
An Introduction to GCC
for the GNU Compilers gcc and g++

Brian Gough
Foreword by Richard M. Stallman

A catalogue record for this book is available from the British Library.

First printing, March 2004 (7/3/2004).

Published by Network Theory Limited.

15 Royal Park
Bristol
BS8 3AL
United Kingdom

Email: info@network-theory.co.uk

ISBN 0-9541617-9-3

Further information about this book is available from
http://www.network-theory.co.uk/gcc/intro/

Cover Image: From a layout of a fast, energy-efficient hardware stack.(1)

Image created with the free Electric VLSI design system by Steven Rubin
of Static Free Software (www.staticfreesoft.com). Static Free Software
provides support for Electric to the electronics design industry.

Copyright c© 2004 Network Theory Ltd.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no
Invariant Sections, with the Front-Cover Texts being “A Network Theory
Manual”, and with the Back-Cover Texts as in (a) below. A copy of
the license is included in the section entitled “GNU Free Documentation
License”.

(a) The Back-Cover Text is: “The development of this manual was funded
entirely by Network Theory Ltd. Copies published by Network Theory
Ltd raise money for more free documentation.”

The Texinfo source for this manual may be obtained from:
http://www.network-theory.co.uk/gcc/intro/src/

(1) “A Fast and Energy-Efficient Stack” by J. Ebergen, D. Finchelstein, R. Kao,
J. Lexau and R. Hopkins.

i

Table of Contents

Foreword . 1

1 Introduction . 3
1.1 A brief history of GCC . 3
1.2 Major features of GCC . 4
1.3 Programming in C and C++ . 4
1.4 Conventions used in this manual. 5

2 Compiling a C program 7
2.1 Compiling a simple C program . 7
2.2 Finding errors in a simple program . 8
2.3 Compiling multiple source files . 9
2.4 Compiling files independently . 10

2.4.1 Creating object files from source files 11
2.4.2 Creating executables from object files. 11
2.4.3 Link order of object files . 12

2.5 Recompiling and relinking . 13
2.6 Linking with external libraries . 14

2.6.1 Link order of libraries . 15
2.7 Using library header files . 16

3 Compilation options 19
3.1 Setting search paths . 19

3.1.1 Search path example . 20
3.1.2 Environment variables . 21
3.1.3 Extended search paths . 22

3.2 Shared libraries and static libraries 23
3.3 C language standards . 25

3.3.1 ANSI/ISO . 26
3.3.2 Strict ANSI/ISO . 28
3.3.3 Selecting specific standards 28

3.4 Warning options in -Wall . 29
3.5 Additional warning options . 30

ii An Introduction to GCC

4 Using the preprocessor 35
4.1 Defining macros . 35
4.2 Macros with values . 36
4.3 Preprocessing source files . 38

5 Compiling for debugging 41
5.1 Examining core files . 41
5.2 Displaying a backtrace . 43

6 Compiling with optimization 45
6.1 Source-level optimization . 45

6.1.1 Common subexpression elimination 45
6.1.2 Function inlining . 46

6.2 Speed-space tradeoffs . 47
6.2.1 Loop unrolling . 47

6.3 Scheduling . 49
6.4 Optimization levels . 49
6.5 Examples . 50
6.6 Optimization and debugging . 52
6.7 Optimization and compiler warnings 53

7 Compiling a C++ program 55
7.1 Compiling a simple C++ program . 55
7.2 Using the C++ standard library . 56
7.3 Templates . 57

7.3.1 Using C++ standard library templates 57
7.3.2 Providing your own templates. 58
7.3.3 Explicit template instantiation 60
7.3.4 The export keyword . 61

8 Platform-specific options 63
8.1 Intel and AMD x86 options . 63
8.2 DEC Alpha options . 64
8.3 SPARC options . 65
8.4 POWER/PowerPC options . 65
8.5 Multi-architecture support . 66

9 Troubleshooting. 69
9.1 Help for command-line options . 69
9.2 Version numbers . 69
9.3 Verbose compilation . 70

iii

10 Compiler-related tools. 73
10.1 Creating a library with the GNU archiver 73
10.2 Using the profiler gprof . 75
10.3 Coverage testing with gcov . 77

11 How the compiler works 81
11.1 An overview of the compilation process 81
11.2 The preprocessor . 81
11.3 The compiler . 82
11.4 The assembler . 83
11.5 The linker . 83

12 Examining compiled files 85
12.1 Identifying files . 85
12.2 Examining the symbol table . 86
12.3 Finding dynamically linked libraries 86

13 Getting help . 89

Further reading . 91

Acknowledgements . 93

Other books from the publisher 95

Free software organizations 97

GNU Free Documentation License 99
ADDENDUM: How to use this License for your

documents . 104

Index . 105

iv An Introduction to GCC

Foreword 1

Foreword
This foreword has been kindly contributed by Richard M. Stallman, the
principal author of GCC and founder of the GNU Project.

This book is a guide to getting started with GCC, the GNU Compiler
Collection. It will tell you how to use GCC as a programming tool. GCC
is a programming tool, that’s true—but it is also something more. It is
part of a 20-year campaign for freedom for computer users.

We all want good software, but what does it mean for software to
be “good”? Convenient features and reliability are what it means to be
technically good, but that is not enough. Good software must also be
ethically good: it has to respect the users’ freedom.

As a user of software, you should have the right to run it as you see
fit, the right to study the source code and then change it as you see fit,
the right to redistribute copies of it to others, and the right to publish a
modified version so that you can contribute to building the community.
When a program respects your freedom in this way, we call it free software.
Before GCC, there were other compilers for C, Fortran, Ada, etc. But
they were not free software; you could not use them in freedom. I wrote
GCC so we could use a compiler without giving up our freedom.

A compiler alone is not enough—to use a computer system, you need
a whole operating system. In 1983, all operating system for modern com-
puters were non-free. To remedy this, in 1984 I began developing the
GNU operating system, a Unix-like system that would be free software.
Developing GCC was one part of developing GNU.

By the early 90s, the nearly-finished GNU operating system was com-
pleted by the addition of a kernel, Linux, that became free software in
1992. The combined GNU/Linux operating system has achieved the goal
of making it possible to use a computer in freedom. But freedom is never
automatically secure, and we need to work to defend it. The Free Software
Movement needs your support.

Richard M. Stallman
February 2004

2 An Introduction to GCC

Chapter 1: Introduction 3

1 Introduction

The purpose of this book is to explain the use of the GNU C and C++
compilers, gcc and g++. After reading this book you should understand
how to compile a program, and how to use basic compiler options for
optimization and debugging. This book does not attempt to teach the C
or C++ languages themselves, since this material can be found in many
other places (see [Further reading], page 91).

Experienced programmers who are familiar with other systems, but
new to the GNU compilers, can skip the early sections of the chapters
“Compiling a C program”, “Using the preprocessor” and “Compiling a
C++ program”. The remaining sections and chapters should provide a
good overview of the features of GCC for those already know how to use
other compilers.

1.1 A brief history of GCC

The original author of the GNU C Compiler (GCC) is Richard Stallman,
the founder of the GNU Project.

The GNU project was started in 1984 to create a complete Unix-like
operating system as free software, in order to promote freedom and coop-
eration among computer users and programmers. Every Unix-like oper-
ating system needs a C compiler, and as there were no free compilers in
existence at that time, the GNU Project had to develop one from scratch.
The work was funded by donations from individuals and companies to the
Free Software Foundation, a non-profit organization set up to support the
work of the GNU Project.

The first release of GCC was made in 1987. This was a significant
breakthrough, being the first portable ANSI C optimizing compiler re-
leased as free software. Since that time GCC has become one of the most
important tools in the development of free software.

A major revision of the compiler came with the 2.0 series in 1992,
which added the ability to compile C++. In 1997 an experimental branch
of the compiler (EGCS) was created, to improve optimization and C++
support. Following this work, EGCS was adopted as the new main-line of
GCC development, and these features became widely available in the 3.0
release of GCC in 2001.

Over time GCC has been extended to support many additional lan-
guages, including Fortran, ADA, Java and Objective-C. The acronym

4 An Introduction to GCC

GCC is now used to refer to the “GNU Compiler Collection”. Its devel-
opment is guided by the GCC Steering Committee, a group composed
of representatives from GCC user communities in industry, research and
academia.

1.2 Major features of GCC

This section describes some of the most important features of GCC.

First of all, GCC is a portable compiler—it runs on most platforms
available today, and can produce output for many types of processors. In
addition to the processors used in personal computers, it also supports
microcontrollers, DSPs and 64-bit CPUs.

GCC is not only a native compiler—it can also cross-compile any pro-
gram, producing executable files for a different system from the one used
by GCC itself. This allows software to be compiled for embedded systems
which are not capable of running a compiler. GCC is written in C with
a strong focus on portability, and can compile itself, so it can be adapted
to new systems easily.

GCC has multiple language frontends, for parsing different languages.
Programs in each language can be compiled, or cross-compiled, for any
architecture. For example, an ADA program can be compiled for a mi-
crocontroller, or a C program for a supercomputer.

GCC has a modular design, allowing support for new languages and
architectures to be added. Adding a new language front-end to GCC
enables the use of that language on any architecture, provided that the
necessary run-time facilities (such as libraries) are available. Similarly,
adding support for a new architecture makes it available to all languages.

Finally, and most importantly, GCC is free software, distributed under
the GNU General Public License (GNU GPL).(1) This means you have
the freedom to use and to modify GCC, as with all GNU software. If you
need support for a new type of CPU, a new language, or a new feature
you can add it yourself, or hire someone to enhance GCC for you. You
can hire someone to fix a bug if it is important for your work.

Furthermore, you have the freedom to share any enhancements you
make to GCC. As a result of this freedom you can also make use of
enhancements to GCC developed by others. The many features offered
by GCC today show how this freedom to cooperate works to benefit you,
and everyone else who uses GCC.

(1) For details see the license file ‘COPYING’ distributed with GCC.

Chapter 1: Introduction 5

1.3 Programming in C and C++

C and C++ are languages that allow direct access to the computer’s mem-
ory. Historically, they have been used for writing low-level systems soft-
ware, and applications where high-performance or control over resource
usage are critical. However, great care is required to ensure that mem-
ory is accessed correctly, to avoid corrupting other data-structures. This
book describes techniques that will help in detecting potential errors dur-
ing compilation, but the risk in using languages like C or C++ can never
be eliminated.

In addition to C and C++ the GNU Project also provides other high-
level languages, such as GNU Common Lisp (gcl), GNU Smalltalk (gst),
the GNU Scheme extension language (guile) and the GNU Compiler for
Java (gcj). These languages do not allow the user to access memory
directly, eliminating the possibility of memory access errors. They are a
safer alternative to C and C++ for many applications.

1.4 Conventions used in this manual

This manual contains many examples which can be typed at the keyboard.
A command entered at the terminal is shown like this,

$ command

followed by its output. For example:

$ echo "hello world"

hello world

The first character on the line is the terminal prompt, and should not be
typed. The dollar sign ‘$’ is used as the standard prompt in this manual,
although some systems may use a different character.

When a command in an example is too long to fit in a single line it is
wrapped and then indented on subsequent lines, like this:

$ echo "an example of a line which is too long to fit

in this manual"

When entered at the keyboard, the entire command should be typed on
a single line.

The example source files used in this manual can be downloaded from
the publisher’s website,(2) or entered by hand using any text editor, such
as the standard GNU editor, emacs. The example compilation commands
use gcc and g++ as the names of the GNU C and C++ compilers, and cc

to refer to other compilers. The example programs should work with any

(2) See http://www.network-theory.co.uk/gcc/intro/

6 An Introduction to GCC

version of GCC. Any command-line options which are only available in
recent versions of GCC are noted in the text.

The examples assume the use of a GNU operating system—there may
be minor differences in the output on other systems. Some non-essential
and verbose system-dependent output messages (such as very long system
paths) have been edited in the examples for brevity. The commands for
setting environment variables use the syntax of the standard GNU shell
(bash), and should work with any version of the Bourne shell.

Chapter 2: Compiling a C program 7

2 Compiling a C program

This chapter describes how to compile C programs using gcc. Programs
can be compiled from a single source file or from multiple source files, and
may use system libraries and header files.

Compilation refers to the process of converting a program from the
textual source code, in a programming language such as C or C++, into
machine code, the sequence of 1’s and 0’s used to control the central
processing unit (CPU) of the computer. This machine code is then stored
in a file known as an executable file, sometimes referred to as a binary
file.

2.1 Compiling a simple C program

The classic example program for the C language is Hello World. Here is
the source code for our version of the program:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

We will assume that the source code is stored in a file called ‘hello.c’.
To compile the file ‘hello.c’ with gcc, use the following command:

$ gcc -Wall hello.c -o hello

This compiles the source code in ‘hello.c’ to machine code and stores
it in an executable file ‘hello’. The output file for the machine code is
specified using the ‘-o’ option. This option is usually given as the last
argument on the command line. If it is omitted, the output is written to
a default file called ‘a.out’.

Note that if a file with the same name as the executable file already
exists in the current directory it will be overwritten.

The option ‘-Wall’ turns on all the most commonly-used compiler
warnings—it is recommended that you always use this option! There are
many other warning options which will be discussed in later chapters, but
‘-Wall’ is the most important. GCC will not produce any warnings unless

8 An Introduction to GCC

they are enabled. Compiler warnings are an essential aid in detecting
problems when programming in C and C++.

In this case, the compiler does not produce any warnings with the
‘-Wall’ option, since the program is completely valid. Source code which
does not produce any warnings is said to compile cleanly.

To run the program, type the path name of the executable like this:

$./hello

Hello, world!

This loads the executable file into memory and causes the CPU to begin
executing the instructions contained within it. The path ./ refers to the
current directory, so ./hello loads and runs the executable file ‘hello’
located in the current directory.

2.2 Finding errors in a simple program

As mentioned above, compiler warnings are an essential aid when pro-
gramming in C and C++. To demonstrate this, the program below con-
tains a subtle error: it uses the function printf incorrectly, by specifying
a floating-point format ‘%f’ for an integer value:

#include <stdio.h>

int

main (void)

{

printf ("Two plus two is %f\n", 4);

return 0;

}

This error is not obvious at first sight, but can be detected by the compiler
if the warning option ‘-Wall’ has been enabled.

Compiling the program above, ‘bad.c’, with the warning option
‘-Wall’ produces the following message:

$ gcc -Wall bad.c -o bad

bad.c: In function ‘main’:

bad.c:6: warning: double format, different

type arg (arg 2)

This indicates that a format string has been used incorrectly in the file
‘bad.c’ at line 6. The messages produced by GCC always have the form
file:line-number:message. The compiler distinguishes between error mes-
sages, which prevent successful compilation, and warning messages which
indicate possible problems (but do not stop the program from compiling).

In this case, the correct format specifier would have been ‘%d’ (the
allowed format specifiers for printf can be found in any general book on

Chapter 2: Compiling a C program 9

C, such as the GNU C Library Reference Manual, see [Further reading],
page 91).

Without the warning option ‘-Wall’ the program appears to compile
cleanly, but produces incorrect results:

$ gcc bad.c -o bad

$./bad

Two plus two is 2.585495 (incorrect output)

The incorrect format specifier causes the output to be corrupted, because
the function printf is passed an integer instead of a floating-point num-
ber. Integers and floating-point numbers are stored in different formats
in memory, and generally occupy different numbers of bytes, leading to a
spurious result. The actual output shown above may differ, depending on
the specific platform and environment.

Clearly, it is very dangerous to develop a program without checking
for compiler warnings. If there are any functions which are not used
correctly they can cause the program to crash, or to produce incorrect
results. Turning on the compiler warning option ‘-Wall’ will catch many
of the commonest errors which occur in C programming.

2.3 Compiling multiple source files

A program can be split up into multiple files. This makes it easier to edit
and understand, especially in the case of large programs—it also allows
the individual parts to be compiled independently.

In the following example we will split up the program Hello World into
three files: ‘main.c’, ‘hello_fn.c’ and the header file ‘hello.h’. Here is
the main program ‘main.c’:

#include "hello.h"

int

main (void)

{

hello ("world");

return 0;

}

The original call to the printf system function in the previous program
‘hello.c’ has been replaced by a call to a new external function hello,
which we will define in a separate file ‘hello_fn.c’.

The main program also includes the header file ‘hello.h’ which will
contain the declaration of the function hello. The declaration is used
to ensure that the types of the arguments and return value match up
correctly between the function call and the function definition. We no

10 An Introduction to GCC

longer need to include the system header file ‘stdio.h’ in ‘main.c’ to
declare the function printf, since the file ‘main.c’ does not call printf
directly.

The declaration in ‘hello.h’ is a single line specifying the prototype
of the function hello:

void hello (const char * name);

The definition of the function hello itself is contained in the file
‘hello_fn.c’:

#include <stdio.h>

#include "hello.h"

void

hello (const char * name)

{

printf ("Hello, %s!\n", name);

}

This function prints the message “Hello, name!” using its argument as
the value of name.

Incidentally, the difference between the two forms of the include state-
ment #include "FILE.h" and #include <FILE.h> is that the former
searches for ‘FILE.h’ in the current directory before looking in the sys-
tem header file directories. The include statement #include <FILE.h>

searches the system header files, but does not look in the current direc-
tory by default.

To compile these source files with gcc, use the following command:

$ gcc -Wall main.c hello_fn.c -o newhello

In this case, we use the ‘-o’ option to specify a different output file for
the executable, ‘newhello’. Note that the header file ‘hello.h’ is not
specified in the list of files on the command line. The directive #include

"hello.h" in the source files instructs the compiler to include it auto-
matically at the appropriate points.

To run the program, type the path name of the executable:

$./newhello

Hello, world!

All the parts of the program have been combined into a single executable
file, which produces the same result as the executable created from the
single source file used earlier.

Chapter 2: Compiling a C program 11

2.4 Compiling files independently

If a program is stored in a single file then any change to an individual
function requires the whole program to be recompiled to produce a new
executable. The recompilation of large source files can be very time-
consuming.

When programs are stored in independent source files, only the files
which have changed need to be recompiled after the source code has been
modified. In this approach, the source files are compiled separately and
then linked together—a two stage process. In the first stage, a file is
compiled without creating an executable. The result is referred to as an
object file, and has the extension ‘.o’ when using GCC.

In the second stage, the object files are merged together by a separate
program called the linker. The linker combines all the object files together
to create a single executable.

An object file contains machine code where any references to the mem-
ory addresses of functions (or variables) in other files are left undefined.
This allows source files to be compiled without direct reference to each
other. The linker fills in these missing addresses when it produces the
executable.

2.4.1 Creating object files from source files

The command-line option ‘-c’ is used to compile a source file to an object
file. For example, the following command will compile the source file
‘main.c’ to an object file:

$ gcc -Wall -c main.c

This produces an object file ‘main.o’ containing the machine code for the
main function. It contains a reference to the external function hello, but
the corresponding memory address is left undefined in the object file at
this stage (it will be filled in later by linking).

The corresponding command for compiling the hello function in the
source file ‘hello_fn.c’ is:

$ gcc -Wall -c hello_fn.c

This produces the object file ‘hello_fn.o’.

Note that there is no need to use the option ‘-o’ to specify the name
of the output file in this case. When compiling with ‘-c’ the compiler
automatically creates an object file whose name is the same as the source
file, with ‘.o’ instead of the original extension.

There is no need to put the header file ‘hello.h’ on the command line,
since it is automatically included by the #include statements in ‘main.c’
and ‘hello_fn.c’.

12 An Introduction to GCC

2.4.2 Creating executables from object files

The final step in creating an executable file is to use gcc to link the object
files together and fill in the missing addresses of external functions. To
link object files together, they are simply listed on the command line:

$ gcc main.o hello_fn.o -o hello

This is one of the few occasions where there is no need to use the ‘-Wall’
warning option, since the individual source files have already been success-
fully compiled to object code. Once the source files have been compiled,
linking is an unambiguous process which either succeeds or fails (it fails
only if there are references which cannot be resolved).

To perform the linking step gcc uses the linker ld, which is a separate
program. On GNU systems the GNU linker, GNU ld, is used. Other
systems may use the GNU linker with GCC, or may have their own linkers.
The linker itself will be discussed later (see Chapter 11 [How the compiler
works], page 81). By running the linker, gcc creates an executable file
from the object files.

The resulting executable file can now be run:

$./hello

Hello, world!

It produces the same output as the version of the program using a single
source file in the previous section.

2.4.3 Link order of object files

On Unix-like systems, the traditional behavior of compilers and linkers
is to search for external functions from left to right in the object files
specified on the command line. This means that the object file which
contains the definition of a function should appear after any files which
call that function.

In this case, the file ‘hello_fn.o’ containing the function hello should
be specified after ‘main.o’ itself, since main calls hello:

$ gcc main.o hello_fn.o -o hello (correct order)

With some compilers or linkers the opposite ordering would result in an
error,

$ cc hello_fn.o main.o -o hello (incorrect order)
main.o: In function ‘main’:

main.o(.text+0xf): undefined reference to ‘hello’

because there is no object file containing hello after ‘main.o’.

Most current compilers and linkers will search all object files, regard-
less of order, but since not all compilers do this it is best to follow the
convention of ordering object files from left to right.

Chapter 2: Compiling a C program 13

This is worth keeping in mind if you ever encounter unexpected prob-
lems with undefined references, and all the necessary object files appear
to be present on the command line.

2.5 Recompiling and relinking

To show how source files can be compiled independently we will edit the
main program ‘main.c’ and modify it to print a greeting to everyone

instead of world:

#include "hello.h"

int

main (void)

{

hello ("everyone"); /* changed from "world" */

return 0;

}

The updated file ‘main.c’ can now be recompiled with the following com-
mand:

$ gcc -Wall -c main.c

This produces a new object file ‘main.o’. There is no need to create a
new object file for ‘hello_fn.c’, since that file and the related files that
it depends on, such as header files, have not changed.

The new object file can be relinked with the hello function to create
a new executable file:

$ gcc main.o hello_fn.o -o hello

The resulting executable ‘hello’ now uses the new main function to pro-
duce the following output:

$./hello

Hello, everyone!

Note that only the file ‘main.c’ has been recompiled, and then relinked
with the existing object file for the hello function. If the file ‘hello_fn.c’
had been modified instead, we could have recompiled ‘hello_fn.c’ to
create a new object file ‘hello_fn.o’ and relinked this with the existing
file ‘main.o’.(1)

In general, linking is faster than compilation—in a large project with
many source files, recompiling only those that have been modified can
make a significant saving. The process of recompiling only the modified

(1) If the prototype of a function has changed, it is necessary to modify and
recompile all of the other source files which use it.

14 An Introduction to GCC

files in a project can be automated using GNU Make (see [Further read-
ing], page 91).

2.6 Linking with external libraries

A library is a collection of precompiled object files which can be linked
into programs. The most common use of libraries is to provide system
functions, such as the square root function sqrt found in the C math
library.

Libraries are typically stored in special archive files with the extension
‘.a’, referred to as static libraries. They are created from object files with
a separate tool, the GNU archiver ar, and used by the linker to resolve
references to functions at compile-time. We will see later how to create
libraries using the ar command (see Chapter 10 [Compiler-related tools],
page 73). For simplicity, only static libraries are covered in this section—
dynamic linking at runtime using shared libraries will be described in the
next chapter.

The standard system libraries are usually found in the directories
‘/usr/lib’ and ‘/lib’.(2) For example, the C math library is typically
stored in the file ‘/usr/lib/libm.a’ on Unix-like systems. The corre-
sponding prototype declarations for the functions in this library are given
in the header file ‘/usr/include/math.h’. The C standard library itself
is stored in ‘/usr/lib/libc.a’ and contains functions specified in the
ANSI/ISO C standard, such as ‘printf’—this library is linked by default
for every C program.

Here is an example program which makes a call to the external function
sqrt in the math library ‘libm.a’:

#include <math.h>

#include <stdio.h>

int

main (void)

{

double x = sqrt (2.0);

printf ("The square root of 2.0 is %f\n", x);

return 0;

}

Trying to create an executable from this source file alone causes the com-
piler to give an error at the link stage:

(2) On systems supporting both 64 and 32-bit executables the 64-bit versions
of the libraries will often be stored in ‘/usr/lib64’ and ‘/lib64’, with the
32-bit versions in ‘/usr/lib’ and ‘/lib’.

Chapter 2: Compiling a C program 15

$ gcc -Wall calc.c -o calc

/tmp/ccbR6Ojm.o: In function ‘main’:

/tmp/ccbR6Ojm.o(.text+0x19): undefined reference

to ‘sqrt’

The problem is that the reference to the sqrt function cannot be resolved
without the external math library ‘libm.a’. The function sqrt is not de-
fined in the program or the default library ‘libc.a’, and the compiler does
not link to the file ‘libm.a’ unless it is explicitly selected. Incidentally,
the file mentioned in the error message ‘/tmp/ccbR60jm.o’ is a temporary
object file created by the compiler from ‘calc.c’, in order to carry out
the linking process.

To enable the compiler to link the sqrt function to the main pro-
gram ‘calc.c’ we need to supply the library ‘libm.a’. One obvious but
cumbersome way to do this is to specify it explicitly on the command line:

$ gcc -Wall calc.c /usr/lib/libm.a -o calc

The library ‘libm.a’ contains object files for all the mathematical func-
tions, such as sin, cos, exp, log and sqrt. The linker searches through
these to find the object file containing the sqrt function.

Once the object file for the sqrt function has been found, the main
program can be linked and a complete executable produced:

$./calc

The square root of 2.0 is 1.414214

The executable file includes the machine code for the main function and
the machine code for the sqrt function, copied from the corresponding
object file in the library ‘libm.a’.

To avoid the need to specify long paths on the command line, the
compiler provides a short-cut option ‘-l’ for linking against libraries. For
example, the following command,

$ gcc -Wall calc.c -lm -o calc

is equivalent to the original command above using the full library name
‘/usr/lib/libm.a’.

In general, the compiler option ‘-lNAME ’ will attempt to link object
files with a library file ‘libNAME.a’ in the standard library directories.
Additional directories can specified with command-line options and envi-
ronment variables, to be discussed shortly. A large program will typically
use many ‘-l’ options to link libraries such as the math library, graphics
libraries and networking libraries.

2.6.1 Link order of libraries

The ordering of libraries on the command line follows the same convec-
tion as for object files: they are searched from left to right—a library

16 An Introduction to GCC

containing the definition of a function should appear after any source
files or object files which use it. This includes libraries specified with the
short-cut ‘-l’ option, as shown in the following command:

$ gcc -Wall calc.c -lm -o calc (correct order)

With some compilers the opposite ordering (placing the ‘-lm’ option be-
fore the file which uses it) would result in an error,

$ cc -Wall -lm calc.c -o calc (incorrect order)
main.o: In function ‘main’:

main.o(.text+0xf): undefined reference to ‘sqrt’

because there is no library or object file containing sqrt after ‘calc.c’.
The option ‘-lm’ should appear after the file ‘calc.c’.

When several libraries are being used, the same convention should
be followed for the libraries themselves. A library which calls an exter-
nal function defined in another library should appear before the library
containing the function.

For example, a program ‘data.c’ using the GNU Linear Programming
library ‘libglpk.a’, which in turn uses the math library ‘libm.a’, should
be compiled as,

$ gcc -Wall data.c -lglpk -lm

since the object files in ‘libglpk.a’ use functions defined in ‘libm.a’.

As for object files, most current compilers will search all libraries,
regardless of order. However, since not all compilers do this it is best to
follow the convention of ordering libraries from left to right.

2.7 Using library header files

When using a library it is essential to include the appropriate header
files, in order to declare the function arguments and return values with
the correct types. Without declarations, the arguments of a function can
be passed with the wrong type, causing corrupted results.

The following example shows another program which makes a function
call to the C math library. In this case, the function pow is used to compute
the cube of two (2 raised to the power of 3):

#include <stdio.h>

int

main (void)

{

double x = pow (2.0, 3.0);

printf ("Two cubed is %f\n", x);

return 0;

Chapter 2: Compiling a C program 17

}

However, the program contains an error—the #include statement for
‘math.h’ is missing, so the prototype double pow (double x, double y)

given there will not be seen by the compiler.

Compiling the program without any warning options will produce an
executable file which gives incorrect results:

$ gcc badpow.c -lm

$./a.out

Two cubed is 2.851120 (incorrect result, should be 8)

The results are corrupted because the arguments and return value of the
call to pow are passed with incorrect types.(3) This can be detected by
turning on the warning option ‘-Wall’:

$ gcc -Wall badpow.c -lm

badpow.c: In function ‘main’:

badpow.c:6: warning: implicit declaration of

function ‘pow’

This example shows again the importance of using the warning option
‘-Wall’ to detect serious problems that could otherwise easily be over-
looked.

(3) The actual output shown above may differ, depending on the specific plat-
form and environment.

18 An Introduction to GCC

Chapter 3: Compilation options 19

3 Compilation options
This chapter describes other commonly-used compiler options available
in GCC. These options control features such as the search paths used
for locating libraries and include files, the use of additional warnings and
diagnostics, preprocessor macros and C language dialects.

3.1 Setting search paths

In the last chapter, we saw how to link to a program with functions in the
C math library ‘libm.a’, using the short-cut option ‘-lm’ and the header
file ‘math.h’.

A common problem when compiling a program using library header
files is the error:

FILE.h: No such file or directory

This occurs if a header file is not present in the standard include file
directories used by gcc. A similar problem can occur for libraries:

/usr/bin/ld: cannot find library

This happens if a library used for linking is not present in the standard
library directories used by gcc.

By default, gcc searches the following directories for header files:

/usr/local/include/

/usr/include/

and the following directories for libraries:

/usr/local/lib/

/usr/lib/

The list of directories for header files is often referred to as the include
path, and the list of directories for libraries as the library search path or
link path.

The directories on these paths are searched in order, from first to
last in the two lists above.(1) For example, a header file found in
‘/usr/local/include’ takes precedence over a file with the same name
in ‘/usr/include’. Similarly, a library found in ‘/usr/local/lib’ takes
precedence over a library with the same name in ‘/usr/lib’.

(1) The default search paths may also include additional system-dependent
or site-specific directories, and directories in the GCC installation itself.
For example, on 64-bit platforms additional ‘lib64’ directories may also be
searched by default.

20 An Introduction to GCC

When additional libraries are installed in other directories it is nec-
essary to extend the search paths, in order for the libraries to be found.
The compiler options ‘-I’ and ‘-L’ add new directories to the beginning
of the include path and library search path respectively.

3.1.1 Search path example

The following example program uses a library that might be installed
as an additional package on a system—the GNU Database Management
Library (GDBM). The GDBM Library stores key-value pairs in a DBM
file, a type of data file which allows values to be stored and indexed by a
key (an arbitrary sequence of characters). Here is the example program
‘dbmain.c’, which creates a DBM file containing a key ‘testkey’ with the
value ‘testvalue’:

#include <stdio.h>

#include <gdbm.h>

int

main (void)

{

GDBM_FILE dbf;

datum key = { "testkey", 7 }; /* key, length */

datum value = { "testvalue", 9 }; /* value, length */

printf ("Storing key-value pair... ");

dbf = gdbm_open ("test", 0, GDBM_NEWDB, 0644, 0);

gdbm_store (dbf, key, value, GDBM_INSERT);

gdbm_close (dbf);

printf ("done.\n");

return 0;

}

The program uses the header file ‘gdbm.h’ and the library ‘libgdbm.a’. If
the library has been installed in the default location of ‘/usr/local/lib’,
with the header file in ‘/usr/local/include’, then the program can be
compiled with the following simple command:

$ gcc -Wall dbmain.c -lgdbm

Both these directories are part of the default gcc include and link paths.

However, if GDBM has been installed in a different location, trying to
compile the program will give the following error:

$ gcc -Wall dbmain.c -lgdbm

dbmain.c:1: gdbm.h: No such file or directory

Chapter 3: Compilation options 21

For example, if version 1.8.3 of the GDBM package is installed under the
directory ‘/opt/gdbm-1.8.3’ the location of the header file would be,

/opt/gdbm-1.8.3/include/gdbm.h

which is not part of the default gcc include path. Adding the appropriate
directory to the include path with the command-line option ‘-I’ allows
the program to be compiled, but not linked:

$ gcc -Wall -I/opt/gdbm-1.8.3/include dbmain.c -lgdbm

/usr/bin/ld: cannot find -lgdbm

collect2: ld returned 1 exit status

The directory containing the library is still missing from the link path. It
can be added to the link path using the following option:

-L/opt/gdbm-1.8.3/lib/

The following command line allows the program to be compiled and linked:

$ gcc -Wall -I/opt/gdbm-1.8.3/include

-L/opt/gdbm-1.8.3/lib dbmain.c -lgdbm

This produces the final executable linked to the GDBM library. Before
seeing how to run this executable we will take a brief look at the environ-
ment variables that affect the ‘-I’ and ‘-L’ options.

Note that you should never place the absolute paths of header files in
#include statements in your source code, as this will prevent the program
from compiling on other systems. The ‘-I’ option or the INCLUDE_PATH

variable described below should always be used to set the include path for
header files.

3.1.2 Environment variables

The search paths for header files and libraries can also be controlled
through environment variables in the shell. These may be set au-
tomatically for each session using the appropriate login file, such as
‘.bash_profile’.

Additional directories can be added to the include path using the envi-
ronment variable C_INCLUDE_PATH (for C header files) or CPLUS_INCLUDE_
PATH (for C++ header files). For example, the following commands will
add ‘/opt/gdbm-1.8.3/include’ to the include path when compiling C
programs:

$ C_INCLUDE_PATH=/opt/gdbm-1.8.3/include

$ export C_INCLUDE_PATH

This directory will be searched after any directories specified on the com-
mand line with the option ‘-I’, and before the standard default directories
‘/usr/local/include’ and ‘/usr/include’. The shell command export

is needed to make the environment variable available to programs out-
side the shell itself, such as the compiler—it is only needed once for each

22 An Introduction to GCC

variable in each shell session, and can also be set in the appropriate login
file.

Similarly, additional directories can be added to the link path using
the environment variable LIBRARY_PATH. For example, the following com-
mands will add ‘/opt/gdbm-1.8.3/lib’ to the link path:

$ LIBRARY_PATH=/opt/gdbm-1.8.3/lib

$ export LIBRARY_PATH

This directory will be searched after any directories specified on the com-
mand line with the option ‘-L’, and before the standard default directories
‘/usr/local/lib’ and ‘/usr/lib’.

With the environment variable settings given above the program
‘dbmain.c’ can be compiled without the ‘-I’ and ‘-L’ options,

$ gcc -Wall dbmain.c -lgdbm

because the default paths now use the directories specified in the environ-
ment variables C_INCLUDE_PATH and LIBRARY_PATH.

3.1.3 Extended search paths

Following the standard Unix convention for search paths, several direc-
tories can be specified together in an environment variable as a colon
separated list:

DIR1:DIR2:DIR3:...

The directories are then searched in order from left to right. A single dot
‘.’ can be used to specify the current directory.(2)

For example, the following settings create default include and link
paths for packages installed in the current directory ‘.’ and the ‘include’
and ‘lib’ directories under ‘/opt/gdbm-1.8.3’ and ‘/net’ respectively:

$ C_INCLUDE_PATH=.:/opt/gdbm-1.8.3/include:/net/include

$ LIBRARY_PATH=.:/opt/gdbm-1.8.3/lib:/net/lib

To specify multiple search path directories on the command line, the op-
tions ‘-I’ and ‘-L’ can be repeated. For example, the following command,

$ gcc -I. -I/opt/gdbm-1.8.3/include -I/net/include

-L. -L/opt/gdbm-1.8.3/lib -L/net/lib

is equivalent to the environment variable settings given above.

When environment variables and command-line options are used to-
gether the compiler searches the directories in the following order:

1. command-line options ‘-I’ and ‘-L’, from left to right

(2) The current directory can also be specified using an empty path element.
For example, :DIR1:DIR2 is equivalent to .:DIR1:DIR2 .

Chapter 3: Compilation options 23

2. directories specified by environment variables, such as C_INCLUDE_

PATH and LIBRARY_PATH

3. default system directories

In day-to-day usage, directories are usually added to the search paths with
the options ‘-I’ and ‘-L’.

3.2 Shared libraries and static libraries

Although the example program above has been successfully compiled and
linked, a final step is needed before being able to load and run the exe-
cutable file.

If an attempt is made to start the executable directly, the following
error will occur on most systems:

$./a.out

./a.out: error while loading shared libraries:

libgdbm.so.3: cannot open shared object file:

No such file or directory

This is because the GDBM package provides a shared library. This type
of library requires special treatment—it must be loaded from disk before
the executable will run.

External libraries are usually provided in two forms: static libraries
and shared libraries. Static libraries are the ‘.a’ files seen earlier. When
a program is linked against a static library, the machine code from the
object files for any external functions used by the program is copied from
the library into the final executable.

Shared libraries are handled with a more advanced form of linking,
which makes the executable file smaller. They use the extension ‘.so’,
which stands for shared object.

An executable file linked against a shared library contains only a small
table of the functions it requires, instead of the complete machine code
from the object files for the external functions. Before the executable file
starts running, the machine code for the external functions is copied into
memory from the shared library file on disk by the operating system—a
process referred to as dynamic linking.

Dynamic linking makes executable files smaller and saves disk space,
because one copy of a library can be shared between multiple programs.
Most operating systems also provide a virtual memory mechanism which
allows one copy of a shared library in physical memory to be used by all
running programs, saving memory as well as disk space.

24 An Introduction to GCC

Furthermore, shared libraries make it possible to update a library with-
out recompiling the programs which use it (provided the interface to the
library does not change).

Because of these advantages gcc compiles programs to use shared
libraries by default on most systems, if they are available. Whenever
a static library ‘libNAME.a’ would be used for linking with the option
‘-lNAME ’ the compiler first checks for an alternative shared library with
the same name and a ‘.so’ extension.

In this case, when the compiler searches for the ‘libgdbm’ library
in the link path, it finds the following two files in the directory
‘/opt/gdbm-1.8.3/lib’:

$ cd /opt/gdbm-1.8.3/lib

$ ls libgdbm.*

libgdbm.a libgdbm.so

Consequently, the ‘libgdbm.so’ shared object file is used in preference to
the ‘libgdbm.a’ static library.

However, when the executable file is started its loader function must
find the shared library in order to load it into memory. By default the
loader searches for shared libraries only in a predefined set of system
directories, such as ‘/usr/local/lib’ and ‘/usr/lib’. If the library is
not located in one of these directories it must be added to the load path.(3)

The simplest way to set the load path is through the environment
variable LD_LIBRARY_PATH. For example, the following commands set the
load path to ‘/opt/gdbm-1.8.3/lib’ so that ‘libgdbm.so’ can be found:

$ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib

$ export LD_LIBRARY_PATH

$./a.out

Storing key-value pair... done.

The executable now runs successfully, prints its message and creates
a DBM file called ‘test’ containing the key-value pair ‘testkey’ and
‘testvalue’.

To save typing, the LD_LIBRARY_PATH environment variable can be set
once for each session in the appropriate login file, such as ‘.bash_profile’
for the GNU Bash shell.

Several shared library directories can be placed in the load path, as
a colon separated list DIR1:DIR2:DIR3:...:DIRN . For example, the fol-

(3) Note that the directory containing the shared library can, in principle,
be stored (“hard-coded”) in the executable itself using the linker option
‘-rpath’, but this is not usually done since it creates problems if the library
is moved or the executable is copied to another system.

Chapter 3: Compilation options 25

lowing command sets the load path to use the ‘lib’ directories under
‘/opt/gdbm-1.8.3’ and ‘/opt/gtk-1.4’:

$ LD_LIBRARY_PATH=/opt/gdbm-1.8.3/lib:/opt/gtk-1.4/lib

$ export LD_LIBRARY_PATH

If the load path contains existing entries, it can be extended using the syn-
tax LD_LIBRARY_PATH=NEWDIRS:$LD_LIBRARY_PATH. For example, the
following command adds the directory ‘/opt/gsl-1.5/lib’ to the load
path shown above:

$ LD_LIBRARY_PATH=/opt/gsl-1.5/lib:$LD_LIBRARY_PATH

$ echo $LD_LIBRARY_PATH

/opt/gsl-1.5/lib:/opt/gdbm-1.8.3/lib:/opt/gtk-1.4/lib

It is possible for the system administrator to set the LD_LIBRARY_PATH

variable for all users, by adding it to a default login script, such as
‘/etc/profile’. On GNU systems, a system-wide path can also be de-
fined in the loader configuration file ‘/etc/ld.so.conf’.

Alternatively, static linking can be forced with the ‘-static’ option
to gcc to avoid the use of shared libraries:

$ gcc -Wall -static -I/opt/gdbm-1.8.3/include/

-L/opt/gdbm-1.8.3/lib/ dbmain.c -lgdbm

This creates an executable linked with the static library ‘libgdbm.a’
which can be run without setting the environment variable LD_LIBRARY_

PATH or putting shared libraries in the default directories:

$./a.out

Storing key-value pair... done.

As noted earlier, it is also possible to link directly with individual library
files by specifying the full path to the library on the command line. For
example, the following command will link directly with the static library
‘libgdbm.a’,

$ gcc -Wall -I/opt/gdbm-1.8.3/include

dbmain.c /opt/gdbm-1.8.3/lib/libgdbm.a

and the command below will link with the shared library file ‘libgdbm.so’:

$ gcc -Wall -I/opt/gdbm-1.8.3/include

dbmain.c /opt/gdbm-1.8.3/lib/libgdbm.so

In the latter case it is still necessary to set the library load path when
running the executable.

3.3 C language standards

By default, gcc compiles programs using the GNU dialect of the C
language, referred to as GNU C. This dialect incorporates the official

26 An Introduction to GCC

ANSI/ISO standard for the C language with several useful GNU exten-
sions, such as nested functions and variable-size arrays. Most ANSI/ISO
programs will compile under GNU C without changes.

There are several options which control the dialect of C used by gcc.
The most commonly-used options are ‘-ansi’ and ‘-pedantic’. The spe-
cific dialects of the C language for each standard can also be selected with
the ‘-std’ option.

3.3.1 ANSI/ISO

Occasionally a valid ANSI/ISO program may be incompatible with the
extensions in GNU C. To deal with this situation, the compiler option
‘-ansi’ disables those GNU extensions which conflict with the ANSI/ISO
standard. On systems using the GNU C Library (glibc) it also disables
extensions to the C standard library. This allows programs written for
ANSI/ISO C to be compiled without any unwanted effects from GNU
extensions.

For example, here is a valid ANSI/ISO C program which uses a variable
called asm:

#include <stdio.h>

int

main (void)

{

const char asm[] = "6502";

printf ("the string asm is ’%s’\n", asm);

return 0;

}

The variable name asm is valid under the ANSI/ISO standard, but this
program will not compile in GNU C because asm is a GNU C keyword
extension (it allows native assembly instructions to be used in C func-
tions). Consequently, it cannot be used as a variable name without giving
a compilation error:

$ gcc -Wall ansi.c

ansi.c: In function ‘main’:

ansi.c:6: parse error before ‘asm’

ansi.c:7: parse error before ‘asm’

In contrast, using the ‘-ansi’ option disables the asm keyword extension,
and allows the program above to be compiled correctly:

$ gcc -Wall -ansi ansi.c

$./a.out

the string asm is ’6502’

Chapter 3: Compilation options 27

For reference, the non-standard keywords and macros defined by the GNU
C extensions are asm, inline, typeof, unix and vax. More details can be
found in the GCC Reference Manual “Using GCC” (see [Further reading],
page 91).

The next example shows the effect of the ‘-ansi’ option on systems
using the GNU C Library, such as GNU/Linux systems. The program be-
low prints the value of pi, π = 3.14159..., from the preprocessor definition
M_PI in the header file ‘math.h’:

#include <math.h>

#include <stdio.h>

int

main (void)

{

printf("the value of pi is %f\n", M_PI);

return 0;

}

The constant M_PI is not part of the ANSI/ISO C standard library (it
comes from the BSD version of Unix). In this case, the program will not
compile with the ‘-ansi’ option:

$ gcc -Wall -ansi pi.c

pi.c: In function ‘main’:

pi.c:7: ‘M_PI’ undeclared (first use in this function)

pi.c:7: (Each undeclared identifier is reported only once

pi.c:7: for each function it appears in.)

The program can be compiled without the ‘-ansi’ option. In this case
both the language and library extensions are enabled by default:

$ gcc -Wall pi.c

$./a.out

the value of pi is 3.141593

It is also possible to compile the program using ANSI/ISO C, by enabling
only the extensions in the GNU C Library itself. This can be achieved by
defining special macros, such as _GNU_SOURCE, which enable extensions in
the GNU C Library:(4)

$ gcc -Wall -ansi -D_GNU_SOURCE pi.c

$./a.out

the value of pi is 3.141593

The GNU C Library provides a number of these macros (referred to as
feature test macros) which allow control over the support for POSIX ex-

(4) The ‘-D’ option for defining macros will be explained in detail in the next
chapter.

28 An Introduction to GCC

tensions (_POSIX_C_SOURCE), BSD extensions (_BSD_SOURCE), SVID ex-
tensions (_SVID_SOURCE), XOPEN extensions (_XOPEN_SOURCE) and GNU
extensions (_GNU_SOURCE).

The _GNU_SOURCE macro enables all the extensions together, with the
POSIX extensions taking precedence over the others in cases where they
conflict. Further information about feature test macros can be found in
the GNU C Library Reference Manual, see [Further reading], page 91.

3.3.2 Strict ANSI/ISO

The command-line option ‘-pedantic’ in combination with ‘-ansi’ will
cause gcc to reject all GNU C extensions, not just those that are incom-
patible with the ANSI/ISO standard. This helps you to write portable
programs which follow the ANSI/ISO standard.

Here is a program which uses variable-size arrays, a GNU C extension.
The array x[n] is declared with a length specified by the integer variable
n.

int

main (int argc, char *argv[])

{

int i, n = argc;

double x[n];

for (i = 0; i < n; i++)

x[i] = i;

return 0;

}

This program will compile with ‘-ansi’, because support for variable
length arrays does not interfere with the compilation of valid ANSI/ISO
programs—it is a backwards-compatible extension:

$ gcc -Wall -ansi gnuarray.c

However, compiling with ‘-ansi -pedantic’ reports warnings about vio-
lations of the ANSI/ISO standard:

$ gcc -Wall -ansi -pedantic gnuarray.c

gnuarray.c: In function ‘main’:

gnuarray.c:5: warning: ISO C90 forbids variable-size

array ‘x’

Note that an absence of warnings from ‘-ansi -pedantic’ does not guar-
antee that a program strictly conforms to the ANSI/ISO standard. The
standard itself specifies only a limited set of circumstances that should
generate diagnostics, and these are what ‘-ansi -pedantic’ reports.

Chapter 3: Compilation options 29

3.3.3 Selecting specific standards

The specific language standard used by GCC can be controlled with the
‘-std’ option. The following C language standards are supported:

‘-std=c89’ or ‘-std=iso9899:1990’
The original ANSI/ISO C language standard (ANSI X3.159-1989,
ISO/IEC 9899:1990). GCC incorporates the corrections in the two
ISO Technical Corrigenda to the original standard.

‘-std=iso9899:199409’
The ISO C language standard with ISO Amendment 1, published
in 1994. This amendment was mainly concerned with internation-
alization, such as adding support for multibyte characters to the C
library.

‘-std=c99’ or ‘-std=iso9899:1999’
The revised ISO C language standard, published in 1999 (ISO/IEC
9899:1999).

The C language standards with GNU extensions can be selected with the
options ‘-std=gnu89’ and ‘-std=gnu99’.

3.4 Warning options in -Wall

As described earlier (see Section 2.1 [Compiling a simple C program],
page 7), the warning option ‘-Wall’ enables warnings for many common
errors, and should always be used. It combines a large number of other,
more specific, warning options which can also be selected individually.
Here is a summary of these options:

‘-Wcomment’ (included in ‘-Wall’)
This option warns about nested comments. Nested comments typ-
ically arise when a section of code containing comments is later
commented out:

/* commented out

double x = 1.23 ; /* x-position */

*/

Nested comments can be a source of confusion—the safe way to
“comment out” a section of code containing comments is to sur-
round it with the preprocessor directive #if 0 ... #endif:

/* commented out */

#if 0

double x = 1.23 ; /* x-position */

#endif

30 An Introduction to GCC

‘-Wformat’ (included in ‘-Wall’)
This option warns about the incorrect use of format strings in func-
tions such as printf and scanf, where the format specifier does
not agree with the type of the corresponding function argument.

‘-Wunused’ (included in ‘-Wall’)
This option warns about unused variables. When a variable is de-
clared but not used this can be the result of another variable being
accidentally substituted in its place. If the variable is genuinely not
needed it can be removed from the source code.

‘-Wimplicit’ (included in ‘-Wall’)
This option warns about any functions that are used without be-
ing declared. The most common reason for a function to be used
without being declared is forgetting to include a header file.

‘-Wreturn-type’ (included in ‘-Wall’)
This option warns about functions that are defined without a re-
turn type but not declared void. It also catches empty return

statements in functions that are not declared void.

For example, the following program does not use an explicit return
value:

#include <stdio.h>

int

main (void)

{

printf ("hello world\n");

return;

}

The lack of a return value in the code above could be the result
of an accidental omission by the programmer—the value returned
by the main function is actually the return value of the printf

function (the number of characters printed). To avoid ambiguity,
it is preferable to use an explicit value in the return statement,
either as a variable or a constant, such as return 0.

The complete set of warning options included in ‘-Wall’ can be found
in the GCC Reference Manual “Using GCC” (see [Further reading],
page 91). The options included in ‘-Wall’ have the common characteris-
tic that they report constructions which are always wrong, or can easily
be rewritten in an unambiguously correct way. This is why they are so
useful—any warning produced by ‘-Wall’ can be taken as an indication
of a potentially serious problem.

Chapter 3: Compilation options 31

3.5 Additional warning options

GCC provides many other warning options that are not included in
‘-Wall’, but are often useful. Typically these produce warnings for source
code which may be technically valid but is very likely to cause prob-
lems. The criteria for these options are based on experience of common
errors—they are not included in ‘-Wall’ because they only indicate pos-
sibly problematic or “suspicious” code.

Since these warnings can be issued for valid code it is not necessary
to compile with them all the time. It is more appropriate to use them
periodically and review the results, checking for anything unexpected, or
to enable them for some programs or files.

‘-W’ This is a general option similar to ‘-Wall’ which warns about a
selection of common programming errors, such as functions which
can return without a value (also known as “falling off the end of
the function body”), and comparisons between signed and unsigned
values. For example, the following function tests whether an un-
signed integer is negative (which is impossible, of course):

int

foo (unsigned int x)

{

if (x < 0)

return 0; /* cannot occur */

else

return 1;

}

Compiling this function with ‘-Wall’ does not produce a warning,

$ gcc -Wall -c w.c

but does give a warning with ‘-W’:

$ gcc -W -c w.c

w.c: In function ‘foo’:

w.c:4: warning: comparison of unsigned

expression < 0 is always false

In practice, the options ‘-W’ and ‘-Wall’ are normally used together.

‘-Wconversion’
This option warns about implicit type conversions that could cause
unexpected results. For example, the assignment of a negative
value to an unsigned variable, as in the following code,

unsigned int x = -1;

is technically allowed by the ANSI/ISO C standard (with the neg-
ative integer being converted to a positive integer, according to the

32 An Introduction to GCC

machine representation) but could be a simple programming error.
If you need to perform such a conversion you can use an explicit
cast, such as ((unsigned int) -1), to avoid any warnings from
this option. On two’s-complement machines the result of the cast
gives the maximum number that can be represented by an unsigned
integer.

‘-Wshadow’
This option warns about the redeclaration of a variable name in
a scope where it has already been declared. This is referred to as
variable shadowing, and causes confusion about which occurrence
of the variable corresponds to which value.

The following function declares a local variable y that shadows the
declaration in the body of the function:

double

test (double x)

{

double y = 1.0;

{

double y;

y = x;

}

return y;

}

This is valid ANSI/ISO C, where the return value is 1. The shad-
owing of the variable y might make it seem (incorrectly) that the
return value is x, when looking at the line y = x (especially in a
large and complicated function).

Shadowing can also occur for function names. For example, the
following program attempts to define a variable sin which shadows
the standard function sin(x).

double

sin_series (double x)

{

/* series expansion for small x */

double sin = x * (1.0 - x * x / 6.0);

return sin;

}

This error will be detected by the ‘-Wshadow’ option.

‘-Wcast-qual’
This option warns about pointers that are cast to remove a type
qualifier, such as const. For example, the following function dis-

Chapter 3: Compilation options 33

cards the const qualifier from its input argument, allowing it to be
overwritten:

void

f (const char * str)

{

char * s = (char *)str;

s[0] = ’\0’;

}

The modification of the original contents of str is a violation of its
const property. This option will warn about the improper cast of
the variable str which allows the string to be modified.

‘-Wwrite-strings’
This option implicitly gives all string constants defined in the pro-
gram a const qualifier, causing a compile-time warning if there is
an attempt to overwrite them. The result of modifying a string
constant is not defined by the ANSI/ISO standard, and the use of
writable string constants is deprecated in GCC.

‘-Wtraditional’
This option warns about parts of the code which would be inter-
preted differently by an ANSI/ISO compiler and a “traditional”
pre-ANSI compiler.(5) When maintaining legacy software it may
be necessary to investigate whether the traditional or ANSI/ISO
interpretation was intended in the original code for warnings gen-
erated by this option.

The options above produce diagnostic warning messages, but allow the
compilation to continue and produce an object file or executable. For
large programs it can be desirable to catch all the warnings by stopping
the compilation whenever a warning is generated. The ‘-Werror’ option
changes the default behavior by converting warnings into errors, stopping
the compilation whenever a warning occurs.

(5) The traditional form of the C language was described in the original C refer-
ence manual “The C Programming Language (First Edition)” by Kernighan
and Ritchie.

34 An Introduction to GCC

Chapter 4: Using the preprocessor 35

4 Using the preprocessor

This chapter describes the use of the GNU C preprocessor cpp, which is
part of the GCC package. The preprocessor expands macros in source
files before they are compiled. It is automatically called whenever GCC
processes a C or C++ program.(1)

4.1 Defining macros

The following program demonstrates the most common use of the C pre-
processor. It uses the preprocessor conditional #ifdef to check whether
a macro is defined.

When the macro is defined, the preprocessor includes the correspond-
ing code up to the closing #endif command. In this example, the macro
which is tested is called TEST, and the conditional part of the source code
is a printf statement which prints the message “Test mode”:

#include <stdio.h>

int

main (void)

{

#ifdef TEST

printf ("Test mode\n");

#endif

printf ("Running...\n");

return 0;

}

The gcc option ‘-DNAME ’ defines a preprocessor macro NAME from the
command line. If the program above is compiled with the command-
line option ‘-DTEST’, the macro TEST will be defined and the resulting
executable will print both messages:

$ gcc -Wall -DTEST dtest.c

$./a.out

Test mode

Running...

(1) In recent versions of GCC the preprocessor is integrated into the compiler,
although a separate cpp command is also provided.

36 An Introduction to GCC

If the same program is compiled without the ‘-D’ option then the “Test
mode” message is omitted from the source code after preprocessing, and
the final executable does not include the code for it:

$ gcc -Wall dtest.c

$./a.out

Running...

Macros are generally undefined, unless specified on the command line with
the option ‘-D’, or in a source file (or library header file) with #define.
Some macros are automatically defined by the compiler—these typically
use a reserved namespace beginning with a double-underscore prefix ‘__’.

The complete set of predefined macros can be listed by running the
GNU preprocessor cpp with the option ‘-dM’ on an empty file:

$ cpp -dM /dev/null

#define __i386__ 1

#define __i386 1

#define i386 1

#define __unix 1

#define __unix__ 1

#define __ELF__ 1

#define unix 1

.......

Note that this list includes a small number of system-specific macros de-
fined by gcc which do not use the double-underscore prefix. These non-
standard macros can be disabled with the ‘-ansi’ option of gcc.

4.2 Macros with values

In addition to being defined, a macro can also be given a concrete value.
This value is inserted into the source code at each point where the macro
occurs. The following program uses a macro NUM, to represent a number
which will be printed:

#include <stdio.h>

int

main (void)

{

printf("Value of NUM is %d\n", NUM);

return 0;

}

Note that macros are not expanded inside strings—only the occurrence of
NUM outside the string is substituted by the preprocessor.

Chapter 4: Using the preprocessor 37

To define a macro with a value, the ‘-D’ command-line option can be
used in the form ‘-DNAME=VALUE ’. For example, the following command
line defines NUM to be 100 when compiling the program above:

$ gcc -Wall -DNUM=100 dtestval.c

$./a.out

Value of NUM is 100

This example uses a number, but a macro can take values of any form.
Whatever the value of the macro is, it is inserted directly into the source
code at the point where the macro name occurs. For example, the follow-
ing definition expands the occurrences of NUM to 2+2 during preprocessing:

$ gcc -Wall -DNUM="2+2" dtestval.c

$./a.out

Value of NUM is 4

After the preprocessor has made the substitution NUM 7→ 2+2 this is equiv-
alent to compiling the following program:

#include <stdio.h>

int

main (void)

{

printf("Value of NUM is %d\n", 2+2);

return 0;

}

Note that it is a good idea to surround macros by parentheses when-
ever they are part of an expression. For example, the following program
uses parentheses to ensure the correct precedence for the multiplication
10*NUM:

#include <stdio.h>

int

main (void)

{

printf ("Ten times NUM is %d\n", 10 * (NUM));

return 0;

}

With these parentheses, it produces the expected result when compiled
with the same command line as above:

$ gcc -Wall -DNUM="2+2" dtestmul10.c

$./a.out

Ten times NUM is 40

38 An Introduction to GCC

Without parentheses, the program would produce the value 22 from the
literal form of the expression 10*2+2 = 22, instead of the desired value
10*(2+2) = 40.

When a macro is defined with ‘-D’ alone, gcc uses a default value of 1.
For example, compiling the original test program with the option ‘-DNUM’
generates an executable which produces the following output:

$ gcc -Wall -DNUM dtestval.c

$./a.out

Value of NUM is 1

A macro can be defined to a empty value using quotes on the command
line, -DNAME="". Such a macro is still treated as defined by conditionals
such as #ifdef, but expands to nothing.

A macro containing quotes can be defined using shell-escaped quote
characters. For example, the command-line option -DMESSAGE="\"Hello,

World!\"" defines a macro MESSAGE which expands to the sequence of
characters "Hello, World!". For an explanation of the different types
of quoting and escaping used in the shell see the “GNU Bash Reference
Manual”, [Further reading], page 91.

4.3 Preprocessing source files

It is possible to see the effect of the preprocessor on source files directly,
using the ‘-E’ option of gcc. For example, the file below defines and uses
a macro TEST:

#define TEST "Hello, World!"

const char str[] = TEST;

If this file is called ‘test.c’ the effect of the preprocessor can be seen with
the following command line:

$ gcc -E test.c

1 "test.c"

const char str[] = "Hello, World!" ;

The ‘-E’ option causes gcc to run the preprocessor, display the expanded
output, and then exit without compiling the resulting source code. The
value of the macro TEST is substituted directly into the output, producing
the sequence of characters const char str[] = "Hello, World!" ;.

The preprocessor also inserts lines recording the source file and line
numbers in the form # line-number "source-file", to aid in debugging
and allow the compiler to issue error messages referring to this informa-
tion. These lines do not affect the program itself.

The ability to see the preprocessed source files can be useful for exam-
ining the effect of system header files, and finding declarations of system

Chapter 4: Using the preprocessor 39

functions. The following program includes the header file ‘stdio.h’ to
obtain the declaration of the function printf:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

It is possible to see the declarations from the included header file by
preprocessing the file with gcc -E:

$ gcc -E hello.c

On a GNU system, this produces output similar to the following:

1 "hello.c"

1 "/usr/include/stdio.h" 1 3

extern FILE *stdin;

extern FILE *stdout;

extern FILE *stderr;

extern int fprintf (FILE * __stream,

const char * __format, ...) ;

extern int printf (const char * __format, ...) ;

[... additional declarations ...]

1 "hello.c" 2

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

The preprocessed system header files usually generate a lot of output.
This can be redirected to a file, or saved more conveniently using the gcc

‘-save-temps’ option:

$ gcc -c -save-temps hello.c

After running this command, the preprocessed output will be available
in the file ‘hello.i’. The ‘-save-temps’ option also saves ‘.s’ assembly
files and ‘.o’ object files in addition to preprocessed ‘.i’ files.

40 An Introduction to GCC

Chapter 5: Compiling for debugging 41

5 Compiling for debugging

Normally, an executable file does not contain any references to the original
program source code, such as variable names or line-numbers—the exe-
cutable file is simply the sequence of machine code instructions produced
by the compiler. This is insufficient for debugging, since there is no easy
way to find the cause of an error if the program crashes.

GCC provides the ‘-g’ debug option to store additional debugging
information in object files and executables. This debugging information
allows errors to be traced back from a specific machine instruction to the
corresponding line in the original source file. It also allows the execution
of a program to be traced in a debugger, such as the GNU Debugger gdb
(for more information, see “Debugging with GDB: The GNU Source-Level
Debugger”, [Further reading], page 91). Using a debugger also allows the
values of variables to be examined while the program is running.

The debug option works by storing the names of functions and vari-
ables (and all the references to them), with their corresponding source
code line-numbers, in a symbol table in object files and executables.

5.1 Examining core files

In addition to allowing a program to be run under the debugger, another
helpful application of the ‘-g’ option is to find the circumstances of a
program crash.

When a program exits abnormally the operating system can write out
a core file, usually named ‘core’, which contains the in-memory state of
the program at the time it crashed. Combined with information from the
symbol table produced by ‘-g’, the core file can be used to find the line
where the program stopped, and the values of its variables at that point.

This is useful both during the development of software, and after
deployment—it allows problems to be investigated when a program has
crashed “in the field”.

Here is a simple program containing an invalid memory access bug,
which we will use to produce a core file:

int a (int *p);

int

main (void)

{

42 An Introduction to GCC

int *p = 0; /* null pointer */

return a (p);

}

int

a (int *p)

{

int y = *p;

return y;

}

The program attempts to dereference a null pointer p, which is an invalid
operation. On most systems, this will cause a crash.(1)

In order to be able to find the cause of the crash later, we need to
compile the program with the ‘-g’ option:

$ gcc -Wall -g null.c

Note that a null pointer will only cause a problem at run-time, so the
option ‘-Wall’ does not produce any warnings.

Running the executable file on an x86 GNU/Linux system will cause
the operating system to terminate the program abnormally:

$./a.out

Segmentation fault (core dumped)

Whenever the error message ‘core dumped’ is displayed, the operating sys-
tem should produce a file called ‘core’ in the current directory.(2) This
core file contains a complete copy of the pages of memory used by the
program at the time it was terminated. Incidentally, the term segmenta-
tion fault refers to the fact that the program tried to access a restricted
memory “segment” outside the area of memory which had been allocated
to it.

Some systems are configured not to write core files by default, since the
files can be large and rapidly fill up the available disk space on a system.
In the GNU Bash shell the command ulimit -c controls the maximum
size of core files. If the size limit is zero, no core files are produced. The
current size limit can be shown by typing the following command:

$ ulimit -c

0

(1) Historically, a null pointer has typically corresponded to memory location 0,
which is usually restricted to the operating system kernel and not accessible
to user programs.

(2) Some systems, such as FreeBSD and Solaris, can also be configured to write
core files in specific directories, e.g. ‘/var/coredumps/’, using the sysctl

or coreadm commands.

Chapter 5: Compiling for debugging 43

If the result is zero, as shown above, then it can be increased with the
following command to allow core files of any size to be written:(3)

$ ulimit -c unlimited

Note that this setting only applies to the current shell. To set the limit
for future sessions the command should be placed in an appropriate login
file, such as ‘.bash_profile’ for the GNU Bash shell.

Core files can be loaded into the GNU Debugger gdb with the following
command:

$ gdb EXECUTABLE-FILE CORE-FILE

Note that both the original executable file and the core file are required
for debugging—it is not possible to debug a core file without the corre-
sponding executable. In this example, we can load the executable and
core file with the command:

$ gdb a.out core

The debugger immediately begins printing diagnostic information, and
shows a listing of the line where the program crashed (line 13):

$ gdb a.out core

Core was generated by ‘./a.out’.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x080483ed in a (p=0x0) at null.c:13

13 int y = *p;

(gdb)

The final line (gdb) is the GNU Debugger prompt—it indicates that fur-
ther commands can be entered at this point.

To investigate the cause of the crash, we display the value of the pointer
p using the debugger print command:

(gdb) print p

$1 = (int *) 0x0

This shows that p is a null pointer (0x0) of type ‘int *’, so we know that
dereferencing it with the expression *p in this line has caused the crash.

(3) This example uses the ulimit command in the GNU Bash shell. On other
systems the usage of the ulimit command may vary, or have a different
name (the tcsh shell uses the limit command instead). The size limit for
core files can also be set to a specific value in kilobytes.

44 An Introduction to GCC

5.2 Displaying a backtrace

The debugger can also show the function calls and arguments up to the
current point of execution—this is called a stack backtrace and is dis-
played with the command backtrace:

(gdb) backtrace

#0 0x080483ed in a (p=0x0) at null.c:13

#1 0x080483d9 in main () at null.c:7

In this case, the backtrace shows that the crash at line 13 occurred when
the function a() was called with an argument of p=0x0, from line 7 in
main(). It is possible to move to different levels in the stack trace, and
examine their variables, using the debugger commands up and down.

A complete description of all the commands available in gdb can be
found in the manual “Debugging with GDB: The GNU Source-Level De-
bugger” (see [Further reading], page 91).

Chapter 6: Compiling with optimization 45

6 Compiling with optimization

GCC is an optimizing compiler. It provides a wide range of options which
aim to increase the speed, or reduce the size, of the executable files it
generates.

Optimization is a complex process. For each high-level command in
the source code there are usually many possible combinations of machine
instructions that can be used to achieve the appropriate final result. The
compiler must consider these possibilities and choose among them.

In general, different code must be generated for different processors,
as they use incompatible assembly and machine languages. Each type
of processor also has its own characteristics—some CPUs provide a large
number of registers for holding intermediate results of calculations, while
others must store and fetch intermediate results from memory. Appropri-
ate code must be generated in each case.

Furthermore, different amounts of time are needed for different instruc-
tions, depending on how they are ordered. GCC takes all these factors
into account and tries to produce the fastest executable for a given system
when compiling with optimization.

6.1 Source-level optimization

The first form of optimization used by GCC occurs at the source-code
level, and does not require any knowledge of the machine instructions.
There are many source-level optimization techniques—this section de-
scribes two common types: common subexpression elimination and func-
tion inlining.

6.1.1 Common subexpression elimination

One method of source-level optimization which is easy to understand in-
volves computing an expression in the source code with fewer instructions,
by reusing already-computed results. For example, the following assign-
ment:

x = cos(v)*(1+sin(u/2)) + sin(w)*(1-sin(u/2))

can be rewritten with a temporary variable t to eliminate an unnecessary
extra evaluation of the term sin(u/2):

t = sin(u/2)

x = cos(v)*(1+t) + sin(w)*(1-t)

46 An Introduction to GCC

This rewriting is called common subexpression elimination (CSE), and
is performed automatically when optimization is turned on.(1) Common
subexpression elimination is powerful, because it simultaneously increases
the speed and reduces the size of the code.

6.1.2 Function inlining

Another type of source-level optimization, called function inlining, in-
creases the efficiency of frequently-called functions.

Whenever a function is used, a certain amount of extra time is required
for the CPU to carry out the call: it must store the function arguments
in the appropriate registers and memory locations, jump to the start of
the function (bringing the appropriate virtual memory pages into physical
memory or the CPU cache if necessary), begin executing the code, and
then return to the original point of execution when the function call is
complete. This additional work is referred to as function-call overhead.
Function inlining eliminates this overhead by replacing calls to a function
by the code of the function itself (known as placing the code in-line).

In most cases, function-call overhead is a negligible fraction of the
total run-time of a program. It can become significant only when there
are functions which contain relatively few instructions, and these func-
tions account for a substantial fraction of the run-time—in this case the
overhead then becomes a large proportion of the total run-time.

Inlining is always favorable if there is only one point of invocation of
a function. It is also unconditionally better if the invocation of a function
requires more instructions (memory) than moving the body of the func-
tion in-line. This is a common situation for simple accessor functions in
C++, which can benefit greatly from inlining. Moreover, inlining may fa-
cilitate further optimizations, such as common subexpression elimination,
by merging several separate functions into a single large function.

The following function sq(x) is a typical example of a function that
would benefit from being inlined. It computes x2, the square of its argu-
ment x:

double

sq (double x)

{

return x * x;

}

(1) Temporary values introduced by the compiler during common subexpres-
sion elimination are only used internally, and do not affect real variables.
The name of the temporary variable ‘t’ shown above is only used as an
illustration.

Chapter 6: Compiling with optimization 47

This function is small, so the overhead of calling it is comparable to the
time taken to execute the single multiplication carried out by the function
itself. If this function is used inside a loop, such as the one below, then
the function-call overhead would become substantial:

for (i = 0; i < 1000000; i++)

{

sum += sq (i + 0.5);

}

Optimization with inlining replaces the inner loop of the program with
the body of the function, giving the following code:

for (i = 0; i < 1000000; i++)

{

double t = (i + 0.5); /* temporary variable */

sum += t * t;

}

Eliminating the function call and performing the multiplication in-line
allows the loop to run with maximum efficiency.

GCC selects functions for inlining using a number of heuristics, such
as the function being suitably small. As an optimization, inlining is car-
ried out only within each object file. The inline keyword can be used
to request explicitly that a specific function should be inlined wherever
possible, including its use in other files.(2) The GCC Reference Manual
“Using GCC” provides full details of the inline keyword, and its use
with the static and extern qualifiers to control the linkage of explicitly
inlined functions (see [Further reading], page 91).

6.2 Speed-space tradeoffs

While some forms of optimization, such as common subexpression elim-
ination, are able to increase the speed and reduce the size of a program
simultaneously, other types of optimization produce faster code at the ex-
pense of increasing the size of the executable. This choice between speed
and memory is referred to as a speed-space tradeoff. Optimizations with
a speed-space tradeoff can also be used to make an executable smaller, at
the expense of making it run slower.

6.2.1 Loop unrolling

A prime example of an optimization with a speed-space tradeoff is loop
unrolling. This form of optimization increases the speed of loops by elim-

(2) In this case, the definition of the inline function must be made available to
the other files (in a header file, for example).

48 An Introduction to GCC

inating the “end of loop” condition on each iteration. For example, the
following loop from 0 to 7 tests the condition i < 8 on each iteration:

for (i = 0; i < 8; i++)

{

y[i] = i;

}

At the end of the loop, this test will have been performed 9 times, and a
large fraction of the run time will have been spent checking it.

A more efficient way to write the same code is simply to unroll the
loop and execute the assignments directly:

y[0] = 0;

y[1] = 1;

y[2] = 2;

y[3] = 3;

y[4] = 4;

y[5] = 5;

y[6] = 6;

y[7] = 7;

This form of the code does not require any tests, and executes at maximum
speed. Since each assignment is independent, it also allows the compiler
to use parallelism on processors that support it. Loop unrolling is an
optimization that increases the speed of the resulting executable but also
generally increases its size (unless the loop is very short, with only one or
two iterations, for example).

Loop unrolling is also possible when the upper bound of the loop is
unknown, provided the start and end conditions are handled correctly.
For example, the same loop with an arbitrary upper bound,

for (i = 0; i < n; i++)

{

y[i] = i;

}

can be rewritten by the compiler as follows:

for (i = 0; i < (n % 2); i++)

{

y[i] = i;

}

for (; i + 1 < n; i += 2) /* no initializer */

{

y[i] = i;

y[i+1] = i+1;

}

Chapter 6: Compiling with optimization 49

The first loop handles the case i = 0 when n is odd, and the second loop
handles all the remaining iterations. Note that the second loop does
not use an initializer in the first argument of the for statement, since
it continues where the first loop finishes. The assignments in the second
loop can be parallelized, and the overall number of tests is reduced by a
factor of 2 (approximately). Higher factors can be achieved by unrolling
more assignments inside the loop, at the cost of greater code size.

6.3 Scheduling

The lowest level of optimization is scheduling, in which the compiler de-
termines the best ordering of individual instructions. Most CPUs allow
one or more new instructions to start executing before others have fin-
ished. Many CPUs also support pipelining, where multiple instructions
execute in parallel on the same CPU.

When scheduling is enabled, instructions must be arranged so that
their results become available to later instructions at the right time, and to
allow for maximum parallel execution. Scheduling improves the speed of
an executable without increasing its size, but requires additional memory
and time in the compilation process itself (due to its complexity).

6.4 Optimization levels

In order to control compilation-time and compiler memory usage, and
the trade-offs between speed and space for the resulting executable, GCC
provides a range of general optimization levels, numbered from 0–3, as
well as individual options for specific types of optimization.

An optimization level is chosen with the command line option
‘-OLEVEL ’, where LEVEL is a number from 0 to 3. The effects of the
different optimization levels are described below:

‘-O0’ or no ‘-O’ option (default)
At this optimization level GCC does not perform any optimiza-
tion and compiles the source code in the most straightforward way
possible. Each command in the source code is converted directly
to the corresponding instructions in the executable file, without
rearrangement. This is the best option to use when debugging a
program.

The option ‘-O0’ is equivalent to not specifying a ‘-O’ option.

‘-O1’ or ‘-O’
This level turns on the most common forms of optimization that
do not require any speed-space tradeoffs. With this option the
resulting executables should be smaller and faster than with ‘-O0’.

50 An Introduction to GCC

The more expensive optimizations, such as instruction scheduling,
are not used at this level.

Compiling with the option ‘-O1’ can often take less time than com-
piling with ‘-O0’, due to the reduced amounts of data that need to
be processed after simple optimizations.

‘-O2’ This option turns on further optimizations, in addition to those
used by ‘-O1’. These additional optimizations include instruction
scheduling. Only optimizations that do not require any speed-space
tradeoffs are used, so the executable should not increase in size. The
compiler will take longer to compile programs and require more
memory than with ‘-O1’. This option is generally the best choice
for deployment of a program, because it provides maximum opti-
mization without increasing the executable size. It is the default
optimization level for releases of GNU packages.

‘-O3’ This option turns on more expensive optimizations, such as func-
tion inlining, in addition to all the optimizations of the lower levels
‘-O2’ and ‘-O1’. The ‘-O3’ optimization level may increase the speed
of the resulting executable, but can also increase its size. Under
some circumstances where these optimizations are not favorable,
this option might actually make a program slower.

‘-funroll-loops’
This option turns on loop-unrolling, and is independent of the other
optimization options. It will increase the size of an executable.
Whether or not this option produces a beneficial result has to be
examined on a case-by-case basis.

‘-Os’ This option selects optimizations which reduce the size of an exe-
cutable. The aim of this option is to produce the smallest possible
executable, for systems constrained by memory or disk space. In
some cases a smaller executable will also run faster, due to better
cache usage.

It is important to remember that the benefit of optimization at the
highest levels must be weighed against the cost. The cost of optimization
includes greater complexity in debugging, and increased time and memory
requirements during compilation. For most purposes it is satisfactory to
use ‘-O0’ for debugging, and ‘-O2’ for development and deployment.

6.5 Examples

The following program will be used to demonstrate the effects of different
optimization levels:

Chapter 6: Compiling with optimization 51

#include <stdio.h>

double

powern (double d, unsigned n)

{

double x = 1.0;

unsigned j;

for (j = 1; j <= n; j++)

x *= d;

return x;

}

int

main (void)

{

double sum = 0.0;

unsigned i;

for (i = 1; i <= 100000000; i++)

{

sum += powern (i, i % 5);

}

printf ("sum = %g\n", sum);

return 0;

}

The main program contains a loop calling the powern function. This
function computes the n-th power of a floating point number by repeated
multiplication—it has been chosen because it is suitable for both inlining
and loop-unrolling. The run-time of the program can be measured using
the time command in the GNU Bash shell.

Here are some results for the program above, compiled on a 566 MHz
Intel Celeron with 16 KB L1-cache and 128 KB L2-cache, using GCC 3.3.1
on a GNU/Linux system:

$ gcc -Wall -O0 test.c -lm

$ time ./a.out

real 0m13.388s

user 0m13.370s

sys 0m0.010s

$ gcc -Wall -O1 test.c -lm

52 An Introduction to GCC

$ time ./a.out

real 0m10.030s

user 0m10.030s

sys 0m0.000s

$ gcc -Wall -O2 test.c -lm

$ time ./a.out

real 0m8.388s

user 0m8.380s

sys 0m0.000s

$ gcc -Wall -O3 test.c -lm

$ time ./a.out

real 0m6.742s

user 0m6.730s

sys 0m0.000s

$ gcc -Wall -O3 -funroll-loops test.c -lm

$ time ./a.out

real 0m5.412s

user 0m5.390s

sys 0m0.000s

The relevant entry in the output for comparing the speed of the resulting
executables is the ‘user’ time, which gives the actual CPU time spent
running the process. The other rows, ‘real’ and ‘sys’, record the total
real time for the process to run (including times where other processes
were using the CPU) and the time spent waiting for operating system
calls. Although only one run is shown for each case above, the benchmarks
were executed several times to confirm the results.

From the results it can be seen in this case that increasing the opti-
mization level with ‘-O1’, ‘-O2’ and ‘-O3’ produces an increasing speedup,
relative to the unoptimized code compiled with ‘-O0’. The additional
option ‘-funroll-loops’ produces a further speedup. The speed of the
program is more than doubled overall, when going from unoptimized code
to the highest level of optimization.

Note that for a small program such as this there can be considerable
variation between systems and compiler versions. For example, on a Mo-
bile 2.0 GHz Intel Pentium 4M system the trend of the results using the
same version of GCC is similar except that the performance with ‘-O2’
is slightly worse than with ‘-O1’. This illustrates an important point:
optimizations may not necessarily make a program faster in every case.

Chapter 6: Compiling with optimization 53

6.6 Optimization and debugging

With GCC it is possible to use optimization in combination with the
debugging option ‘-g’. Many other compilers do not allow this.

When using debugging and optimization together, the internal rear-
rangements carried out by the optimizer can make it difficult to see what
is going on when examining an optimized program in the debugger. For
example, temporary variables are often eliminated, and the ordering of
statements may be changed.

However, when a program crashes unexpectedly, any debugging infor-
mation is better than none—so the use of ‘-g’ is recommended for opti-
mized programs, both for development and deployment. The debugging
option ‘-g’ is enabled by default for releases of GNU packages, together
with the optimization option ‘-O2’.

6.7 Optimization and compiler warnings

When optimization is turned on, GCC can produce additional warnings
that do not appear when compiling without optimization.

As part of the optimization process, the compiler examines the use of
all variables and their initial values—this is referred to as data-flow analy-
sis. It forms the basis for other optimization strategies, such as instruction
scheduling. A side-effect of data-flow analysis is that the compiler can de-
tect the use of uninitialized variables.

The ‘-Wuninitialized’ option (which is included in ‘-Wall’) warns
about variables that are read without being initialized. It only works when
the program is compiled with optimization to enable data-flow analysis.
The following function contains an example of such a variable:

int

sign (int x)

{

int s;

if (x > 0)

s = 1;

else if (x < 0)

s = -1;

return s;

}

The function works correctly for most arguments, but has a bug when x

is zero—in this case the return value of the variable s will be undefined.

54 An Introduction to GCC

Compiling the program with the ‘-Wall’ option alone does not pro-
duce any warnings, because data-flow analysis is not carried out without
optimization:

$ gcc -Wall -c uninit.c

To produce a warning, the program must be compiled with ‘-Wall’ and
optimization simultaneously. In practice, the optimization level ‘-O2’ is
needed to give good warnings:

$ gcc -Wall -O2 -c uninit.c

uninit.c: In function ‘sign’:

uninit.c:4: warning: ‘s’ might be used uninitialized

in this function

This correctly detects the possibility of the variable s being used without
being defined.

Note that while GCC will usually find most uninitialized variables,
it does so using heuristics which will occasionally miss some complicated
cases or falsely warn about others. In the latter situation, it is often
possible to rewrite the relevant lines in a simpler way that removes the
warning and improves the readability of the source code.

Chapter 7: Compiling a C++ program 55

7 Compiling a C++ program
This chapter describes how to use GCC to compile programs written in
C++, and the command-line options specific to that language.

The GNU C++ compiler provided by GCC is a true C++ compiler—it
compiles C++ source code directly into assembly language. Some other
C++ “compilers” are translators which convert C++ programs into C, and
then compile the resulting C program using an existing C compiler. A
true C++ compiler, such as GCC, is able to provide better support for
error reporting, debugging and optimization.

7.1 Compiling a simple C++ program

The procedure for compiling a C++ program is the same as for a C pro-
gram, but uses the command g++ instead of gcc. Both compilers are part
of the GNU Compiler Collection.

To demonstrate the use of g++, here is a version of the Hello World
program written in C++:

#include <iostream>

int

main ()

{

std::cout << "Hello, world!" << std::endl;

return 0;

}

The program can be compiled with the following command line:

$ g++ -Wall hello.cc -o hello

The C++ frontend of GCC uses many of the same the same options as the
C compiler gcc. It also supports some additional options for controlling
C++ language features, which will be described in this chapter. Note that
C++ source code should be given one of the valid C++ file extensions ‘.cc’,
‘.cpp’, ‘.cxx’ or ‘.C’ rather than the ‘.c’ extension used for C programs.

The resulting executable can be run in exactly same way as the C
version, simply by typing its filename:

$./hello

Hello, world!

The executable produces the same output as the C version of the program,
using std::cout instead of the C printf function. All the options used in

56 An Introduction to GCC

the gcc commands in previous chapters apply to g++ without change, as
do the procedures for compiling and linking files and libraries (using g++

instead of gcc, of course). One natural difference is that the ‘-ansi’ option
requests compliance with the C++ standard, instead of the C standard,
when used with g++.

Note that programs using C++ object files must always be linked with
g++, in order to supply the appropriate C++ libraries. Attempting to link
a C++ object file with the C compiler gcc will cause “undefined reference”
errors for C++ standard library functions:

$ g++ -Wall -c hello.cc

$ gcc hello.o (should use g++)
hello.o: In function ‘main’:

hello.o(.text+0x1b): undefined reference to ‘std::cout’

.....

hello.o(.eh_frame+0x11):

undefined reference to ‘__gxx_personality_v0’

Linking the same object file with g++ supplies all the necessary C++ li-
braries and will produce a working executable:

$ g++ hello.o

$./a.out

Hello, world!

A point that sometimes causes confusion is that gcc will actually compile
C++ source code when it detects a C++ file extension, but cannot then
link the resulting object files.

$ gcc -Wall -c hello.cc (succeeds, even for C++)
$ gcc hello.o

hello.o: In function ‘main’:

hello.o(.text+0x1b): undefined reference to ‘std::cout’

In order to avoid this problem it is best to use g++ consistently for C++
programs, and gcc for C programs.

7.2 Using the C++ standard library

An implementation of the C++ standard library is provided as a part of
GCC. The following program uses the standard library string class to
reimplement the Hello World program:

#include <string>

#include <iostream>

using namespace std;

int

Chapter 7: Compiling a C++ program 57

main ()

{

string s1 = "Hello,";

string s2 = "World!";

cout << s1 + " " + s2 << endl;

return 0;

}

The program can be compiled and run using the same commands as above:

$ g++ -Wall hellostr.cc

$./a.out

Hello, World!

Note that in accordance with the C++ standard, the header files for the
C++ library itself do not use a file extension. The classes in the library
are also defined in the std namespace, so the directive using namespace

std is needed to access them, unless the prefix std:: is used throughout
(as in the previous section).

7.3 Templates

Templates provide the ability to define C++ classes which support generic
programming techniques. Templates can be considered as a powerful
kind of macro facility. When a templated class or function is used with a
specific class or type, such as float or int, the corresponding template
code is compiled with that type substituted in the appropriate places.

7.3.1 Using C++ standard library templates

The C++ standard library ‘libstdc++’ supplied with GCC provides a wide
range of generic container classes such as lists and queues, in addition to
generic algorithms such as sorting. These classes were originally part of
the Standard Template Library (STL), which was a separate package, but
are now included in the C++ standard library itself.

The following program demonstrates the use of the template library
by creating a list of strings with the template list<string>:

#include <list>

#include <string>

#include <iostream>

using namespace std;

int

main ()

{

58 An Introduction to GCC

list<string> list;

list.push_back("Hello");

list.push_back("World");

cout << "List size = " << list.size() << endl;

return 0;

}

No special options are needed to use the template classes in the standard
library; the command-line options for compiling this program are the same
as before:

$ g++ -Wall string.cc

$./a.out

List size = 2

Note that the executables created by g++ using the C++ standard library
will be linked to the shared library ‘libstdc++’, which is supplied as
part of the default GCC installation. There are several versions of this
library—if you distribute executables using the C++ standard library you
need to ensure that the recipient has a compatible version of ‘libstdc++’,
or link your program statically using the command-line option ‘-static’.

7.3.2 Providing your own templates

In addition to the template classes provided by the C++ standard library
you can define your own templates. The recommended way to use tem-
plates with g++ is to follow the inclusion compilation model, where tem-
plate definitions are placed in header files. This is the method used by the
C++ standard library supplied with GCC itself. The header files can then
be included with ‘#include’ in each source file where they are needed.

For example, the following template file creates a simple Buffer<T>

class which represents a circular buffer holding objects of type T.

#ifndef BUFFER_H

#define BUFFER_H

template <class T>

class Buffer

{

public:

Buffer (unsigned int n);

void insert (const T & x);

T get (unsigned int k) const;

private:

unsigned int i;

unsigned int size;

T *pT;

Chapter 7: Compiling a C++ program 59

};

template <class T>

Buffer<T>::Buffer (unsigned int n)

{

i = 0;

size = n;

pT = new T[n];

};

template <class T>

void

Buffer<T>::insert (const T & x)

{

i = (i + 1) % size;

pT[i] = x;

};

template <class T>

T

Buffer<T>::get (unsigned int k) const

{

return pT[(i + (size - k)) % size];

};

#endif /* BUFFER_H */

The file contains both the declaration of the class and the definitions of
the member functions. This class is only given for demonstration purposes
and should not be considered an example of good programming. Note the
use of include guards, which test for the presence of the macro BUFFER_H,
ensuring that the definitions in the header file are only parsed once, if the
file is included multiple times in the same context.

The program below uses the templated Buffer class to create a buffer
of size 10, storing the floating point values 0.25 and 1.0 in the buffer:

#include <iostream>

#include "buffer.h"

using namespace std;

int

main ()

{

Buffer<float> f(10);

60 An Introduction to GCC

f.insert (0.25);

f.insert (1.0 + f.get(0));

cout << "stored value = " << f.get(0) << endl;

return 0;

}

The definitions for the template class and its functions are included in the
source file for the program with ‘#include "buffer.h"’ before they are
used. The program can then be compiled using the following command
line:

$ g++ -Wall tprog.cc

$./a.out

stored value = 1.25

At the points where the template functions are used in the source file,
g++ compiles the appropriate definition from the header file and places
the compiled function in the corresponding object file.

If a template function is used several times in a program it will be
stored in more than one object file. The GNU Linker ensures that only one
copy is placed in the final executable. Other linkers may report “multiply
defined symbol” errors when they encounter more than one copy of a
template function—a method of working with these linkers is described
below.

7.3.3 Explicit template instantiation

To achieve complete control over the compilation of templates with g++

it is possible to require explicit instantiation of each occurrence of a tem-
plate, using the option ‘-fno-implicit-templates’. This method is not
needed when using the GNU Linker—it is an alternative to the inclu-
sion compilation model for systems with linkers which cannot eliminate
duplicate definitions of template functions in object files.

In this approach, template functions are no longer compiled at the
point where they are used, as a result of the ‘-fno-implicit-templates’
option. Instead, the compiler looks for an explicit instantiation of the
template using the template keyword with a specific type to force its
compilation (this is a GNU extension to the standard behavior). These
instantiations are typically placed in a separate source file, which is then
compiled to make an object file containing all the template functions
required by a program. This ensures that each template appears in only
one object file, and is compatible with linkers which cannot eliminate
duplicate definitions in object files.

For example, the following file ‘templates.cc’ contains an explicit
instantiation of the Buffer<float> class used by the program ‘tprog.cc’
given above:

Chapter 7: Compiling a C++ program 61

#include "buffer.h"

template class Buffer<float>;

The whole program can be compiled and linked using explicit instantiation
with the following commands:

$ g++ -Wall -fno-implicit-templates -c tprog.cc

$ g++ -Wall -fno-implicit-templates -c templates.cc

$ g++ tprog.o templates.o

$./a.out

stored value = 1.25

The object code for all the template functions is contained in the
file ‘templates.o’. There is no object code for template functions in
‘tprog.o’ when it is compiled with the ‘-fno-implicit-templates’ op-
tion.

If the program is modified to use additional types, then further explicit
instantiations can be added to the file ‘templates.cc’. For example, the
following code adds instantiations for Buffer objects containing double

and int values:

#include "buffer.h"

template class Buffer<float>;

template class Buffer<double>;

template class Buffer<int>;

The disadvantage of explicit instantiation is that it is necessary to know
which template types are needed by the program. For a complicated pro-
gram this may be difficult to determine in advance. Any missing template
instantiations can be determined at link time, however, and added to the
list of explicit instantiations, by noting which functions are undefined.

Explicit instantiation can also be used to make libraries of precompiled
template functions, by creating an object file containing all the required
instantiations of a template function (as in the file ‘templates.cc’ above).
For example, the object file created from the template instantiations above
contains the machine code needed for Buffer classes with ‘float’, ‘double’
and ‘int’ types, and could be distributed in a library.

7.3.4 The export keyword

At the time of writing, GCC does not support the new C++ export key-
word (GCC 3.3.2).

This keyword was proposed as a way of separating the interface of
templates from their implementation. However it adds its own complexity
to the linking process, which can detract from any advantages in practice.

62 An Introduction to GCC

The export keyword is not widely used, and most other compilers do
not support it either. The inclusion compilation model described earlier
is recommended as the simplest and most portable way to use templates.

Chapter 8: Platform-specific options 63

8 Platform-specific options
GCC provides a range of platform-specific options for different types of
CPUs. These options control features such as hardware floating-point
modes, and the use of special instructions for different CPUs. They can
be selected with the ‘-m’ option on the command line, and work with all
the GCC language frontends, such as gcc and g++.

The following sections describe some of the options available for com-
mon platforms. A complete list of all platform-specific options can be
found in the GCC Reference Manual, “Using GCC” (see [Further read-
ing], page 91). Support for new processors is added to GCC as they
become available, therefore some of the options described in this chapter
may not be found in older versions of GCC.

8.1 Intel and AMD x86 options

The features of the widely used Intel and AMD x86 families of processors
(386, 486, Pentium, etc) can be controlled with GCC platform-specific
options.

On these platforms, GCC produces executable code which is compat-
ible with all the processors in the x86 family by default—going all the
way back to the 386. However, it is also possible to compile for a specific
processor to obtain better performance.(1)

For example, recent versions of GCC have specific support for newer
processors such as the Pentium 4 and AMD Athlon. These can be selected
with the following option for the Pentium 4,

$ gcc -Wall -march=pentium4 hello.c

and for the Athlon:

$ gcc -Wall -march=athlon hello.c

A complete list of supported CPU types can be found in the GCC Refer-
ence Manual.

Code produced with a specific ‘-march=CPU ’ option will be faster but
will not run on other processors in the x86 family. If you plan to distribute
executable files for general use on Intel and AMD processors they should
be compiled without any ‘-march’ options.

As an alternative, the ‘-mcpu=CPU ’ option provides a compromise be-
tween speed and portability—it generates code that is tuned for a specific

(1) Also referred to as “targeting” a specific processor.

64 An Introduction to GCC

processor, in terms of instruction scheduling, but does not use any in-
structions which are not available on other CPUs in the x86 family. The
resulting code will be compatible with all the CPUs, and have a speed
advantage on the CPU specified by ‘-mcpu’. The executables generated
by ‘-mcpu’ cannot achieve the same performance as ‘-march’, but may be
more convenient in practice.

AMD has enhanced the 32-bit x86 instruction set to a 64-bit instruc-
tion set called x86-64, which is implemented in their AMD64 processors.(2)

On AMD64 systems GCC generates 64-bit code by default. The option
‘-m32’ allows 32-bit code to be generated instead.

The AMD64 processor has several different memory models for pro-
grams running in 64-bit mode. The default model is the small code model,
which allows code and data up to 2 GB in size. The medium code model
allows unlimited data sizes and can be selected with ‘-mcmodel=medium’.
There is also a large code model, which supports an unlimited code size in
addition to unlimited data size. It is not currently implemented in GCC
since the medium code model is sufficient for all practical purposes—
executables with sizes greater than 2 GB are not encountered in practice.

A special kernel code model ‘-mcmodel=kernel’ is provided for system-
level code, such as the Linux kernel. An important point to note is that by
default on the AMD64 there is a 128-byte area of memory allocated below
the stack pointer for temporary data, referred to as the “red-zone”, which
is not supported by the Linux kernel. Compilation of the Linux kernel on
the AMD64 requires the options ‘-mcmodel=kernel -mno-red-zone’.

8.2 DEC Alpha options

The DEC Alpha processor has default settings which maximize floating-
point performance, at the expense of full support for IEEE arithmetic
features.

Support for infinity arithmetic and gradual underflow (denormalized
numbers) is not enabled in the default configuration on the DEC Alpha
processor. Operations which produce infinities or underflows will generate
floating-point exceptions (also known as traps), and cause the program to
terminate, unless the operating system catches and handles the exceptions
(which is, in general, inefficient). The IEEE standard specifies that these
operations should produce special results to represent the quantities in
the IEEE numeric format.

In most cases the DEC Alpha default behavior is acceptable, since the
majority of programs do not produce infinities or underflows. For appli-

(2) Intel has added support for this instruction set as the “Intel 64-bit enhance-
ments” on their Xeon CPUs.

Chapter 8: Platform-specific options 65

cations which require these features, GCC provides the option ‘-mieee’
to enable full support for IEEE arithmetic.

To demonstrate the difference between the two cases the following
program divides 1 by 0:

#include <stdio.h>

int

main (void)

{

double x = 1.0, y = 0.0;

printf ("x/y = %g\n", x / y);

return 0;

}

In IEEE arithmetic the result of 1/0 is inf (Infinity). If the program is
compiled for the Alpha processor with the default settings it generates an
exception, which terminates the program:

$ gcc -Wall alpha.c

$./a.out

Floating point exception (on an Alpha processor)

Using the ‘-mieee’ option ensures full IEEE compliance – the division 1/0
correctly produces the result inf and the program continues executing
successfully:

$ gcc -Wall -mieee alpha.c

$./a.out

x/y = inf

Note that programs which generate floating-point exceptions run more
slowly when compiled with ‘-mieee’, because the exceptions are handled
in software rather than hardware.

8.3 SPARC options

On the SPARC range of processors the ‘-mcpu=CPU ’ option generates
processor-specific code. The valid options for CPU are v7, v8 (Super-
SPARC), Sparclite, Sparclet and v9 (UltraSPARC). Code produced
with a specific ‘-mcpu’ option will not run on other processors in the
SPARC family, except where supported by the backwards-compatibility
of the processor itself.

On 64-bit UltraSPARC systems the options ‘-m32’ and ‘-m64’ control
code generation for 32-bit or 64-bit environments. The 32-bit environment
selected by ‘-m32’ uses int, long and pointer types with a size of 32 bits.
The 64-bit environment selected by ‘-m64’ uses a 32-bit int type and
64-bit long and pointer types.

66 An Introduction to GCC

8.4 POWER/PowerPC options

On systems using the POWER/PowerPC family of processors the op-
tion ‘-mcpu=CPU ’ selects code generation for specific CPU models. The
possible values of CPU include ‘power’, ‘power2’, ‘powerpc’, ‘powerpc64’
and ‘common’, in addition to other more specific model numbers. Code
generated with the option ‘-mcpu=common’ will run on any of the proces-
sors. The option ‘-maltivec’ enables use of the Altivec vector processing
instructions, if the appropriate hardware support is available.

The POWER/PowerPC processors include a combined “multiply and
add” instruction a ∗ x + b, which performs the two operations simultane-
ously for speed—this is referred to as a fused multiply and add, and is
used by GCC by default. Due to differences in the way intermediate val-
ues are rounded, the result of a fused instruction may not be exactly the
same as performing the two operations separately. In cases where strict
IEEE arithmetic is required, the use of the combined instructions can be
disabled with the option ‘-mno-fused-madd’.

On AIX systems, the option ‘-mminimal-toc’ decreases the number
of entries GCC puts in the global table of contents (TOC) in executables,
to avoid “TOC overflow” errors at link time. The option ‘-mxl-call’
makes the linking of object files from GCC compatible with those from
IBM’s XL compilers. For applications using POSIX threads, AIX always
requires the option ‘-pthread’ when compiling, even when the program
will only run in single-threaded mode.

8.5 Multi-architecture support

A number of platforms can execute code for more than one architecture.
For example, 64-bit platforms such as AMD64, MIPS64, Sparc64, and
PowerPC64 support the execution of both 32-bit and 64-bit code. Simi-
larly, ARM processors support both ARM code and a more compact code
called “Thumb”. GCC can be built to support multiple architectures
on these platforms. By default, the compiler will generate 64-bit object
files, but giving the ‘-m32’ option will generate a 32-bit object file for the
corresponding architecture.(3)

Note that support for multiple architectures depends on the corre-
sponding libraries being available. On 64-bit platforms supporting both
64 and 32-bit executables, the 64-bit libraries are often placed in ‘lib64’
directories instead of ‘lib’ directories, e.g. in ‘/usr/lib64’ and ‘/lib64’.
The 32-bit libraries are then found in the default ‘lib’ directories as on
other platforms. This allows both a 32-bit and a 64-bit library with the

(3) The options ‘-maix64’ and ‘-maix32’ are used on AIX.

Chapter 8: Platform-specific options 67

same name to exist on the same system. Other systems, such as the
IA64/Itanium, use the directories ‘/usr/lib’ and ‘/lib’ for 64-bit li-
braries. GCC knows about these paths and uses the appropriate path
when compiling 64-bit or 32-bit code.

68 An Introduction to GCC

Chapter 9: Troubleshooting 69

9 Troubleshooting

GCC provides several help and diagnostic options to assist in trou-
bleshooting problems with the compilation process. All the options de-
scribed in this chapter work with both gcc and g++.

9.1 Help for command-line options

To obtain a brief reminder of various command-line options, GCC provides
a help option which displays a summary of the top-level GCC command-
line options:

$ gcc --help

To display a complete list of options for gcc and its associated programs,
such as the GNU Linker and GNU Assembler, use the help option above
with the verbose (‘-v’) option:

$ gcc -v --help

The complete list of options produced by this command is extremely
long—you may wish to page through it using the more command, or
redirect the output to a file for reference:

$ gcc -v --help 2>&1 | more

9.2 Version numbers

You can find the version number of gcc using the version option:

$ gcc --version

gcc (GCC) 3.3.1

The version number is important when investigating compilation prob-
lems, since older versions of GCC may be missing some features that a pro-
gram uses. The version number has the form major-version.minor-version
or major-version.minor-version.micro-version, where the additional third
“micro” version number (as shown above) is used for subsequent bug-fix
releases in a release series.

More details about the version can be found using ‘-v’:

$ gcc -v

Reading specs from /usr/lib/gcc-lib/i686/3.3.1/specs

Configured with: ../configure --prefix=/usr

Thread model: posix

gcc version 3.3.1

70 An Introduction to GCC

This includes information on the build flags of the compiler itself and the
installed configuration file, ‘specs’.

9.3 Verbose compilation

The ‘-v’ option can also be used to display detailed information about the
exact sequence of commands used to compile and link a program. Here
is an example which shows the verbose compilation of the Hello World
program:

$ gcc -v -Wall hello.c

Reading specs from /usr/lib/gcc-lib/i686/3.3.1/specs

Configured with: ../configure --prefix=/usr

Thread model: posix

gcc version 3.3.1

/usr/lib/gcc-lib/i686/3.3.1/cc1 -quiet -v -D__GNUC__=3

-D__GNUC_MINOR__=3 -D__GNUC_PATCHLEVEL__=1

hello.c -quiet -dumpbase hello.c -auxbase hello -Wall

-version -o /tmp/cceCee26.s

GNU C version 3.3.1 (i686-pc-linux-gnu)

compiled by GNU C version 3.3.1 (i686-pc-linux-gnu)

GGC heuristics: --param ggc-min-expand=51

--param ggc-min-heapsize=40036

ignoring nonexistent directory "/usr/i686/include"

#include "..." search starts here:

#include <...> search starts here:

/usr/local/include

/usr/include

/usr/lib/gcc-lib/i686/3.3.1/include

/usr/include

End of search list.

as -V -Qy -o /tmp/ccQynbTm.o /tmp/cceCee26.s

GNU assembler version 2.12.90.0.1 (i386-linux)

using BFD version 2.12.90.0.1 20020307 Debian/GNU

Linux

/usr/lib/gcc-lib/i686/3.3.1/collect2

--eh-frame-hdr -m elf_i386 -dynamic-linker

/lib/ld-linux.so.2 /usr/lib/crt1.o /usr/lib/crti.o

/usr/lib/gcc-lib/i686/3.3.1/crtbegin.o

-L/usr/lib/gcc-lib/i686/3.3.1

-L/usr/lib/gcc-lib/i686/3.3.1/../../.. /tmp/ccQynbTm.o

-lgcc -lgcc_eh -lc -lgcc -lgcc_eh

/usr/lib/gcc-lib/i686/3.3.1/crtend.o

/usr/lib/crtn.o

Chapter 9: Troubleshooting 71

The output produced by ‘-v’ can be useful whenever there is a problem
with the compilation process itself. It displays the full directory paths
used to search for header files and libraries, the predefined preprocessor
symbols, and the object files and libraries used for linking.

72 An Introduction to GCC

Chapter 10: Compiler-related tools 73

10 Compiler-related tools
This chapter describes a number of tools which are useful in combination
with GCC. These include the GNU archiver ar, for creating libraries, and
the GNU profiling and coverage testing programs, gprof and gcov.

10.1 Creating a library with the GNU
archiver

The GNU archiver ar combines a collection of object files into a single
archive file, also known as a library. An archive file is simply a convenient
way of distributing a large number of related object files together (as
described earlier in Section 2.6 [Linking with external libraries], page 14).

To demonstrate the use of the GNU archiver we will create a small
library ‘libhello.a’ containing two functions hello and bye.

The first object file will be generated from the source code for the
hello function, in the file ‘hello_fn.c’ seen earlier:

#include <stdio.h>

#include "hello.h"

void

hello (const char * name)

{

printf ("Hello, %s!\n", name);

}

The second object file will be generated from the source file ‘bye_fn.c’,
which contains the new function bye:

#include <stdio.h>

#include "hello.h"

void

bye (void)

{

printf ("Goodbye!\n");

}

Both functions use the header file ‘hello.h’, now with a prototype for
the function bye():

void hello (const char * name);

void bye (void);

74 An Introduction to GCC

The source code can be compiled to the object files ‘hello_fn.o’ and
‘bye_fn.o’ using the commands:

$ gcc -Wall -c hello_fn.c

$ gcc -Wall -c bye_fn.c

These object files can be combined into a static library using the following
command line:

$ ar cr libhello.a hello_fn.o bye_fn.o

The option ‘cr’ stands for “create and replace”.(1) If the library does
not exist, it is first created. If the library already exists, any original
files in it with the same names are replaced by the new files specified on
the command line. The first argument ‘libhello.a’ is the name of the
library. The remaining arguments are the names of the object files to be
copied into the library.

The archiver ar also provides a “table of contents” option ‘t’ to list
the object files in an existing library:

$ ar t libhello.a

hello_fn.o

bye_fn.o

Note that when a library is distributed, the header files for the public
functions and variables it provides should also be made available, so that
the end-user can include them and obtain the correct prototypes.

We can now write a program using the functions in the newly created
library:

#include "hello.h"

int

main (void)

{

hello ("everyone");

bye ();

return 0;

}

This file can be compiled with the following command line, as described in
Section 2.6 [Linking with external libraries], page 14, assuming the library
‘libhello.a’ is stored in the current directory:

$ gcc -Wall main.c libhello.a -o hello

The main program is linked against the object files found in the library
file ‘libhello.a’ to produce the final executable.

(1) Note that ar does not require a prefix ‘-’ for its options.

Chapter 10: Compiler-related tools 75

The short-cut library linking option ‘-l’ can also be used to link the
program, without needing to specify the full filename of the library ex-
plicitly:

$ gcc -Wall -L. main.c -lhello -o hello

The option ‘-L.’ is needed to add the current directory to the library
search path. The resulting executable can be run as usual:

$./hello

Hello, everyone!

Goodbye!

It displays the output from both the hello and bye functions defined in
the library.

10.2 Using the profiler gprof

The GNU profiler gprof is a useful tool for measuring the performance
of a program—it records the number of calls to each function and the
amount of time spent there, on a per-function basis. Functions which
consume a large fraction of the run-time can be identified easily from the
output of gprof. Efforts to speed up a program should concentrate first
on those functions which dominate the total run-time.

We will use gprof to examine the performance of a small numeri-
cal program which computes the lengths of sequences occurring in the
unsolved Collatz conjecture in mathematics.(2) The Collatz conjecture
involves sequences defined by the rule:

xn+1 ←

{

xn/2 if xn is even
3xn + 1 if xn is odd

The sequence is iterated from an initial value x0 until it terminates with
the value 1. According to the conjecture, all sequences do terminate
eventually—the program below displays the longest sequences as x0 in-
creases. The source file ‘collatz.c’ contains three functions: main, nseq
and step:

#include <stdio.h>

/* Computes the length of Collatz sequences */

unsigned int

step (unsigned int x)

{

if (x % 2 == 0)

{

(2) American Mathematical Monthly, Volume 92 (1985), 3–23

76 An Introduction to GCC

return (x / 2);

}

else

{

return (3 * x + 1);

}

}

unsigned int

nseq (unsigned int x0)

{

unsigned int i = 1, x;

if (x0 == 1 || x0 == 0)

return i;

x = step (x0);

while (x != 1 && x != 0)

{

x = step (x);

i++;

}

return i;

}

int

main (void)

{

unsigned int i, m = 0, im = 0;

for (i = 1; i < 500000; i++)

{

unsigned int k = nseq (i);

if (k > m)

{

m = k;

im = i;

printf ("sequence length = %u for %u\n", m, im);

}

}

return 0;

}

To use profiling, the program must be compiled and linked with the ‘-pg’
profiling option:

Chapter 10: Compiler-related tools 77

$ gcc -Wall -c -pg collatz.c

$ gcc -Wall -pg collatz.o

This creates an instrumented executable which contains additional in-
structions that record the time spent in each function.

If the program consists of more than one source file then the ‘-pg’ op-
tion should be used when compiling each source file, and used again when
linking the object files to create the final executable (as shown above).
Forgetting to link with the option ‘-pg’ is a common error, which pre-
vents profiling from recording any useful information.

The executable must be run to create the profiling data:

$./a.out

(normal program output is displayed)

While running the instrumented executable, profiling data is silently writ-
ten to a file ‘gmon.out’ in the current directory. It can be analyzed with
gprof by giving the name of the executable as an argument:

$ gprof a.out

Flat profile:

Each sample counts as 0.01 seconds.

% cumul. self self total

time seconds seconds calls us/call us/call name

68.59 2.14 2.14 62135400 0.03 0.03 step

31.09 3.11 0.97 499999 1.94 6.22 nseq

0.32 3.12 0.01 main

The first column of the data shows that the program spends most of its
time (almost 70%) in the function step, and 30% in nseq. Consequently
efforts to decrease the run-time of the program should concentrate on the
former. In comparison, the time spent within the main function itself is
completely negligible (less than 1%).

The other columns in the output provide information on the total
number of function calls made, and the time spent in each function. Ad-
ditional output breaking down the run-time further is also produced by
gprof but not shown here. Full details can be found in the manual “GNU
gprof—The GNU Profiler”, by Jay Fenlason and Richard Stallman.

10.3 Coverage testing with gcov

The GNU coverage testing tool gcov analyses the number of times each
line of a program is executed during a run. This makes it possible to
find areas of the code which are not used, or which are not exercised
in testing. When combined with profiling information from gprof the
information from coverage testing allows efforts to speed up a program to
be concentrated on specific lines of the source code.

78 An Introduction to GCC

We will use the example program below to demonstrate gcov. This
program loops overs the integers 1 to 9 and tests their divisibility with
the modulus (%) operator.

#include <stdio.h>

int

main (void)

{

int i;

for (i = 1; i < 10; i++)

{

if (i % 3 == 0)

printf ("%d is divisible by 3\n", i);

if (i % 11 == 0)

printf ("%d is divisible by 11\n", i);

}

return 0;

}

To enable coverage testing the program must be compiled with the fol-
lowing options:

$ gcc -Wall -fprofile-arcs -ftest-coverage cov.c

This creates an instrumented executable which contains additional in-
structions that record the number of times each line of the program is ex-
ecuted. The option ‘-ftest-coverage’ adds instructions for counting the
number of times individual lines are executed, while ‘-fprofile-arcs’ in-
corporates instrumentation code for each branch of the program. Branch
instrumentation records how frequently different paths are taken through
‘if’ statements and other conditionals. The executable must then be run
to create the coverage data:

$./a.out

3 is divisible by 3

6 is divisible by 3

9 is divisible by 3

The data from the run is written to several files with the extensions ‘.bb’
‘.bbg’ and ‘.da’ respectively in the current directory. This data can be
analyzed using the gcov command and the name of a source file:

$ gcov cov.c

88.89% of 9 source lines executed in file cov.c

Creating cov.c.gcov

Chapter 10: Compiler-related tools 79

The gcov command produces an annotated version of the original source
file, with the file extension ‘.gcov’, containing counts of the number of
times each line was executed:

#include <stdio.h>

int

main (void)

{

1 int i;

10 for (i = 1; i < 10; i++)

{

9 if (i % 3 == 0)

3 printf ("%d is divisible by 3\n", i);

9 if (i % 11 == 0)

printf ("%d is divisible by 11\n", i);

9 }

1 return 0;

1 }

The line counts can be seen in the first column of the output. Lines which
were not executed are marked with hashes ‘######’. The command ‘grep
’######’ *.gcov’ can be used to find parts of a program which have not
been used.

80 An Introduction to GCC

Chapter 11: How the compiler works 81

11 How the compiler works

This chapter describes in more detail how GCC transforms source files to
an executable file. Compilation is a multi-stage process involving several
tools, including the GNU Compiler itself (through the gcc or g++ fron-
tends), the GNU Assembler as, and the GNU Linker ld. The complete
set of tools used in the compilation process is referred to as a toolchain.

11.1 An overview of the compilation process

The sequence of commands executed by a single invocation of GCC con-
sists of the following stages:

• preprocessing (to expand macros)

• compilation (from source code to assembly language)

• assembly (from assembly language to machine code)

• linking (to create the final executable)

As an example, we will examine these compilation stages individually
using the Hello World program ‘hello.c’:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

Note that it is not necessary to use any of the individual commands de-
scribed in this section to compile a program. All the commands are exe-
cuted automatically and transparently by GCC internally, and can be seen
using the ‘-v’ option described earlier (see Section 9.3 [Verbose compila-
tion], page 70). The purpose of this chapter is to provide an understanding
of how the compiler works.

Although the Hello World program is very simple it uses external
header files and libraries, and so exercises all the major steps of the com-
pilation process.

82 An Introduction to GCC

11.2 The preprocessor

The first stage of the compilation process is the use of the preprocessor
to expand macros and included header files. To perform this stage, GCC
executes the following command:(1)

$ cpp hello.c > hello.i

The result is a file ‘hello.i’ which contains the source code with all
macros expanded. By convention, preprocessed files are given the file
extension ‘.i’ for C programs and ‘.ii’ for C++ programs. In practice,
the preprocessed file is not saved to disk unless the ‘-save-temps’ option
is used.

11.3 The compiler

The next stage of the process is the actual compilation of preprocessed
source code to assembly language, for a specific processor. The command-
line option ‘-S’ instructs gcc to convert the preprocessed C source code
to assembly language without creating an object file:

$ gcc -Wall -S hello.i

The resulting assembly language is stored in the file ‘hello.s’. Here is
what the Hello World assembly language for an Intel x86 (i686) processor
looks like:

$ cat hello.s

.file "hello.c"

.section .rodata

.LC0:

.string "Hello, world!\n"

.text

.globl main

.type main, @function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

movl $.LC0, (%esp)

call printf

(1) As mentioned earlier, the preprocessor is integrated into the compiler in
recent versions of GCC. Conceptually, the compilation process is the same
as running the preprocessor as separate application.

Chapter 11: How the compiler works 83

movl $0, %eax

leave

ret

.size main, .-main

.ident "GCC: (GNU) 3.3.1"

Note that the assembly language contains a call to the external function
printf.

11.4 The assembler

The purpose of the assembler is to convert assembly language into ma-
chine code and generate an object file. When there are calls to external
functions in the assembly source file, the assembler leaves the addresses
of the external functions undefined, to be filled in later by the linker. The
assembler can be invoked with the following command line:

$ as hello.s -o hello.o

As with GCC, the output file is specified with the ‘-o’ option. The result-
ing file ‘hello.o’ contains the machine instructions for the Hello World
program, with an undefined reference to printf.

11.5 The linker

The final stage of compilation is the linking of object files to create an
executable. In practice, an executable requires many external functions
from system and C run-time (crt) libraries. Consequently, the actual link
commands used internally by GCC are complicated. For example, the full
command for linking the Hello World program is:

$ ld -dynamic-linker /lib/ld-linux.so.2 /usr/lib/crt1.o

/usr/lib/crti.o /usr/lib/gcc-lib/i686/3.3.1/crtbegin.o

-L/usr/lib/gcc-lib/i686/3.3.1 hello.o -lgcc -lgcc_eh

-lc -lgcc -lgcc_eh /usr/lib/gcc-lib/i686/3.3.1/crtend.o

/usr/lib/crtn.o

Fortunately there is never any need to type the command above directly—
the entire linking process is handled transparently by gcc when invoked
as follows:

$ gcc hello.o

This links the object file ‘hello.o’ to the C standard library, and produces
an executable file ‘a.out’:

$./a.out

Hello, world!

An object file for a C++ program can be linked to the C++ standard library
in the same way with a single g++ command.

84 An Introduction to GCC

Chapter 12: Examining compiled files 85

12 Examining compiled files
This chapter describes several useful tools for examining the contents of
executable files and object files.

12.1 Identifying files

When a source file has been compiled to an object file or executable the
options used to compile it are no longer obvious. The file command
looks at the contents of an object file or executable and determines some
of its characteristics, such as whether it was compiled with dynamic or
static linking.

For example, here is the result of the file command for a typical
executable:

$ file a.out

a.out: ELF 32-bit LSB executable, Intel 80386,

version 1 (SYSV), dynamically linked (uses shared

libs), not stripped

The output shows that the executable file is dynamically linked, and com-
piled for the Intel 386 and compatible processors. A full explanation of
the output is shown below:

ELF The internal format of the executable file (ELF stands for “Exe-
cutable and Linking Format”, other formats such as COFF “Com-
mon Object File Format” are used on some older operating systems
(e.g. MS-DOS)).

32-bit

The word size (for some platforms this would be 64-bit).

LSB Compiled for a platform with least significant byte first word-
ordering, such as Intel and AMD x86 processors (the alternative
MSB most significant byte first is used by other processors, such
as the Motorola 680x0)(1). Some processors such as Itanium and
MIPS support both LSB and MSB orderings.

Intel 80386

The processor the executable file was compiled for.

(1) The MSB and LSB orderings are also known as big-endian and little-endian
respectively (the terms originate from Jonathan Swift’s satire “Gulliver’s
Travels”, 1727).

86 An Introduction to GCC

version 1 (SYSV)

This is the version of the internal format of the file.

dynamically linked

The executable uses shared libraries (statically linked indicates
programs linked statically, for example using the ‘-static’ option)

not stripped

The executable contains a symbol table (this can be removed with
the strip command).

The file command can also be used on object files, where it gives similar
output. The POSIX standard(2) for Unix systems defines the behavior of
the file command.

12.2 Examining the symbol table

As described earlier in the discussion of debugging, executables and object
files can contain a symbol table (see Chapter 5 [Compiling for debugging],
page 41). This table stores the location of functions and variables by
name, and can be displayed with the nm command:

$ nm a.out

08048334 t Letext

08049498 ? _DYNAMIC

08049570 ? _GLOBAL_OFFSET_TABLE_

........

080483f0 T main

08049590 b object.11

0804948c d p.3

U printf@GLIBC_2.0

Among the contents of the symbol table, the output shows that the start
of the main function has the hexadecimal offset 080483f0. Most of the
symbols are for internal use by the compiler and operating system. A ‘T’
in the second column indicates a function that is defined in the object
file, while a ‘U’ indicates a function which is undefined (and should be
resolved by linking against another object file). A complete explanation
of the output of nm can be found in the GNU Binutils manual.

The most common use of the nm command is to check whether a library
contains the definition of a specific function, by looking for a ‘T’ entry in
the second column against the function name.

(2) POSIX.1 (2003 edition), IEEE Std 1003.1-2003.

Chapter 12: Examining compiled files 87

12.3 Finding dynamically linked libraries

When a program has been compiled using shared libraries it needs to load
those libraries dynamically at run-time in order to call external functions.
The command ldd examines an executable and displays a list of the shared
libraries that it needs. These libraries are referred to as the shared library
dependencies of the executable.

For example, the following commands demonstrate how to find the
shared library dependencies of the Hello World program:

$ gcc -Wall hello.c

$ ldd a.out

libc.so.6 => /lib/libc.so.6 (0x40020000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The output shows that the Hello World program depends on the C library
libc (shared library version 6) and the dynamic loader library ld-linux

(shared library version 2).

If the program uses external libraries, such as the math library, these
are also displayed. For example, the calc program (which uses the sqrt

function) generates the following output:

$ gcc -Wall calc.c -lm -o calc

$ ldd calc

libm.so.6 => /lib/libm.so.6 (0x40020000)

libc.so.6 => /lib/libc.so.6 (0x40041000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The first line shows that this program depends on the math library libm

(shared library version 6), in addition to the C library and dynamic loader
library.

The ldd command can also be used to examine shared libraries them-
selves, in order to follow a chain of shared library dependencies.

88 An Introduction to GCC

Chapter 13: Getting help 89

13 Getting help
If you encounter a problem not covered by this manual, there are sev-
eral reference manuals which describe GCC and language-related topics
in more detail (see [Further reading], page 91). These manuals contain
answers to common questions, and careful study of them will usually yield
a solution. If the manuals are unclear, the most appropriate way to obtain
help is to ask a knowledgeable colleague for assistance.

Alternatively, there are many companies and consultants who offer
commercial support for programming matters related to GCC on an
hourly or ongoing basis. For businesses this can be a cost-effective way to
obtain high-quality support.

A directory of free software support companies and their current rates
can be found on the GNU Project website.(1) With free software, com-
mercial support is available in a free market—service companies compete
in quality and price, and users are not tied to any particular one. In con-
trast, support for proprietary software is usually only available from the
original vendor.

A higher-level of commercial support for GCC is available from compa-
nies involved in the development of the GNU compiler toolchain itself. A
listing of these companies can be found in the “Development Companies”
section of the publisher’s webpage for this book.(2) These companies can
provide services such as extending GCC to generate code for new CPUs
or fixing bugs in the compiler.

(1) http://www.gnu.org/prep/service.html
(2) http://www.network-theory.co.uk/gcc/intro/

90 An Introduction to GCC

Further reading 91

Further reading
The definitive guide to GCC is the official reference manual, “Using
GCC”, published by GNU Press:

Using GCC (for GCC version 3.3.1) by Richard M. Stallman and
the GCC Developer Community (Published by GNU Press, ISBN
1-882114-39-6)

This manual is essential for anyone working with GCC because it describes
every option in detail. Note that the manual is updated when new releases
of GCC become available, so the ISBN number may change in the future.

If you are new to programming with GCC you will also want to learn
how to use the GNU Debugger GDB, and how to compile large programs
easily with GNU Make. These tools are described in the following manu-
als:

Debugging with GDB: The GNU Source-Level Debugger by Richard
M. Stallman, Roland Pesch, Stan Shebs, et al. (Published by GNU
Press, ISBN 1-882114-88-4)

GNU Make: A Program for Directing Recompilation by Richard M.
Stallman and Roland McGrath (Published by GNU Press, ISBN 1-
882114-82-5)

For effective C programming it is also essential to have a good knowl-
edge of the C standard library. The following manual documents all the
functions in the GNU C Library:

The GNU C Library Reference Manual by Sandra Loosemore with
Richard M. Stallman, et al (2 vols) (Published by GNU Press, ISBN
1-882114-22-1 and 1-882114-24-8)

Be sure to check the website http://www.gnupress.org/ for the latest
printed editions of manuals published by GNU Press. The manuals can be
purchased online using a credit card at the FSF website(1) in addition to
being available for order through most bookstores using the ISBNs. Man-
uals published by GNU Press raise funds for the Free Software Foundation
and the GNU Project.

Information about shell commands, environment variables and shell-
quoting rules can be found in the following book:

The GNU Bash Reference Manual by Chet Ramey and Brian Fox
(Published by Network Theory Ltd, ISBN 0-9541617-7-7)

(1) http://order.fsf.org/

92 An Introduction to GCC

Other GNU Manuals mentioned in this book (such as GNU gprof—The
GNU Profiler and The GNU Binutils Manual) were not available in print
at the time this book went to press. Links to online copies can be found
at the publisher’s webpage for this book.(2)

The official GNU Project webpages for GCC can be found at
http://www.gnu.org/software/gcc/. These include a list of frequently
asked questions, as well as the GCC bug tracking database and a lot of
other useful information about GCC.

There are many books about the C and C++ languages themselves.
Two of the standard references are:

The C Programming Language (ANSI edition) Brian W. Kernighan,
Dennis Ritchie (ISBN 0-13110362-8)

The C++ Programming Language (3rd edition) Bjarne Stroustrup
(ISBN 0-20188954-4)

Anyone using the C and C++ languages in a professional context should
obtain a copy of the official language standards.

The official C standard number is ISO/IEC 9899:1990, for the original
C standard published in 1990 and implemented by GCC. A revised C
standard ISO/IEC 9899:1999 (known as C99) was published in 1999, and
this is mostly (but not yet fully) supported by GCC.

The C++ standard is ISO/IEC 14882. The IEEE floating-point arith-
metic standard (IEEE-754) is also important for any programs involving
numerical computations.

These standards documents are available commercially from the rel-
evant standards bodies. The C and C++ standards are also available as
printed books:

The C Standard: Incorporating Technical Corrigendum 1 (Published
by Wiley, ISBN 0-470-84573-2)

The C++ Standard (Published by Wiley, ISBN 0-470-84674-7)

For ongoing learning, anyone using GCC might consider joining the
Association of C and C++ Users (ACCU). The ACCU is a non-profit
organization devoted to professionalism in programming at all levels, and
is recognized as an authority in the field. More information is available
from the ACCU website http://www.accu.org/.

The ACCU publishes two journals about programming in C and C++
and organizes regular conferences. The annual membership fee represents
a good investment for individuals, or for companies who want to encourage
a higher standard of professional development among their staff.

(2) http://www.network-theory.co.uk/gcc/intro/

Acknowledgements 93

Acknowledgements
Many people have contributed to this book, and it is important to record
their names here:

Thanks to Gerald Pfeifer, for his careful reviewing and numerous sug-
gestions for improving the book.

Thanks to Andreas Jaeger, for information on AMD64 and multi-
architecture support, and many helpful comments.

Thanks to David Edelsohn, for information on the POWER/PowerPC
series of processors.

Thanks to Jamie Lokier, for research.

Thanks to Stephen Compall, for helpful corrections.

Thanks to Gerard Jungman, for useful comments.

Thanks to Steven Rubin, for generating the chip layout for the cover
with Electric.

And most importantly, thanks to Richard Stallman, founder of the
GNU Project, for writing GCC and making it free software.

94 An Introduction to GCC

Other books from the publisher 95

Other books from the publisher
Network Theory publishes books about free software under free documen-
tation licenses. Our current catalogue includes the following titles:

• Comparing and Merging Files with GNU diff and patch by David
MacKenzie, Paul Eggert, and Richard Stallman (ISBN 0-9541617-5-
0) $19.95 (£12.95)

• Version Management with CVS by Per Cederqvist et al. (ISBN 0-
9541617-1-8) $29.95 (£19.95)

• GNU Bash Reference Manual by Chet Ramey and Brian Fox (ISBN
0-9541617-7-7) $29.95 (£19.95)

• An Introduction to R by W.N. Venables, D.M. Smith and the R
Development Core Team (ISBN 0-9541617-4-2) $19.95 (£12.95)

• GNU Octave Manual by John W. Eaton (ISBN 0-9541617-2-6) $29.99
(£19.99)

• GNU Scientific Library Reference Manual—Second Edition by M.
Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, F.
Rossi (ISBN 0-9541617-3-4) $39.99 (£24.99)

• An Introduction to Python by Guido van Rossum and Fred L. Drake,
Jr. (ISBN 0-9541617-6-9) $19.95 (£12.95)

• Python Language Reference Manual by Guido van Rossum and Fred
L. Drake, Jr. (ISBN 0-9541617-8-5) $19.95 (£12.95)

• The R Reference Manual—Base Package (Volume 1) by the R De-
velopment Core Team (ISBN 0-9546120-0-0) $69.95 (£39.95)

• The R Reference Manual—Base Package (Volume 2) by the R De-
velopment Core Team (ISBN 0-9546120-1-9) $69.95 (£39.95)

All titles are available for order from bookstores worldwide.

Sales of the manuals fund the development of more free software and
documentation.

For details, visit the website http://www.network-theory.co.uk/

96 An Introduction to GCC

Free software organizations 97

Free software organizations
The GNU Compiler Collection is part of the GNU Project, launched in
1984 to develop a complete Unix-like operating system which is free soft-
ware: the GNU system.

The Free Software Foundation (FSF) is a tax-exempt charity that
raises funds for continuing work on the GNU Project. It is dedicated to
promoting your right to use, study, copy, modify, and redistribute com-
puter programs. One of the best ways to help the development of free
software is to become an associate member of the Free Software Founda-
tion, and pay regular dues to support their efforts—for more information
visit the FSF website:

Free Software Foundation (FSF)
United States — http://www.fsf.org/

Around the world there are many other local free software membership
organizations which support the aims of the Free Software Foundation,
including:

Free Software Foundation Europe (FSF Europe)
Europe — http://www.fsfeurope.org/

Association for Free Software (AFFS)
United Kingdom — http://www.affs.org.uk/

Irish Free Software Organisation (IFSO)
Ireland — http://www.ifso.info/

Association for Promotion and Research in Libre Computing (APRIL)
France — http://www.april.org/

Associazione Software Libero
Italy — http://www.softwarelibero.it/

Verein zur Förderung Freier Software (FFIS)
Germany — http://www.ffis.de/

Verein zur Förderung Freier Software
Austria — http://www.ffs.or.at/

Association Electronique Libre (AEL)
Belgium — http://www.ael.be/

National Association for Free Software (ANSOL)
Portugal — http://www.ansol.org/

98 An Introduction to GCC

Free Software Initiative of Japan (FSIJ)
Japan — http://www.fsij.org/

Free Software Foundation of India (FSF India)
India — http://www.fsf.org.in/

The Foundation for a Free Information Infrastructure (FFII) is an
important organization in Europe. FFII is not specific to free software,
but works to defend the rights of all programmers and computer users
against monopolies in the field of computing, such as patents on software.

For more information about FFII, or to support their work with a
donation, visit their website at http://www.ffii.org/.

GNU Free Documentation License 99

GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document free in the sense of freedom: to assure everyone the effec-
tive freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend
this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above def-
inition of Secondary then it is not allowed to be designated as Invariant. The

100 An Introduction to GCC

Document may contain zero Invariant Sections. If the Document does not iden-
tify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, repre-
sented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed
for human modification. Examples of transparent image formats include png,
xcf and jpg. Opaque formats include proprietary formats that can be read
and edited only by proprietary word processors, sgml or xml for which the dtd

and/or processing tools are not generally available, and the machine-generated
html, PostScript or pdf produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title
either is precisely XYZ or contains XYZ in parentheses following text that trans-
lates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

GNU Free Documentation License 101

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque copy a computer-network lo-
cation from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

102 An Introduction to GCC

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

GNU Free Documentation License 103

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the
name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine
any sections Entitled “Acknowledgements”, and any sections Entitled “Dedica-
tions”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of
the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a

104 An Introduction to GCC

disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Doc-
ument specifies that a particular numbered version of this License “or any later
version” applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version

published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no

Back-Cover Texts. A copy of the license is included in

the section entitled ‘‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with...Texts.” line with this:

with the Invariant Sections being list their

titles, with the Front-Cover Texts being list, and

with the Back-Cover Texts being list.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such as
the GNU General Public License, to permit their use in free software.

Index 105

Index

#
#define, preprocessor directive . . . 35
#if, preprocessor directive 29
#ifdef, preprocessor directive 35
#include, preprocessor directive . . 10

$
$, shell prompt 5

-
‘--help’ option, display

command-line options 69
‘--version’ option, display version

number . 69
‘-ansi’ option, disable language

extensions 25
‘-ansi’ option, used with g++ 55
‘-c’ option, compile to object file

. 11
‘-D’ option, define macro 35
‘-dM’ option, list predefined macros

. 36
‘-E’ option, preprocess source files

. 38
‘-fno-implicit-templates’ option,

disable implicit instantiation
. 60

‘-fprofile-arcs’ option, instrument
branches 78

‘-ftest-coverage’ option, record
coverage . 78

‘-funroll-loops’ option,
optimization by loop unrolling
. 50

‘-g’ option, enable debugging 41
‘-I’ option, include path 19
‘-L’ option, library search path . . . 19
‘-l’ option, linking with libraries

. 15

‘-lm’ option, link with math library
. 15

‘-m’ option, platform-specific settings
. 63

‘-m32’ and ‘-m64’ options, compile for
32 or 64-bit environment 65

‘-maltivec’ option, enables use of
Altivec processor on PowerPC
. 66

‘-march’ option, compile for specific
CPU . 63

‘-mcmodel’ option, for AMD64 . . . 64
‘-mcpu’ option, compile for specific

CPU . 65
‘-mieee’ option, floating-point

support on DEC Alpha 64
‘-mminimal-toc’ option, on AIX . . 66
‘-mno-fused-madd’ option, on

PowerPC 66
‘-mxl-call’ option, compatibility

with IBM XL compilers on AIX
. 66

‘-o’ option, set output filename 7
‘-O0’ option, optimization level zero

. 49
‘-O1’ option, optimization level one

. 49
‘-O2’ option, optimization level two

. 50
‘-O3’ option, optimization level three

. 50
‘-Os’ option, optimization for size

. 50
‘-pedantic’ option, conform to the

ANSI standard (with ‘-ansi’)
. 25

‘-pg’ option, enable profiling 76
‘-pthread’ option, on AIX 66
‘-rpath’ option, set run-time shared

library search path 24
‘-S’ option, create assembly code

. 82

106 An Introduction to GCC

‘-save-temps’ option, keeps
intermediate files 39

‘-static’ option, force static linking
. 25

‘-std’ option, select specific language
standard 25, 29

‘-v’ option, verbose compilation . . 69
‘-W’ option, enable additional

warnings 31
‘-Wall’ option, enable common

warnings . 7
‘-Wcast-qual’ option, warn about

casts removing qualifiers 32
‘-Wcomment’ option, warn about

nested comments 29
‘-Wconversion’ option, warn about

type conversions 31
‘-Werror’ option, convert warnings to

errors . 33
‘-Wformat’ option, warn about

incorrect format strings. 30
‘-Wimplicit’ option, warn about

missing declarations 30
‘-Wreturn-type’ option, warn about

incorrect return types 30
‘-Wshadow’ option, warn about

shadowed variables 32
‘-Wtraditional’ option, warn about

traditional C 33
‘-Wuninitialized’ option, warn

about uninitialized variables
. 53

‘-Wunused’ option, unused variable
warning . 30

‘-Wwrite-strings’ option, warning
for modified string constants
. 33

.

.a, archive file extension 14

.c, C source file extension 7

.cc, C++ file extension 55

.cpp, C++ file extension. 55

.cxx, C++ file extension. 55

.h, header file extension 9

.i, preprocessed file extension for C
. 82

.ii, preprocessed file extension for
C++ . 82

.o, object file extension 11

.s, assembly file extension 82

.so, shared object file extension . . 23

/
‘/tmp’ directory, temporary files . . 15

__gxx_personality_v0, undefined
reference error 56

_GNU_SOURCE macro, enables
extensions to GNU C Library
. 27

6
64-bit platforms, additional library

directories 19
64-bit processor specific options,

AMD64 and Intel 64

A
a, archive file extension 14
a.out, default executable filename

. 7
ACCU, Association of C and C++

users . 92
ADA, gnat compiler 3
additional warning options 31
AIX, compatibility with IBM XL

compilers 66
AIX, platform-specific options 66
AIX, TOC overflow error 66
Alpha, platform-specific options . . 64
Altivec, on PowerPC 66
AMD x86, platform-specific options

. 63
AMD64, 64-bit processor specific

options . 64
‘ansi’ option, disable language

extensions 25
‘ansi’ option, used with g++ 55
ANSI standards for C/C++ languages,

available as books 92

Index 107

ANSI/ISO C, compared with GNU C
extensions 25

ANSI/ISO C, controlled with ‘-ansi’
option . 26

ANSI/ISO C, pedantic diagnostics
option . 28

ar, GNU archiver 14, 73
archive file, .a extension 14
archive file, explanation of 14
archiver, ar . 81
ARM, multi-architecture support

. 66
arrays, variable-size in GNU C . . . 28
asm, GNU C extension keyword . . 27
assembler, as 81
assembler, converting assembly

language to machine code. . . . 83
Association of C and C++ users

(ACCU) . 92
Athlon, platform-specific options

. 63

B
backtrace, debugger command . . . 44
backtrace, displaying 44
bash profile file, login settings . . . 21,

24, 43
benchmarking, with time command

. 51
big-endian, word-ordering 85
binary file, also called executable file

. 7
Binutils, GNU Binary Tools 86
bits, 32 vs 64 on UltraSPARC 65
books, further reading 92
branches, instrumenting for coverage

testing . 78
BSD extensions, GNU C Library

. 27
buffer, template example 58
bug, example of 9, 17, 42

C
C language, dialects of 25
C language, further reading 92
C library, standard 14
C math library 14

‘c’ option, compile to object file . . 11
C programs, recompiling after

modification 13
C source file, .c extension 7
C standard library 14
C++, compiling a simple program

with g++ 55
C++, creating libraries with explicit

instantiation 61
C++, file extensions 55
C++, g++ as a true compiler 55
C++, g++ compiler 3
C++, instantiation of templates . . . 58
C++, namespace std 57
C++, standard library 56
C++, standard library libstdc++

. 58
C++, standard library templates . . 57
C++, templates 57
c, C source file extension. 7
C, compiling with gcc 7
C, gcc compiler 3
C/C++ languages, standards in

printed form 92
C/C++, risks of using 5
C/C++, risks of using, example . . . 9,

17, 53
C_INCLUDE_PATH 21
c89/c99, selected with ‘-std’ 29
cannot find -llibrary error,

example of 21
cannot find library , linker error

. 19
cannot open shared object file

error . 23
casts, used to avoid conversion

warnings 31
cc, C++ file extension 55
circular buffer, template example

. 58
COFF format 85
Collatz sequence 75
combined multiply and add

instruction 66
command-line help option. 69
‘comment’ warning option, warn

about nested comments 29
comments, nested 29

108 An Introduction to GCC

common errors, not included with
‘-Wall’ . 31

common subexpression elimination,
optimization 45

comparison of ... expression

always true/false warning,
example of 31

compilation, for debugging 41
compilation, internal stages of 81
compilation, model for templates

. 58
compilation, options 19
compilation, stopping on warning

. 33
compile to object file, ‘-c’ option

. 11
compiled files, examining 85
compiler, converting source code to

assembly code 82
compiler, how it works internally

. 81
compiler-related tools 73
compiling C programs with gcc . . . 7
compiling C++ programs with g++

. 55
compiling files independently 11
compiling multiple files 9
compiling with optimization. 45
configuration files for GCC 70
const, warning about overriding by

casts . 32
constant strings, compile-time

warnings 33
consultants, providing commercial

support . 89
conventions, used in manual 5
conversions between types, warning

of . 31
core file, debugging with gdb 43
core file, examining from program

crash. 41
core file, not produced 42
coverage testing, with gcov 77
CPLUS_INCLUDE_PATH 21
cpp, C preprocessor 35
cpp, C++ file extension 55
‘cr’ option, create/replace archive

files . 74
crashes, saved in core file 41

creating executable files from object
files . 12

creating object files from source files
. 11

cxx, C++ file extension 55

D
‘D’ option, define macro 35
data-flow analysis 53
DBM file, created with gdbm 20
debugging, compilation flags 41
debugging, with gdb 41
debugging, with optimization 53
DEC Alpha, platform-specific options

. 64
declaration, in header file 9
declaration, missing 16
default directories, linking and

header files 19
default executable filename, a.out

. 7
default value, of macro defined with

‘-D’ . 38
defining macros 35
denormalized numbers, on DEC

Alpha . 64

dependencies, of shared libraries . . 87
deployment, options for . . . 41, 50, 53
dereferencing, null pointer 42
dialects of C language 25
different type arg, format warning

. 8
disk space, reduced usage by shared

libraries . 23
displaying a backtrace 44
division by zero 65
DLL (dynamically linked library), see

shared libraries 23
‘dM’ option, list predefined macros

. 36
dollar sign $, shell prompt 5
dynamic loader 23
dynamically linked libraries,

examining with ldd 87
dynamically linked library, see shared

libraries . 23

Index 109

E
‘E’ option, preprocess source files

. 38
EGCS (Experimental GNU Compiler

Suite) . 3
ELF format . 85
elimination, of common

subexpressions 45
embedded systems, cross-compilation

for . 4
empty macro, compared with

undefined macro 38
empty return, incorrect use of . . . 30
enable profiling, ‘-pg’ option 76
endianness, word-ordering 85
enhancements, to GCC 89
environment variables 6, 24
environment variables, extending an

existing path 25
environment variables, for default

search paths 21
environment variables, setting

permanently 24
error, undefined reference due to

library link order 16
error, undefined reference due to

order of object files 12
error, while loading shared libraries

. 23
examining compiled files 85
examining core files 41
examples, conventions used in 5
examples, of optimization 50
executable file . 7
executable, creating from object files

by linking 12
executable, default filename a.out

. 7
executable, examining with file

command 85
executable, running 8
executable, symbol table stored in

. 41
explicit instantiation of templates

. 60
export keyword, not supported in

GCC . 61
extended search paths, for include

and link directories 22

extension, .a archive file 14
extension, .c source file 7
extension, .C, C++ file 55
extension, .cc, C++ file 55
extension, .cpp, C++ file 55
extension, .cxx, C++ file 55
extension, .h header file 9
extension, .i preprocessed file 82
extension, .ii preprocessed file . . . 82
extension, .o object file 11
extension, .s assembly file 82
extension, .so shared object file . . 23
external libraries, linking with 14

F
FDL, GNU Free Documentation

License . 99
feature test macros, GNU C Library

. 27
features, of GCC 4
file command, for identifying files

. 85
file extension, .a archive file 14
file extension, .c source file 7
file extension, .C, C++ file 55
file extension, .cc, C++ file 55
file extension, .cpp, C++ file 55
file extension, .cxx, C++ file 55
file extension, .h header file 9
file extension, .i preprocessed file

. 82
file extension, .ii preprocessed file

. 82
file extension, .o object file 11
file extension, .s assembly file 82
file extension, .so shared object file

. 23
Floating point exception, on DEC

Alpha . 65
fno-implicit-templates option,

disable implicit instantiation
. 60

format strings, incorrect usage
warning . 30

format, ‘different type arg’
warning . 8

Fortran, g77 compiler 3

110 An Introduction to GCC

‘fprofile-arcs’ option, instrument
branches 78

Free Software Foundation (FSF) . . . 3
Free software organizations 97
‘ftest-coverage’ option, record

coverage . 78
function inlining, example of

optimization 46
function-call overhead 46
‘funroll-loops’ option, optimization

by loop unrolling 50
fused multiply and add instruction

. 66

G
‘g’ option, enable debugging 41
g++, compiling C++ programs 55
g++, GNU C++ Compiler 3
g77, Fortran compiler 3
gcc, GNU C Compiler 3
gcc, simple example 7
gcc, used inconsistently with g++

. 56
gcj, GNU Compiler for Java 3
gcov, GNU coverage testing tool . . 77
gdb, debugging core file with 43
gdb, GNU debugger 41
gdbm, GNU DBM library. 20
generic programming, in C++ 57
getting help . 89
gmon.out, data file for gprof 77
gnat, GNU ADA compiler 3
GNU archiver, ar 14
GNU C extensions, compared with

ANSI/ISO C 25
GNU C Library Reference Manual

. 91
GNU C Library, feature test macros

. 27
GNU Compilers, major features . . . 4
GNU Compilers, Reference Manual

. 91
GNU GDB Manual 91
GNU Make Manual 91
GNU Press, manuals 91
GNU Project, history of 3

GNU_SOURCE macro (_GNU_SOURCE),
enables extensions to GNU C
Library . 27

gnu89/gnu99, selected with ‘-std’
. 29

gprof, GNU Profiler. 75
gradual underflow, on DEC Alpha

. 64
gxx_personality_v0, undefined

reference error 56

H
h, header file extension 9
header file, .h extension 9
header file, declarations in 9
header file, default directories 19
header file, include path—extending

with ‘-I’ 19
header file, missing 16
header file, missing header causes

implicit declaration 17
header file, not compiled 11
header file, not found—compilation

error no such file or directory

. 19
header file, with include guards . . . 59
header file, without .h extension for

C++ . 57
Hello World program, in C 7
Hello World program, in C++ 55
‘help’ option, display command-line

options . 69
help options . 69
history, of GCC 3

I
‘I’ option, include path 19
i, preprocessed file extension for C

. 82
IBM XL compilers, compatibility on

AIX . 66
identifying files, with file command

. 85
IEEE arithmetic standard, printed

form . 92
IEEE options, on DEC Alpha 64

Index 111

ii, preprocessed file extension for
C++ . 82

implicit declaration of function

warning, due to missing header
file . 17

implicit declaration warning 30
include guards, in header file 59
include path, extending with ‘-I’

. 19
include path, setting with

environment variables 21
inclusion compilation model, in C++

. 58
independent compilation of files . . 11
Inf, infinity, on DEC Alpha 64
inlining, example of optimization

. 46
instantiation, explicit vs implicit in

C++ . 60
instantiation, of templates in C++

. 58
instruction scheduling, optimization

. 49
instrumented executable, for coverage

testing . 78
instrumented executable, for profiling

. 77
Intel x86, platform-specific options

. 63
intermediate files, keeping 39
ISO C++, controlled with ‘-ansi’

option . 55
ISO C, compared with GNU C

extensions 25
ISO C, controlled with ‘-ansi’ option

. 26
ISO standards for C/C++ languages,

available as books 92
iso9899:1990/iso9899:1999,

selected with ‘-std’ 29
Itanium, multi-architecture support

. 66

J
Java, compared with C/C++ 5
Java, gcj compiler 3
journals, about C and C++

programming 92

K
K&R dialect of C, warnings of

different behavior 33
kernel mode, on AMD64 64
Kernighan and Ritchie, The C

Programming Language 92
key-value pairs, stored with GDBM

. 20
keywords, additional in GNU C . . 26

L
‘L’ option, library search path 19
‘l’ option, linking with libraries . . 15
language standards, selecting with

‘-std’ . 29
ld.so.conf, loader configuration file

. 25
ld: cannot find library error 19
LD_LIBRARY_PATH, shared library load

path . 24
ldd, dynamical loader 87
levels of optimization 49
libraries, creating with ar 73
libraries, creating with explicit

instantiation in C++ 61
libraries, error while loading shared

library . 23
libraries, extending search path with

‘-L’ . 19
libraries, finding shared library

dependencies 87
libraries, link error due to undefined

reference 14
libraries, link order 15, 16
libraries, linking with 14
libraries, linking with using ‘-l’ . . 15
libraries, on 64-bit platforms 19
libraries, stored in archive files . . . 14
library header files, using 16
library, C math library 14
library, C standard library 14
library, C++ standard library 56
libstdc++, C++ standard library

. 58
line numbers, recorded in

preprocessed files 38
link error, cannot find library 19

112 An Introduction to GCC

link order, from left to right . . 12, 15
link order, of libraries 15
link order, of object files 12
link path, setting with environment

variable . 22
linker error, cannot find library

. 19
linker, GNU compared with other

linkers . 60
linker, initial description 12
linker, ld . 81, 83
linking, creating executable files from

object files 12
linking, default directories 19
linking, dynamic (shared libraries)

. 23
linking, explanation of 11
linking, undefined reference error due

to library link order 16
linking, updated object files 13
linking, with external libraries 14
linking, with library using ‘-l’ . . . 15
Lisp, compared with C/C++ 5
little-endian, word-ordering 85
loader configuration file, ld.so.conf

. 25
loader function 23
login file, setting environment

variables in 24
loop unrolling, optimization . . 47, 50
LSB, least significant byte 85

M
‘m’ option, platform-specific settings

. 63
‘m32’ and ‘m64’ options, compile for

32 or 64-bit environment 65
machine code . 7
machine-specific options 63
macros, default value of 38
macros, defined with value 36
macros, defining in preprocessor . . 35
macros, predefined 36
major features, of GCC 4
major version number, of GCC . . . 69
‘maltivec’ option, enables use of

Altivec processor on PowerPC
. 66

manuals, for GNU software 91
‘march’ option, compile for specific

CPU . 63
math library . 14
math library, linking with ‘-lm’ . . . 15
‘mcmodel’ option, for AMD64 64
‘mcpu’ option, compile for specific

CPU . 65
‘mieee’ option, floating-point support

on DEC Alpha 64
minor version number, of GCC . . . 69
MIPS64, multi-architecture support

. 66
missing header file, causes implicit

declaration 17
missing header files 16
missing prototypes warning 30
‘mminimal-toc’ option, on AIX . . . 66
‘mno-fused-madd’ option, on

PowerPC 66
modified source files, recompiling

. 13
Motorola 680x0 85
MSB, most significant byte 85
multi-architecture support, discussion

of . 66
multiple directories, on include and

link paths 22
multiple files, compiling 9
multiply and add instruction 66
multiply defined symbol error, with

C++ . 60
‘mxl-call’ option, compatibility with

IBM XL compilers on AIX . . . 66

N
Namespace std in C++ 57
namespace, reserved prefix for

preprocessor 36
NaN, not a number, on DEC Alpha

. 64
nested comments, warning of 29
nm command . 86
No such file or directory, header

file not found 19, 20
null pointer, attempt to dereference

. 42

Index 113

O
‘O’ option, optimization level 49
‘o’ option, set output filename 7
o, object file extension 11
object file, .o extension 11
object file, creating from source using

option ‘-c’ 11
object file, examining with file

command 85
object file, explanation of 11
object files, link order 12
object files, linking to create

executable file 12
object files, relinking 13
object files, temporary 15
Objective-C . 3
optimization for size, ‘-Os’ 50
optimization, and compiler warnings

. 53
optimization, common subexpression

elimination 45
optimization, compiling with ‘-O’

. 49
optimization, example of 50
optimization, explanation of. 45
optimization, levels of 49
optimization, loop unrolling . . 47, 50
optimization, speed-space tradeoffs

. 47
optimization, with debugging 53
options, compilation 19
options, platform-specific 63
order, of object files in linking 12
ordering of libraries 16
output file option, ‘-o’ 7
overflow error, for TOC on AIX . . 66
overhead, from function call 46

P
parse error, due to language

extensions 26
patch level, of GCC 69
paths, extending an existing path in

an environment variable 25
paths, search. 19
‘pedantic’ option, ANSI/ISO C . . 28

‘pedantic’ option, conform to the
ANSI standard (with ‘-ansi’)
. 25

Pentium, platform-specific options
. 63

‘pg’ option, enable profiling 76

pipelining, explanation of 49

platform-specific options 63

POSIX extensions, GNU C Library
. 27

PowerPC and POWER,
platform-specific options 66

PowerPC64, multi-architecture
support . 66

precedence, when using preprocessor
. 37

predefined macros 36

preprocessed files, keeping 39

preprocessing, source files 38

preprocessor macros, default value of
. 38

preprocessor, cpp 81

preprocessor, first stage of
compilation 82

preprocessor, using 35

print debugger command. 43

printf, example of error in format
. 8

printf, incorrect usage warning . . 30

profile file, setting environment
variables in 24

profiling, with gprof 75

program crashes, saved in core file
. 41

prototypes, missing 30

‘pthread’ option, on AIX 66

Q

qualifiers, warning about overriding
by casts . 32

quotes, for defining empty macro
. 38

114 An Introduction to GCC

R
recompiling . 13
recompiling modified source files . . 13
red-zone, on AMD64 64
reference books, C language 92
reference, undefined due to missing

library . 14
relinking . 13
relinking, updated object files 13
return type, invalid 30
Richard Stallman, principal author of

GCC . 3
risks, example of corrupted output

. 9
risks, when using C/C++ 5
‘rpath’ option, set run-time shared

library search path 24
run-time, measuring with time

command 51
running an executable file, C 8
running an executable file, C++ . . . 55

S
‘S’ option, create assembly code . . 82
s, assembly file extension 82
‘save-temps’ option, keeps

intermediate files 39
scanf, incorrect usage warning . . . 30
scheduling, stage of optimization

. 49
Scheme, compared with C/C++ 5
search paths . 19
search paths, example 20
search paths, extended 22
segmentation fault, error message

. 42
selecting specific language standards,

with ‘-std’ 29
shadowing of variables 32
shared libraries 23
shared libraries, advantages of 23
shared libraries, dependencies 87
shared libraries, error while loading

. 23
shared libraries, setting load path

. 24
shared object file, .so extension . . 23
shell prompt . 5

shell quoting 38, 91
shell variables 6, 21, 24
shell variables, setting permanently

. 24
signed integer, casting 31
signed variable converted to

unsigned, warning of 31
simple C program, compiling 7
simple C++ program, compiling with

g++ . 55
size, optimization for, ‘-Os’ 50
Smalltalk, compared with C/C++ . . 5
so, shared object file extension . . . 23
soft underflow, on DEC Alpha . . . 64
source code . 7
source files, recompiling 13
source-level optimization 45
space vs speed, tradeoff in

optimization 47
SPARC, platform-specific options

. 65
Sparc64, multi-architecture support

. 66
specs directory, compiler

configuration files 70
speed-space tradeoffs, in optimization

. 47
sqrt, example of linking with 14
stack backtrace, displaying 44
stages of compilation, used internally

. 81
standard library, C 14
standard library, C++ 56
Standard Template Library (STL)

. 57
standards, C, C++ and IEEE

arithmetic 92
static libraries 23
static linking, forcing with ‘-static’

. 25
‘static’ option, force static linking

. 25
std namespace in C++ 57
‘std’ option, select specific language

standard 25, 29
strict ANSI/ISO C, ‘-pedantic’

option . 28
strip command 86

Index 115

subexpression elimination,
optimization 45

Sun SPARC, platform-specific
options . 65

support, commercial 89
SVID extensions, GNU C Library

. 27
symbol table . 41
symbol table, examining with nm . . 86
system libraries 14
system libraries, location of . . 14, 19,

66
system-specific predefined macros

. 36
SYSV, System V executable format

. 86

T
‘t’ option, archive table of contents

. 74
table of contents, in ar archive . . . 74
table of contents, overflow error on

AIX . 66
tcsh, limit command 42
templates, explicit instantiation . . 60
templates, export keyword. 61
templates, in C++ 57
templates, in C++ standard library

. 57
templates, inclusion compilation

model . 58
temporary files, keeping 39
temporary files, written to ‘/tmp’

. 15
termination, abnormal (core dumped)

. 41
threads, on AIX 66
Thumb, alternative code format on

ARM . 66
time command, measuring run-time

. 51
TOC overflow error, on AIX 66
tools, compiler-related 73
tradeoffs, between speed and space in

optimization 47
Traditional C (K&R), warnings of

different behavior 33

translators, from C++ to C, compared
with g++ 55

troubleshooting options 69

type conversions, warning of 31

typeof, GNU C extension keyword
. 27

U

ulimit command 42

UltraSPARC, 32-bit mode vs 64-bit
mode, . 65

undeclared identifier error for C
library, when using ‘-ansi’
option . 27

undefined macro, compared with
empty macro 38

undefined reference error,
__gxx_personality_v0 56

undefined reference error, due to
library link order 16

undefined reference error, due to
order of object files 12

undefined reference to C++

function, due to linking with gcc

. 56

undefined reference, due to missing
library . 14

underflow, on DEC Alpha. 64

uninitialized variable, warning of
. 54

unix, GNU C extension keyword . . 27

unoptimized code (‘-O0’) 49

unrolling, of loops (optimization)
. 47, 50

unsigned integer, casting 31

unsigned variable converted to
signed, warning of 31

unused variable warning, ‘-Wunused’
. 30

updated object files, relinking 13

updated source files, recompiling . . 13

Using GCC (Reference Manual) . . 91

116 An Introduction to GCC

V
‘v’ option, verbose compilation . . . 69
value, of macro 36
variable shadowing 32
variable, warning of uninitialized use

. 54
variable-size array, forbidden in

ANSI/ISO C 28
variable-size arrays in GNU C 28
vax, GNU C extension keyword . . 27
verbose compilation, ‘-v’ option . . 70
verbose help option 69
version number of GCC, displaying

. 69
‘version’ option, display version

number . 69
void return, incorrect use of 30

W
‘W’ option, enable additional warnings

. 31
‘Wall’ option, enable common

warnings . 7
warning option, ‘-W’ additional

warnings 31
warning options, ‘-Wall’ 7
warning options, additional 31
warning options, in detail 29
warning, format with different type

arg . 8
warnings, additional with ‘-W’ 31
warnings, and optimization 53
warnings, implicit declaration of

function . 17
warnings, promoting to errors 33
‘Wcast-qual’ option, warn about

casts removing qualifiers 32

‘Wcomment’ option, warn about nested
comments 29

‘Wconversion’ option, warn about
type conversions 31

‘Werror’ option, convert warnings to
errors . 33

‘Wimplicit’ option, warn about
missing declarations 30

word-ordering, endianness 85
word-size, determined from

executable file 85
word-size, on UltraSPARC 65
‘Wreturn-type’ option, warn about

incorrect return types 30
writable string constants, disabling

. 33
‘Wshadow’ option, warn about

shadowed variables 32
‘Wtraditional’ option, warn about

traditional C 33
‘Wuninitialized’ option, warn about

uninitialized variables 53
‘Wunused’ option, unused variable

warning . 30
‘Wwrite-strings’ option, warning for

modified string constants 33

X
x86, platform-specific options 63
XL compilers, compatibility on AIX

. 66
XOPEN extensions, GNU C Library

. 27

Z
zero, division by 65
zero, rounding to by underflow, on

DEC Alpha 64

