msg, service);
    zmsg_send (&msg, self->pipe);
}

• If the method needs a return code, it can wait for a reply message from the 
agent.

• If the agent needs to send asynchronous events back to the frontend, we add a 
recv method to the class, which waits for messages on the frontend pipe.
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• We may want to expose the frontend pipe socket handle to allow the class to be 
integrated into further poll loops. Otherwise any recv method would block the 
application.

The clone class has the same structure as the flcliapi class from “ Reliable Request-
Reply Patterns”  and adds the logic from the last model of the Clone client. Without 
ØMQ, this kind of multithreaded API design would be weeks of really hard work. With 
ØMQ, it was a day or two of work.

The actual API methods for the clone class are quite simple:

//  Create a new clone class instance
clone_t *
    clone_new (void);

//  Destroy a clone class instance
void
    clone_destroy (clone_t **self_p);

//  Define the subtree, if any, for this clone class
void
    clone_subtree (clone_t *self, char *subtree);

//  Connect the clone class to one server
void
    clone_connect (clone_t *self, char *address, char *service);

//  Set a value in the shared hashmap
void
    clone_set (clone_t *self, char *key, char *value, int ttl);

//  Get a value from the shared hashmap
char *
    clone_get (clone_t *self, char *key);

So here is Model Six of the clone client, which has now become just a thin shell using 
the clone class:

Example 82. Clone client, Model Six (clonecli6.c)

//  Clone client Model Six

//  Lets us build this source without creating a library
#include "clone.c"
#define SUBTREE "/client/"

int main (void)
{
    //  Create distributed hash instance
    clone_t *clone = clone_new ();

    //  Specify configuration
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    clone_subtree (clone, SUBTREE);
    clone_connect (clone, "tcp://localhost", "5556");
    clone_connect (clone, "tcp://localhost", "5566");

    //  Set random tuples into the distributed hash
    while (!zctx_interrupted) {
        //  Set random value, check it was stored
        char key [255];
        char value [10];
        sprintf (key, "%s%d", SUBTREE, randof (10000));
        sprintf (value, "%d", randof (1000000));
        clone_set (clone, key, value, randof (30));
        sleep (1);
    }
    clone_destroy (&clone);
    return 0;
}

Note the connect method, which specifies one server endpoint. Under the hood, we’ re 
in fact talking to three ports. However, as the CHP protocol says, the three ports are on 
consecutive port numbers:

• The server state router (ROUTER) is at port P.
• The server updates publisher (PUB) is at port P + 1.
• The server updates subscriber (SUB) is at port P + 2.

So we can fold the three connections into one logical operation (which we implement 
as three separate ØMQ connect calls).

Let’ s end with the source code for the clone stack. This is a complex piece of code, 
but easier to understand when you break it into the frontend object class and the 
backend agent. The frontend sends string commands (“ SUBTREE” , “ CONNECT” , 
“ SET” , “ GET” ) to the agent, which handles these commands as well as talking to the 
server(s). Here is the agent’ s logic:

1. Start up by getting a snapshot from the first server
2. When we get a snapshot switch to reading from the subscriber socket.
3. If we don’ t get a snapshot then fail over to the second server.
4. Poll on the pipe and the subscriber socket.
5. If we got input on the pipe, handle the control message from the frontend 

object.
6. If we got input on the subscriber, store or apply the update.
7. If we didn’ t get anything from the server within a certain time, fail over.
8. Repeat until the process is interrupted by Ctrl-C.
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And here is the actual clone class implementation:

Example 83. Clone class (clone.c)

//  clone class - Clone client API stack (multithreaded)

#include "clone.h"
//  If no server replies within this time, abandon request
#define GLOBAL_TIMEOUT  4000    //  msecs

//  =====================================================================
//  Synchronous part, works in our application thread

//  Structure of our class

struct _clone_t {
    zctx_t *ctx;                //  Our context wrapper
    void *pipe;                 //  Pipe through to clone agent
};

//  This is the thread that handles our real clone class
static void clone_agent (void *args, zctx_t *ctx, void *pipe);

Here are the constructor and destructor for the clone class. Note that we create a 
context specifically for the pipe that connects our frontend to the backend agent:

Example 83-1. Clone class (clone.c) - constructor and destructor

clone_t *
clone_new (void)
{
    clone_t
        *self;

    self = (clone_t *) zmalloc (sizeof (clone_t));
    self->ctx = zctx_new ();
    self->pipe = zthread_fork (self->ctx, clone_agent, NULL);
    return self;
}

void
clone_destroy (clone_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        clone_t *self = *self_p;
        zctx_destroy (&self->ctx);
        free (self);
        *self_p = NULL;
    }
}
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Specify subtree for snapshot and updates, which we must do before connecting to a 
server as the subtree specification is sent as the first command to the server. Sends a 
[SUBTREE][subtree] command to the agent:

Example 83-2. Clone class (clone.c) - subtree method

void clone_subtree (clone_t *self, char *subtree)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "SUBTREE");
    zmsg_addstr (msg, subtree);
    zmsg_send (&msg, self->pipe);
}

Connect to a new server endpoint. We can connect to at most two servers. Sends 
[CONNECT][endpoint][service] to the agent:

Example 83-3. Clone class (clone.c) - connect method

void
clone_connect (clone_t *self, char *address, char *service)
{
    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "CONNECT");
    zmsg_addstr (msg, address);
    zmsg_addstr (msg, service);
    zmsg_send (&msg, self->pipe);
}

Set a new value in the shared hashmap. Sends a [SET][key][value][ttl] command 
through to the agent which does the actual work:

Example 83-4. Clone class (clone.c) - set method

void
clone_set (clone_t *self, char *key, char *value, int ttl)
{
    char ttlstr [10];
    sprintf (ttlstr, "%d", ttl);

    assert (self);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "SET");
    zmsg_addstr (msg, key);
    zmsg_addstr (msg, value);
    zmsg_addstr (msg, ttlstr);
    zmsg_send (&msg, self->pipe);
}
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Look up value in distributed hash table. Sends [GET][key] to the agent and waits for 
a value response. If there is no value available, will eventually return NULL:

Example 83-5. Clone class (clone.c) - get method

char *
clone_get (clone_t *self, char *key)
{
    assert (self);
    assert (key);
    zmsg_t *msg = zmsg_new ();
    zmsg_addstr (msg, "GET");
    zmsg_addstr (msg, key);
    zmsg_send (&msg, self->pipe);

    zmsg_t *reply = zmsg_recv (self->pipe);
    if (reply) {
        char *value = zmsg_popstr (reply);
        zmsg_destroy (&reply);
        return value;
    }
    return NULL;
}

The backend agent manages a set of servers, which we implement using our simple 
class model:

Example 83-6. Clone class (clone.c) - working with servers

typedef struct {
    char *address;              //  Server address
    int port;                   //  Server port
    void *snapshot;             //  Snapshot socket
    void *subscriber;           //  Incoming updates
    uint64_t expiry;            //  When server expires
    uint requests;              //  How many snapshot requests made?
} server_t;

static server_t *
server_new (zctx_t *ctx, char *address, int port, char *subtree)
{
    server_t *self = (server_t *) zmalloc (sizeof (server_t));

    zclock_log ("I: adding server %s:%d...", address, port);
    self->address = strdup (address);
    self->port = port;

    self->snapshot = zsocket_new (ctx, ZMQ_DEALER);
    zsocket_connect (self->snapshot, "%s:%d", address, port);
    self->subscriber = zsocket_new (ctx, ZMQ_SUB);
    zsocket_connect (self->subscriber, "%s:%d", address, port + 1);
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    zsockopt_set_subscribe (self->subscriber, subtree);
    return self;
}

static void
server_destroy (server_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        server_t *self = *self_p;
        free (self->address);
        free (self);
        *self_p = NULL;
    }
}

Here is the implementation of the backend agent itself:

Example 83-7. Clone class (clone.c) - backend agent class

//  Number of servers to which we will talk to
#define SERVER_MAX      2

//  Server considered dead if silent for this long
#define SERVER_TTL      5000    //  msecs

//  States we can be in
#define STATE_INITIAL       0   //  Before asking server for state
#define STATE_SYNCING       1   //  Getting state from server
#define STATE_ACTIVE        2   //  Getting new updates from server

typedef struct {
    zctx_t *ctx;                //  Context wrapper
    void *pipe;                 //  Pipe back to application
    zhash_t *kvmap;             //  Actual key/value table
    char *subtree;              //  Subtree specification, if any
    server_t *server [SERVER_MAX];
    uint nbr_servers;           //  0 to SERVER_MAX
    uint state;                 //  Current state
    uint cur_server;            //  If active, server 0 or 1
    int64_t sequence;           //  Last kvmsg processed
    void *publisher;            //  Outgoing updates
} agent_t;

static agent_t *
agent_new (zctx_t *ctx, void *pipe)
{
    agent_t *self = (agent_t *) zmalloc (sizeof (agent_t));
    self->ctx = ctx;
    self->pipe = pipe;
    self->kvmap = zhash_new ();
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    self->subtree = strdup ("");
    self->state = STATE_INITIAL;
    self->publisher = zsocket_new (self->ctx, ZMQ_PUB);
    return self;
}

static void
agent_destroy (agent_t **self_p)
{
    assert (self_p);
    if (*self_p) {
        agent_t *self = *self_p;
        int server_nbr;
        for (server_nbr = 0; server_nbr < self->nbr_servers; server_nbr++)
            server_destroy (&self->server [server_nbr]);
        zhash_destroy (&self->kvmap);
        free (self->subtree);
        free (self);
        *self_p = NULL;
    }
}

Here we handle the different control messages from the frontend; SUBTREE, 
CONNECT, SET, and GET:

Example 83-8. Clone class (clone.c) - handling a control message

static int
agent_control_message (agent_t *self)
{
    zmsg_t *msg = zmsg_recv (self->pipe);
    char *command = zmsg_popstr (msg);
    if (command == NULL)
        return -1;      //  Interrupted

    if (streq (command, "SUBTREE")) {
        free (self->subtree);
        self->subtree = zmsg_popstr (msg);
    }
    else
    if (streq (command, "CONNECT")) {
        char *address = zmsg_popstr (msg);
        char *service = zmsg_popstr (msg);
        if (self->nbr_servers < SERVER_MAX) {
            self->server [self->nbr_servers++] = server_new (
                self->ctx, address, atoi (service), self->subtree);
            //  We broadcast updates to all known servers
            zsocket_connect (self->publisher, "%s:%d",
                address, atoi (service) + 2);
        }
        else
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            zclock_log ("E: too many servers (max. %d)", SERVER_MAX);
        free (address);
        free (service);
    }
    else

When we set a property, we push the new key-value pair onto all our connected 
servers:

Example 83-9. Clone class (clone.c) - set and get commands

       char *key = zmsg_popstr (msg);
        char *value = zmsg_popstr (msg);
        char *ttl = zmsg_popstr (msg);
        zhash_update (self->kvmap, key, (byte *) value);
        zhash_freefn (self->kvmap, key, free);

        //  Send key-value pair on to server
        kvmsg_t *kvmsg = kvmsg_new (0);
        kvmsg_set_key  (kvmsg, key);
        kvmsg_set_uuid (kvmsg);
        kvmsg_fmt_body (kvmsg, "%s", value);
        kvmsg_set_prop (kvmsg, "ttl", ttl);
        kvmsg_send     (kvmsg, self->publisher);
        kvmsg_destroy (&kvmsg);
        free (ttl);
        free (key);             //  Value is owned by hash table
    }
    else
    if (streq (command, "GET")) {
        char *key = zmsg_popstr (msg);
        char *value = zhash_lookup (self->kvmap, key);
        if (value)
            zstr_send (self->pipe, value);
        else
            zstr_send (self->pipe, "");
        free (key);
        free (value);
    }
    free (command);
    zmsg_destroy (&msg);
    return 0;
}

The asynchronous agent manages a server pool and handles the request-reply dialog 
when the application asks for it:

Example 83-10. Clone class (clone.c) - backend agent

static void
clone_agent (void *args, zctx_t *ctx, void *pipe)
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{
    agent_t *self = agent_new (ctx, pipe);

    while (true) {
        zmq_pollitem_t poll_set [] = {
            { pipe, 0, ZMQ_POLLIN, 0 },
            { 0,    0, ZMQ_POLLIN, 0 }
        };
        int poll_timer = -1;
        int poll_size = 2;
        server_t *server = self->server [self->cur_server];
        switch (self->state) {
            case STATE_INITIAL:
                //  In this state we ask the server for a snapshot,
                //  if we have a server to talk to...
                if (self->nbr_servers > 0) {
                    zclock_log ("I: waiting for server at %s:%d...",
                        server->address, server->port);
                    if (server->requests < 2) {
                        zstr_sendm (server->snapshot, "ICANHAZ?");
                        zstr_send  (server->snapshot, self->subtree);
                        server->requests++;
                    }
                    server->expiry = zclock_time () + SERVER_TTL;
                    self->state = STATE_SYNCING;
                    poll_set [1].socket = server->snapshot;
                }
                else
                    poll_size = 1;
                break;
                
            case STATE_SYNCING:
                //  In this state we read from snapshot and we expect
                //  the server to respond, else we fail over.
                poll_set [1].socket = server->snapshot;
                break;
                
            case STATE_ACTIVE:
                //  In this state we read from subscriber and we expect
                //  the server to give hugz, else we fail over.
                poll_set [1].socket = server->subscriber;
                break;
        }
        if (server) {
            poll_timer = (server->expiry - zclock_time ())
                       * ZMQ_POLL_MSEC;
            if (poll_timer < 0)
                poll_timer = 0;
        }
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We’ re ready to process incoming messages; if nothing at all comes from our server 
within the timeout, that means the server is dead:

Example 83-11. Clone class (clone.c) - client poll loop

       int rc = zmq_poll (poll_set, poll_size, poll_timer);
        if (rc == -1)
            break;              //  Context has been shut down

        if (poll_set [0].revents & ZMQ_POLLIN) {
            if (agent_control_message (self))
                break;          //  Interrupted
        }
        else
        if (poll_set [1].revents & ZMQ_POLLIN) {
            kvmsg_t *kvmsg = kvmsg_recv (poll_set [1].socket);
            if (!kvmsg)
                break;          //  Interrupted

            //  Anything from server resets its expiry time
            server->expiry = zclock_time () + SERVER_TTL;
            if (self->state == STATE_SYNCING) {
                //  Store in snapshot until we're finished
                server->requests = 0;
                if (streq (kvmsg_key (kvmsg), "KTHXBAI")) {
                    self->sequence = kvmsg_sequence (kvmsg);
                    self->state = STATE_ACTIVE;
                    zclock_log ("I: received from %s:%d snapshot=%d",
                        server->address, server->port,
                        (int) self->sequence);
                    kvmsg_destroy (&kvmsg);
                }
                else
                    kvmsg_store (&kvmsg, self->kvmap);
            }
            else
            if (self->state == STATE_ACTIVE) {
                //  Discard out-of-sequence updates, incl. hugz
                if (kvmsg_sequence (kvmsg) > self->sequence) {
                    self->sequence = kvmsg_sequence (kvmsg);
                    kvmsg_store (&kvmsg, self->kvmap);
                    zclock_log ("I: received from %s:%d update=%d",
                        server->address, server->port,
                        (int) self->sequence);
                }
                else
                    kvmsg_destroy (&kvmsg);
            }
        }
        else {
            //  Server has died, failover to next
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            zclock_log ("I: server at %s:%d didn't give hugz",
                    server->address, server->port);
            self->cur_server = (self->cur_server + 1) % self->nbr_servers;
            self->state = STATE_INITIAL;
        }
    }
    agent_destroy (&self);
}





Postface
Tales from Out There

I asked some of the contributors to this book to tell us what they were doing with 
ØMQ. Here are their stories.

Rob Gagnon’ s Story
“ We use ØMQ to assist in aggregating thousands of events occurring every minute 

across our global network of telecommunications servers so that we can accurately 
report and monitor for situations that require our attention. ØMQ made the 
development of the system not only easier, but faster to develop, and more robust and 
fault-tolerant than we had originally planned in our original design.

“ We’ re able to easily add and remove clients from the network without the loss of any 
message. If we need to enhance the server portion of our system, we can stop and 
restart it as well, without having to worry about stopping all of the clients first. The 
built-in buffering of ØMQ makes this all possible.”

Tom van Leeuwen’ s Story
“ I was looking for creating some kind of service bus connecting all kinds of services 

together. There were already some products that implemented a broker, but they did 
not have the functionality I wanted/needed. By accident I stumbled upon ØMQ which 
is awesome. It’ s very lightweight, lean, simple and easy to follow since the zguide is very 
complete and reads very well. I’ ve actually implemented the Titanic pattern and the 
Majordomo broker with some additions (client/worker authentication and workers 
sending a catalog explaining what they provide and how they should be addressed).

“ The beautiful thing about ØMQ is the fact that it is a library and not an 
application. You can mold it however you like and it simply puts boring things like 
queuing, reconnecting, tcp sockets and such to the background, making sure you can 
concentrate on what is important for you. I’ ve implemented all kinds of workers/clients 
and the broker in Ruby, because that is the main language we use for development, but 
also some php clients to connect to the bus from existing php webapps. We use this 
service bus for cloud services connecting all kinds of platform devices to a service bus 
exposing functionality for automation.

“ ØMQ is very easy to understand and if you spend a day in the zguide, you’ ll have 
good knowledge of how it works. I’ m a network engineer, not a software developer, but 
managed to create a very nice solution for our automation needs! ØMQ: Thank you 
very much!”
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Michael Jakl’ s Story
“ We use ØMQ for distributing millions of documents per day in our distributed 

processing pipeline. We started out with big message queuing brokers that had their 
own respective issues and problems. In the quest of simplifying our architecture, we 
chose ØMQ to do the wiring. So far it had a huge impact in how our architecture scales 
and how easy it is to change/move the components. The plethora of language bindings 
lets us choose the right tool for the job without sacrificing interoperability in our 
system. We don’ t use a lot of sockets (less than 10 in our whole application), but that’ s 
all we needed to split a huge monolithic application into small independent parts.

“ All in all, ØMQ lets me keep my sanity and helps my customers to stay within 
budget.”

Vadim Shalts’ s Story
“ I am team leader in the company ActForex, which develops software for financial 

markets. Due to the nature of our domain, we need to process large volumes of prices 
quickly. In addition, it’ s extremely critical to minimize latency in processing orders and 
prices. Achieve a high throughput is not enough. Everything must be handled in a soft 
real time with a predictable ultra low latency per price. The system consists of multiple 
components which exchanging messages. Each price can take a lot of processing stages, 
each of which increases total latency. As a consequence, low and predictable latency of 
messaging between components becomes a key factor of our architecture.

“ We investigated different solutions to find suitable for our needs. We tried different 
message brokers (RabbitMQ, ActiveMQ Apollo, Kafka), but failed to reach a low and 
predictable latency with any of them. In the end, we have chosen ZeroMQ used in 
conjunction with ZooKeeper for service discovery. Complex coordination with ZeroMQ 
requires a relatively large effort and a good understanding, as a result of the natural 
complexity of multi-threading. We found that external agent like ZooKeeper is better 
choice for service discovery and coordination while ZeroMQ can be used primary for 
simple messaging. ZeroMQ perfectly fit into our architecture. It allowed us to achieve 
the desired latency using minimal efforts. It saved us from a bottleneck in the 
processing of messages and made processing time very stable and predictable.

“ I can decidedly recommend ZeroMQ for solutions where low latency is important.”

How This Book Happened
When I set out to write a ZeroMQ book, we were still debating the pros and cons of 

forks and pull requests in the ØMQ community. Today, for what it’ s worth, this 
argument seems settled: the “ liberal”  policy which we adopted for libzmq in early 2012 
broke our dependency on a single prime author, and opened the floor to dozens of new 
contributors. More profoundly, it allowed us to move to a gently organic evolutionary 
model, very different from the older forced-march model.
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The reason I was confident this would work was that our work on this book had, for a 
year or more, shown the way. True, the text is my own work, which is perhaps as it 
should be. Writing is not programming. When we write, we tell a story and one doesn’ t 
want different voices telling one tale, it feels strange.

For me the real long-term value of the book is the repository of examples: about 
65,000 lines of code in 24 different languages. It’ s partly about making ØMQ accessible 
to more people. People already refer to the Python and PHP example repositories— two 
of the most complete— when they want to tell others how to learn ØMQ. But it’ s also 
about learning programming languages.

Here’ s a loop of code in Tcl:

while {1} {
    # Process all parts of the message
    zmq message message
    frontend recv_msg message
    set more [frontend getsockopt RCVMORE]
    backend send_msg message [expr {$more?"SNDMORE":""}]
    message close
    if {!$more} {
        break ; # Last message part
    }
}

And here’ s the same loop in Lua:

while true do
    --  Process all parts of the message
    local msg = frontend:recv()
    if (frontend:getopt(zmq.RCVMORE) == 1) then
        backend:send(msg, zmq.SNDMORE)
    else
        backend:send(msg, 0)
        break;      --  Last message part
    end
end

And this particular example (rrbroker) is in C#, C++, CL, Clojure, Erlang, F#, Go, 
Haskell, Haxe, Java, Lua, Node.js, Perl, PHP, Python, Ruby, Scala, Tcl, and of course 
C. This code base, all provided as open source under the MIT/X11 license, may form 
the basis for other books, or projects.

But what this collection of translations says most profoundly is this: the language you 
choose is a detail, even a distraction. The power of ØMQ lies in the patterns it gives 
you and lets you build, and these transcend the comings and goings of languages. My 
goal as a software and social architect is to build structures that can last generations. 
There seems no point in aiming for mere decades.
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Removing Friction
I’ ll explain the technical tool chain we used in terms of the friction we removed. In 

this book we’ re telling a story and the goal is to reach as many people as possible, as 
cheaply and smoothly as we can.

The core idea was to host the text and examples on GitHub and make it easy for 
anyone to contribute. It turned out to be more complex than that, however.

Let’ s start with the division of labor. I’ m a good writer and can produce endless 
amounts of decent text quickly. But what was impossible for me was to provide the 
examples in other languages. Since the core ØMQ API is in C, it seemed logical to write 
the original examples in C. Also, C is a neutral choice; it’ s perhaps the only language 
that doesn’ t create strong emotions.

How to encourage people to make translations of the examples? We tried a few 
approaches and finally what worked best was to offer a “ choose your language”  link on 
every single example, in the text, which took people either to the translation, or to a 
page explaining how they could contribute. The way it usually works is that as people 
learn ØMQ in their preferred language, they contribute a handful of translations, or 
fixes to the existing ones.

At the same time I noticed a few people quite determinedly translating every single 
example. This was mainly binding authors who realized that the examples were a great 
way to encourage people to use their bindings. For their efforts, I extended the scripts 
to produce language-specific versions of the book. Instead of including the C code, we’ d 
include the Python, or PHP code. Lua and Haxe also got their dedicated Guides.

Once we have an idea of who works on what, we know how to structure the work 
itself. It’ s clear that to write and test an example, what you want to work on is source 
code. So we import this source code when we build the book, and that’ s how we make 
language-specific versions.

I like to write in a plain text format. It’ s fast and works well with source control 
systems like git. Since the main platform for our websites is Wikidot, I write using 
Wikidot’ s very readable markup format.

At least in the first chapters, it was important to draw pictures to explain the flow of 
messages between peers. Making diagrams by hand is a lot of work, and when we want 
to get final output in different formats, image conversion becomes a chore. I started 
with Ditaa, which turns text diagrams into PNGs, then later switched to asciitosvg, 
which produces SVG files, which are rather better. Having the graphics in the markup 
text, also as text, makes it remarkably easy to work.

By now you’ ll realize that the toolchain we use is highly customized, though it uses a 
lot of external tools. All are available on Ubuntu, which is a mercy, and the whole 
custom toolchain is in the zguide repository in the bin subdirectory.
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Let’ s walk through the editing and publishing process. Here is how we produce the 
online version:

bin/buildguide

Which works as follows:
• The original text sits in a series of text files (one per chapter).
• The examples sit in the examples subdirectory, classified per language.
• We take the text, and process this using a custom Perl script, mkwikidot, into a 

set of Wikidot-ready files.
• We do this for each of the languages that get their own Guide version.
• We extract the graphics and calls asciitosvg and rasterize on each one to 

produce image files, which it stores in the images subdirectory.
• We extract inline listings (which are not translated) and stores these in the 

listings subdirectory.
• We use pygmentize on each example and listing to create a marked-up page in 

Wikidot format.
• We upload all changed files to the online wiki using the Wikidot API.

Doing this from scratch takes a while. So we store the SHA1 signatures of every 
image, listing, example, and text file, and only process and upload changes, and that 
makes it easy to publish a new version of the text when people make new contributions.

To produce the PDF and Epub formats we do this:

bin/buildpdfs

Which works as follows:
• We use the custom mkdocbook Perl program on the input files to produce a 

DocBook output.
• We push the DocBook format through docbook2ps and ps2pdf to create clean 

PDFs, in each language.
• We push the DocBook format though db2epub to create Epub books, and in 

each language.
• We upload the PDFs to the public wiki using the Wikidot API.

It’ s important, when you create a community project, to lower the “ change latency” , 
i.e., the time it takes for people to see their work live. Or at least, to see that you’ ve 
accepted their pull request. If that is more than a day or two, you’ ve often lost your 
contributor’ s interest.

Licensing
I want people to reuse this text in their own work: in presentations, articles, and even 

other books. However, the deal is that if they remix my work, others can remix theirs. 
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I’ d like credit, and have no argument against others making money from their remixes. 
Thus, the text is licensed under cc-by-sa.

For the examples, we started with GPL, but it rapidly became clear this wasn’ t 
workable. The point of examples is to give people reusable code fragments so they will 
use ØMQ more widely, and if these are GPL that won’ t happen. We switched to 
MIT/X11, even for the larger and more complex examples that conceivably would work 
as LGPL.

However when we started turning the examples into stand-alone projects (as with 
Majordomo), we used the LGPL. Again, remixability trumps dissemination. Licenses 
are tools, use them with intent, not ideology.

Code Connected Volume 2
That’ s the end of Volume 1. If you’ ve worked your way through the examples and 

understood how they work, thank you for your patience and hard work. You can now 
rank yourself as a professional-grade ØMQ developer.

In the next volume, “ Code Connected Volume 2” , we’ ll take it to the next level. 
Writing code is one thing. Making successful products is something else. In the next 
book you’ ll learn how to do large-scale software architecture. I’ ll introduce a set of 
techniques of software development, and demonstrate them with worked examples, 
starting with ØMQ itself and ending with a general-purpose framework for distributed 
applications (Zyre). These techniques are independent of license, though open source 
amplifies them.
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