

Financial Applications Using
Excel Add-in Development in C/C++

Second Edition of Excel
Add-in Development in C/C++

Steve Dalton

Financial Applications using
Excel Add-in Development in C/C++

For other titles in the Wiley Finance Series
please see www.wiley.com/finance

Financial Applications Using
Excel Add-in Development in C/C++

Second Edition of Excel
Add-in Development in C/C++

Steve Dalton

Copyright  2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned
in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Dalton, Steve.
Financial applications using Excel add-in development in C/C++ / Steve Dalton.—2nd ed.

p. cm.
Earlier ed. published under title: Excel add-in development in C/C++ : applications in finance.

Chichester : Wiley, c2004.
Includes bibliographical references and index.
ISBN 978-0-470-02797-4 (cloth/cd : alk. paper)
1. Microsoft Excel (Computer file) 2. Business—Computer programs. 3. C (Computer program language)

4. C++ (Computer program language) 5. Computer software—Development. I. Dalton, Steve.
Excel add-in development in C/C++. II. Title.

HF5548 . 4.M523D35 2007
005 . 54—dc22 2006036080

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-0470-02797-4 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Preface to Second Edition xvii

Preface to First Edition xix

Acknowledgements for the First Edition xxi

Acknowledgements for the Second Edition xxiii

1 Introduction 1
1.1 Typographical and code conventions used in this book 1
1.2 What tools and resources are required to write add-ins 2

1.2.1 VBA macros and add-ins 3
1.2.2 C/C++ DLL add-ins 4
1.2.3 C/C++ DLLs that can access the C API and XLL add-ins 4
1.2.4 C/C++/C# .NET add-ins 4

1.3 To which versions of Excel does this book apply? 5
1.4 The future of Excel: Excel 2007 (Version 12) 5

1.4.1 Summary of key workbook changes 5
1.4.2 Aspects of Excel 2007 not covered in this book 6
1.4.3 Excel 2007 file formats 6
1.4.4 Compatibility between Excel 2007 and earlier versions 6

1.5 About add-ins 7
1.6 Why is this book needed? 8
1.7 How this book is organised 9
1.8 Scope and limitations 10

2 Excel Functionality 11
2.1 Overview of Excel data organisation 11
2.2 A1 versus R1C1 cell references 12
2.3 Cell contents 13
2.4 Worksheet data types and limits 13
2.5 Excel input evaluation 15
2.6 Data type conversion 16

2.6.1 The unary = operator 16
2.6.2 The unary – operator (negation) 16

vi Contents

2.6.3 Number-arithmetic binary operators: + - */^ 17
2.6.4 Percentage operator: % 17
2.6.5 String concatenation operator: & 17
2.6.6 Boolean binary operators: =,< , >,< =, >=,< > 17
2.6.7 Conversion of single-cell references 18
2.6.8 Conversion of multi-cell range references 18
2.6.9 Conversion of defined range names 19
2.6.10 Explicit type conversion functions: N(), T(), TEXT(),

VALUE() 20
2.6.11 Worksheet function argument type conversion 20
2.6.12 Operator evaluation precedence 22

2.7 Strings 23
2.7.1 Length-prepended versus null-terminated strings 23
2.7.2 Byte strings versus Unicode strings 23
2.7.3 Unmanaged versus managed strings 24
2.7.4 Summary of string types used in Excel 25
2.7.5 Converting one string type to another 26
2.7.6 Hybrid length-counted null-terminated strings 27

2.8 Excel Terminology: Active and current 27
2.9 Commands versus functions in Excel 28
2.10 Types of worksheet function 29

2.10.1 Function purpose and return type 29
2.10.2 Array formulae – The Ctrl-Shift-Enter keystroke 30
2.10.3 Required, optional and missing arguments and variable

argument lists 31
2.11 Complex functions and commands 31

2.11.1 Data Tables 31
2.11.2 Goal Seek and Solver Add-in 32

2.12 Excel recalculation logic 33
2.12.1 Marking dependents for recalculation 33
2.12.2 Triggering functions to be called by Excel – the trigger

argument 34
2.12.3 Volatile functions 35
2.12.4 Cross-worksheet dependencies – Excel 97/2000 versus

2002 and later versions 36
2.12.5 User-defined functions (VB Macros) and add-in functions 38
2.12.6 Data Table recalculation 40
2.12.7 Conditional formatting 40
2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). . . 41
2.12.9 Controlling Excel recalculation programmatically 42
2.12.10 Forcing Excel to recalculate a workbook or other object 44
2.12.11 Using functions in name definitions 45
2.12.12 Multi-threaded recalculation 45

2.13 The Add-in Manager 46
2.14 Loading and unloading add-ins 46

2.14.1 Add-in information 47
2.15 Paste function dialog 47

Contents vii

2.15.1 Function category 47
2.15.2 Function name, argument list and description 48
2.15.3 Argument construction dialog 48

2.16 Good spreadsheet design and practice 49
2.16.1 Filename, sheet title and name, version and revision history 49
2.16.2 Magic numbers 49
2.16.3 Data organisation and design guidelines 50
2.16.4 Formula repetition 51
2.16.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus

VLOOKUP() 51
2.17 Problems with very large spreadsheets 54
2.18 Conclusion 54

3 Using VBA 55
3.1 Opening the VB editor 55
3.2 Using VBA to create new commands 56

3.2.1 Recording VBA macro commands 57
3.3 Assigning VBA command macros to control objects in a worksheet 58
3.4 Using VBA to trap Excel events 59
3.5 Using VBA to create new functions 61

3.5.1 Function scope 61
3.5.2 Declaring VBA functions as volatile 62

3.6 Using VBA as an interface to external DLL add-ins 62
3.6.1 Declaring DLL functions in VB 62
3.6.2 Call-by-reference versus call-by-value 63
3.6.3 Converting argument and return data types between VBA

and C/C++ 64
3.6.4 VBA data types and limits 64
3.6.5 VB/OLE Currency type 66
3.6.6 VB/OLE Bstr Strings 66
3.6.7 Passing strings to C/C++ functions from VBA 68
3.6.8 Returning strings to VBA from a DLL 70
3.6.9 Variant data type 71
3.6.10 Variant types supported by VBA 72
3.6.11 Variant types that Excel can pass to VBA functions 74
3.6.12 User-defined data types in VB 76
3.6.13 VB object data type 78
3.6.14 Calling XLM functions and commands from VBA:

Application.ExecuteExcel4Macro() 79
3.6.15 Calling user-defined functions and commands from VBA:

Application.Run() 79
3.7 Excel ranges, VB arrays, SafeArrays, array Variants 80

3.7.1 Declaring VB arrays and passing them back to Excel 81
3.7.2 Passing arrays and ranges from Excel to VBA to C/C++ 83
3.7.3 Converting array Variants to and from C/C++ types 84
3.7.4 Passing VB arrays to and from C/C++ 86

viii Contents

3.8 Commands versus functions in VBA 86
3.9 Creating VB add-ins (XLA files) 87
3.10 VBA versus C/C++: some basic questions 88

4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or
Visual Studio .NET 89
4.1 Windows library basics 89
4.2 DLL basics 89
4.3 DLL memory and multiple DLL instances 90
4.4 Multi-threading 90
4.5 Compiled function names 91

4.5.1 Name decoration 91
4.5.2 The extern "C" declaration 92

4.6 Function calling conventions: __cdecl, __stdcall,
__fastcall 93

4.7 Exporting DLL function names 94
4.7.1 The __declspec(dllexport) keyword 95
4.7.2 Definition (*.DEF) files 95
4.7.3 Using a preprocessor linker directive 97

4.8 What you need to start developing add-ins in C/C++ 97
4.9 Creating a DLL using Visual C++ 6.0 98

4.9.1 Creating the empty DLL project 98
4.9.2 Adding code to the project 100
4.9.3 Compiling and debugging the DLL 101

4.10 Creating a DLL using Visual C++ .NET 2003 103
4.10.1 Creating the empty DLL project 103
4.10.2 Adding code to the project 106
4.10.3 Compiling and debugging the DLL 106

4.11 Accessing DLL functions from VB 108
4.12 Accessing DLL functions from excel 110

5 Turning DLLs into XLLs: The Add-in Manager Interface 111
5.1 The xlcall32 library and the C API functions 111
5.2 What does the Add-in manager do? 114

5.2.1 Loading and unloading installed add-ins 114
5.2.2 Active and inactive add-ins 114
5.2.3 Deleted add-ins and loading of inactivate add-ins 114

5.3 Creating an XLL: The xlAuto interface functions 115
5.4 When and in what order does Excel call the XLL interface

functions? 116
5.5 XLL functions called by the Add-in Manager and Excel 117

5.5.1 xlAutoOpen 117
5.5.2 xlAutoClose 118
5.5.3 xlAutoAdd 118
5.5.4 xlAutoRemove 119
5.5.5 xlAddInManagerInfo (xlAddInManagerInfo12) 120

Contents ix

5.5.6 xlAutoRegister (xlAutoRegister12) 122
5.5.7 xlAutoFree (xlAutoFree12) 123

6 Passing Data Between Excel and the DLL 127
6.1 Handling Excel’s internal data structures: C or C++? 127
6.2 How Excel exchanges worksheet data with DLL add-in functions 128

6.2.1 Native C/C++ data types 128
6.2.2 Excel floating-point array structures: xl4_array,

xl12_array 129
6.2.3 The xloper/xloper12 structures 135
6.2.4 The xlref/xlref12 structures 141
6.2.5 The xlmref/xlmref12 structures 142
6.2.6 The oper/oper12 structures 143

6.3 Defining constant xlopers/xloper12s 144
6.4 A C++ class wrapper for the

xloper/xloper12 – cpp_xloper 146
6.5 Converting between xloper/xloper12s and C/C++

data types 154
6.6 Converting between xloper/xloper12 types 154
6.7 Converting between xlopers and variants 155
6.8 Converting between xlopers and xloper12s 159
6.9 Detailed Discussion of xloper types 163

6.9.1 Freeing xloper memory 164
6.9.2 Worksheet (floating point) number: xltypeNum 166
6.9.3 Length-counted string: xltypeStr 168
6.9.4 Excel Boolean: xltypeBool 174
6.9.5 Worksheet error value: xltypeErr 177
6.9.6 Excel internal integer: xltypeInt 178
6.9.7 Array (mixed type): xltypeMulti 180
6.9.8 Worksheet cell/range reference: xltypeRef and

xltypeSRef 191
6.9.9 Empty worksheet cell: xltypeNil 196
6.9.10 Worksheet binary name: xltypeBigData 198

6.10 Initialising xloper/xloper12s 198
6.11 Missing arguments 201

7 Memory Management 203
7.1 Excel stack space limitations 203
7.2 Static add-in memory and multiple Excel instances 204
7.3 Getting Excel to free memory allocated by Excel 205

7.3.1 Freeing xloper memory within the DLL call 205
7.3.2 Freeing Excel-allocated xloper memory returned by the

DLL function 206
7.3.3 Hiding xloper memory management within a C++ class 208

7.4 Getting Excel to call back the DLL to free DLL-allocated memory 208
7.5 Returning data by modifying arguments in place 211

x Contents

7.6 Making add-in functions thread safe 212
7.6.1 Multi-threaded recalculations (MTR) in Excel 2007

(version 12) 212
7.6.2 Which of Excel’s built-in functions are thread-safe 213
7.6.3 Allocating thread-local memory 214
7.6.4 Excel’s sequencing of calls to xlAutoFree in a

multi-threaded system 218
7.6.5 Using critical sections with memory shared between threads 219

8 Accessing Excel Functionality using the C API 223
8.1 The Excel 4 macro language (XLM) 223

8.1.1 Commands, worksheet functions and macro sheet functions 224
8.1.2 Commands that optionally display dialogs – the

xlPrompt bit 225
8.1.3 Accessing XLM functions from the worksheet using

defined names 225
8.2 The Excel4(), Excel12() C API functions 226

8.2.1 Introduction 226
8.2.2 Excel4(), Excel12() return values 227
8.2.3 Calling Excel worksheet functions in the DLL using

Excel4(), Excel12() 229
8.2.4 Calling macro sheet functions from the DLL using

Excel4(), Excel12() 231
8.2.5 Calling macro sheet commands from the DLL using

Excel4()/Excel12() 233
8.3 The Excel4v()/Excel12v() C API functions 233
8.4 What C API functions can the DLL call and when? 236
8.5 Wrapping the C API 238
8.6 Registering and un-registering DLL (XLL) functions 244

8.6.1 The xlfRegister function 245
8.6.2 Specifying which category the function should be listed

under 248
8.6.3 Specifying argument and return types 249
8.6.4 Giving functions macro sheet function permissions 252
8.6.5 Specifying functions as volatile 253
8.6.6 Specifying functions as thread-safe (Excel 2007 only) 253
8.6.7 Returning values by modifying arguments in place 253
8.6.8 The Paste Function dialog (Function Wizard) 254
8.6.9 Function help parameter to xlfRegister 256
8.6.10 Argument help parameters to xlfRegister 256
8.6.11 Managing the data needed to register exported functions 256
8.6.12 Registering functions with dual interfaces for Excel 2007

and earlier versions 263
8.6.13 A class based approach to managing registration data 266
8.6.14 Getting and using the function’s register ID 269
8.6.15 Un-registering a DLL function 270

8.7 Registering and un-registering DLL (XLL) commands 271

Contents xi

8.7.1 Accessing XLL commands 273
8.7.2 Breaking execution of an XLL command 274

8.8 Functions defined for the C API only 274
8.8.1 Freeing Excel-allocated memory within the DLL: xlFree 274
8.8.2 Getting the available stack space: xlStack 275
8.8.3 Converting one xloper/xloper12 type to another:

xlCoerce 276
8.8.4 Setting cell values from a command: xlSet 278
8.8.5 Getting the internal ID of a named sheet: xlSheetId 279
8.8.6 Getting a sheet name from its internal ID: xlSheetNm 281
8.8.7 Yielding processor time and checking for user breaks:

xlAbort 282
8.8.8 Getting Excel’s instance handle: xlGetInst 283
8.8.9 Getting the handle of the top-level Excel window:

xlGetHwnd 283
8.8.10 Getting the path and file name of the DLL: xlGetName 284

8.9 Working with binary names 285
8.9.1 The xltypeBigData xloper 286
8.9.2 Basic operations with binary names 286
8.9.3 Creating, deleting and overwriting binary names 287
8.9.4 Retrieving binary name data 287
8.9.5 Example worksheet functions 288

8.10 Workspace information commands and functions 289
8.10.1 Setting the application title: xlfAppTitle 290
8.10.2 Setting the document window title: xlfWindowTitle 290
8.10.3 Getting a reference to the active cell: xlfActiveCell 291
8.10.4 Getting a list of all open Excel documents:

xlfDocuments 291
8.10.5 Information about a cell or a range of cells: xlfGetCell 291
8.10.6 Sheet or workbook information: xlfGetDocument 293
8.10.7 Getting the formula of a cell: xlfGetFormula 297
8.10.8 Getting a cell’s comment: xlfGetNote 297
8.10.9 Information about a window: xlfGetWindow 298
8.10.10 Information about a workbook: xlfGetWorkbook 301
8.10.11 Information about the workspace: xlfGetWorkspace 303
8.10.12 Information about the selected range or object:

xlfSelection 309
8.10.13 Getting names of open Excel windows: xlfWindows 310
8.10.14 Converting a range reference: xlfFormulaConvert 311
8.10.15 Converting text to a reference: xlfTextref 312
8.10.16 Converting a reference to text: xlfReftext 312
8.10.17 Information about the calling cell or object: xlfCaller 313
8.10.18 Information about the calling function type 315

8.11 Working with Excel names 316
8.11.1 Specifying worksheet names and name scope 316
8.11.2 Basic operations with Excel names 318
8.11.3 Defining a name on a worksheet: xlcDefineName 318

xii Contents

8.11.4 Defining and deleting a name in the DLL: xlfSetName 319
8.11.5 Deleting a worksheet name: xlcDeleteName 321
8.11.6 Getting the definition of a named range: xlfGetName 322
8.11.7 Getting the defined name of a range of cells: xlfGetDef 324
8.11.8 Getting a list of named ranges: xlfNames 325

8.12 Working with Excel menus 326
8.12.1 Menu bars and ID numbers and menu and command

specifiers 327
8.12.2 Short-cut (context) menu groups 328
8.12.3 Getting information about a menu bar: xlfGetBar 330
8.12.4 Creating a new menu bar or restoring a default bar:

xlfAddBar 332
8.12.5 Adding a menu or sub-menu: xlfAddMenu 332
8.12.6 Adding a command to a menu: xlfAddCommand 335
8.12.7 Displaying a custom menu bar: xlfShowBar 338
8.12.8 Adding/removing a check mark on a menu command:

xlfCheckCommand 338
8.12.9 Enabling/disabling a custom command or menu:

xlfEnableCommand 339
8.12.10 Changing a menu command name: xlfRenameCommand 341
8.12.11 Deleting a command from a menu: xlfDeleteCommand 342
8.12.12 Deleting a custom menu: xlfDeleteMenu 343
8.12.13 Deleting a custom menu bar: xlfDeleteBar 343

8.13 Working with toolbars 344
8.13.1 Getting information about a toolbar: xlfGetToolbar 345
8.13.2 Getting information about a tool button on a toolbar:

xlfGetTool 345
8.13.3 Creating a new toolbar: xlfAddToolbar 346
8.13.4 Adding buttons to a toolbar: xlcAddTool 347
8.13.5 Assigning/removing a command on a tool:

xlcAssignToTool 347
8.13.6 Enabling/disabling a button on a toolbar: xlfEnableTool 348
8.13.7 Moving/copying a command between toolbars:

xlcMoveTool 348
8.13.8 Showing a toolbar button as pressed: xlfPressTool 349
8.13.9 Displaying or hiding a toolbar: xlcShowToolbar 349
8.13.10 Resetting a built-in toolbar: xlfResetToolbar 350
8.13.11 Deleting a button from a toolbar: xlcDeleteTool 350
8.13.12 Deleting a custom toolbar: xlfDeleteToolbar 351

8.14 Working with custom dialog boxes 351
8.14.1 Displaying an alert dialog box: xlcAlert 351
8.14.2 Displaying a custom dialog box: xlfDialogBox 352
8.14.3 Restricting user input to dialog boxes:

xlcDisableInput 356
8.15 Trapping events with the C API 356

8.15.1 Trapping a DDE data update event: xlcOnData 357
8.15.2 Trapping a double-click event: xlcOnDoubleclick 357

Contents xiii

8.15.3 Trapping a worksheet data entry event: xlcOnEntry 358
8.15.4 Trapping a keyboard event: xlcOnKey 358
8.15.5 Trapping a recalculation event: xlcOnRecalc 360
8.15.6 Trapping a window selection event: xlcOnWindow 360
8.15.7 Trapping a system clock event: xlcOnTime 361

8.16 Miscellaneous commands and functions 361
8.16.1 Disabling screen updating during command execution:

xlcEcho 361
8.16.2 Displaying text in the status bar: xlcMessage 361
8.16.3 Evaluating a cell formula: xlfEvaluate 362
8.16.4 Calling user-defined functions from an XLL or DLL:

xlUDF 363
8.16.5 Calling user-defined commands from an XLL or DLL:

xlcRun 363
8.17 The XLCallVer() C API function 364

9 Miscellaneous Topics 365
9.1 Timing function execution in VBA and C/C++ 365
9.2 Relative performance of VBA, C/C++: Tests and results 369

9.2.1 Conclusion of test results 372
9.3 Relative performance of C API versus VBA calling from a

worksheet cell 372
9.4 Detecting when a worksheet function is called from an Excel dialog 373

9.4.1 Detecting when a worksheet function is called from the
Paste Function dialog (Function Wizard) 374

9.4.2 Detecting when a worksheet function is called from the
Search and Replace dialog 375

9.4.3 Detecting when a worksheet function is called from either
the Search and Replace or Paste Function dialogs 375

9.5 Accessing Excel functionality using COM/OLE automation using
C++ 376
9.5.1 Initialising and un-initialising COM 377
9.5.2 Getting Excel to recalculate worksheets using COM 379
9.5.3 Calling user-defined commands using COM 380
9.5.4 Calling user-defined functions using COM 382
9.5.5 Calling XLM functions using COM 383
9.5.6 Calling worksheet functions using COM 383

9.6 Maintaining large data structures within the DLL 385
9.7 A C++ Excel name class example, xlName 387
9.8 Keeping track of the calling cell of a DLL function 389

9.8.1 Generating a unique name 390
9.8.2 Obtaining the internal name of the calling cell 393
9.8.3 Naming the calling cell 394
9.8.4 Internal XLL name housekeeping 396

9.9 Passing references to Excel worksheet functions 398
9.9.1 Data references 398
9.9.2 Function references 398

xiv Contents

9.10 Multi-tasking, Multi-threading and asynchronous calls in DLLs 401
9.10.1 Setting up timed calls to DLL commands: xlcOnTime 402
9.10.2 Starting and stopping threads from within a DLL 404
9.10.3 Calling the C API from a DLL-created thread 405

9.11 A background task management class and strategy 406
9.11.1 Requirements 406
9.11.2 Communication between Excel and a background thread 407
9.11.3 The software components needed 408
9.11.4 Imposing restrictions on the worksheet function 409
9.11.5 Organising the task list 409
9.11.6 Creating, deleting, suspending, resuming the thread 411
9.11.7 The task processing loop 412
9.11.8 The task interface and main functions 413
9.11.9 The polling command 415
9.11.10 Configuring and controlling the background thread 416
9.11.11 Other possible background thread applications and

strategies 417
9.12 How to crash Excel 417
9.13 Add-in Design 419

9.13.1 Separating interface code from core function code 419
9.13.2 Controlling error propagation 429
9.13.3 Making add-in behaviour Excel version-sensitive and

backwards-compatible 432
9.13.4 Version-dependent workbook recalculation results 433

9.14 Optimisation 433
9.14.1 Low level code optimisation 434
9.14.2 VBA code optimisation 440
9.14.3 Excel calculation optimisation 441

10 Example Add-ins and Financial Applications 451
10.1 String functions 451
10.2 Statistical functions 463

10.2.1 Pseudo-random number generation 464
10.2.2 Generating random samples from the normal distribution 467
10.2.3 Generating correlated random samples 468
10.2.4 Quasi-random number sequences 469
10.2.5 The normal distribution 470

10.3 Matrix functions – eigenvalues and eigenvectors 474
10.4 Interpolation 477

10.4.1 Linear interpolation 477
10.4.2 Bilinear interpolation 479
10.4.3 Cubic splines 482

10.5 Lookup and search functions 485
10.6 Financial markets date functions 493
10.7 Building and reading discount curves 502
10.8 Building trees and lattices 505
10.9 Monte Carlo simulation 506

Contents xv

10.9.1 Using Excel and VBA only 507
10.9.2 Using Excel and C/C++ only 509
10.9.3 Using worksheet functions only 511

10.10 Calibration 511
10.11 CMS derivative pricing 513
10.12 The SABR stochastic volatility model 519
10.13 Optimising the SABR implementation for CMS derivatives 528

Appendix 1 Contents of the CD ROM 531

Related reading 535

Web Links and Other Resources 537

Index 539

Preface to Second Edition

Since the publication of the first edition of this book late in 2004, Microsoft have
announced the release of Excel 2007 (version 12), one of the most important new releases
since Excel 97 (version 8). For those developing add-ins in C and C++ so little changed
between Excel 97 and Excel 2003 (version 11) that the entire first edition applied almost
equally to versions 8, 9, 10 and 11. Excel 2007 introduces some important and long-
awaited changes that have a significant impact on the text of this book, which has been
updated to reflect these new features.

For the first time in many releases, the Excel team have updated parts of the C API
interface to allow XLL add-in writers to take advantage of some of these new features.
The three areas that have the biggest impact are the introduction of multi-threaded recal-
culation, a worksheet grid over 1,000 times larger than is supported in previous versions,
and support in the C API for 32Kbyte Unicode strings. The implications for XLLs of
these changes and others are fully explored in this edition.

Beyond matters relating to Excel 2007, this edition adds a great deal of new material
to the first. There is a much expanded section of Excel’s recalculation logic, intended to
help you minimise calculation times and maximise control, as well as a new section that
spcifically addresses optimisation of calculations, both in the add-in and in the workbook.
The example C++ class described in the first edition that wraps the xloper data type has
not only been enhanced to handle the new Excel 2007 data types but also to wrap calls
to the C API as well. There is a new section relating to add-in design, covering issues
such as good practice for the separation of interfaces, and techniques for controlling the
propagation of errors through a workbook.

There are numerous other small additions and modifications to the original text, not
significant enough to warrant mention here. As you would expect, the known errors and
omissions in the original text have also been fixed, although readers are asked to bear in
mind that the writing constraints of such a book mean that bug-free can only ever be a
goal not a promise where code samples are concerned.

Beyond this, new material relates to a few practical applications. These tend to be
those that are most relevant to the professional derivatives markets, but will I hope, still
provide some useful insights for people outside this world. There is a little more about
interpolation. The section relating to the Gaussian normal distribution is revised and now
takes a more sensible Excel version-specific approach, which also serves as an example
of backwards-compatible and version-aware add-in funtionality.

xviii Preface to Second Edition

There are two new sections relating to the commonly-used stochastic volatility model
SABR, and the pricing of some constant maturity swap (CMS) derivatives. Neither of
these two sections is intended to serve as a model reference for the finance industry, or as
examples of what is correct from a strict quantitative analytical point of view. Instead, they
are intended to provide a little more substance to the, sometimes subtle, considerations
of fitting mathematical models into Excel in a sensible way.

The level of C++ knowledge assumed in this edition is slightly greater than the first,
though still not requiring advanced skills. This allows treatment of a number of program-
ming problems in a more mature way, making greater use of the power of C++ to harness
some of the messier aspects of the C API.

The sample code provided in the text and on the CD ROM, though in places unchanged
from the first edition, is nevertheless significantly different in many places and augmented
by new modules and functionality. This is at the expense of compatibility between code
in the first and second edition’s CD ROMs. The point to stress is that this book is not a
software product as such, and changes are not a software upgrade. The reader should not
assume any backwards compatibility.

Finally, I hope that this edition is now sufficiently complete and error-free to serve as
a useful reference and guide for many years to come.

Preface to First Edition

This book is intended to provide the reader with a guide to the issues involved with
creating powerful and reliable add-ins for Excel. With years of use, many people build
up the experience and understanding needed to create custom functions for Excel in C
and C++. However, given the very limited books and resources available, this can be a
largely trial-and-error process. The motivation in writing this book is to create something
I wish I had had through the years: a coherent explanation of the relevant technology,
what steps to follow, what pitfalls to avoid, and a good reference guide. With these things
at your side, writing C/C++ DLL and XLL resources can be almost as easy as writing
them in Visual Basic, but yields the enormous performance benefit of compiled C/C++
and the Excel C API.

In setting goals for this book, I was particularly inspired by two excellent books that I
have grown to admire more and more over the years, as they have repeatedly proven their
worth; The C Programming Language (Kernighan and Ritchie) and Numerical Recipes
in C (Press, Teukolsky, Vetterling and Flannery), albeit that the style of C-coding of the
latter can be somewhat dense. If this book achieves a fraction of the usefulness of either
of these then you will, I hope, be happy to own it and I will be happy to have written it.

This book is intended for anyone with at least solid C and/or C++ foundation skills, a
good working knowledge of Excel, a little experience with VBA (though not necessary)
and the need to make Excel do things it doesn’t really want to do, or do them faster,
more cleanly, more flexibly. A reasonable grasp of basic software development concepts
and techniques is assumed. (Section 1.1 Typographical and code conventions used in this
book, on page 1, provides more detail of the coding style of the examples given.)

The example add-in project included on the CD ROM is intended to demonstrate some
of the most important or difficult concepts described in the book, as well as the possibilities
that are opened up when you can really play with Excel. These reflect my professional
background in the financial markets, although if you are not of that world, you should
still find that the techniques described are very widely applicable.

There is an enormous amount of material that could have been included in a book on this
subject that has either been pared down to the briefest of coverage or omitted completely.
I fully accept that there will be those who, perhaps rightly, feel that certain things should
have been covered in a book that boasts such a title, and I can only apologise. Any future
editions will, I hope, provide an opportunity to rectify the most heinous and unpopular
of these shortcomings.

xx Preface to First Edition

The first spreadsheet application I encountered was a version of Visicalc in 1984 that
ran on a 64K RAM Atari games console. It was dizzyingly slow and I had no practical
use for it at the time. Nevertheless, all the essential elements of a modern spreadsheet
application were there. Like the bicycle, many improvements have been made since the
very early versions but the basic design was virtually right first time. Spreadsheet users
have continued to find applications well beyond the intentions of early designers. It’s a
safe bet that spreadsheets will be an important tool for many decades to come. It’s also
safe to say that, for some people, what comes out of the box will never be enough. This
book is for those people.

Acknowledgements for the First Edition

I would like to acknowledge and sincerely thank the following people: Alister Morton
for first demystifying the C API for me many many years ago; Sean Storey for his help
with certain C++ language and style points and for his general input and proof-reading;
Fredrik Wahlgren for his very valuable help with the section on COM and automation,
and for his general comments; Mike Trutt for his proof-reading and comments on writing
style; Rob Bovey for his early comments and encouragement, and for his later help; Mike
Clinch for his consistently good advice without which life would be very much more
difficult; Les Clewlow and Chris Strickland for their perspective as authors and for their
encouragement as friends and lastly, all those who’ve had to put up with me having one,
rather boring and obsessive, topic of conversation for the time it has taken to complete
this first edition.

Acknowledgements for the Second Edition

I would like to thank the Excel product team at Microsoft, in particular David Gainer,
for including me in the Beta testing group for Excel 2007, which enabled me to include
the new material in this book by a deadline that precedes the release of this new version.
I would also like to thank Martin Winnick and Matthew Haigh for their review and
comments regarding some of the new material from Chapter 10. Most of all I would like
to thank my wife Trish for her countless hours of invaluable help and for, once again,
putting up with a husband who can’t seem to stop working 7 days a week no matter how
much he tries to have a normal life.

1
Introduction

1.1 TYPOGRAPHICAL AND CODE CONVENTIONS USED
IN THIS BOOK

To distinguish between the text of the book, Visual Basic code, C/C++ code, and Excel
worksheet functions, formulae and cell references, the following fonts are used
throughout:

Excel functions and formulae

Windows application menus and control button text

Visual Basic code

C/C++ code

Directory paths, file names and file masks

Passages of source code appear as boxed text in the appropriate font.
The spelling and grammar used throughout this book are British Isles English, with the

occasional US variation such as dialog.
Examples of non-VB code are mostly in C++-flavoured C. That is, C written in C++

source modules so that some of the useful C++ features can be used including:

• the declaration of automatic variables anywhere in a function body;
• the use of the bool data type with associated true and false values;
• the use of call-by-reference arguments;
• C++ style comments.

C functions and variables are written in lower case with underscores to improve readabil-
ity, for example, c_thing. In the few places C++ classes are used, class and instance
names and member functions and variables are written in proper case, and in general,
without underscores, for example, CppThing. Class member variables are prefixed with
‘m_’ to clarify class body code. Beyond this, no coding standard or variable naming con-
vention is applied. Names of XLL functions, as registered with Excel, are generally in
proper case with no underlines, to distinguish them from Excel’s own uppercase function
names, for example, MyAddInFunction.

Where function names appear in the book text, they appear in the appropriate font
with trailing parentheses but, in general, without their arguments. For example, a C/C++
function is written as c_function() or CppFunction() and an Excel worksheet
function is written as Excel_Function(). VB functions may be written as VB_Function(),
or simply VB_Function where the function takes no arguments, consistent with VB
syntax.

2 Excel Add-in Development in C/C++

Code examples mostly rely on the Standard C Library functions rather than, say, the
C++ Standard Template Library or other C++ language artefacts. Memory allocation and
release use malloc(), calloc() and free(), rather than new and delete or the
Win32 global memory functions. (There are a few exceptions to this.) This is not because
the choice of the C functions is considered better, but because it is a simple common
denominator. It is assumed that any competent programmer can alter the examples given
to suit their own preferences. String manipulation is generally done with the standard
C library functions such as strchr(), rather than the C++ String class. (There is
some discussion of BSTR strings and the functions that handle them, where the topic is
interoperability of C/C++ DLLs and VB.)

The standard C library sprintf() function is used for formatted output to string
buffers, despite the fact that it is not type-safe and risks buffer overrun. (The book avoids
the use of any other standard input/output routines.)

The object oriented features of C++ have mostly been restricted to two classes. The
first is the cpp_xloper, which wraps the basic Excel storage unit (the xloper) and
greatly simplifies the use of the C API. The second is the xlName which simplifies
the use of named ranges. (Strictly speaking, defined names can refer to more than just
ranges of cells.) There are, of course, many places where an add-in programmer might
find object-abstraction useful, or the functionality of the classes provided in this book
lacking; the choice of how to code your add-in is entirely yours.

C++ throw and catch exception handling are not used or discussed, although it is
expected that any competent C++ programmer might, quite rightly, want to use these.
Their omission is intended to keep the Excel-related points as the main focus.

Many other C++ features are avoided in order to make the code examples accessible
to those with little C++ experience: namespaces, class inheritance and friends, streams
and templates. These are all things that an experienced C++ programmer will be able to
include in their own code with no problem, and are not needed in order to address the
issues of interfacing with Excel.

The C++ terms member variable and member function, and their VB analogues property
and method, are generally used in the appropriate context, except where readability is
improved.

Throughout the book, where information is Excel version-specific, the version to which
it applies is sometimes denoted as follows: [v11–] for versions up to and including 11
(Excel 2003); [v12+] for versions 12 (Excel 2007) and later; and so on. (See section 1.3
below).

1.2 WHAT TOOLS AND RESOURCES ARE REQUIRED
TO WRITE ADD-INS

Licensed copies of a 32-bit version of Excel and a 32-bit Windows OS are both assumed.
(16-bit systems are not covered by this book). In addition, and depending on how and
what you want to develop, other software tools may be required, and are described in this
section. Table 1.1 summarises the resources needed for the various levels of capability,
starting with the simplest.

Introduction 3

Table 1.1 Resources required for add-in development

What you want
to develop

Required resources Where to get them

VBA macros and add-ins VBA (for Excel) Supplied with Excel

Win32 DLLs whose
functions can be
accessed via VB

VBA

A compiler capable of
building a Win32 DLL from
the chosen source language
(which does not have to be
C or C++)

Supplied with Excel

Various commercial and
shareware/freeware
sources

C/C++ Win32 DLLs
whose functions can be
accessed via VB and that
can control Excel using
OLE/COM Automation

VBA

A C/C++ compiler capable
of building Win32 DLLs,
and that has the necessary
library and header file
resources for OLE COM
Automation

Supplied with Excel

Various commercial and
shareware/freeware
sources. Microsoft IDEs
provide these resources.
(See below for details.)

C/C++ Win32 DLLs that
can access the Excel C
API whose functions can
be accessed directly by
Excel without the use of
VBA.

A C/C++ compiler capable
of building Win32 DLLs.

The C API library and
header files.

A copy of the XLM (Excel
4 macro language) help file.
(Not strictly required but a
very useful resource.)

Various commercial and
shareware/freeware
sources.

Downloadable free from
Microsoft at the time of
writing. (See below for
details.) Static library
also shipped with Excel.

.NET add-ins and
controllers.

Excel 2002 or later.

A C/C++/C# compiler
capable of building .NET
components for Microsoft
Office applications.

At the time of writing, a good starting point for locating Microsoft downloads is
www.microsoft.com/downloads/search.asp.

1.2.1 VBA macros and add-ins

VBA is supplied and installed as part of all 32-bit versions of Excel. If you only want
to write add-ins in VB, then that’s all you need. The fact that you are reading this book
already suggests you want to do more than just use VBA.

4 Excel Add-in Development in C/C++

1.2.2 C/C++ DLL add-ins

It is, of course, possible to create Win32 DLLs using a variety of languages other than C
and C++. You may, for example, be far more comfortable with Pascal. Provided that you
can create standard DLLs you can access the exposed functions in Excel via VB. If this
is all you want to be able to do, then all you need is a compiler for your chosen language
that can build DLLs.

Chapter 4 Creating a 32-bit Windows (Win32) DLL using Visual C++ 6.0 or Visual
Studio .NET, page 89, contains step-by-step examples of the use of Microsoft’s Visual
Studio C++ version 6.0 Standard Edition and Visual Studio C++ .NET 2003 integrated
development environments (IDEs). The examples demonstrate compiler and project set-
tings and show how to debug the DLL from within Excel. No prior knowledge of these
IDEs is required. (Standard Win32 DLLs are among the simplest things to create.) Other
IDEs, or even simple command-line compilers, could be used, although it is beyond the
scope of this book to provide examples or comparisons.

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins

If you want your DLL to be able to access the C API, then you need a C or C++ compiler,
as well as the C API library and header file. The C API functions and the definitions of the
data types that Excel uses are contained in the library and header files xlcall32.lib
and xlcall.h. The pre-Excel 2007 versions of these files1 are contained in a sample
project, downloadable from Microsoft at the time of writing, free of charge, at download.
microsoft.com/download/platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe. It is also
possible to link Excel’s library in its DLL form, xlcall32.dll, in your DLL project,
removing the need to obtain the static .lib version. This file is created as part of a
standard Excel installation. Another approach is to create the .lib file from the .dll
file, as discussed in section 5.1.

An XLL add-in is a DLL that exports a set of interface functions to help Excel load and
manage the add-in directly. These functions, in turn, need to be able to access Excel’s
functionality via the C API, if only to be able to register the exported functions and
commands. Only when registered can they be accessed directly from the worksheet (if
functions) or via menus and toolbars (if commands). The C API is based on the XLM
(Excel 4 macro language). This book provides guidance on the most relevant C API
functions in Chapter 8. However, for a full description of all the C API’s XLM equivalents
you should ideally have a copy of the XLM help file, Macrofun.hlp. This is, at the time
of writing, downloadable in the form of a self-extracting executable from Microsoft at
download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/Macrofun.exe.

1.2.4 C/C++/C# .NET add-ins

This book does not cover .NET and C#. These technologies are an important part of
Microsoft’s vision for the future. The resources required to apply these technologies are
Visual Studio .NET and a .NET-compatible version of Excel, i.e., Excel 2002 and later.

1 At the time of writing, Microsoft plan to release an updated Framework project, although details of where
and how this can be obtained are not known.

Introduction 5

The principle purpose of this book is to bring the power of compiled C and C++ to Excel
users, rather than to be a manual for implementing these technologies.

1.3 TO WHICH VERSIONS OF EXCEL DOES
THIS BOOK APPLY?

Table 1.2 shows the marketing names and the underlying version numbers to which this
book applies. Excel screenshots in this book (worksheets, dialogs, etc.) are mostly Excel
2000. Most of the interface differences between versions 2000 and 2003 are quite super-
ficial. In contrast, the interface changes introduced in Excel 2007 are significant. The
workbooks on the CD ROM are provided in both Excel 2000 and Excel 2007 format.
(Contact ccppaddin@eigensys.com if you require 97 format files.)

Table 1.2 Excel version numbers

Product name Version number

Excel 97 (SR-1, SR-2) 8

Excel 2000 9

Excel 2002 10

Excel 2003 11

Excel 2007 12

In some places, particularly in code examples, where information is Excel version-specific,
the version to which it applies is denoted as follows: v11– for versions up to and including
Excel 2003; v12+ for versions Excel 2007 and later; and so on.

1.4 THE FUTURE OF EXCEL: EXCEL 2007 (VERSION 12)

At the time of writing, Excel 2007 (version 12) had only been released in beta. Whilst
every effort has been made to ensure that what is written about it in this book is accurate,
it is possible that the way some things work might be changed between beta and final
release.

1.4.1 Summary of key workbook changes

The Excel team at Microsoft have made significant changes in many areas that are outside
the scope of this book. As far as the subject matter of this book is concerned, however,
the key changes are these:

• The size of the worksheet grid is expanded from 256 (28) to 16,384 (214) columns and
from 65,536 (216) to 1,048,576 (220) rows, so from 224 to 234 cells – over 1,000 times
as many.

• The maximum number of arguments a function can take is increased from 30 to 255.
• The level of function nesting in Excel worksheet formulae is increased from 7 to 64.

(The author has some reservations about this being a good thing.)

6 Excel Add-in Development in C/C++

• Multi-threaded workbook recalculation is supported on single- and multi-processor
machines.

• The C API, XLL add-ins are still fully supported and are, for the first time in a very
long while, upgraded to take advantage of some of the new features. In particular the
Excel 2007 C API supports:
◦ UNICODE strings up to 32Kbytes in length (in addition to byte-strings up to 255

bytes in length);
◦ Larger grids;
◦ More function arguments;
◦ Multi-threaded recalculation;
◦ Direct access to new worksheet functions.

• The user interface changes quite dramatically, providing applications developers and
ordinary users with a much richer set of tools to control the appearance and behaviour
of their workbooks, albeit at the expense of some familiarity.

• There are significant changes to the conditional-formatting capabilities. (See section
2.12.7 on page 40).

• Management of defined names is made much easier with improved interfaces.
• There are many new worksheet functions that should enable simplification of the more

cumbersome data management, error handling and lookup tasks, e.g., IFERROR().
• The Analysis Toolpak worksheet functions are fully integrated into Excel and are also

available directly via the C API.

Note that VBA and Automation add-ins will still not be able to take advantage of multi-
threaded recalculation.

1.4.2 Aspects of Excel 2007 not covered in this book

Outside the scope of this book are the other changes that Excel 2007 introduces, in
particular the radically different user interface through which built-in or custom commands
are made available. Customising the new UI presents very different problems and issues
than it did in previous versions, and where this book discusses these matters it does so
only in relation to earlier versions of Excel.

1.4.3 Excel 2007 file formats

While still supporting the older file binary file formats (BIFF5 and BIFF8) and version
11 XML formats, Excel 2007 introduces a number of new formats and extensions:

• .XLSX – the XML-based default for code-less workbooks;
• .XLSM – the XML-based format for workbooks with VBA or XLM code;
• .XLSB – the new binary format (BIFF12);
• .XLAM – the XML-based add-in format (analogous to the .XLM of previous versions).

1.4.4 Compatibility between Excel 2007 and earlier versions

As stated above, Excel 2007 supports earlier versions’ file formats for backwards compat-
ibility, and contains a Compatibility Checker, which can be configured to run whenever a
binary format file is saved, to check for elements not supported in earlier versions. VBA is

Introduction 7

still supported in Excel 2007 and the object model is largely unchanged so that most VBA
code in Excel 2003 and earlier workbooks should be expected to run without problems.

Compiled add-ins that are simply DLL’s accessed via VBA (see section 4.11 Accessing
DLL functions from VB on page 108) should run identically provided that they are not
calling back into Excel via the C API or COM, in which case there are some cross-
version compatibility issues covered in later parts of this book. XLL add-ins compiled
with the old Excel SDK will work with Excel 2007 but again there are some compatibility
issues, particularly where older add-ins customise the UI or call, say, Analysis Toolpak
functions using xlUDF. VBA and compiled add-in code should therefore be modified to
be version-sensing and -specific where these compatibility issues arise. XLL add-ins that
rely on availability of Excel 2007 data types and C API, so that they can take advantage of
larger grids and Unicode strings for example, will not be compatible with earlier versions
of Excel. Sections 8.6.12 Registering functions with dual interfaces for Excel 2007 and
earlier versions on page 263 and 9.13.3 Making add-in behaviour Excel version-sensitive
and backwards-compatible on page 432 describe how to create XLLs that will run happily
with Excel versions 11− and 12+.

1.5 ABOUT ADD-INS

An add-in is simply a code resource that can be attached to a standard application to
enhance its functionality. Excel is supplied with a number of add-ins that can be installed
according to the user’s preference and need. Some provide specialist functions not needed
by the average user, such as the Analysis ToolPak (sic) (whose functions are integrated
into Excel in Excel 2007), and some that provide complex additional functionality such
as the Solver add-in.

Add-ins come in two main flavours: interpreted macros and compiled code resources.
Version 4 of Excel introduced macro sheets which could contain macros written in the
Excel macro language (XLM). These comprised columns of instructions and calculations
that either led to a result being returned to the caller, if functions, or that performed
some action such as formatting a cell, if commands. Macro sheets could be part of a
workbook or saved and loaded separately so as to be accessible to any workbook. Despite
their flexibility they were relatively slow and did not promote sensible structured coding.
In fact they encouraged the exact opposite given that, for example, they could modify
themselves whilst executing.

Version 5 introduced Visual Basic worksheets. This enabled coding of functions and
commands as before but promoted better coding practices and made implementation of
algorithms from other languages easier. Excel 97 replaced these VB sheets with Visual
Basic for Applications and the Visual Basic Editor (VBE) – a comprehensive IDE com-
plete with context-sensitive object-oriented help, pre-compiler, debugger and so on.

Macros, be they XLM or VB, are interpreted. When run, the interpreter reads each
line one-by-one, makes sense of it while checking for errors in syntax, compiles it and
only then executes the instructions. Despite the fact that VBA does some of this work in
advance, this is a slow process. The VBA approach avoids the need for tools to create fully
pre-compiled code making the creation of add-ins possible for the non-expert programmer.
VBA makes Excel application objects accessible and is therefore the obvious choice for
a host of user-defined commands and functions where speed of development rather than
speed of execution is the prime concern. Until Excel 2007, Microsoft had not updated the

8 Excel Add-in Development in C/C++

C API since the release of Excel 97 and only support XLM for backwards compatibility.
Even within Excel 2007 most of the new functionality and objects added since Excel 97
are only available to applications that can access Excel’s COM-exposed objects. This is
not too serious as the type of functionality added is that which it is most appropriate to
access from VBA (or VB), rather than via the C API, anyway.

The other main flavour of add-in is the pre-compiled code resource which has none
of the execution overhead of interpreted languages and is therefore extremely fast by
comparison. The cost is the need to use, and so understand, another development language
and another compiler or IDE. In essence, this is no harder than using VBA and the VB
editor. The additional requirement is to know what Excel expects from and provides to
anything calling itself an Excel add-in. In other words, you need to understand the Excel
interface. The two interfaces that have been available over recent years are the C API and
COM (the Common Object Model also known as Automation). COM provides access to
Excel’s exposed objects, their methods and properties. VBA itself is a COM Automation
application. Section 9.5 Accessing Excel functionality using COM/OLE automation using
C++, on page 376, discusses some very basic COM concepts.

VBA macros can be saved as Excel add-ins with very little effort but the resulting
code is still slower than, say, compiled C add-ins. (Some performance comparisons are
given in section 9.2 Relative performance of VB, C/C++: Tests and results on page 369).
Despite the rapid development and flexibility of VBA, it lacks some of the key language
concepts present in C and C++, in particular, pointers. These are sometimes critical to the
efficient implementation of certain algorithms. One example of where this is especially
true is with the manipulation of strings.

The advent of .NET changes a number of things. For example, VB code resources can
be compiled and the functions contained made accessible directly from a worksheet, at
least in Excel 2002 and later. C, C++ and C# resources can similarly be accessed directly
from a worksheet without the need to use the C API.

1.6 WHY IS THIS BOOK NEEDED?

For anyone who decides that VBA just isn’t up to the task for their application or who
wants to decide the best way to make an existing C or C++ code resource available
within Excel, just the task of weighing up all the options can at first seem daunting. At
the publication of the first edition of this book, there were no published texts written
specifically to help someone make this decision and then follow it through with practical
step-by-step guidance. There are a number of commercial products that enable developers
to access the power of Excel via the C API indirectly, through some sort of managed
environment and set of classes. These are beyond the scope of this book, but do make
sense for certain kinds of project.

The Excel C API is documented in Microsoft’s Excel 97 Developer’s Kit (1997,
Microsoft Press), out of print at the time of writing. This book tries to complement
that text as far as possible, providing information and guidance that it lacks. Where they
overlap, this book tries to present information in a way that makes the subject as easy as
possible to grasp. The Developer’s Kit is a revision of an earlier version written for the 16-
bit Excel 95, and contains much that was only relevant to developers making a transition
from 16-bit to 32-bit. It provides a very comprehensive reference to the Microsoft BIFF
(binary interchange file format) which is, however, of little use to most add-in writers.

Introduction 9

Writing Win32 DLLs is fairly straightforward, but it is easy to get the impression that
it is highly technical and complex. This is partly because available literature and articles
often contain much that is no longer current (say relating to 16-bit versions of Windows),
or because they concentrate heavily on 16- to 32-bit transition issues, or are simply badly
written. Having said that, there are a few complexities and these need to be understood
by anyone whose add-ins need to be robust and reliable. Overcoming the complexities
to speed up the creation of fast-execution add-ins in C and C++ is what this book is all
about.

1.7 HOW THIS BOOK IS ORGANISED

The book is organised into the following chapters:

Chapter 2 Excel Functionality
Basic things that you need to know about Excel, data types, terminology, recalculation
logic and so on. Knowing these things is an important prerequisite to understanding
subsequent chapters.

Chapter 3 Using VBA
Basic things about using VBA: creating commands and functions; accessing DLL func-
tions via VB; VB data types; arrays and user-defined data structures, and how to pass
them to DLLs and return them to Excel.

Chapter 4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0
How to create a simple Win32 DLL, in VC or VC++ .NET, and export the functions
so they can be accessed by VB, for example. Lays the foundation for the creation of
XLLs – DLLs whose functions can be accessed directly by Excel.

Chapter 5 Turning DLLs into XLLs: The Add-in Manager Interface
How to turn a DLL into an add-in that Excel can load using the add-in manager: an
XLL. The functions that Excel needs to find in the DLL. How to make DLL functions
accessible directly from the worksheet.

Chapter 6 Passing Data between Excel and the DLL
The data structures used by the Excel C API. Converting between these data structures
and C/C++ data types. Getting data from and returning data to Excel.

Chapter 7 Memory Management
Stack limitations and how to avoid memory leaks and crashes. Communication between
Excel and the DLL regarding responsibility for memory release.

Chapter 8 Accessing Excel Functionality Using the C API
The C interface equivalent of the XLM macro language and how to use it in a DLL.
Information about some of the more useful functions and their parameters. Working with
named ranges, menus, toolbars and C API dialogs. Trapping events within a DLL.

Chapter 9 Miscellaneous Topics
Timing function execution speed. A brief look at how to access Excel’s objects and their
methods and properties using IDispatch and COM. Keeping track of cells. Multi-tasking,

10 Excel Add-in Development in C/C++

multi-threading and asynchronous calls into a DLL add-in. Setting up timed calls to
commands. Add-in design. Performance optimisation.

Chapter 10 Example Add-ins and Financial Applications
Examples that show how the previous chapters can be applied to financial applications
such as, for example, Monte Carlo simulation, a stochastic volatility model, and constant
maturity swap (CMS) derivative pricing.

1.8 SCOPE AND LIMITATIONS

The early chapters are intended to give just enough Excel and VBA background for the
later chapters. There are literally dozens of books about Excel and VBA ranging from
those whose titles are intended to coerce even the most timid out of the shadows, to
those with titles designed to make them a must-buy for MBA students, such as ‘Essential
Power Excel Tips For Captains Of Industry And Entrepreneurs’. (At the time of writing,
this was a fictitious book title.) There are, of course, many well-written and comprehensive
reference books on Excel and VBA. There are also a number of good specialist books
for people who need to know how best to use Excel for a specific discipline, such as
statistical analysis, for example.

The book is primarily focused on writing add-in worksheet functions. The reasons for
this are gone into in later sections, such as section 2.9 Commands versus functions in
Excel on page 27. One reason is that commands often rely on the creation of user-defined
dialogs, which is a task far better suited to VBA. Even if the functionality that your
command needs is already written in C/C++ code in a DLL, it can still easily be accessed
from VB. Another reason is that, in general, commands do not have the same speed
of execution requirements as worksheet functions – one of the main reasons for using a
C/C++ DLL for functions.

Commands are covered to a certain extent, nevertheless. They can be a useful part
of a well planned interface to a DLL. Knowing how to create and access them without
the use of VBA is therefore important. Knowing how to create menus and menu items
is important if you want DLL commands to be accessed in a seamless way. Chapter 8
Accessing Excel Functionality Using the C API on page 223 covers these topics.

The Excel COM interface is largely beyond the scope of this book, mainly to keep the
book focused on the writing of high performance worksheet functions which COM does
not help with. The other main reason is that if you need functionality that COM provides
and the C API does not, for example, access to certain Excel objects, you are probably
better off using VBA. That said, there are examples given in Chapter 9 of the use of
COM from an XLL or DLL.

This book is not intended to be industry-specific or profession-specific except in the final
chapter where applications of particular interest in certain areas of finance are discussed.
It should be noted that the book is not intended to be a finance text book and deliberately
avoids laborious explanations of things that finance professionals will know perfectly well.
Nor are examples intended to necessarily cover all of what is a very broad field. It is hoped
that readers will see enough parallel with their own field to be able to apply earlier sections
of the book to their own problems without too much consternation. There are two new key
sections in this second edition that contain applications with a little analytical background
as well as a discussion of how they can be implemented in Excel. These are the stochastic
volatility model SABR, and constant maturity swap (CMS) derivative pricing.

2
Excel Functionality

2.1 OVERVIEW OF EXCEL DATA ORGANISATION

Excel organises data, formulae and other objects into a 2-dimensional grid of cells
([v11−] : 216 rows by 28 columns, [v12+]: 220 rows by 214 columns), one grid per work-
sheet, with as many sheets per workbook as system resources allow. Each cell can contain
several different types of data as well as format information and embedded comments. (A
workbook can also contain VB code modules associated with a particular worksheet object
or the workbook object.)

Excel, like all Microsoft Office applications, provides two types of command-access
objects: menu bars and toolbars. There are many other Windows objects, but cells, work-
sheets, workbooks and command-access objects are of most interest to an add-in devel-
oper. The hierarchy of these objects prior to Excel 2007, simply represented, is as follows:

Table 2.1 Controlling recalculation in Excel

Application: Excel

Workbooks Menu bars Toolbars

Worksheets and other sheet types Menus Toolbar buttons

Ranges of cells Charts, drawings Control objects Menu items
and individual and other Excel (Command
cells and non-Excel

objects
buttons, etc.) Sub-menu items

In Excel 2007, the familiar menu bars and toolbars of earlier versions (see Figure 2.1) are
replaced (or in some cases hidden from display) by the concept of a Ribbon with groups
of related commands and dialogs (See Figure 2.2).

Figure 2.1 Excel 2000 user interface

12 Excel Add-in Development in C/C++

Figure 2.2 Excel 2007 user interface

2.2 A1 VERSUS R1C1 CELL REFERENCES

Excel supports two styles of cell reference, both used for display and input. The default
(and by far most commonly used) is the A1 style where the alphabetic part of the reference
represents the column (from A to IV) and the numeric part represents the row (from 1 to
65,536). The other is referred to as the R1C1 style. The main reason for spending any time
discussing these is that some of the C API functions require or return range addresses
in one form only. Some of Excel’s VBA functionality also requires R1C1 notation, for
example, when setting graph source-data ranges. Table 2.2 summarises both styles.

Table 2.2 A1 and R1C1 style comparisons

A1 style R1C1 style

Row-column order Column then row Row then column

Top row 1 R1

Bottom row [v11–]: 65536 R65536

[v12+]: 1048576 R1048576

Left-most column A C1

Right-most column [v11–]: IV C256

[v12+]: XFD C16384

Relative reference style as shown by formula =A2
entered into cell B1.

=A2 =R[1]C[-1]

Absolute reference style as shown by formula =A2
entered into cell B1.

=A2 =R2C1

Mixed reference style as shown by formula =A$2
entered into cell B1.

=$A2 =R2C[-1]

Relative reference in same row or column as shown =A2 =RC[1] (in cell A1)
by formula =A2 entered into cells B2 and A1. =R[-1]C (in cell B2)

Excel Functionality 13

Note that the row index in square brackets in relative references in R1C1 style can be any
number from −65,535 to +65,535 inclusive in versions up to Excel 2003 so requires a
4-byte signed integer for storage. In Excel 2007 it can be any number from −1,048,575
to +1,048,575 inclusive which is still within the range of a 4-byte signed integer. A
2-byte signed integer is sufficient to store the column index not only in versions up to
Excel 2003 but also in Excel 2007. Note also that in Excel 2007, range names that are
3 letters followed by a number will be interpreted as cell references. You might have
got away with names OPT1 and OPT2 prior to Excel 2007, but these should be renamed
to be Excel 2007-compliant. For example, OPT 1 and OPT 2 are safe. When a 2003
workbook containing ambiguous names is saved in a 2007 format, names such as OPT1
are automatically replaced with OPT1, something which could cause problems for VBA
code, for example.

2.3 CELL CONTENTS

Internally, a cell within Excel has a great deal of data associated with it. This includes the
display format, attached comments (notes), protection status, etc. The two most important
properties for someone wishing to write functions are:

1. The cell’s formula – a text string that Excel parses to an internal compiled form, and
which is then used to re-evaluate the cell in a recalculation.

2. The cell’s value – if the cell contains a formula, the result of its evaluation, otherwise
the data that was entered directly by the user or an Excel command or macro.

2.4 WORKSHEET DATA TYPES AND LIMITS

From a spreadsheet user’s perspective, the type of value of any non-empty cell (or group
of cells in the case of an array) will always be one of the following:

• a number (floating point);
• a Boolean value (TRUE or FALSE);
• a character string;
• an Excel-specific error code;
• an array comprised, in general, of a mixture of the above types.

Excel will always evaluate a cell formula to one of these data types. Sometimes the
function in the cell will return something other than one of these, such as a range reference,
but Excel will then evaluate this to one of these types.

The formatting applied to a cell can, of course, make the appearance of a number it
contains very different. A number may appear as a date, a time, a percentage, a currency
amount, in scientific notation or as a formatted fraction. Note that Excel doesn’t distinguish
between integer and floating-point numbers on a worksheet. A function that takes integer
arguments, such as DATE(year, month, day), will truncate any non-whole number argument
rather than complain about the number type.

The limits on each of the above five data types are as follows:

14 Excel Add-in Development in C/C++

Table 2.3 Worksheet data types and limits

Number Floating point range:
± x where
1.0 × 10−307 ≤ |x| < 1.0 × 10+308

(Max values of x may display as ±1.0E+308.)

Floating point accuracy:
15 decimal places displayed. Sometimes 16 places are stored internally
depending on binary representation of mantissa.

Integer (stored by Excel as floating point):
± i where
0 ≤ |i| ≤ 1,000,000,000,000,000 (1015)

(Outside these bounds, floating point representations truncate lowest
order digits.)

Notes:
1. Certain number formats have narrower limits than these, e.g., dates

and times.
2. Integer division is, in fact, floating point division and may, in extreme
cases, yield non-integer results where the true result should be an integer.

Boolean TRUE
FALSE

Unicode string Maximum length: 32,767 = 215 − 1
Minimum length: Zero (Empty string:= "")
Allowable characters: All valid Unicode characters

(Note: Only codes 32 and above print on screen.)
Notes:
• In Excel 2003− not all characters can be displayed in a cell, but all

32,767 are displayed in the formula bar.
• In Excel 2007+ all 32,767 characters can be displayed in a cell.
• In Excel 2003− the C API is limited to ASCII byte strings up to 255

characters in length, only containing charaters 1 to 255 inclusive.
• In Excel 2007+ the C API supports 255-byte ASCII strings and
32,767 Unicode strings.

Excel error #NULL!
#DIV/0!
#VALUE!
#REF!
#NAME?
#NUM!
#N/A

Array A one- or two-dimensional collection of mixed-type elements that can be
any one of the above types. Literal arrays can also contain formulae (see
example). Literal arrays are enclosed in curly braces { and }, row-by-row
(sometimes referred to as row-major). Row elements are delimited by

Excel Functionality 15

Table 2.3 (continued)

commas, and rows themselves delimited by semi-colons. For example,
{1, “A”; TRUE, NA()} represents the 2 × 2 matrix[

1 A
TRUE #N/A

]

Note that Excel doubles are not IEEE-compliant. The IEEE 8-byte double specification
has wider limits:

Max normal = 1.7976931348623157e+308
Min positive normal = 2.2250738585072014e−308
Max subnormal = 2.2250738585072009e−308
Min positive subnormal = 4.9406564584124654e−324.

Excel converts IEEE +/− infinity and invalid doubles to #NUM!, and all subnormal num-
bers to positive zero. IEEE negative zero is supported, i.e. can be returned by an XLL
function and is displayed as −0, but Excel’s understanding of what it is is a little naı̈ve,
as =A1<0 will evaluate to TRUE if A1 contains negative zero.

2.5 EXCEL INPUT EVALUATION

When a user types input to a cell in Excel and commits the data (by pressing enter, tab
or selecting another cell), Excel performs several operations in the order outlined below.
In essence, it attempts to figure out what kind of input the user was providing, and then
tries to interpret it accordingly. Understanding the order in which Excel does these things
may help you when creating your own functions or commands.

1. If the input starts with a string prefix (a single quote mark) Excel places all of the
input characters in the cell as typed, with no modification. (The string prefix is not
displayed.) If the input begins with =, + or −, it assumes a formula and uses its
formula parser to check the syntax. An error dialog appears if the formula does not
make sense. Otherwise Excel will try and figure out if the user typed something that
looked like a date, a time, a currency amount, a percentage, or just a number. If none of
these, it reverts to considering the input as a string and places it in the cell unchanged.

Note: This tendency to recognise dates and times before text can be quite annoy-
ing, especially if you intended to input a string such as the ratio “2:1”. Excel will
change the format of the cell to a time format and convert the input to the numeric
value 0.084027777 (the fraction of the day that has passed at 02:10 a.m.). Having to
remember to prefix such inputs with a single quote mark can be frustrating.

2. Where the input is seen as a possible formula, Excel attempts to identify, convert and
evaluate function arguments and nested functions starting with the innermost, i.e., most
nested. Cell references and ranges are converted to values, which are then converted
to the right data types if necessary and so on. Where a token that is not recognised as
a function or defined name is encountered, the conversion and evaluation fails with a

16 Excel Add-in Development in C/C++

#NAME? error. Otherwise defined names are converted in the same way as the cells or
expressions they represent would be.

3. Once the input has been accepted, Excel attempts to recalculate those things that
depend on the new input. If the input was a number and cell previously contained a
number, Excel will only recalculate if the value has changed. If a new formula has been
entered with references to new inputs, Excel verifies that no circular references have
been created by this new formula. If a cell does depend on inputs which themselves
depend on the value of this cell, Excel complains.

4. Depending on the optional Excel or cell format settings, Excel may resize the column
width or row height.

This ability to reduce any valid character string to a worksheet value is exposed by Excel
via the Application.Evaluate(<expression>) method in VBA (or the shorthand
equivalent [<expression>]), the EVALUATE() function in the XLM macro language and
the C API equivalent xlfEvaluate. It enables VBA to execute worksheet functions
that are otherwise inaccessible, and enables XLLs to access the functionality of other add-
ins, although xlUDF is a more efficient means (see section 8.16.4 Calling user-defined
functions from an XLL or DLL: xlUDF on page 363). (See also section 8.16.3 Evaluating
a cell formula: xlfEvaluate, page 362).

2.6 DATA TYPE CONVERSION

Excel always attempts to convert data from one type to another where required. This
section explains when Excel tries to do this, and when it is and is not successful.
(Section 8.8.3 Converting one xloper/xloper12 type to another: xlCoerce, on
page 276, provides more information about how Excel does this, and how you can call
on this ability from within a DLL).

2.6.1 The unary = operator

It may seem too obvious to mention, but the = sign at the start of a cell or array formula
is a unary operator that evaluates whatever appears to its right. The result will always
be one of the four basic types: a number, a string, a Boolean true/false, or an error. Cell
references are converted to the values of the cells they refer to. Formulae are evaluated
to the outermost function’s return value or the lowest-precedence operator result. This
process results in an error value if a function could not be called or an operator could not
be applied. (Conversion of cell references is covered in more detail below.)

2.6.2 The unary – operator (negation)

The unary negation operator, or more simply the minus sign, converts the operand im-
mediately to its right to a number and then negates its value. Boolean true and false are
converted to 1 and 0. A double negation will therefore convert text representations of
numbers to real numbers, as does the VALUE() function. Both produce a #VALUE! error if
the conversion fails.

Excel Functionality 17

2.6.3 Number-arithmetic binary operators: + - */^

Where Excel is evaluating a cell that contains any of the number-arithmetic binary oper-
ators, strings will be converted to numbers where possible, i.e., where they are in one of
the number formats that Excel recognises. (This includes date and time formats where
the resulting number after conversion is the date-time serial number.)

2.6.4 Percentage operator: %

The unary percentage operator – the divide by 100 operator – acts on the operand im-
mediately to its left. It has the highest operator precedence so that =1/2% will evaluate to
50 not to 0.005. Excel attempts to convert this operand to a number where it is not already
one. As with the number arithmetic binary operators, all recognised number formats will
be converted, so that, perhaps bizarrely, the formula = "1-Jul-2002 12:37:03"% evaluates to
374.385 rather than to an error. (Note that in this example Excel converts the date string
to a number and then applies the % operator.) The equally strange formula =TRUE%
evaluates to 0.01.

2.6.5 String concatenation operator: &

Where the string concatenation operator & is used, Excel will convert numbers to strings
in a default number format, unrelated to any display format, with as much precision as
required to represent the number accurately, up to the maximum precision supported.

2.6.6 Boolean binary operators: =,<, >,<=, >=,<>

Where these operators are acting on strings, evaluations are case-insensitive. (The Excel
function EXACT() performs a case-sensitive equality test.) In fact, Excel converts upper
case A-Z to lower case before making the comparison, as can be seen from the 3rd and
4th examples in Table 2.4:

Table 2.4 Case-insensitive string comparisons

Formula.evaluates to:

="A"="a" TRUE

="a">"Z" FALSE

="Z">"[" TRUE

=CHAR(90)>CHAR(91) TRUE

Apart from string case conversion, Excel does not convert operands for these operators.
Table 2.5 shows some examples of the consequences:

18 Excel Add-in Development in C/C++

Table 2.5 Mixed-type comparisons

Formula.evaluates to:

=123="123" FALSE

=123>"121" FALSE

=123<>"123" TRUE

=TRUE ="TRUE" FALSE

2.6.7 Conversion of single-cell references

Excel will convert a single-cell reference to the value of the cell referred to, unless it is
being passed to a function that expects a reference as its parameter rather than a value.
(Later chapters go into detail on such functions, but a simple example is ROW(), which
extracts and returns the row number of a cell reference.) If an operator or function using
the reference requires a different data type than that of the reference’s value, then Excel
will also attempt to convert to the required type. (See next section for more detail.) For
example, if a cell contains the formula =SUM(A1,B1), with A1 containing the number 123
and B2 the string ''456'', Excel will convert the reference A1 to the value of that cell, 123,
and the reference B1 to the string ''456'' and then to the argument type expected by SUM(),
the number 456, leading finally to a result of 579.

2.6.8 Conversion of multi-cell range references

Some functions will work equally well with single cell references and range references,
for example, SUM(A1,B1,C1) gives the same result as SUM(A1:C1). In the latter case, the
SUM() function converts the range A1:C1 to a mixed type array of values and then iterates
through that converting and summing values where possible. The work of handling the
range argument is done within the code of the SUM() function.

However, there are cases where Excel needs to convert a range argument before calling
a function or applying an operator. Here the behaviour is a little more complex. Table 2.6
shows how Excel copes with range arguments in combination with a simple arithmetic

Table 2.6 Range reference argument conversion examples

B C D E F

3 Static values {=B4:B8+1} {=SUM(B4:B8+1)} =SUM(B4:B8+1) =B4:B8+1

4 1 2 20 2 2

5 2 3 20 3 3

6 3 4 20 4 4

7 4 5 20 5 5

8 5 6 20 6 6

9 #N/A 20 #VALUE! #VALUE!

Excel Functionality 19

operation, plus one in this case. (The strings in row 3 indicate the formulae entered in the
cells immediately below.) Clearly range + 1 is a meaningless operation without range
being converted or interpreted somehow.

In column C, range + 1 is entered as an array formula (see section 2.10.2 Array
formulae – The Ctrl-Shift-Enter keystroke on page 30). Excel interprets this as an instruc-
tion to add 1 to each of the cells in the input range, and place the results one-by-one into the
corresponding cells in the output range. Where there is no corresponding output cell, Excel
places #N/A. Essentially, B3:B8+1 is converted to an array which is then mapped onto the
array formula’s range. What Excel is doing is treating the range as if it were a matrix and
interpreting the operation ‘add 1’ as an instruction to add one to each element of the matrix.

In column D, Excel again performs the same matrix operation when confronted with
B3:B4+1, and passes the resulting matrix to SUM() which then adds the elements and returns
a single value. The formula is entered as an array formula and therefore this single value
gets copied to every cell under the array. (Note that the formula =SUM(B4:B8,1) would have
yielded 16, not 20.) Had the formula not been entered as an array formula, the behaviour
would have been very different, as shown in columns E and F.

In columns E and F, the respective formula is duplicated in each of the cells in rows
4 to 9. (The absolute reference $ signs do not affect the way the cells are evaluated.)
The perhaps surprising thing is that Excel returns a result that is different depending on
the location of the cell as well as the formula within it. This is a unique behaviour in
Excel. Excel converts the range reference to a single cell reference that corresponds to
the location of the calling cell. For example, cell F4 is calculated as if the reference were
to cell B4; cell F5 as if it were to cell B5, and so on. There is no corresponding cell in
the input range for cells E9 and F9 so Excel returns #VALUE! to indicate that it could not
convert the range argument.

Note that the function TRANSPOSE() takes either an array or a range, but returns an
array. Passing TRANSPOSE(Range) to a function that expects a range input will cause that
function to fail. One unexpected example of this comes in the way Excel handles the
formula SUMPRODUCT(TRANSPOSE(Range1),Range2). Even where the transposed Range1
and Range2 have the right size relative to each other, the function returns #VALUE! unless
entered as an array formula, despite the fact that the result is a single number.1

2.6.9 Conversion of defined range names

Where a cell formula contains a token that cannot be interpreted as a constant (either
numeric or string within double-quotes) or a cell reference, Excel searches for a named
range on the current sheet and then the current workbook. (See below for an explanation
of the term current.)

Names can be specified in any of the following forms:

• [Book1.xls]Sheet1!Name
• Sheet1!Name – where the workbook is taken to be the current workbook
• Name – where the workbook and sheet are the current ones.

If the sheet is specified, Excel will search for the name’s definition on that sheet. If a
workbook and sheet name are specified, Excel will search in that workbook and sheet.

1 I am grateful to Martin Winnick for pointing this behaviour out to me.

20 Excel Add-in Development in C/C++

If the name is found, it is replaced by its definition (typically a reference to cells in a
workbook), then converted to a value or array of values following the same rules outlined
above. Note that if the name refers to a multi-cell range, this is interpreted and converted
as described above in section 2.6.8.

2.6.10 Explicit type conversion functions: N(), T(), TEXT(), VALUE()

Explicit type conversion is possible with the functions VALUE() and TEXT() with the advan-
tage that TEXT() provides control over the text format where an implicit conversion does
not. Type conversion can also be constrained with the functions N() and T(). Table 2.7
summarises the action of these functions on the basic data types:

Table 2.7 Explicit worksheet data type conversion

Input argument type

Number String Boolean Error

N() Returns the
(unformatted)
number.

Returns zero. N(TRUE) → 1
N(FALSE) → 0

Returns the Excel
error unchanged.

T() Returns empty
string.

Returns the string. Returns empty string.

TEXT() Returns a string of
the number in the
given format.

Converts to a number
then back to a string
in the given format. If
the conversion fails,
returns #VALUE!

Converts to ''TRUE'' or
''FALSE'' regardless of
the given format.

VALUE() Returns the
(unformatted)
number.

Converts to a number.
If the conversion
fails, returns #VALUE!

Returns #VALUE!

Other type conversion functions are also provided by Excel, i.e., DATEVALUE() which
converts a date string to a serial date-time number and TIMEVALUE() which converts a
time string to a serial date-time number.

2.6.11 Worksheet function argument type conversion

Excel will attempt to convert arguments being passed to functions, regardless of whether
they are Excel’s built-in worksheet functions, a third party’s add-in functions or user-
defined VB functions. Worksheet functions can take as arguments any combination of the
following:

1. a single literal value;
2. an array of literal values;

Excel Functionality 21

3. a reference to a single cell;
4. a reference to a rectangular range of cells.

In the first two cases, the values themselves can be any one of the basic Excel data types
(see Worksheet data types and limits above for more detail).

Excel attempts to convert from the supplied type to the function’s required type.
(Chapter 8 Accessing Excel Functionality Using the C API, on page 223, explains how
to construct and declare functions whose arguments are to be passed as is, without con-
version.) Where Excel cannot convert an argument to the declared type, the function is
evaluated to #VALUE!. Note that Excel does not call the code of the underlying function
if this happens.

Consider a function that takes an array of values. Suppose it is passed a reference to a
rectangular range: Excel will convert the range to an array of the values that those cells
contain. However, in contrast to single-cell references, Excel will not convert the types
of those values. For example, the formula =SUM({123,"123"}) (note the curly braces which
surround a literal array in Excel) evaluates to the number 123 since the second value
in the array is not converted from a string to a number. The formula =SUM(123,"123"),
however, evaluates to 246 as Excel is quite happy to convert the string argument ''123'' to
the number 123 before passing it to SUM(). The reason for this is that such functions are
declared as taking an Excel array type in which each element can be any one of a number
of basic data types, regardless of the types of the other elements. Excel cannot know what
types the function ideally wants and leaves any element conversion to the function itself.

Note that some functions can accept one of a number of types, for example, in the
function IF(test, if true, if false), the second and third arguments can be any type and are
passed and returned unconverted depending on the outcome of the test. The fact that
range references are not converted prior to IF() being called is most easily evidenced with
a formula such as =ROWS(IF(A1,B1:B2,C1:C3)), which will return either the value 2 or 3
depending on the value of A1.

Table 2.8 details the conversions that Excel attempts to make (if necessary) in passing
arguments to worksheet functions:

Table 2.8 Worksheet function argument type conversion

Supplied argument Excel will attempt, if required, to convert to. . .

Number Integer
Floating point → Integer (by truncation of digits after
the decimal point)
(Converse does not apply, as all worksheet numbers are
floating point.)

String
In default number format with as much precision as
required to represent the number up to the maximum
precision supported by Excel.

Boolean
Zero → FALSE

Non-zero → TRUE

(continued overleaf)

22 Excel Add-in Development in C/C++

Table 2.8 (continued)

Supplied argument Excel will attempt, if required, to convert to. . .

String Number
Must be any one of Excel’s known number formats
including date, time, etc.

Boolean
Must be ‘true’ or ‘false’ (not case-sensitive).

Boolean Number
True → 1
False → 0
(Conversion not always performed).

String
True → “TRUE”
False → “FALSE”

Single cell reference 1st step:
Value of cell referred to.

2nd step:
Number → Integer, String or Boolean
String → Number or Boolean
Boolean → Number or String

Multiple cell reference Array
(Note: each element in the array has the same data type
as the corresponding cell’s value).

2.6.12 Operator evaluation precedence

Table 2.9 Operator evaluation precedence

Operators (operation) Notes

Name lookup and substitution

Reference-to-value and type conversion

() and worksheet functions Evaluated left to right

%, unary –

ˆ =4^50% evaluates to 2

*/

Binary +−
& =4+2&1+5="66" evaluates to TRUE

Binary =, <, >, <=, >=, <> Evaluated left to right

Excel Functionality 23

2.7 STRINGS

The handling of character strings in Excel, as in many areas of computing, is a potential
minefield for the unwary. The mis-handling of strings (for example, over-writing of string
buffers or attempting to read from or write to invalid pointers) is perhaps the most common
cause of instability problems in add-in code. Excel passes strings to and from VBA and
the C API in a variety of ways. This subject is made more complicated with Excel 2007
as the C API is upgraded to support longer Unicode strings as well as shorter byte-strings.
This section provides some background on the types of strings Excel supports and some
of the circumstances in which you might encounter them. There are many later areas of
this book that go into more detail on the various structures and techniques used to create
and handle them. The background provided here is intended to make the safe application
of later sections easier, as well to highlight some of the pitfalls.

2.7.1 Length-prepended versus null-terminated strings

Any code that receives a variable-length character string needs a way of determining its
length. It needs to know the length of a new buffer if copying, or how far along the
string to read if searching, for example. The three most common ways to enable this,
and the ways used by Excel, are (1) to pass the length of the string in the first character
(length-prepended); (2) to pass a reference to an object or data structure that contains the
length of the string as a data member (e.g., the OLE BSTR string used by VBA); (3) to
terminate the string with a null (zero) character (null-terminated).

In all these cases, at some point enough memory needs to have been put aside to accom-
modate all of the characters the string could contain. If an attempt to write more characters
to a string than the allocated memory buffer permits, then corruption of whatever was
stored after the string occurs with potentially fatal consequences for the application.

Examples of these 3 types are respectively:

1. The string xloper and xloper12 types used by the C API;
2. The BSTR OLE string type used by VBA;
3. The char* or wchar_t* null-terminated strings that Excel will, if asked, pass to

XLL functions.

2.7.2 Byte strings versus Unicode strings

Character strings come in 2 widths: byte character strings and wide-character strings. Byte
strings, as the name suggests, comprise a series of byte values from 0 to 255 inclusive,
which encode the available characters. The character represented by each number is, to
some extent, arbitrary although for decades it has been determined according to the ASCII
standard, where for example ‘A’ is represented by 65, ‘B’ by 66 and so on. In fact the
original ASCII standard only determined characters for the numbers 0 to 127, leaving a
single bit free for use in communications protocols. The use of all 8 bits permitted double
the number of characters to be represented and became known as the extended ASCII
character set. Byte strings are still commonly referred to simply as ASCII strings, although
this hides the fact that many of the extended characters may be interpreted according to
the locale or font in use, in one case permitting accented European characters, and in
another Japanese katakana or Greek characters, or other symbols.

24 Excel Add-in Development in C/C++

The small number of supported characters became a severe limitation and prompted
the development of a new standard that used 16-bit characters, again assigning standard
characters to each number. This standard was created by the Unicode Consortium
(www.unicode.org) and so the standard interpretation of these 16-bit wide characters
is known as Unicode. According to their web-site at the time of writing, the standard cur-
rently encodes over 96,000 characters. The most commonly used are in the first 64,000
codes, an area known as the basic multilingual plane (BMP).

Excel has for a number of versions now supported Unicode strings. However, the C
API for versions up to and including Excel 2003 only supported length-prepended byte
strings, where the length is limited by the storage capacity of the length element. For byte
strings this imposes a 255 length limit. Access only to limited-length byte strings, instead
of the long Unicode strings supported in Excel workbooks, has been one of the most
limiting aspects of the C API relative to other Excel-exposed interfaces such as COM
and VBA. This restriction is lifted with Excel 2007 which enables the C API to access
Unicode strings up to 32Kbytes in length.

The original ANSI C standard specified that character strings were extended ASCII
null-terminated byte strings, and such strings are still sometimes referred to as C strings.
The original standard C library accepted and returned strings of this type. Current imple-
mentations of C and C++ libraries provide both ASCII byte string functions and Unicode
wide-character string equivalents. Clearly, null-termination of strings gets around the
length restrictions of, say, pre-pending a byte string with a length character, but at the
expense of having to read through the string up to the null to determine its length.

2.7.3 Unmanaged versus managed strings

Section 3.6.6 VB/OLE Bstr Strings on page 66 describes structure of the OLE Bstr data
type. This is a managed data type, in other words, a great deal of the mess of memory
management is taken care of implicitly by the operating system. For example, suppose
that a VBA routine calls a DLL function that returns a string. The string is created in the
DLL with a call to one of the OLE Bstr creation functions, something which involves
memory being allocated by the operating system. When a reference to the string is passed
back to VBA, the DLL does not need to worry about releasing the memory: VBA does
this automatically and safely because the OLE part of the operating system keeps track of
all strings created in this way. The operating system achieves this by storing information
about the string, such as how many references to it are currently in use and how long
it is, in a space before the start of the string itself. In other words the operating system
returns a pointer to one element of a hidden data structure. The Bstr, as then used by the
developer, is therefore a null-terminated string of bytes or wide characters, but with this
additional hidden support from the OS. It is this latter fact that necessitates the use of the
OLE Bstr functions for Bstr operations.

In contrast, unmanaged strings require more deliberate memory management to avoid
leaks. For example, when Excel returns a string xloper in a call to a C API function,
Excel will have allocated memory and must at some point be called explicitly to free it.
Likewise, a DLL allocating a buffer for a string must free it at some point. This presents
difficulties when passing strings from one place to another: how will the recipient know
how to free the string when it no longer needs it? (This problem is solved for the C
API with the use of special flags and callbacks in the XLL, and is covered in detail in
Chapters 6, 7 and 8.)

Excel Functionality 25

2.7.4 Summary of string types used in Excel

C API xloper/xloper12s

Byte strings:

xloper type: xltypeStr
Supported in all 32-bit versions of Excel.
Limited in length to 255 characters.
First unsigned byte contains string’s length.
Subsequent byte string is not, in general, null-terminated.

Wide character strings:

xloper12 type: xltypeStr
Supported in Excel 2007+ only
Maximum length 32,767 Unicode 16-bit characters.
First Unicode character contains string’s length.
Subsequent string is not, in general, null-terminated.

VBA Bstrs

VBA String:

A managed OLE data type.
Null-terminated byte string.
Only use with Byte versions of the OLE functions, e.g. SysStringByteLen()
Maximum length 32,767.

VBA Variant string:

A managed OLE data type.
Null-terminated wide-character string.
Only use with wide versions of the OLE functions, e.g. SysStringLen()
Maximum length 32,767.

C/C++ Strings:

Byte strings:

Null-terminated byte string (char* or unsigned char*).
Unlimited length.
DLL functions can take VBA Bstrs ByVal as char*.
XLL worksheet functions can take/return char* but strings will be limited in length.

Wide character strings:

Null-terminated wide-character string (wchar_t*).
Unlimited length.
DLL functions take VBA Variant strings ByRef as VARIANT*.
XLL worksheet functions can take/return wchar_t* but strings will be limited in
length.

26 Excel Add-in Development in C/C++

2.7.5 Converting one string type to another

When copying a string, determining not only the length of the source string but also the
length of the destination string is, of course, a fundamental step. In particular, care has
to be taken to ensure that the source string is not too long for the destination string type
or buffer. It is a matter of implementation whether or not to fail or truncate in this case.
The following steps simply refer to this being checked, and assume that more characters
than can be handled are never copied. The advice here may seem almost too obvious, but
it is the author’s experience that the the code most likely to contain some hard-to-spot
memory problem is that new little piece of code you wrote to do a quick copy of a string
from one place to another.

Null-terminated to length-counted

1. Obtain the length of the null-terminated source string using the library functions
strlen() for byte strings or wcslen() for wide-character strings, or equivalent
functions.

2. Determine the maximum size of length-counted string permitted and check that source
string length does not exceed this.

3. Allocate a block of memory big enough for the length element and the string characters.
4. Set the length element.
5. Copy the correct number of string characters from the source string to the new mem-

ory using strncpy() for byte strings or wcsncpy() for wide-character strings, or
equivalent functions. (You could also use the slightly more efficient memcpy() with
appropriate arguments).

Length-counted to null-terminated

1. Obtain the length of the length-counted source string string from its length element.
2. Determine the maximum size of the null-terminated string permitted and check that

source string length does not exceed this.
3. Allocate a block of memory big enough for the string characters and a null-terminator.
4. Copy the correct number of string characters from the source string to the new mem-

ory using strncpy() for byte strings or wcsncpy() for wide-character strings, or
equivalent functions. (You could also use the slightly more efficient memcpy() with
appropriate arguments).

5. Explicitly set the terminating to character to zero.

Warning: strncpy() and wcsncpy() both look for null terminations or simply copy
until the specified maximum number of characters have been counted. It is therefore
extremely important when copying non-terminated sequences that the number of charac-
ters to copy is set correctly.

ASCII byte strings to/from Unicode wide-character strings

1. Obtain the length of the source string.

Excel Functionality 27

2. Determine the maximum size of the destination string and check that source string
length does not exceed this.

3. Allocate a block of memory big enough for the new string.
4. Convert and copy the correct number of source characters from the source string to the

new memory using mbstowcs() for ASCII to Unicode or wcstombs() for Unicode
to ASCII, or equivalent functions.

5. If the destination string is null-terminated explicitly set the terminating character to
zero, else if the destination string is length-counted set the length element.

Warning: When converting strings that are not null-terminated it is essential that
mbstowcs() and wcstombs() are passed the correct number of characters to be
converted.

2.7.6 Hybrid length-counted null-terminated strings

You may find it easier to work with strings that are both length-counted and null-
terminated. These combine the benefits of both the xloper/xloper12’s quick access to
the string’s length and compatibility with C/C++ library and other functions that require
null-terminations. This requires some fairly straight-forward changes to the above steps,
such as allocating not only space for the length element but also for a null terminator.
However, care must be taken that the null-terminator does not overrun the maximum
buffer length of a restricted-length string. For example, Excel will pass unsigned char*
length-counted byte strings as arguments to XLL functions declared and registered in this
way (as later chapters describe). Such an argument can also be specified as the means by
which the function returns a string by modifying the argument in-place, in which case
Excel allocates 256 bytes for this: 1 for the length and 255 for the characters. An attempt
to write a null just beyond this can cause severe problems. (Similar care must be taken
with Excel 2007’s longer Unicode strings.)

Many of the code examples in this book and on the CD ROM use this idea of null-
terminating the length-counted strings used by xlopers and xloper12s.

2.8 EXCEL TERMINOLOGY: ACTIVE AND CURRENT

Excel functions that provide information about a cell, a range of cells or a sheet in a
workbook often make a distinction between the workbook, sheet or cell that the user is
currently looking at, and the workbook, sheet or cell from which the function was called.2

The same is true of commands that affect a workbook or one of its constituents. The terms
active and current are used to make the distinction, which can be quite confusing. Here
is a clear definition:

2 There are other components that can be active, e.g., components of a chart that have been selected, which are
not covered here.

28 Excel Add-in Development in C/C++

Table 2.10 Active versus current terminology

Term Definition

Active workbook The one that the user is currently looking at. If Excel does not have
focus then the active workbook is the one that was visible when Excel
last had focus.

Active sheet The one that the user is currently looking at. If Excel does not have
focus then the active sheet is the one that was visible when Excel last
had focus. The active sheet is always in the active workbook.

Active cell The one into which input would be placed if the user started typing.
This cell may not be visible if the user has scrolled off to one side. If
Excel does not have focus then the active cell is that cell on the sheet
that was active when Excel last had focus. The active cell is always on
the active sheet.

Current workbook The one that is currently being recalculated by Excel. The active and the
current workbook may or may not be the same at any given moment.

Current sheet The one that is currently being recalculated. The active and the current
sheet may or may not be the same at any given moment. The current
sheet is always in the current workbook.

Current cell The one which is currently being evaluated. The active and the current
cell may or may not be the same at any given moment. They will be the
same if the calculation of the cell results from, say, the user entering
new contents to the cell. The current cell is always on the current sheet.

2.9 COMMANDS VERSUS FUNCTIONS IN EXCEL

There is an important distinction in Excel between functions, represented by formulae
in worksheet cells that may or may not take arguments but always return a value, and
commands which are equivalent to a user doing something. For example, NOW() is a
function: it returns a number representing the date and time right now. In contrast, the
action taken by Excel to format a cell when a user presses a formatting icon on a toolbar
is a command.

Commands are allowed to do just about anything in Excel. Functions are given far less
freedom. VBA functions are given a little more freedom than DLL add-ins. (Some of the
details of the differences between these two are discussed in the later chapters on VBA
and C/C++.) It is easy to see why there needs to be some difference between functions
and commands: it would be a bad thing to allow a function in a worksheet cell to press
the undo icon whenever it was calculated. On the other hand, allowing a user-defined
command to do this is perfectly reasonable.

Most (but not all) of this book is concerned with writing functions rather than commands
simply because commands are better written in VBA and may well require dialog boxes
and such things to interact with the user. Chapter 3 Using VBA on page 55 does talk about
VBA commands, but not in great detail; there are plenty of books which talk at great
length about these things. Later chapters concerning the C API do talk about commands,
but the focus is on worksheet functions.

Excel Functionality 29

Table 2.11 Capabilities of commands versus functions

Action Command Function

Open or close a workbook Yes No

Create or delete a worksheet Yes No

Change the current selection Yes No

Change the format of a cell, worksheet or other object Yes No

Take arguments when called Yes Yes

Return a value to the caller No Yes

Access a cell value (not via an argument) Yes C API:
Sometimes3

VBA: Yes

Change a cell value Yes Only the
calling cell or
array and only
by return value

Read/write files Yes Yes

Start another application or thread Yes Yes

Set up event-driven Windows call-backs Yes Yes

Call a command-equivalent Excel 4 macro, C API function,
or Excel object method

Yes No

Table 2.11 gives a non-exhaustive summary of the things that commands can do that
functions can’t.

2.10 TYPES OF WORKSHEET FUNCTION
This book assumes a frequent-user level of familiarity with Windows, Windows applica-
tions, Excel and its user interface. This section assumes that readers are familiar with the
most common commands, menus, functions, how to use them, how to use Excel help and
so on. This section says nothing about these standard features, but instead discusses how
functions fall into certain types. When considering writing your own, it is important to
be clear about what kind of function you are creating.

2.10.1 Function purpose and return type

Individual worksheet cells are either empty or are evaluated to one of four different data
types:

3 Worksheet functions are more limited than macro sheet functions in their ability to access the values of other
cells not passed in as arguments. For more details on this subject see section 8.6.4 Giving functions macro
sheet function permissions on page 252.

30 Excel Add-in Development in C/C++

• Numbers;
• Boolean (TRUE/FALSE);
• Strings;
• Error values.

(See section 2.4 Worksheet data types and limits on page 13.) Functions, however, can
evaluate to arrays and range references as well as to these four types. (The functions
INDIRECT(), OFFSET() and ADDRESS(), for example, all return references.)

Functions that return references are generally only of use when used to create range
(or array) arguments to be passed to other functions. They are not usually intended as
the end-product of a calculation. Where such a function returns a single cell reference,
Excel will attempt to convert to a value, in the same way that =A1 on its own in a cell
will be reduced to the value of A1. The formula =A1:A3 on its own in a cell will produce
a #VALUE! error, unless it is entered as an array formula into one or more cells (see next
section).

As shown by examples later in this book, you can create functions that do useful things,
without needing to return anything important, except perhaps a value that tells you if they
completed the task successfully or not. A simple example might be a function that writes
to a data file whenever a certain piece of information changes.

In thinking about what you want your own functions to do, you should be clear about
the purpose of the function, and therefore of its return type and return values, before you
start to code it.

2.10.2 Array formulae – The Ctrl-Shift-Enter keystroke

Functions can return single values or arrays of values, and many can return either. For
example, the matrix formula, MMULT(), returns an array whose size depends on the sizes
of the input arrays. Such functions need to be called from a range, rather than from a
single cell, in order to return all their results to the worksheet.

To enter an array formula you need to use the Ctrl-Shift-Enter keystroke. Instead of the
usual Enter to commit a formula to a single cell, Ctrl-Shift-Enter instructs Excel to accept
the formula as an array formula into the selected group of cells, not just the active cell.
The resulting cell formula is displayed in the formula bar as usual but enclosed within
curly braces, e.g., {=MMULT(A1:D4,F1:I4)}. The array formula can then only be modified as
a whole. Excel will complain if you attempt to edit or move part of an array, or if you
try to insert or delete rows or columns within it.

The all-or-nothing edit feature of array formulae makes them useful for helping to
protect calculations from being accidentally overwritten. The worksheet protection feature
of Excel is stronger. It allows precise control over what can be modified with password
protection. However, it also disables other features that you might want to be accessible,
such as the collapse and expansion of grouped rows and columns. Array formulae provide
a half-way house alternative.

Functions and operators that usually take single cell references can also be passed
range arguments in array formulae. How Excel deals with these is covered above in
section 2.10.2.

Excel Functionality 31

2.10.3 Required, optional and missing arguments and variable argument lists

Some functions take a fixed number of arguments, all of which need to be supplied
otherwise an error will be returned, for example DATE(). Some take required and optional
arguments, for example, VLOOKUP(). Some take a variable number such as SUM(). A few
functions have more than one form of argument-list, such as INDEX(), equivalent to the
concept of overloading in C++.

With C/C++ DLL functions, Excel handles variable-length argument lists by always
passing an argument, regardless of whether the user provided one. A special missing data
type is passed. If the argument can take different types, say, a string or a number, the
function can be declared in such a way that Excel will pass a general data type. It is then
up to the function’s code whether to execute or fail with the arguments as provided. This
and related subjects are covered in detail in Chapter 6 Passing Data between Excel and
the DLL on page 127 .

2.11 COMPLEX FUNCTIONS AND COMMANDS

2.11.1 Data Tables

Data Tables provide a very useful way of creating dynamic tables without having to
replicate the calculations for each cell in the table. Once the calculation has been set
up for a single result cell (not in the table), a table of results for a range of inputs is
produced. Excel plugs your inputs in one-by-one and then places the resulting value in
the Data Table. Data Tables can be based on one input to produce a single row or column
of results, or on two inputs to produce a 2-dimensional table.

Tables are set up with the Data/Table. . . command, invoking a simple wizard that prompts
you to specify the input row and/or column for the table. This book doesn’t go into any
detail (refer to Excel’s help to find out more), but it is worth considering what they are.
If you look at the formula that Excel puts in part of the table where the results are placed,
you will see that there is an array formula {=TABLE(. . .)}. On the face of it, therefore, it
looks like a Data Table is just another function entered as an array formula. It gives the
appearance of being recalculated like a function, except that Excel enables you to turn
the automatic recalculation of tables off using Tools/Options. . ./Calculation.

However: you can’t edit and re-enter the cells under the TABLE() function, even if you
have changed nothing; the Paste Function dialog does not recognise TABLE() as a valid
function; you can’t move the cells that are immediately above or to the left of the cells
occupied by the TABLE() function; you can’t set up a table other than with the Data Table
wizard.

The best way to think of a Data Table is as a completely different type of object that
allows a complex set of calculations in the worksheet to be treated as a user-defined
function in this very specific way. An example of where use of a Data Table might be
preferable to writing a VB or C/C++ function might be the calculation of net income after
tax. This depends on many pieces of information, such as gross income, tax allowances,
taxation bands, marital status, etc. Coding all this into a user-defined function may be
difficult, take an unjustifiably long time, involve the passing of a large number of argu-
ments, and might be hard to debug. A well laid-out spreadsheet calculation, complete with
descriptive labels for the inputs, and a Data Table, provide an excellent way of creating
a source for a lookup function.

32 Excel Add-in Development in C/C++

One thing to watch is that Excel does not detect circular references resulting from the
input calculation depending on the table itself. In other words, it will allow them. Every
time the table is recalculated, the circular reference will feed back one more time. There’s
no reason someone in their right mind would want to do this, of course, but be warned.

Warning: Data Tables can recalculate much more slowly than repeated calculation of
cells. Excel’s recalculation logic can also be a little hard to fathom with large Data
Tables – it’s not always clear when the calculation is complete.

2.11.2 Goal Seek and Solver Add-in

Excel provides two ways of solving for particular static cell values that produce a certain
value in another cell. These are both commands, not functions, so you cannot automatically
re-solve when something in your sheet changes. (To achieve this you would need to write
a user-defined function that will implement some kind of solver, or trap the change event
in VBA as in section 3.4 on page 59.) The simplest of Excel’s solvers is the Goal Seek
(Tools/Goal seek. . .) which invokes the following dialog, and provides a way of solving
for one final numerical value given one numerical input.

Figure 2.3 Excel’s Goal Seek dialog

The second and more powerful method is the Solver Add-in, supplied with Excel and
accessible through the Tools/Solver. . . menu command once the add-in has been installed.
The dialog that appears is shown in Figure 2.4.

Figure 2.4 Excel’s Solver add-in dialog

This is a far more flexible solver, capable of solving for a number of inputs to get to the
desired single cell value, maximum or minimum. The user can also set constraints to avoid

Excel Functionality 33

unwanted solutions and options that dictate the behaviour of the algorithm. Section 10.10
Calibration, on page 511, talks a little more about this very powerful tool.

The complexities governing when solutions converge, when they are unlikely to, when
there may be multiple solutions, and to which one you are most likely to converge, are
beyond the scope of this book. (Excel provides help for the solver via the Tools/Solver. . .
dialog’s Help button.) If you intend to rely on a solver for something important you either
need to know that your function is very well behaved or that you understand its behaviour
well enough to know when it will be reliable.

2.12 EXCEL RECALCULATION LOGIC

The first thing to say on this often very subtle and complex subject is that there is much
more that can be said than is said here. This section attempts to provide some basic insight
and a foundation for further reading.

Excel recalculates by creating lists of cells which determine the order in which things
should be calculated. Excel constructs these by inspecting the formulae in cells to deter-
mine their precedents, establishing precedent/dependent relationships for all cells. Once
constructed, cells in the lists thus generated are marked for recalculation whenever a
precedent cell has either changed or has itself been marked for recalculation. Once this
is done Excel recalculates these cells in the order determined by the list.

After an edit to one or more formulae, lists may need to be reconstructed. However,
most of the time edits are made to static cells that do not contain formulae and are not
therefore dependent on anything. This means that Excel does not usually have to do this
work whenever there is new input.

As this section shows, this system is not infallible. Care must be taken in certain cir-
cumstances, and certain practices should be avoided altogether. (VB code and spreadsheet
examples are contained in the spreadsheet Recalc_Examples.xls on the CD ROM.)
Further, more technically in-depth reading on the subject of this section is available on
Microsoft’s website.

2.12.1 Marking dependents for recalculation

Excel’s method, outlined above, results in a rather brute-force recalculation of dependents
regardless of whether the value of one of the cells in a list has changed. Excel simply
marks all dependents as needing to be recalculated in one pass. Such cells are often
referred to as dirty4. In the second pass it recalculates them. This may well be the optimum
strategy over all, but it’s worth bearing in mind when writing and using functions that
may have long recalculation times. Consider the following cells:

Cell Formula

B3 =NOW()

B4 =INT(B3)

B5 =NumCalls_1(B4)

4 Excel 2003 exposes a Range method that dirties cells to assist with programmatically controlled calculation.

34 Excel Add-in Development in C/C++

The VBA macro NumCalls_1(), listed below, returns a number that is incremented with
every call, effectively counting the times B5 is recalculated. (For more information on
creating VBA macro functions, see Chapter 3 Using VBA on page 55).

Dim CallCount1 As Integer ’ Scope is this VB module only
Function NumCalls 1(d As Double) As Integer

CallCount1 = CallCount1 + 1
NumCalls 1 = CallCount1

End Function

Pressing {F9} will cause Excel to mark cell B3, containing the volatile function NOW(),
for recalculation (see section 2.12.3 Volatile functions below). Its dependent, B4, and then
B4’s dependent, B5, also get marked as needing recalculation. Excel then recalculates all
three in that order. In this example, the value of B4 will only change once a day so
Excel shouldn’t need to recalculate B5 in most cases. But, Excel doesn’t take that into
consideration when deciding to mark B5 for recalculation, so it gets called all the same.
With every press of {F9} the value in B5 will increment.

A more efficient method might appear to be only to mark cells as needing recalculation
if one or more of their precedents’ values had changed. However, this would involve Excel
changing the list of cells-to-be-recalculated after the evaluation of each and every cell.
This might well end up in a drastically less efficient algorithm.

Where a number is directly entered into a cell, Excel is a little more discerning about
triggering a recalculation of dependents: if the number is re-entered unchanged, Excel will
not bother. On the other hand, if a string is re-entered unchanged, Excel does recalculate
dependents.

2.12.2 Triggering functions to be called by Excel – the trigger argument

There are times when you want things to be calculated in a very specific order, or for
something to be triggered by the change in value of some cell or other. Of course, Excel
does this automatically, you might say. True, but the trigger is the change in value of
some input to the calculation. This is fine as long as you only want that to be the trigger.
What if you want something else to be the trigger? What if the function you want to
trigger doesn’t need any arguments? For example, what if you want to have a cell that
shows the time that another cell’s value last changed so that an observer can see how
fresh the information is?

The solution is simple: a trigger argument. This is a dummy argument that is of abso-
lutely no use to the function being triggered other than to force Excel to call it. (Section 9.1
Timing function execution in VB and C/C++ on page 365 relies heavily on this idea.) The
VBA function NumCalls_1() in the above section uses the argument solely to trigger
Excel to call the code.

In the case of wanting to record the time a static numeric cell’s value changes, a simple
VB function like this would have the desired effect:

Function Get_Time(trigger As Double) As Double
Get_Time = Now

End Function

Excel Functionality 35

The argument trigger is not used in the calculation which simply returns the current
date and time as the number of days from 1st January 1900 inclusive by calling VBA’s
Now function. It just ensures the calculation is done whenever the trigger changes value
(or when Excel decides it needs to do a brute-force recalculation of everything on the
sheet).5

The concept of a trigger argument can, of course, usefully be applied to C/C++ add-in
functions too, and is used extensively in later sections of this book.

2.12.3 Volatile functions

Excel supports the concept of a volatile function, one whose value cannot be assumed to
be the same from one moment to the next even if none of its arguments (if it takes any) has
changed. Excel re-evaluates cells containing volatile functions, along with all dependents,
every time it recalculates, usually any time anything in the workbook changes, or when
the user presses {F9} etc.

It is easy to create user-defined functions that are optionally volatile (see the VBA
macro NumCalls_1() in the above section), by using a built-in volatile function as a
trigger argument. Additionally, VBA and the C API both support ways to tell Excel that
an add-in function should be treated as volatile. With VBA, Excel only learns this when
it first calls the function. Using the C API, a function can be registered as volatile before
its first call.

Among the standard worksheet functions, there are five volatile functions:

• NOW();
• TODAY();
• RAND();
• OFFSET(reference, rows, column, [height], [width]);
• INDIRECT().

NOW() returns the current date and time, something which is, in the author’s experi-
ence, always changing. TODAY() is simply equivalent to INT(NOW()) and used not to exist.
RAND() returns a different pseudo-random number every time it is recalculated. These
three functions clearly deserve the volatile status Excel gives them. OFFSET() returns a
range reference, relative to the supplied range reference, whose size, shape and relative
position are determined by the other arguments. OFFSET()’s case for volatile status is a
little less obvious. The reason, simply stated, is that Excel cannot easily figure out from
the arguments given whether the contents of the resulting range have changed, even if
the range itself hasn’t, so it assumes they always have, to be on the safe side.

The function INDIRECT() causes Excel to reconstruct its precedent/dependant tree with
every recalculation in order to maintain its integrity, and is therefore high cost.

Volatile functions have good and bad points. Where you want to force a function that is
not volatile to be recalculated, the low-cost (in CPU terms) volatile functions NOW() and
RAND() act as very effective triggers. The down-side is that they and all their dependants
and their dependants’ dependants are recalculated every time anything changes. This
is true even if the value of the dependants themselves haven’t changed – see the VB
macro function NumCalls_1() in the section immediately above. Where OFFSET() and

5 If the trigger were itself the result of a formula, this function might be called even when the value of the trigger
had not changed. See section 2.12.5 User-defined functions (VB Macros) and add-in functions on page 38.

36 Excel Add-in Development in C/C++

other volatile functions are used extensively, they can lead to very slow and inefficient
spreadsheets.

The extra step of rebuilding the precedent/dependant tree, which Excel would otherwise
almost only do after a cell edit, make use of INDIRECT even more costly.

When creating user-defined functions in an XLL it is possible to explicitly register
these with Excel as volatile. There are also times when Excel will implicitly assume
certain user-defined functions are volatile. Section 8.6.5 Specifying functions as volatile
on page 253 discusses both these points in detail.

2.12.4 Cross-worksheet dependencies – Excel 97/2000 versus 2002 and later
versions

Excel 97 and 2000

Excel 97 and 2000 construct a single list for each worksheet and then recalculate the
sheets in alphabetical order. As a result, inter-sheet dependencies can cause Excel to
recalculate very inefficiently.

For example, suppose a simple workbook only contains the following non-empty cells,
with the following formulae and values. (The VB macro NumCalls_4(), which returns
an incremented counter every time it is called, is a clone of NumCalls_1() which is
described in section 2.11.1 above.)

Sheet1:

Cell Formula Value

C11 =NumCalls 4(NOW()+Sheet2!B3) 1

Sheet2:

Cell Formula Value

B3 =B4/2 1

B4 2

Excel is, of course, aware of the dependency of Sheet1!C11 on Sheet2!B3 but they both
appear in different lists. Excel’s thought process goes something like this:

1. Something has changed and I need to recalculate.
2. The first sheet in alphabetical order is Sheet1 so I’ll recalculate this first.
3. Cell Sheet1!C11 contains a volatile function so I’ll mark it, and any dependants, for

recalculation, then recalculate them.
4. The second sheet in alphabetical order is Sheet2 so I’ll recalculate this next.
5. Cell Sheet2!B4 has changed so I’ll mark its dependants for recalculation, then recalculate

them.
6. Now I can see that Sheet2!B3 has changed, which is a precedent for a cell in Sheet1,

so I must go back and calculate Sheet1 again.
7. Cell Sheet1!C11 not only contains a volatile function, but is dependent on a cell in

Sheet2 that has changed, so I’ll mark it, and any dependants, for recalculation, then
recalculate them.

Excel Functionality 37

In this simple example, cell Sheet1!C11 only depends on Sheet2!B3 and the result of the
volatile NOW() function. Nothing else depends on Sheet1!C11, so the fact that it gets
recalculated twice when Sheet2!B4 changes is a fairly small inefficiency. However, if
Sheet2!B3 also depended on some other cell in Sheet1 then it is possible that it and all its
dependants could be recalculated twice – and that would be very bad.

If cell Sheet2!B4 is edited to take the value 4, then Excel will start to recalculate the
workbook starting with Sheet1. It will recognise that Sheet1!C11 needs recalculating as
it depends on the volatile NOW() function, but it will not yet know that the contents of
Sheet2!B3 are out of date. Once it is finished with Sheet1, halfway through workbook
recalculation, both sheets will look like this:

Sheet1:

Cell Formula Value

C11 =NumCalls 4(NOW()+Sheet2!B3) 2

Sheet2:

Cell Formula Value

B3 =B4/2 1

B4 4

Now Excel will recalculate Sheet2!B3, which it has marked for recalculation as a result of
Sheet2!B4 changing. At this point Sheet2 looks like this:

Sheet2:

Cell Formula Display

B3 =B4/2 2

B4 4

Finally Excel will, again, mark Sheet1!C11 as needing recalculation as a result of Sheet2!B3
changing, and recalculate Sheet1, re-evaluating Sheet1!C11 for the second time including
the call to NOW() and to NumCalls_4(). After this Sheet1 will look like this:

Sheet1:

Cell Formula Display

C11 =NumCalls 4(NOW()+Sheet2!B3) 3

If NumCalls_4() were doing a lot of work, or Sheet1!C11 were a precedent for a large
number of calculations on Sheet1 (or other sheets) then the inefficiency could be costly.

38 Excel Add-in Development in C/C++

One way around this is to place cells that are likely to drive calculations in other
sheets, in worksheets with alphabetically lower names (e.g., rename Sheet2 as A_Sheet2),
and those with cells that depend heavily on cells in other sheets with alphabetically higher
(e.g., rename Sheet1 as Z_Sheet1).

It is, of course, possible to create deliberately a workbook that really capitalises on this
inefficiency and results in a truly horrible recalculation time. This is left as an exercise
to the reader. (See section 2.16 Good Spreadsheet Design and Practice on page 49.)

Excel 2002 and later versions

The above problem is fixed in Excel 2002+ (version 10 and higher) by there being just one
tree for the entire workbook. In the above example, Excel would have figured out that it
needed to recalculate Sheet2!B3 before Sheet1!C11. When Sheet2!B4 is changed, Sheet1!C11
is only recalculated once. However, unless you know your spreadsheet will only be run
in Excel 2002 and later, it’s best to heed the alphabetical worksheet naming advice and
minimise cross-spreadsheet dependencies particularly in large and complex workbooks.

2.12.5 User-defined functions (VB Macros) and add-in functions

Excel’s very useful INDIRECT() function creates a reference to a range indirectly, i.e.,
using a string representation of the range address. From one recalculation to the next, the
value of the arguments can change and therefore the line of dependency can also change.
Excel copes fine with this uncertainty. With every recalculation it checks if the line of
dependency needs altering.

However, where a macro or DLL function does a similar thing, Excel can run into
trouble. The problem for Excel is that VBA functions and DLL add-in functions are able
to reference the values of cells other than those that are passed in as arguments and
therefore can hide the true line of dependency.

Consider the following example spreadsheet containing these cells, entered in the order
they appear:

Cell Formula Value/Display Comment

B4 1 Static numeric value

B5 =NOW() 14:03:02 Volatile input to B6

B6 =RecalcExample1(B5) 1 Call to VB function

An associated VBA module contains the macro RecalcExample1() defined as follows:

Function RecalcExample1(r As Range) As Double
RecalcExample1 = Range("B4").Value

End Function

Editing the cell B4 to 2, in all of Excel 97 and later versions, will leave the spreadsheet
looking like this:

Excel Functionality 39

Cell Formula Value/Display Comment

B4 2 New numeric value

B5 =NOW() 14:05:12 Updated input to B6

B6 =RecalcExample1(B5) 1 Call to VB function

In other words, Excel has failed to detect the dependency of RecalcExample1() on B4.
The argument passed to RecalcExample1() in this case is volatile so you might expect the
function to be called whenever there is a recalculation. However, the macro is declared
as taking a range as an argument, which itself is not volatile. Therefore Excel does not
mark B6 for recalculation and the cell does not reflect the change in value of B4. If cell
B5 is edited, say by pressing {F2} then {Enter}, then B6 is recalculated once, but then
reverts to the same blindness to changes in B4’s value.

Now consider the following cells and macro in the same test sheet:

Cell Formula Value/Display Comment

C4 1 Static numeric value

C5 =NOW() 14:12:13 Volatile input to C6

C6 =RecalcExample2(C5) 1 Call to VB function

Now consider the following the macro RecalcExample2() defined as follows:

Function RecalcExample2(d As Double) As Double
RecalcExample2 = Range("C4").Value

End Function

Editing the cell C4 to 2 (in Excel 2000) will leave the spreadsheet looking like this:

Cell Formula Value/Display Comment

C4 2 New numeric value

C5 =NOW() 14:14:11 Updated input to C6

C6 =RecalcExample2(C5) 2 Call to VB function

In this case Excel has updated the value of C6. However, Excel has not detected the
dependency of RecalcExample2() on C4. The argument passed to RecalcExample2() is volatile
and the macro takes a double as an argument (rather than a range as in the previous
example), therefore Excel marks it for recalculation and the cell ends up reflecting the
change in value of C4. If C5 had not contained a volatile number, the dependency of C6
on C4 would still have been missed.

Because Excel is essentially blind to VBA functions accessing cells not passed to it
as arguments, it is a good idea to avoid doing this. In any case, it’s an ugly coding

40 Excel Add-in Development in C/C++

practice and should therefore be rejected purely on aesthetic grounds. There are perfectly
legitimate uses of Range().value in VBA, but you should watch out for this kind of
behaviour.

Excel behaves a little (but not much) better with DLL functions called directly from the
worksheet. The workbook Recalc_Examples.xls contains a reference to an example
add-in function called C INDIRECT1(trigger, row, column) which takes a trigger argument,
the column (A = 1, B = 2, . . .) and the row of the cell to be referenced indirectly by the
DLL add-in. This function reads the value of the cell indicated by the row and column
arguments, tries to convert this to a number which it then returns if successful. (The source
for the function is contained in the example project on the CD ROM and is accessible by
loading the Example.xll add-in.)

It is easy to see that Excel will have a problem making the association between values
for row and column of a cell and the value of the cell to which they refer. Where the
trigger is volatile, the function gets called in any case, so the return value will reflect any
change in the indirect source cell’s value. If the row and column arguments are replaced
with ROW(source cell) and COLUMN(source cell), Excel makes the connection and changes
are reflected, regardless of whether the trigger is volatile or not.

Where the cell reference is passed to the DLL function as a range, as is the case with
C INDIRECT2(trigger, ref) in the example add-in – analogous to the VBA macro
RecalcExample1() – Excel manages to keep track of the dependency, something that
VBA fails to do.

The advice is simple: avoid referencing cells indirectly in this way in worksheet func-
tions. You very rarely need to do this. If you think you do, then perhaps you need to
rethink how you’re organising your data.

2.12.6 Data Table recalculation

See section 2.11.1 Data Tables on page 31 for more about Data Tables and how Excel
treats them differently.

2.12.7 Conditional formatting

Excel supports conditional formatting of a cell, where the condition can be either some
threshold value in that cell or the True/False outcome of a formula. This formula can, with
some limitations outlined below, be any formula expression that could be entered into any
cell. Excel 2000 to 2003 support up to 3 sets of criteria per cell, each corresponding to
its own format. These are tested in order, with the first true result determining the cell’s
display format. Where a criteria tests the cell’s value against a threshold, the limits against
which it is tested can also contain formulae. For example, a cell could be formatted to
show red text if its value is less than 10 or if its value is less than half of the cell above
it, or if the standard deviation of one range of cells is greater than the standard deviation
of another.

Conditional formatting only affects font colour, borders and shading effects. Moreover,
these formats are in addition to the normal format properties of the cell, accessible by
some of the C API functions, for example .VBA provides more access to a cell’s properties
than the C API and can access both the base formats (via the Range.Font property, etc.)
as well as details of the conditional formats applied (via the Range.FormatConditions
property). However, even VBA is unable to read the current format that results from these

Excel Functionality 41

conditional expressions. In short, it is not possible, in any straightforward way, to create
a worksheet function that returns a value that depends on the conditionally-applied format
of another cell.

Excel 2007 note: Conditional formatting logic is greatly enhanced in version 12. For
example, it also becomes possible to alter the number-format conditionally. However,
the formula =CELL("format",A1) will only return the base format of the cell A1, not its
conditional format, preserving the the way Excel treats dependencies. This new ability is
very useful, enabling you to vary the number of places displayed depending on the scale
of the number. This can also be achieved in earlier versions of Excel with text formulae
fairly easily.6

This means that, from a calculation dependency stand-point, a change to a worksheet
that results in a change to the display format of another cell, cannot lead to more dependent
calculations. If this were not the case, there would be significant risk of circular references.
The best way to think about formulae in conditional formats is that they are dead-end
calculations done when all other calculations have been finished.

Excel permits the user to include VBA functions from the same workbook in the
conditional format conditions, but not functions that it regards as external, for example
XLL add-in functions. The work-around is simply to provide a VBA wrapper to the
XLL function. The author is aware that some Excel users have reported crashes where
an XLL user-defined function with macro-sheet equivalence is used. (See section 8.6.4
Giving functions macro sheet function permissions on page 252 for an explanation of
macro-sheet equivalence).

Where a user-defined function is called from the conditional format criteria of a cell,
the caller is identified by Excel as being the cell that the conditional format is being
applied to. (See section 8.10.17 Information about the calling cell or object: xlfCaller
on page 313). This should be borne in mind when writing functions where the function
associates some resource with the calling cell. (See section 9.8 Keeping track of the calling
cell of a DLL function on page 389). Such a function might get confused as to whether
it is being called by the cell or by the conditional format.

The use of volatile functions causes the format to be re-evaluated on every calculation
event, as you would expect. However, this does not cause dependents of that cell to be
recalculated.

2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). . .

Excel’s treatment of all worksheet functions and operators is the same: When a cell
containing a function/operator is to be recalculated, Excel first evaluates all of the argu-
ments/operands. It is easy to forget this fundamental point: when being recalculated
everything in a cell is re-evaluated. There are no exceptions, and functions that con-
ditionally ignore some of their arguments are treated in exactly the same way. Such
functions include Excel’s logic functions IF(), OR() and AND(), as well as CHOOSE().

What this means is that they behave very differently to the programmatic IF. . . ELSE,
OR, and AND of VB or the if(). . . else, || and && of C/C++. The programmatic versions

6 For example, =LEFT(ROUND(A1,A2-2),A2), where A1 is to be displayed to a fixed width A2 including a decimal
point. If thousands separators are required, then =LEFT(FIXED(A1,A2-1),A2) will work. Both solutions are subject
to A1 not being too big for the number of places provided.

42 Excel Add-in Development in C/C++

execute from left to right and evaluation stops as soon as the final outcome is known.
Excel’s versions are not so efficient.

The Excel formula =IF(A1,FUNCTION1(C1),FUNCTION2(C2)) will cause the calling of both
FUNCTION1() and FUNCTION2() regardless of the value of A1. Equally, all OR() arguments
will be evaluated and passed regardless of whether the first was TRUE, and similarly
though inversely for AND(). The function CHOOSE() is passed all of its arguments reduced
to one of the basic types before it selects and returns the chosen value.

Where these and similar functions are being used with complex argument expressions,
recalculation times can suffer. The advice is to use only simple arguments with these
functions. Where complex arguments are needed these should be placed in their own
cells. This limits unnecessary calculation, and allows many logical expressions to use the
same arguments. For example, consider a spreadsheet consisting of the following cells:

Cell Formula/value

A1 1.234

B1 6.789

C1 TRUE

A3 =IF(C1,FUNCTION1(A1),FUNCTION2(B1)

In the above case both FUNCTION1() and FUNCTION2() are called whenever either of A1 or
B1 change, however, if coded as shown below, only A2 is recalculated if only A1 changes,
and only B2 is recalculated if only B1 changes. Cell A3 is recalculated in both cases,
despite the fact that if only B1 and B2 change and C1 is TRUE, it needn’t be, since A2 will
not have changed.

Cell Formula/value

A1 1.234

B1 6.789

C1 TRUE

A2 =FUNCTION1(A1)

B2 =FUNCTION2(A1)

A3 =IF(C1,A2,B2)

2.12.9 Controlling Excel recalculation programmatically

Controlling when and what Excel recalculates on a worksheet can be done fairly straight-
forwardly in VBA using the Calculate method, which can be applied to a number of
objects including the Application, Workbook, Worksheet, and Range objects. (See
Chapter 3 for more about VBA). It is not necessary to call this method when Excel’s

Excel Functionality 43

Application.Calculation property is set to xlCalculationAutomatic. (This is the
calculation state seen in the Tools/Options. . . dialog.)

When the Application.Calculation property is set to xlCalculationManual
pressing the F9 key is one way to get Excel to recalculate dirty cells (including their
dependants). Another way is under the control of VBA as shown in this example applied
to a Range object:

Option Explicit

Private Sub CommandButton1_Click()
Dim i As Integer

Application.Calculation = xlCalculationManual

For i = 0 To 100
Range("CalcMe").Calculate

Next

Application.Calculation = xlCalculationAutomatic
End Sub

Note that resetting of this state to xlCalculationAutomatic causes Excel to recalculate
any uncalculated cells outside the CalcMe range. Note also that all cells in CalcMe are
recalculated, regardless of whether they are marked as dirty or not. In other words, the
Range.Calculate method performs a forced calculation. In contrast, when applied to the
Application, Workbook or Worksheet objects, the Calculate method only performs
a calculation of dirty cells and their dependents within that object.

It is better, in general, to record the calculation state on entry and restore it on exit
as shown here. From an efficiency point of view, it is also much better in this case to
enclose the loop in a With. . .End With block.

Option Explicit

Private Sub CommandButton1_Click()
Dim i As Integer
Dim RecalcState As Variant

RecalcState = Application.Calculation
Application.Calculation = xlCalculationManual

With Range("CalcMe")
For i = 0 To 100

.Calculate
Next

End With

Application.Calculation = RecalcState
End Sub

Excel 2003+ (version 11 and higher) exposes a Range method that enables the programmer
to dirty cells, i.e., mark them as needing calculation. In manual calculation mode this
does not cause them to be recalculated until the calculate method is invoked at which
point they and their dependents within that object are recalculated. When used with,

44 Excel Add-in Development in C/C++

say, the Worksheet.Calculate method, this enables a very fine control of what gets
calculated.

This ability to be selective can be very useful when dealing with large workbooks,
slow-to-calculate functions, or cases where many iterations are required. (See Chapter 10,
Monte-Carlo Simulation for an example of the latter). The C API (see Chapter 8) provides
no equivalent way to do this and is one of the weaknesses of the C API relative to VBA.
However, Excel’s Range object and its methods are also exposed via COM and .NET
enabling applications or add-ins that use these technologies to do the same as VBA
above.

The use of selective calculation of ranges should only be considered as just one of the
choices when optimising calculations, all of which are discussed in section 9.14 Optimi-
sation on page 433.

2.12.10 Forcing Excel to recalculate a workbook or other object

In theory, if calculation is set to automatic, Excel recalculates all dependents whenever
a precedent changes or when triggered by some other event. For example, Excel will
recalculate everything whenever a row or column is inserted or deleted. In practice,
many people report that when dealing with large or complex workbooks with cross-
worksheet or cross-workbook dependencies, some cells are not always re-evaluated as
they should be. As well as this, a large and slow workbook might need to be used
with calculation set to manual to avoid every single piece of data entry triggering a
recalculation. Pressing {F9} to recalculate, again, may not cause everything to be evaluated
correctly. It should be pointed out that these problems are rare and elusive, and may be
version-specific, but in finance where the integrity of calculations may mean the difference
between a very large profit and a very large loss, they should be watched out for very
carefully.

Perhaps in recognition of some of these problems, Excel provides ways to force a
recalculation of every cell regardless of its need. Together with the specific calculation
methods of the exposed objects, this gives the developer and the user a number of ways
to control what gets calculated and when. The following table summarises these. (See
Chapter 8 for a full explanation of the C API entries in Table 2.12).

Table 2.12 Controlling Excel recalculation

Cause Effect

Keystroke: n/a
VBA: Range(. . .).Calculate
XLM: n/a
C API: n/a

When calculation is manual, recalculates just the
cells in the given range regardless of whether
they are dirty or not.

Keystroke: –
VBA: Worksheet(. . .).Calculate
XLM: CALCULATE.DOCUMENT()
C API: xlcCalculateDocument

When calculation is manual, recalculates the
dirty cells and their dependents in the specified
worksheet only. In the case of the XLM and C
API, this acts only on the active worksheet. (See
note below).

Excel Functionality 45

Table 2.12 (continued)

Cause Effect

Keystroke: {F9}
VBA: Application.Calculate
XLM: CALCULATE.NOW()
C API: xlcCalculateNow

Recalculates all cells that Excel has marked as
dirty, i.e. dependants of volatile or changed data,
or [v11+] cells programmatically marked as
dirty.

Keystroke: {Shift-F9}
VBA: ActiveSheet.Calculate
XLM: n/a
C API: n/a

When calculation is manual, recalculates just the
cells marked for calculation in the active
worksheet only.

Keystroke: {Alt-F9}
VBA: n/a
XLM: n/a
C API: n/a

When calculation is manual, recalculates all the
cells in the active worksheet only, regardless of
their apparent need to be recalculated.

Keystroke: {Ctrl-Alt-F9}
VBA: Application.CalculateFull
XLM: n/a
C API: n/a

Recalculates all cells in all open workbooks.

[v10+]: Keystroke: {Ctrl-Alt-Shift-F9}
[v10+]: VBA:
Application.CalculateFullRebuild

Rebuilds entire dependency tree and recalculates
all cells in all open workbooks.

Note that {Ctrl-F9}, the odd one out, has nothing to do with calculation and simply
minimises the active workbook.

2.12.11 Using functions in name definitions

All functions that can be called from the worksheet, including VBA UDFs, XLL and
other add-in functions, can be called in name definitions. In addition, XLM functions,
not commands, can be called too. This topic is covered in section 8.1.3 Accessing XLM
functions from the worksheet using defined names on page 225.

2.12.12 Multi-threaded recalculation

Up to and including Excel 2003 (version 11), Excel’s worksheet recalculation engine
has been single-threaded. Excel 2007 (version 12) introduces multi-threaded recalculation
(MTR). XLL worksheet functions work can take advantage of this if registered with Excel
as being thread-safe, i.e., able to be called safely and simultaneously on multiple threads.
The first edition of this book gave examples of XLL worksheet functions that returned
addresses of static variables (in particular xlopers and xl4_arrays) to Excel. In order
to make these examples thread-safe, they have been changed to make use of thread-local
copies of variables. You may have data in your project that cannot be made thread-local,
in which case you will need to protect them with critical sections. Section 7.6 Making
add-in functions thread safe on page 212 gives details of both of these techniques.

Excel will not run more than one command at once, so similar precautions are not
required for the command code examples.

46 Excel Add-in Development in C/C++

2.13 THE ADD-IN MANAGER

The Add-in Manager is that part of the Excel application that loads, manages and unloads
functions and commands supplied in add-ins. It recognises three kinds of add-ins:

• standard Win32 DLLs that contain a number of expected interface functions;
• compiled VB modules;
• Excel 4 Macros (XLM) modules (for backwards-compatibility).

(DLLs can be written in C/C++ or other languages such as Pascal.)
The file extensions expected for these types are *.XLA for VBA module add-ins and

*.XLL for DLL add-ins. Any file name and extension can be used, as Excel will recognise
(or reject) the file type on opening it. (See section 3.9 Creating VB add-ins (XLA files) on
page 87 for a brief description of how to create XLA add-ins.)

For XLL add-ins written in C and C++, there are a number of other things the pro-
grammer has to do to enable the Add-in Manager to load, access and then remove, the
functions and commands they contain. Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface, on page 111, describes the interface functions the add-in must provide
to enable Excel to do these things.

2.14 LOADING AND UNLOADING ADD-INS

Excel ships with a number of standard add-in packages, whose description is beyond the
scope of this book. The Tools/Add-ins. . . dialog (see Figure 2.6) lists all the add-ins that
Excel is aware of in that session, with those that are active having their check-boxes set.
Making a known add-in active is simply a case of checking the box. If Excel doesn’t
know of an add-in’s existence yet, it is simply a question of browsing to locate the file.

Figure 2.6 Excel’s Add-in Manager dialog (Excel 2000)

Excel’s known list of add-ins is stored in the Windows Registry. Add-ins remain listed
even if the add-in is unselected – even if Excel is closed and restarted. To remove the

Excel Functionality 47

add-in from the list completely you must delete, move or rename the DLL file, restart
Excel, then try to select the add-in in the Add-in Manager dialog. At this point Excel will
alert you that the add-in no longer exists and ask you if you would like it removed from
the list.7

2.14.1 Add-in information

The Add-in Manager dialog (see Figure 2.6) displays a short description of the contents
of the add-in to help the user decide if they want or need to install it. Chapter 5 Turning
DLLs into XLLs: The Add-in Manager Interface, on page 111, explains how to include
and make available this piece of information for your own add-ins.

2.15 PASTE FUNCTION DIALOG

Hand-in-hand with the Add-in Manager is the Paste Function dialog (sometimes known
as the Function Wizard). The feature is invoked either through the Insert/Function. . . menu
or via the ‘fx’ icon on a toolbar. If invoked when the active cell is empty, the following
dialog appears (in Excel 2000) allowing you to select a function by category or from a
list of all registered functions. If invoked while the active cell contains a function, the
argument construction dialog box appears – see section below.

Figure 2.7 Excel’s Paste Function dialog (Excel 2000)

2.15.1 Function category

In the left-hand list box are all the function categories, the top two being special categories
with obvious meanings. All functions are otherwise listed under one and only one specific
category. Many of these categories are hard-coded Excel standards. Add-ins can add
functions to existing categories or can create their own, or do both. If functions have

7 You can edit the registry, something you should not attempt unless you really know what you are doing. The
consequences can be catastrophic.

48 Excel Add-in Development in C/C++

been defined in a VB module or have been loaded by the Add-in Manager from an XLA
add-in file, then the category UDF (in Excel 2000) or User Defined (in Excel 2002 and
later) appears and the functions are listed under that.

2.15.2 Function name, argument list and description

Selecting a category will cause all the functions in that category to be listed in alphabetical
order in the right-hand list box. The figure shows the Logical category selected and all
six logical functions. Selecting a function name causes the name as it appears in the
spreadsheet, a named comma-separated argument list and a description of the function
to be displayed below the list boxes. In the above example the arguments and function
description for the IF() function are shown.

2.15.3 Argument construction dialog

Pressing OK in the Paste Function dialog causes the argument construction dialog to
appear for the highlighted function. Invoking the Paste Function command on an active
cell containing a function has the same effect. The figure below shows this for the IF()
function. Where invoked on an empty cell the dialog is blank. Where invoked on an
existing formula, the fields are populated with the expressions read from the cell’s formula.

This dialog has a number of important features that should be understood by anyone
wanting to enable users to access their own add-in functions in this way. These are
highlighted in the following diagram which shows the Excel 2000 dialog.

1
2

3

5

4

Figure 2.8 Paste Function argument construction dialog (Excel 2000)

(1) Argument name – from the argument list in the Paste Function dialog. (Bold type
indicates a required argument; normal type, an optional one.)

(2) Argument expression text box – into which the user enters the expression that Excel
evaluates in preparation for the function call.

(3) Function description – as shown in the Paste Function dialog.
(4) Argument description – for the currently selected argument, providing a brief expla-

nation of the argument purpose, limits, etc.
(5) A context-specific help icon – used to get help specific to this function. In Excel 2002

and 2003, the help button is replaced with a text hyperlink.

Excel Functionality 49

The dialog also provides helpful information relating to the values that the argument
expressions evaluate to and the interim function result. (Note that Excel attempts to
evaluate the function after each argument has been entered.) If the function is a built-
in volatile function, the word volatile appears after the equals just above the function
description.

Once all required arguments have been provided, pressing OK will commit the function,
with all its argument expressions as they appear in the dialog, to the active cell or cells.

Section 8.6 Registering and un-registering DLL (XLL) functions, on page 244, explains
in detail how to register DLL functions that the Paste Function dialogs can work with. In
other words, how to provide Excel with the above information for your own functions.

2.16 GOOD SPREADSHEET DESIGN AND PRACTICE

This section provides a brief discussion of some quite basic things to bear in mind
during Excel development. Section 9.13 Add-in Design on page 419 addresses some more
advanced but related topics.

2.16.1 Filename, sheet title and name, version and revision history

Ever since the demise of DOS 8.3 format filenames, it has been possible to give documents
more descriptive names. This is a good thing. Having to open old documents because you
can’t remember what they did is a real waste of time. You should add a version number
(e.g., v1-1, using a dash instead of a dot to avoid confusion with the filename/extension
separator), particularly where a document may go through many revisions or is used by
others.

In addition to the filename version, you should consider including version information
in the worksheets themselves, especially where workbooks are used by many people.
These could be for each sheet, for the whole workbook or whatever is appropriate, but at
least should include an overall workbook version number matching the filename version.

A revision history (the date; who made the changes; what changes were made) is easy
to create and maintain and can save a lot of time and confusion. For complex workbooks,
creating a revision history worksheet at the front of the workbook with all this information
for easy reference can save a great deal of time and heartache later.

You should consider giving every sheet a descriptive title in cell A1, in a good sized font
so that you can’t help but know what you’re looking at. Using the Freeze Panes feature
(Window/Freeze Panes) is a good idea, so that the title, and any other useful information,
is visible in cases where the data extends deep into the spreadsheet.

Naming sheets descriptively is also easy (double-click on the tab’s name) and pays
dividends. For display reasons these may need to be abbreviated where there are many
tabs. Be careful with the alphabetical order of sheet names where there are cross-worksheet
links. (See section 2.12.4 Cross-worksheet dependencies – Excel 97/2000 versus 2002 and
later versions on page 36 for an explanation.)

2.16.2 Magic numbers

Magic numbers are static numbers that appear in calculations or in their own cells without
much, if any, explanation. They are a very bad thing. Sometimes you may feel that

50 Excel Add-in Development in C/C++

numbers need no explanation, such as there being 24 hours in a day, but err on the side
of caution. It is not obvious that the number 86,400 is the number of seconds in a day,
for example. A simple comment attached to the cell might be all that’s needed to avoid
later confusion or wasted time spent decrypting and verifying the number.

Putting magic numbers directly into formulae, rather than accessing them by reference
to a cell that contains them, is generally to be avoided, even though this leads to a slightly
more efficient recalculation. They are hidden from view and awkward to change if the
assumptions that underpin them change. There may also be many less-obvious places
where the number occurs, perhaps as a result of cell copying, and all occurrences might
not be found when making changes.

Where magic numbers represent assumptions, these should be clearly annotated and
should ideally be grouped with other related assumptions in the worksheet (or even work-
book) so that they are easy to review and modify. Some magic numbers may be candidates
for a defined name, where the name is descriptive enough to avoid later confusion. For
example, defining ROOT 2PI as 2.506628274631 might be a good idea. (See section 8.11
Working with Excel Names on page 316 for more detail on this topic).

2.16.3 Data organisation and design guidelines

Data in a spreadsheet can be categorised as follows:

• Variable input data to be changed by the user, an external dynamic data source, the
system clock or other source of system data.

• Fixed input (constant) data to be changed only rarely, representing assumptions, numer-
ical coefficients, data from a particular publication or source that must be reproduced
faithfully, etc.

• Static data, typically labels, that make the spreadsheet readable and navigable and
provide users with help, instructions and information about the contents and algorithms.

• Calculated data resulting from the action of a function or command.

There might also be cells containing functions whose values are largely irrelevant but that
perform some useful action when they are re-evaluated, for example, writing to a log file
when something changes.

Here are some guidelines for creating spreadsheets that are easy to navigate, maintain
and understand:

1. Provide version and revision data (including name and contact details of the author(s)
if the workbook is to be used by others).

2. Group related assumptions and magic numbers together and provide clear comments
with references to other documents if necessary.

3. Group external links together, especially where they come from the same source, and
make it clear that they are external with comments.

4. Avoid too much complexity on a single worksheet. Where a worksheet is becoming
over-complex, split it in two being careful to make the split in such a way that cross-
worksheet links are minimised and that these links are clearly commented in both
sheets.

Excel Functionality 51

5. Avoid too much data on a single worksheet. Too much may be difficult to define:
a very large but simple table would be fine, but 100 small clusters of only loosely
related data and formulae are probably not.

6. Avoid excessive and unnecessary formula repetition, and repetition of expressions
within a single formula.

7. Avoid over-complex formulae. Even where repetition within the formula isn’t a con-
cern, consider breaking large formulae down into several stages. Large and complex
formulae are not only difficult to read and understand later, but make spreadsheets
harder to debug.

8. Use named ranges. This not only makes formulae that reference the data more readable
and easier to understand but also makes accessing the data in VB or a C/C++ add-in
easier and the resulting code independent of certain spreadsheet changes.

9. Use formatting (fonts, borders, shading and text colours) not only to clarify the
readability, but also to make a consistent distinction between, say, variable inputs,
external dynamic data and ‘static’ assumption data.

10. Use hyperlinks (press Ctrl-K) to navigate from one part of a large book to another.

2.16.4 Formula repetition

Excel is a faithful servant. It will do what you tell it to do without question and, more
significantly, without optimisation. A cell formula such as

=IF(VLOOKUP(W5,B3:B10,1)<SUM(A3:A10),VLOOKUP(W5,B3:B10,1)+SUM(A3:A10),
VLOOKUP(W5,B3:B10,1)-SUM(A3:A10))

will cause Excel to evaluate the VLOOKUP() and SUM() functions three times each (see
section 2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). . . on page 41). It has no
ability to see that the same result is going to be used several times. (You can easily verify
this kind of behaviour using a VBA macro such as NumCalls_1() listed in section 2.12.1
on page 33). The obvious solution is to split the formula into 3 cells, the first containing
VLOOKUP(), the second containing SUM() and the third containing IF() with references to
the other 2 cells.

Repetitions may not be so obvious as this and do not all need to be removed. Sometimes
the action of a fairly complex formula is clearer to see when it contains simple repetitions
rather than references to cells somewhere far away in the workbook.

Generally speaking, trying to do things in a minimum number of cells can lead to
over-complex formulae that are difficult to debug and can lead to calculation repetition.
You should err on the side of using more cells, not fewer. Where this interferes with the
view you are trying to create for the user (or yourself), use the row/column hide feature
or the Data/Group and Outline/Group feature to conceal the interim calculations, or move the
interim calculations to another part of the same worksheet.

2.16.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus VLOOKUP()

One of the most commonly used and useful features of spreadsheets is the lookup. For
the basics of what a lookup is, how it works and the variations read Excel’s help. In using
lookups it is important to understand the relative costs, in terms of recalculation time, of
the various strategies for pulling values out of large tables of data.

52 Excel Add-in Development in C/C++

Tables of data usually stretch down rather than across. We think in terms of adding
lines at the bottom of a table of data rather than adding columns to the right. We read
documents line-by-line, and so on. This bias is, of course, reflected in the fact that Excel
has 28 times as many rows than columns (26 as many in Excel 2007). Consequently, most
lookup operations involve searching a vertical column of data, typically using VLOOKUP().
However, it is easy to create situations where the use of this function becomes very
inefficient.

Take, for example, the following task: to extract 3 pieces of data from the row in the
table shown below where the left-most column contains the number 11. (See Vlookup_
Match_Example.xls on the CD ROM.)

Figure 2.9 VLOOKUP example worksheet

This is easily achieved, as shown, with the following three formulae:

Cell Formula

B4 =VLOOKUP(A4,A8:D19,2)

C4 =VLOOKUP(A4,A8:D19,3)

D4 =VLOOKUP(A4,A8:D19,4)

Excel Functionality 53

At first glance there seems to be no formula repetition, so no problem. In fact, Excel has
had to do the same thing three times: search down column A looking for the number 11.
In a small table this isn’t a big problem, but in a large table with hundreds or thousands
of entries this becomes a lot of work. The solution is to use the functions MATCH() and
INDEX() in combination as shown in Figure 2.10.

Figure 2.10 MATCH & INDEX example worksheet

The MATCH() function does the part that Excel would otherwise repeat, determining the
correct row in the table. Once done, the required values can be extracted with the very
efficient INDEX() function. This will be close to three times faster than the VLOOKUP()-only
solution for large tables. The resulting formulae look like this:

Cell Formula

B4 =MATCH(A4,A8:D19,0)

C4 =INDEX(B8:B19,B4)

D4 =INDEX(C8:C19,B4)

E4 =INDEX(D8:D19,B4)

54 Excel Add-in Development in C/C++

Note: An additional benefit of MATCH() and INDEX() over VLOOKUP(), where you know
the lookup value is in the table and can safely pass zero as the 3rd parameter, is that it
doesn’t require the lookup column to be ordered. Also, Excel will happily find a string
not just a number. In this example, INDEX() takes a more precise reference to the source
column. If a column is inserted, MATCH() and INDEX() won’t care whereas the formulae
in the VLOOKUP() example will all need to be edited.

The OFFSET() function is similar to INDEX() except that it returns a reference to a cell or
range of cells rather than a value of a single cell. This gives it more power than INDEX()
but at a cost: it is a volatile function. (See section 2.12.3 Volatile functions on page 35.)
Excel can’t know from one call to the next what range will result, and needs to recalculate
each time. Therefore OFFSET() should never be used when INDEX() will do. Trying to get
around this with INDIRECT() will not work, as this function too is volatile.

2.17 PROBLEMS WITH VERY LARGE SPREADSHEETS

Despite being a wonderful tool for a surprisingly broad range of data analysis tasks, Excel
does have its limits. This is most obvious when it comes to memory utilisation in very
large workbooks. Excel can become alarmingly slow, and even unstable, when asked to
perform routine operations on large groups of cells. Even the act of deleting a large block
of cells in a workbook that is straining the memory resources of the machine, can take
tens of minutes to complete. If Excel runs out of memory for the undo information, it may
alert the user that the operation cannot continue with undo. Even then, it still may fail and
Excel might even crash. Excel’s often graceless handling of out-of-memory conditions is
one of its (very few) weaknesses, one which Microsoft improves with every new release.

2.18 CONCLUSION

For normal use you don’t need to worry about some of the subtle complexities that
this chapter tries to shed light on. Where the demands are more rigorous, however, the
need to be aware of the most efficient way to use Excel and how to avoid some of its
recalculation problems becomes more important. It can even be critical to the spreadsheet
doing properly what you want it to.

3
Using VBA

This chapter provides only a brief introduction to using VBA to create commands and
functions. It is not intended to be a detailed how-to guide to VB in Excel. It touches
briefly on:

• the creation of VB commands and macro functions;
• passing data between VBA and Excel;
• accessing DLL functions from VBA;
• passing data between VBA and a DLL.

If you don’t want to bother with the Add-in Manager and Paste Function dialog in Excel,
then you can access all of your C/C++ code from VBA and this chapter explains how. It
describes what you need to know to be able to access your DLL code and how to pass
and convert arguments and return types.

VBA is a very powerful application enabling complex things to be done very eas-
ily. But this book is intentionally about doing things that are beyond the scope or
performance of VBA. If you want to know more about VBA’s capabilities, experi-
ment. The VB editor is easy to use, especially to anyone with experience of, say,
Visual C++, and the Tools/Macro/Record New Macro. . . menu option provides a great how-to
guide for writing commands and is some help with code you might want to include in
a function.

Section 3.8 on page 86 includes a VBA-specific discussion of the differences between
commands and functions. Sections 2.9 Commands versus functions in Excel, on page 28,
and 8.1.1 Commands, worksheet functions and macro sheet functions, on page 224,
together provide a more general discussion of this topic.

3.1 OPENING THE VB EDITOR

There are several ways of bringing up the VB editor:

• through the Tools/Macro/Visual Basic Editor;
• with the keyboard short-cut {Alt F11};
• by installing the VB Editor command icon onto a toolbar via the Tools/Customise

dialog.

The third option is recommended, since, once done, it saves a lot of time, although the
keyboard short-cut is quick if you can remember it.

If you have done this with a blank spreadsheet, you should then see something like
this:

56 Excel Add-in Development in C/C++

Figure 3.1 The Visual Basic Editor interface

In the above example, you will see several documents referred to in the top left-hand pane
(the Project Explorer window). The first one in this screen shot belongs to a standard add-
in that has been loaded by Excel, and the second belongs to the default-named workbook,
Book1, that Excel created on being opened.

For each sheet in Book1 there is a corresponding object listed. There is also an object
associated with the entire workbook. Each of these has an associated VB code container
which can be opened and edited by double-clicking on the object’s name in the Project
Explorer window. The top right pane, which contains the VB source editor, then displays
whatever VB code is associated with that object. For a new spreadsheet, these VB code
modules are empty.

3.2 USING VBA TO CREATE NEW COMMANDS

Commands can be associated with individual worksheets or with the entire workbook.
To be accessible in the right place – to have the right scope – VBA code for these must
be placed in the appropriate code object. A command that is coded in the Sheet3 code
object will not run successfully if invoked from another sheet. If you only intend it to be
invoked from Sheet1, then code it into Sheet1. If you want it to be accessible in all sheets
in the workbook, place it in the Workbook code module.

Using VBA 57

3.2.1 Recording VBA macro commands

This is the easiest way to create simple commands and to learn how to use the Excel
VB objects to do things in your own commands. The Tools/Macro/Record new macro. . .
command is all you need to remember. The following dialog enables you to tell Excel
and the VBE where to place the code it generates and what to call it. It also places a
handy little comment into the code.

Figure 3.2 VBA Record Macro dialog

If you elect to place the code in This Workbook (as shown) you will see that a new
folder appears called Modules, containing a new code module, by default called Module1.
Double-clicking on the name Module1 will cause the editor to display the code, something
like this:

Figure 3.3 VBE Recorded Macro dialog

58 Excel Add-in Development in C/C++

The command code procedure is in a Sub/End Sub code block declaration. It has no
return type or return value and takes no arguments. If you want to communicate something
to the user, such as success or failure, your command will have to open an alert or dialog
box containing what you want to convey or write directly to a predetermined cell or
named range.

You can, of course, create your own code modules and add your own Sub/End Sub
commands manually.

3.3 ASSIGNING VBA COMMAND MACROS TO CONTROL
OBJECTS IN A WORKSHEET

Control objects include:

• checkboxes;
• text boxes;
• command buttons;
• option buttons (radio buttons);
• list boxes;
• combo boxes (text box with list box);
• toggle buttons;
• spin buttons;
• scroll bars;

. . . and many others.

Each one of these objects can be placed into a worksheet using the Control Toolbox
toolbar. They all have events and properties associated with them and can have code
associated with those events. For example, creating a command button, which would be
given the default name CommandButton1, and then right-clicking and selecting Edit code
will cause the VBE to appear with an empty command code declaration placed within
the container worksheet’s VB code object, like this:

Figure 3.4 VBE worksheet code showing command button event trap

Using VBA 59

Above the code editor pane are two list boxes, one showing the object to which the
event applies, in this case CommandButton1, and the other the action, in this case Click.
Changing the action will cause the VBE to create a new empty command with a declaration
that reflects the selected action. The code these code blocks contain will then be invoked
whenever the specified action occurs.

3.4 USING VBA TO TRAP EXCEL EVENTS

As shown above, the VBA code associated with a worksheet can also contain code
associated with events corresponding to the worksheet itself. Selecting Worksheet in the
left-hand list box above the code editor pane will cause the VBE to create an empty code
block such as this:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
End Sub

Whenever the cursor is in a piece of worksheet command code, the right-hand list box
will give access to all the events associated with the worksheet object. As with control
object actions, changing the action will cause the VBE to create a new empty command
with a declaration that reflects the selected action. Similarly, in the ThisWorkbook code
object, events relating to (or visible to) the entire workbook can be accessed and command
code written that will be executed every time that event occurs.

Trapping Excel events can, for example, enable you to do things when:

• a workbook is closed;
• a worksheet is selected;
• a change is made;
• a single cell is selected or edited.

To set the last trap, you create a trap for the whole worksheet and then inspect the range
argument passed in. The range functions Intersect and Union provide the most efficient
way to detect whether the input is in the desired range. The fact that an event is raised
by Excel for every selection change or input should not ordinarily cause too much degra-
dation in performance. The following example exits early if the newly selected cell(s)
is(are) not in or intersecting either Input1 or Input2.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

If Intersect(Target, Union(Range("Input1"), Range("Input2"))) _
Is Nothing Then Exit Sub

’ Target overlaps one or both of Input1 and Input2 so
’ do the desired post-selection processing here...

End Sub

60 Excel Add-in Development in C/C++

What is important to remember is that code associated with a trapped Excel event is a
command. You can call function code from a command but you cannot call a command
from a worksheet function. Command code cannot return a value.

The code module associated with the workbook object supports the following event
traps in Excel 2000:

• Activate;
• AdddinInstall;
• AdddinUninstall;
• BeforeClose;
• BeforePrint;
• Deactivate;
• NewSheet;
• Open;
• SheetActivate;
• SheetBeforeDoubleClick;
• SheetBeforeRightClick;
• SheetCalculate;
• SheetChange;
• SheetDeactivate;
• SheetFollowHyperlink;
• SheetSelectionChange;
• WindowActivate;
• WindowDeactivate;
• WindowResize.

By Excel 2003, the following traps also exist:

• PivotTableCloseConnection;
• PivotTableOpenConnection;
• SheetPivotTableUpdate;
• Sync.

In Excel 2007, the following are added:

• AfterXmlExport;
• AfterXmlImport;
• BeforeSave;
• BeforeXmlExport;
• RowsetComplete;

Each of these events is trapped by a subroutine in this module with the name Workbook_*
where * is replaced by one of the above event names. For example, the following routine
traps the recalculation of any and all sheets in the workbook except those generated
programmatically.

Private Sub Workbook_SheetCalculate(ByVal Sh As Object)
End Sub

Using VBA 61

The code module associated with the worksheet supports the following subroutine traps:

• Activate;
• BeforeDoubleClick;
• BeforeRightClick;
• Calculate;
• Change;
• Deactivate;
• FollowHyperlink;
• SelectionChange.

By Excel 2003, the following trap also exists:

• PivotTableUpdate;

No new events are added in Excel 2007.

In other words, the sheet object supports the trapping of these events sheet-by-sheet. If
you want to trap an event for all sheets, use the event trap in the workbook module. If
you want to trap the event just in that sheet, use the event trap in the sheet module.

Similarly, user-form objects in VBA support a number of trappable events accessed via
routines in their associated code modules, as do other embedded objects in a workbook.

3.5 USING VBA TO CREATE NEW FUNCTIONS

Creating new functions is very straightforward. Code is declared and contained within
a Function/End Function code block. This must be placed in a VB code module
listed under Modules in the VBE in order for Excel to be able to recognise it as a user-
defined worksheet function. Function code placed in the code module associated with a
workbook or sheet will not be accessible from the worksheet. Creating a new code module
is easily done by right-clicking on any of the objects in the VB project associated with
the workbook (in the Workspace window: the left-most pane in the default view) and then
selecting Insert. . . /Module. This causes the editor to create a new VB code module object
in the workbook and opens it for editing in the edit window.

3.5.1 Function scope

Function code can, of course, be placed anywhere in any code module, but its scope will
be limited to the VB project associated with the workbook. Other open workbooks will
not be able to access the function.

Functions created in the code object associated with one of the workbook objects, such
as a worksheet, work fine, but can only be called by command code or another function
in that code object, and definitely not from the worksheet.

Commands within the project can also call the project’s functions including those in
code modules. (Remember, functions cannot call commands regardless of scope.)

VBA functions and commands can be given greater scope by saving and loading them
as an XLA add-in file. (See section 3.9 Creating VB Add-ins (XLA files) on page 87 for a

62 Excel Add-in Development in C/C++

brief description of how to create XLA add-ins.) Once loaded, worksheet functions they
contain can be accessed by any open workbook. Function scope can also be restricted by
prefacing function names with the Private keyword.

There is more to function and variable scope than touched on here; for example, there
are the Public and Private keywords and the Option Private Module statement.
For more about these you should refer to VBA’s help.

3.5.2 Declaring VBA functions as volatile

It is often useful and sometimes necessary for a function to be called every time Excel
recalculates rather than just when an input has changed. This requires that Excel be
informed that the function is volatile. This is easily achieved in VBA by calling the appli-
cation method Application.Volatile immediately after the dimensioning of variables.
(Note: Excel does not know the function is to be treated as volatile until it has been called
at least once.) The following VBA code shows an example.

Function Volatile_Fn_Example(trigger As Integer) As Double
Dim val As Double
Application.Volatile
val = 2.123 ’ arbitrary meaningless number for example only
Volatile_Fn_Example = Now * val

End Function

This is a particularly important thing to do when using VBA as a wrapper or interface
to DLL functions that need to be treated as volatile, say, those that return some external
dynamic information.

3.6 USING VBA AS AN INTERFACE TO EXTERNAL
DLL ADD-INS

3.6.1 Declaring DLL functions in VB

Both functions and commands written in C/C++ (or other languages where code is com-
piled to a Win32 DLL) can be accessed directly in VB using the Declare statement
whose syntax is as follows:

Syntax 1

[Public | Private] Declare Sub name Lib "libname" [Alias
"aliasname"] [([arglist])]

Syntax 2

[Public | Private] Declare Function name Lib "libname" [Alias
"aliasname"] [([arglist])] [As type]

Using VBA 63

Syntax 1 relates to commands; syntax 2, to functions. The optional Public and Private
keywords specify the scope of the imported function – the entire VB project or just the
VB module, respectively.

The name is the name you want to use within the VB code. If this is different from the
name in the DLL then the Alias "aliasname" specifier must be used and should give
the name of the function as exported in the DLL. If you want to access a DLL function
by reference to an ordinal number in the DLL, then specify an alias name which is the
ordinal prefixed by #.

If the imported function is to be treated as a volatile worksheet function, then the VBA
wrapper function must invoke the method Application.Volatile.

Warning: VBA cannot check that the argument list (number of arguments and argument
types) agrees with the function as created in the DLL. A mistake could crash Excel.

3.6.2 Call-by-reference versus call-by-value

VB does not have the concept of pointers that exists in the world of C/C++. In the world
of VB, functions can modify their arguments if they have been passed by reference using
the ByRef keyword. In fact, this is the default behaviour for VB. In the example code
below go_double_me(2.1) would return the value 4.2.

Function double_me(ByRef d as Double) as Boolean
d = d * 2
double_me = True

End Function

Function go_double_me(d as Double) as Double
Call double_me(d)
go_double_me = d

End Function

As ByRef is the default in VB, this keyword can be removed with no change to the
behaviour of the code. In contrast, substituting ByRef with ByVal would have the effect
that go_double_me() would return exactly what was passed to it un-doubled. (Note the
inclusion of the Call keyword, without which the function would be called as ByVal,
but which also has the effect of suppressing the return value of the called function.)

In C the default is call-by-value, with call-by-reference achievable only with the use of
pointers. In C++ there is also the option of passing reference arguments as well as pointers.
C++ reference arguments (prefixed with an ampersand ‘&’ in the function declaration)
work in exactly the same way as VB’s call-by-reference, allowing access to the value
of the variable without the need to de-reference a pointer. This is all summarised in
Table 3.1.

Table 3.1 Call by value versus by ref in VB, C and C++

VB C C++

Call by ref [ByRef] arg As VB type C type *p arg CPP type *p arg
CPP type &arg

Call by value ByVal arg As VB type C type arg CPP type arg

64 Excel Add-in Development in C/C++

When passing arguments to C/C++ DLL functions, care should be taken with certain data
types. The VB String is passed as a pointer to a string structure when passed ByVal,
and as a pointer to a pointer when passed ByRef. (See next section for more detail on
String and other VBA data types.)

3.6.3 Converting argument and return data types between VBA and C/C++

By and large, VB uses similar native data types to C/C++, although there are some
differences:

• VBA integers are all signed 16-bit, equivalent to a C short. (VBA’s Long is equivalent
to a C 32-bit signed int.)

• VB doesn’t support pointers.

They also have much in common:

• VB allows definition of user-defined data types, using the Type statement, closely
analogous to C’s typedef.

• VB uses a number of OLE/COM data types such as Variant which are also defined
for C/C++ in Windows in the OLE/COM header files.

These things are all discussed in the following sections. Table 3.2 opposite gives a sum-
mary of the data types in VB, their value ranges where appropriate, and the equivalent
data types in C/C++.

Accuracy note

VBA permits greater ranges of value of its variables than Excel does. In particular:

• The range of a VBA Double is slightly greater than the range of an Excel number.
(All Excel numbers are stored as 8-byte floating-point.)

• The VBA Date type can represent dates as early as 1-Jan-0100 using negative serialised
dates. Excel only allows serialised dates greater than or equal to zero.

• The VBA Currency type – a scaled 64-bit integer – can achieve accuracy not matched
in Excel.

The table in section 2.4 Worksheet data types and limits on page 14 provides details of
Excel’s data type range values. Table 3.2 opposite summarises the VBA-supported types
and their C/C++ equivalents.

3.6.4 VBA data types and limits

VBA in Excel provides access to a very large number of pre-defined object types relating
to Excel, Microsoft Office, OLE Automation, etc. Only the following 12 (excluding user-
defined types) are easily accessible to C/C++ functions called from VBA. There is no easy
way to pass a VBA Range variable to a C/C++ DLL function. It’s not impossible – you
could assign it to a Variant argument and pass that, but you would then have to use the
COM IDispatch interface to interrogate the object that the C VARIANT would contain.

Using VBA 65

Table 3.2 VB data types and limits, and their C/C++ equivalents

Visual Basic Range in VBA C/C++

Byte Min: 0
Max: 255 = 28 − 1

unsigned char

Boolean −1 (TRUE)
0 (FALSE)

[signed] short
(16-bit)

Integer Min: −32,768 = −215
Max: +32,767 = 215 − 1

[signed] short
(16-bit)

Long Min: −2,147,483,648 = −231
Max: +2,147,483,647 = 231 − 1

signed [long]
integer
(32-bit)

Currency Min: −922,337,203,685,477.5808
= −263/10,000

Max: +922,337,203,685,477.5807
= (263 − 1)/10,000

CY in <wtypes.h>
int64 (scaled)

(see below)

Single Positive values
Min: +1.401298e−45
Max: +3.402823e+38
Negative values
Min: −1.401298e−45
Max: −3.402823e+38

float (4-byte)

Double Positive values
Min: +4.94065645841247e−324
Max: +1.79769313486232e+308
Negative values
Min: −4.94065645841247e−324
Max: −1.79769313486231e+308

double (8-byte)

Date Min: −657,434.0
(1-Jan-0100 00:00:00 a.m.)

Max: ∼2,958,465.999,999,94
(31-Dec-9999 23:59:59.995)

DATE in <wtypes.h>
double (8-byte)
(see below)

String BSTR in <wtypes.h> (see
below)

Variant VARIANT in <oaidl.h>
(see below)

Object type (see below)

Array (see below)

User-defined type (see below)

66 Excel Add-in Development in C/C++

This starts to get complicated. Passing a range reference, for example, is far easier using
the C API. But, be warned: the C API does not expose as many of Excel’s objects and
properties as VBA.

3.6.5 VB/OLE Currency type

The VB/OLE Currency data type is passed to C/C++ as a structure of type CY, defined
in the Windows header file <wtypes.h> as follows:

typedef union tagCY
{

struct
{

unsigned long Lo;
long Hi;

};
LONGLONG int64;

}
CY;

The 64-bit integer structure LONGLONG is defined using the non-ANSI 64-bit integer type
__int64 and represents non-integer numbers to 4 decimal places scaled up by a factor of
10,000. In Win32 environments, various operations and macro definitions are defined for
__int64 variables in <winnt.h>, such as logical and arithmetic bit shifts. However,
the simplest way to deal with this data type is to cast it to a double as in this example
code. In theory, this conversion is at the expense of some accuracy. However, this is true
only for values which are outside the range of Excel in the first place.

CY c = some_function_that_returns_a_CY(some_argument);
double d = (double)(c.int64) / 1e4; // Divide to undo the scaling

You will encounter this data type when your C/C++ DLL is passed an array of VARIANTS
by VB created from an Excel Range object’s Value property, where one or more cells
in the Range have been formatted using the standard currency format for the regional
settings in force at the time. This is mildly annoying: the value of a cell should be its
underlying value regardless of the display format. (Excel and VB do a similar thing for
worksheet cells formatted as dates.) If you are handling arrays of data originating in Excel
worksheet ranges, you will need to deal with this data type. (See sections 3.6.9 Variant
data type and 3.7 Excel ranges, VB arrays, SafeArrays, array Variants below for more
detail and some example code.)

3.6.6 VB/OLE Bstr Strings

The VB String data type is an OLE data type defined for C/C++ as BSTR in
<wtypes.h>. The BSTR is implemented as a pointer to a zero-terminated array of type
unsigned short – a string of 16-bit wide characters. However, Excel exchanges null-
terminated byte-strings with VBA. VBA for Excel therefore stores the bytes of the string
in the high and low bytes of the array pointed to by the BSTR.

Using VBA 67

For example, the text "Test string" passed from VBA to a C/C++ function would
be stored as shown in Table 3.3.

Table 3.3 Excel VBA string passed to C/C++: Example 1

Passed in as
BSTR bstr

Value (unsigned
short)

Value (byte string)

(*bstr)[0] 0x6554 ((char *)(*bstr))[0] = 0x54 = 'T'
((char *)(*bstr))[1] = 0x65 = 'e'

(*bstr)[1] 0x7473 ((char *)(*bstr))[2] = 0x73 = 's'
((char *)(*bstr))[3] = 0x74 = 't'

(*bstr)[2] 0x7320 ((char *)(*bstr))[4] = 0x20 = ' '
((char *)(*bstr))[5] = 0x73 = 's'

(*bstr)[3] 0x7274 ((char *)(*bstr))[6] = 0x74 = 't'
((char *)(*bstr))[7] = 0x72 = 'r'

(*bstr)[4] 0x6e69 ((char *)(*bstr))[8] = 0x69 = 'i'
((char *)(*bstr))[9] = 0x6e = 'n'

(*bstr)[5] 0x0067 ((char *)(*bstr))[10] = 0x67 = 'g'
((char *)(*bstr))[11] = 0x00 = Null
termination of ANSI byte string

(*bstr)[6] 0x0000 Zero termination of BSTR string

The text "Test" would be stored as shown in Table 3.4.

Table 3.4 Excel VBA string passed to C/C++: Example 2

Passed in as
BSTR bstr

Value (unsigned
short)

Value (byte string)

(*bstr)[0] 0x6554 ((char *)(*bstr))[0] = 0x54 = 'T'
((char *)(*bstr))[1] = 0x65 = 'e'

(*bstr)[1] 0x7473 ((char *)(*bstr))[2] = 0x73 = 's'
((char *)(*bstr))[3] = 0x74 = 't'

(*bstr)[2] 0x0000 Zero termination of BSTR string and null
termination of ANSI byte string combined

How long is a piece of string? As can be seen from these two examples, string length
is dependent on what you are thinking of as the string. OLE provides two functions for
determining the length of a BSTR: SysStringLen() and SysStringByteLen().
They would return the following when applied to these example strings as passed from
VBA to a DLL:

68 Excel Add-in Development in C/C++

Table 3.5 BSTR string length comparisons

String SysStringLen() SysStringByteLen() Bytes allocated

“Test string” 6 11 14

“Test” 2 4 6

For strings of bytes passed in a BSTR from VB you should use SysStringByteLen().
Warning: When VBA passes strings to C/C++ via a Variant argument of type VT_BSTR,

the string is not a byte-string, but a null-terminated string of wide-chars, i.e., unsigned
shorts. Care must be taken to distinguish between these two cases, as different system
functions are required to read and create these. (See section 3.6.10 Variant types supported
by VBA on page 72.)

Note that it is possible to call standard C string library byte string functions from
VBA by declaring functions taking char * arguments as taking ByVal String arguments,
although it is not possible to accept return values from such functions returning char *
by declaring them As String. This is because VBA Strings are OLE objects and must
be created and modified by the OS OLE functions only.

Note that Excel internally works with wide-character Unicode strings. Where a VBA
function takes as String argument, the supplied string will have been converted to a byte-
string in a locale-specific way. Similarly, where a VBA function returns a (byte) String
to Excel, the returned string will cast up to a Unicode string in a way that is also locale-
specific. Where you want to avoid the loss of data associated with this Unicode-to-byte
conversion (and the overhead associated with it) you should declare your arguments as
Variants and your DLL functions as accepting and working with VARIANT strings.

3.6.7 Passing strings to C/C++ functions from VBA

When passed ByVal to C/C++ a VBA String arrives as a BSTR. You could declare
the argument as an unsigned short *. (Note that in doing this you would make your
code dependent on the particular implementation of the BSTR type.) You can also declare
your argument as char *, since the pointer received points to the BSTR’s null-terminated
byte-string.

When passed ByRef a VBA String arrives as a pointer to a BSTR, equivalent to a
pointer to a pointer to an unsigned short, which you can declare as BSTR * or
as char **. VBA will always pass a non-null pointer to the BSTR. The pointer that
this points to will be set to null if the string was declared in VBA (using Dim) but not
allocated a value. Consider the following piece of VBA code:

' Argument is passed ByRef by default
Declare Function C_BSTR_Example1 Lib "example.xll"_

(s As String) As Boolean
Function VB_BSTR_EXAMPLE(Trigger As Variant) As Boolean

Dim s As String
' Call 1: String is dimensioned but not initialised

C_BSTR_Example (s)
' Call 2: String is initialised to an empty string

s = " "

Using VBA 69

C_BSTR_Example (s)
' Call 3:

s = "Test string"
C_BSTR_Example (s)
VB_BSTR_EXAMPLE = True

End Function

Suppose that the C/C++ function is prototyped as follows:

// Function definition corresponding to VB definition of
// Declare Function C_BSTR_Example1 . . . (s As String) As Boolean,
// i.e. argument passed ByRef.
short __stdcall C_BSTR_Example1(BSTR *ptr_bstr)
{

if(!ptr_bstr) // Should never be NULL, but...
return 0; // Return VB False

if(!*ptr_bstr) // Is string initialised?
return 0; // Return VB False if not

for(int i = 0; ; i++)
{
if(!((char *)(*ptr_bstr))[i])

break;
}
return -1; // Return VB True

}

In call 1, ptr_bstr will have a non-null value so there is no need to check if ptr_bstr
is NULL (unless you’re particularly distrusting of VBA or think that something less reliable
might also call the function). On the other hand, the pointer pointed to by ptr_bstr
will have a null value in this case, so in general there is a need to check if *ptr_bstr
is NULL.

In call 2, the value *ptr_bstr will now be non-null as the VBA String variable was
assigned a value. However, as the string is an empty string, the first (and only) unsigned
short will be the zero string-terminator. In other words the value *ptr_bstr[0], or
equivalently **ptr_bstr, will be zero in this case. It is entirely up to you if you check
immediately for this condition or allow subsequently called functions that access the string
to do the checking.

In call 3, not only has the VB variable been assigned a value, but it is a non-empty
string and *ptr_bstr will, in this case, point to an array of unsigned shorts as detailed
above.

As such strings are firstly Unicode and secondly allocated in VBA, care is needed
on the C/C++ DLL side. OLE provides a number of functions that deal with BSTR
variables, among them SysAllocStringByteLen(), SysReAllocString(),
SysReAllocStringLen(), SysFreeString(), SysByteStringLen(),
SysStringLen(), and so on.

If you want to store the strings beyond the current call to your DLL, you should make
you own deep copies of them and store those, rather than store a shallow copy of the
pointer. Otherwise, if and when the calling program frees the memory later, it would
invalidate your pointer.

70 Excel Add-in Development in C/C++

3.6.8 Returning strings to VBA from a DLL

There are, of course, three ways to return any value to a calling program:

1. Modify the passed-in arguments (if you have access to them).
2. Via the function’s return value.
3. Via some commonly accessible memory.

You should ignore the third option as the first two are by far the most sensible and both
fairly straightforward.

In general, if you want to modify a passed-in argument in your C code, you should pass
it ByRef (the default), i.e., accept a pointer that you can de-reference to change the value
of the caller’s variable. For the BSTR type, even though it is already a pointer you must
still pass it as ByRef to be able to modify the passed in string. Also you must use the
OLE functions to resize the string if you want to increase or decrease its length. Resizing
frees the original memory and allocates some new space, but without causing the calling
program (VBA in this example) a problem, as it too uses the OLE interface. If you want
something you can chop about and manipulate locally, however, you should simply make
a deep copy of the string.

If you want to assign a new value to a passed-in argument, you must check first to
see if it has been allocated, i.e., if the BSTR’s value (a pointer) is not null, and free the
memory with a call to SysFreeString() before overwriting the pointer value in order
to prevent memory leaks.

The following code shows how to pass strings back from a C/C++ DLL to VBA via a
return value. The important point is the use of the OLE SysAllocStringByteLen()
function to allocate new space for the string. This enables VBA to free the string when
it is done with it.

// Example code to create and return a BSTR to VBA.
// Creates a string of the 1st 'n' A-Z characters.
BSTR __stdcall C_BSTR_Example2(short n) // C short = VBA Integer(16-bit)
{

if(n <= 0 || n > 26)
return NULL;

// 1st argument is initialisation string, but we want
// to initialise this ourselves so pass NULL. 2nd
// argument is number of bytes in the byte-string NOT
// including the null termination space for which space is
// allocated and which is added by SysAllocStringByteLen()
//
// Returns NULL if unsuccessful at allocating memory, which
// must be freed by a call to SysFreeString(). In this
// example, freeing memory is left to the caller, i.e. VBA

BSTR bstr = SysAllocStringByteLen(NULL, n);
if(*bstr)
{

unsigned char c = 'A';
for(int i = 0; i < n;)

((unsigned char *)(bstr))[i++] = c++;
}
return bstr;

}

Using VBA 71

Here is the VBA declaration and an example of VBA code that calls it. (Note the explicit
inclusion of ByVal in the argument list.)

Declare Function C_BSTR_Example2 Lib "example.xll" _
(ByVal n As Integer) As String

Function VB_BSTR_EXAMPLE2(Length As Integer) As String
VB_BSTR_EXAMPLE2 = C_BSTR_Example2(Length)

End Function

VBA takes care of freeing the returned BSTR using the correct OLE Automation interface
call. Even though it looks like the combination of these two pieces of code should result
in a memory leak, it is, in fact, perfectly fine.

(Note: The C API provides easier exchange of strings between the spreadsheet and add-
in than VBA. Excel can pass strings as ANSI C null-terminated byte strings, enabling
functions that are accessed directly from Excel to declare strings as char *. Responsibil-
ity for freeing up DLL-allocated string memory, however, reverts to the DLL programmer.
See section 7.4 Getting Excel to call back the DLL to free DLL-allocated memory on
page 208 for details. Excel 2007 extends this so that the C API can pass wide-character
Unicode strings also.)

3.6.9 Variant data type

A Variant is a multi-type variable that can contain (or point to) a variety of different data
types. It superficially makes all data types look the same enabling functions to be declared
that take Variants as arguments or return them. Such functions can therefore process more
than one, or even all, data types. In VBA, it is the default data type for variables: the
omission of the As Type data type specifier anywhere it might appear is equivalent to a
declaration of As Variant.

It is good practice to declare all arguments, return and variable types explicitly. The
code is far more readable, errors in scope are also avoided and VBA is not saddled with
unnecessary type conversions. The Option Explicit statement at the top of a code
module forces the programmer to do just this.

The OLE Variant is represented in VBA by the Variant data type and in C/C++ by the
VARIANT structure. When passed ByVal to C/C++ a Variant arrives as a VARIANT.
The C structure can be thought of as containing two key (top-level) components:

• a VARTYPE vt (defined as an unsigned short in <wtypes.h>) containing a
numeric code corresponding to the type of data the variant contains;

• a large union of all the data types (some of which are pointers) that the OLE Variant
supports.

Here is a simple C/C++ example which, if exported from a DLL and declared in VBA,
would simply convert a VB Integer to a Variant of integer type:

VARIANT __stdcall int_to_variant(short val)
{

VARIANT v;
// Good practice to initialise the variant structure first

72 Excel Add-in Development in C/C++

VariantInit(&v);
// This VARTYPE specifies a 16-bit (2-byte) signed integer (i.e. a short),
// equivalent to a VBA Integer

v.vt = VT_I2;
// Assign the passed-in value to the 'short' union member

v.iVal = val;
return v;

}

Variants are important in the context of this book insofar as they play an important role in
the simplest way of passing of arrays of data from worksheet ranges to C/C++ DLLs via
VBA. (There are ways to do this that don’t involve Variants.) They are also used to return
variable-sized arrays of data from VBA back to array formulae in the worksheet. (Use of
Variants is the only way to do this.) The subject of passing arrays to and fro is covered
in detail below in section 3.7 Excel ranges, VB Arrays, Safearrays, Array Variants on
page 80.

Variants are also useful in getting data from, and returning data to, cells in Excel where
the type could be one of a number of things, say a string or a number.

The C API opens up some of Excel’s internal data storage structures, by-passing the
need for Variants. These structures do, nevertheless, have much in common with Variants.
(See Chapter 6 Passing Data between Excel and the DLL on page 127.)

3.6.10 Variant types supported by VBA

Of the many data types supported by the OLE Variant, only the following are supported
by VBA in Excel, and therefore only these need to be handled by a DLL function that is
called from VBA.

Table 3.6 VBA – supported Variant types

Data type VARTYPE Numeric value C union member

Empty VT EMPTY 0 (No associated data)

Long signed 32-bit
integer

VT I4 2 long lVal

Short signed
16-bit integer

VT I2 3 short iVal

4-byte
single-precision

VT R4 4 float fltVal

8-byte
double-precision

VT R8 5 double dblVal

Currency VT CY 6 CY *pcyVal

Using VBA 73

Table 3.6 (continued)

Date VT DATE 7 DATE date (DATE is defined as
double)

String VT BSTR 8 BSTR bstrVal

Object VT DISPATCH 9 IDispatch *pdispVal
(See VB Object type below)

Error VT ERROR 10 ULONG ulVal
(Easier to use than SCODE)

Boolean VT BOOL 11 short boolVal

Variant (see notes
below)

VT VARIANT | * 12 VARIANT *pvarVal or
SAFEARRAY *parray

ByRef (see notes VT BYREF | * 16384 Pointer to one of the above data

below) 0x4000 types

Array (see notes VT ARRAY |* 8192 SAFEARRAY *parray

below) 0x2000

Array and ByRef note

The VT_ARRAY and VT_BYREF bits are bit-wise or’d with the value of the associated
data type. In a Variant array, therefore, the data type not only says that the Variant is an
array but also what is the data type of the elements. If the Variant’s data type is bit-wise
or’d with the VT_BYREF bit, then the Variant contains a pointer to the given data type.
If both bits are set, then the array that the Variant contains is an array of pointers to the
given data type, rather than a pointer to an array.

Variant note

A Variant will only contain a Variant in conjunction with one or both of the VT_ARRAY
and VT_BYREF bits. If the VT_BYREF bit is set then the pointer is accessed via the
VARIANT *pvarVal data member. If it is the VT_ARRAY bit, then the Variant contains
an array of Variants whose individual elements may be of mixed-type, and are accessed
via the SAFEARRAY *parray data member. (See also note below.)

Array of Variants note

A Variant type of particular interest is a Variant containing an array of Variants. Such
arrays are created when assigning a worksheet Range.Value property in VBA to a
Variant – one of the ways of passing an array originating in a range of worksheet cells
to a C/C++ DLL. (See section 3.7 Excel ranges, VB arrays, SafeArrays, Array Variants
on page 80 for details.)

74 Excel Add-in Development in C/C++

String note

When VBA passes strings to C/C++ via a Variant argument of type VT_BSTR, the
string is a string of unsigned shorts, i.e., UNICODE wide characters. Care
must be taken to distinguish between this case and when VBA passes a String, which
is a BSTR interpreted as a byte-string. Different system functions are required to read
and create each type of string. (See also section 3.6.6 VB/OLE Bstr Strings on page
66.) In the case of Variant strings, the functions SysStringLen() and
SysAllocStringLen() should be used in place of SysStringByteLen() and
SysAllocStringByteLen() respectively. The wide-char string to byte-string system
conversion functions MultiByteToWideChar() and WideCharToMultiByte(),
and their C library analogues mbstowcs() and wcstombs(), are also useful. (See the
Variant conversion routines in the example project source file xloper.cpp, and also
section 3.7 below.)

3.6.11 Variant types that Excel can pass to VBA functions

Within Excel, VBA functions declared with Variant arguments will be passed an even
more limited subset by Excel worksheet formulae, namely:

Table 3.7 Variant types passed to VBA from Excel worksheets

VARTYPE Arguments that will be passed as this type

VT R8 All numbers, with the exception of those formatted as dates or in the
currency format.

VT BOOL Excel’s TRUE and FALSE values. NOTE: Excel converts TRUE and
FALSE to the numbers 1 and 0 respectively, whereas the Variant
stores these as −1 and 0. Care should be taken where conversions
are being made.

VT DATE Any number formatted in one of Excel’s date formats or date-time
formats. (Numbers displayed with a time format are passed as
VT R8.)

VT BSTR All strings. (See note in above section.)

VT DISPATCH Ranges (single-cell and multi-cell).

VT ARRAY |
VT VARIANT

Literal arrays.

VT CY Any number formatted in the currency format defined for the current
regional settings.

VT ERROR All Excel error values.

VT EMPTY All empty cells or omitted arguments.

Using VBA 75

A VBA function declared as follows will return the type of the Variant as a number,
using the VB function VarType(), except that ranges are converted, rather than Var-
Type returning VT_DISPATCH. Single-cell ranges are converted to the data type of the
cell’s value. Multi-cell ranges are converted to arrays of Variants, type VT ARRAY |
VT VARIANT.

Function VariantType(v As Variant) As Integer
VariantType = VarType(v)

End Function

The following VB function will similarly convert the Range to a Variant before calling
VarType().

Function VariantRangeType(r As Range) As Integer
VariantRangeType = VarType(r)

End Function

In both of these cases, the function VarType() is passing back the type of the Range
object’s Value property.

The following VB code, which declares and calls a simple DLL function that returns
a Variant, does no such conversion of ranges references, and therefore would return
the value 9 (VT_DISPATCH) for anything other than literal arguments. For example, a
worksheet formula =VariantType(A1) would return 9 regardless of the contents of cell A1.

Declare Function C_vt_type Lib "example.dll" _
(ByRef arg As Variant) As Integer

Function VariantTypeC(v As Variant) As Double
VariantTypeC = C_vt_type(v)

End Function

Where the intention of the DLL function is to operate on the value of the range passed
in, it is therefore necessary to convert the Range to one or more values. The simplest
way to achieve this is to detect that the passed-in Variant is a range and then convert it
to an array Variant, like so:

Declare Function C_vt_fn Lib "example.dll" _
(ByRef arg As Variant) As Integer

Function VariantFn(v As Variant) As Double
If IsObject(v) Then

VariantFn = C_vt_fn(v.Value)
Else

VariantFn = C_vt_fn(v)
End If

End Function

76 Excel Add-in Development in C/C++

It is then the task of the DLL code to determine if the passed-in Variant is a simple
value or an array. Note that in the above case, single-cell references are converted to 1x1
arrays. (See section 3.7 Excel ranges, VB arrays, SafeArrays, array Variants on page 80
for more about arrays.)

Excel error values are most easily read from the ulVal property of the variant. The
numerical value is 2,148,141,008 plus the error code used in the C API and defined in
the header file xlcall32.h. Variants containing Excel error values can also be cre-
ated in VB using the CVerr() function. Table 3.8 provides a comparison of the various
representations.

Table 3.8 Excel error codes

Error Variant ulVal value C API value CVerr() argument

#NULL! 2148141008 0 2000

#DIV/0! 2148141015 7 2007

#VALUE! 2148141023 15 2015

#REF! 2148141031 23 2023

#NAME? 2148141037 29 2029

#NUM! 2148141044 36 2036

#N/A 2148141050 42 2042

3.6.12 User-defined data types in VB

In C, a user-defined type is typically defined with a typedef struct {...} name;
or struct name {...}; statement block. A virtually identical construct exists in VB:
Type name . . . End Type. Care needs to be taken to ensure that the variables within
the type definition blocks in C and VB are equivalent data types and in the same order.
You don’t need to give the variables or the structure itself the same names in both
languages – all that is passed is a pointer to a block of memory that needs to be interpreted
in the same way in both places.

Important note

VBA aligns the elements of structures along 4-byte boundaries but the default for VC 6.0
and VC .NET is to align to an 8-byte boundary. To avoid run-time errors or what would
look like corruption of data you need to use a #pragma pack(4) statement where the
C structure is defined (the recommended approach), or change the project settings default
using a “/Zp4” compiler command line flag.

Here are some examples of good and bad user-type definitions:

Using VBA 77

Table 3.9 VB user type and C typedef examples

VB C Comments

Type VB User Type
i as Integer
d as Double
s as String

End Type

#pragma pack(4)

typedef struct
{

short iVal;
double dVal;
BSTR bstr;

}
C user type;

// restore default
#pragma pack()

GOOD.

Note the different names of the structure
and the variables contained within it.
Note also the #pragma pack(4)
which is required in order to prevent
run-time errors.

Type VB User Type
i as Integer
d as Double
s as String

End Type

typedef struct
{

short iVal;
double dVal;
BSTR bstr;

}
C user type;

BAD

Missing #pragma pack(4)will cause
the double and the string to be
misaligned and cause a run-time error.

Type VB User Type
i as Integer

End Type

#pragma pack(4)

typedef struct
{

int i;
}

C user type;

#pragma pack()

BAD

C/C++ int is a 32-bit variable. VBA’s
Integer is 16-bit.

Type VB User Type
i as Integer
d as Double

End Type

#pragma pack(4)

typedef struct
{

double d;
short i;

}
C user type;

#pragma pack()

BAD

Corresponding variables must
be in the same order.

User-defined types are best passed ByRef (the default) arriving at C/C++ as a pointer to
the structure. Here is some example code, first the VB. . .

78 Excel Add-in Development in C/C++

Type VB_User_Type
i As Integer
d As Double
s As String

End Type

Declare Function C_user_type_example Lib "example.dll" _
(Arg As VB_User_Type) As Integer

Function VB_USER_TYPE_TEST(i As Integer, d As Double, s As String) _
As Integer

Dim t As VB_User_Type
t.i=i
t.d=d
t.s=s VB_USER_TYPE_TEST = C_user_type_example(t)

End Function

. . . and the corresponding C/C++ code:

#pragma pack(4) // required to be consistent with VB

typedef struct
{

short iVal;
double dVal;
BSTR bstr;

}
C_user_type;

#pragma pack() // restore the default

short __stdcall C_user_type_example(C_user_type *arg)
{

short retval;
if(arg = = NULL)

return 0;

retval = arg->iVal;
retval += (short)(arg->dVal);

if(arg->bstr)
retval += SysStringByteLen(arg->bstr);

return retval;
}

This example code simply returns the sum of the integer argument, the integer part of the
floating-point argument and, if it has been initialised, the byte-length of the BSTR.

3.6.13 VB object data type

VB objects are passed from VB to DLLs as dispatch pointers for use with the OLE 2
IDispatch interface. For example, range arguments passed to VBA functions declared as
taking Variants are of this type. If passed directly to DLL functions also declared as taking
Variants, the DLL will have to understand the IDispatch interface in order to access the
cell values. This can be avoided by converting ranges to array Variants as demonstrated in

Using VBA 79

the example in section 3.6.11 above, and is discussed more in section 3.7 Excel ranges,
VB arrays, SafeArrays, array Variants on page 80.

The OLE/COM IDispatch interface enables programs (known as OLE Automation Con-
trollers) to access the objects of other applications. Although this is relevant to the general
subject of writing add-ins for Excel, this book does not cover these topics and all the
mechanisms that these things entail in any great detail.

3.6.14 Calling XLM functions and commands from VBA:
Application.ExecuteExcel4Macro()

VBA allows you to access the Excel 4 macro language (XLM) statements using the
Application.ExecuteExcel4Macro() method, which takes a string that looks like
any valid worksheet or macro sheet formula without a leading equals sign. In practice,
you should not need to use this, as VBA can pretty much do all of the things that the
XLM can.

However, the same method is exposed by Excel via COM allowing you to mix COM
with access to XLM. This may in some cases provide an easier way to access Excel
functionality than the use of equivalent COM expressions only, where also the C API is
not available.

3.6.15 Calling user-defined functions and commands from VBA:
Application.Run()

Excel exposes many of the worksheet functions through the Application.
WorksheetFunction.*method. However, this does not provide access to user-defined
VBA functions or functions provided by other add-ins. For example, if you have the An-
alysis Toolpak add-in installed and want to use the Price() function in your VBA code
in versions earlier than Excel 2007, you will need to do something like this:

Dim Settlement As Variant ’ serial no. or string
Dim Maturity As Variant ’ serial no. or string
Dim Rate As Double
Dim Yield As Double
Dim Redemption As Double
Dim Frequency As Integer
Dim Basis As Integer
Dim P As Variant ’ catch all return types

’ set up the arguments ... (code omitted)

’ then call the function.
P = Application.Run("Price", Settlement, Maturity, Rate, _

Yield, Redemption, Frequency, Basis)

Excel 2007 integrates the Analysis Toopak’s functions within Excel, so that you will
no longer need to install the add-in to use a function such as PRICE(). For backwards
compatibility, the ATP functions are accessible in VBA via two methods, for example,
through Application.WorksheetFunction.Price() and Application.Run().

80 Excel Add-in Development in C/C++

3.7 EXCEL RANGES, VB ARRAYS, SAFEARRAYS,
ARRAY VARIANTS

The usefulness of arrays, especially for exchanging blocks of data between Excel, VBA
and C/C++ makes them an important topic. There are a number of different ways in
which each of Excel, VBA and C/C++ treat arrays. This can lead to some confusion and
complexity. This section aims to reduce this by providing an overview of the different
ways arrays can be created and represented, and to recommend an approach that removes
much of the complexity.

Firstly, it is helpful to simply list all of the various array types:

• Excel literal worksheet array: can contain all of the basic worksheet data types. (See
section 2.4 Worksheet data types and limits on page 13 for more information.)

• Excel range reference: an Excel object that refers to a collection of cells, whose values
can intuitively be thought of as matrices or vectors, although, strictly speaking, not
really an array.

• VB array: OLE SafeArray type, used to represent an array whose elements are all of
the same type, determined at declaration. Supports all the basic data types and Variants.

• VB array Variant: An OLE Variant that contains an array; not to be confused with an
array of Variants. The array contained is of type SafeArray. Its elements can be of any
type including Variants.

• C/C++ SafeArray: An OLE SafeArray, analogous to the VB array.
• C/C++ array Variant: An OLE Variant containing an OLE SafeArray, analogous to the

VB array Variant.
• C/C++ array: A flexible memory block accessible with pointers and square-bracket

indexing.

The goal of this section, consistent with the focus of the book, is to demonstrate how
best to move data into and out of Excel worksheets, using user-defined functions. More
specifically, the goal is to get arrays of worksheet data into a C/C++ DLL via VBA and
to return data back to the worksheet. The key to the whole issue is the array Variant for
the following reasons:

1. It is supported in both VBA and C/C++.
2. In C/C++ the contained SafeArray’s data are easily accessed and converted.
3. It supports arrays of all the required types, including Variants so that it can represent

mixed-type arrays of worksheet data. (See sections 3.6.10 Variant types supported by
VBA and 3.6.11 Variant types that Excel can pass to VBA functions.)

4. VB arrays are easily converted to array Variants.
5. Excel range objects are easily converted to array Variants.
6. Excel literal arrays are passed as array Variants to VBA functions declared with Variant

arguments.
7. Being an OLE data type, inter-process memory management is simplified.

Reason number 5 is perhaps the most important: the Range object is fairly easily handled
in VBA, but if passed directly to C/C++, its properties (specifically, cell contents) can
only be accessed using the IDispatch interface. VBA worksheet functions declared as

Using VBA 81

taking Variant arguments can be passed either literal values and arrays, or ranges when
called from the worksheet.

Here is an overview of the best steps to take in setting up VBA and C/C++ functions
that together are capable of taking and returning an array:

1. Declare the VBA function as taking a Variant argument and returning a Variant. This
ensures that literal values, literal arrays, single- and multi-cell ranges are all passed to
the function and that an array Variant can be returned to Excel.

2. Detect passed-in range objects using the VB IsObject() function and convert them
to array Variants. (See below for details.)

3. Declare C/C++ functions as taking Variant arguments and returning a Variant.
4. Pass the VB Variant, which may be a single value or an array Variant, through to the

C/C++ function.
5. Let the C/C++ function detect whether or not it has been passed an array Variant.
6. Use the OLE SafeArray functions to access or convert the array Variant data. (See

below for details.)
7. Use the OLE Variant and SafeArray functions to create a new array Variant and to

populate its elements.
8. Return the array Variant to VBA from C/C++.
9. Return the array Variant to Excel from VBA.

The following sub-sections cover in more detail the various steps involved as well as
providing more background information.

3.7.1 Declaring VB arrays and passing them back to Excel

VB arrays are fairly straightforward. They can be declared statically with statements such
as these:

Dim integer_array(0 To 5) As Integer ' 6 elements, zero-indexed
Dim square_array(1 To 3, 1 To 3) As Double ' 9 elts, unit-indexed
Dim variant_array(1 to 4) As Variant ' 4 Variant elts

The Option Base statement at the top of the code module tells VB what the lower bound
on an omitted array index should be for all arrays in that module. For example. . .

' Specify a default array lower bound of 1
Option Base 1

. . . then the array square_array above can be declared with the equivalent but more
readable:

Dim square_array(3, 3) As Double ' 9 elements, unit-indexed

Arrays can also be declared without dimensions and then re-dimensioned dynamically
later. A data type must be specified at declaration and cannot be changed. Here’s an
example:

82 Excel Add-in Development in C/C++

' Don’t need to specify the number of or size of the dimensions
Dim array() As Double
' Allocate space for NumRows x NumCols elements
ReDim array(NumRows, NumCols)

Arrays can be declared with up to 60 dimensions, but for practical Excel add-in purposes,
1 or 2 is usually all you need given the two-dimensional nature of Excel worksheets.

Arrays are most easily returned to Excel as array Variants as shown in the following
examples. The conversion from VB array to array Variant is implicit in the assignment of
the array to the Variant return value. The type of the array elements is inherited from the
data type of the VB array. Excel understands how to copy the contents of array Variants
into the calling cell(s).

Note that these VB functions would need to be entered on the worksheet as array
formulae. (See section 2.10.2 Array formulae – The Ctrl-Shift-Enter keystroke on page 30
for details of how to enter array formulae into a worksheet.) Note also that a 1-dimension
VB array is interpreted by Excel as a single row vector, and that a 2-dimension array has
its indices interpreted as row then column.

Returning a rectangular array

This example returns a 3x3 array of integers, populated row-by-row with the numbers 1
to 9.

Function VB_ARRAY_RETURN_EXAMPLE(trigger as Variant) As Variant
' a(num rows, num columns)

Dim a(1 To 3, 1 To 3) As Integer
' Row 1

a(1, 1) = 1
a(1, 2) = 2
a(1, 3) = 3

' Row 2
a(2, 1) = 4
a(2, 2) = 5
a(2, 3) = 6

' Row 3
a(3, 1) = 7
a(3, 2) = 8
a(3, 3) = 9
VB_ARRAY_RETURN_EXAMPLE = a

End Function

Returning a row vector

To return a row vector, the array, if static, should be declared as in this example. Note
that the base in this example is zero, not 1. It makes no difference to the worksheet cells
what the base of the array is, provided that there are 3 elements.

Function VB_ROW_VECTOR(trigger As Variant) As Variant
Dim a(0 To 2) As Integer
a(0) = 1

Using VBA 83

a(1) = 2
a(2) = 3
VB_ROW_VECTOR = a

End Function

Returning a column vector

To return a column vector, the array, if static, should be declared as in this example:

Function VB_COLUMN_VECTOR(trigger As Variant) As Variant
' a(num rows, num columns)

Dim a(1 To 3, 1 To 1) As Integer
a(1, 1) = 1
a(2, 1) = 2
a(3, 1) = 3
VB_COLUMN_VECTOR = a

End Function

3.7.2 Passing arrays and ranges from Excel to VBA to C/C++

Arrays in Excel can either be literal arrays, e.g., {1,2,3;4,5,6}, or range references. A VBA
function must be declared as taking a Variant argument if it is to be able to accept either
form of input. (Such functions can then also accept single cell references and single literal
values too.)

Literal arrays are passed as array Variants with Variant elements. The sub-types are
inherited from the types of the literal array elements. (Single literal values are passed as
simple Variants whose type is that of the literal value.)

Range references, including single cell references, are passed as object Variants of type
VT_DISPATCH; easily detected using the function IsObject(). If these are to be passed
on to a C/C++ DLL function, they are best converted to array Variants. This is most easily
done using the Range object’s Value property. The array’s elements are initialised with
the data from the cells. The elements of the array are type Variant, and their sub-type is
inherited from the corresponding cell. Note that the sub-type of an array element is, in
general, affected by the display format of a cell – see section 3.6.4 on page 64 for details.

The following code shows an example VB interface function that either passes a single
Variant or an array Variant to a DLL function, depending on whether it was passed a
range reference or a literal array or value. Note that a single-cell reference is converted
to a 1x1 array.

Declare Function C_vt_function Lib "example.dll" _
(ByRef arg As Variant) As Variant

Function VtFunction(v As Variant) As Variant
If IsObject(v) Then

VtFunction = C_vt_function(v.Value)
Else

VtFunction = C_vt_function(v)
End If

End Function

84 Excel Add-in Development in C/C++

The C/C++ DLL function would be prototyped as follows:

VARIANT __stdcall C_vt_function(VARIANT *pv);

A VBA interface function declared as taking a range argument, would not be able to
receive literal values from the worksheet. If this weren’t a problem, then the VBA code
might look like this, given that there is no need to call IsObject().

Function VtFunction(r As Range) As Variant
VtFunction = C_vt_function(r.Value)

End Function

Note that it is necessary to invoke explicitly the Value property when assigning values to
a Variant, despite the fact that this is the default property of an Excel Range, otherwise
the Variant will be assigned a copy of the Range object itself. For example, the following
VBA function returns the value of a cell, whose reference is passed as a string in A1 form,
without requiring that the Value property be used. This is because a Double cannot be
assigned an object reference, unlike a Variant, so VBA implicitly converts.

Function DblFuntion(cell_ref as String) As Double
DblFuntion = Range(cell_ref)

End Function

However, the following code would result in a Variant of type VT_DISPATCH being
passed to the DLL function C_vt_function().

Function VtFuntion(r As Range) As Variant
VtFuntion = C_vt_function(r)

End Function

3.7.3 Converting array Variants to and from C/C++ types

Array Variants are Variants that contain an array. The array itself is an OLE data type
called the SafeArray, declared as SAFEARRAY in the Windows header files. An under-
standing of the internal workings of the SAFEARRAY is not necessary to bridge between
VB and C/C++. All that’s required is a knowledge of some of the functions used to
create them, obtain handles to their data, release data handles, find out their size (upper
and lower bounds), find out what data-type the array contains, and, finally, destroy them.

The key functions, all accessible in C/C++ via the header windows.h, are:

SafeArrayCreate()
SafeArrayDestroy()
SafeArrayAccessData()
SafeArrayUnaccessData()
SafeArrayGetDim()
SafeArrayGetElemsize()

Using VBA 85

SafeArrayGetLBound()
SafeArrayGetUBound()
SafeArrayGetElement()
SafeArrayPutElement()

To convert an array Variant, the C/C++ DLL code needs to do the following:

• Determine that the Variant is an array by testing its type for the VT_ARRAY bit.
• Determine the element type by masking the VT_ARRAY bit from its type.
• Determine the number of dimensions using the SafeArray cDims property or by using

the SafeArrayGetDim() function.
• Determine the size of the array using SafeArrayGetUBound() and
SafeArrayGetLBound() for each dimension.

• Convert each array element from the possible Variant types that could originate from
a worksheet cell to the desired data type(s).

To create an array Variant, the C/C++ DLL code needs to do the following:

• Initialise an array of SAFEARRAYBOUND structures (one for each dimension).
• Call SafeArrayCreate() to obtain a pointer to the SafeArray.
• Initialise a VARIANT using VariantInit().
• Assign the element type bit-wise or’d with VT_ARRAY to the Variant type.
• Assign the SafeArray pointer to the Variant parray data member.
• Set the array element data (and sub-types, if Variants).

The final points in each set of steps above can be done element-by-element using
SafeArrayGetElement() and SafeArrayPutElement(), or, more efficiently,
by accessing the whole array in one memory block using SafeArrayAccessData()
and SafeArrayUnaccessData(). When accessing the whole block in one go, it
should be borne in mind that SafeArrays store their elements column-by-column (i.e., they
are column-major) in contrast to Excel’s C API array types, the xl4_array/xl12_
array (see page 129) and the xltypeMulti xloper/xloper12 (see page 180),
which are row-major.

Array Variant arguments passed by reference can be modified in place, provided that
the passed-in array is first released using SafeArrayDestroy() before being replaced
with the array to be returned.

The cpp_xloper class converts Variants of any type to or from an equivalent xloper
type. (See sections 6.2.3 The xloper/xloper12 structures on page 135, and 6.4 A
C++ class wrapper for the xloper/xloper12 – cpp xloper on page 144. See
also the Variant conversion routines in the example project source file, xloper.cpp.)
The following example code demonstrates this:

VARIANT __stdcall C_vt_array_example(VARIANT *pv)
{

static VARIANT vt; // Not thread-safe

// Convert the passed-in Variant to an xloper within a cpp_xloper
cpp_xloper Array(pv);

86 Excel Add-in Development in C/C++

// Access the elements of the xloper array using the cpp_xloper
// accessor functions...

// Convert the xloper back to a Variant and return it
Array.AsVariant(vt);
return vt;

}

Note on memory management

One advantage of passing Variant SafeArrays back to VBA is that it can safely delete
the array and free its resources, and will do this automatically once it has finished with
it. If a passed-in array parameter is used as the means to return an array, and an array
is already assigned to it, the DLL must delete the array using SafeArrayDestroy()
before creating and returning a new one. (The freeing of memory passed back to Excel
directly from an XLL is a little more complex – see Chapter 7 Memory Management on
page 203 for details.)

3.7.4 Passing VB arrays to and from C/C++

You may want to pass a VB array directly to or from a DLL function. When passing a
VB array to a DLL, the C/C++ function should be declared in the VB module as shown
in the following example. (The ByRef keyword is not required as it is the default.)

Declare Function C_safearray_example "example.dll" _
(ByRef arg() As Double) As Double

The corresponding C/C++ function would be prototyped as follows:

double __stdcall C_SafeArray_Example(SAFEARRAY **pp_Arg);

As you can see, the parameter ByRef arg() is delivered as a pointer to a pointer to a
SAFEARRAY. Therefore it must be de-referenced once in all calls to functions that take
pointers to SAFEARRAYs as arguments, for example, the OLE SafeArray functions.

When returning VB arrays (i.e., SafeArrays) from the DLL to VB, the process is similar
to that outlined in the previous sections for array Variants. SafeArray arguments passed by
reference can also be modified in place, provided that the passed-in array is first released
using SafeArrayDestroy().

In practice, once you have code that accepts and converts array Variants, it is simpler
to first convert the VB array to array Variant. This is done by simple assignment of the
array name to a Variant.

3.8 COMMANDS VERSUS FUNCTIONS IN VBA

Section 2.9 Commands versus functions in Excel on page 28 describes the differences
between commands and functions within Excel. The differences between the parallel
concepts of commands and functions in VBA are summarised in the Table 3.10.

Using VBA 87

Table 3.10 Commands versus functions in VBA

Commands Functions

Purpose Code containing instructions to be
executed in response to a user action
or system event.

Code intended to process arguments
and/or return some useful information.
May be worksheet functions or VBA
functions.

VBA code
(see also
sections
below)

Macro command:
Sub CommandName(. . .)
. . .

End Sub

Command object event:
Sub CmdObjectName event(. . .)
. . .

End Sub

Workbook/worksheet event action:
Sub ObjectName event (. . .)
. . .

End Sub

Function
FunctionName(. . .)As return type

. . .

FunctionName = rtn val

End Function

VBA code
location

Macro command:

• Worksheet code object

• Workbook code object

• VBA module in workbook

• VBA module outside workbook

Command object event:

• Code object of command object
container

Worksheet object event:

• Worksheet code object

Workbook object event:

• Workbook code object

Worksheet function:

• VBA module in workbook

• VBA module outside workbook

VBA project function:

• Worksheet code object

• Workbook code object

• VBA module in workbook

• VBA module outside workbook

3.9 CREATING VB ADD-INS (XLA FILES)

VBA macros can be saved as Excel add-ins simply by saving the workbook containing the
VBA modules as an XLA file, using the File/Save As. . . menu and selecting the file type
of Microsoft Excel Add-in (*.xla). When the XLA is loaded, the Add-in Manager makes the
functions and commands contained in the XLA file available. There are no special steps
that the VBA programmer has to take for the Add-in Manager to be able to recognise
and load the functions. Note that the resulting code runs no faster than regular VBA
code – still much slower than, say, a compiled C add-in.

88 Excel Add-in Development in C/C++

3.10 VBA VERSUS C/C++: SOME BASIC QUESTIONS

This chapter has outlined what you need to do in order to create custom worksheet
functions and commands using only VBA (as well as using VBA as an interface to a
C/C++ DLL). You might at this point ask yourself if you need to go any further in the
direction of a full-blown C/C++ add-in. Breaking this down, the main questions to ask
yourself before making this decision are:

1. Do I really need to write my own functions or are there Excel functions that, either
on their own or in simple combination, will do what I need?

2. What Excel functionality/objects do I need to access: can I do this using the C API,
or do I need to use VBA or the OLE/COM interface?

3. Is execution speed important?
4. What kind of calculations or operations will my function(s) consist of and what kind

of performance advantage can I expect?
5. Is development time important to me and what language skills do I have or have

access to?
6. Is there existing source code that I want to reuse and how easily can it be ported to

any of VB, C or C++?
7. Does my algorithm involve complex dynamic memory management or extensive use

of pointers?
8. Who will need to be able to access or modify the resulting code?
9. Is the Paste Function (Function Wizard) important for the functions I want to create?

10. Do I need to write worksheet functions that might need a long time to execute, and
so need to be done on a background thread or by a remote application?

With regard to the second point, it should be noted that C API in versions up to Excel
2003 can only handle byte strings with a maximum length of 255 characters. At one time,
strings within Excel were limited to this length, but not any more. If you need to be able
to process longer strings you will not be able to use the C API in these versions. You will
still be able to use your C/C++ routines accessing them via VBA’s BSTR string variable
which is capable of supporting much longer strings. Excel 2007’s C API handles Unicode
strings and so removes this limitation.

This book cannot answer these questions for you, however, question 4 is addressed in
section 9.2 Relative performance of VB, C/C++: Tests and results on page 369.

4
Creating a 32-bit Windows (Win32) DLL

Using Visual C++ 6.0 or Visual Studio .NET

This chapter covers the steps involved in creating a stand-alone Win32 Dynamic-Link
Library using Microsoft Visual C++. It explains, through the creation of an example
project, how to create a DLL containing functions that can be accessed by VB without
the need for the Excel C API library and header files. Without these things, however, the
DLL cannot call back into Excel via the C API. Nevertheless, it is possible to create very
powerful C/C++ add-ins with just these tools.

A full description of DLLs and all the associated Windows terminology is beyond the
scope of this book. Instead, this section sets out all the things that someone who knows
nothing about DLLs needs to know to create add-ins for Excel; starting with the basics.

4.1 WINDOWS LIBRARY BASICS

A library is a body of (compiled) code which is not in itself an executable application but
provides some functionality and data to something that is. Libraries come in two flavours:
static and dynamic-link. Static libraries (such as the C run-time library) are intended to be
linked to an application when it is built, to become part of the resulting executable file.
Such an application can be supplied to a user as the executable file only. A dynamic-link
library (DLL) is loaded by the application when the application needs it, usually when
the application starts up. A user of application that depends on functionality or data in a
DLL must install the executable file plus the DLL file for it to work. One DLL can load
and dynamically link to another DLL.

The main advantage of a DLL is that applications that use it only need to have one copy
of it somewhere on disk, and have much smaller executable files as a result. A developer
can also update a DLL, perhaps fixing a bug or making it more efficient, without the need
to update all the dependent applications, provided that the interface doesn’t change.

4.2 DLL BASICS

The programming of DLLs breaks into two fairly straightforward tasks:

• How to write a DLL that exports functions.
• How to access functions within a DLL.

DLLs contain executable code but are not executable files. They need to be linked to
(or loaded by) an application before any of their code can be run. In the case of Excel,
that linking is taken care of by Excel via the Add-in Manager or by VBA, depending on
how you access the DLL’s functions. (Chapter 5 Turning DLLs into XLLs: The Add-in
Manager interface, on page 111, provides a full explanation of what the Add-In Manager
does.)

90 Excel Add-in Development in C/C++

If your DLL needs to access the C API it will either need to be linked statically
at compile-time with Excel’s 32-bit library, xlcall32.lib, or link dynamically with
the DLL version, xlcall.dll, at run-time. The static library is downloadable from
Microsoft in an example framework project. (See section 1.2 What tools and resources
are required to write add-ins on page 2.) The dynamic-link version is supplied as part of
a standard 32-bit Excel installation.

4.3 DLL MEMORY AND MULTIPLE DLL INSTANCES

When an application runs, Win32 assigns it a 32-bit linear address space known as its
process. Applications cannot directly access memory outside their own process. A DLL
when loaded must have its code and data assigned to some memory somewhere in the
global heap (the operating system’s available memory). When an application loads a DLL,
the DLL’s code is loaded into the global heap, so that it can be run, and space is allocated
in the global heap for its data structures. Win32 then uses memory mapping to make these
areas of memory appear as if they are in the application’s process so that the application
can access them.

If a second application subsequently loads the DLL, Win 32 doesn’t bother to make
another copy of the DLL code: it doesn’t need to, as neither application can make changes
to it. Both just need to read the instructions contained. Win32 simply maps the DLL code
memory to both applications’ processes. It does, however, allocate a second space for a
private copy of the DLL’s data structures and maps this copy to the second process only.
This ensures that neither application can interfere with the DLL data of the other. (16-bit
Windows’ DLLs used a shared memory space making life very interesting indeed, but
the world has moved on since then.)

What this means in practice is that DLL writers don’t need to worry about static and
global variables and data structures being accessed by more than one user of their DLL.
Every instance of every application gets its own copy. Each copy of the DLL data is
referred to as an instance of the DLL.

4.4 MULTI-THREADING

DLL writers do need to worry about the same running instance of an application calling
their DLL many times from different threads. Take the following piece of C code for
example:

int __stdcall get_num_calls(void)
{

static int num_calls = 0;
return ++num_calls;

}

The function returns an integer telling the caller how many times it has been called. The
declaration of the automatic variable num_calls as static, ensures that the value
persists from one call to the next. It also ensures that the memory for the variable is
placed in the application’s copy of the DLL’s data memory. This means that the memory
is private to the application so the function will only return the number of times it has
been called by this application.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 91

The problems arise when it may be possible for the application to call this function
twice from different threads at the same time. The function both reads and modifies the
value of the memory used for num_calls, so what if one thread is trying to write while
the other is trying to read? The answer is that it’s unpredictable. In practice, for a simple
integer, this is not a problem. For larger data structures it could be a serious problem.
One way to avoid this unpredictability is the use of critical sections.

There are also issues of ensuring that a static variable used as a return value from an
exported function (as above) does not get over-written by another thread calling the same
function before the recipient of the return value has time to read it. This is a problem that
particularly affects add-ins in Excel 2007 where multi-threaded worksheet recalculation
is possible. Later sections of this book go into detail on this and provide a solution based
on the Thread-Local Storage (TLS) API.

Windows also provides a function GetCurrentThreadId() which returns the cur-
rent thread’s unique system-wide ID. This provides the developer with another way of
making their code thread-safe, or altering its behaviour depending on which thread is
currently executing.

This subject becomes more important in Excel 2007 as it supports multi-threaded
recalculation. (See sections 2.12.12 Multi-threaded recalculation on page 45, 7.6 Making
add-in functions thread safe on page 212, and 8.6.6 Specifying functions as thread-safe
(Excel 2007 only) on page 253).

4.5 COMPILED FUNCTION NAMES

4.5.1 Name decoration

When compilers compile source code they will, in general, change the names of the
functions from their appearance in the source code. This usually means adding things
to the beginning and/or end of the name and, in the case of Pascal compilers, chang-
ing the name to all uppercase. This is known as name decoration and it is important
to understand something about the way C and C++ compilers do this so that the func-
tions we want to be accessible in our DLL can be published in a way the application
expects.1

The way the name is decorated depends on the language and how the compiler is
instructed to make the function available, in other words the calling convention. (See
below for more details on and comparisons of calling conventions.) For 32-bit Windows
API function calls the convention for the decoration of C-compiled functions follows this
standard convention:

A function called function_name becomes _function_name@n where n is the
number of bytes taken up by all the arguments expressed as a decimal, with the bytes
for each argument rounded up to the nearest multiple of four in Win32.

Note that the decorated name is independent of the return type. Note also that all
pointers are 4 bytes wide in Win32, regardless of what they point to.

1 The complexity of name decoration is avoided with the use of DEF files and C++ source code modules, see
later in this chapter.

92 Excel Add-in Development in C/C++

Expressed slightly differently, the C name decoration for Win API calls is:

• Prefix −
• Suffix @n where n = bytes stack space for arguments
• Case change None

Table 4.1 gives some examples:

Table 4.1 Name decoration examples for C-compiled exports

C source code function definition Decorated function name

void example1(char arg1) example1@4

void example2(short arg1) example2@4

void example3(long arg1) example3@4

void example4(float arg1) example4@4

void example5(double arg1) example5@8

void example6(void *arg1) example6@4

void example7(short arg1, double arg2) example7@12

void example8(short arg1, char arg2) example8@8

Win32 C++ compilers use a very different name-decoration scheme which is not described
as, among other reasons, it’s complicated. It can be avoided by making the compiler use
the standard C convention using the extern "C" declaration, or by the use of DEF
files. (See below for details of these last two approaches.)

4.5.2 The extern "C" declaration

The inclusion of the extern "C" declaration in the definition of a function in a C++
source file instructs the compiler to externalise the function name as if it were a C func-
tion. In other words, it gives it the standard C name decoration. An example declaration
would be:

extern "C" double c_name_function(double arg)
{
}

An important point to note is that such a function must also be given an extern "C"
declaration in all occurrences of a prototype, for example, in a header file. A number of
function prototypes, and the functions and the code they contain, can all be enclosed in a
single extern "C" statement block for convenience. For example, a header file might
contain:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 93

extern "C"
{

double c_name_function(double arg);
double another_c_name_function(double arg);

}
double cplusplus_name_function(double arg);

4.6 FUNCTION CALLING CONVENTIONS:
cdecl, stdcall, fastcall

The Microsoft-specific keyword modifiers, cdecl, stdcall and fastcall,
are used in the declaration and prototyping of functions in C and C++. These modifiers
tell the compiler how to retrieve arguments from the stack, how to return values and what
cleaning up to do afterwards. The modifier should always come immediately before the
function name itself and should appear in all function prototypes as well as the definition.

Win32 API applications and DLLs, as well as Visual Basic, all use the stdcall
calling convention whereas the ANSI standard for C/C++ is cdecl. By default, VC
compiles functions as cdecl. This default can be overridden with the compiler option
/Gz. However, it’s better to leave the default compiler settings alone and make any
changes explicit in the code. Otherwise, you are setting a trap for you or someone else
in the future, or creating the need for big warning comments in the code.

The modifier fastcall enables the developer to request that the compiler use a
faster way of communicating some or all of the arguments and it is included only for
completeness. For example, the function declaration

void __fastcall fast_function(int i, int j)

would tell the compiler to pass the arguments via internal registers, if possible, rather
than via the stack.

Table 4.2 summarises the differences between the three calling conventions. (It’s really
not necessary to remember or understand all of this to be able to write add-ins).

Table 4.2 Summary of calling conventions and name decoration

cdecl stdcall fastcall

Argument passing
order

Right-to-left on the
stack.

Right-to-left on the
stack.

The first two DWORD (i.e.
4-byte) or smaller
arguments are passed in
registers ECX and EDX.
All others are passed
right-to-left on the stack.

Argument passing
convention

By value except
where a pointer or
reference is used.

By value except
where a pointer or
reference is used.

By value except where a
pointer or reference is
used.

Variable argument
lists

Supported Not supported Not supported

(continued overleaf)

94 Excel Add-in Development in C/C++

Table 4.2 (continued)

cdecl stdcall fastcall

Responsibility for
cleaning up the stack

Caller pops the passed
arguments from the
stack.

Called function pops its
arguments from the
stack.

Called function pops its
arguments from the stack.

Name-decoration
convention

C functions:

C++ fns declared as
extern "C":
Prefix:
Suffix: none
Case change: none

C++ functions:
A proprietary name
decoration scheme is
used for Win32.

C functions:

C++ fns declared as
extern "C":
Prefix:
Suffix: @n

n = bytes stack space
for arguments

Case change: none

C++ functions:
A proprietary name
decoration scheme is
used for Win32.

Prefix: @

Suffix: @n

n = bytes stack space for
arguments
Case change: none

Compiler setting to
make this the
default:

/Gz /Gd or omitted /Gr

Note: The VB argument passing convention is to pass arguments by reference unless
explicitly passed by value using the ByVal keyword. Calling C/C++ functions from VB
that take pointers or references is the default or is achieved by the explicit use of the
ByRef keyword.

Note: The Windows header file <Windef.h> contains the following definitions which,
some would say, you should use in order to make the code platform-independent. How-
ever, this book chooses not to use them so that code examples are more explicit.

#define WINAPI __stdcall
#define WINAPIV __cdecl

4.7 EXPORTING DLL FUNCTION NAMES

A DLL may contain many functions not all of which the developer wishes to be accessible
to an application. The first thing to consider is how should functions be declared so that
they can be called by a Windows application. The second thing to consider is how then
to make those functions, and only those, visible to an application that loads the DLL.

On the first point, the declaration has to be consistent with the Windows API calling
conventions, i.e., functions must be declared as stdcall rather than cdecl.
For example, double stdcall get system time C(long trigger) can
be used by the DLL’s host application but long current system time(void)
cannot. (Both these functions appear in the example DLL later in this chapter.) In practice,
the only reason to declare functions as stdcall in your DLL is precisely because
you intend to make them visible externally to a Windows application such as Excel.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 95

On the second point, the DLL project must be built in such a way that the addresses of
the stdcall functions you wish to export are listed in the DLL by the linker. There
are a few ways to do this:

1. Use the declspec(dllexport) keyword in the function declaration.
2. List the function name in a definition (*.DEF) file.
3. Use a #pragma preprocessor linker directive in combination with the FUNCTION

and FUNCDNAME macros (in Visual Studio .NET).

These three approaches are described in detail in the following sub-sections, but it is rec-
ommended that you use a DEF file if you are using Visual Studio 6.0 and the preprocessor
linker directive if using Visual Studio .NET.

4.7.1 The declspec(dllexport) keyword

The declspec(dllexport) keyword can be used in the declaration of the function
as follows:

__declspec(dllexport) double __stdcall get_system_time_C(long trigger)
{
}

The declspec(dllexport) keyword must be placed at the extreme left of the
declaration. The advantages of this approach are that functions declared in this way do
not need to be listed in a DEF file (see below) and that the export status is kept right with
the function definition. However, if you want to avoid the function being made available
with the C++ name decoration you would need to declare the function as follows:

extern "C" __declspec(dllexport) double __stdcall
get_system_time_C(long trigger)
{
}

The problem now is that the linker will make the function available as get system
time C@4 and, if we are telling the application to look for a function called get
system time C, it will not be able to find it, so must look for the decorated name.

4.7.2 Definition (*.DEF) files

A definition file is a plain text file containing a number of keyword statements followed
by one or more pieces of information used by the linker during the creation of the DLL.
The only keyword that needs to be covered here is EXPORTS. This precedes a list of the
functions to be exported to the application. The general syntax of lines that follow an
EXPORTS statement is:

entryname[=internalname] [@ordinal[NONAME]] [DATA] [PRIVATE]

96 Excel Add-in Development in C/C++

Example 1

Consider the following function declaration in a C++ source file:

extern "C" double __stdcall get_system_time_C(long trigger);

Given the decoration of the function name, this would be represented in the definition file
as follows:

EXPORTS
; (Comment) This function takes a single 'long' argument
get_system_time_C=_get_system_time_C@4

In the above example, get_system_time_C is the entryname: the name you want
the application to know the function by. In this example, the same undecorated name has
been chosen as in the source code, but it could have been something completely different.
The internalname is the decorated name. As the function is declared as both extern
"C" and stdcall it has been decorated as set out in the table in section 4.6 on
page 93.

The keywords PRIVATE, DATA and @ordinal[NONAME]are not discussed as they
are not critical to what we are trying to do here.

Example 2

We could also have declared the C++ function (in the C++ source code file) without the
extern "C" like this:

double __stdcall get_system_time_C(long trigger);

The corresponding entry in the .DEF file would be:

EXPORTS
get_system_time_C

In this case the linker does all the hard work. We have no extern "C" statement and
no name decoration reflected in the DEF file. The linker makes sure on our behalf that
the C++ decorated name is accessible using just the undecorated name.

Example 2 is the best way to make functions available, as it’s the simplest. However,
if you find that Excel cannot find your functions, you can use extern "C" and the
decorated name in the DEF file as in Example 1.

The only other thing worth pointing out here is the very useful comment marker for
.DEF files, a semi-colon, after which all characters up to the end of the line are ignored.
For example, the above DEF file could look like this:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 97

EXPORTS
; My comment about the exported function can go here
; after a semi-colon...

get_system_time_C; ...plus more comments here

Note that when using Visual Studio .NET, the DEF file must be explicitly added to the
project settings, whereas in Visual Studio 6.0 it is only necessary to include the DEF file
in the project source folder. See sections 4.9.2 on page 100, and 4.10.2 on page 106 for
details.

4.7.3 Using a preprocessor linker directive

Visual Studio .NET introduced a number of new predefined macros that were not available
in Visual Studio 6.0. Two of these, __FUNCTION__ and __FUNCDNAME__ (note the
double underline at each end), are expanded to the undecorated and decorated function
names respectively. This enables the creation of a preprocessor linker directive within the
body of the function which instructs the linker to export the function as its undecorated
name.2 For example:

// Include this in a common header file:
#if _MSC_VER > 1200 // Later than Visual Studio 6.0
#define EXPORT comment(linker, "/EXPORT:"__FUNCTION__"="__FUNCDNAME__)
#else
#define EXPORT
#endif // else need to use DEF file or __declspec(dllexport)

double __stdcall MyDllFunction(double Arg)
{
#pragma EXPORT

// Function body code here...
}

Note that the directive must be placed within the body of the function and, furthermore,
will only be expanded when neither of the compiler options /EP or /P is set. The use of
this technique completely removes the need for a DEF file and has the added advantage
of keeping the specification of its export status local to the function code.

To keep the text of this book as simple as possible, this directive is not included in
example code in the remainder of the book but is included on the CD ROM examples.

4.8 WHAT YOU NEED TO START DEVELOPING ADD-INS
IN C/C++

This chapter shows the use of Microsoft Visual C++ 6.0 Standard Edition and Visual
Studio .NET (in fact, Visual C++ .NET, which is a subset of VS .NET). Menu options
and displays may vary from version to version, but for something as simple as the creation

2 I am grateful to Keith Lewis for this contribution.

98 Excel Add-in Development in C/C++

of DLLs, the steps are almost identical. This is all that’s needed to create a DLL whose
exported functions can be accessed via VB.

However, to create a DLL that can access Excel’s functionality or whose functions you
want to access directly from an Excel worksheet, you will need Excel’s C API library
and header file, or COM (see section 9.5). (See also section 4.12 below, and Chapter 5
Turning DLLs into XLLs: The Add-in Manager Interface on page 111.)

4.9 CREATING A DLL USING VISUAL C++ 6.0

This section refers to Visual C++ 6.0 as VC. Visual Studio 6.0 has the same menus and
dialogs. Section 4.10 on page 103 covers the same steps as this section, but for the Visual
C++ .NET 2003 and Visual Studio .NET 2003 IDEs, which this book refers to as VC.NET
to make the distinction between the two.

4.9.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called GetTime.dll
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

The steps are:

1. Open the Visual C++ IDE.
2. Select File/New. . .

3. On the New dialog that appears select the Projects tab.
4. Select Win32 Dynamic-Link Library, enter a name for the project in the Project name: text

box and select a location for the project as shown and press OK.

5. Select Create an empty DLL project on the following dialog and press Finish.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 99

6. Select OK to clear the message dialog that tells you that the project will be created
with no files.

7. Make sure the Workspace window is visible. (Select View/Workspace if it isn’t.)
8. Expand the GetTime files folder.
9. Right-click on the Source Files sub-folder and select Add Files to Folder. . .

10. In the File name: text box type GetTime.cpp. [The Files of type: text box should now
contain C++ Files (. . .).]

11. The following dialog will appear. Select Yes.

12. Expand the Source Files folder in the Workspace window and you will now see the
new file listed.

13. Double-click on the icon immediately to the left of the file name GetTime.cpp. You
will see the following dialog:

14. Select Yes.
15. Repeat steps 10 to 14 to create and add to Source Files a file called GetTime.def.

The project and the required files have now been created, and is now ready for you to
start writing code. If you explore the directory in which you created the project, you will
see the following files listed:

GetTime.cpp A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a .cpp file extension
allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def A definition file. This text file will contain a reference to the
function(s) we wish to make accessible to users of the DLL (Excel
and VBA in this case).

You will also see a number of project files of the form GetTime.*.

100 Excel Add-in Development in C/C++

4.9.2 Adding code to the project

To add code to a file, double-click on the file name and VC will open the text file in the
right hand pane. We will add some simple code that returns the system time, as reported
by the C run-time functions, as a fraction of the day, and export this function via a DLL so
that it can be called from VBA. Of course, VBA and Excel both have their own functions
for doing this but there are two reasons for starting with this particular example: firstly,
it introduces the idea of having to understand Excel’s time (and date) representations,
should you want to pass these between your DLL and Excel. Secondly, we want to be
able to do some relative-performance tests, and this is the first step to a high-accuracy
timing function.

For this example, add the following code to the file GetTime.cpp:

#include <windows.h>
#include <time.h>

#define SECS_PER_DAY (24 * 60 * 60)

//==
// Returns the time of day rounded down to the nearest second as
// number of seconds since the start of day.
//==
long current_system_time(void)
{

time_t time_t_T;
struct tm tm_T;
time(&time_t_T);
tm_T = *localtime(&time_t_T);
return tm_T.tm_sec + 60 * (tm_T.tm_min + 60 * tm_T.tm_hour);

}
//==
// Returns the time of day rounded down to the nearest second as a
// fraction of 1 day, i.e. compatible with Excel time formatting.
//
// Wraps the function long current_system_time(void) providing a
// trigger for Excel using the standard calling convention for
// Win32 DLLs.
//==
double __stdcall get_system_time_C(long trigger)
{

return current_system_time() / (double)SECS_PER_DAY;
}

The function long current_system_time(void) gets the system time as a
time_t, converts it to a struct tm and then extracts the hour, minute and second. It
then converts these to the number of seconds since the beginning of the day. This function
is for internal use only within the DLL and is, therefore, not declared as __stdcall.

The function double __stdcall get_system_time_C(long trigger) takes
the return value from long current_system_time(void) and returns this divided
by the number of seconds in a day as a double. There are three things to note about this
function:

1. The declaration includes the __stdcall calling convention. This function is going
to be exported so we need to overwrite the default __cdecl so that it will work with
the Windows API.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 101

2. There is a trigger argument enabling us to link the calling of this function to the change
in the value of a cell in an Excel spreadsheet. (See section 2.12.2 Triggering functions
to be called by Excel – the trigger argument on page 34.)

3. The converted return value is now consistent with Excel’s numeric time value storage.

Now we need to tell the linker to make our function visible to users of the DLL. To do
this we simply need to add the following to the file GetTime.def:

EXPORTS
get_system_time_C

(In later versions of IDE the preprocessor directive described in section 4.7.3 above can
be used instead).

That’s it.

4.9.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC will create output files in a debug sub-folder of the project folder called,
not surprisingly, Debug. Changing the active configuration to release causes build output
files to be written to the Release sub-folder. As the name suggests the debug configur-
ation enables code execution to be halted at breakpoints, the contents of variables to be
inspected, the step-by-step execution of code, etc.

Without getting into the details of the VC user interface, the Build menu contains the
commands for compiling and linking the DLL and changing the active configuration. The
Project menu provides access to a number of project related dialogs and commands. The
only one that’s important to mention here is Project/Settings, which displays the following
dialog (when the Debug tab is selected, as in this case):

102 Excel Add-in Development in C/C++

As you can see, these are the settings for the debug configuration. The full path and
filename for Excel has been entered as the debug executable. Now, if you select Build/Start
Debug. . ./Go, or press {F5}, VC will run Excel. If your project needs rebuilding because
of changes you’ve made to source code, VC will ask you if you want to rebuild first.

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s Add-in Manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC by debugging
the DLL. (Select Build/Start Debug. . ./Go or press {F5}.) This enables you to experiment by
setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get-
TimeTest.xls entered into the Program arguments field. (Excel interprets a command
line argument as an auto-load spreadsheet.)

Next time Build/Start Debug. . ./Go is selected, or {F5} is pressed, VC will run Excel and
load this test spreadsheet automatically. This is a great time-saver and helps anyone who
might take over this project to see how the DLL was supposed to work.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 103

4.10 CREATING A DLL USING VISUAL
C++ .NET 2003

This section refers to Visual C++ .NET 2003 as VC.NET. Visual Studio .NET 2003 has
the same menus and dialogs. Section 4.9 on page 98 covers the same steps as this section,
but for the Visual C++ 6.0 and Visual Studio C++ 6.0 IDEs, which this section refers to
as VC to make the distinction between the two.

4.10.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called NETGetTime.dll
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

1. Open the Visual C++ .NET IDE.

2. On the New Project dialog that appears, select the Win32 folder.
3. Select Win32 Project and enter a name for the project in the Name: text box and select

a location for the project as shown and press OK.

104 Excel Add-in Development in C/C++

4. The following dialog will then appear:

5. Select the Application Settings tab, after which the following dialog should appear:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 105

6. Select the DLL radio button, check the Empty Project checkbox and press Finish. You
should now see something like this:

7. Make sure the Solution Explorer is visible. (Select View/Solution Explorer if it isn’t.)
8. Expand the NETGetTime folder.

106 Excel Add-in Development in C/C++

9. Right-click on the Source Files sub-folder and select Add/Add new item. . .

10. In the Add New Item dialog, select the C++ File (.cpp) in the Templates pane, type
GetTime in to the Name: text box.

11. Expand the Source Files folder in the Solution Explorer and you will now see the new
(completely empty) file listed.

(The following steps are only required if using a DEF file. It is recommended that you
use a linker preprocessor directive instead. See section 4.7.3 above.)

12. Repeat steps 9 to 11, selecting instead the Module Definition File (.def) in the Templates
pane, to create and add to Source Files a file called GetTime.def.

13. Under Project/NetGetTime properties/Linker/Input enter GetTime.def into the Module
Definition File text box. (This last step is something that you did not explicitly have
to do in VC 6.0).

The project and the required files have now been created, and is now ready for you to
start writing code. If you explore the directory in which you created the project, you will
see the following files listed:

GetTime.cpp A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a .cpp file extension
allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def (If used). A definition file. This text file will contain a reference to
the function(s) we wish to make accessible to users of the DLL
(Excel and VBA in this case).

You will also see a number of project files of the form NETGetTime.*.

4.10.2 Adding code to the project

The process of adding code is essentially the same in VC as in VC.NET. Section 4.9.2
on page 100 goes through this for VC, adding two functions to GetTime.cpp and an
exported function name to the DEF file. These functions are used in later parts of this
book to run relative performance tests. If you are following these steps with VC.NET,
you should go to section 4.9.2 and then come back to the following section to see how
to compile and debug.

4.10.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC.NET will create output files in a debug sub-folder of the project folder
called, not surprisingly, Debug. Changing the active configuration to release causes build
output files to be written to the Release sub-folder. As the name suggests, the debug
configuration enables code execution to be halted at breakpoints, the contents of variables
to be inspected and the step-by-step execution of code, etc.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 107

Without getting into the details of the user interface, the Build menu contains the com-
mands for compiling and linking the DLL and changing the active configuration. The
Project menu provides access to a number of project related dialogs and commands. The
only one worth mentioning here is the Project/NETGetTime Properties. . ., which displays the
following dialog (with the Debug settings selected in this case):

As you can see, these are the settings for the debug configuration. The full path and file-
name for Excel has been entered as the debug executable. Now, if you select Debug/Start,
or press {F5}, VC.NET will run Excel. If your project needs rebuilding because of
changes you’ve made to source code, VC.NET will ask you if you want to rebuild
first.

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s add-in manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC.NET by
debugging the DLL. (Select Build/Start Debug. . ./Go or press {F5}.) This enables you to
experiment by setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get-
TimeTest.xls entered into the Command Arguments field. (Excel interprets a command
line argument as an autoload spreadsheet.)

108 Excel Add-in Development in C/C++

Next time Debug/Start is selected, or {F5} is pressed, VC.NET will run Excel and load this
test spreadsheet automatically. This is a great time-saver and helps anyone who might
take over this project to see how the DLL was supposed to work.

4.11 ACCESSING DLL FUNCTIONS FROM VB

VB provides a way of making DLL exports available in a VB module using the Declare
statement. (See section 3.6 Using VBA as an interface to external DLL add-ins on page
62 for a detailed description.) In the case of the example in our add-in the declaration in
our VB module would be:

Declare Function get_system_time_C Lib "GetTime.dll" _
(ByVal trigger As Long) As Double

(Note the use of the line continuation character ‘_’.)
As described in Chapter 3 Using VBA on page 55, if you open a new VBA module

in GetTimeTest.xls and add the following code to it, you will have added two
user-defined functions to Excel, Get_C_System_Time() and Get_VB_Time().

Declare Function get_system_time_C Lib "GetTime.dll" _
(ByVal trigger As Long) As Double

Function Get_C_System_Time(trigger As Double) As Double
Get_C_System_Time = get_system_time_C(0)

End Function

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 109

Function Get_VB_Time(trigger As Double) As Double
Get_VB_Time = Now

End Function

(Note that the full path of the DLL is, in general, required in the VB Declare statements.)
Back in Excel, the following simple spreadsheet has been created:

Cell Formula

B4 =NOW()

B5 Get VB Time(B4)

B6 Get C System Time(B4)

Here, cell B4 will recalculate whenever you force a recalculation by pressing {F9}, or
when Excel would normally recalculate, say, if some other cell’s value changes. (The
Now() function is volatile and is re-evaluated whenever Excel recalculates despite not
depending on anything on the sheet.) The fact that B4 is a precedent for B5 and B6
triggers Excel to then re-evaluate these cells too. (See section 2.12.2 Triggering functions
to be called by Excel – the trigger argument on page 34.)

Pressing {F9} will therefore force all three cells to recalculate and you will see that the
C run-time functions and the VB Now function are in synch. You should also see that
the NOW() function is also in synch but goes one better by showing 100 ths of a second
increments. (This is discussed more in Chapter 9 where the relative execution speeds of
VB and C/C++ are timed and compared.)

110 Excel Add-in Development in C/C++

4.12 ACCESSING DLL FUNCTIONS FROM EXCEL

In order to access DLL functions directly from Excel, as either worksheet functions or
commands, without the need for a VBA wrapper to the functions, you need to provide an
interface – a set of functions – that Excel looks for when using the Add-in Manager to
load the DLL. This is covered in detail in Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface as well as subsequent sections. The interface functions are intended
to be used to provide Excel with information it needs about the DLL functions you are
exporting so that it can integrate them – a process known as registration, covered in detail
in section 8.6 Registering and un-registering DLL (XLL) functions on page 244.

5
Turning DLLs into XLLs: The Add-in

Manager Interface

5.1 THE XLCALL32 LIBRARY AND THE C API FUNCTIONS

An XLL is simply a DLL that supports an interface through which Excel and the DLL can
communicate effectively and safely. This communication is 2-way: the DLL must export
a number of functions for Excel to call; the DLL needs access to functions through which
it can call Excel. For the latter, the DLL requires access to an Excel import library,
xlcall32.lib or its DLL counterpart xlcall32.dll. These call-back functions are
Excel4(), Excel4v(), Excel12(), Excel12v() and XLCallVer(). They are
described in detail in Chapter 8. Excel12() and Excel12v() are only supported in
Excel 2007+ (12+).

Your DLL project also needs a header file containing the data structures, constant defi-
nitions and enumerations used by Excel, and definitions of the C API interface functions
through which the DLL can call back into Excel. The header file, xlcall.h, is included
in the example file on the CD ROM and also from Microsoft, and xlcall32.dll, a
version-specific file, is part of every Excel installation.

The standard way of linking to the xlcall32 library, i.e., the method used in the
Excel ’97 SDK and Framework project and the method described in the first edition of
this book, has been to include a reference in the project to the xlcall32.lib import
library. For projects built in this way, the library is linked at compile time and its exports
are prototyped in the usual way, for example:

int _cdecl Excel4(int xlfn, LPXLOPER operRes, int count,...);

At run time, when the XLL is loaded by Excel, it is implicitly linked to xlcall32.dll.
Where you are creating DLLs to run with Excel 2007 and earlier versions, you must
link with Excel 2007’s version of the import library. The resulting XLL will still load
under even though Excel12() is not supported in as it links these to safe stub
functions.

Note that the structure of the SDK files for the 2007 release is different to the previous
SDK versions: The old SDK comprises a header file, xlcall.h, and the import library,
xlcall32.lib. The 2007 SDK comprises updated versions of these two files and a C++
source file xlcall.cpp. This new source file contains the source code for the functions
Excel12() and Excel12v(). Note that these are not exported by the import library
xlcall32.lib or by the DLL xlcall32.dll. When your XLL is running within
Excel 2007, the source for these functions dynamically links to an Excel 12 callback.
When running older versions both functions return xlretFailed when called.

An alternative approach is to link explicitly to xlcall32.dll in code at run-time to
get the addresses of the functions Excel4(), Excel4v() and XLCallVer() using
LoadLibrary() and GetProcAddress(). The import library does not then need to

112 Excel Add-in Development in C/C++

be included in the project, but the above-style function prototypes for Excel4(), etc.,
must be replaced with the following typedefs and extern declarations:

typedef int (_cdecl * pfnEXCEL4)(int, xloper *, int,...);
typedef int (pascal * pfnEXCEL4v)(int, xloper *, int, const xloper *[]);
typedef int (pascal * pfnXLCALLVER)(void);

extern pfnEXCEL4 Excel4;
extern pfnEXCEL4v Excel4v;
extern pfnXLCALLVER XLCallVer;

Note that you cannot dynamically link to the Excel 2007 API callcaks functionsExcel12()
and Excel12v(), in this way. The typedefs are not strictly necessary but make the
code far more readable and make the acquisition of the procedure addresses far simpler,
as is shown in the next code example. Note the inclusion of the const specifier in the
definitions of Excel4v and Excel12v which is consistent with their function and assists
the writing of wrappers that also reflect const status. The const specifier is not included
in the Microsoft SDK versions of these prototypes as, in the case of calling xlFree only,
the passed argument is modified. (The contained pointer is set to NULL). Ignoring this one
case is not serious and enables good-practice use of const in your project code.

The steps in this approach are therefore:

1. Define global function pointer variables, one for each of the C API functions and
initialise them to NULL.

2. From xlAutoOpen (see section 5.5.1 on page 117) call a function that loads
xlcall32.dll and initialises the function pointers.

3. From xlAutoClose (see section 5.5.2 on page 118) release the reference to
xlcall32.dll and set the function pointers to NULL.

Care must be taken not to call the C API before step 2, of course. Objects declared outside
function code, whose constructors might call the C API, might make this rather obvious
advice hard to follow: the point at which such objects are constructed is undefined but will
almost certainly be before Excel calls xlAutoOpen. In such cases, the C API function
pointer (or the global version variable) should be checked before invocation. Care must
also be taken to perform step 3 after any objects’ destructors are called that might, directly
or indirectly, attempt to call the C API functions. This may may necessitate the explicit
calling of some destructors.

The following code demonstrates an implementation of step 2:

// Declare function pointers that will be assigned at run-time
pfnEXCEL4 Excel4 = NULL;
pfnEXCEL4v Excel4v = NULL;
pfnXLCALLVER XLCallVer = NULL;
int gExcelVersion = 0; // version not known
bool gExcelVersion12plus = false;
bool gExcelVersion11minus = true;
HMODULE hXLCall32dll = 0;

bool link_Excel_API(void)
{

Turning DLLs into XLLs: The Add-in Manager Interface 113

// First, check if the C API interface functions are defined. If project
// was linked with an import library they should be, but if linking with
// xlcall32.dll at run-time, need to get the proc addresses for Excel4,
// Excel4v and XLCallVer.

static bool already_failed = false;

if(already_failed)
return false;

if(Excel4 == NULL)
{

// Load the DLL and get the procedure addresses for Excel4 and Excel4v
// Module’s handle is stored so can free the library in xlAutoClose

hXLCall32dll = LoadLibrary("xlcall32.dll");
if(!hXLCall32dll)

{
MessageBox(NULL, "Could not load xlcall32.dll",

"Linking Excel API", MB_OK | MB_SETFOREGROUND);
already_failed = true;
return false;

}
Excel4 = (pfnEXCEL4)GetProcAddress(hXLCall32dll, "Excel4");
Excel4v = (pfnEXCEL4v)GetProcAddress(hXLCall32dll, "Excel4v");
XLCallVer = (pfnXLCALLVER)GetProcAddress(hXLCall32dll, "XLCallVer");

if(!Excel4 | | !Excel4v | | !XLCallVer)
{

MessageBox(NULL,
"Could not get addresses for Excel4, Excel4v and XLCallVer",
"Linking Excel API", MB_OK | MB_SETFOREGROUND);

already_failed = true;
return false;

}
}
return true;

}

The first action of xlAutoOpen() should be to call link_Excel_API().

int __stdcall xlAutoOpen(void)
{

if(xll_initialised)
return 1;

// Link to the C API and set the globally-accessible Excel version.
if(!link_Excel_API())

return 1;

// Do other initialisation things...
}

The last lines of xlAutoClose() should undo the linking:

int __stdcall xlAutoClose(void)
{

if(!xll_initialised)

114 Excel Add-in Development in C/C++

return 1;

// Do other clean-up things...

// Unlink the C API and reset the C API function pointers to NULL
unlink_Excel_API();
xll_initialised = false;
return 1;

}

void unlink_Excel_API(void)
{

if(hXLCall32dll)
{

FreeLibrary(hXLCall32dll);
hXLCall32dll = 0;
Excel4 = NULL;
Excel4v = NULL;
Excel12 = NULL;
Excel12v = NULL;
XLCallVer = NULL;

}
}

5.2 WHAT DOES THE ADD-IN MANAGER DO?

5.2.1 Loading and unloading installed add-ins

The Add-in Manager is responsible for loading, unloading and remembering which add-
ins this installation of Excel has available to it. When an XLL (see below for more
explanation of the term XLL) is loaded, either through the File/Open. . . command menu
or via Tools/Add-ins. . ., the Add-in Manager adds it to its list of known add-ins.

Warning: In some versions of Excel, and in certain circumstances, the Add-in Manager
will also offer to make a copy of the XLL in a dedicated add-in directory. This is not
necessary. In some versions, a bug prevents the updating of the XLL without physically
finding and deleting this copy, so you should, in general, not let Excel do this.

5.2.2 Active and inactive add-ins

When an add-in is loaded for the first time it is active, in the sense that all the exposed
functions, once registered properly, are available to the worksheet. The Add-in Manager
allows the user to deactivate an add-in without unloading it by un-checking the checkbox
by the add-in name, making its functions unavailable. (This is a useful feature when
you have add-ins with conflicting function names, perhaps different versions of the same
add-in.)

5.2.3 Deleted add-ins and loading of inactivate add-ins

On termination of an Excel session, the Add-in Manager makes a record of the all active
add-ins in the registry so that when Excel subsequently loads, it knows where to find them.
If a remembered DLL has been deleted from the disk, Excel will mark it as inactive and

Turning DLLs into XLLs: The Add-in Manager Interface 115

will not complain until the user attempts to activate it in the Add-in Manager dialog. At
this point Excel will offer to delete it from its list.

If the Excel session in which the add-in is first loaded is terminated with the add-in
inactive, Excel will not record the fact that the add-in was ever loaded and, in the next
session, the add-in will need to be loaded from scratch to be accessible.

If the Excel session was terminated with the add-in active then a record is made in the
registry. Even if subsequent sessions are terminated with the add-in inactive Excel will
remember the add-in and its inactive state at the next session. The inactive add-in is still
loaded into memory at start up of such a subsequent session. Excel will even interrogate
it for information under certain circumstances, but will not give the DLL the opportunity
to register its functions.

5.3 CREATING AN XLL: THE xlAuto INTERFACE
FUNCTIONS

An XLL is a type of DLL that can be loaded into Excel either via the File/Open. . .
command1 menu or via Tools/Add-ins. . . or a command or macro that does the same
thing. To be an XLL, that is to be able to take advantage of Excel’s add-in management
functionality, the DLL must export at least one of a number of functions that Excel looks
for. Through these the DLL can add its functionality to Excel’s. This includes enabling
Excel and the user to find functions via the Paste Function wizard, with its very useful
argument-specific help text. (See section 2.14 Paste Function dialog.)

These functions, when called by Excel, give the add-in a chance to do things like
allocate and initialise memory and data structures and register functions (i.e., tell Excel
all about them), as well as the reverse of all these things at the appropriate time. They
can also display messages to the user providing version or copyright information, for
example. The DLL also needs to provide a function that enables the DLL and Excel to
cooperate to manage memory, i.e., to clean up memory dynamically allocated in the DLL
for data returned to Excel.

The functions that do all these things are:

• int__stdcall xlAutoOpen(void) (required)
• int__stdcall xlAutoClose(void)
• int__stdcall xlAutoAdd(void)
• int__stdcall xlAutoRemove(void)
• int__stdcall xlAddInManagerInfo(xloper *)
int__stdcall xlAddInManagerInfo12(xloper12 *)

• xloper *__stdcall xlAutoRegister(xloper *)
xloper12 * __stdcall xlAutoRegister12(xloper12 *)

• void__stdcall xlAutoFree(xloper *)
void__stdcall xlAutoFree12(xloper12 *)

Note that the last three functions either accept or return xlopers and so in Excel 2007
are supported in both xloper and xloper12 variants. The following sections describe
these functions, which can be omitted in most cases, in more detail. (Note: These functions

1 Excel 2000 and earlier versions only.

116 Excel Add-in Development in C/C++

need to be exported, say, by inclusion in the DLL’s .DEF file, in order to be accessible
by Excel.)

The only truly required function is xlAutoOpen, without which the XLL will not
be recognised as a valid add-in. xlAutoClose and xlFree (xlFree12) are required
in those circumstances where cleaning up of the XLLs resources needs to happen. The
others can all be omitted.

5.4 WHEN AND IN WHAT ORDER DOES EXCEL CALL
THE XLL INTERFACE FUNCTIONS?

Table 5.1 XLL interface function calling

Action Functions called

User invokes Add-in Manager dialog for the
first time in this Excel session. The add-in was
loaded in previous session.

xlAddInManagerInfo

In the Add-in Manager dialog, the user
deactivates (deselects) the add-in and then
closes the dialog.

xlAutoRemove
xlAutoClose

In the Add-in Manager dialog, the user
activates the add-in and then closes the dialog.

xlAutoAdd
xlAutoOpen

User loads the add-in for the first time. xlAddInManagerInfo
xlAutoAdd
xlAutoOpen

User starts Excel with the add-in already
installed in previous session.

xlAutoOpen

User closes Excel with the add-in installed but
deactivated.

No calls made.

User closes Excel with the add-in installed and
activated.

xlAutoClose
xlAddInManagerInfo

User starts to close Excel but cancels when
prompted to save their work. (See note below.)

xlAutoClose

Note: If the user starts to close Excel, causing a call to xlAutoClose, but then cancels
when prompted to save their work, Excel does not then call any of the xlAuto functions
to reinitialise the add-in. Even if xlAutoClose attempts to unregister the worksheet
functions, a bug in the C API prevents this from being successful. Therefore Excel con-
tinues to run and the worksheet functions continue to work. The problems arise where, for
example, memory or other resources are released in the call to xlAutoClose or where
custom menus are removed. These disappear until reinstated with a call to xlAutoOpen.
Excel 2007 fixes this slightly inconvenient behaviour.

Turning DLLs into XLLs: The Add-in Manager Interface 117

Note: If the user deactivates an add-in in the Add-in Manager dialog, but reloads the
same add-in (as if for the first time) before closing the dialog, Excel will call xlAutoAdd
and xlAutoOpen without calling xlAutoRemove or xlAutoClose. This means the
add-in re-initialises without first undoing the first initialisation, creating a risk that custom
menus might be added twice, for example. To avoid adding menus twice it is necessary
to check if the menu is already there.

Warning: Given the order of calling of these functions, care is required to ensure that
no activities are attempted that require some set-up that has not yet taken place. For this
reason it is advisable to place your initialisation code into a single function and check
in all the required places that this initialisation has occurred, using a global variable. A
satisfactory approach is to check in both xlAddInManagerInfo and xlAutoAdd, and
to call xlAutoOpen explicitly if the add-in has not been initialised. As well as being
the place where all the initialisation is managed from, xlAutoOpen should also detect
if it has already been called so that things are not initialised multiple times.

5.5 XLL FUNCTIONS CALLED BY THE ADD-IN MANAGER
AND EXCEL

5.5.1 xlAutoOpen

• int __stdcall xlAutoOpen(void);

Excel calls this function whenever Excel starts up or the add-in is loaded. Your DLL can
do whatever initialisation you want it to do at this point. The most obvious task is the
registration of worksheet functions, but other tasks (such as setting up of custom menus,
initialisation of data structures, initialisation of background threads) are also best done
here. (See Chapter 8 for details.)

The function should return 1 to indicate success.
Here is a simple example which calls register_function() to register a function

described in one element of an array called WsFuncExports. Section 8.6 Registering
and un-registering DLL (XLL) functions on page 244, contains details and more discussion
on this topic.

bool xll_initialised = false;

int __stdcall xlAutoOpen(void) // Register the functions
{

if(xll_initialised)
return 1;

// Link to the C API and set the globally-accessible Excel version.
if(!link_Excel_API())

return 1;

for(int i = 0 ; i < NUM_FUNCS; i++)
register_function(WsFuncExports + i);

xll_initialised = true;
return 1;

}

118 Excel Add-in Development in C/C++

5.5.2 xlAutoClose

• int __stdcall xlAutoClose(void);

Excel calls this function whenever Excel closes down or the add-in is unloaded. Your
DLL can do whatever cleaning up you need to do at this point, but should un-register
your worksheet functions and free memory at the very least. (See section 8.6 Registering
and un-registering DLL (XLL) functions on page 244 for more detail.)

The function should return 1 to indicate success.
This example calls unregister_function() to un-register a previously-registered

function exposed by the DLL according to an index number.

int __stdcall xlAutoClose(void)
{

if(!xll_initialised)
return 1;

for(int i = 0 ; i < NUM_FUNCS; i++)
unregister_function(i)

// Unlink the C API and reset the C API function pointers to NULL
unlink_Excel_API();
xll_initialised = false;
return 1;

}

5.5.3 xlAutoAdd

• int__stdcall xlAutoAdd(void);

Excel calls this function when the add-in is either opened (as a document using File/Open. . .)
or loaded via the Add-in Manager (Tools/Add ins. . .) or whenever any equivalent operation
is carried out by a macro or other command. In both of these cases, Excel also calls
xlAutoOpen() so this function does not need to register the DLL’s exposed functions
if that has been taken care of in xlAutoOpen(). Omitting this function has no adverse
consequences provided that any necessary housekeeping is done by xlAutoOpen().

The function should return 1 to indicate success.
Here is a simple example which uses a DLL function new_xlstring() to create a

byte-counted string which needs to be freed by the caller when no longer required.

int __stdcall xlAutoAdd(void)
{

if(!xll_initialised)
xlAutoOpen();

if(!xll_initialised)
return 1;

xloper xStr, xInt;
xStr.xltype = xltypeStr;
xStr.val.str = new_xlstring("Version 1.0 has been loaded");
xInt.xltype = xltypeInt;

Turning DLLs into XLLs: The Add-in Manager Interface 119

xInt.val.w = 2; // Dialog box type.

Excel4(xlcAlert, NULL, 2, &xStr, &xInt);
// Free memory allocated by new_xlstring()

free(xStr.val.str);
return 1;

}

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int __stdcall xlAutoAdd(void)
{

if(!xll_initialised)
xlAutoOpen();

if(!xll_initialised)
return 1;

cpp_xloper xStr("Version 1.0 has been loaded");
xStr.Alert();
return 1;

}

5.5.4 xlAutoRemove

• int__stdcall xlAutoRemove(void);

Excel calls this function when the add-in is deselected via the Add-in Manager dialog
(Tools/Add-Ins. . .), or whenever any equivalent operation is carried out by a macro or
other command. In this case, Excel also calls xlAutoClose() so this function does
not need to un-register the DLL’s exposed functions if that has been taken care of in
xlAutoClose(). Omitting this function has no adverse consequences provided that
any necessary housekeeping is done by xlAutoClose().

The function should return 1 for success.
The following example displays a message and uses a DLL function new_xlstring()

to create a byte-counted string which needs to be freed by the caller when no longer
required.

int __stdcall xlAutoRemove(void)
{

if(!xll_initialised)
return 1;

xloper xStr, xInt;
xStr.xltype = xltypeStr;
xStr.val.str = new_xlstring("Version 1.0 has been removed");
xInt.xltype = xltypeInt;
xInt.val.w = 2; // Dialog box type.
Excel4(xlcAlert, NULL, 2, &xStr, &xInt);

// Free memory allocated by new_xlstring()
free(xStr.val.str);

120 Excel Add-in Development in C/C++

return 1;
}

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int __stdcall xlAutoRemove(void)
{

if(!xll_initialised)
return 1;

cpp_xloper xStr("Version 1.0 has been removed");
xStr.Alert();
return 1;

}

5.5.5 xlAddInManagerInfo (xlAddInManagerInfo12)

• xloper *__stdcall xlAddInManagerInfo(xloper *);
• xloper12 *__stdcall xlAddInManagerInfo12(xloper12 *);

Excel calls this function the first time the Add-in Manager is invoked. If passed a numeric
value of 1, it should return an xloper/xloper12 string with the full name of the add-in
which is then displayed in the Add-in Manager dialog (Tools/Add-Ins. . .). If it is passed
anything else, it should return #VALUE!. (See example below). If this function is omitted,
the Add-in Manager dialog simply displays the DOS 8.3 filename of the add-in without
the path or extension.

Here is a simple example which uses a DLL function new_xlstring() to create a
byte-counted string that is marked for freeing once Excel has copied the value out.

char *AddInName = "My Add-in";

xloper * __stdcall xlAddInManagerInfo(xloper *p_arg)
{

if(!xll_initialised)
xlAutoOpen();

if(!xll_initialised)
return NULL;

static xloper ret_oper;
ret_oper.xltype = xltypeErr;
ret_oper.val.err = xlerrValue;

if(p_arg == NULL)
return &ret_oper;

if((p_arg->xltype == xltypeNum && p_arg->val.num == 1.0)
| | (p_arg->xltype == xltypeInt && p_arg->val.w == 1))
{

// Return a dynamically allocated byte-counted string and tell Excel
// to call back into the DLL to free it once Excel has finished.

ret_oper.xltype = xltypeStr | xlbitDLLFree;

Turning DLLs into XLLs: The Add-in Manager Interface 121

ret_oper.val.str = new_xlstring(AddInName);
}
return &ret_oper;

}

The Excel 2007 version follows. Note that since strings in xloper12s are unicode wide
character strings, a different DLL function new_xl12string() is used to create a
counted wide-char string, albeit from the same null-terminated ASCII byte-string.

xloper12 * __stdcall xlAddInManagerInfo12(xloper *p_arg)
{

if(!xll_initialised)
xlAutoOpen();

if(!xll_initialised)
return NULL;

static xloper12 ret_oper;
ret_oper.xltype = xltypeErr;
ret_oper.val.err = xlerrValue;

if(p_arg == NULL)
return &ret_oper;

if((p_arg->xltype == xltypeNum && p_arg->val.num == 1.0)
| | (p_arg->xltype == xltypeInt && p_arg->val.w == 1))
{

// Return a dynamically allocated byte-counted string and tell Excel
// to call back into the DLL to free it once Excel has finished.

ret_oper.xltype = xltypeStr | xlbitDLLFree;
ret_oper.val.str = new_xl12string(AddInName);

}
return &ret_oper;

}

Using the C++ xloper class cpp_xloper (see section 6.4) and a pointer to a statically-
defined error xloper (see section 6.3) the above code can be rewritten as follows:

xloper * __stdcall xlAddInManagerInfo(xloper *p_arg)
{

if(!xll_initialised)
xlAutoOpen();

if(!xll_initialised)
return NULL;

cpp_xloper Arg(p_arg);

if(Arg != 1)
return p_xlErrValue;

cpp_xloper RetVal(AddinName);
return RetVal.ExtractXloper();

}
xloper12 * __stdcall xlAddInManagerInfo12(xloper12 *p_arg)

122 Excel Add-in Development in C/C++

{
if(!xll_initialised)

xlAutoOpen();

if(!xll_initialised)
return NULL;

cpp_xloper Arg(p_arg);

if(Arg != 1)
return p_xl12ErrValue;

cpp_xloper RetVal(AddinName);
return RetVal.ExtractXloper12();

}

Invoking the Add-in Manager calls this function resulting in the following being displayed:

5.5.6 xlAutoRegister (xlAutoRegister12)

• xloper *__stdcall xlAutoRegister(xloper *);
• xloper12 *__stdcall xlAutoRegister12(xloper12 *);

This function is called from Excel 4 macro sheets when an executing macro encounters an
instance of the REGISTER() macro sheet function called with information about the types
of arguments and return value missing. xlAutoRegister() is passed the name of the
function in question and should search for the function’s arguments and then register the
function properly, with all arguments specified.

This function is also called when xlfRegister has been called without the type
information, leading to the danger that the XLL will overload the stack if this infor-
mation is simply missing from the XLL’s information tables: xlfRegister leads to
xlAutoRegister being called which leads to xlfRegister being called again, which
leads to xlAutoRegister, and so on. (See section 8.5 on page 238.) As macro sheets
are deprecated, and outside the scope of this book, this function is not discussed any

Turning DLLs into XLLs: The Add-in Manager Interface 123

further. The function can safely either be omitted or can be a stub function returning a
NULL pointer.

5.5.7 xlAutoFree (xlAutoFree12)

• void__stdcall xlAutoFree(xloper *);
• void__stdcall xlAutoFree12(xloper12 *);

Whenever Excel has been returned a pointer to an xloper/xloper12 by the DLL with
the xlbitDLLFree bit of the xltype field set, it calls this function passing back the
same pointer. This enables the DLL to release any dynamically allocated memory that
was associated with the xloper. Clearly the DLL can’t free memory before the return
statement, as Excel would not safely be able to copy out its contents. The xlAutoFree()
function and the xlbitDLLFree bit are the solution to this problem. (See also Chapter 7
Memory Management on page 203 for more about when and how to set this bit.)

Returning pointers to xloper/xloper12s with the xlbitDLLFree bit set is the
only way to return DLL-allocated memory without springing a memory leak. The next-
best solution is to allocate memory, assign it to a persistent pointer, and free it the next
time the function gets called.

Typically, your DLL will need to contain this function when
• returning DLL-allocated xloper/xloper12 strings;
• returning DLL-allocated range references of the type xltypeRef;
• returning DLL-allocated arrays of xlopers. If the array contains string xlopers that

refer to memory that needs to be freed then xlAutoFree() should do this too. (See
example below.)

There are a few points to bear in mind when dealing with arrays:
• The array memory pointed to by an array xloper can be static or dynamically allo-

cated. The xlbitDLLFree bit should only be set for arrays where the memory was
dynamically allocated by the DLL.

• Array elements that are strings may be static, or may have had memory allocated for
them by either the DLL or Excel.

• Excel will only call xlAutoFree() for an array that has the xlbitDLLFree bit
set, which should be one that was dynamically allocated in the DLL.

• A static array containing dynamic memory strings will leak memory.
• A DLL-created dynamic array containing Excel-allocated strings requires that the
xlbitXLFree bit be set for each string, and xlAutoFree() needs to detect this.

• You should not pass arrays of arrays, or arrays containing references, back to Excel:
your implementation of xlAutoFree() does not need to check for this.

The following code provides an example implementation that checks for arrays, range
references and strings – the three types that can be returned to Excel with memory still
needing to be freed. The function checks for array elements that are strings and frees them
according to which memory bit is set. The fact that it checks for the xlbitXLFree bit
set permits the return of Excel-created strings in DLL-created arrays.

If XL_AUTO_FREE_XLOPER is defined as non-zero the function will also free the
xloper itself, which is necessary where the XLL project dynamically allocates
xlopers for return to Excel. Section 7.6 Making add-in functions thread safe on

124 Excel Add-in Development in C/C++

page 212 discusses this further in the context of writing thread-safe worksheet functions.
(Note that you must decide whether your project will always or never use this strategy).

void __stdcall xlAutoFree(xloper *p_oper)
{

if(p_oper->xltype & xltypeMulti)
{

// Check if the elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;
xloper *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if((p->xltype & ∼(xlbitDLLFree | xlbitXLFree)) == xltypeStr)
{

if(p->xltype & xlbitDLLFree)
free(p->val.str);

else if(p->xltype & xlbitXLFree)
Excel4(xlFree, 0, 1, p);

}
free(p_oper->val.array.lparray);

}
else if(p_oper->xltype == (xltypeStr | xlbitDLLFree))
{

free(p_oper->val.str);
}
else if(p_oper->xltype == (xltypeRef | xlbitDLLFree))
{

free(p_oper->val.mref.lpmref);
}

#if XL_AUTO_FREE_XLOPER
free(p_oper);

#endif
}

void __stdcall xlAutoFree12(xloper12 *p_oper)
{

if(p_oper->xltype & xltypeMulti)
{

// Check if the elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;
xloper12 *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if((p->xltype & ∼(xlbitDLLFree | xlbitXLFree)) == xltypeStr)
{

if(p->xltype & xlbitDLLFree)
free(p->val.str);

else if(p->xltype & xlbitXLFree)
Excel12(xlFree, 0, 1, p);

}
free(p_oper->val.array.lparray);

}
else if(p_oper->xltype == (xltypeStr | xlbitDLLFree))
{

free(p_oper->val.str);
}
else if(p_oper->xltype == (xltypeRef | xlbitDLLFree))
{

free(p_oper->val.mref.lpmref);

Turning DLLs into XLLs: The Add-in Manager Interface 125

}
#if XL_AUTO_FREE_XLOPER

free(p_oper);
#endif
}

You can avoid implementing xlAutoFree()/xlAutoFree12() completely by
returning a pointer to a persistent xloper/xloper12 provided that prior to each re-
use the memory is cleared. There is not really much advantage in doing this – broadly
speaking, the same code needs to be executed – except that the DLL does not have to
set the flags to tell Excel to call back. (The flag to tell Excel to free Excel-allocated
xloper/xloper12 memory, xlbitXLFree, still needs to be set, but setting this does
not result in xlAutoFree being called).

6
Passing Data Between Excel and the DLL

Where DLL functions are being accessed directly by Excel, you need to understand how
to pass and return values. You need to think about the data types of both the arguments
and return value(s). You need to know whether arguments are passed by reference, (by
pointer, as the interface is C), or by value. You need to decide whether to pass results
back to the caller via the function’s return value or by modifying arguments passed in
by reference. Where the data you want to pass or return are not one of the simple data
types, you need to know about the data structures that Excel supports and when their use
is most appropriate.

Finally, you need to know how to tell Excel about your exported functions and tell
it all the above things about the arguments and return values. This point is covered in
detail in section 8.6 Registering and un-registering DLL (XLL) functions on page 244.
This chapter concentrates on the structures themselves.

Note: Excel versions 4 to 11 all use the same data structures which are still supported
in Excel 2007. However, the increased grid size in Excel 2007 necessitated that some
of these structures were upgraded. This book describes all of these data structures, old
and new, but you must be careful in your code to ensure that the version of Excel your
application or add-in is running under supports the data types you are trying to use.

6.1 HANDLING EXCEL’S INTERNAL DATA STRUCTURES:
C OR C++?

The most flexible and important data structure used by Excel in the C API is defined as the
10-byte xloper structure in the SDK header file. The version of SDK released with Excel
2007 also describes a variation of this, the 20-byte xloper12, which accommodates the
larger grids and strings introduced in this version. The xloper and xloper12 C struc-
tures, the unions they contain and the sub-structures in those unions, are all described in
detail in this chapter. An understanding of xlopers and, critically, how to handle the
memory that can be pointed to by them is required to enable fast and direct communica-
tion between the worksheet and the C/C++ DLL: all exported commands and worksheet
functions need to be registered, something that involves calling a function in the C API
using xlopers or xloper12s.

The handling of xlopers and xloper12s is something well suited to an object-
oriented (OO) approach. Whilst this book intentionally sticks with C-style coding in most
places, the value of the OO features of C++ are important enough that an example of just
such a class is valuable. The cpp_xloper class is described in section 6.4. Many of the
code examples in subsequent sections and chapters use this class rather than xlopers
or xloper12s. In some cases, examples using both approaches have been provided to
show the contrast in the resulting code.

Where xlopers or xloper12s have been used rather than this class, it is either to
show the detailed workings of the xloper as clearly as possible, or because use of the
class, with its overhead of constructor and destructor calls, would be overkill.

128 Excel Add-in Development in C/C++

6.2 HOW EXCEL EXCHANGES WORKSHEET DATA
WITH DLL ADD-IN FUNCTIONS

Where DLL functions take native C data type arguments such as ints, doubles and
char * null-terminated strings, Excel will attempt to convert worksheet arguments as
described in section 2.6 Data type conversion on page 16. Return values that are native
data types are similarly converted to the types of data that worksheet cells can contain.
Excel can also pass arguments and accept return values via one of three pre-defined
structures. In summary, this gives the DLL and Excel four ways to communicate:

1. Via native C/C++ data types, converted automatically by Excel.
2. Via a structure that contains a 2-dimensional array of 8-byte doubles, which this book

refers to as an xl4_array. Excel 2007 also supports a big-grid version xl12_array.
3. Via a structure that can represent the contents of any cell or block of cells, and also

ranges and a few other things, named the xloper in the SDK header file. This structure
is covered in depth in the next few sections. Excel 2007 also supports a big-grid and
long string version xloper12.

Not all of the data types that the xloper/xloper12 can contain will be passed or
returned in calls from a worksheet function. Some are only used internally, for example,
when calling back into Excel from the DLL through the C API.

6.2.1 Native C/C++ data types

Excel will pass arguments and accept return values for all of the following native C/C++
data types, performing the necessary conversions either side of the call to the DLL.

• [signed] short [int] (16-bit);
• [signed] short [int] * (16-bit);
• unsigned short [int] (16-bit = DWORD = wchar_t);
• [signed] [long] int (32-bit);
• [signed] [long] int * (32-bit);
• double;
• double *;
• [signed] char * (null-terminated ASCII byte string);
• unsigned char * (length-prepended ASCII byte string).

[v12+]:

• unsigned short * (null-terminated wide-char Unicode string);
• unsigned short * (length-prepended wide-char Unicode string);

Other types, e.g., bool, char and float, are not directly supported and declaring
functions with types other than the above may have unpredictable consequences. Casting
to one of the supported data types is, of course, a trivial solution, so in practice this
should not be a limitation. If Excel cannot convert an input value to the type specified
then it will not call the function, and will instead return a #VALUE! error to the calling
cell(s).

Passing Data Between Excel and the DLL 129

Excel permits DLL functions to return values by modifying an argument passed by a
pointer reference. The function must be registered in a way that tells Excel that this is
how it works and, in most cases, must be declared as returning void. (See section 8.6
Registering and un-registering DLL (XLL) functions on page 244 for details.)

Note: Returning values by changing an argument does not alter the value of a cell from
which that value originally came. The returned value will be deposited in the calling cell
just as if it were returned with a return statement.

6.2.2 Excel floating-point array structures: xl4 array, xl12 array

Excel supports a simple floating-point array structure which can be defined as follows
and is passed to or returned from the DLL by pointer reference:

typedef struct
{

WORD rows;
WORD columns;
double array[1]; // Start of array[rows * columns]

}
xl4_array;

In some texts this structure is called FP or _FP, but since the name is private to the DLL
(and the structure is not defined in pre-Excel 2007 versions of the SDK header file) it
is up to you. The above name is more descriptive, and this is how the rest of the book
refers to this structure.1

Warning: Excel expects this structure to be packed such that array[0] is eight bytes
after the start of the structure. This is consistent with the default packing of Visual Studio
(6.0 and .NET), so there’s no need to include #pragma pack() statements around its
definition. You need to be careful when allocating memory, however, that you allocate
8 bytes plus the space for array[rows * columns]. Allocating 4 bytes plus the
space for the array will lead to a block that is too small by 4 bytes. Too-small a block
will be overwritten when the last array element is assigned, leading to heap damage and
destabilisation of Excel. (See the code for xl_array_example1() below).

Excel 2007, with its much larger grid, supports an expanded version of this structure,
also passed to or returned from the DLL by pointer reference:

typedef INT32 RW;
typedef INT32 COL;

typedef struct
{

RW rows;
COL columns;
double array[1]; // Start of array[rows * columns]

}
xl12_array;

1 The first edition of this book referred to this structure as simply xl_array, but it has been renamed in this
edition to draw the distinction between it and Excel 2007’s new version of this structure.

130 Excel Add-in Development in C/C++

Given that RW and COL are each 4 bytes, the potential byte alignment and packing problem
of the xl4_array does not arise.

Note: These arrays store their elements row-by-row so should be read and written to
accordingly. The element (r, c), where r and c count from zero, can be accessed by
the expression array[r*rows + c]. The expression array[r][c] will produce a
compiler error. A more efficient way of accessing the elements of such an array is to
maintain a list of pointers to the beginning of each row and then access the elements by
off-setting each start-of-row pointer. (Numerical Recipes in C, Chapter 1, contains very
clear examples of this kind of thing.)

Later sections provide details of a data structure capable of passing mixed-type arrays,
the xloper (and the Excel 2007 version, the xloper12). The xl4_array/xl12_
array structures have some advantages and some disadvantages relative to these.

Advantages:

• Memory management is easy, especially when returning an array via an argument
modified in place. (See note below.)

• Accessing the data is simple.

Disadvantages:

• xl4_array/xl12_arrays can only contain numbers.
• If an input range contains something that Excel cannot convert to a number, Excel will

not call the function, and will fail with a #VALUE! error. Excel will interpret empty
cells as zero, and convert text that can be easily converted to a number. Excel will not
convert Boolean or error values.

• Returning arrays via this type (other than via arguments modified in place) presents
difficulties with the freeing of dynamically allocated memory. (See notes below.)

• This data type cannot be used for optional arguments. If an argument of this type is
missing, Excel will not call the function, and will fail with a #VALUE! error.

Note: It is possible to declare and register a DLL function so that it returns an array of
this type as an argument modified-in-place. The size of the array cannot be increased,
however. The shape of the array can be changed as long as the overall size is not
increased – see xl_array_example3() below. The size can also be reduced – see
xl_array_example4() below. Returning values in this way will not alter the value
of the cells in the input range. The returned values will be deposited in the calling cells
as if the array had been returned via a return statement. (See section 8.6 Registering
and un-registering DLL (XLL) functions on page 244 for details of how to tell Excel that
your DLL function uses this data structure.)

Note: Freeing dynamic memory allocated by the DLL can be a problem when returning
arrays using this type. You can declare a persistent pointer, initialise it to NULL and check
it every time the function is called – see xl_array_example1() below. If it is not
null, you can free the memory allocated during the last call before reallocating and re-
executing. This ensures that the DLL doesn’t suffer from leakage, just a little retention.
Note that the use of static variables declared within function blocks for return values
is not thread-safe. Therefore, when creating thread-safe functions for use in Excel 2007, a
different approach is required (see below). The problem of post-return memory release is

Passing Data Between Excel and the DLL 131

solved with the use of xloper/xloper12s. (See section 6.2.3 below and also Chapter 7
Memory Management on page 203 for more details.)

Examples

The following examples provide code for four exportable functions, one of which creates
and returns an array of this type, the others returning an array via a passed-in array
argument. Note the differences in memory management.

The function xl_array_example1() allocates memory for an array of the specified
size, assigns some simple values to it, and returns a pointer to it to Excel. Note that two
versions of this are listed here, the first of which is not thread-safe, the second of which
is. (See 7.6.3 Allocating thread-local memory on page 214 for details of what the function
get_thread_local_xl4_array() is doing.

Thread-unsafe version:

xl4_array * __stdcall xl_array_example1(int rows, int columns)
{

static xl4_array *p_array = NULL; // Not thread-safe to use static

if(p_array) // free memory allocated on last call
{

free(p_array);
p_array = NULL;

}
int size = rows * columns;

if(size <= 0)
return NULL;

size_t mem_size = sizeof(xl4_array) + (size - 1) * sizeof(double);

if((p_array = (xl4_array *)malloc(mem_size)))
{

p_array->rows = rows;
p_array->columns = columns;
for(int i = 0; i < size; i++)

p_array->array[i] = i / 100.0;
}
return p_array;

}

Thread-safe version:

xl4_array * __stdcall xl_array_example1(int rows, int columns)
{
// Get a pointer to thread-local static storage. Memory allocation is
// taken care of within get_thread_local_xl4_array()

size_t size = rows * columns;
xl4_array *p_array = get_thread_local_xl4_array(size);

if(!p_array) // Could not get a thread-local copy
return NULL;

p_array->rows = rows;
p_array->columns = columns;

132 Excel Add-in Development in C/C++

for(size_t i = 0; i < size; i++)
p_array->array[i] = i / 10.0;

return p_array;
}

Note: The function get_thread_local_xl4_array(size_t size) allocates
memory for the array structure using the following statements:

size_t mem_size = sizeof(xl4_array) + (size - 1) * sizeof(double);
return pTLS->xl4_array_shared_ptr = (xl4_array *)malloc(mem_size);

If memory were allocated with the following line of code, instead of as above, the memory
block would be too small, and would be overrun when the last element of the array was
assigned. Also, Excel would misread all the elements of the array, leading to unpredictable
return values, invalid floating point numbers, and all kinds of mischief.

// Incorrect allocation statement!!!
p_array = (xl4_array *)malloc(2*sizeof(WORD) + size*sizeof(double));

Note that with the xl12_array this allocation statement will work. . .

p_array = (xl12_array *)malloc(2*sizeof(INT32) + size*sizeof(double));

. . . but this is far better:

p_array = (xl12_array *)malloc(sizeof(xl12_array) +
(size-1)*sizeof(double));

A related point is that it is not necessary to check both that a pointer to an xl4_array/
xl12_array and the address of the first data element are both valid or not NULL. If the
pointer to the xl4_array/xl12_array is valid then the address of the first element,
which is contained in the structure, is also valid.

Warning: There is no way that a function that receives a pointer to an xl4_array/
xl12_array can check for itself that the size of the allocated memory is sufficient
for all the elements implied by its rows and columns values. An incorrect allocation
outside the DLL could cause Excel to crash.

The next example modifies the passed-in array’s values but not its shape or size.

void __stdcall xl_array_example2(xl4_array *p_array)
{

if(!p_array | | !p_array->rows
| | !p_array->columns | | p_array->columns > MAX_XL11_COLS)

return;

int size = p_array->rows * p_array->columns;

Passing Data Between Excel and the DLL 133

// Change the values in the array
for(int i = 0; i < size; i++)

p_array->array[i] /= 10.0;
}

The next example modifies the passed-in array’s values and shape, but not its size.

void __stdcall xl_array_example3(xl4_array *p_array)
{

if(!p_array | | !p_array->rows
| | !p_array->columns | | p_array->columns > MAX_XL11_COLS)

return;

int size = p_array->rows * p_array->columns;

// Change the shape of the array but not the size
int temp = p_array->rows;
p_array->rows = p_array->columns;
p_array->columns = temp;

// Change the values in the array
for(int i = 0; i < size; i++)

p_array->array[i] /= 10.0;
}

The next example modifies the passed-in array’s values and reduces its size.

void __stdcall xl_array_example4(xl4_array *p_array)
{

if(!p_array | | !p_array->rows
| | !p_array->columns | | p_array->columns > MAX_XL11_COLS)

return;

// Reduce the size of the array
if(p_array->rows > 1)

p_array->rows--;

if(p_array->columns > 1)
p_array->columns--;

int size = p_array->rows * p_array->columns;

// Change the values in the array
for(int i = 0; i < size; i++)

p_array->array[i] /= 10.0;
}

In memory the xl4_array structure is as follows, with the first double aligned to an
8-byte boundary:

1-2 3-4 4-8 9-16 17-24

WORD WORD double [double...]

134 Excel Add-in Development in C/C++

Provided that the values of the first two WORDs are initialised in a way that is consistent
with the number of doubles, any structure that obeys this format can be passed to and
from Excel as this data type. For example:

typedef struct
{

WORD rows; // set to 2
WORD columns; // set to 2
DWORD unused; // explicit padding - not required
double top_left;
double top_right;
double bottom_left;
double bottom_right;

}
two_by_two_array; // looks like an xl4_array

If rows and columns are initialised to 2, this structure can be passed or received as
if it were an xl4_array. This could simplify and improve the readability of code that
populates an array, in some cases.

Warning: The following structure definition and function are (perhaps obviously) incor-
rect. The code will compile without a problem, but Excel will not be able to read the
returned values as it expects the structure to contain the first element of the array, not a
pointer to it. A similar function that tried to interpret an xl4_array passed from Excel
as if it were an instance of this example, would encounter even worse problems as it
attempted to read from invalid memory addresses.

typedef struct
{

WORD rows;
WORD columns;
double *array; // Should be array[1];

}
xl4_array; // OH NO IT ISN'T!!!

xl4_array * __stdcall bad_xl_array_example(int rows, int columns)
{

static xl4_array rtn_array = {0,0, NULL}; // Not thread-safe

if(rtn_array.array) // free memory allocated on last call
{

free(rtn_array.array);
rtn_array.array = NULL;

}
int size = rows * columns;

if(size <= 0)
return NULL;

// Proper definition of xl4_array removes the need for this allocation
if(!(rtn_array.array = (double *)malloc(size*sizeof(double))))
{

rtn_array.rows = rows;
rtn_array.columns = columns;
for(int i = 0; i < size; i++)

rtn_array.array[i] = i / 10.0;
}

Passing Data Between Excel and the DLL 135

return &rtn_array;
}

There is an issue to be considered with the xl12_array given the much larger grid
sizes supported in Excel 2007. In the above examples that use xl4_array, the number
of elements can always be contained within a 32-bit signed integer, so the statement int
size = rows * columns is always safe since the maximum number of cells in Excel
versions 7 to 11 is 224. With Excel 2007, the total number of cells is 234 which means that
int size could conceivably overflow. However, there is also a memory consideration:
An xl4_array that referenced an entire Excel 2003 worksheet would be approximately
128 Gbytes in size. The maximum theoretical number of 8-byte array elements that can be
stored in a 32-bit address space is 229, though the practical limit will be much lower. There-
fore, the memory-imposed limits on the size of an xl4_array/xl12_array in Excel
2007 are reached long before those imposed by the ability of even a signed 32-bit integer
to count its elements. So the statement int size = rows * columns; is also safe,
from a computational point of view, when used in Excel 2007 with xl12_arrays.

6.2.3 The xloper/xloper12 structures

Internally, the Excel C API uses a C structure, the xloper, for the highest (most general)
representation of one or more cell’s contents. Excel 2007 supports the xloper but intro-
duces a new version that copes with the much larger grids, the xloper12. In addition
to being able to represent cell values and arrays, these can also represent references to
single cells, single blocks of cells and multiple blocks of cells on a worksheet. There
are also some C API-specific data types that are not found on worksheets: an integer
(xltypeInt), an XLM macro control structure (xltypeFlow), and the binary data
block type (xltypeBigData).

The 10-byte xloper contains two parts:

• An 8-byte C union interpreted according to the type of xloper.
• A 2-byte WORD, xltype, indicating the data type of the xloper.

The 20-byte xloper12 similarly contains two parts:

• A 16-byte C union interpreted according to the type of xloper12.
• A 4-byte DWORD, xltype, indicating the data type of the xloper12.

The structures can be defined as follows and are passed to or returned from the DLL by
reference, i.e., using pointers. The definition given here is functionally equivalent to the
definition as it appears in the SDK header file, except for the removal of the XLM flow-
control structure which is not within the scope of this book. The same member variable
and structure names are also used. The detailed interpretation of all the elements and the
definitions of the xlref and xlmref structures are contained in the following sections.

Note: The definition of the xloper’s Boolean data member in Microsoft’s original C
header file is WORD bool; which, given the subsequent introduction of the bool data
type in C++, is changed throughout this book to xbool. This is also consistent with the
Microsoft name for this element in the xloper12.

136 Excel Add-in Development in C/C++

Optimisation note: Declaring your XLL functions as taking xloper/xloper12 argu-
ments makes them faster to call than if they had been declared with native C data types.
This is because it avoids Excel making implicit conversions of the supplied arguments.
You may need to convert from one type to another within your function, giving some of
this saving back, but where performance is key, you can force your caller to supply the
correct data type in the first place.

struct xloper
{

union
{

double num; // xltypeNum
char *str; // xltypeStr
WORD xbool; // xltypeBool
WORD err; // xltypeErr
short int w; // xltypeInt

struct
{

xloper *lparray;
WORD rows, columns;

} array; // xltypeMulti

struct
{

WORD count; // Ignored, but set to 1 for safety
xlref ref;

} sref; // xltypeSRef

struct
{

xlmref *lpmref;
DWORD idSheet;

} mref; // xltypeRef

// XLM flow control structure omitted.

struct
{

union
{

BYTE far *lpbData; // data passed to XL
HANDLE hdata; // data returned from XL

} h;
long cbData;

} bigdata; // xltypeBigData
} val;
WORD xltype;

};

Excel 2007 introduces a larger grid (214 columns x 220 rows) than previous versions (28

columns X 216 rows). This would bust the limits of the xlref structure for both rows and
columns. To accommodate the larger grid, the Excel 2007 C API introduces xloper12:

typedef INT32 BOOL; // Boolean
typedef WCHAR XCHAR; // Wide Character = wchar_t = unsigned short int

Passing Data Between Excel and the DLL 137

typedef INT32 RW; // XL 12 Row
typedef INT32 COL; // XL 12 Column

struct xloper12
{

union
{

double num; // xltypeNum
XCHAR *str; // xltypeStr
BOOL xbool; // xltypeBool
int err; // xltypeErr
int w;

struct
{

xloper12 *lparray;
RW rows;
COL columns;

} array; // xltypeMulti

struct
{

WORD count; // Ignored, but set to 1 for safety
XLREF12 ref;

} sref; // xltypeSRef

struct
{

XLMREF12 *lpmref;
DWORD idSheet;

} mref; // xltypeRef

// XLM flow control structure omitted.

struct
{

union
{

BYTE *lpbData; // data passed to XL
HANDLE hdata; // data returned from XL

} h;
long cbData;

}
bigdata; // xltypeBigData

} val;
DWORD xltype;

};

Note that the following things have changed:

• .xltype changes from a WORD to a DWORD;
• All row and column integer types change to RW and COL respectively;
• .val.w (xltypeInt) changes from a short (16-bit) to an int (32-bit);
• .val.err (xltypeErr) changes from a WORD to an int;
• .val.str (xltypeStr) changes from char * to XCHAR * (= wchar_t *);

The following table shows the values that the xltype field can take, as well as whether
you can expect that Excel might pass one to your DLL function. The table refers to

138 Excel Add-in Development in C/C++

the types that can be passed in both the case where an argument is registered as an
reference-and-value xloper/xloper12 or as a value-only xloper/xloper12. (See
section 8.6 Registering and un-registering DLL (XLL) functions on page 244 for details.)

Table 6.1 xloper types passed from worksheet to add-in

Constant as defined
in xlcall.h

Hexadecimal
value

Passed from Excel
worksheet to add-in as
xloper/xloper12

registered as type R/U:

Passed from Excel
worksheet to add-in as
xloper/xloper12

registered as type P/Q:

xltypeNum 0x0001 Yes Yes

xltypeStr 0x0002 Yes Yes

xltypeBool 0x0004 Yes Yes

xltypeRef 0x0008 Yes No

xltypeErr 0x0010 Yes Yes

xltypeMulti 0x0040 Yes Yes

xltypeMissing 0x0080 Yes Yes

xltypeNil 0x0100 Yes2 Yes

xltypeSRef 0x0400 Yes No

xltypeInt 0x0800 No No

xltypeBigData 0x0802 N/A (see below)

The following exportable example function returns information about all the xloper
types that might be encountered in a call from a worksheet cell:

// Header contains definition of xloper and the constants for xltype
#include <xlcall.h>

char * __stdcall xloper_type_str(xloper *p_xlop)
{

if(p_xlop == NULL) // Should never happen
return NULL;

switch(p_xlop->xltype)
{

case xltypeNum: return "0x0001 xltypeNum";
case xltypeStr: return "0x0002 xltypeStr";
case xltypeBool: return "0x0004 xltypeBool";
case xltypeRef: return "0x0008 xltypeRef";
case xltypeSRef: return "0x0400 xltypeSRef";
case xltypeErr: return "0x0010 xltypeErr";
case xltypeMulti: return "0x0040 xltypeMulti";
case xltypeMissing: return "0x0080 xltypeMissing";
case xltypeNil: return "0x0100 xltypeNil";

2 Only as part of a literal array where a value is omitted, e.g., {1,, 3}.

Passing Data Between Excel and the DLL 139

default: return "Unexpected type";
}

}

The declaration of an argument as an xloper * or xloper12 * tells Excel that the
argument should be passed in without any of the conversions described in section 2.6.11
Worksheet function argument type conversion, page 20. This enables the function’s code
to deal directly with whatever was supplied in the worksheet. Excel will never pass a null
pointer even if the argument was not supplied by the caller. An xloper is still passed
but of type xltypeMissing. The check for a NULL argument in the above code is
super-safe.

The above function simply checks for the type of the xloper, represented in the
xltype data member of the xloper structure, and returns a descriptive string con-
taining the hexadecimal value and the corresponding defined constant. This function
can only be called from a worksheet once it has been registered with Excel, a topic
covered in detail in section 8.6 Registering and un-registering DLL (XLL) functions on
page 244. The name with which the function is registered in the example project add-in
is XloperTypeStr.

Table 6.2 shows some examples of calls to this function and returned values:

Table 6.2 xloper types as passed by Excel to the XLL

Worksheet cell formula Returned value Comment

=XloperTypeStr(2)
=XloperTypeStr(2.1)

0x0001 xltypeNum Same for integers
and doubles.

=XloperTypeStr("2")
=XloperTypeStr("")

0x0002 xltypeStr

=XloperTypeStr(TRUE)
=XloperTypeStr(Sheet2!A1)
=XloperTypeStr(Sheet2!A1:A2)

0x0004 xltypeBool
0x0008 xltypeRef Call is not made

from Sheet2

=XloperTypeStr(A1)
=XloperTypeStr(A1:A2)
=XloperTypeStr(INDIRECT("A1:A2"))

0x0400 xltypeSRef

=XloperTypeStr(NA())
=XloperTypeStr(1/0)
=XloperTypeStr(#REF!)
=XloperTypeStr(LOG(0))

0x0010 xltypeErr

=XloperTypeStr({1,2,"3"}) 0x0040 xltypeMulti

=XloperTypeStr() 0x0080 xltypeMissing

In addition to the above values for data types, the following bits can be set in the type
field to signal to Excel that memory needs to be freed after the DLL passes control back

140 Excel Add-in Development in C/C++

to Excel. How and when these are used is covered in Chapter 7 Memory Management on
page 203.

xlbitXLFree 0x1000

xlbitDLLFree 0x4000

Warning: An xloper should not have either of these bits set if it might be passed as
an argument in a call to Excel4() or Excel4v(). (The same applies to xloper12s
with Excel12() and Excel12v()). This can confuse Excel as to the true type of the
xloper and cause the function to fail with an xlretFailed error (=32).

Note: Setting xlbitXLFree on an xloper that is to be used for the return value for
a call to Excel4(), prior to that call, will have no effect. The correct time to set this
bit is:

• after the call that sets its value;
• after it might be passed as an argument in other calls to Excel4();
• before a pointer to it is returned to the worksheet.

For example, the following code will fail to ensure that the string allocated in the call
to Excel4() gets freed properly, as the xltype field of ret_oper will be reset in a
successful call. (See also Chapter 7 Memory Management on page 203.)

xloper * __stdcall bad_example(void)
{

static xloper ret_oper;
ret_oper.type | = xlbitXLFree; // WRONG: will get reset
Excel4(xlGetName, &ret_oper, 0);
return &ret_oper;

}

Warning: When testing the type of the xloper there are a few potential snares, as shown
by the following code example:

int __stdcall xloper_type(const xloper *p_op)
{
// Unsafe. Might be xltypeBigData

if(p_op->xltype & xltypeStr)
return xltypeStr;

// Unsafe. Might be xltypeBigData
if(p_op->xltype & xltypeInt)

return xltypeInt;

// Unsafe. Might be xltypeStr or xltypeInt
if(p_op->xltype & xltypeBigData)

return xltypeBigData;

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if(p_op->xltype == xltypeStr)

return xltypeStr;

Passing Data Between Excel and the DLL 141

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if(p_op->xltype == xltypeMulti)

return xltypeMulti;

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if(p_op->xltype == xltypeRef)

return xltypeRef;

// Safe.
if((p_op->xltype & xltypeBigData) == xltypeStr)

return xltypeStr;

// Safe.
if((p_op->xltype & ∼(xlbitXLFree | xlbitDLLFree)) == xltypeRef)

return xltypeRef;

return 0; // not a valid xltype
}

Some of the above unsafe tests might be perfectly fine, of course, if you know that the type
cannot be xltypeBigData, or can only be, say, xltypeBigData or xltypeErr, or
that neither of the bits xlbitXLFree or xlbitDLLFree can be set. But you should
be careful.

Here is an example of a super-safe type test function:

bool xloper_is_type(xloper *p_op, WORD type)
{

return type == (p_op->xltype & ∼(xlbitXLFree | xlbitDLLFree));
}

Warning: The CD ROM contains code modules xloper.cpp and xloper12.cpp
which contain functions that manipulate xlopers and xloper12s. The code in these
modules assumes that xlopers and xloper12s DO NOT have either xlbitXLFree
or xlbitDLLFree set, so will sometimes perform type tests that would not be safe
if passed operands with these bits set. The functions in that module are intended to be
called, primarily, from the cpp_xloper wrapper class, which maintains its own flags
that tell how memory was allocated. These flags are used at destruction, or when the
value is being over-written, rather than the xlbits. They are also used to set the correct
xlbit where the xloper/xloper12 is being extracted for return to Excel.

6.2.4 The xlref/xlref12 structures

The xlref structure is a simple structure defined in the SDK header file xlcall.h as
follows:

typedef struct xlref
{

WORD rwFirst;
WORD rwLast;
BYTE colFirst;

142 Excel Add-in Development in C/C++

BYTE colLast;
};

This structure is used by Excel to denote a rectangular block of cells somewhere on a
worksheet. (Which worksheet is determined by the xloper that either contains or points
to this structure.) Rows and columns are counted from zero, so that, for example, an
xlref that described the range A1:C2 would have the following values set:

• rwFirst = 0
• rwLast = 1
• colFirst = 0
• colLast = 2

The xlopers that describe ranges on worksheets either contain an xlref
(xltypeSRef) or point to a table of xlrefs (xltypeRef).

Warning: A range that covers an entire column on a worksheet (e.g. A:A in a cell
formula, equivalent to A1:A65536) is, in theory, represented in this data type but, whether
by design or flaw, will be given the rwLast value of 0x3fff instead of 0xffff. This
limitation could cause serious bugs in your DLL if you are not aware of it. One possible
reason for this seemingly strange behaviour is the fact that the array xloper type, the
xltypeMulti, can only support 65,535 rows rather than 65,536. You might consider a
work-around such as detecting rwLast being 0x3fff when rwFirst is 1, and then,
perhaps, checking the calling cell’s formula to see what was intended. This strategy will
only work in very limited cases, however, as the incoming range might well be disguised
by the use of a named range or might have been returned by a nested function. The safe
behaviour is for your function to fail, i.e., to reject both possibilities where there is this
ambiguity.

The larger grids of Excel 2007 necessitate the definition of the xlref12 structure
which is used by the xloper12 in place of the xlref.

typedef INT32 RW; /* XL 12 Row */
typedef INT32 COL; /* XL 12 Column */

typedef struct xlref12
{

RW rwFirst;
RW rwLast;
COL colFirst;
COL colLast;

}

This structure does not suffer from the whole-column problem of the xlref, described
above.

6.2.5 The xlmref/xlmref12 structures

The xlmref structure is simply an array of xlrefs (see above). The only place this is
used is in an xloper of type xltypeRef which contains a pointer to an xlmref. It is
defined in the SDK header file xlcall.h as follows:

Passing Data Between Excel and the DLL 143

typedef struct xmlref
{

WORD count;
xlref reftbl[1]; /* actually reftbl[count] */

};

Excel uses the xlmref in an xltypeRef xloper to encapsulate a single reference
to multiple rectangular ranges of cells on a specified worksheet. A single rectangular
block on a sheet may also be represented by an xltypeRef xloper, in which case
the xlmref count is set to 1.

To allocate space for an xlmref representing, say, 10 rectangular blocks of cells (each
described by an xlref), you would allocate space for one xlmref and nine xlrefs
as the space for the first xlref is contained in the xlmref. In practice you would only
rarely need to do this. A single xlmref, with its count set to 1, is all you need to describe
a specific range of cells, and that is almost always sufficient.

If you are writing functions that you want to be able to handle such multiple block
references, you will need to iterate through each xlref, to collect and analyse all the
data.

The larger grids of Excel 2007 necessitated the definition of the xlmref12 structure
which is used by the xloper12 in place of the xlmref.

typedef struct xlmref12
{

WORD count;
XLREF12 reftbl[1]; */ actually reftbl[count] */

};

6.2.6 The oper/oper12 structures

Microsoft documentation for older versions of the SDK talked about a simplified xloper
structure, referred to as an oper. In effect this was just an xloper which could only
support one of the following types, i.e. values:

• xltypeNum;
• xltypeStr;
• xltypeBool;
• xltypeErr;
• xltypeMulti;
• xltypeNil (as an xltypeMulti element, or a converted reference to an empty

cell);
• xltypeMissing.

In particular, the types xltypeRef and xltypeSRef are not represented. The concept
of an oper was intended to clarify that it was possible to say to Excel “convert any range
references to xloper value types for the inputs to this function”. To tell Excel that this is
how you want your argument(s) to be supplied to your function, you need to register the
xloper as type P instead of type R. The same behaviour is supported in Excel 2007+
with the xloper12, where arguments registered as type Q will be one of the value

144 Excel Add-in Development in C/C++

types only, whereas if registered as U they can also be one of the reference types. (See
section 8.6.3 Specifying argument and return types on page 249 for more detail).

Within the DLL code, the argument is still an xloper but it is safe to assume that it
will not be a reference type. This can greatly simplify DLL code that does not need to
know anything about ranges, only the values within them.

Note: Functions that are registered as macro sheet functions that take xloper or
xloper12 arguments (type R or U) are treated as volatile by default, something to be
avoided unless absolutely necessary. See section 8.6.5 Specifying functions as volatile
on page 253 for details. Therefore you should avoid registering xloper/xloper12
arguments as R/U, and choose P/Q instead wherever possible.

The following example shows a simple function that is a good candidate for being
registered as taking a type P argument rather than an R.

char * __stdcall what_is_it(xloper *p_oper)
{

switch(p_oper->xltype)
{

case xltypeStr: return "It's a string";
case xltypeNum: return "It's a number";
default: return "It's something I can't handle";

}
}

There’s no need to coerce a reference to either a string or a number – Excel will have
already done this if required. The function just needs to see what type of value it was
passed.

6.3 DEFINING CONSTANT xlopers/xloper12s

Two of the xloper types do not take values, xltypeMissing and xltypeNil. Two
others take just a limited number of values: xltypeBool takes just two; xltypeErr,
seven. It is convenient and computationally efficient to define a few constant values, and
in particular pointers to these, that can be passed as arguments to Excel4() or can be
returned by functions that return xloper pointers. The following code sample shows a
definition of a structure that looks like an xloper in memory, but that can be initialised
statically. It also contains some xloper pointer definitions that perform a cast on the
address of instances of this structure so that they look like xlopers.

Many of the code examples later in this book use these definitions.

typedef struct
{

WORD word1;
WORD word2;
WORD word3;
WORD word4;
WORD xltype;

}
const_xloper;

const_xloper xloperBooleanTrue = {1, 0, 0, 0, xltypeBool};

Passing Data Between Excel and the DLL 145

const_xloper xloperBooleanFalse = {0, 0, 0, 0, xltypeBool};
const_xloper xloperMissing = {0, 0, 0, 0, xltypeMissing};
const_xloper xloperNil = {0, 0, 0, 0, xltypeNil};
const_xloper xloperErrNull = {0, 0, 0, 0, xltypeErr};
const_xloper xloperErrDiv0 = {7, 0, 0, 0, xltypeErr};
const_xloper xloperErrValue = {15, 0, 0, 0, xltypeErr};
const_xloper xloperErrRef = {23, 0, 0, 0, xltypeErr};
const_xloper xloperErrName = {29, 0, 0, 0, xltypeErr};
const_xloper xloperErrNum = {36, 0, 0, 0, xltypeErr};
const_xloper xloperErrNa = {42, 0, 0, 0, xltypeErr};
xloper *p_xlTrue = ((xloper *)&xloperBooleanTrue);
xloper *p_xlFalse = ((xloper *)&xloperBooleanFalse);
xloper *p_xlMissing = ((xloper *)&xloperMissing);
xloper *p_xlNil = ((xloper *)&xloperNil);
xloper *p_xlErrNull = ((xloper *)&xloperErrNull);
xloper *p_xlErrDiv0 = ((xloper *)&xloperErrDiv0);
xloper *p_xlErrValue = ((xloper *)&xloperErrValue);
xloper *p_xlErrRef = ((xloper *)&xloperErrRef);
xloper *p_xlErrName = ((xloper *)&xloperErrName);
xloper *p_xlErrNum = ((xloper *)&xloperErrNum);
xloper *p_xlErrNa = ((xloper *)&xloperErrNa);

Note that for the following xloper types, you could also simply define the following:

xloper xloperBooleanFalse = {0.0, xltypeBool};
xloper xloperMissing = {0.0, xltypeMissing};
xloper xloperNil = {0.0, xltypeNil};
xloper *p_xlFalse = &xloperBooleanFalse;
xloper *p_xlMissing = &xloperMissing;
xloper *p_xlNil = &xloperNil;

Similarly, constant xloper12s can be defined as follows:

typedef struct
{

INT32 int1;
INT32 int2;
INT32 int3;
INT32 int4;
DWORD xltype;

}
const_xloper12;

const_xloper12 xloper12BooleanTrue = {1, 0, 0, 0, xltypeBool};
const_xloper12 xloper12BooleanFalse = {0, 0, 0, 0, xltypeBool};
const_xloper12 xloper12Missing = {0, 0, 0, 0, xltypeMissing};
const_xloper12 xloper12Nil = {0, 0, 0, 0, xltypeNil};
const_xloper12 xloper12ErrNull = {0, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrDiv0 = {7, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrValue = {15, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrRef = {23, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrName = {29, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrNum = {36, 0, 0, 0, xltypeErr};
const_xloper12 xloper12ErrNa = {42, 0, 0, 0, xltypeErr};

146 Excel Add-in Development in C/C++

xloper12 *p_xl12True = ((xloper12 *)&xloper12BooleanTrue);
xloper12 *p_xl12False = ((xloper12 *)&xloper12BooleanFalse);
xloper12 *p_xl12Missing = ((xloper12 *)&xloper12Missing);
xloper12 *p_xl12Nil = ((xloper12 *)&xloper12Nil);
xloper12 *p_xl12ErrNull = ((xloper12 *)&xloper12ErrNull);
xloper12 *p_xl12ErrDiv0 = ((xloper12 *)&xloper12ErrDiv0);
xloper12 *p_xl12ErrValue = ((xloper12 *)&xloper12ErrValue);
xloper12 *p_xl12ErrRef = ((xloper12 *)&xloper12ErrRef);
xloper12 *p_xl12ErrName = ((xloper12 *)&xloper12ErrName);
xloper12 *p_xl12ErrNum = ((xloper12 *)&xloper12ErrNum);
xloper12 *p_xl12ErrNa = ((xloper12 *)&xloper12ErrNa);

6.4 A C++ CLASS WRAPPER FOR THE
xloper/xloper12 – cpp xloper

This book deliberately avoids being about object-oriented (OO) programming so that it
is accessible to those with C skills only, or those with C resources they wish to use with
Excel. However, wrapping xlopers up in a simple C++ class greatly simplifies their
handling and XLL code as the following sections aim to demonstrate.

This is made all the more important with the release of Excel 2007 which complicates
matters with the introduction of the xloper12 data type, Unicode strings and the new
C API functions Excel12() and Excel12v() (see Chapter 8).

The creation of a simple class to handle these structures is, in itself, a helpful exercise
in understanding their use, in particular the management of memory. The class code that
follows is as simple as possible. It is meant to serve as an example of the simplifications
possible using a simple class rather than to be held up as the ideal class for all purposes.
Many alternative designs, though inevitably similar, would work just as well, perhaps
better.

When designing a new class, it is helpful to make some notes about the purpose of
the class – a kind of class manifesto (apolitically speaking). Here are some brief notes
summarising in what circumstances xlopers are encountered and describing what the
class cpp_xloper should do:

A DLL needs to handle xlopers or xloper12s when:

• they are supplied to the DLL as arguments to worksheet functions and XLL interface
functions and need to be converted before being used within the DLL;

• they need to be created to be passed as arguments in calls to Excel4(), Excel4v(),
Excel12(), Excel12v() (see section 8.2 The Excel4(),Excel12() C API
functions on page 226);

• they are returned from calls to Excel4() or Excel12() and need to be converted
before being used within the DLL;

• they need to be created for return to the worksheet.

The class cpp_xloper should therefore do the following:

1. Make the most of C++ class constructors to make the creation and initialisation of
xlopers and xloper12s as simple and intuitive as possible.

2. Make use of the class destructor so that all the logic for freeing memory in the
appropriate way is in one place.

Passing Data Between Excel and the DLL 147

3. Make good use of C++ operator overloading to make assignment and extraction of
values to and from existing cpp_xlopers easy and intuitive.
a. It should use ‘=’ to assign values (where possible) and deal with related memory

issues.
c. It should use the int, bool, double, double * and char *, etc., conversion

operators so that C-style casts work intuitively.
d. It should overload the == operator to make type and value comparison easy.

4. Change the xloper or xloper12 type and deal with any memory consequences of
an assignment of a value to an existing cpp xloper.

5. Provide a clean way to convert between xlopers and supported OLE/COM variants.
6. Provide a method for obtaining a pointer to a thread-local static xloper that can be

returned to Excel. It should, at the same time, clean up the resources associated with
the cpp xloper, and handle any signalling to Excel about memory that still needs
to be freed.

7. Make the handling of xltypeMulti arrays and their elements as easy as possible.
8. Internally use xlopers or xloper12s depending on the running version, to avoid

Excel 2007+ casting xlopers up to and down from xloper12s.
9. Internally use byte strings in Excel 2003 – and Unicode strings in Excel 2007+.

10. Provide wrappers to the C API access functions Excel4(), Excel4v(),
Excel12() and Excel12v() to simplify their calling and memory management.3

(See sections 8.2, 8.3 and 8.5 for more details).

The cpp_xloper class (included in the CD ROM) exposes the following types of
member functions:

• At least one constructor for each type of xloper/xloper12.
• Type conversion operator functions and casts that simplify the copying of an xloper/
xloper12’s value to a simple C/C++ variable type.

• Accessor functions that simplify the getting and setting of values within an
xltypeMulti array.

• Overloaded assignment and boolean operators and C-style casts.
• Additional functions that change the type or value of an xloper/xloper12.
• A number of information functions that, for example, test the type or value.
• A number of overloaded member functions, Excel(), that wrap the functions
Excel4(), Excel4v(), Excel12() and Excel12v(). (These are covered in more
detail in section 8.5 on page 238).

The class contains some private data members:

• An xloper (m_Op), and an xloper12 (m_Op12).
• A Boolean, m_DLLtoFree, that determines if any memory pointed to by the xloper

was dynamically allocated by the DLL, and m_DLLtoFree12 that does the same for
the xloper12. (These are set during construction or assignment and referred to during
destruction or reassignment.)

• A Boolean, m_XLtoFree, that determines if any memory pointed to by the xloper
was dynamically allocated by Excel, and m_XLtoFree12 that does the same for the
xloper12. This is set by the class when the cpp_xloper is used for the return

3 The example class in the first edition of this book did not contain these wrappers.

148 Excel Add-in Development in C/C++

value of Excel4() or Excel12() respectively. It is referred to during destruction
or reassignment.

Here is a listing of the header file cpp_xloper.h:

#include "xlcall.h"
#include "xloper.h"

extern int gExcelVersion;
extern bool gExcelVersion12plus;
extern bool gExcelVersion11minus;

#include "xlcall.h"
#include "xloper.h"
#include "xloper12.h"

//==
// Row and column arguments to cpp_xloper functions dealing
// with array and ranges are declared as RW and COL (INT32).
// cpp_xloper class performs version-specific check on the
// limits of the provided values and fails if limits are
// exceeded.
//==

class cpp_xloper
{
public:
//--
// constructors
//--

cpp_xloper(); // created as xltypeNil
cpp_xloper(const xloper *p_oper, bool deep_copy = false);
cpp_xloper(const xloper12 *p_oper, bool deep_copy = false);
cpp_xloper(const char *text);// xltypeStr: xloper ASCII byte-string
cpp_xloper(const wchar_t *text);// xltypeStr: xloper12 unicode string
cpp_xloper(int w); // xltypeInt
cpp_xloper(DWORD dw); // xltypeNum
cpp_xloper(int w, int min, int max); // xltypeInt (or xltypeNil)
cpp_xloper(double d); // xltypeNum
cpp_xloper(bool b); // xltypeBool
cpp_xloper(WORD e); // xltypeErr
cpp_xloper(RW, RW, COL, COL);// xltypeSRef
cpp_xloper(const char *, RW, RW, COL, COL); // xltypeRef from sheet name
cpp_xloper(DWORD, RW, RW, COL, COL); // xltypeRef from sheet ID
cpp_xloper(const VARIANT *pv); // Takes its type from the VARTYPE

// xltypeBigData: No deep copying or memory management for this type
cpp_xloper(const void *data, long len);

// xltypeMulti constructors
cpp_xloper(RW rows, COL cols); // array of undetermined type
cpp_xloper(RW rows, COL cols, const double *d_array); // array of

xltypeNum
// Arrays of strings cast up or down depending on the running Excel version

cpp_xloper(RW rows, COL cols, char **str_array); // xltypeStr byte strs
cpp_xloper(RW rows, COL cols, wchar_t **str_array); // (Unicode strings)
cpp_xloper(RW &rows, COL &cols, const xloper *input_oper); // from types
cpp_xloper(RW &rows, COL &cols, const xloper12 *input_oper); // Sref/Ref
cpp_xloper(RW rows, COL cols, const cpp_xloper *init_array);

Passing Data Between Excel and the DLL 149

cpp_xloper(const xl4_array *array);
cpp_xloper(const xl12_array *array);
cpp_xloper(const cpp_xloper &source); // Copy constructor

//--
// destructor
//--

∼cpp_xloper();

//--
// Overloaded operators
//--

cpp_xloper &operator=(const cpp_xloper &source);
int operator=(int); // xltypeInt
bool operator=(bool b); // xltypeBool
double operator=(double); // xltypeNum
WORD operator=(WORD e); // xltypeErr
const char *operator=(const char *); // xltypeStr
const wchar_t *operator=(const wchar_t *); // xltypeStr
const xloper *operator=(const xloper *); // same type as arg
const xloper12 *operator=(const xloper12 *); // same type as arg
const VARIANT *operator=(const VARIANT *); // same type as arg
const xl4_array *operator=(const xl4_array *array);
const xl12_array *operator=(const xl12_array *array);

bool operator==(int w);
bool operator==(bool b);
bool operator==(double d);
bool operator==(WORD e);
bool operator==(const char *text);
bool operator==(const wchar_t *text);
bool operator==(const xloper *);
bool operator==(const xloper12 *);
bool operator==(const cpp_xloper &cpp_op2);

bool operator!=(int w) {return !operator==(w);}
bool operator!=(bool b) {return !operator==(b);}
bool operator!=(double d) {return !operator==(d);}
bool operator!=(WORD e) {return !operator==(e);}
bool operator!=(const char *text) {return !operator==(text);}
bool operator!=(const wchar_t *text) {return !operator==(text);}
bool operator!=(const xloper *p_op) {return !operator==(p_op);}
bool operator!=(const xloper12 *p_op) {return !operator==(p_op);}
bool operator!=(const cpp_xloper &cpp_op2) {return !operator==(cpp_op2);}

operator int(void) const;
operator bool(void) const;
operator double(void) const;
operator xloper(void); // get a shallow copy
operator xloper12(void); // get a shallow copy

void operator+=(double); // coersion to double and addition
void operator+=(int w) {operator+=((double)w);}
void operator-=(double d) {operator+=(-d);}
void operator-=(int w) {operator+=((double)-w);}
void operator++(void) {operator+=(1.0);}
void operator--(void) {operator+=(-1.0);}

// If this type is numeric, coerces Op to double and adds. If this

150 Excel Add-in Development in C/C++

// type is a string, coerces Op to string and concatenates. Else
// does nothing.

void operator+=(const cpp_xloper &Op);

double operator*=(double); // Coerce to double and multiply

xloper *OpAddr(void); // return xloper address
xloper12 *OpAddr12(void); // return xloper12 address

//--
// string oper functions
//--

bool Concat(const cpp_xloper &op); // coerce to strs and concatenate
size_t Len(void) const; // returns 0 if not a string
wchar_t First(void) const; // get the first char or 0 if not a string
wchar_t Mid(int posn) const; // Nth char: 1st=1. Rtn 0 if !string
operator char *(void) const; // deep copy as byte string, 0 if not str
operator wchar_t *(void) const; // deep copy as Unicode, 0 if not str
void operator+=(const char *); // coerce to string and concatenate
void operator+=(const wchar_t *);

//--
// property get and set functions
//--

int GetType(void) const ;
bool GetErrVal(WORD &e) const;
void SetType(int new_type);
void SetToError(int err_code);
bool SetToCallerValue(void);
bool SetTypeMulti(RW array_rows, COL array_cols);
bool SetCell(RW rwFirst, RW rwLast, COL colFirst, COL colLast);
bool IsType(int) const;
bool IsStr(void) const {return IsType(xltypeStr);}
bool IsNum(void) const {return IsType(xltypeNum);}
bool IsBool(void) const {return IsType(xltypeBool);}
bool IsTrue(void) const; // Explicit check for TRUE
bool IsFalse(void) const; // Explicit check for FALSE
bool IsInt(void) const {return IsType(xltypeInt);}
bool IsErr(WORD err = 0) const;
bool IsMulti(void) const {return IsType(xltypeMulti);}
bool IsNil(void) const {return IsType(xltypeNil);}
bool IsMissing(void) const {return IsType(xltypeMissing);}
bool IsNotGiven(void) const{return IsType(xltypeNil | xltypeMissing);}
bool IsRef(void) const {return IsType(xltypeRef | xltypeSRef);}
bool IsBigData(void) const;

bool IsNullErr(void) const {return IsErr(xlerrNull);}
bool IsDiv0Err(void) const {return IsErr(xlerrDiv0);}
bool IsValueErr(void) const {return IsErr(xlerrValue);}
bool IsRefErr(void) const {return IsErr(xlerrRef);}
bool IsNameErr(void) const {return IsErr(xlerrName);}
bool IsNumErr(void) const {return IsErr(xlerrNum);}
bool IsNaErr(void) const {return IsErr(xlerrNA);}

//--
// property get and set functions for xltypeRef and xltypeSRef
//--

bool GetRangeSize(RW &rows, COL &cols) const; // Use with SRef/Ref
bool IsActiveRef(void) const; // Is a reference on the active sheet?

Passing Data Between Excel and the DLL 151

bool ConvertRefToMulti(void);
bool ConvertRefToValues(void);
bool ConvertRefToSingleValue(void);
bool ConvertSRefToRef(void);
RW GetTopRow(void) const; // counts from 1
RW GetBottomRow(void) const; // counts from 1
COL GetLeftColumn(void) const; // counts from 1
COL GetRightColumn(void) const; // counts from 1
bool SetTopRow(RW row); // counts from 1
bool SetBottomRow(RW row); // counts from 1
bool SetLeftColumn(COL col); // counts from 1
bool SetRightColumn(COL col); // counts from 1
wchar_t *GetSheetName(void) const;
DWORD GetSheetID(void) const;
bool SetSheetName(wchar_t *sheet_name) const;
bool SetSheetID(DWORD id) const;

//--
// property get and set functions for xltypeMulti
//--

void InitialiseArray(RW rows, COL cols, const double *init_data);
void InitialiseArray(RW rows, COL cols, const cpp_xloper *init_array);
int GetArrayEltType(RW row, COL column) const;
int GetArrayEltType(DWORD offset) const;
bool SetArrayEltType(RW row, COL column, int new_type);
bool SetArrayEltType(DWORD offset, int new_type);
bool GetArraySize(DWORD &size) const;
bool GetArraySize(RW &rows, COL &cols) const;

bool GetArrayElt(DWORD offset, int &w) const;
bool GetArrayElt(DWORD offset, bool &b) const;
bool GetArrayElt(DWORD offset, double &d) const;
bool GetArrayElt(DWORD offset, WORD &e) const;
bool GetArrayElt(DWORD offset, char *&text) const; // makes new string
bool GetArrayElt(DWORD offset, wchar_t *&text) const; // new string
bool GetArrayElt(DWORD offset, xloper *&p_op) const; // get ptr only
bool GetArrayElt(DWORD offset, xloper12 *&p_op) const; // get ptr only
bool GetArrayElt(DWORD offset, VARIANT &vt) const; // get deep copy
bool GetArrayElt(DWORD offset, cpp_xloper &Elt) const; // deep copy

bool GetArrayElt(RW row, COL column, int &w) const;
bool GetArrayElt(RW row, COL column, bool &b) const;
bool GetArrayElt(RW row, COL column, double &d) const;
bool GetArrayElt(RW row, COL column, WORD &e) const;
bool GetArrayElt(RW row, COL column, char *&text) const; // new string
bool GetArrayElt(RW row, COL column, wchar_t *&text) const; // new str
bool GetArrayElt(RW row, COL column, xloper *&p_op) const; // get ptr
bool GetArrayElt(RW row, COL column, xloper12 *&p_op) const; // get ptr
bool GetArrayElt(RW row, COL column, VARIANT &vt) const; // deep copy
bool GetArrayElt(RW row, COL column, cpp_xloper &Elt) const; // deep cpy

bool SetArrayElt(DWORD offset, int w);
bool SetArrayElt(DWORD offset, bool b);
bool SetArrayElt(DWORD offset, double d);
bool SetArrayElt(DWORD offset, WORD e);
bool SetArrayElt(DWORD offset, const char *text);
bool SetArrayElt(DWORD offset, const wchar_t *text);
bool SetArrayElt(DWORD offset, const xloper *p_source);

152 Excel Add-in Development in C/C++

bool SetArrayElt(DWORD offset, const xloper12 *p_source);
bool SetArrayElt(DWORD offset, const VARIANT &vt);
bool SetArrayElt(DWORD offset, const cpp_xloper &Source);

bool SetArrayElt(RW row, COL column, int w);
bool SetArrayElt(RW row, COL column, bool b);
bool SetArrayElt(RW row, COL column, double d);
bool SetArrayElt(RW row, COL column, WORD e);
bool SetArrayElt(RW row, COL column, const char *text);
bool SetArrayElt(RW row, COL column, const wchar_t *text);
bool SetArrayElt(RW row, COL column, const xloper *p_source);
bool SetArrayElt(RW row, COL column, const xloper12 *p_source);
bool SetArrayElt(RW row, COL column, const VARIANT &vt);
bool SetArrayElt(RW row, COL column, const cpp_xloper &Source);

bool Transpose(void);

double *ConvertMultiToDouble(void);
bool SameShapeAs(const cpp_xloper &Op) const;

bool ArrayEltEq(RW row, COL col, const char *) const;
bool ArrayEltEq(RW row, COL col, const wchar_t *) const;
bool ArrayEltEq(RW row, COL col, const xloper *) const;
bool ArrayEltEq(RW row, COL col, const xloper12 *) const;
bool ArrayEltEq(RW row, COL col, const cpp_xloper &) const;
bool ArrayEltEq(DWORD offset, const char *) const;
bool ArrayEltEq(DWORD offset, const wchar_t *) const;
bool ArrayEltEq(DWORD offset, const xloper *) const;
bool ArrayEltEq(DWORD offset, const xloper12 *) const;
bool ArrayEltEq(DWORD offset, const cpp_xloper &) const;

//--
// other public functions
//--

void Clear(void); // Clears the xlopers without freeing memory
xloper *ExtractXloper(void); // extract xloper, clear cpp_xloper
xloper12 *ExtractXloper12(void); // extract xloper12, clear cpp_xloper
VARIANT ExtractVariant(void); // extract VARIANT, clear cpp_xloper
void Free(void); // free memory
bool ConvertToString(void);
bool AsVariant(VARIANT &var) const; // Return an equivalent Variant
xl4_array *AsDblArray(void) const; // Return an xl4_array
bool Alert(int dialog_type = 2); // Display as string in alert dialog

//---
// Wrapper functions for Excel4() and Excel12(). Sets cpp_xloper to
// result of call and returns Excel4()/Excel12() return code.
//---

int Excel(int xlfn);
int Excel(int xlfn, int count, const xloper *p_op1, ...);
int Excel(int xlfn, int count, const xloper12 *p_op1, ...);
int Excel(int xlfn, int count, const cpp_xloper *p_op1, ...);
int Excel(int xlfn, int count, const xloper *p_array[]);
int Excel(int xlfn, int count, const xloper12 *p_array[]);
int Excel(int xlfn, int count, const cpp_xloper *p_array[]);

private:
inline void cpp_xloper::FreeOp(void); // free xloper and initialise
inline void cpp_xloper::FreeOp12(void); // free xloper12 and init.

Passing Data Between Excel and the DLL 153

inline void cpp_xloper::ClearOp(void);
inline void cpp_xloper::ClearOp12(void);
inline bool RowValid(RW rw) const
{return rw >= 0 && rw < (gExcelVersion12plus ? MAX_XL12_ROWS :

MAX_XL11_ROWS);}

inline bool ColValid(COL col) const
{return col >= 0 && col < (gExcelVersion12plus?MAX_XL12_COLS :

MAX_XL11_COLS);}

inline bool RowColValid(RW rw, COL col) const
{return RowValid(rw) && ColValid(col);}

bool MultiRCtoOffset(RW row, COL col, DWORD &offset) const;
bool MultiOffsetOK(DWORD offset) const;

// Either or both these can be initialised: only one will be initialised
// unless OpAddr/ExtractXloper is called in version 12+ or
// OpAddr12/ExtractXloper12 is called in version 11-. The version
// normally initialised is the one corresponding to the running version
// to remove unnecessary conversions.

xloper m_Op;
bool m_DLLtoFree;
bool m_XLtoFree;

xloper12 m_Op12;
bool m_DLLtoFree12;
bool m_XLtoFree12;

};

A full listing of the class code is included on the CD ROM in the example project source
file cpp_xloper.cpp. Sections of it are also reproduced below as examples of the low
level handling of xloper/xloper12s and conversion to and from C/C++ types.

Here is a demonstration of the ways in which the cpp_xloper class can be used to
create numeric xlopers:

double x, y, z;
// initialise x, y, z, values ...

cpp_xloper Oper1(x); // creates an xltypeNum, value = x
cpp_xloper Oper2 = y; // creates an xltypeNum, value = y
cpp_xloper Oper3; // initialised to xltypeNil
// Change the type of Oper3 to xltypeNum, value = z, using the
// member function double operator=(double)
Oper3 = z;
// Create xltypeNum=z using copy constructor
cpp_xloper Oper4 = Oper3;

154 Excel Add-in Development in C/C++

6.5 CONVERTING BETWEEN xloper/xloper12s
AND C/C++ DATA TYPES

The need to convert arguments and return values can, in many cases, be avoided by declar-
ing functions as taking C-type arguments and returning C-type values. (How you inform
Excel what type of arguments your DLL function expects and what type of return value
it outputs is covered in section 8.6 Registering and un-registering DLL (XLL) functions
on page 244.)

However, conversion from C/C++ types to xlopers is necessary when accessing
Excel’s functionality from within the DLL using the C API. This includes when you
want to register your add-in functions. Excel demands that inputs to the interface functions
Excel4() and Excel12() are given as pointers to xlopers and xloper12s respec-
tively. Also, values are returned from calls to the C API via xlopers or xloper12s.
Fortunately, this conversion is very straightforward in most cases.

If you want to accept input from Excel in the most general form, it is necessary to
declare DLL functions as taking xloper * or xloper12 * arguments. Unless they are
to be passed directly back into Excel via the C API interface, you would then need to
convert them. Excel will never pass in a null xloper * pointer even if the argument is
missing: the xloper will have the type xltypeMissing instead.

Conversion is also necessary when you want to declare a DLL function as being capable
of returning different data types, for example, a string or a number. In this case the function
needs to return a pointer to an xloper that is not on the stack, i.e., one that will survive
the return statement.

The following sections provide a more detailed discussion of the xloper types and
give examples of how to convert them to C/C++ types or to create them from C/C++
types. Some of the examples are function methods from the cpp_xloper class.

6.6 CONVERTING BETWEEN xloper/xloper12 TYPES
The cpp_xloper relies on a set of routines for converting from one xloper/xloper12
type to another, as well as to and from native C/C++ types. Many of these routines are
reproduced in the examples in section 6.9 below. Of particular importance is the Excel
C API function xlCoerce. This function, accessed via the C API interface function
Excel4() or Excel12(), attempts to return an xloper or xloper12 of a requested
type from the type of the passed-in xloper. It is covered in detail in section 8.8.3
Converting one xloper type to another : xlCoerce on page 276. In the examples that
follow, this function is itself wrapped in a function whose prototype is:

bool coerce_xloper(xloper *p_op, xloper &ret_val, int target_type);

This attempts to convert any xloper to an xloper of target type. It returns false
if unsuccessful and true if successful, with the converted value returned via the pass-by-
ref argument, ret val. The code for this function is listed in section 8.8.3 on page 276.

This function is overloaded for xloper12 conversion, and works in exactly the
same way:

bool coerce_xloper(xloper12 *p_op, xloper12 &ret_val, int target_type);

Passing Data Between Excel and the DLL 155

The code for these functions is in the example projects on the CD rom in files
xloper.cpp and xloper12.cpp respectively.

6.7 CONVERTING BETWEEN xlopers AND VARIANTS

Chapter 3 Using VBA discusses the OLE Variant structure and the various types supported
by VBA, as well as the more limited subset that Excel passes to VBA functions declared
as taking Variant arguments. It is also useful to have a number of conversion routines in
an XLL that you also wish to use as interface to VBA, or that you might want to use to
access COM. The cpp_xloper class has a number of these:

cpp_xloper(const VARIANT *); // Takes its type from the VARTYPE
const VARIANT *operator=(const VARIANT *); // Same type as passed-in VT
bool SetArrayElt(DWORD offset, const VARIANT &vt);
bool SetArrayElt(RW row, COL column, const VARIANT &vt);
bool GetArrayElt(DWORD offset, VARIANT &vt) const; // get deep copy
bool GetArrayElt(RW row, COL column, VARIANT &vt) const; // get deep copy
VARIANT ExtractVariant(void); // extract VARIANT, clear cpp_xloper
bool AsVariant(VARIANT &var) const; // Return an equivalent Variant

The first four methods, a constructor and three assignment operators, rely on the following
routine. (The code for the function array_vt_to_xloper() is a variation on this
function. All the following code is listed in xloper.cpp in the example project on the
CD ROM.)

#include <ole2.h>

#define VT_XL_ERR_OFFSET 2148141008ul

bool vt_to_xloper(xloper &op, const VARIANT *pv, bool convert_array)
{

if(pv->vt & (VT_VECTOR | VT_BYREF))
return false;

if(pv->vt & VT_ARRAY)
{

if(!convert_array)
return false;

return array_vt_to_xloper(op, pv);
}
switch(pv->vt)
{
case VT_R8:

op.xltype = xltypeNum;
op.val.num = pv->dblVal;
break;

case VT_I2:
op.xltype = xltypeInt;
op.val.w = pv->iVal;
break;

case VT_BOOL:

156 Excel Add-in Development in C/C++

op.xltype = xltypeBool;
op.val.xbool = pv->boolVal;
break;

case VT_ERROR:
op.xltype = xltypeErr;
op.val.err = (unsigned short)(pv->ulVal - VT_XL_ERR_OFFSET);
break;

case VT_BSTR:
op.xltype = xltypeStr;
op.val.str = vt_bstr_to_xlstring(pv->bstrVal);
break;

case VT_CY:
op.xltype = xltypeNum;
op.val.num = (double)(pv->cyVal.int64 / 1e4);
break;

default: // type not converted
return false;

}
return true;

}

The last four all convert in the other direction and rely on the following routine:

bool xloper_to_vt(const xloper *p_op, VARIANT &var, bool convert_array)
{

VariantInit(&var); // type is set to VT_EMPTY

switch(p_op->xltype)
{
case xltypeNum:

var.vt = VT_R8;
var.dblVal = p_op->val.num;
break;

case xltypeInt:
var.vt = VT_I2;
var.iVal = p_op->val.w;
break;

case xltypeBool:
var.vt = VT_BOOL;
var.boolVal = p_op->val.xbool;
break;

case xltypeStr:
var.vt = VT_BSTR;
var.bstrVal = xlstring_to_vt_bstr(p_op->val.str);
break;

case xltypeErr:
var.vt = VT_ERROR;
var.ulVal = VT_XL_ERR_OFFSET + p_op->val.err;
break;

case xltypeMulti:

Passing Data Between Excel and the DLL 157

if(convert_array)
{

VARIANT temp_vt;
SAFEARRAYBOUND bound[2];
long elt_index[2];

bound[0].lLbound = bound[1].lLbound = 0;
bound[0].cElements = p_op->val.array.rows;
bound[1].cElements = p_op->val.array.columns;

var.vt = VT_ARRAY | VT_VARIANT; // array of Variants
var.parray = SafeArrayCreate(VT_VARIANT, 2, bound);

if(!var.parray)
return false;

xloper *p_op_temp = p_op->val.array.lparray;

for(WORD r = 0; r < p_op->val.array.rows; r++)
{

for(WORD c = 0; c < p_op->val.array.columns;)
{

// Call with last arg false, so not to convert array within array
xloper_to_vt(p_op_temp++, temp_vt, false);
elt_index[0] = r;
elt_index[1] = c++;
SafeArrayPutElement(var.parray, elt_index, &temp_vt);

}
}
break;

}
// else, fall through to default option

default: // type not converted
return false;

}
return true;

}

It is important to note that Variant strings are wide-character OLE BSTRs, in contrast to
the byte-string BSTRs that Excel VBA uses for its String type when exchanging data
with Excel and with a DLL declared as taking a String (in VBA)/BSTR (in C/C++)
argument. The following code shows both conversions:

// Converts a VT_BSTR wide-char string to a newly allocated
// byte-counted string. Memory returned must be freed by caller.
char *vt_bstr_to_xlstring(const BSTR bstr)
{

if(!bstr)
return NULL;

size_t len = SysStringLen(bstr);

if(len > MAX_XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);

158 Excel Add-in Development in C/C++

// VT_BSTR is a wchar_t string, so need to convert to a byte-string
if(!p | | wcstombs(p + 1, bstr, len + 1) < 0)
{

free(p);
return false;

}
p[0] = (BYTE)len;
return p;

}

// Converts a byte-counted string to a VT_BSTR wide-char Unicode string
// Does not rely on (or assume) that input string is null-terminated.
BSTR xlstring_to_vt_bstr(const char *str)
{

if(!str)
return NULL;

wchar_t *p = (wchar_t *)malloc(str[0] * sizeof(wchar_t));

if(!p | | mbstowcs(p, str + 1, str[0]) < 0)
{

free(p);
return NULL;

}
BSTR bstr = SysAllocStringLen(p, str[0]);
free(p);
return bstr;

}

Note that in Excel 2007, the xloper12 string is a Unicode string, so converting from
Variant strings to length-counted xloper12 strings is more straightforward, as there is
no need to convert from Unicode to bytes:

wchar_t *vt_bstr_to_xl12string(const BSTR bstr)
{

if(!bstr)
return NULL;

size_t len = SysStringLen(bstr);

if(len > MAX_XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2)* sizeof(wchar_t));
memcpy(p, bstr, (len + 2) * sizeof(wchar_t));
p[0] = (wchar_t)len;
return p;

}

Similarly, conversion from xloper12 to Variant Unicode string is simpler too:

BSTR xlstring_to_vt_bstr(wchar_t *str)
{

Passing Data Between Excel and the DLL 159

if(!str)
return NULL;

BSTR bstr = SysAllocStringLen(str + 1, str[0]);
return bstr;

}

6.8 CONVERTING BETWEEN xlopers and xloper12s

Note: xloper12s are only supported in Excel 2007 and later versions.
Excel 2007 uses xloper12s internally but still supports xlopers and the Excel4 C
API functions. This means that XLLs that only use xlopers and Excel4() should run
as expected. However, calls to Excel4() will be slower than calls to Excel12() as
Excel 2007 needs to convert xlopers up to xloper12s, call the requested function,
and then finally convert the xloper12 result back down to an xloper. This conversion
overhead could be significant so the advice, where frequent calls to the C API are being
made, is only to use xloper12s and Excel12() when running Excel 2007+.

However, you might not want to duplicate interface functions in all cases: You might
want to keep the xloper versions of your exported functions. In these circumstances,
you should consider converting from the supplied xlopers up to xloper12s before
repeatedly calling the C API, and then convert your final xloper12 result down to an
xloper. To do this, your project needs to contain conversion functions, and example
code is listed below.

Note that converting up to xloper12s from xlopers loses no information, but string
conversion (from byte strings to Unicode strings) is, in general, locale dependent. Note
also that converting down to xlopers can lose information and may, in some cases, not
even be possible: Unicode strings are mapped down to byte strings, possibly losing data;
Ranges and arrays may need to be truncated, and ranges might be completely outside the
grid supported by xlopers. How you deal with ranges and arrays that are too big should
be defined by your requirements, and the following code demonstrates two approaches:
truncation and complete failure.

The following code relies on these constant definitions:

#define MAX_XL4_STR_LEN 255u
#define MAX_XL11_ROWS 65536
#define MAX_XL11_COLS 256
#define MAX_XL12_STR_LEN 32767u
#define MAX_XL12_ROWS 1048576
#define MAX_XL12_COLS 16384

Note that these routines ignore the source memory bits and DO NOT set these in the
converted xloper/xloper12. The caller must set these bits, or other flags, depending
on the type of the returned xloper/xloper12.

bool xloper_to_xloper12(xloper12 *p_target, const xloper *p_source)
{

p_target->xltype = p_source->xltype & ∼(xlbitXLFree | xlbitDLLFree);

160 Excel Add-in Development in C/C++

switch(p_target->xltype)
{
case xltypeNum: p_target->val.num = p_source->val.num; break;
case xltypeBool: p_target->val.xbool = p_source->val.xbool; break;
case xltypeInt: p_target->val.w = p_source->val.w; break;
case xltypeErr: p_target->val.err = p_source->val.err; break;
case xltypeSRef:

{
p_target->val.sref.count = 1;
const xlref *p_ref = &(p_source->val.sref.ref);
xlref12 *p_ref12 = &(p_target->val.sref.ref);

p_ref12->rwFirst = p_ref->rwFirst;
p_ref12->rwLast = p_ref->rwLast;
p_ref12->colFirst = p_ref->colFirst;
p_ref12->colLast = p_ref->colLast;

}
break;

// These types have memory associated with them, so need to allocate
// new memory and then copy the contents from source.

case xltypeStr:
p_target->val.str = deep_copy_xl12string(p_source->val.str);
break;

case xltypeRef:
{

xlmref *p_s_mref = p_source->val.mref.lpmref;
int count = p_s_mref->count;
xlmref12 *p_t_mref = (xlmref12 *)malloc(sizeof(xlmref12)

+ (count - 1) * sizeof(xlref12));
if(!p_t_mref)

return false;
p_target->val.mref.lpmref = p_t_mref;
p_t_mref->count = count;
xlref12 *p_ref12 = p_t_mref->reftbl;
xlref *p_ref = p_s_mref->reftbl;

for(;count--; p_ref12++, p_ref++)
{

p_ref12->colFirst = p_ref->colFirst;
p_ref12->colLast = p_ref->colLast;
p_ref12->rwFirst = p_ref->rwFirst;
p_ref12->rwLast = p_ref->rwLast;

}
p_target->val.mref.idSheet = p_source->val.mref.idSheet;

}
break;

case xltypeMulti:
{

p_target->val.array.columns = p_source->val.array.columns;
p_target->val.array.rows = p_source->val.array.rows;
int limit = p_source->val.array.rows

* p_source->val.array.columns;
xloper12 *p_t = (xloper12 *)malloc(limit * sizeof(xloper12));
if(!p_t)

return false;
p_target->val.array.lparray = p_t;
xloper *p_s = p_source->val.array.lparray;

Passing Data Between Excel and the DLL 161

for(;limit--;)
xloper_to_xloper12(p_t++, p_s++);

}
break;

}
return true;

}

// Conversion can fail in which case returns bool false
bool xloper12_to_xloper(xloper *p_target, const xloper12 *p_source)
{

p_target->xltype = (WORD)p_source->xltype
& ∼(xlbitXLFree | xlbitDLLFree);

switch(p_target->xltype)
{
case xltypeNum: p_target->val.num = p_source->val.num; break;
case xltypeBool: p_target->val.xbool = p_source->val.xbool; break;
case xltypeInt: p_target->val.w = p_source->val.w; break;
case xltypeErr: p_target->val.err = p_source->val.err; break;

// This type can reference larger ranges or arrays than xloper
// so need to check that the xloper limits are not exceeded

case xltypeSRef:
{

p_target->val.sref.count = 1;
const xlref12 *p_ref12 = &(p_source->val.sref.ref);
xlref *p_ref = &(p_target->val.sref.ref);

#if 0 // Very safe: fail if ranges start or end outside xloper scope
if(p_ref12->colLast >= MAX_XL11_COLS // count from 0
| | p_ref12->rwLast >= MAX_XL11_ROWS
| | p_ref12->colFirst >= MAX_XL11_COLS
| | p_ref12->rwFirst >= MAX_XL11_ROWS)
{

return false;
}
p_ref->colFirst = p_ref12->colFirst;
p_ref->rwFirst = p_ref12->rwFirst;
p_ref->colLast = p_ref12->colLast;
p_ref->rwLast = p_ref12->rwLast;

#else // Truncate ranges that extend beyond xloper scope
if(p_ref12->colFirst >= MAX_XL11_COLS // count from 0
| | p_ref12->rwFirst >= MAX_XL11_ROWS)
{

// Range is completely outside xloper's scope so fail
return false;

}
p_ref->colFirst = p_ref12->colFirst;
p_ref->rwFirst = p_ref12->rwFirst;
p_ref->colLast = p_ref12->colLast >= MAX_XL11_COLS ?

MAX_XL11_COLS - 1 : p_ref12->colLast;
p_ref->rwLast = p_ref12->rwLast >= MAX_XL11_ROWS ?

MAX_XL11_ROWS - 1 : p_ref12->rwLast;
#endif

}
break;

// These types have memory associated with them, so need to allocate

162 Excel Add-in Development in C/C++

// new memory and then copy the contents from source.
case xltypeStr:

// String truncated if longer than 255 bytes and cast down to bytes
p_target->val.str = deep_copy_xlstring(p_source->val.str);
break;

// These last 2 types can reference larger ranges or arrays than
// xloper types so need to check that the xloper limits are not exceeded

case xltypeRef:
{

p_target->val.mref.idSheet = p_source->val.mref.idSheet;
int count = p_source->val.mref.lpmref->count;
xlmref *p_t_mref = (xlmref *)malloc(sizeof(xlmref)

+ (count - 1) * sizeof(xlref));
p_target->val.mref.lpmref->count = count;
xlref *p_ref = p_target->val.mref.lpmref->reftbl;
xlref12 *p_ref12 = p_source->val.mref.lpmref->reftbl;

for(;count--; p_ref12++, p_ref++)
{

#if 0 // Very safe: fail if ranges start or end outside xloper scope
if(p_ref12->colLast >= MAX_XL11_COLS // count from 0
| | p_ref12->rwLast >= MAX_XL11_ROWS
| | p_ref12->colFirst >= MAX_XL11_COLS
| | p_ref12->rwFirst >= MAX_XL11_ROWS)
{
free(p_t_mref);
p_target->val.mref.lpmref = NULL;
return false;

}
p_ref->colFirst = p_ref12->colFirst;
p_ref->rwFirst = p_ref12->rwFirst;
p_ref->colLast = p_ref12->colLast;
p_ref->rwLast = p_ref12->rwLast;

#else // Truncate ranges that extend beyond xloper scope
if(p_ref12->colFirst >= MAX_XL11_COLS // count from 0
| | p_ref12->rwFirst >= MAX_XL11_ROWS)
{

// Range is completely outside xloper's scope so fail
free(p_t_mref);
p_target->val.mref.lpmref = NULL;
return false;

}
p_ref->colFirst = p_ref12->colFirst;
p_ref->rwFirst = p_ref12->rwFirst;
p_ref->colLast = p_ref12->colLast >= MAX_XL11_COLS ?

MAX_XL11_COLS - 1 : p_ref12->colLast;
p_ref->rwLast = p_ref12->rwLast >= MAX_XL11_ROWS ?

MAX_XL11_ROWS - 1 : p_ref12->rwLast;
#endif

}
}
break;

case xltypeMulti:
{

RW r, rows, sr = p_source->val.array.rows; // counts from 1
COL c, cols, sc = p_source->val.array.columns; // counts from 1

// xloper can't access whole column so max r value is MAX_XL11_ROWS - 1

Passing Data Between Excel and the DLL 163

rows = sr > MAX_XL11_ROWS - 1 ? MAX_XL11_ROWS - 1 : sr;
cols = sc > MAX_XL11_COLS ? MAX_XL11_COLS : sc;

p_target->val.array.rows = rows;
p_target->val.array.columns = cols;
xloper *p_t = (xloper *)malloc(rows * cols * sizeof(xloper));
p_target->val.array.lparray = p_t;
xloper12 *p_s = p_source->val.array.lparray;

// Might need to truncate columns and rows, so need to work row-by-row
// xlytpeMulti types are row-major

for(r = 0; r < rows; r++)
{

p_s = p_source->val.array.lparray + r * sc;
for(c = 0; c < cols; c++)

xloper12_to_xloper(p_t++, p_s++);
}

}
break;

}
return true;

}

6.9 DETAILED DISCUSSION OF xloper TYPES

This section describes in more detail the things you need to know about each xloper/
xloper12 type to be able to work with it, specifically:

• When you will encounter it.
• When you need to create it.
• How you create an instance of it.
• How you convert it to a C/C++ data type.
• What the memory considerations are.
• How you can avoid using it.

Bear in mind that you can in many cases declare functions as taking and returning
simple C/C++ data types, avoiding the need to use these structures. You only need to
use xloper/xloper12s in the following circumstances:4

• When implementing the XLL Add-in Manager interface functions (xlAuto. . .) that
take xloper * or xloper12 * arguments.

• When receiving arguments of types that are only supported in xlopers (cell or range
references).

• When receiving arguments that might take different types.
• When receiving range arguments that you do not want Excel to convert to values before

passing them to the DLL.

4 You can, of course, avoid using xloper/xloper12s by using a VBA interface and Variants in many of
these cases.

164 Excel Add-in Development in C/C++

• Where a function’s return type requires the use of xlopers (for example, errors or
arrays that contain more than just numbers), or where it might take on more than one
data type (a string, a number or an error value).

• When calling into the C API via calls to Excel4() or Excel4v() in the case of
xlopers, and Excel12() or Excel12v() in the case of xloper12s.

The code examples that follow use the C xloper structure directly in some cases, and
the C++ class cpp_xloper, described on page 146, in others. Those that use the latter
are those where the use of C++ constructors, destructors and operator overloading makes
the code far more straightforward: the handling of the elements of the xloper and
memory are hidden in the class implementation. The majority of the examples that deal
with xltypeMulti, xltypeSRef and xltypeRef types only use cpp_xlopers.

The Excel 2007 xloper12 structure is only explicitly referred to where what is said
does not equally apply to both xloper12s and xlopers. Many of the code examples
that are listed for xlopers only are also included on the CD ROM in an xloper12
form, with functions that are sometimes overloaded and sometimes differently named (see
xloper12.cpp and xloper12.h). The cpp_xloper class is version-independent, in
that it uses xlopers when running in Excel 2003 (version 11) and earlier versions, and
xloper12s in Excel 2007 (version 12) and later. The subject of the creation of multi-
version XLLs is covered in section 8.6.12 Registering functions with dual interfaces for
Excel 2007 and earlier versions on page 263.

6.9.1 Freeing xloper memory

Some of the code samples below call one or both of the functions free_xloper() and
cpp_xloper::Free() before assigning values to a passed-in xloper or
cpp_xloper. These functions clear any memory that might be associated with the
xloper according to its type and how the memory was allocated in the first place. The
function free_xloper(), which deals with xlopers and has no knowledge of the
cpp_xloper class, needs one of two bits in the xltype field to be set in order to know
how to free memory: xlbitDLLFree or xlbitXLFree. This must be done in the
DLL with some knowledge of how they were originally created. (See Chapter 7 Memory
Management on page 203 for more details.)

Here is the code for both of these functions:

// Frees dll-allocated xloper memory using free() and assumes that all
// types that have memory were allocated in a way that is compatible
// with freeing by a call to free(), including all strings within arrays.
void __stdcall xlAutoFree(xloper *p_oper)
{

if(p_oper->xltype & xltypeMulti)
{

// First check if string elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;

xloper *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if((p->xltype & ∼(xlbitDLLFree | xlbitXLFree)) == xltypeStr)
{

Passing Data Between Excel and the DLL 165

if(p->xltype & xlbitDLLFree)
free(p->val.str);

else if(p->xltype & xlbitXLFree)
Excel4(xlFree, 0, 1, p);

}
free(p_oper->val.array.lparray);

}
else if(p_oper->xltype & xltypeStr)
{

free(p_oper->val.str);
}
else if(p_oper->xltype & xltypeRef)
{

free(p_oper->val.mref.lpmref);
}

#if XL_AUTO_FREE_XLOPER
free(p_oper);

#endif
}

void cpp_xloper::Free(void) // free memory and initialise
{
// Class can have both the xloper and the xloper12 defined, so need to
// check and free both. (This can happen where the class has been
// asked to return an xloper of the other type than the running version
// default).

FreeOp();
FreeOp12();

}
inline void cpp_xloper::FreeOp(void) // free memory and initialise
{

if((m_Op.xltype & (xltypeRef | xltypeMulti | xltypeStr)) != 0)
{

if(m_XLtoFree)
Excel4(xlFree, 0, 1, &m_Op);

else if(m_DLLtoFree)
free_xloper(&m_Op);

}
ClearOp();

}
inline void cpp_xloper::FreeOp12(void) // free memory and initialise
{

if((m_Op12.xltype & (xltypeRef | xltypeMulti | xltypeStr)) != 0)
{

if(m_XLtoFree12)
Excel12(xlFree, 0, 1, &m_Op12);

else if(m_DLLtoFree12)
free_xloper(&m_Op12);

}
ClearOp12();

}

Note that the class code calls the following function to free memory which assumes
that all types that have memory were allocated in a way that is compatible with freeing
by a call to free(), including all strings within arrays. Note that it also assumes that
xlbitDLLFree is not set and that xltypeBigData types will not be passed to it.

166 Excel Add-in Development in C/C++

void free_xloper(xloper *p_op)
{

if(p_op->xltype & xltypeMulti)
{

// First check if string elements need to be freed then free the array.
// WARNING: Assumes all strings are allocated with calls to malloc().

int limit = p_op->val.array.rows * p_op->val.array.columns;
xloper *p = p_op->val.array.lparray;

for(int i = limit; i--; p++)
if(p->xltype & xltypeStr)

free(p->val.str);

free(p_op->val.array.lparray);
}
else if(p_op->xltype & xltypeStr)
{

free(p_op->val.str);
}
else if(p_op->xltype & xltypeRef)
{

free(p_op->val.mref.lpmref);
}

}

6.9.2 Worksheet (floating point) number: xltypeNum

When you will encounter it

This xloper type is used by Excel for all numbers passed from worksheets to a DLL,
whether floating point or integer. It is also returned by a number of the C API func-
tions.

When you need to create it

A number of Excel’s own functions take floating point numbers as arguments, for example,
Excel’s mathematical worksheet functions. When calling them from within the DLL this
data type should be used. Where you are passing an integer argument, you can use the
xltypeInt type, although there is no advantage in doing this.

Using this kind of xloper is the most sensible way to pass numbers back to Excel in
those cases where you may also wish to return, say, an Excel error.

How you create an instance of it

The code to populate an xloper of this type is:

void set_to_double(xloper *p_op, double d)
{

if(!p_op) return;
p_op->xltype = xltypeNum;
p_op->val.num = d;

}

Passing Data Between Excel and the DLL 167

This can be overloaded for xloper12s:

void set_to_double(xloper12 *p_op, double d)
{

if(!p_op) return;
p_op->xltype = xltypeNum;
p_op->val.num = d;

}

Using the cpp_xloper class, creation can look like any of these:

double x, y, z;
//...
cpp_xloper Oper1(x); // creates an xltypeNum xloper, value = x
cpp_xloper Oper2 = y; // creates an xltypeNum xloper, value = y
cpp_xloper Oper3; // creates an xloper of undefined type
// Change the type of Oper3 to xltypeNum, value = z, using the
// overloaded operator=
Oper3 = z;
// Create xltypeNum=z using copy constructor
cpp_xloper Oper4 = Oper3;

The code for the xltypeNum constructor is:

cpp_xloper::cpp_xloper(double d)
{

Clear();
if(gExcelVersion12plus)

set_to_double(&m_Op12, d);
else

set_to_double(&m_Op, d);
}

The code for the overloaded conversion operator ‘=’ is:

void cpp_xloper::operator=(double d)
{

Free();
if(gExcelVersion12plus)

set_to_double(&m_Op12, d);
else

set_to_double(&m_Op, d);
}

How you convert it to a C/C++ data type

The following code example shows how to access (or convert, if not an xltypeNum)
the value of the xloper:

bool coerce_to_double(xloper *p_op, double &d)
{

168 Excel Add-in Development in C/C++

if(!p_op)
return false;

if(p_op->xltype == xltypeNum)
{

d = p_op->val.num;
return true;

}
// xloper is not a floating point number type, so try to convert it.

xloper ret_val;
if(!coerce_xloper(p_op, ret_val, xltypeNum))

return false;

d = ret_val.val.num;
return true;

}

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
// Some code that sets Oper's value...
double result = (double)Oper; // use the overloaded cast

The code for the overloaded cast operator (double) is shown here, where the overloaded
xloper12 equivalent of the above function is called when running Excel 2007+:

cpp_xloper::operator double(void)
{

double d;
if(gExcelVersion12plus)

return coerce_to_double(&m_Op12, d) ? d : 0.0;
else

return coerce_to_double(&m_Op, d) ? d : 0.0;
}

What the memory considerations are

None unless the xloper or xloper12 are dynamically allocated.

How you can avoid using it

Declare functions as taking double arguments and/or returning doubles: Excel will do
the necessary conversion.

6.9.3 Length-counted string: xltypeStr

When you will encounter it

This type is used by Excel for all text passed from worksheets to a DLL. It is also returned
by a number of the C API functions. Note that the xloper xltypeStr is a byte string

Passing Data Between Excel and the DLL 169

of maximum length 255, whereas the xloper12 string is a Unicode string of maximum
length 32,767.

When you need to create it

A number of Excel functions take text arguments. Perhaps most importantly, from the
point of view of making DLL functions accessible directly from the worksheet, is the
function that registers DLL functions. (See section 8.6 Registering and un-registering
DLL (XLL) functions on page 244.) When calling them from the DLL, this data type
should be used. It is also the most sensible way to pass strings back to Excel where you
may also sometimes want to return, say, an Excel error.

How you create an instance of it

The code to populate an xloper of this type is:

void set_to_text(xloper *p_op, const char *text)
{

if(!p_op) return;

if(!(p_op->val.str = new_xlstring(text)))
p_op->xltype = xltypeNil;

else
p_op->xltype = xltypeStr;

}

The code for new_xlstring() is:

// Create counted ASCII byte string from null-terminated ASCII input
char *new_xlstring(const char *text)
{

size_t len;

if(!text | | !(len = strlen(text)))
return NULL;

if(len > MAX_XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);
if(!p) return NULL;
memcpy(p + 1, text, len + 1);
p[0] = (BYTE)len;
return p;

}

The equivalent code for initialising an xloper12 is:

void set_to_text(xloper12 *p_op, const wchar_t *text)
{

if(!p_op) return;

170 Excel Add-in Development in C/C++

if(!(p_op->val.str = new_xl12string(text)))
p_op->xltype = xltypeNil;

else
p_op->xltype = xltypeStr;

}

// Create counted Unicode wchar string from null-terminated Unicode input
wchar_t *new_xl12string(const wchar_t *text)
{

size_t len;

if(!text | | !(len = wcslen(text)))
return NULL;

if(len > MAX_XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2) * sizeof(wchar_t));
if(!p) return NULL;
memcpy(p + 1, text, (len + 1) * sizeof(wchar_t));
p[0] = len;
return p;

}

When creating add-ins that need to work with both Unicode strings and byte strings,
you might need to initialise xlopers using Unicode strings or xloper12s using byte
strings, in which case the following routines, or something equivalent, are needed.

void set_to_text(xloper *p_op, const wchar_t *text)
{

if(!p_op) return;

if(!(p_op->val.str = new_xlstring(text)))
p_op->xltype = xltypeNil;

else
p_op->xltype = xltypeStr;

}
void set_to_text(xloper12 *p_op, const char *text)
{

if(!p_op) return;

if(!(p_op->val.str = new_xl12string(text)))
p_op->xltype = xltypeNil;

else
p_op->xltype = xltypeStr;

}

// Create counted ASCII byte string from null-terminated Unicode input
char *new_xlstring(const wchar_t *text)
{

size_t len;

if(!text || !(len = wcslen(text)))
return NULL;

Passing Data Between Excel and the DLL 171

if(len > MAX_XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);
if(!p | | wcstombs(p + 1, text, len) < 0)
{

free(p);
return NULL;

}
p[0] = (BYTE)len;
p[len + 1] = 0;
return p;

}

// Create counted Unicode wchar string from null-terminated ASCII input
wchar_t *new_xl12string(const char *text)
{

size_t len;

if(!text | | !(len = strlen(text)))
return NULL;

if(len > MAX_XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2) * sizeof(wchar_t));
if(!p) return NULL;
mbstowcs(p + 1, text, len);
p[0] = len; // string p[1] is NOT null terminated
p[len + 1] = 0; // now it is
return p;

}

The code for the cpp_xloper xltypeStr constructors makes use of all four over-
loaded set_to_text() functions:

cpp_xloper::cpp_xloper(const char *text)
{

Clear();
if(gExcelVersion12plus)
{

set_to_text(&m_Op12, text);
m_DLLtoFree12 = true;

}
else
{

set_to_text(&m_Op, text);
m_DLLtoFree = true;

}
}
cpp_xloper::cpp_xloper(const wchar_t *text)
{

Clear();
if(gExcelVersion12plus)
{

set_to_text(&m_Op12, text);
m_DLLtoFree12 = true;

172 Excel Add-in Development in C/C++

}
else
{

set_to_text(&m_Op, text);
m_DLLtoFree = true;

}
}

Note that in this example it is necessary to set m_DLLtoFree or m_DLLtoFree12 to
true to ensure that, at destruction or assignment of a different value, the memory will
be freed in the right way.

How you convert it to a C/C++ data type

The following code example shows how convert an xloper to a null-terminated string.
Note that, when making a copy, the code does not assume the byte-counted string (which
might have been created by Excel) is null terminated. This would be a very unsafe
assumption.

bool coerce_to_string(const xloper *p_op, char *&text)
{

char *str;
xloper ret_val;
text = NULL; // can test this or the return value for failure
if(!p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) != 0)

return false;

if(p_op->xltype != xltypeStr)
{

// xloper is not a string type, so try to convert it.
if(!coerce_xloper(p_op, ret_val, xltypeStr))

return false;
str = ret_val.val.str;

}
else if(!(str = p_op->val.str)) // make a working copy of the ptr

return false;

size_t len = (BYTE)str[0];
if((text = (char *)malloc(len + 1)) == NULL) // caller must free this
{

if(p_op->xltype != xltypeStr)
Excel4(xlFree, 0, 1, &ret_val);

return false;
}
if(len)

memcpy(text, str + 1, len);
text[len] = 0; // xloper string may not me null terminated

// If the string from which the copy was made was created in a call
// to coerce_xloper above, then need to free it with a call to xlFree

if(p_op->xltype != xltypeStr)
Excel4(xlFree, 0, 1, &ret_val);

return true;
}

Passing Data Between Excel and the DLL 173

Three more overloaded functions that convert an xloper to a null-terminated Unicode
string, or an xloper12 into a null-terminated byte or Unicode string are also provided
in the example project on the CD ROM. Their prototypes are:

bool coerce_to_string(const xloper12 *p_op, char *&text);
bool coerce_to_string(const xloper12 *p_op, wchar_t *&text);
bool coerce_to_string(const xloper *p_op, wchar_t *&text);

The code for the overloaded conversion operators (char *) and (wchar_t *) is:

cpp_xloper::operator char *(void) const
{

char *p;
if(gExcelVersion12plus)

return coerce_to_string(&m_Op12, p) ? p : NULL;
else

return coerce_to_string(&m_Op, p) ? p : NULL;
}
cpp_xloper::operator wchar_t *(void) const
{

wchar_t *p;
if(gExcelVersion12plus)

return coerce_to_string(&m_Op12, p) ? p : NULL;
else

return coerce_to_string(&m_Op, p) ? p : NULL;
}

What the memory considerations are

When Excel passes you an xltypeStr it is best to do nothing other than read it. If you
need to modify it, make a copy. The exception to this is where you are declaring a string
argument as a modify-in-place return value. In this case Excel will allocate a buffer that
is big enough for the maximum length string type (byte or Unicode) supported by Excel.
(See section 8.6.7 Returning values by modifying arguments in place on page 253).

When you have allocated memory for a string to be returned to Excel, Excel will not
free the memory for you: it does not know how you allocated it or if it is static. Obviously,
associated memory cannot be freed by the DLL before returning from the function. This
makes returning dynamically allocated strings to Excel as char * or wchar_t * a bad
idea in general. Returning an xltypeStr xloper gives you the ability to instruct Excel
to call back into your DLL once it has finished. Then you can release the memory. (This
topic is covered in section 7.4 Getting Excel to call back the DLL to free DLL-allocated
memory on page 208.)

The following example code would leak memory every time it was called with a valid
value of i. This function would be registered as returning a ‘C’ type value.

char * __stdcall bad_string_example(short i)
{

if(i < 1 | | i > 26) return NULL;
char *rtn_string = (char *)malloc(i + 1);
for(char *p = rtn_string; i; *p++ = 'A' + --i);

174 Excel Add-in Development in C/C++

*p = 0; // null-terminate the string
return rtn_string;

}

Where an xloper points to a static byte-counted string, there is nothing to worry about.

How you can avoid using it

Declare functions as taking null-terminated char * arguments and/or returning char *.
Excel will do the necessary conversions, but, beware: returning dynamically allocated
strings in this way will result in memory leaks. As discussed in section 8.6.7, returning
strings by modifying arguments in place is one way around this.

6.9.4 Excel Boolean: xltypeBool

Note: The definition of the xloper’s Boolean data member in Microsoft’s original C
header file is WORD bool; which, given the subsequent introduction of the bool data
type in C++, is changed throughout this book to xbool to be consistent with Microsoft’s
name for this data member in the xloper12.

When you will encounter it

This xloper type is used by Excel for all Boolean (true or false) values passed from
worksheets to a DLL. It is also returned by a number of the C API functions.

When you need to create it

A number of Excel’s own functions take Boolean arguments, often to trigger non-default
behaviour. When calling them from within the DLL using the C API this data type should
be used. (Excel will attempt to convert numeric xltypeNum or xltypeInt arguments
to true or false values.) If you want your worksheet function to evaluate to TRUE or FALSE
then you have no choice but to use this type.

How you create an instance of it

The code to populate an xloper of this type is:

void set_to_bool(xloper *p_op, bool b)
{

if(!p_op) return;
p_op->xltype = xltypeBool;
p_op->val.xbool = (b ? 1 : 0);

}

The cpp_xloper class also contains explicit true and explicit false tests, IsTrue()
and IsFalse(), which test that the xloper or xloper12 is both Boolean and true
or false, respectively.

Passing Data Between Excel and the DLL 175

bool cpp_xloper::IsTrue(void) const
{

if(gExcelVersion12plus)
return m_Op12.xltype == xltypeBool && m_Op12.val.xbool;

return m_Op.xltype == xltypeBool && m_Op.val.xbool;
}

This simplifies argument checking on exported functions as shown here, where the default
behaviour is to use ‘method one’ unless the (optional) supplied argument is explicitly
FALSE:

double __stdcall example_export(double arg1, xloper *pUseMethodOne)
{

cpp_xloper UseMethodOne(pUseMethodOne); // Makes shallow copy
if(UseMethodOne.IsFalse()) // default is to use method 1

return method_two_fn(arg1);

return method_one_fn(arg1);
}

The code for the xltypeBool constructor calls the above set_to_bool() or an
overloaded xloper12 version:

cpp_xloper::cpp_xloper(bool b)
{

Clear();
if(gExcelVersion12plus)

set_to_bool(&m_Op12, b);
else

set_to_bool(&m_Op, b);
}

How you convert it to a C/C++ data type

The xloper and xloper12, being C structures, do not know about the C++ bool type.
Its value is represented within the xloper/xloper12 as integer 1 (true) or 0 (false).
(Note that the VBA Boolean data type encodes true as −1 and false as 0).

The following code example shows how to access (or convert, if not an xltypeBool)
the value of the xloper:

bool coerce_to_bool(const xloper *p_op, bool &b)
{

if(!p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) != 0)
return false;

if(p_op->xltype == xltypeBool)
{

b = (p_op->val.xbool != 0);
return true;

}

176 Excel Add-in Development in C/C++

// xloper is not a Boolean number type, so try to convert it.
xloper ret_val;
if(!coerce_xloper(p_op, ret_val, xltypeBool))

return false;

b = (ret_val.val.xbool != 0);
return true;

}

A similar overloaded function for xloper12s is provided on the CD ROM and proto-
typed as

bool coerce_to_bool(const xloper12 *p_op, bool &b)

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
bool is_true = (bool)Oper; // default to false if can't convert to Boolean

or

bool is_true = Oper.IsTrue(); // default to false if not Boolean

or

bool is_true = !Oper.IsFalse();// default to true if not Boolean

The code for the overloaded conversion operator (bool) is:

cpp_xloper::operator bool(void)
{

bool b;
if(coerce_to_bool(&m_Op, b))

return b;
return false;

}

What the memory considerations are

None unless the xloper or xloper12 is itself dynamically allocated.

How you can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversion.

Passing Data Between Excel and the DLL 177

6.9.5 Worksheet error value: xltypeErr

When you will encounter it

This xloper type is used by Excel for all error values passed from worksheets to a DLL.
When you want your DLL code to be called even if one of the inputs evaluates to an
error (such as range with invalid references – #REF!), you need to declare arguments as
xlopers or xloper12s. Otherwise Excel will intercept the error and fail the function
call before the DLL code is even reached.

This type is returned by many of the C API functions when they fail to complete
successfully. DLL functions accessed via VBA that accept Variant arguments, or arrays
of Variants, may need to convert between the Variant representation of Excel errors and
the C API error codes. This is discussed in section 3.6.11 Variant types that Excel can
pass to VB functions on page 74.

When you need to create it

Excel’s error codes provide a very well understood way of communicating problems to
the worksheet, and are therefore very useful. They have the added benefit of propagating
through to dependent cells. It’s a good idea to declare fallible worksheet functions as
returning xlopers or xloper12s so that errors can be returned, as well as the normal
output type(s).

You might even want to pass an error code in a C API function, although this is
unlikely.

How you create an instance of it

An example of code to populate an xloper of this type is:

void set_to_err(xloper *p_op, WORD e)
{

if(!p_op) return;

switch(e)
{

case xlerrNull:
case xlerrDiv0:
case xlerrValue:
case xlerrRef:
case xlerrName:
case xlerrNum:
case xlerrNA:

p_op->xltype = xltypeErr;
p_op->val.err = e;
break;

default:
p_op->xltype = xltypeNil; // not a valid error code

}
}

178 Excel Add-in Development in C/C++

The code for the xltypeErr constructor is:

cpp_xloper::cpp_xloper(WORD e)
{

Clear();
if(gExcelVersion12plus)

set_to_err(&m_Op12, e);
else

set_to_err(&m_Op, e);
}

How you convert it to a C/C++ data type

It is unlikely that you will need to convert an error type to another data type. If you do
need the numeric error value, it is obtained from the err element of the xloper’s val
union.

What the memory considerations are

None unless the xloper or xloper12 is itself dynamically allocated.

How you can avoid using it

If you want to write worksheet functions that can trap or generate errors, you can’t.

6.9.6 Excel internal integer: xltypeInt

When you will encounter it

This xloper type is NEVER passed by Excel from worksheets to a DLL. Some of the
C API functions might return this type.

When you need to create it

A number of Excel’s own functions take integer arguments and when calling them from
within the DLL this data type can be used, although Excel will convert the xltypeNum
type if that is supplied instead. It can be used to pass integers back to Excel, but, again,
the xltypeNum type can also be used for this and using xltypeInt does not deliver
any advantage.

How you create an instance of it

The code to populate an xloper of this type is:

void set_to_int(xloper *p_op, int w)
{

if(!p_op) return;
p_op->xltype = xltypeInt;

Passing Data Between Excel and the DLL 179

p_op->val.w = w;
}

The cpp_xloper code for the xltypeInt constructor calls the above
set_to_bool() or an overloaded xloper12 version:

cpp_xloper::cpp_xloper(int w)
{

Clear();
if(gExcelVersion12plus)

set_to_int(&m_Op12, w);
else

set_to_int(&m_Op, w);
}

The cpp_xloper class also provides a constructor that can check the initialiser against
supplied limits, which can be quite useful.

cpp_xloper::cpp_xloper(int w, int min, int max)
{

Clear();
if(w >= min && w <= max)
{

if(gExcelVersion12plus)
set_to_int(&m_Op12, w);

else
set_to_int(&m_Op, w);

}
}

How you convert it into a C/C++ data type

The following code example shows how to access (or convert, if not an xltypeInt)
the xloper:

bool coerce_to_int(const xloper *p_op, int &w)
{

if(!p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) != 0)
return false;

if(p_op->xltype == xltypeInt)
{

w = p_op->val.w;
return true;

}
if(p_op->xltype == xltypeErr)
{

w = p_op->val.err;
return true;

}

180 Excel Add-in Development in C/C++

// xloper is not an integer type, so try to convert it.
xloper ret_val;

if(!coerce_xloper(p_op, ret_val, xltypeInt))
return false;

w = ret_val.val.w;
return true;

}

What the memory considerations are

None unless the xloper or xloper12 is itself dynamically allocated.

How you can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversion.

6.9.7 Array (mixed type): xltypeMulti

This xloper type is used to refer to arrays whose elements may be any one of a number
of mixed xloper types. The xloper12 version of this contains an array of xloper12s.
The elements of such an array are stored (and read) row-by-row in a continuous block of
memory.5

There are important distinctions between such an array and an xloper that refers to
a range of cells on a worksheet:

• The array is not associated with a block of cells on a worksheet.
• The memory for the array elements is pointed to in the xltypeMulti. (In range
xlopers this is not the case. The data contained in the range of cells can only be
accessed indirectly, for example, using xlCoerce.)

• Some Excel functions accept either range references or arrays as arguments, whereas
others will only accept ranges.

An xltypeMulti is far more straightforward to work with than the range xloper
types. Accessing blocks of data passed to the DLL in an xltypeMulti is quite easy.
Their use is necessary if you want to pass arrays to C API functions where the data is
not in any spreadsheet.

When you will encounter it

If a DLL function takes an xloper argument and registers it with Excel as type R (or an
xloper12 as type U), an xltypeMulti is only passed to the DLL when the supplied
argument is a literal array within the formula, for example, =SUM({1,2,3}). If the same

5 Variant arrays passed from VB to a C/C++ DLL store their elements column-by-column. See section 3.7 Excel
ranges, VB arrays, SafeArrays, array Variants on page 80 for details.

Passing Data Between Excel and the DLL 181

function is registered as taking a type P argument, (or type Q if an xloper12), then an
xltypeMulti is passed whenever the function is called with either a multi-cell range
or a literal array. In the first case, Excel handles the conversion from range xloper to
an array before calling the DLL. (See section 8.6.3 Specifying argument and return types
on page 249 for more detail).

Many of the C API functions return xltypeMulti xlopers, especially those return-
ing variable length lists, such as a list of sheets in a workbook. (See section 8.10.10
Information about a workbook : xlfGetWorkbook on page 301 for details of this par-
ticular example.)

When you need to create it

A number of Excel’s own functions take both array and range arguments. When calling
them from within the DLL, an xltypeMulti must be used unless the data are on a
worksheet. In that case, it is better to use a range xloper/xloper12. (Note that not all
C API functions that take ranges will accept arrays: those returning information about a
supposedly real collection of cells on a real worksheet will not.)

This xloper/xloper12 type provides the best way to return arrays of data that
can be of mixed type back to a worksheet. (Note that to return a block of data to a
worksheet function, the formula must be entered into the worksheet as an array formula.)
It also provides a middle step when reading the contents of a worksheet range, being
much easier to work with than the xlopers that describe ranges: xltypeSRef and
xltypeRef. One of the cpp_xloper constructors below shows the conversion of
these range reference types to xltypeMulti using the xlCoerce function.

Warning: A range that covers an entire column on a worksheet (e.g., A:A in a cell
formula, equivalent to A1:A65536) can, in theory, be passed into a DLL in an xloper
of type xltypeSRef or xltypeRef. However, there is a bug: The xloper will be
given the rwLast value of 0x3fff instead of 0xffff. Even if this were not the case,
coercing a reference that represented an entire column to an xltypeMulti would fail.
The rows field in the xltypeMulti, being a WORD that counts from 1, would roll back
over to zero. In other words, the xltypeMulti is limited to arrays from ranges with
rows from 1 to 65,535 inclusive OR 2 to 65,536 inclusive. You should bear this limitation
in mind when coding and documenting your DLL functions. This problem is solved in
Excel 2007+ with the introduction of the xloper12 which handles entire columns, which
can be 1,048,576 rows, without a problem.

How you create an instance of it

The cpp_xloper class makes use of a function set_to_xltypeMulti() that pop-
ulates an xloper as this type. The code for the function set_to_xltypeMulti()
is:

bool set_to_xltypeMulti(xloper *p_op, RW rows, COL cols)
{

DWORD size = rows * cols;

if(!p_op | | !size | | rows >= MAX_XL11_ROWS-1 | | cols > MAX_XL11_COLS-1)
return false;

182 Excel Add-in Development in C/C++

p_op->xltype = xltypeMulti;
p_op->val.array.lparray = (xloper *)malloc(sizeof(xloper) * size);
p_op->val.array.rows = rows; // counts from 1
p_op->val.array.columns = cols; // counts from 1
return true;

}

For the xloper12 the code is almost, but not quite, the same.

bool set_to_xltypeMulti(xloper12 *p_op, RW rows, COL cols)
{

DWORD size = rows * cols;

if(!p_op | | !size | | rows > MAX_XL12_ROWS-1 | | cols > MAX_XL12_COLS-1)
return false;

p_op->xltype = xltypeMulti;
p_op->val.array.lparray = (xloper12 *)malloc(sizeof(xloper12) * size);
p_op->val.array.rows = rows; // counts from 1
p_op->val.array.columns = cols; // counts from 1
return true;

}

Note that, apart from the obvious difference in the limits, the test for rows is >= for the
xloper (because of the whole column bug) and > for the xloper12.

The class cpp_xloper contains a number of constructors for this xloper/xloper12
type some of which are listed below. The first constructor creates an xltypeNil-
initialised array of the specified size.

cpp_xloper::cpp_xloper(RW rows, COL cols)
{

Clear();
if(!RowColValid(rows, cols))

return;

DWORD i = rows * cols;

if(gExcelVersion12plus)
{

xloper12 *p_oper;

if(!set_to_xltypeMulti(&m_Op12, rows, cols)
| | !(p_oper = m_Op12.val.array.lparray))

return;

while(i--)
(p_oper++)->xltype = xltypeNil; // a safe default

m_DLLtoFree12 = true;
}
else
{

xloper *p_oper;

if(!set_to_xltypeMulti(&m_Op, rows, cols)

Passing Data Between Excel and the DLL 183

| | !(p_oper = m_Op.val.array.lparray))
return;

while(i--)
(p_oper++)->xltype = xltypeNil; // a safe default

m_DLLtoFree = true;
}

}

The second constructor creates an array of xltypeNum xlopers which is initialised
using the array of doubles provided.

cpp_xloper::cpp_xloper(WORD rows, WORD cols, const double *init_data)
{

Clear();
InitialiseArray(rows, cols, d_array);

}

The third constructor creates an xltypeMulti array from an xl4_array structure.
This is useful if you need an argument delivered as this type to be passed to an Excel
function via the C API. (If this is happening a lot, you should consider having the argument
delivered as an xloper or xloper12 to avoid this second conversion).

cpp_xloper::cpp_xloper(const xl4_array *array)
{

Clear();
InitialiseArray(array->rows, array->columns, array->array);

}

The two constructors above call on the following function to do the work. This function
is also used by one of the overloaded assignment operators, and so takes the precaution
of freeing any memory before initialising.

void cpp_xloper::InitialiseArray(RW rows, COL cols, const double *init_data)
{

Free();
if(!RowColValid(rows, cols) | | !init_data)

return;

DWORD i = rows * cols;

if(gExcelVersion12plus)
{

xloper12 *p_oper;

if(!init_data | | !set_to_xltypeMulti(&m_Op12, rows, cols)
| | !(p_oper = m_Op12.val.array.lparray))

return;

while(i--)
{

p_oper->xltype = xltypeNum;

184 Excel Add-in Development in C/C++

(p_oper++)->val.num = *init_data++;
}
m_DLLtoFree12 = true;

}
else
{

xloper *p_oper;

if(!init_data | | !set_to_xltypeMulti(&m_Op, rows, cols)
| | !(p_oper = m_Op.val.array.lparray))

return;

while(i--)
{

p_oper->xltype = xltypeNum;
(p_oper++)->val.num = *init_data++;

}
m_DLLtoFree = true;

}
}

The fourth constructor creates an array of xltypeStr xloper/xloper12s containing
deep copies of the null-terminated byte string array provided. (The cpp_xloper class
always creates deep copies of strings so that there is no ambiguity about whether the
strings in dynamically allocated arrays should themselves be freed – they will always need
to be. See section 5.5.7 xlAutoFree (xlAutoFree12) on page 123, and Chapter 7
Memory Management on page 203 for more details.) Note that when running Excel 2007+,
the class populates the xloper12 and calls whar_t *new_xl12string(char *)
which converts the byte strings to Unicode strings. The example code on the CD ROM
contains an equivalent constructor that takes an array of Unicode strings.

cpp_xloper::cpp_xloper(RW rows, COL cols, char **str_array)
{

Clear();
if(!RowColValid(rows, cols) | | !str_array)

return;

DWORD i = rows * cols;

if(gExcelVersion12plus) // cast strings up to Unicode wide strings
{

xloper12 *p_oper;
wchar_t *p;

if(!set_to_xltypeMulti(&m_Op12, rows, cols)
| | !(p_oper = m_Op12.val.array.lparray))

return;

while(i--)
{

p = new_xl12string(*str_array++); // byte-to-Unicode, deep copy
if(p)
{

p_oper->xltype = xltypeStr;
p_oper->val.str = p;

}

Passing Data Between Excel and the DLL 185

else
{

p_oper->xltype = xltypeNil;
}
p_oper++;

}
m_DLLtoFree12 = true; // Class will free the strings too

}
else // strings are ASCII byte strings like the inputs
{

xloper *p_oper;
char *p;

if(!set_to_xltypeMulti(&m_Op, rows, cols)
| | !(p_oper = m_Op.val.array.lparray))

return;

while(i--)
{

p = new_xlstring(*str_array++); // make deep copies
if(p)
{

p_oper->xltype = xltypeStr;
p_oper->val.str = p;

}
else
{

p_oper->xltype = xltypeNil;
}
p_oper++;

}
m_DLLtoFree = true; // Class will free the strings too

}
}

The fifth constructor creates an array of xloper/xloper12s from any of the the work-
sheet types including ranges, xltypeSRef and xltypeRef. The hard work is done by
Excel in the call to xlCoerce which, if explicitly asked to return an xltypeMulti,
will convert even a single value or single-cell reference to a 1x1 array. Where ranges
are passed, the element types of the resulting array reflect those of the worksheet range
originally referred to. The resulting array must only be freed by Excel, either in the DLL
with a call to xlFree, or by being returned to Excel with the xlbitXLFree bit set
in xltype. (See the destructor code for how the class takes care of this, and Chapter 7
Memory Management on page 203). If running Excel 2007+, the xloper is converted
to an xloper12 array (with xloper12 elements). The example code on the CD ROM
contains an equivalent constructor that takes an xloper12.

cpp_xloper::cpp_xloper(RW &rows, COL &cols, const xloper *p_input_oper)
{

Clear();

if(gExcelVersion12plus)
{

// Cast up to an xloper12
xloper12 temp;
xloper_to_xloper12(&temp, p_input_oper);

186 Excel Add-in Development in C/C++

if(!coerce_xloper(&temp, m_Op12, xltypeMulti))
{

rows = cols = 0;
}
else
{

rows = m_Op12.val.array.rows;
cols = m_Op12.val.array.columns;

// Ensure destructor will tell Excel to free memory
m_XLtoFree12 = true;

}
free_xloper(&temp);

}
else
{

// Ask Excel to convert the reference to an array (xltypeMulti)
if(!coerce_xloper(p_input_oper, m_Op, xltypeMulti))
{

rows = cols = 0;
}
else
{

rows = m_Op.val.array.rows;
cols = m_Op.val.array.columns;

// Ensure destructor will tell Excel to free memory
m_XLtoFree = true;

}
}

}

The sixth constructor creates an xltypeMulti array from an array of cpp_xlopers
of mixed types. This is most useful when you want to create a statically-initialised array,
something you cannot do directly. Each element in the array of cpp_xlopers can be
initialised statically to any type, with the right constructor being called for each element.
Passing such an array to this constructor then populates the xltypeMulti.

cpp_xloper::cpp_xloper(RW rows, COL cols, const cpp_xloper *init_array)
{

Clear();
InitialiseArray(rows, cols, init_array);

}
void cpp_xloper::InitialiseArray(RW rows, COL cols,

const cpp_xloper *init_array)
{

Free();
if(!RowColValid(rows, cols) | | !init_array)

return;

const cpp_xloper *p_cpp_oper = init_array;
DWORD type, i = rows * cols;

if(gExcelVersion12plus)
{

xloper12 *p_oper;

if(!set_to_xltypeMulti(&m_Op12, rows, cols)

Passing Data Between Excel and the DLL 187

| | !(p_oper = m_Op12.val.array.lparray))
return;

while(i--)
{

type = p_cpp_oper->m_Op12.xltype;

// Check to see if the first xloper12 has been initialised. If not,
// check the first xloper has been initialised, (not to an array).

if(type == xltypeNil
&& (p_cpp_oper->m_Op.xltype & (xltypeNil | xltypeMulti)) == 0)
{

// Special case: Converts arrays of cpp_xlopers instantiated outside
// function code up to xloper12s. This is necessary when running under
// v12+ where instantiation could happen before a global version variable
// can be set, resulting in the xloper(s) being initialised instead of
// the xloper12s.

xloper_to_xloper12(p_oper, &(p_cpp_oper->m_Op));
}
else if(type != xltypeMulti) // don't permit arrays of arrays
{

// Make deep copies of strings and xltypeRef memory
clone_xloper(p_oper, &(p_cpp_oper->m_Op12));

}
p_oper++;
p_cpp_oper++;

}
m_DLLtoFree12 = true;

}
else // gExcelVersion < 12
{

xloper *p_oper;

if(!set_to_xltypeMulti(&m_Op, rows, cols)
| | !(p_oper = m_Op.val.array.lparray))

return;

while(i--)
{

type = p_cpp_oper->m_Op.xltype;

if(type != xltypeMulti) // don't permit arrays of arrays
{

// Make deep copies of strings and xltypeRef memory
clone_xloper(p_oper, &(p_cpp_oper->m_Op));

}
p_oper++;
p_cpp_oper++;

}
m_DLLtoFree = true;

}
}

The class also contains a number of methods to set elements of an existing array, for
example:

bool cpp_xloper::SetArrayElt(DWORD offset, const char *text)
{

if(gExcelVersion12plus)

188 Excel Add-in Development in C/C++

{
if(!m_DLLtoFree12)

return false; // Should not assign to an Excel-allocated array

xloper12 *p_op;
if(GetArrayElt(offset, p_op))
{

free_xloper(p_op);
set_to_text(p_op, text);
return true;

}
}
else
{

if(!m_DLLtoFree)
return false; // Should not assign to an Excel-allocated array

xloper *p_op;
if(GetArrayElt(offset, p_op))
{

free_xloper(p_op);
set_to_text(p_op, text);
return true;

}
}
return false;

}

Creating and initialising static arrays of xloper/xloper12s is covered in section
6.10 Initialising xloper/xloper12s on page 198. The easiest way to initialise
xltypeMulti arrays is to create and initialise arrays of cpp_xlopers and use this
array to initialise a cpp_xloper of xltypeMulti using either one of the constructor
methods or one of the initialisation methods.

How you convert it to a C/C++ data type

The following cpp_xloper method converts an xltypeMulti into an array of
doubles. In doing this, it allocates a block of memory, coerces the elements one-by-one
into the array and then returns a pointer to the allocated block. The memory allocated then
needs to be freed by the caller once it is no longer required. The class contains similar
methods for converting elements of the array to text, integers, Boolean and Excel error
values (as integers). There are also methods that use a single offset parameter rather than a
(row, column) pair – more efficient if accessing all the elements in the array one-by-one.

double *cpp_xloper::ConvertMultiToDouble(void)
{

double *ret_array;
DWORD size;

if(gExcelVersion12plus)
{

if(m_Op12.xltype != xltypeMulti)
return NULL;

Passing Data Between Excel and the DLL 189

// Allocate the space for the array of doubles
size = m_Op12.val.array.rows * m_Op12.val.array.columns;
ret_array = (double *)malloc(size * sizeof(double));
if(!ret_array)

return NULL;

// Get the cell values one-by-one as doubles and place in the array.
// Store the array row-by-row in memory.

xloper12 *p_op = m_Op12.val.array.lparray;

if(!p_op)
{

free(ret_array);
return NULL;

}
for(double *p = ret_array; size--; p++)

if(!coerce_to_double(p_op++, *p))
*p = 0.0;

}
else
{

if(m_Op.xltype != xltypeMulti)
return NULL;

// Allocate the space for the array of doubles
size = m_Op.val.array.rows * m_Op.val.array.columns;
ret_array = (double *)malloc(size * sizeof(double));
if(!ret_array)

return NULL;

// Get the cell values one-by-one as doubles and place in the array.
// Store the array row-by-row in memory.

xloper *p_op = m_Op.val.array.lparray;

if(!p_op)
{

free(ret_array);
return NULL;

}
for(double *p = ret_array; size--; p++)

if(!coerce_to_double(p_op++, *p))
*p = 0.0;

}
return ret_array; // caller must free the memory!

}

The class also contains a number of methods that retrieve elements of an array as a
particular data type (converted if required and if possible), for example:

bool cpp_xloper::GetArrayElt(DWORD offset, double &d) const
{

if(gExcelVersion12plus)
{

xloper12 *p_op;
if(GetArrayElt(offset, p_op))

return coerce_to_double(p_op, d);
}

190 Excel Add-in Development in C/C++

else
{

xloper *p_op;
if(GetArrayElt(offset, p_op))

return coerce_to_double(p_op, d);
}
return false;

}

What the memory considerations are

This type contains a pointer to a block of memory: the array of xloper/xloper12s.
As well as this, each array element could be a string pointing to its own piece of memory.
Generally speaking, memory will fall into one of three possible categories:

1. Dynamically allocated by the DLL
2. Dynamically allocated by Excel
3. Statically allocated at DLL-start up

There are therefore 9 possible combinations of memory in an xltypeMulti array: Excel-
allocated array with Excel-allocated elements; DLL-allocated array with Excel-allocated
elements; DLL-allocated array with static elements; etc. In practice, an Excel-allocated
array created, say, with a call to xlCoerce, will only ever have Excel-allocated elements
and should only be freed with a call to xlFree or by being returned to Excel with
xlbitXLFree set in the type field. You do not need to, and should not, call xlFree on
the elements of an Excel-allocated array. (See section 7.3.2 Freeing Excel-allocated
xloper memory returned by the DLL function on page 206.)

Where you are dealing with DLL-allocated or static arrays, you need to decide how you
will manage your memory: whether the code that frees the memory assumes that arrays are
always dynamically-allocated with dynamically-allocated elements; or, more flexibly, the
code allows dynamically-allocated arrays to contain Excel-allocated and static elements.

If choosing the latter more flexible approach, the code that creates the array must set
xlbitXLFree or xlbitDLLFree, where appropriate, for each of the elements in an
array, and these bits must be detected in the the code that frees the array, for example
in your implementation of xlAutoFree. If choosing the former approach, the code that
creates the array must always make deep copies of, say, strings, so that the code that frees
it can safely assume that any string elements are to be freed along with the array itself.

The approach taken in example project on the CD ROM is to implement
xlAutoFree to be flexible. (See section 5.5.7 xlAutoFree (xlAutoFree12) on
page 123). The cpp_xloper class contains two methods ExtractXloper() and
ExtractXloper12() which empty the cpp_xloper into an xloper or xloper12
to be used as a return value for worksheet function exports. These methods set the
appropriate bits on arrays and their elements to be consistent with the implementation
of xlAutoFree and xlAutoFree12. However, the cpp_xloper always makes deep
copies of input strings and makes use of functions to free array memory that assume array
strings are always DLL-allocated.

Above all, the important thing is that you are consistent in your chosen method of
dealing with array memory, otherwise your code will leak memory or cause exceptions.

Passing Data Between Excel and the DLL 191

Chapter 7 Memory Management on page 203 describes in more detail how to deal with
memory returned to Excel.

How you can avoid using it

If you only want to work with arrays of doubles, you have the option of using the
structures discussed in section 6.2.2 Excel floating-point array structures: xl4_array,
xl12_array on page 129. If you want to receive/return mixed-value or string arrays
from/to a worksheet, or you want to work with C API functions that take or return arrays,
then you can’t avoid using this type.

6.9.8 Worksheet cell/range reference: xltypeRef and xltypeSRef

When you will encounter them

These two types are used by Excel for references to single cells and ranges on any sheet
in any open workbook. Each type contains references to one or one or more rectangular
blocks of cells. The xltypeSRef is only capable of referencing a single block of cells
on the current sheet. The xltypeRef type can reference one or more blocks of cells
on a specified sheet, which may or may not be the current sheet. For this reason, an
xltypeRef xloper is also known as an external reference as it refers to an external
sheet, i.e., not the current sheet.

Where a range is passed to a DLL function and is only used as a source of data,
it is advisable to convert to an xltypeMulti – a much easier type to work with.
Arrays of type xltypeMulti resulting from conversion from one of these types have
their elements stored row-by-row. Where DLL functions are registered as taking P-type
xloper arguments or Q-type xloper12 arguments, Excel will convert range references
to xltypeMulti or one of the single cell value types (or xltypeNil in some cases).
(See section 8.6 Registering and un-registering DLL (XLL) functions on page 244.)

The C API function xlfSheetId returns the internal ID of a worksheet within an
xltypeRef xloper/xloper12.

When you need to create them

A number of Excel functions take range or array arguments. A few take just ranges. When
calling them from within the DLL you need to create one of these types depending on
whether you want to access a range on the current sheet or not. (Note that you can use
xltypeRef to refer explicitly to the current sheet if you prefer not to have to think
about whether it is current or not.)

If you want to pass a range reference back to Excel (for use as input to some other
worksheet function) you will need to use one of these types depending on the whether
the reference is in the context of the current sheet (use xltypeSRef) or some other (use
xltypeRef).

How you create an instance of either of them

The first example shows how to populate an xloper of type xltypeSRef. Note
that there is no need to specify a worksheet, either by name or by internal ID. Also

192 Excel Add-in Development in C/C++

there’s no need to allocate any memory, as all the data members are contained within the
xloper/xloper12.

bool set_to_xltypeSRef(xloper *p_op, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)

{
if(!p_op | | rwFirst > rwLast | | colFirst > colLast)

return false;

// Create a simple single-cell reference to a cell on the current sheet
p_op->xltype = xltypeSRef;
p_op->val.sref.count = 1;

xlref &ref = p_op->val.sref.ref; // to simplify code
ref.rwFirst = rwFirst;
ref.rwLast = rwLast;
ref.colFirst = colFirst;
ref.colLast = colLast;
return true;

}

The second example shows how to populate an xloper of type xltypeRef. This
requires that an internal ID for the sheet be provided as a DWORD idSheet. (One of
the cpp_xloper constructors listed below shows how to obtain this from a given sheet
name using the xlSheetId C API function.) Note that not all of the information carried
by an xltypeRef is contained within the xloper and, in this example, a small amount
of memory is allocated in setting it up.

bool set_to_xltypeRef(xloper *p_op, DWORD idSheet, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)

{
if(!p_op | | rwFirst > rwLast | | colFirst > colLast)

return false;

// Allocate memory for the xlmref and set pointer within the xloper
xlmref *p = (xlmref *)malloc(sizeof(xlmref));

if(!p)
{

p_op->xltype = xltypeNil;
return false;

}
p_op->xltype = xltypeRef;
p_op->val.mref.lpmref = p;
p_op->val.mref.idSheet = idSheet;
p_op->val.mref.lpmref->count = 1;

xlref &ref = p->reftbl[0]; // to simplify code
ref.rwFirst = rwFirst;
ref.rwLast = rwLast;
ref.colFirst = colFirst;
ref.colLast = colLast;
return true;

}

Passing Data Between Excel and the DLL 193

Converting an array of doubles, strings or any other data type to an xltypeRef or an
xltypeSRef is never a necessary thing to do. If you need to return an array of doubles,
integers or strings (mixed or all one type) to Excel via the return value of your DLL
function, you should use xltypeMulti. If you want to set the value of a particular cell
that is not the calling cell, then you can use the xlSet function, although this can only
be called from a command, not from a worksheet function.

The cpp_xloper class constructor for the xltypeSRef is:

cpp_xloper::cpp_xloper(RW rwFirst, RW rwLast, COL colFirst, COL colLast)
{

Clear();
if(!RowColValid(rwFirst, colFirst) | | !RowColValid(rwLast, colLast))

return;

if(gExcelVersion12plus)
set_to_xltypeSRef(&m_Op12, rwFirst, rwLast, colFirst, colLast);

else
set_to_xltypeSRef(&m_Op, (WORD)rwFirst, (WORD)rwLast,

(BYTE)colFirst, (BYTE)colLast);
}

The two cpp_xloper class constructors for the xltypeRef are as follows. The first
creates a reference on a named sheet. The second creates a reference on a sheet that is
specified using its internal sheet ID.

cpp_xloper::cpp_xloper(const char *sheet_name, RW rwFirst, RW rwLast, COL
colFirst, COL colLast)

{
Clear();

// Check the inputs. No need to check sheet_name, as creation of
// cpp_xloper Name will set to xltypeNil if sheet_name not valid.

if(rwFirst > rwLast | | colFirst > colLast
| | !RowColValid(rwFirst, colFirst) | | !RowColValid(rwLast, colLast))

return;

// Get the sheetID corresponding to the sheet name provided. If
// sheet_name was NULL, a reference on the active sheet is created.

cpp_xloper Name(sheet_name);

if(gExcelVersion12plus)
{

xloper12 ret_oper;
if(Excel12(xlSheetId, &ret_oper, 1, Name.OpAddr12())==xlretSuccess)
{

if(set_to_xltypeRef(&m_Op12, ret_oper.val.mref.idSheet,
rwFirst, rwLast, colFirst, colLast))
m_DLLtoFree12 = true; // created successfully

}
}
else
{

xloper ret_oper;
if(Excel4(xlSheetId, &ret_oper, 1, Name.OpAddr()) == xlretSuccess)
{

if(set_to_xltypeRef(&m_Op, ret_oper.val.mref.idSheet,

194 Excel Add-in Development in C/C++

rwFirst, rwLast, colFirst, colLast))
m_DLLtoFree = true; // created successfully

}
}

}

Here is the code for the second constructor. It is much simpler than the above, as the
constructor does not need to convert the sheet name to an internal ID.

cpp_xloper::cpp_xloper(DWORD SheetID, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)

{
Clear();
if(!RowColValid(rwFirst, colFirst) | | RowColValid(rwLast, colLast))

return;

if(gExcelVersion12plus)
{

if(set_to_xltypeRef(&m_Op12, SheetID, rwFirst, rwLast,
colFirst, colLast))
m_DLLtoFree12 = true;

}
else
{

if(set_to_xltypeRef(&m_Op, SheetID, (WORD)rwFirst, (WORD)rwLast,
(BYTE)colFirst, (BYTE)colLast))
m_DLLtoFree = true;

}
}

How you convert them to a C/C++ data type

Converting a range reference really means looking up the values from that range. The
most straightforward and efficient way to do this is to coerce the reference to values
using xlCoerce without specifying a coerce-to type. If the reference was to a sin-
gle cell xlCoerce will return a single worksheet value. If it was to multiple cells,
xlCoerce will return an xltypeMulti. The result can then easily be converted to,
say, an array of doubles. (See above discussion of xltypeMulti.) The following
example code shows how to do this in a function that sums all the numeric values in a
given range, as well as those non-numeric values that can be converted. It uses one of the
xltypeMulti constructors to convert the input range (if it can) to an array type. The
function cpp_xloper::ConvertMultiToDouble() attempts to convert the array to
an array of doubles, coercing the individual elements if required.

double __stdcall coerce_and_sum(xloper *input)
{

RW rows;
COL cols;
cpp_xloper Array(rows, cols, input); // coerces input to xltypeMulti
if(!Array.IsType(xltypeMulti))

return 0.0;

Passing Data Between Excel and the DLL 195

// Get an array of doubles
double *d_array = Array.ConvertMultiToDouble();
if(!d_array)

return 0.0;
double sum = 0.0, *p = d_array;
for(DWORD i = rows * cols; i--;)

sum += *p++;

// Free the double array
free(d_array);
return sum;

}

What the memory considerations are

As can be seen from the above code examples, xltypeRef xloper/xloper12s point
to a block of memory. If dynamically allocated within the DLL, this needs to be freed
when no longer required. (See Chapter 7 Memory Management on page 203 for details.)
For xltypeSRefs there are no memory considerations, as all the data are stored within
the xloper/xloper12.

How you can avoid using them

If you only want to access values from ranges of cells in a spreadsheet then declaring
DLL functions as taking xloper/xloper12 arguments but registering them type P/Q
forces Excel to convert xltypeSRefs and xltypeRefs to one of the value types (or
xltypeNil in some cases). (See section 8.5 Registering and un-registering DLL (XLL)
functions on page 244).

If you only want to access numbers from ranges of cells, then you have the option of
using the xl4_array/xl12_array data types described in section 6.2.2 on page 129.

If you want to access information about ranges of cells in a spreadsheet, or you want
complete flexibility with arguments passed in from Excel, then you cannot avoid their use.

Examples

The first example, count_used_cells(), creates a simple reference (xltypeS-
Ref) to a range on the sheet from which the function is called. (Note that this will
always be the current sheet, but may not be the active sheet). It then calls the C API
function Excel4(xlfCount, . . .), equivalent to the worksheet function COUNT(), to
get the number of cells containing numbers. (The pointer p_xlErrValue points to
a static xloper initialised to #VALUE!. See section 6.3 Defining constant
xlopers/xloper12s on page 144 for more detail.)

xloper * __stdcall count_used_cells(int first_row, int last_row,
int first_col, int last_col)

{
if(first_row > last_row || first_col > last_col)

return p_xlErrValue;

196 Excel Add-in Development in C/C++

// Adjust inputs to be zero-counted and cast to RWs and COLs. (Casts
// are not strictly necessary as RW and COL are defined as 32-bit ints)

RW fr = (RW)(first_row - 1);
RW lr = (RW)(last_row - 1);
COL fc = (COL)(first_col - 1);
COL lc = (COL)(last_col - 1);
cpp_xloper Op(fr, lr, fc, lc);
Op.Excel(xlfCount, 1, &Op); // re-use Op
return Op.ExtractXloper();

}

The second example count_used_cells2() does the same as the first except that it
creates an external reference (xltypeRef) to a range on a specified sheet before calling
the C API function. Note that this sheet may not be the one from which the function is
called. Note also that a different constructor is used.

xloper * __stdcall count_used_cells2(char *sheetname, int first_row, int
last_row, int first_col, int last_col)

{
if(first_row > last_row || first_col > last_col)

return p_xlErrValue;

// Adjust inputs to be zero-counted and cast to RWs and COLs. (Casts
// are not strictly necessary as RW and COL are defined as 32-bit ints)

RW fr = (RW)(first_row - 1);
RW lr = (RW)(last_row - 1);
COL fc = (COL)(first_col - 1);
COL lc = (COL)(last_col - 1);
cpp_xloper Op(sheetname, fr, lr, fc, lc);
Op.Excel(xlfCount, 1, &Op); // re-use Op
return Op.ExtractXloper();

}

6.9.9 Empty worksheet cell: xltypeNil

When you will encounter it

The xltypeNil xloper/xloper12 will typically turn up in an xltypeMulti array
that has been created from a range reference where one or more of the cells in the range
is completely empty. Many functions ignore nil cells. For example, the worksheet func-
tion =AVERAGE() returns the sum of all non-empty numeric cells in the range divided
by the number of such cells. If a DLL function takes an xloper or xloper12 argu-
ment registered with Excel as type P or Q respectively, and the function is entered on
the worksheet with a single-cell reference to an empty cell, then Excel will also pass
xltypeNil. However, if registered as taking a type R or U, then the passed-in type will
be xltypeSRef or xltypeRef. (See section 8.5 Registering and un-registering DLL
(XLL) functions on page 244.)

When you need to create it

There’s an obvious contradiction if a worksheet function tries to return an xltypeNil
to a single cell: the cell has a formula in it and therefore cannot be empty. Even if the
cell is part of an array formula, it’s still not empty. If you return a xltypeNil or an

Passing Data Between Excel and the DLL 197

xltypeMulti array containing xltypeNil elements, they will be converted by Excel
to numeric zero values. If you want to clear the contents of a cell completely, something
that you can only do from a command, you can use the C API function xlSet – see
section 8.8.4 on page 278 – and pass xltypeNils.

How you create an instance of it

The following example shows how to do this in straight C code:

xloper op;
op.xltype = xltypeNil;

or. . .

xloper op = {0.0, xltypeNil};

The default constructor for the cpp_xloper class initialises its xloper to xltypeNil.
The class has a few methods for setting the xloper/xloper12 type after construction,
which can also be used to create a type xltypeNil. For example:

cpp_xloper op; // initialised to xltypeNil
op.SetType(xltypeNil);

cpp_xloper ArrayOp((RW)rows, (COL)columns);
// Array elements are all initialised to xltypeNil, but can do it
// explicitly:
ArrayOp.SetArrayElementType((RW)row, (COL)col, xltypeNil);
ArrayOp.SetArrayElementType((DWORD)offset, xltypeNil);

You can also create a pointer to a static structure that looks like an xloper or xloper12
and is initialised to xltypeNil. (See section 6.3 Defining constant xlopers/
xloper12s on page 144 for more details.)

How you convert it to a C/C++ data type

How you interpret an empty cell is entirely up to your function, whether it is looking
for numeric arguments or strings, and so on. If it matters to your function whether an
argument is missing (xltypeMissing) or is a reference to an empty cell (xltypeNilor
a reference type, depending on how the function was registered), you should check your
function inputs and interpret them accordingly. Excel will coerce this type to zero if asked
to convert to a number, or the empty string if asked to convert to a string. If this is not
what you want to happen, you should not convert xltypeNil using xlCoerce, but
write your own conversion instead.

What the memory considerations are

None unless the xloper or xloper12 is itself dynamically allocated.

198 Excel Add-in Development in C/C++

How you can avoid using it

If you are accepting arrays from worksheet ranges and it matters how you interpret empty
cells, or you want to fail your function if the input includes empty cells, then you need
to detect this type. If you want to completely clear the contents of cells from a command
using xlSet, then you cannot avoid using this type.

6.9.10 Worksheet binary name: xltypeBigData

A binary storage name is a named block of unstructured memory associated with a
worksheet that an XLL is able to create, read from and write to, and that gets saved with
the workbook.

A typical use for such a space would be the creation of a large table of data that you
want to store and access in your workbook, which might be too large, too cumbersome or
perhaps too public, if stored in worksheet cells. Another use might be to store configuration
data for a command that always and only acts on the active sheet.

The xltypeBigData type is used to define and access these blocks of binary data.
Section 8.9 Working with binary names on page 285 covers binary names in detail.

6.10 INITIALISING xloper/xloper12s

C only allows initialisation of the first member of a union when initialising a static or
automatic structure. This pretty much limits xloper/xloper12s to being initialised as
xltypeNum, given that double num is the first declared element of the val union of
the xloper/xloper12, or to a type without a value or with a zero value. For example,
the following declarations are all valid:

xloper op_pi = {3.14159265358979, xltypeNum};
xloper op_nil = {0.0, xltypeNil};
xloper op_false = {0.0, xltypeBool};
xloper op_missing = {0.0, xltypeMissing};

These will compile but will not result in the intended values:

xloper op_three = {3, xltypeInt};
xloper op_true = {1, xltypeBool};

This will not compile:

xloper op_hello = {"\5Hello", xltypeStr};

This is very limiting. Ideally, you would like to be able to initialise an xloper/xloper12
to any of the types and values that it can represent. In particular, creating static arrays
of xloper/xloper12s and initialising them becomes awkward: it is only possible to
initialise the type. Initialising the value as well as the type is something you might like
to do when:

Passing Data Between Excel and the DLL 199

• creating a definition range for a custom dialog box;
• creating a array of fixed values to be placed in a spreadsheet under control of a command

or function;
• setting up the values to be passed to Excel when registering new commands or new

worksheet functions. (See section 8.5 Registering and un-registering DLL (XLL) func-
tions on page 244.)

There are a couple of ways round this limitation. The first is the definition of an xloper-
like structure that is identical in memory but allows itself to be declared statically and
then cast to an xloper. This is achieved simply by changing the order of declaration
in the union. This approach still has the limitation of only allowing initialisation to one
fundamental data type. The following code fragment illustrates this approach:

typedef struct
{

union {char *str; double num;} val; // don't need other types
WORD xltype;

}
str_xloper;

str_xloper op_hello = {"\5Hello", xltypeStr};
xloper *pop_hello = (xloper *)&op_hello;

The second approach is to create a completely new structure that can be initialised stat-
ically to a range of types, but that requires some code to convert it to an xloper. One
example of this approach would be to redefine the xloper structure to include a few
simple constructors. Provided the image of the structure in memory was not altered by
any amendments, all of the code that used xlopers would still work fine. If you change
what the xloper is, by adding data members to assist with memory management for
example, you are inviting Excel to crash. The compiler might also require that you make
changes elsewhere in your code, say, if you have used a construction such as xloper op
= {0.0, xltypeNil}. Some examples of the types of constructor that can be added
harmlessly are:

xloper() {xltype = xltypeNil;} // need a default constructor
xloper(double d) {val.num = d; xltype = xltypeNum;}
xloper(bool b) {val.xbool = b; xltype = xltypeBool;}
xloper(int w) {val.w = w; xltype = xltypeInt;}
xloper(char *s) {val.val.str = s; xltype = xltypeStr;}

Note that you would also need to move the definitions of the type constants, xltypeNum
and so on, so that they precede the structure definition in the header file xlcall.h. Note
also that the last constructor only makes a shallow copy of the input string, and expects
a byte-counted string.

The C++ class cpp_xloper is an example of another approach, but one that really
harnesses the power of C++. It can be initialised in a far more intuitive way than an
xloper/xloper12 to any of the supported data types. Arrays of cpp_xlopers can
be initialised with bracketed arrays of initialisers of different types: the compiler calls the
correct constructor for each type. Once an array of cpp_xlopers has been initialised

200 Excel Add-in Development in C/C++

it can be converted into a cpp_xloper of type xltypeMulti very easily. (The class
contains a member function to do just this. See sections 6.4 A C++ Class wrapper for
the xloper/xloper12 – cpp_xloper on page 146, and 6.9.7 Array (mixed type):
xltypeMulti on page 180 for more details.)

The following code initialises a 1-dimensional array of cpp_xlopers with values of
various types needed to define a simple custom dialog definition table. (Note that the
empty string initialises the cpp_xloper to type xltypeNil.) The dialog displayed by
the command get_username() requests a username and password. (See section 8.14
Working with custom dialog boxes on page 351 for details of how to construct such a
table, and the use of the xlfDialogBox function). The cpp_xloper array is then
converted into an xltypeMulti xloper (wrapped in another cpp_xloper) using
the appropriate constructor.

#define CAPI_DLG_COLUMNS 7
#define NUM_USERNAME_DIALOG_ROWS 10
cpp_xloper UsernameDlg[NUM_USERNAME_DIALOG_ROWS * CAPI_DLG_COLUMNS] =
{

"", "", "", 372, 200, "Logon", "", // Dialog box size
1, 100, 170, 90, "", "OK", "", // Default OK button
2, 200, 170, 90, "", "Cancel", "", // Cancel button
5, 40, 10, "", "", "Please enter your username and password.","",
14, 40, 35, 290, 100, "", "", // Group box
5, 50, 53, "", "", "Username", "", // Text
6, 150, 50, "", "", "", "MyName", // Text edit box
5, 50, 73, "", "", "Password", "", // Text
6, 150, 70, "", "", "", "*********", // Text edit box
13, 50, 110, "", "", "Remember username and password", true,

};
int __stdcall get_username(void)
{

cpp_xloper RetVal, DialogDef((RW)NUM_USERNAME_DIALOG_ROWS,
(COL)CAPI_DLG_COLUMNS, UsernameDlg);

for(;RetVal.Excel(xlfDialogBox, 1, &DialogDef) == xlretSuccess
&& RetVal.IsTrue();)

{
// Process the input from the dialog by reading
// the 7th column of the returned array.

// ... code omitted
}
return 1;

}

The cpp_xloper::Excel() wrapper, see section 8.5 on page 238, simplifies memory
management by ensuring that any memory allocated by Excel for the returned array
RetVal is correctly freed at destruction or before being overwritten. The above approach
doubles up the amount of memory used for the strings, as the cpp_xloper makes deep
copies of initialisation strings. This should not be a huge concern, but a more memory-
efficient approach would be to use a simple class as follows that only makes shallow
copies:

// This class is a very simple wrapper for an xloper. The class is

Passing Data Between Excel and the DLL 201

// specifically designed for initialising arrays of static strings
// in a more memory efficient way than with cpp_xlopers. It contains
// NO memory management capabilities and can only represent the same
// simple types supported by worksheet cells. Member functions are
// limited to a set of very simple constructors and an overloaded
// address-of operator.
class init_xloper
{
public:

init_xloper() {op.xltype = xltypeNil;}
init_xloper(int w) {op.xltype = xltypeInt; op.val.w = w;}
init_xloper(double d) {op.xltype = xltypeNum; op.val.num = d;}
init_xloper(bool b)
{

op.xltype = xltypeBool;
op.val._xbool = b ? 1 : 0;

};
init_xloper(WORD err) {op.xltype = xltypeErr; op.val.err = err;}
init_xloper(char *text)
{

// Expects null-terminated strings.
// Leading byte is overwritten with length of string

if(*text == 0 | | (*text = (BYTE)strlen(text + 1)) == 0)
op.xltype = xltypeNil;

else
{

op.xltype = xltypeStr;
op.val.str = text;

}
};
xloper *operator&() {return &op;} // return xloper address

private:
xloper op;

};

6.11 MISSING ARGUMENTS

XLL functions must be called with all arguments provided, except those arguments that
have been declared as xloper/xloper12s. Excel will not call the DLL code until all
required arguments have been provided.

Where DLL functions have been registered as taking xloper/xloper12 arguments
(P or R if xloper, Q or U if xloper12), Excel will pass type xltypeMissing if no
argument was provided. If the argument is a single cell reference to an empty cell, this is
passed as type xltypeRef or xltypeSRef if the argument was registered as type R
or U, NOT of type xltypeMissing. However, if the argument was registered as type
P or Q, a reference to an empty cell is passed as type xltypeNil. You will probably
want your DLL to treat this as a missing argument in which case the following code is
helpful. (Some of the later code examples in this book use this function.)

inline bool is_input_missing(xloper *p_op)
{

return !p_op | | (p_op->xltype & (xltypeMissing | xltypeNil));
}

202 Excel Add-in Development in C/C++

And here’s its xloper12 equivalent:

inline bool is_input_missing (xloper12 *p_op)
{

return !p_op | | (p_op->xltype & (xltypeMissing | xltypeNil));
}

7
Memory Management

7.1 EXCEL STACK SPACE LIMITATIONS

With Excel 97 there were about 44 Kbytes normally available on the stack that Excel
shares with the DLL. Later versions have made significantly more stack space available.
Stack space is used when calling functions (to store the arguments and return values)
and to create the automatic variables that the called function needs. No stack space is
used by function variables declared as static or declared outside function code at the
module level or by structures whose memory has been allocated dynamically. Although
you should not ordinarily need to worry about stack space, it’s good advice to follow
these simple guidelines:

• Don’t pass very large structures as arguments to functions. Use pointers or references
instead.

• Don’t return large structures. Return pointers to static or dynamically-allocated memory.
• Don’t declare very large automatic variable structures in the function code. If you need

them, declare them as static.
• Don’t call functions recursively unless you’re sure the depth of recursion will always

be shallow. Try using a loop instead.

When calling back into Excel using Excel4() or Excel12(), Excel checks to see if
there is enough space on the stack for the worst case usage call that could be made. If
it thinks there’s not enough room it will fail the function call, even though there might
have been enough space for that call. Following the above guidelines and being aware
of the limited space should mean that you never have to worry about stack space. If you
are concerned (or just curious) you can find out how much stack space there is with a
call to Excel’s xlStack function as the following example shows:

double __stdcall get_stack(void)
{

if(gExcelVersion12plus)
{

xloper12 retval;
if(xlretSuccess != Excel12(xlStack, &retval, 0))

return -1.0;

if(retval.xltype == xltypeInt)
return (double)retval.val.w; // = min(64Kb, actual stack space)

// MS state that this is not the returned type, but was returned in an
// Excel 12 beta release, so is left here.

else if(retval.xltype == xltypeNum)
return retval.val.num;

}
else
{

xloper retval;
if(xlretSuccess != Excel4(xlStack, &retval, 0))

return -1.0;

204 Excel Add-in Development in C/C++

if(retval.xltype == xltypeInt)
return (double)(unsigned short)retval.val.w;

}
return -1.0;

}

Note that the xloper12 integer is a 32-bit signed int, whereas the xloper’s is a 16-bit
signed short int. As a result, in the case of the xloper there is a need to cast the
returned value to an unsigned integer before casting to a double. This is a hangover from
the days when Excel provided even less stack space and the maximum positive value of
the xloper’s signed 16-bit integer (32,767) was sufficient. Once more stack was made
available, the need emerged for the cast to avoid a negative result. The xloper12’s int
removes the need for this cast.

7.2 STATIC ADD-IN MEMORY AND MULTIPLE EXCEL
INSTANCES

When multiple instances of Excel run, they share a single copy of the DLL executable
code. In Win32 there are no adverse memory consequences of this as each instance of the
program using the DLL gets its own memory space allocated for all the static memory
defined in the DLL. This means that in a function such as the following the returned
value will be the number of times this instance of the program has called this function
in the DLL.

int __stdcall count_calls(void)
{

static int num_calls = 0; // Not thread-safe
return ++num_calls;

}

(This was not the case in 16-bit Windows environments and meant a fair amount of fussing
around with instance handles, blocks of memory allocated for a given instance, etc).

You should note that the use of a static automatic variable is not thread-safe. This only
becomes an issue with Excel 2007 where multi-threaded recalculation is possible. (See
section 7.6 on page 212).

You may want to share data between multiple instances of Excel running on the same
machine, sharing the same DLL or XLL. The simplest approach when using Microsoft
Visual Studio, is the use of a named data segment as demonstrated in this code sample,
although you have to assume that this memory will get accessed on different threads and
should be protected by critical sections. (Also see section 7.6 on page 212).

#pragma data_seg("MyXllSharedData")
int shared_counter = 0;
#pragma data_seg() // End of MyXllSharedData data segment definitions

Another perfectly valid approach for sharing data is the use of memory-mapped files.

Memory Management 205

7.3 GETTING EXCEL TO FREE MEMORY ALLOCATED
BY EXCEL

When calling Excel4(), Excel4v(), Excel12() or Excel12v() functions (see
section 8.2 on page 226), Excel will sometimes allocate memory for the returned value
(an xloper/xloper12). It will always do this if the returned value is a string, for
example. In such cases it is the responsibility of the DLL to make sure the memory
gets freed. Freeing memory allocated by Excel in this way is done in one of two ways
depending on when the memory is no longer needed:

1. Before the DLL returns control to Excel.
2. After the DLL returns control to Excel.

These cases are covered in the next two sub-sections.
Table 7.1 summarises which xloper/xloper12 types have memory that needs to be

freed if returned by Excel4()/Excel12().

Table 7.1 Returned xlopers for which Excel allo-
cates memory

Type of xloper
/xloper12

Memory allocated if returned
by Excel4()/Excel12()

xltypeNum No

xltypeStr Yes

xltypeBool No

xltypeRef Yes1

xltypeErr No

xltypeMulti Yes

xltypeMissing No

xltypeNil No

xltypeSRef No

xltypeInt No

xltypeBigData No

7.3.1 Freeing xloper memory within the DLL call

Excel provides a C API function specifically to allow the DLL to tell Excel to free
the memory that it itself allocated and returned in an xloper during a call to either
Excel4() or Excel4v(). This function is itself is called using Excel4() and is
defined as xlFree (0x4000). Similarly this function is used where xloper12s returned
by Excel12() or Excel12v() need to be freed, using Excel12(xlFree,. . .).

1 The C API function xlfSheetId returns this type of xloper but does not allocate memory.

206 Excel Add-in Development in C/C++

This function does not return a value and takes the address(es) of the xloper(s)
associated with the memory that needs to be freed. The function happily accepts xloper/
xloper12s that have no allocated memory associated with them, but be warned, NEVER
pass an xloper/xloper12 with memory that your DLL has allocated: this will cause
all sorts of unwanted side effects.

The following code fragment shows an example of Excel4() returning a string for
which it allocated memory. In general, the second argument in the Excel4() is normally
a pointer to an xloper that would contain the return value of the called function, but
since xlFree doesn’t return a value a null pointer is all that’s required in the second
call to Excel4().

xloper dll_name;
// Get the full path and name of the DLL.

Excel4(xlGetName, &dll_name, 0);

// Do something with the name here, for example...
int len = dll_name.val.str[0];

// Get Excel to free the memory that it allocated for the DLL name
Excel4(xlFree, 0, 1, &dll_name);

If you know for sure that the call to Excel4() you are making NEVER returns a type
that has memory allocated to it, then you can get away with not calling xlFree on the
returned xloper. If you’re not sure, calling xlFree won’t do any harm.

Warning: Where the type is xltypeMulti it is not necessary to call xlFree for
each of the elements, whatever their types. In fact, doing this will confuse and destabilise
Excel. Similarly, converting elements of an Excel-generated array to or from an xloper
type that has memory associated with it may cause memory problems.

The cpp_xloper class contains member functions that wrap calls to Excel4() and
Excel12() and set flags that tell the class to use xlFree to free memory when the
destructor is eventually called, or before a new value is assigned. (See section 8.5 on
page 238). This makes the code much more manageable and leaks much less likely.
The following code fragment shows an example of its use. Note that the class will use
xloper12s if running Excel 2007+, otherwise it will use xlopers.

cpp_xloper DllName;
// Get the full path and name of the DLL. Destructor takes care of memory.

DllName.Excel(xlGetName);

// Do something with the name here, for example...
int len = DllName.Len();

7.3.2 Freeing Excel-allocated xloper memory returned by the DLL function

This case arises when the DLL needs to return an Excel-allocated xloper or xloper12
(i.e. a pointer to it) to Excel. Excel has no way of knowing that the associated memory
was allocated (by itself) during a callback from the DLL. The DLL has to tell Excel this
explicitly so that Excel can clean up afterwards. This is done by setting the xlbitXLFree
bit in the xltype field of the xloper/xloper12 as shown in the following code, which
returns the full path and name of the DLL.

Memory Management 207

xloper * __stdcall xloper_memory_example(int trigger)
{

static xloper dll_name; // Not thread-safe
Excel4(xlGetName, &dll_name, 0);

// Excel has allocated memory for the DLL name string which cannot be
// freed until after being returned, so need to set this bit to tell
// Excel to free it once it has finished with it.

dll_name.xltype |= xlbitXLFree;
return &dll_name;

}

The cpp_xloper class contains a method for returning a thread-safe copy of the con-
tained xloper or xloper12 :

xloper * cpp_xloper::ExtractXloper(void);
xloper12 * cpp_xloper::ExtractXloper12(void);

These methods set the xlbitXLFree bit if the contained xloper/xloper12 was pop-
ulated in a call to the C API via one of the overloaded wrapper functions cpp_xloper::
Excel(). (See next section for a listing of the code for ExtractXloper().)

Note: Setting xlbitXLFree on an xloper that is to be used for the return value for
a call to Excel4(), prior to the call to Excel4() that allocates it, will have no effect.
The correct time to set this bit is:

• after the call that sets its value;
• after it might be passed as an argument to other Excel4() calls;
• before a pointer to it is returned to the worksheet.

The following code will fail to ensure that the string allocated in the call to Excel4()
gets freed properly, as the type field of ret_oper is overwritten in the call:

xloper * __stdcall bad_example1(void)
{

static xloper ret_oper; // Not thread-safe
ret_oper.type |= xlbitXLFree;
Excel4(xlGetName, &ret_oper, 0);
return &ret_oper; // Memory leak: xlbitXLFree no longer set

}

The following code will confuse the call to xlfLen, which will not be able to determine
the type of ret_oper correctly.

xloper * __stdcall bad_example2(void)
{

static xloper ret_oper; // Not thread-safe
Excel4(xlGetName, &ret_oper, 0);
ret_oper.type |= xlbitXLFree;
xloper length;
Excel4(xlfLen, &length, 1, &ret_oper);

// do something with the string's length...
return &ret_oper;

}

208 Excel Add-in Development in C/C++

The following code will work properly.

xloper * __stdcall good_example(void)
{

static xloper ret_oper; // Not thread-safe
Excel4(xlGetName, &ret_oper, 0);
xloper length;
Excel4(xlfLen, &length, 1, &ret_oper);

// do something with the string's length...
ret_oper.type |= xlbitXLFree;
return &ret_oper;

}

7.3.3 Hiding xloper memory management within a C++ class

As touched on above, the overloaded class member functions cpp_xloper::Excel()
assign the return value of a call to a specified C API function to the xloper/xloper12
contained within that instance of the cpp_xloper. Not only does the class take care of
setting xlbitXLFree during the call to ExtractXloper()/ExtractXloper12(),
it makes sure that any resources allocated in a previous call to the C API are released
using xlFree if the instance is reused. In fact, in ensures that existing resources are
released however they were allocated before reuse.

For example:

xloper ret_val;
Excel4(xlGetName, &ret_val, 0);

// do something with the name, then free the resource
Excel4(xlFree, &ret_val, 0);

// get a reference to the calling cell
Excel4(xlfCaller, &ret_val, 0);

// do something with the caller's information, then free the resource
Excel4(xlFree, &ret_val, 0);

is equivalent to. . .

cpp_xloper RetVal;
RetVal.Excel(xlGetName);

// do something with the name
RetVal.Excel(xlfCaller);

// do something with the caller's information

The subject of wrapping the interface to Excel’s callbacks is discussed in more detail in
section 8.5 on page 238.

7.4 GETTING EXCEL TO CALL BACK THE DLL TO FREE
DLL-ALLOCATED MEMORY

If the DLL returns a pointer to an xloper/xloper12, Excel copies the values associated
with it into the worksheet cell(s) from which it was called and then discards the pointer. It
does not automatically free any memory that the DLL might have allocated in constructing

Memory Management 209

the xloper/xloper12. If it was one of the types for which memory needs to be allo-
cated, then the DLL will leak memory every time the function is called. To prevent this,
the C API provides a way to tell Excel to call back into the DLL once it has finished with
the return value, so that the DLL can clean up. The call-back function for xlopers is one
of the XLL interface functions, xlAutoFree, and for xloper12s is xlAutoFree12.
(See section 5.5.7 xlAutoFree (xlAutoFree12) on page 123 for details.)

It is the responsibility of the DLL programmer to make sure that their implementation of
xlAutoFree/xlAutoFree12 understands the data types that will be passed back to it
in this call, and that it knows how the DLL allocated the memory so that it can free it in a
compatible way. For xltypeMulti arrays, this may mean freeing the memory associated
with each element, and then freeing the array memory itself. Care should also be taken
to ensure that memory is freed in a way that is consistent with the way it was allocated.

The DLL code instructs Excel to call xlAutoFree by setting xlbitDLLFree in the
xltype field of the returned xloper/xloper12. The following code shows the creation
of an array of doubles with random values (set with calls to Excel4(xlfRand,. . .)),
in an xltypeMulti xloper, and its return to Excel.

xloper * __stdcall random_array(int rows, int columns)
{
// Get a thread-local static xloper

xloper *p_ret_val = get_thread_local_xloper(); // (see section 7.6)

if(!p_ret_val) // Could not get a thread-local copy
return NULL;

int array_size = rows * columns;
xloper *array;

if(array_size <= 0)
return NULL;

array = (xloper *)malloc(array_size * sizeof(xloper));
if(array == NULL)

return NULL;

for(int i = array_size; --i >= 0;)
Excel4(xlfRand, array + i, 0);

// Instruct Excel to call back into DLL to free the memory
p_ret_val->xltype = xltypeMulti | xlbitDLLFree;
p_ret_val->val.array.lparray = array;
p_ret_val->val.array.rows = rows;
p_ret_val->val.array.columns = columns;
return p_ret_val;

}

Optimisation note: Calling the C API is a fairly expensive operation. Where you call Excel
functions, such as the example Excel4(xlfRand, . . .) above, frequently in code that
needs to execute quickly, you should consider finding or writing alternative equivalent
code. Section 10.2.1 Pseudo-random number generation on page 464 provides code for
a pseudo-random number generator equivalent to Excel 2003’s which is not only faster
to call than via the C API, but also more statistically robust than the algorithm used in
earlier versions.

210 Excel Add-in Development in C/C++

After returning from this function, the DLL will receive a call to its implementation of
xlAutoFree, since it has returned an xloper. xlAutoFree will receive the address
of p_ret_val in this case. The code for that function should detect that the type is
xltypeMulti and should check that each of the elements themselves do not need to be
freed (which they don’t in this example). Then it should free the xloper array memory.

The following code does the same thing, but using the cpp_xloper class introduced in
section 6.4 on page 146. The code is simplified, but the same things are happening – just
hidden within the class.

xloper * __stdcall random_array(int rows, int columns)
{

cpp_xloper array((RW)rows, (COL)columns);

if(!array.IsType(xltypeMulti))
return NULL;

DWORD array_size;
array.GetArraySize(array_size);
cpp_xloper ArrayElt;

for(DWORD i = 0; i < array_size; i++)
{

if(array.GetArrayElt(i, ArrayElt))
{

ArrayElt.Excel(xlfRand);
array.SetArrayElt(i, ArrayElt);

}
}
return array.ExtractXloper();

}

Note again that the line ArrayElt.Excel(xlfRand); could be replaced with a faster-
to-call internal function. (See optimisation note above).

The cpp_xloper class contains a method for returning a thread-safe copy of the
contained xloper, ExtractXloper(). This method sets the xlbitDLLFree bit for
types where the DLL has allocated memory. Here is a listing of the code for
ExtractXloper().

// Return the xloper as a pointer to a thread-local static xloper.
// This method should be called when returning an xloper * to
// an Excel worksheet function, and is thread-safe.
xloper *cpp_xloper::ExtractXloper(void)
{
// Get a thread-local persistent xloper

xloper *p_ret_val = get_thread_local_xloper();
if(!p_ret_val) // Could not get a thread-local copy

return NULL;

if(gExcelVersion12plus) // cast down to an xloper
{

FreeOp();
xloper12_to_xloper(&m_Op, &m_Op12);
m_DLLtoFree = true; // ensure bits get set later in this fn
FreeOp12();

}

Memory Management 211

*p_ret_val = m_Op; // Make a shallow copy of data and pointers

if((m_Op.xltype & (xltypeRef | xltypeMulti | xltypeStr)) == 0)
{

// No need to set a flag to tell Excel to call back to free memory
Clear();
return p_ret_val;

}
if(m_XLtoFree)
{

p_ret_val->xltype |= xlbitXLFree;
}
else
{

if(!m_DLLtoFree) // was a read-only passed-in argument
{

// Make a deep copy since we don't know where or how this was created
if(!clone_xloper(p_ret_val, &m_Op))
{

Clear();
return NULL;

}
}
p_ret_val->xltype |= xlbitDLLFree;
if(m_Op.xltype & xltypeMulti)
{

DWORD limit = m_Op.val.array.rows * m_Op.val.array.columns;
xloper *p = m_Op.val.array.lparray;

for(;limit--; p++)
if(p->xltype & xltypeStr)

p->xltype |= xlbitDLLFree;
}

}
// Prevent the destructor from freeing memory by resetting properties

Clear();
return p_ret_val;

}

The class also contains a similar function for returning a thread-safe copy of the contained
xloper12, ExtractXloper12().

7.5 RETURNING DATA BY MODIFYING
ARGUMENTS IN PLACE

Where you need to return data that would ordinarily need to be stored in dynamically
allocated memory, you need to use the techniques described above. However, in some
cases you can avoid allocating memory, and the worry of how to free it. This is done by
modifying an argument that was passed to your DLL function as a pointer reference – a
technique known as modifying-in-place. Excel accommodates this for a number of argu-
ment types, provided that the function is declared and registered in the right way. (See
section 8.6.7 Returning values by modifying arguments in place on page 253 for details
of how to do this.)

212 Excel Add-in Development in C/C++

There are some limitations: Where the argument is a byte string (signed or unsigned
char * or xloper xltypeStr) Excel allocates enough space for a 255-character
string only – not 256! Similarly, in Excel 2007, Unicode string buffers are 32,767 wide-
characters in size, whether passed in as wchar_t * or xloper12 *. Where the data
is an array of doubles of type xl4_array or xl12_array (see section 6.2.3 The
xloper/xloper12 structures on page 135) the returned data can be no bigger than the
passed-in array. Arrays of strings cannot be returned in this way.

7.6 MAKING ADD-IN FUNCTIONS THREAD SAFE

7.6.1 Multi-threaded recalculations (MTR) in Excel 2007 (version 12)

Unlike all previous versions, the Excel 2007’s calculation engine can perform simultane-
ous calculations on multiple execution channels or threads. This enables Excel to schedule
more than one instance of a function to be evaluated simultaneously. This ability exists
regardless of the number of processors on a machine, but gives most benefit, relative to
earlier versions, where there is more than one or where there is a multi-core processor.
There are some advantages to using this ability on single-processor machines too where
a UDF makes a call to a remote server or cluster of servers, enabling the single processor
machine to request another remote call before the first may have finished. The number of
execution channels in Excel 2007 can be explicitly configured, and MTR can be disabled
altogether, a useful safety feature where supposedly thread-safe functions are causing
problems.

The version of the C API that is updated for Excel 2007 also provides the XLL add-in
developer with the means to declare exported worksheet functions as thread-safe when
running under the new version, so that they can take advantage of this new feature. (See
section 8.6.6 Specifying functions as thread-safe (Excel 2007 only) on page 253.)

Excel versions 11 and earlier use a single thread for all calculations, and all calls to XLL
add-ins also take place on that thread. Excel version 12 still uses a primary thread for:

• its interactions with XLL add-ins via the xlAuto- functions (except xlAutoFree –
see section 7.6.4 Excel’s sequencing of calls to xlAutoFree in a multi-threaded sys-
tem on page 218 below);

• running built-in and imported commands;
• calling VBA;
• responding to calls from COM applications, including VBA;
• the evaluation of all worksheet functions considered thread-unsafe.

In order to be safely considered as thread-safe, an add-in function must obey several rules:
It must

• make no calls to thread-unsafe functions (Excel’s, the DLL’s, etc.);
• declare persistent memory used by the function as thread-local;
• protect memory that could be shared by more than one thread using critical sections.

Even if you are not developing for use with Excel 2007, or are not intending to use
multi-threading, you might want to consider structuring your add-in code such that you
can easily take advantage of this ability in the future.

Memory Management 213

The following sub-sections discuss in detail all of these constraints, and describe one
approach to creating thread-safe XLL functions.

7.6.2 Which of Excel’s built-in functions are thread-safe

VBA and COM add-in functions are not considered thread-safe. As well as C API com-
mands, for example xlcDefineName, which no worksheet function is allowed to call,
thread-safe functions cannot access XLM information functions. XLL functions registered
as macro-sheet equivalents, by having ‘#’ appended to the type string, are not considered
thread-safe by Excel 2007. The consequences are that a thread-safe function cannot:

• read the value of an uncalculated cell (including the calling cell);
• call functions such as xlfGetCell, xlfGetWindow, xlfGetWorkbook,
xlfGetWorkspace, etc.;

• define or delete XLL-internal names using xlfSetName.

The one XLM exception is xlfCaller which is thread-safe. However, you cannot safely
coerce the resulting reference, assuming the caller was a worksheet cell or range, to a
value using xlCoerce in a thread-safe function as this would return xlretUncalced.
Registering the function with # gets round this problem, but the function will then not
be considered as thread-safe, being a macro-sheet equivalent. This prevents functions
that return the previous value, such as when a certain error condition exists, from being
registered as thread-safe.

Note that the C API-only functions are all thread-safe:

• xlCoerce (although coercion of references to uncalculated cells fails)
• xlFree
• xlStack
• xlSheetId
• xlSheetNm
• xlAbort (except that it cannot be used to clear a break condition)
• xlGetInst
• xlGetHwnd
• xlGetBinaryName
• xlDefineBinaryName

There are two exceptions: xlSet which is, in any case, a command-equivalent and so
cannot be called from any worksheet function; xlUDF which is only thread-safe when
calling a thread-safe function.

All of Excel 2007’s built-in worksheet functions, and their C API equivalents, are
thread-safe except for the following:

• PHONETIC
• CELL when either of the “format” or “address” arguments is used
• INDIRECT
• GETPIVOTDATA
• CUBEMEMBER

214 Excel Add-in Development in C/C++

• CUBEVALUE
• CUBEMEMBERPROPERTY
• CUBESET
• CUBERANKEDMEMBER
• CUBEKPIMEMBER
• CUBESETCOUNT
• ADDRESS where the fifth parameter (sheet name) is given
• Any database function (DSUM, DAVERAGE, etc.) that refers to a pivot table.

7.6.3 Allocating thread-local memory

Consider a function that returns a pointer to an xloper, for example:

xloper * __stdcall mtr_unsafe_example(xloper *arg)
{

static xloper ret_val; // Not safe: memory shared by all threads!!!
// code sets ret_val to a function of arg ...

return &ret_val;
}

This function is not thread-safe since it would be possible for one thread to return the
static xloper while another was over-writing it. The likelihood of this happening
is greater still if the xloper needs to be passed to xlAutoFree. One solution is to
allocate a return xloper and implement xlAutoFree so that the xloper memory
itself is freed.

xloper * __stdcall mtr_safe_example_1(xloper *arg)
{

xloper *p_ret_val = new xloper; // Must be freed by xlAutoFree
// code sets ret_val to a function of arg ...

p_ret_val.xltype |= xlbitDLLFree; // Always needed regardless of type
return p_ret_val; // xlAutoFree must free p_ret_val

}

This approach is simpler than the approach outlined below which relies on the TLS API,
but has the following disadvantages:

• Excel has to call xlAutoFree whatever the type of the returned xloper
• If the newly-allocated xloper is a string populated in a call to Excel4 there is no

easy way to tell xlAutoFree to free the string using xlFree before using delete
to free p_ret_val, requiring that the function make a DLL-allocated copy.

An approach that avoids these limitations is to populate and return a thread-local xloper.
This necessitates that xlAutoFree does not free the xloper pointer itself.

xloper *get_thread_local_xloper(void);

xloper * __stdcall mtr_safe_example_2(xloper *arg)
{

Memory Management 215

xloper *p_ret_val = get_thread_local_xloper();
// code sets ret_val to a function of arg setting xlbitDLLFree or
// xlbitXLFree if required

return p_ret_val; // xlAutoFree must NOT free this pointer!
}

The next question is how to set up and retrieve the thread-local memory, in other words,
how to implement get_thread_local_xloper() and similar functions. There are a
couple of fairly straight-forward approaches:

1. Use the system call GetCurrentThreadId() to obtain the executing thread’s
unique ID, and create a container that associates some persistent memory with that
thread ID. (Bear in mind that any data structure that can be accessed by more than
one thread needs to be protected by a critical section).

2. Use the Windows TLS (thread-local storage) API to do all this work for you.

Given the simplicity of implementation of the TLS API, this is the approach demonstrated
here. The TLS API enables you to allocate a block of memory for each thread, and to
obtain a pointer to the correct block for that thread at any point in your code. The first
step is to obtain a TLS index using TlsAlloc() which must ultimately be released
using TlsFree(), both best done from DllMain() :

// This implementation just calls a function to set up thread-local storage
BOOL TLS_Action(DWORD Reason);

__declspec(dllexport) BOOL __stdcall DllMain(HINSTANCE hDll, DWORD Reason,
void *Reserved)

{
return TLS_Action(Reason);

}

DWORD TlsIndex; // only needs module scope if all TLS access in this module

BOOL TLS_Action(DWORD DllMainCallReason)
{

switch (DllMainCallReason)
{
case DLL_PROCESS_ATTACH: // The DLL is being loaded

if((TlsIndex = TlsAlloc()) == TLS_OUT_OF_INDEXES)
return FALSE;

break;

case DLL_PROCESS_DETACH: // The DLL is being unloaded
TlsFree(TlsIndex); // Release the TLS index.
break;

}
return TRUE;

}

Once the index is obtained the next step is to allocate a block of memory for each
thread. One MSDN article recommends doing this every time DllMain is called with a
DLL_THREAD_ATTACH event, and freeing the memory on every DLL_THREAD_DETACH.

216 Excel Add-in Development in C/C++

However, this will cause your DLL to do a great deal of unnecessary allocation for threads
that Excel does not use for recalculation. Instead it is better to use an allocate-on-first-use
strategy. First, you need to define a structure that you want to allocate for each thread.
Suppose that you only needed a persistent xloper to be used to return data to worksheet
functions, as in our simple example above, then the following definition of TLS_data
would suffice:

struct TLS_data
{

xloper xloper_shared_ret_val;
// Add other required static data here...
};

The following function gets a pointer to the thread-local instance of this data structure,
or allocates one if this is the first call:

TLS_data *get_TLS_data(void)
{
// Get a pointer to this thread's static memory

void *pTLS = TlsGetValue(TlsIndex); // TLS API call
if(!pTLS) // No TLS memory for this thread yet
{

if((pTLS = calloc(1, sizeof(TLS_data))) == NULL)
// Display some error message (omitted)

return NULL;
TlsSetValue(TlsIndex, pTLS); // Associate with this thread

}
return (TLS_data *)pTLS;

}

Now we can see how the thread-local xloper memory is obtained: first we get a pointer
to the thread’s instance of TLS_data and then return a pointer to the xloper contained
within it:

xloper *get_thread_local_xloper(void)
{

TLS_data *pTLS = get_TLS_data();
if(pTLS)

return &(pTLS->xloper_shared_ret_val);
return NULL;

}

As should be clear, mtr_safe_example_1 and mtr_safe_example_2 are thread-
safe functions that can be registered as “RP$” when running Excel 2007 but “RP” when
running Excel 2003. An xloper12 version can be registered as “UQ$” in Excel 2007
but cannot be registered at all in Excel 2003.

The structure TLS_data above can be extended to contain pointers to an xl4_array
and an xl12_array for those functions returning these data types. Memory for these
types cannot be flagged for release by Excel calling back into the DLL, unlike xloper/
xloper12 memory, so you must keep track of memory from one use to another. Also,
the xl4_array/xl12_array structures do not contain pointers to memory: they are

Memory Management 217

entire blocks of variable-sized memory. Maintaining a thread-local pointer, set to the
address of the block that still needs to be freed, provides the best way of releasing any
allocated memory before re-allocation.

struct TLS_data
{
// Used to return thread-local persistent xloper to worksheet function
// calls that do not require the value to persist from call to call, i.e.,
// that are reusable by other functions called by this thread.

xloper xloper_shared_ret_val;
xloper12 xloper12_shared_ret_val;

// Used to return thread-local static xl4_array and xl12_array
// pointers, to which dynamic memory is assigned that persists
// from one call to the next. This enables memory allocated in
// the previous call to be freed on entry before pointer re-use.

xl4_array *xl4_array_shared_ptr;
xl12_array *xl12_array_shared_ptr;

// Add other required thread-local static data here...
};

In this case the retrieval, freeing and re-allocation of the array memory is done in the
same function. This means the size of the array must be known before the thread-safe
array is acquired, and so is passed as an argument to the following functions.

xl4_array * get_thread_local_xl4_array(size_t size)
{

if(size < = 0)
return NULL;

TLS_data *pTLS = get_TLS_data();
if(!pTLS)

return NULL;

if(pTLS->xl4_array_shared_ptr)
free(pTLS->xl4_array_shared_ptr);

size_t mem_size = sizeof(xl4_array) + (size - 1) * sizeof(double);
return pTLS->xl4_array_shared_ptr = (xl4_array *)malloc(mem_size);

}

Here’s an example of a thread-safe function that populates and returns an xl4_array:

xl4_array * __stdcall xl_array_example1(int rows, int columns)
{
// Get a pointer to thread-local static storage

size_t size = rows * columns;
xl4_array *p_array = get_thread_local_xl4_array(size);

if(p_array) // Could not get a thread-local copy
return NULL;

p_array->rows = rows;
p_array->columns = columns;

218 Excel Add-in Development in C/C++

for(int i = 0; i < size; i++)
p_array->array[i] = i / 10.0;

return p_array;
}

7.6.4 Excel’s sequencing of calls to xlAutoFree in a multi-threaded system

The above strategy of returning a pointer to a persistent thread-local xloper is used by
the cpp_xloper class’ ExtractXloper()/ExtractXloper12() member func-
tions. As explained in 7.3.2 Freeing Excel-allocated xloper memory returned by
the DLL function on page 206, any such pointer that itself points to dynamic memory
needs to have that memory freed after being returned to Excel. This is achieved by set-
ting the appropriate flag in the xltype field prompting Excel to call back into your
implementation of xlAutoFree().

In all versions of Excel, calls to xlAutoFree() occur before the next work-
sheet function is evaluated on that thread, making the above strategy of using a sin-
gle instance safe for xlopers. Were this not the case, it would be possible for the XLL
to be reusing the static xloper before it had been freed. In Excel 2007, this strict
sequencing order is preserved on a thread-by-thread basis. This means that calls to
xlAutoFree()/xlAutoFree12() are made immediately after the call that returned
the xloper/xloper12, by the same thread, and before the next function to be evaluated
is called on that thread.

Table 7.2 shows graphically an example of this sequencing with multiple instances on
two threads of two example thread-safe worksheet functions being recalculated simulta-
neously (from the top of the table downwards). Fn1() returns a double and Fn2()
returns an xloper that needs to be freed by xlAutoFree(). (Time is represented
discretely to ease the illustration).

Table 7.2 Worksheet calculation multi-
threading illustration

Time Thread 1 Thread 2

T1 Fn1 Fn2

T2 Fn1 xlAutoFree

T3 Fn2 Fn2

T4 xlAutoFree xlAutoFree

T5 Fn1 Fn2

T6 xlAutoFree

Note that the simultaneous calls to Fn2() at T3 must return pointers to 2 different
thread-local xlopers to be thread-safe. The simultaneous calls to xlAutoFree() at
T4 will then be acting on their own thread’s xloper. Note also that in Thread 2 the
xloper’s resources are always freed before being used again in the next call to Fn2().

Memory Management 219

Where xloper12s, flagged as having dynamic memory, are being used, Excel will
call back into xlAutoFree12(). The sequencing of calls to xlAutoFree12() is the
same as that described above for xlAutoFree().

7.6.5 Using critical sections with memory shared between threads

Where you have blocks of read/write memory that can be accessed by more than one
thread, you need to protect against simultaneous reading and writing of data using critical
sections. A critical section is a one-thread-at-a-time constriction. Windows coordinates
threads entering and leaving these constricted sections of code by the developer calling the
API functions EnterCriticalSection() and LeaveCriticalSection() before
and after, respectively, code that accesses the memory. These functions take a single
argument: a pointer to a persistent CRITICAL_SECTION object that has been initialised
with a call to InitializeCriticalSection().

The steps you should follow to implement Critical Sections properly are:

1. Declare a persistent CRITICAL_SECTION object for each data structure instance you
wish to protect;

2. Initialise the object and register its existence with the operating system by a call to
InitializeCriticalSection();

3. Call EnterCriticalSection() immediately before accessing the protected struc-
ture;

4. Call LeaveCriticalSection() immediately after accessing the protected struc-
ture;

5. When you no longer need the critical section, unregister it with a call to
DeleteCriticalSection().

Clearly, the finer the granularity of the data structures that have their own critical section,
the less chance of one thread having to wait while another thread reads or writes to it.
However, too many critical sections will have an impact on the performance of the code
and the operating system. Having a critical section for each element of an array would not
be a good idea therefore. Creating objects with their own critical sections, that might also
be used in arrays, is therefore to be avoided. At the other extreme, having only a single
critical section for all of your project’s thread-shared data would be equally unwise.

The right balance is to have a named critical section for each block of memory to
be protected. These can be initialised during the call to xlAutoOpen and released and
set to null during the call to xlAutoClose. Here’s an example of the initialisation,
uninitialisation and use of a section called g_csSharedTable :

CRITICAL_SECTION g_csSharedTable; // global scope (if required)
bool xll_initialised = false; // module scope

int __stdcall xlAutoOpen(void)
{

if(xll_initialised)
return 1;

// Other initialisation omitted
InitializeCriticalSection(&g_csSharedTable);
xll_initialised = true;

220 Excel Add-in Development in C/C++

return 1;
}
int __stdcall xlAutoClose(void)
{

if(!xll_initialised)
return 1;

// Other cleaning up omitted
DeleteCriticalSection(&g_csSharedTable);
xll_initialised = false;
return 1;

}

bool read_shared_table_element(unsigned int index, double &d)
{

if(index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection(&g_csSharedTable);
d = shared_table[index];
LeaveCriticalSection(&g_csSharedTable);
return true;

}
bool set_shared_table_element(unsigned int index, double d)
{

if(index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection(&g_csSharedTable);
shared_table[index] = d;
LeaveCriticalSection(&g_csSharedTable);
return true;

}

Another, and perhaps safer, way of protecting a block of memory is to create a class that
contains its own CRITICAL_SECTION and whose constructor, destructor and accessor
methods take care of its use. This approach has the added advantage of protecting objects
that might be initialised before xlAutoOpen is run, or survive after xlAutoClose is
called. As already stated above, you should avoid creating too many critical sections, so
should not do this for objects that might be used in arrays or similarly multiple structures.
Here is an example of simple thread-safe FILO stack for storing doubles, which is used
in one of the examples in section 10.2.2 on page 467.

struct simple_stack
{

simple_stack(int max_size)
{

InitializeCriticalSection(&cs_stack);
// Need to enter the CS here in case the constructor is explicitly invoked

EnterCriticalSection(&cs_stack);
if(stack)
{

delete[] stack;
stack = NULL;
size = index = 0;

}
if(max_size)
{

Memory Management 221

stack = new double[max_size];
size = max_size;

}
LeaveCriticalSection(&cs_stack);

}
∼simple_stack(void)
{

// Need to enter the CS here in case the destructor is explicitly invoked
EnterCriticalSection(&cs_stack);
if(stack)
{

delete[] stack;
stack = NULL;
size = index = 0;

}
LeaveCriticalSection(&cs_stack);
DeleteCriticalSection(&cs_stack);

}
bool push(double d)
{

EnterCriticalSection(&cs_stack);
if(index < size)
{

stack[index++] = d;
LeaveCriticalSection(&cs_stack);
return true;

}
LeaveCriticalSection(&cs_stack);
return false;

}
bool pop(double &d)
{

EnterCriticalSection(&cs_stack);
if(index > 0)
{

d = stack[--index];
LeaveCriticalSection(&cs_stack);
return true;

}
LeaveCriticalSection(&cs_stack);
return false;

}
private:

CRITICAL_SECTION cs_stack;
double *stack;
int index;
int size;

};

Where you have code that needs access to more than one block of protected memory at
the same time you need to be very careful about the order in which the critical sections
are entered and exited. For example the following two functions could create a deadlock:

bool copy_shared_table_element_A_to_B(unsigned int index)
{

if(index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection(&g_csSharedTableA);
EnterCriticalSection(&g_csSharedTableB);

222 Excel Add-in Development in C/C++

shared_table_B[index] = shared_table_A[index];
LeaveCriticalSection(&g_csSharedTableA);
LeaveCriticalSection(&g_csSharedTableB);
return true;

}
bool copy_shared_table_element_B_to_A(unsigned int index)
{

if(index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection(&g_csSharedTableB);
EnterCriticalSection(&g_csSharedTableA);
shared_table_A[index] = shared_table_B[index];
LeaveCriticalSection(&g_csSharedTableA);
LeaveCriticalSection(&g_csSharedTableB);
return true;

}

If the first function on one thread enters g_csSharedTableA as the second function
on another thread enters g_csSharedTableB, then both threads will hang. The correct
approach is to enter in a consistent order and exit in the reverse order, as follows:

EnterCriticalSection(&g_csSharedTableA);
EnterCriticalSection(&g_csSharedTableB);
// code that accesses both blocks
LeaveCriticalSection(&g_csSharedTableB);
LeaveCriticalSection(&g_csSharedTableA);

Moreover, where possible, it is better from a thread co-operation point of view to isolate
access to distinct blocks as shown here:

bool copy_shared_table_element_A_to_B(unsigned int index)
{

if(index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection(&g_csSharedTableA);
double d = shared_table_A[index];
LeaveCriticalSection(&g_csSharedTableA);
EnterCriticalSection(&g_csSharedTableB);
shared_table_B[index] = d;
LeaveCriticalSection(&g_csSharedTableB);
return true;

}

Where there is a lot of contention for a shared resource, i.e., frequent short-duration access
requests, you should consider using the critical section’s ability to spin. This is a technique
that makes waiting for the resource less processor-intensive. In this case, you should
use either InitializeCriticalSectionAndSpinCount() when initialising the
section, or SetCriticalSectionSpinCount() once initialised, to set the number of
times the thread loops before waiting for resource to become available. (The wait operation
is expensive, so spinning avoids this if the resource has become free in the meantime). On
a single processor system, the spin count is effectively ignored, but still can be specified
without doing any harm. According to Microsoft’s Platform SDK documentation, the
memory heap manager uses a spin count of 4000. For more information on the use of
critical sections, you should refer to Microsoft’s Platform SDK documentation.

8
Accessing Excel Functionality

Using the C API

This chapter sets out how to use the C API, the API’s relationship to Excel’s built-in
worksheet functions and commands, and the Excel 4 macro language. Many of the XLM
functions, and their C API counterparts, take multiple arguments and can return a great
variety of information, in particular the workspace information functions. It is not the
intention of this book to be a reference manual for the XLM language. (The Microsoft
XLM help file Macrofun.hlp is still freely downloadable from Microsoft at the time of
writing.) Instead this chapter aims to provide a description of those aspects of the C API
that are most relevant to writing worksheet functions and simple commands. Therefore
many of the possible arguments of some of the C API functions are omitted. Also, this
chapter is focused on using the C API rather than XLM functions on a macro sheet.

8.1 THE EXCEL 4 MACRO LANGUAGE (XLM)

Excel 4 introduced a macro language, XLM, which was eventually mapped to the C API
in Excel 5. Support for XLM and the functionality of the C API remained unchanged
up to Excel 2003, albeit that Excel 2007 updates some aspects of the C API. The fact
that it remains unchanged is clearly a weakness of the C API relative to VBA: VBA has
better access to Excel objects and events than the C API. When writing commands life
is much easier in VBA. The real benefits of using C/C++ DLLs and the C API are with
user-defined worksheet functions. You can have the best of both worlds, of course. VBA
commands and DLL functions that use the C API are easily interfaced, as described in
section 3.6 Using VBA as an interface to external DLL add-ins on page 62.

This book is not about writing worksheets or Excel 4 macro sheets, but knowing the
syntax of the worksheet and XLM functions and commands is important when using the
C API: the C API mirrors their syntax. At a minimum, registering DLL functions requires
knowledge of the XLM function REGISTER(). The arguments are identical to those of the
C API function xlfRegister, one of the enumerated function constants used in calls
to Excel4(), Excel4v(), Excel12() and Excel12v(). (These last two are only
available in Excel 2007). If you’re relying heavily on the C API, then sooner or later
you’ll need to know what parameters to pass and in what order for one or more of the
XLM functions. This chapter covers the aspects of the XLM most relevant to the subject
of this book. A Windows help file, Macrofun.hlp, downloadable from Microsoft’s
website, provides a great deal more information than given in this chapter. However it
only relates to XLM as used in a macro sheet, and therefore, from a C API point of view,
has a few holes that this chapter aims to fill.

As described below, the Excel4() and Excel4v() API functions provide access to
the Excel 4 macro language and Excel’s built-in worksheet functions via enumerated func-
tion constants. These are defined in the SDK header file as either xlfFunctionName
in the case of functions, or xlcCommandName in the case of commands. Typically, an
Excel function that appears in uppercase on a sheet appears in proper case in the header
file. For example, the worksheet function INDEX() is enumerated as xlfIndex, and the

224 Excel Add-in Development in C/C++

macro sheet function GET.CELL() becomes xlfGetCell. There are also a small number
of functions available only to the C API that have no equivalents in the macro language
or on the worksheet. These are listed in Table 8.1 and described in detail in section 8.8
Functions defined for the C API only on page 274.

Table 8.1 C API-only functions

Enumerated constant Value

xlFree 16384

xlStack 16385

xlCoerce 16386

xlSet 16387

xlSheetId 16388

xlSheetNm 16389

xlAbort 16390

xlGetInst 16391

xlGetHwnd 16392

xlGetName 16393

xlEnableXLMsgs 16394

xlDisableXLMsgs 16395

xlDefineBinaryName 16396

xlGetBinaryName 16397

xlUDF 255

Note: C API commands (starting xlc-) cannot be called from DLL functions that are
called (directly or indirectly) from worksheet cells. However some functions that perform
seemingly command-like operations surprisingly can be called in this way, for example
xlfWindowTitle and xlfAppTitle which are described below.

8.1.1 Commands, worksheet functions and macro sheet functions

Excel recognises three different categories of function:

1. Commands
2. Macro sheet functions
3. Worksheet functions

Sections 2.9 Commands versus functions in Excel on page 28, 3.8 Commands versus
functions in VBA on page 86 and 8.6.4 Giving functions macro sheet function permissions
on page 252 discuss the differences in the way Excel treats these functions and what
functions in each category can and cannot do.

Accessing Excel Functionality Using the C API 225

8.1.2 Commands that optionally display dialogs – the xlPrompt bit

Many Excel commands can optionally invoke dialogs that allow the user to modify inputs
or cancel the command. These dialogs will all be familiar to frequent Excel users, so a
list of those commands that permit this and those that don’t is not given here. The only
important points to address here are (1) how to call the command using Excel4(), etc.,
to display the dialog, (2) what are the differences in setting up the arguments for the call
to the command with and without the dialog being displayed, and (3) what return value
to expect if the user cancels the command.

The first point is very straightforward. The enumerated function constant, for example
xlcDefineName, should be bit-wise or’d with the value 0x1000, defined as xlPrompt
in the SDK header file.

On the second point, the arguments supplied pre-populate the fields in the dialog box.
Any that are not supplied will result in either blank fields or fields that contain Excel
defaults.

On the third point, any command function that can be called in this way will return
true if successful and false if cancelled or unsuccessful.

For example, the following command calls the xlcDefineName function with the
dialog displayed.

int __stdcall define_new_name(void)
{
// Get the name to be defined from the active cell. First get a
// reference to the active cell. No need to evaluate it, as call
// to xlcDefineName will try to convert contents of cell to a
// string and use that.

cpp_xloper ActiveCell, RetVal;
if(ActiveCell.Excel(xlfActiveCell) == xlretSuccess)

RetVal.Excel(xlcDefineName | xlPrompt, 1, &ActiveCell);
return 1;

}

8.1.3 Accessing XLM functions from the worksheet using defined names

It is possible to define worksheet names as formula strings that Excel will evaluate when-
ever it is required to make a substitution in a worksheet cell. For example, you can define
ROOT_2PI as “=SQRT(2*PI())”, so that a worksheet cell with the formula =ROOT_2PI would
display 2.506628275. . . . (In this case, it would, in fact, be better to precompute the num-
ber and define the name as “=2.506628275. . .” instead, so that Excel does not re-evaluate
it every time). Excel is far more permissive about what it permits to be used in name
definitions than in worksheet cells, insofar as it permits the use of XLM functions. So
you could define the name EXCEL_VERSION as “=GET.WORKSPACE(2)”, for example. You
can also use user-defined functions, whether in a VBA module or an XLL add-in. Note
that if volatile functions are used, cells that rely on this name, and all their dependents,
are volatile too.

Warning: XLL functions registered with #, i.e., as macro-sheet function equivalents,
(see section 8.6.4 Giving functions macro sheet function permissions on page 252), have
been reported as sometimes causing Excel to crash when used in conditional format
expressions.

226 Excel Add-in Development in C/C++

8.2 THE Excel4(),Excel12() C API FUNCTIONS

8.2.1 Introduction

Once inside the DLL you will sometimes need or want to call back into Excel to access
its functionality. This might be because you want to call one of Excel’s worksheet func-
tions, or take advantage of Excel’s ability to convert from one data type to another, or
because you need to register or un-register a DLL function or free some memory that
Excel has allocated. Excel provides two functions that enable you to do all these things,
Excel4() and Excel4v(). In Excel 2007 there are two additional and analogous func-
tions, Excel12() and Excel12v() that work with Excel 2007’s new data types. Each
pair of functions is essentially the same function: the first takes a variable-length argu-
ment list; the second takes a fixed-length list, the last of which is a variable-sized array
of arguments that you wish to pass.

Note that the functions Excel4() and Excel4v() are exported by the Excel DLL,
xlcall32.dll, and its import library equivalent, xlcall32.lib. However
Excel12() and Excel12v() are defined in code in the Excel 2007 SDK source file
xlcall.cpp. This is so that an XLL project built with the Excel 2007 version of the
import library xlcall32.lib will still run with earlier versions of Excel. The functions
are defined in such a way that they return a fail-safe return value, xlretFailed, when
called in earlier versions. (See next sub-section for more about Excel call back return
values.)

The prototype for Excel4() is:

int __cdecl Excel4(int xlfn, xloper *pRetVal, int count, ...);

The prototype for Excel12() is:

int __cdecl Excel12(int xlfn, xloper12 *pRetVal, int count, ...);

Note that the calling convention is __cdecl in order to support the variable argument
list. (This ensures that the caller, who knows how many arguments were passed, has
responsibility for cleaning up the stack).

As Excel12() is simply an updated version of Excel4() that takes xloper12
arguments instead of xlopers, and what is said below about Excel4() also applies
equally to xloper12 unless explicitly stated.

Here is a brief overview of the arguments:
The xlfn function being executed will always be one of the following:

• an Excel worksheet function;
• a C API-only function;
• an Excel macro sheet function;
• an Excel macro sheet command.

These function enumerations are defined in the SDK header file xlcall.h as either
xlf- or xlc-prefixed depending on whether they are functions or commands. There are
also a number of non-XLM functions available only to the C API, such as xlFree.

The following sections provide more detail.

Accessing Excel Functionality Using the C API 227

Table 8.2 Excel4() arguments

Argument Meaning Comments

int xlfn A number corresponding to a
function or command
recognised by Excel as part
of the C API.

Must be one of the predefined
constants defined in the SDK
header file xlcall.h

xloper *pRetVal
xloper12 *pRetVal

A pointer to an xloper or
xloper12 that will contain
the return value of the
function xlfn if
Excel4()/Excel12()
was able to call it.

If a return value is not
required, NULL (zero) can be
passed.

If xlfn is a command, then
TRUE or FALSE is returned.

If Excel4()/Excel12() was
unable to call the function, the
contents of this are unchanged.

Excel allocates memory for
certain return types. It is the
responsibility of the caller to
know when and how to tell
Excel to free this memory. (See
xlFree and xlbitXLFree.)

If a function does not return an
argument, for example, xlFree,
Excel4()/Excel12() will
ignore pRetval.

int count

xloper *arg1
xloper12 *arg1

The number of arguments to
xlfn being passed in this
call to
Excel4()/Excel12().

A pointer to an xloper or
xloper12 containing the
arguments for xlfn.

[v11−]: Maximum is 30.
[v12+]: Maximum is 255.

Missing arguments can be
passed as xlopers of type
xltypeMissing or
xltypeNil.

.

xloper *arg30 Last argument used in Excel 11−
.

xloper12 *arg255 Last argument used in Excel 12+

8.2.2 Excel4(), Excel12() return values

The value that Excel4()/Excel12() returns reflects whether the supplied function
(designated by the xlfn argument) was able to be executed or not. If successful it
returns zero (defined as xlretSuccess), BUT this does not always mean that the
xlfn function executed without error. To determine this you also need to check the
return value of the xlfn function passed back via the xloper *pRetVal. Where
Excel4()/Excel12() returns a non-zero error value (see below for more details) you
do know that the xlfn function was either not called at all or did not complete.

The return value is always one of the values given in Table 8.3. (Constants in paren-
theses are defined in the SDK header file xlcall.h.)

228 Excel Add-in Development in C/C++

Table 8.3 Excel4() return values

Returned value Meaning

0 (xlretSuccess) The xlfn function was called successfully, but you
need also to check the type and/or value of the return
xloper in case the function could not perform the
intended task.

1 (xlretAbort) The function was called as part of a call to a macro that
has been halted by the user or the system.

2 (xlretInvXlfn) The xlfn function is not recognised or not supported or
cannot be called in the given context.

4 (xlretInvCount) The number of arguments supplied is not valid for the
specified xlfn function.

8 (xlretInvXloper) One or more of the passed-in xlopers is not valid.

16 (xlretStackOvfl) Excel’s pre-call stack check indicates a possibility that
the stack might overflow. (See section 7.1 Excel stack
space limitations on page 203.)

32 (xlretFailed) The xlfn command (not a function) that was being
executed failed. One possible cause of this is Excel
being unable to allocate enough memory for the
requested operation, for example, if asked to coerce a
reference to a huge range to an xltypeMulti
xloper. This can happen in any version of Excel but is
perhaps more likely in Excel 2007 where the grid sizes
are dramatically increased.

Excel12() and Excel12v() return this value if
called from versions prior to Excel 2007.

64 (xlretUncalced) A worksheet function has tried to access data from a cell
or range of cells that have not yet been recalculated as
part of this workbook recalculation. Macro
sheet-equivalent functions and commands are not subject
to this restriction and can read uncalculated cell values.
(See section 8.1.1 Commands, worksheet functions and
macro sheet functions, page 224, for details.)

128 (xlretNotThreadSafe) Excel 2007+ only: Excel 2007 supports multi-threaded
worksheet recalculation and permits XLLs to register
their functions as thread-safe. There are a number of C
API callbacks that are not themselves thread-safe and so
not permitted from thread-safe functions. If the XLL
attempts such a C API call from a function registered as
thread-safe this error is returned, regardless of whether
the call was made using Excel4() or Excel12().
This error will also be returned if xlUDF is called to
invoke a thread-unsafe function.

Accessing Excel Functionality Using the C API 229

8.2.3 Calling Excel worksheet functions in the DLL using
Excel4(), Excel12()

Excel exposes all of the built-in worksheet functions through Excel4()/Excel12().
Calling a worksheet function via the C API is simply a matter of understanding how to set
up the call to Excel4()/Excel12() and the number and types of arguments that the
worksheet function takes. Arguments are all passed as pointers to xloper/xloper12s
so successfully converting from C/C++ types to xloper/xloper12s is a necessary part
of making a call. (See section 6.5 Converting between xlopers and C/C++ data types
on page 154.)

The following code examples show how to set up and call Excel4() using xlopers
directly, as well as with the cpp_xloper class defined in section 6.4 on page 146. The
example function is a fairly useful one: the =MATCH() function, invoked from the DLL by
calling Excel4() with xlfMatch.

Worksheet function syntax: =MATCH(lookup_value, lookup_array, match_type)

The following code accepts inputs of exactly the same type as the worksheet function
and then sets up the call to the worksheet function via the C API. Of course, there is no
value in this other than demonstrating how to use Excel4().

xloper * __stdcall Excel4_match(xloper *p_lookup_value,
xloper *p_lookup_array, int match_type)

{
// Get a thread-local static xloper

xloper *p_ret_val = get_thread_local_xloper();
if(!p_ret_val) // Could not get a thread-local copy

return NULL;

// Convert the integer argument into an xloper so that a pointer
// to this can be passed to Excel4()

xloper match_type_oper = {0.0, xltypeInt};
match_type_oper.val.w = match_type;

int xl4 = Excel4(
xlfMatch, // 1st arg: the function to be called
p_ret_val, // 2nd arg: ptr to return value
3, // 3rd arg: number of subsequent args
p_lookup_value, // fn arg1
p_lookup_array, // fn arg2
&match_type_oper);// fn arg3

// Test the return value of Excel4()
if(xl4 != xlretSuccess)
{

p_ret_val->xltype = xltypeErr;
p_ret_val->val.err = xlerrValue;

}
else
{

// Tell Excel to free up memory that it might have allocated for
// the return value.

p_ret_val->xltype |= xlbitXLFree;
}
return p_ret_val;

}

230 Excel Add-in Development in C/C++

Breaking this down, the above example takes the following steps:

1. Get a pointer to a thread-local xloper which will be returned to Excel. The use of
a thread-local xloper makes the function thread-safe and enables the function to be
registered as eligible for multi-threaded recalculation in Excel 2007.

2. Convert any non-xloper arguments to the Excel4() function into xlopers. (Here
the integer match_type is converted to an internal integer xloper. It could also
have been converted to a floating point xloper.)

3. Pass the constant for the function to be called to Excel4(), in this case xlfMatch
= 64.

4. Pass a pointer to an xloper that will hold the return value of the function. (If the
function does not return a value, passing NULL or 0 is permitted.)

5. Pass a number telling Excel4() how many subsequent arguments (the arguments for
the called function) are being supplied. xlfMatch can take 2 or 3 arguments, but in
this case we pass 3.

6. Pass pointers to the arguments.
7. Store and test the return value of Excel4().

In some cases, you might also want to test the type of the returned xloper to check that
the called function completed successfully. In most cases a test of the xltype to see if
it is xltypeErr is sufficient. In the above example we return the xloper directly, so
can allow the spreadsheet to deal with any error in the same way that it would after a
call to the MATCH() function itself.

Note: If Excel was unable to call the function, say, if the function number was not
valid, the return value xloper would be untouched. In some cases it may be safe to
assume that Excel4() will not fail and simply test whether the xlfn function that
Excel4() was evaluating was successful by testing the xltype of the return value
xloper. (You should ensure that you have initialised the xloper to something safe,
such as xltypeNil, first).

Some simplifications to the above code example are possible. The function
Excel4_match() need not be declared to take an integer 3rd argument. Instead, it
could take another xloper pointer. Also, we can be confident in the setting up of the
call to Excel4() that we have chosen the right function constant, that the number of
the arguments is good and that we are calling the function at a time and with arguments
that are not going to cause a problem. So, there’s no need to store and test the return
value of Excel4(), and so the xlfMatch return value can be returned straight away. If
xlfMatch returned an error, this will propagate back to the caller in an acceptable way.

The function could therefore be simplified to the following (with comments removed):

xloper * __stdcall Excel4_match(xloper *p_lkp_value,
xloper *p_lkp_array, xloper *p_match_type)

{
xloper *p_ret_val = get_thread_local_xloper();
if(!p_ret_val) // Could not get a thread-local copy

return NULL;
Excel4(xlfMatch, p_ret_val, 3, p_lkp_value, p_lkp_array, p_match_type);
p_ret_val->xltype |= xlbitXLFree;
return p_ret_val;

}

Accessing Excel Functionality Using the C API 231

Using the cpp_xloper class to call Excel, hiding the memory management, the original
code can be simplified to this:

xloper * __stdcall Excel4_match(xloper *p_lookup_value,
xloper *p_lookup_array, int match_type)

{
cpp_xloper RetVal;
xloper match_oper = {(double)match_type, xltypeNum};

// Excel is called here with xloper * arguments only – must not mix
RetVal.Excel(xlfMatch, 3, p_lookup_value, p_lookup_array, &match_oper);
return RetVal.ExtractXloper(true); // returns a thread-local xloper ptr

}

Note that the cpp_xloper::Excel is called here with xloper * arguments only,
ensuring that the compiler calls the correct overloaded member function. The fact that
the compiler cannot check the types of variable argument lists places the onus on the
programmer to be careful not to mix types.

As already mentioned, there is not much point in writing a function like this that
does exactly what the function in the worksheet does, other than to demonstrate how to
call worksheet functions from the DLL. However, if you want to customise a worksheet
function, a cloned function like this is a sensible starting point.

8.2.4 Calling macro sheet functions from the DLL using Excel4(), Excel12()

Excel’s built-in macro sheet functions typically return some information about the Excel
environment or the property of some workbook or cell. These can be extremely useful
in an XLL. Two examples are the functions =CALLER() and =GET.CELL() and their C API
equivalents xlfCaller and xlfGetCell. The first takes no arguments and returns
some information about the cell(s) or object from which the function (or command)
was called. The second takes a cell reference and an integer value and returns some
information: What information depends on the value of the integer argument. Both of the
C API functions are covered in more detail later on in this chapter. In combination they
permit the function to get information about the calling cell(s) including its value.

The following code fragment shows an example of both functions in action. This func-
tion toggles the calling cell between two states, 0 and 1, every time Excel recalculates. (To
work as described, the function needs to be declared a volatile function – see section 8.6.5
Specifying functions as volatile on page 253.)

xloper * __stdcall toggle_caller(void)
{
// Use of static here is not thread-safe, but function cannot be
// exported as thread-safe in any case since it must be registered
// as type # in order to be able to call xlfGetCell

static xloper ret_val;
xloper caller, GetCell_param;

GetCell_param.xltype = xltypeInt;
GetCell_param.val.w = 5; // contents of cell as number
Excel4(xlfCaller, &caller, 0);
Excel4(xlfGetCell, &ret_val, 2, &GetCell_param, &caller);
if(ret_val.xltype == xltypeNum)

232 Excel Add-in Development in C/C++

ret_val.val.num = (ret_val.val.num == 0 ? 1.0 : 0.0);
Excel4(xlFree, 0, 1, &caller);
return &ret_val;

}

Note that the function returns a pointer to a static xloper. This is not thread-safe and
so this function cannot be registered in Excel 2007 as such. Not only this, but to work as
intended the function must be registered with Excel as a macro-sheet equivalent function
(type ‘#’). Such functions are not considered thread-safe in Excel 2007 and so the call
to Excel4(xlfGetCell, . . .) would in any case return xlretNotThreadSafe.
Since this function calls an XLM function and so cannot be declared as thread-safe, there
is no need to use the TLS API here.

An alternative to using xlfGetCell to get the calling cell’s value from the reference
is to use the C API xlCoerce function to convert the cell reference to the desired
data type, in this case a number. (This function is covered in more detail below). The
equivalent code written using the cpp_xloper class and xlCoerce would be:

xloper * __stdcall toggle_caller(void)
{

cpp_xloper Caller;
Caller.Excel(xlfCaller);
if(!Caller.IsRef())

return NULL;
cpp_xloper TypeNum(xltypeNum);
Caller.Excel(xlCoerce, 2, &Caller, &TypeNum);
Caller = ((double)Caller == 0.0) ? 1.0 : 0.0;
return Caller.ExtractXloper();

}

Circular reference note: In the above example, the function gets information about the
calling cell, its value, and then returns a function of it to that same cell. This gives
Excel an obvious dilemma: the function depends on itself so there is a circular refer-
ence. How Excel deals with this depends on how toggle_caller() was registered.
If registered as a worksheet function, the call to xlfGetCell will return the error code
2 (xlretInvXlfn). Excel considers functions like xlfGetCell to be off-limits for
normal worksheet functions, getting round this and other problems that can arise. This
is the same rejection as you would see if you entered the formula =GET.CELL(5,A1) in a
worksheet cell – Excel would display an error dialog saying “That function is not valid”.
(Such functions were introduced only to be used in Excel macro sheets.) The equivalent
code that calls xlCoerce would also fail, this time with an error code of 64 (xlretUn-
calced). In this case Excel is complaining that the source cell has not been recalculated.
If toggle_caller() had been registered as a macro sheet function, Excel is more
permissive; the function behaves as you would expect. Section 8.6.4 Giving functions
macro sheet function permissions on page 252 describes how to do this. Note that func-
tions registered as macro-sheet equivalents are not considered thread-safe in Excel 2007.
As with the preceding function, it still cannot be registered as thread-safe and must be
registered as a macro-sheet equivalent.

Accessing Excel Functionality Using the C API 233

Being able to give your XLL worksheet functions macro sheet function capabilities
opens up the possibility of writing some really absurd and useless functions. Some
potentially useful ones are also possible, such as the above example, and the following
very similar one that simply counts the number of times it is called. In this case, the
example uses a trigger argument, and effectively counts the number of times that argu-
ment changes or a forced calculation occurs. Note that it uses the cpp_xloper class’
overloaded (double) cast that coerces the reference obtained from xlfCaller to a
number, and then the overloaded assignment operator which changes Caller’s type to
a number before returning it.

xloper * __stdcall increment_caller(int trigger)
{

cpp_xloper Caller;
Caller.Excel(xlfCaller); // Get a reference to the calling cell
if(!Caller.IsRef())

return NULL;
Caller += 1.0; // Coerce to xltypeNum and increment
return Caller.ExtractXloper();

}

8.2.5 Calling macro sheet commands from the DLL using Excel4()/Excel12()

XLM macro sheet commands are entered into macro sheet cells in the same way as work-
sheet or macro sheet functions. The difference is that they execute command-equivalent
actions, for example, closing or opening a workbook. Calling these commands using
Excel4() or Excel12() is programmatically the same as calling functions, although
they only execute successfully if called during the execution of a command. In other
words, they are off-limits to worksheet and macro-sheet functions. The sections from
here on to the end of the chapter contain a number of examples of such calls.

8.3 THE Excel4v()/Excel12v() C API FUNCTIONS

The prototype for Excel4v() is:

int __stdcall Excel4v(int xlfn, xloper *pRetVal, int count, xloper
*opers[]);

The prototype for Excel12v() is:

int __stdcall Excel12v(int xlfn, xloper12 *pRetVal, int count, xloper12
*opers []);

These return the same values as Excel4() and Excel12() respectively.
Where these functions are wrapped in a C++ class, and you want to conform to a strict

standard for class member functions with regard to use of the const specifier, you will
also need to add const to the prototypes as shown here to ensure your compiler doesn’t
complain:

234 Excel Add-in Development in C/C++

int __stdcall Excel4v(int, xloper *, int, const xloper *[]);
int __stdcall Excel12v(int, xloper *, int, const xloper12 *[]);

Table 8.4 Excel4v() arguments

Argument Meaning Comments

int xlfn A number corresponding to a
function or command recognised
by Excel as part of the C API.

Must be one of the predefined
constants defined in the SDK
header file xlcall.h.

xloper *pRetval
xloper12 *pRetval

A pointer to an xloper or
xloper12 that will contain the
return value of the function xlfn
if Excel4()/Excel12() was
able to call it.

If a return value is not required,
NULL (zero) can be passed.
If xlfn is a command, then TRUE
or FALSE is returned.

If Excel4v()/Excel12v()
was unable to call the function,
the contents of this are
unchanged.

Excel allocates memory for
certain return types. It is the
responsibility of the caller to
know when and how to tell
Excel to free this memory. (See
xlFree and xlbitXLFree.)

If a function does not return an
argument, for example,
xlFree,
Excel4()/Excel12() will
ignore pRetval.

int count The number of arguments to xlfn
being passed in this call to
Excel4v()/Excel12v().

[v11−]: Maximum is 30.
[v12+]: Maximum is 255.

xloper *opers[]
xloper12 *opers[]

An array, of at least count
elements, of pointers to
xloper/xloper12s containing
the arguments for xlfn.

The following example simply provides a worksheet interface to Excel4v() allowing
the function number and the arguments that are appropriate for that function to be passed
in directly from the sheet. This can be an extremely useful tool but also one to be used
with great care. This section outlines some of the things this enables you to do, but first
here’s the code with comments that explain what is going on.

xloper * __stdcall XLM4(int xlfn, xloper *arg0, xloper *arg1,
xloper *arg2, xloper *arg3, xloper *arg4,
xloper *arg5, xloper *arg6, xloper *arg7,
xloper *arg8, xloper *arg9, xloper *arg10,
xloper *arg11, xloper *arg12, xloper *arg13,
xloper *arg14, xloper *arg15, xloper *arg16,
xloper *arg17, xloper *arg18)

{
xloper *arg_array[19];

Accessing Excel Functionality Using the C API 235

static xloper ret_xloper;

// Fill in array of pointers to the xloper arguments ready for the call
// to Excel4v()

arg_array[0] = arg0;
arg_array[1] = arg1;
arg_array[2] = arg2;
arg_array[3] = arg3;
arg_array[4] = arg4;
arg_array[5] = arg5;
arg_array[6] = arg6;
arg_array[7] = arg7;
arg_array[8] = arg8;
arg_array[9] = arg9;
arg_array[10] = arg10;
arg_array[11] = arg11;
arg_array[12] = arg12;
arg_array[13] = arg13;
arg_array[14] = arg14;
arg_array[15] = arg15;
arg_array[16] = arg16;
arg_array[17] = arg17;
arg_array[18] = arg18;

// Find the last non-missing argument
for(int i = 19; --i >= 0;)

if((arg_array[i]->xltype & (xltypeMissing | xltypeNil)) == 0)
break;

// Call the function
int retval = Excel4v(xlfn, &ret_xloper, i + 1, arg_array);

if(retval != xlretSuccess)
{

// If the call to Excel4v() failed, return a string explaining why
// and tell Excel to call back into the DLL to free the memory about
// to be allocated for the return string.

ret_xloper.xltype = xltypeStr | xlbitDLLFree;
ret_xloper.val.str = new_xlstring(Excel4_err_msg(retval));

}
else
{

// Tell Excel Excel to free up memory that it might have allocated for
// the return value.

if(p_ret_val->xltype & (xltypeStr | xltypeMulti | xltypeRef))
p_ret_val->xltype |= xlbitXLFree;

}
return &ret_xloper;

}

The function Excel4_err_msg() simply returns a string with an appropriate error mess-
age should the call toExcel4v() fail, and is listed below. The functionnew_xlstring()
creates a byte-counted string from this.

char *Excel4_err_msg(int err_num)
{

switch(err_num)
{
case xlretAbort: return "XL4: macro halted";

236 Excel Add-in Development in C/C++

case xlretInvXlfn: return "XL4: invalid function number";
case xlretInvCount: return "XL4: invalid number of arguments";
case xlretInvXloper: return "XL4: invalid oper structure";
case xlretStackOvfl: return "XL4: stack overflow";
case xlretUncalced: return "XL4: uncalced cell";
case xlretFailed: return "XL4: command failed";

default:
return NULL;

}
}

The function XLM4() above takes 20 arguments (one for the C API function code, and
19 function arguments). Up to and including Excel 2003 the limit for worksheet function
arguments is 30, but the means by which functions are registered (see section 8.6 below)
requires that an additional 10 pieces of data are provided so that you can only include
descriptive strings for the first 20 arguments. However you can still register functions that
go up to the 30 limit. In Excel 2007, this limit is raised to 255, effectively eliminating
this problem.

8.4 WHAT C API FUNCTIONS CAN THE DLL
CALL AND WHEN?

The C API was designed to be called from DLL functions that have themselves been
called by Excel while executing commands, during worksheet recalculations or during
one of the Add-in Manager’s calls to one of the xlAuto-functions. DLL routines can
be called in other ways too: the DllMain() function is called by the operating system;
VBA can call exported DLL functions that have been declared within the VBA module;
the DLL can set up operating system call-backs, for example, at regular timed intervals;
the DLL can create background threads.

Excel is not always ready to receive calls to the Excel4()/Excel12() functions.
The following table summarises when you can and cannot call these functions safely.

Table 8.5 When it is safe to call the C API

When called Safe to call? Additional comments

During a call to the DLL from:
• an Excel command,
• a user-defined command in a

macro sheet,
• a user-defined command subroutine

in a VBA code module,
• the Add-in Manager to one of the
xlAuto-functions,

• an XLL command run using the
xlcOnTime CAPI function.

Yes In all these cases Excel is running a
command, i.e., these are all effectively
called as a result of a user action, e.g.,
starting Excel, loading a workbook,
choosing a menu option, etc.

All xlf-, xlc- and the C API-only
functions are available.

Accessing Excel Functionality Using the C API 237

Table 8.5 (continued)

When called Safe to call? Additional comments

During a call to the DLL from a
user-defined VBA worksheet
function.

Yes DLL functions called from VBA in this
way cannot call macro sheet C API
functions such as the workspace
information function xlfGetWorkbook.

During a direct call to a macro sheet
equivalent function, called as a result
of recalculation of a worksheet cell or
cells.

Yes Most of the xlf-functions and the C
API-only functions are available. (A few
of the xlf-functions are, in fact,
command-equivalents and can only be
called from commands.)

Note: Functions within VBA modules
that are called as a result of a worksheet
recalculation are worksheet function
equivalents not macro-sheet equivalents.

During a direct call to a worksheet
equivalent function, called as a result
of recalculation of a worksheet cell or
cells.

Yes Only worksheet equivalent xlf-functions
and the C API-only functions are
available. A large number of the
xlf-functions are only accessible to
macro sheet equivalent functions. Calling
these will either result in Excel4()/
Excel12() returning xlretFailed.

Note that some otherwise-permitted
xlf-functions that attempt to obtain the
values of unrecalculated cells will fail,
returning xlretUncalced, unless
called from macro sheet equivalent
functions.

Functions within VB modules that are
called as a result of a worksheet
recalculation are subject to the above
restrictions.

During a call to a DLL function by
the operating system.

No In both of these cases, calling Excel4()
or Excel4v()/Excel12v() will have
unpredictable results and may crash or
destabilise Excel.

During an execution of a background
thread created by the DLL.

No See section 9.5 Accessing Excel
functionality using COM/OLE for
information about how to call Excel in
such cases, including how to get Excel to
call into the DLL again in such a way
that the C API is available.

238 Excel Add-in Development in C/C++

8.5 WRAPPING THE C API

The Excel4()/Excel12() and Excel4v()/Excel12v() functions can be wrapped
up in a number of ways that make their use easier. This book intentionally presents a
unwrapped view of the C API, so that its workings are exposed as clearly as possible.
However, given the simplification to code and improved memory management possible,
especially when creating add-ins that will run in Excel 2007 (version 12) as well as ear-
lier versions, this becomes an important topic. The reasons for wanting to do this are the
following:

• Shorten development and testing time
• Reduce (or remove) the likelihood of run-time errors, especially those associated with

memory, that could destabilise Excel
• Make code easier to read, maintain, document and modify at a later date
• In conjunction with the wrapping of both xlopers and xloper12s, make the calling

of the C API version-independent.

To define what exactly such a wrapper should look like is not the intention of this book,
but this section aims to provide a couple of examples of what can be achieved, to help
you decide what will work best for you.

The cpp_xloper class introduced in section 6.4 on page 146 is intended primarily
to demonstrate the benefits of wrapping the xloper and xloper12 data structures in
order to simplify reading and writing values and memory management. The fact that
it wraps both types also makes sure that the cpp_xloper a version-independent data
type. Including the C API functions within this class allows it to be used to set the value
of a cpp_xloper in a call to the C API without needing to specify which version of
structure, xloper or xloper12, or which API function, Exce4() or Excel12() is
being used: the class makes this choice based on the running version.

Other C++ wrappers could easily be envisaged to make the handling of strings and
xl4_array/xl12_arrays more consistent with the sensible OO paradigms, such as
hiding memory management from the point of use and protecting the developer from their
most likely blunders.

There are a number of schools of thought on the more general subject of wrapping
the C API in an object-oriented interface that hides all of the messy details that this
book attempts to deal with. There are a number of approaches used in shareware and
commercial applications, from classes that wrap the data structures to classes that wrap the
Excel application, emulating in many ways the object model exposed by Excel via COM.
C++ wrappers can be envisaged, and are freely available, that make implementation of
XLLs more straightforward, rapid and the resulting code more easily maintained. Another
advantage of a fully wrapped approach is that the developer can develop reusable code that
can plug into Excel in a number of ways: C API, COM or .NET. Again, this discussion
is beyond the scope of this book, suffice to say that there are good commercial packages
that might suit your tastes if this is what you are looking to achieve.1

This section simply discusses the wrapped C API functions in the cpp_xloper class
introduced in section 6.4 on page 146, designed to simplify access to the C API via
the Excel4(), Excel4v(), Excel12() and Excel12v() functions. This is most

1 For example, Planatech XLL++ and ManagedXLL.

Accessing Excel Functionality Using the C API 239

useful when setting the value of a cpp_xloper to be the result of a call to the C API.
Handing responsibility for this to the class ensures that any memory allocated for the
returned xloper/xloper12 by Excel is freed at the right time in the right way. (See
also section 7.3 on page 205).

For example, suppose we want to write some code to get the value of the cell imme-
diately above the calling cell. The steps are:

• Get a reference to the calling cell using xlfCaller
• Inspect and modify the reference to refer to the cell above
• Coerce the modified reference to a value

With no use of wrappers or the cpp_xloper class described in section 6.4 on page 146,
the verbose code to do this would look something like this:

bool get_cell_above_caller_v1(xloper &ret_val)
{

xloper caller;

// Try to get a reference to the calling cell(s)
if(Excel4(xlfCaller, &caller, 0) != xlretSuccess)

return false;

// Excel4 executed OK, but still need to check returned xloper type
if((caller.xltype & (xltypeSRef | xltypeRef)) == 0)
{

// Was not called from a worksheet cell or range.
// Need to free any memory associated with caller. (In this
// case, if called from a menu bar or toolbar, a small array
// will have been allocated).

Excel4(xlFree, 0, 1, &caller);
return false;

}
// Now need to check that cell is not in the top row

if(caller.xltype == xltypeSRef)
{

if(caller.val.sref.ref.rwFirst == 0)
return false;

}
else // caller.xltype == xltypeRef
{

if(caller.val.mref.lpmref->reftbl[0].rwFirst == 0)
{

// Need to get Excel to free the lpmref pointer.
Excel4(xlFree, 0, 1, &caller);
return false;

}
}
if(caller.xltype == xltypeSRef)
{

// modify the reference
caller.val.sref.ref.rwFirst--;

// now reduce the size to a single cell
caller.val.sref.count = 1;
caller.val.sref.ref.rwLast = caller.val.sref.ref.rwFirst;
caller.val.sref.ref.colLast = caller.val.sref.ref.colFirst;

240 Excel Add-in Development in C/C++

}
else // == xltypeRef
{

// modify the reference
caller.val.mref.lpmref->reftbl[0].rwFirst--;

// now reduce the size to a single cell
caller.val.mref.lpmref->count = 1;
caller.val.mref.lpmref->reftbl[0].rwLast =

caller.val.mref.lpmref->reftbl[0].rwFirst;
caller.val.mref.lpmref->reftbl[0].colLast =

caller.val.mref.lpmref->reftbl[0].colFirst;
}

// Now coerce the reference to a worksheet value type
xloper target_type;
target_type.xltype = xltypeInt;
target_type.val.w = xltypeErr | xltypeNum | xltypeStr | xltypeBool;

if(Excel4(xlCoerce, &ret_val, 2, &caller, &target_type) != xlretSuccess)
{

// Need to free all memory allocated so far. Since it has failed,
// xlCoerce has not allocated any memory at this point

Excel4(xlFree, 0, 1, &caller);
return false;

}
// Done. ret_val contains the value of the cell above the caller.

return true;
}

int __stdcall above_cell_caller_v1(void)
{

xloper above_cell;
// Get the value of the cell above the top-left calling cell

if(!get_cell_above_caller_v1(above_cell))
return 0;

// Do something with it ...

// Now free the memory that might have been allocated by Excel
// during the call to get_cell_above_caller_v1()

Excel4(xlFree, 0, 1, &above_cell);
return 1;

}

This is a lot of code to do something fairly simple. Not only that, but there are two places
where memory is, or could be, allocated by Excel. The risk of not freeing one of these
on one of the control paths is significant. The above code can be simplified, of course. In
particular, the handling of both xltypeSRef and xltypeRef types can be avoided by
coercing xltypeSRef to xltypeRef. Also, there is no need to specify explicitly the
target types when coercing the reference to a value, as xlCoerce will do this implicitly
if the target type is omitted. On the other hand, xlCoerce will return the coerced value
of the top left cell in a range if explicitly asked to convert to a worksheet value type,
removing the need to explicitly change the reference to single-cell. With these, and a few
other, simplifications, the code becomes:

Accessing Excel Functionality Using the C API 241

bool get_cell_above_caller_v2(xloper &ret_val)
{

xloper caller;

// Try to get a reference to the calling cell(s)
if(Excel4(xlfCaller, &caller, 0) != xlretSuccess)

return false;

// Excel4 executed OK, but still need to check returned xloper
if((caller.xltype & (xltypeSRef | xltypeRef)) == 0)
{

// Need to free any memory associated with caller. (In this
// case, if called from a menu bar or toolbar, a small array
// will have been allocated).

Excel4(xlFree, 0, 1, &caller);
return false;

}
// If xltypeSRef, coerce caller to xltypeRef

xloper target_type;
target_type.xltype = xltypeInt;
target_type.val.w = xltypeRef;

if(caller.xltype == xltypeSRef
&& Excel4(xlCoerce, &caller, 2, &caller, &target_type) != xlretSuccess)

return false;

xlref *p_ref = caller.val.mref.lpmref->reftbl;
// Now need to check that cell is not in the top row

if(p_ref->rwFirst == 0)
{

// Need to get Excel to free the lpmref pointer.
Excel4(xlFree, 0, 1, &caller);
return false;

}
// modify the reference

p_ref->rwFirst--;

target_type.val.w = xltypeErr | xltypeNum | xltypeStr | xltypeBool;
// Now coerce the top-left cell in the range to a single value

if(Excel4(xlCoerce, &ret_val, 2, &caller, &target_type) != xlretSuccess)
{

// Need to free all memory allocated so far. Since it has failed,
// xlCoerce has not allocated any memory at this point

Excel4(xlFree, 0, 1, &caller);
return false;

}
// Done. ret_val contains the value of the cell above the caller.

return true;
}

It’s still a lot of code. Not only this, but when running under Excel 2007, it will work
fine but will not be as efficient as if it were using xloper12s and Excel12(). This
is because when calling Excel4()/Excel4v() in Excel 2007, the xlopers are cast
up to xloper12s implicitly and the resulting return value then cast back down to an
xloper. Using the cpp_xloper class, or something similar, not only can the code be
simplified and the specifics of the xloper/xloper12 structures be tamed, but the most
appropriate internal structure and C API function can be called. Here is what the above
code reduces to using the cpp_xloper as provided on the example project CD ROM.

242 Excel Add-in Development in C/C++

bool get_cell_above_caller_v3(cpp_xloper &RetVal)
{
// Try to get a reference to the calling cell(s)
// ConvertSRefToRef() returns true if type is already xltypeRef.

if(RetVal.Excel(xlfCaller) != xlretSuccess
| | RetVal.ConvertSRefToRef() != xlretSuccess)

return false;

RW top_row = RetVal.GetTopRow(); // counts from 1
// Now need to check that cell is not in the top row

if(top_row <= 1) // 1 if top row, 0 if not a reference type
return false;

// Modify the reference
RetVal.SetTopRow(top_row - 1);
RetVal.ConvertRefToSingleValue();

// Done. RetVal contains the value of the cell above the caller.
return true;

}

int __stdcall above_cell_caller_v3(void)
{

cpp_xloper AboveCell;
if(!get_cell_above_caller_v3(AboveCell))

return 0;
// Do something with it ...
// ... no need to free the memory explicitly any more.

return 1;
}

Of course, the code has not completely disappeared; it now resides, more sensibly, in
the cpp_xloper class. The explicit calls to Excel4() have all gone, replaced by
calls to one of the overloaded wrapper function cpp_xloper::Excel() which place
the return value directly into the invoking instance of the class. These functions assume
responsibility for making sure that any memory will be freed in the right way eventually.
Many of the code examples in the remainder of this book use the Excel() member
functions to simplify the code.

In order to provide flexibility over whether this function can be called with xloper,
xloper12 or cpp_xloper arguments, it is necessary to create a number of overloaded
member functions:

int Excel(int xlfn); // not strictly necessary, but simplifies the others
int Excel(int xlfn, int count, const xloper *p_op1, ...);
int Excel(int xlfn, int count, const xloper12 *p_op1, ...);
int Excel(int xlfn, int count, const cpp_xloper *p_op1, ...);
int Excel(int xlfn, int count, const xloper *p_array[]);
int Excel(int xlfn, int count, const xloper12 *p_array[]);
int Excel(int xlfn, int count, const cpp_xloper *p_array[]);

Note that it is assumed that the caller of the variable argument versions of these functions
will not mix argument types. Note also that the use of const here necessitates that const
declarations be used in the definitions or prototypes of Excel4v() and Excel12v().

Once a wrapper is implemented, you need not, and arguably should not, call the C
API functions directly. Some additional checks can also be built into these wrappers, for

Accessing Excel Functionality Using the C API 243

example, to check that count is not less than zero or greater than the version-specific
limit. To reflect cases where such a test fails you might want to define and return an
additional error:

#define xlretNotCalled -1 // C API function not called

Here is an example implementation of one of these functions. Variables prefixed ‘m_’ are
class member variables: the flags m_XLtoFree12 and m_XLtoFree are used to tell the
class to call xlFree to release memory, and m_Op and m_Op12 are the class’ xloper
and xloper12 instances respectively:

int cpp_xloper::Excel(int xlfn, int count, const cpp_xloper *p_op1, ...)
{

if(xlfn < 0 | | count < 0
| | count > (gExcelVersion12plus ? MAX_XL12_UDF_ARGS :

MAX_XL11_UDF_ARGS))
return xlretNotCalled;

if(count == 0 | | !p_op1)
return Excel(xlfn);

int ret_val;
va_list arg_ptr;
va_start(arg_ptr, p_op1); // Initialize

if(gExcelVersion12plus)
{

const xloper12 *xloper12_ptr_array[MAX_XL12_UDF_ARGS];
xloper12_ptr_array[0] = &(p_op1->m_Op12);
cpp_xloper *p_cpp_op;

for(int i = 1; i < count; i++) // get args as cpp_xlopers ptrs
{

p_cpp_op = va_arg(arg_ptr, cpp_xloper *);
xloper12_ptr_array[i] = &(p_cpp_op->m_Op12);

}
va_end(arg_ptr); // Reset

xloper12 temp;
ret_val = Excel12v(xlfn, &temp, count, xloper12_ptr_array);
Free();

if(ret_val == xlretSuccess)
{

m_Op12 = temp; // shallow copy
m_XLtoFree12 = true;

}
}
else // gExcelVersion < 12
{

const xloper *xloper_ptr_array[MAX_XL11_UDF_ARGS];
xloper_ptr_array[0] = &(p_op1->m_Op);
cpp_xloper *p_cpp_op;

for(int i = 1; i < count; i++) // get args as cpp_xlopers ptrs
{

p_cpp_op = va_arg(arg_ptr, cpp_xloper *);
xloper_ptr_array[i] = &(p_cpp_op->m_Op);

244 Excel Add-in Development in C/C++

}
va_end(arg_ptr); // Reset

xloper temp;
ret_val = Excel4v(xlfn, &temp, count, xloper_ptr_array);
Free();

if(ret_val == xlretSuccess)
{

m_Op = temp; // shallow copy
m_XLtoFree = true;

}
}
return ret_val;

}

Note that in order to be safe, the above code needs to assume that the address of this
instance of the cpp_xloper is also being passed as one (or more) of the arguments.
It copes with this by assigning the value of the call to Excel4v()/Excel12v() to
a temporary xloper which is shallow-copied to this instance’s xloper after resources
have been freed. If it didn’t do this it would leak memory when assigning to an xloper
that was a string, array or external reference. The functions still depend on the developer
setting count to the right value, otherwise Excel will run into the stack, treating random
values as valid xloper pointers with a high risk of crashing.

Clearly, additional code could be added to, say, check that the number or types of
arguments were consistent with the function to be called. You could even go as far to
implement a member function for every C API function, taking standard data types instead
of xlopers, so that it was not even necessary to remember the function enumerations.

The above approach shows the use of a function that sets the value of this instance
of the xloper to the return value of some C API function. Another approach is to
invoke a member function that takes the current value of this xloper as the argument
to a C API function. The cpp_xloper class contains a useful example of this: bool
cpp_xloper::Alert(int dialog_type) which displays the contents of the con-
tained xloper converted to a string. The function takes care of the tasks of (1) coercing
the xloper to a temporary string, (2) creating the dialog, (3) processing and returning
the dialog return value, and (4) freeing the temporary string memory.

There are many different but, by necessity, similar approaches to wrapping Excel’s func-
tionality. The Generic Framework project released by Microsoft with the Excel’97 Frame-
work SDK contains a stand-alone function Excel() that wraps calls to Excel4(). It
also contains a number of other functions that initialise and make throw-away copies of
xlopers to be passed as arguments.2

8.6 REGISTERING AND UN-REGISTERING
DLL (XLL) FUNCTIONS

Registering functions is an essential step in making your DLL functions accessible on
the worksheet (short of using the Declare statement in modules containing VBA UDFs).

2 At the time of writing, Microsoft are planning to release an updated Framework project for Excel 2007 which
will also be backwards compatible with previous Excel versions.

Accessing Excel Functionality Using the C API 245

It is also the means by which you specify what a user sees when they invoke the Paste
Function or Add-in Manager dialogs. Functions can be registered from any command at
any time, the most sensible place being the xlAutoOpen XLL interface function. (See
section 5.5 XLL functions called by the Add-in Manager and Excel on page 117 for details
of when this function is called.)

When your DLL is unloaded, registered functions should, in theory, be un-registered so
that Excel knows they are inaccessible – something best done in the xlAutoClose XLL
interface function. However, a bug in Excel prevents functions from being unregistered
properly. This is not a great concern, as it does nothing to destabilise Excel.

Registering functions is equivalent in many ways to declaring DLL functions in VBA.
The required minimum information is very similar: the DLL path and file name, the
function name as exported, the argument types and the return type. However, Excel
allows the DLL to tell it many more things about the function at the same time, such as
the calling equivalence of the function (worksheet or macro sheet equivalent), whether or
not the function is volatile, whether it is thread-safe, as well as providing information for
the Add-in Manager and Paste Function dialogs.

8.6.1 The xlfRegister function

Overview: Registers and un-registers DLL and XLL commands and
functions.

Enumeration value: 149 (x95)

Callable from: Commands only.

Return type: xltypeNum

Arguments: See table below.

Registering and un-registering commands and functions is accomplished with calls to
the same function, xlfRegister. All arguments can be passed in as length-counted
xltypeStr strings, although numeric values can be passed in some cases. Their meaning
is given in the following table. To register a worksheet function, at least the first 5 are
required. To register a command, at least 6 are needed. (See section 8.7 Registering and
un-registering DLL (XLL) commands on page 271 for more about commands.)

Excel 2003 and earlier versions limited all functions, including macro sheet functions
such as xlfRegister, to 30 arguments. Given that there are 10 arguments to pass to
xlfRegister, this limits you to providing help for only 20 arguments for any DLL
function that you wish to export and make available on the worksheet. (It is still possible
to export functions that take up to 30 arguments, you just can’t provide help for them.) In
practice this is not too much of a limitation. If you really need to pass more information
than this, combining data into a single array or range argument is the most obvious
solution. Excel 2007 increases the limit for all functions to 255, effectively removing this
problem altogether.

Note: A curious Excel bug sometimes causes the truncation of the last 2 characters of
the last argument help text in the Paste Function dialog. This can be avoided by padding
with a couple of spaces or by passing an extra blank text argument.

246 Excel Add-in Development in C/C++

Table 8.6 xlfRegister arguments for registering functions

Argument
number

Required or
optional

Description

1 Required The full drive, path and filename of the DLL containing the
function.

2 Required The function name as it is exported. Note: This is
case-sensitive.

3 Required The return type, argument type and calling permission
string. (See sections 8.5.3, 8.5.4 and 8.5.5 for details.)

4 Required The function name as you wish it to appear in the
worksheet.
Note: This is case-sensitive.

5 Required The argument names as a comma-delimited concatenated
string, e.g., "Arg1,Arg2,Arg3". Excel uses this string to
work out the number of arguments and to determine the
text to show to the left of each of the corresponding
text-boxes in the Paste Function dialog.

6 Optional The function type: 1 or omitted = Function; 2 = Command.

7 Optional The Paste Function category in which the function is to be
listed. If omitted the function is listed under User Defined.
(See section 8.5.2 for details.)

8 Optional (Not used. Pass xltypeNil or xltypeMissing).

9 Optional The help topic.

10 Optional A brief description of the function, e.g., "This
function returns the factorial of positive
integers less than 20". This text is displayed in
the Paste Function dialog.

11 Optional Help for the 1st argument, e.g., "A positive integer
less than 20". This text is displayed in the Paste
Function dialog when the text box relating to this argument
is selected.

12 Optional Help for the 2nd argument.

.

30 Optional Help for the 20th argument – the last when running v11− .

.

255 Optional Help for the 245th argument – the last when running v12+.

Accessing Excel Functionality Using the C API 247

Here is an example of code that registers a function using the cpp_xloper class
to ease creation of the arguments. Note that, in practice, registering functions one by
one like this, each with its own registration function, would be extremely cumbersome.
Section 8.6.11 Managing the data needed to register exported functions on page 256
describes a much more efficient and organised approach.

bool register_example(void)
{

cpp_xloper DllName;
cpp_xloper FunctionName("exponent_function");
cpp_xloper TypeText("BB"); // = return a double, take a double
cpp_xloper WorksheetFunctionName("MY_EXP");
cpp_xloper Arguments("Exponent");
cpp_xloper FunctionType(1);
cpp_xloper Category("My functions");
cpp_xloper Description("Returns e to the power of Exponent");
cpp_xloper Arg1Help("Any number such that |n| <= 709");
cpp_xloper RetVal;

// Get the full path and name of the DLL.
if(DllName.Excel(xlGetName) != xlretSuccess)

return false;
// Note: All arguments are passed as pointers to xlopers

int xl_ret_val = RetVal.Excel(xlfRegister,
11, // number of subsequent arguments
&DllName,
&FunctionName,
&TypeText,
&WorksheetFunctionName,
&Arguments,
&FunctionType,
&Category,
p_xlMissing, // no short-cut
p_xlMissing, // no help topic
&Description,
&Arg1Help);

if(xl_ret_val != xlretSuccess)
{

cpp_xloper Message("Could not register MY_EXP");
Message.Alert();
return false;

}
return true;

}

double __stdcall exponent_function(double arg1)
{

if(fabs(arg1) > 709) // limit of e^arg1 in IEEE double
return 0.0;

return exp(arg1);
}

Warning: It is possible to register the same DLL function twice, giving it a different
worksheet name, the 4th argument, in both cases. You might want to do this so that, for
example, in one case it is volatile and in the other it is not. Or you might want to register
it as taking an all-types xloper argument in one case, type R, and values-only, type P, in

248 Excel Add-in Development in C/C++

the other. (The following sections discuss these things in detail.) Excel will not complain
if you do this, but it may be unable to distinguish between the two functions, and the
desired differentiation might not occur. The simple work-around is to create a wrapper to
the function and export both the function and the wrapper.

8.6.2 Specifying which category the function should be listed under

Argument 7 to xlfRegister tells Excel which function category to list worksheet
functions under in the Paste Function dialog. This can be a number or text corresponding
to one of the hard-coded standard categories, or the text of a new category specified by
the DLL. If the text given does not exist already, Excel will create a new category with
that name. Creating a new category for a given DLL is a good idea, especially where they
are to be distributed. It makes it clear which DLL and software provider the functions
are associated with.

The standard categories that are visible when viewing the Paste Function dialog from
within a worksheet are:

Table 8.7 Standard worksheet
function categories

Number Text

1 Financial

2 Date & Time

3 Math & Trig

4 Text

5 Logical

6 Lookup &
Reference

7 Database

8 Statistical

9 Information

14 User Defined

? Engineering

? Cube

There are also a number of categories that are only visible when viewing the Paste
Function dialog from within a macro sheet. As this book is not about XLM or macro
sheets, these are mentioned only for completeness:

Accessing Excel Functionality Using the C API 249

Table 8.8 Macro sheet function
categories

Number Text

10 Commands

11 DDE/External

12 Customising

13 Macro Control

8.6.3 Specifying argument and return types

The string supplied as argument 4 to xlfRegister encodes the return type of the
function in its first letter and the types of the arguments in its subsequent letters. (In fact
it is used to specify more than just this – see sections 8.6.3 through to 8.6.6 below.) Excel
uses these letters to ensure it does the necessary conversions of inputs and return values.
Note that Excel has no way to check that the letters used correspond to the function as
defined in the DLL code. The xlfRegister function will be successful even if they
don’t match. However, Excel will have problems calling the function, so you need to be
sure you’ve specified these correctly.

The following table shows how the various data types are encoded:

Table 8.9 Registered function argument and return types

Data type Pass by
value

Pass by ref
(pointer)

Comments

Boolean A L short (0 = false or 1 = true)

double B E

char * C, F Null-terminated ASCII byte
string

unsigned char * D, G Counted ASCII byte string

[v12+] unsigned short * C%, F% Null-terminated Unicode
wide-char string

[v12+] unsigned short * D%, G% Counted Unicode wide
character string

unsigned short [int] H DWORD, size t, wchar t

[signed] short [int] I M 16-bit

[signed long] int J N 32-bit

FP (xl4 array) K Floating point array structure

(continued overleaf)

250 Excel Add-in Development in C/C++

Table 8.9 (continued)

Data type Pass by
value

Pass by ref
(pointer)

Comments

[v12+] FP12 (xl12 array) K% Large grid floating point array
structure

xloper P Variable-type worksheet values
and arrays

R Values, arrays and range
references

[v12+] xloper12 Q Variable-type worksheet values
and arrays

U Values, arrays and range
references

The types C%, F%, D%, G%, K%, Q and U are all new in Excel 2007 and not supported
in earlier versions. These new data types are discussed later. The string types F, F%, G
and G% are used for arguments that are modified-in-place. When xloper or xloper12
UDF function arguments are registered as types P or Q respectively, Excel will convert
single-cell references to simple values and multi-cell references to arrays when preparing
these arguments. In other words, P and Q types will always arrive in your function as one
of these types: xltypeNum, xltypeStr, xltypeBool, xltypeErr, xltypeMulti,
xltypeMissing or xltypeNil, but not xltypeRef or xltypeSRef as these are
always dereferenced.

If a function uses a pass-by-reference (pointer) type for its return value, you can pass
a null pointer as the return value. Microsoft Excel will translate this to the #NUM! error.

Argument 3 to xlfRegister, a string of the above codes, can also be suffixed by
‘#’ and/or ‘!’ indicating, respectively, that the function is a macro-sheet equivalent and/or
that it is to be treated as volatile. Declaring functions as macro-sheet equivalents enables
them to get the value of unrecalculated cells (including the current value of the calling
cell or cells) and to call XLM information functions. (It should be noted that functions
registered as # and as taking R or U type arguments are volatile by default). (See also
sections 8.6.4 and 8.6.5 below).

Excel 2007 also allows a ‘$’ to be appended to indicate that the function is thread-safe.
(Much more on this below). However, macro-sheet functions are considered as thread-
unsafe so that ‘#’ and ‘$’ cannot both be provided. If an XLL attempts to register a
function with both # and $ it will fail. The subject of writing thread-safe functions is
dealt with in detail in section 7.6 Making add-in functions thread safe on page 212, and
their registration is also mentioned below in section 8.6.6.

Examples

Full explanations of # (indicating a macro sheet equivalent function), ! (indicating a
volatile function), $ (indicating a thread-safe function), and the leading numeral (indicating
the position of an argument to be modified in place as the return value) are given in the
next few sections.

Accessing Excel Functionality Using the C API 251

Table 8.10 Example argument strings for registered functions

Calling specifier
(3rd argument to
xlfRegister)

Description

BB Take a double. Return a double.

BJJ Take two signed long integers. Return a double.

CB Take a double. Return a null-terminated C string.

1F Take a null-terminated C string and modify it in-place.

1G Take a byte-counted string and modify it in-place.

2BF Take a double and a null-terminated C string and modify the string
(the 2nd argument) in-place. Function must return void.

FBF As above example, except function can return anything: Excel will
ignore it.

CD Take a byte-counted string and return a null-terminated C string.

2EEE Take three pointers to double and modify the 2nd argument in-place.

1K Take and return a floating-point array structure (see section 6.2.2) by
modifying in-place the first and only argument.

KJJ Take two signed long integers. Return a floating-point array structure.
(See section 6.2.2.)

RR Take a pointer to xloper. Return a pointer to xloper.

J! Take no arguments. Return a signed long integer. Function is volatile.

RJJJJ# Take four signed long integers. Return a pointer to xloper.
Function has macro sheet equivalence and is able to reference
uncalculated cells and macro sheet information functions.

1RR#! Take two pointers to xloper. Return an xloper via the first argument
by modifying in place. Function is volatile and has macro sheet
equivalence.

RPP Take two pointers to value-only (dereferenced) xlopers. Return a
pointer to xloper.

The following functions can only be registered when running Excel
2007 or later versions:

UQQ Take two pointers to value-only (dereferenced) xloper12s. Return a
pointer to xloper12.

BB$ Take a double and return a double. Function is declared as
thread-safe and so must not make any thread-unsafe calls.

(continued overleaf)

252 Excel Add-in Development in C/C++

Table 8.10 (continued)

Calling specifier
(3rd argument to
xlfRegister)

Description

1K%$! Function takes a pointer to an xl12 array (FP12) and modifies it in
place. Function must be declared as returning void. Function is volatile
and thread-safe.

F%C%F%$ Function takes two null-terminated Unicode strings and modifies the
second argument in place. Excel ignores the function’s return value.
Function is thread-safe.

UQ# Take a pointer to value-only (dereferenced) xloper12. Return a pointer
to xloper12. Function has macro-sheet equivalence.

The following function type is illegal:

UQ#$ ERROR: Macro-sheet functions are not considered as thread-safe.

8.6.4 Giving functions macro sheet function permissions

Excel allows macro sheet functions to do a number of things that ordinary worksheet
functions cannot. For example, they are able to access the current value of any cell,
whether or not that cell is in need of recalculation. They are also permitted to call a number
of workspace information functions that are off-limits to worksheet functions. Effectively,
macro sheet functions have a higher permission level than worksheet functions.

When registering DLL functions, (not commands), you can tell Excel whether your
function should have macro sheet function permissions. By default it will not, but is
given them by appending a ‘#’ character to the end of the type string, argument 3. For
example a function declared as “BB#” (a function that takes a double and returns a
double) will be able to access the value of all uncalculated cells.

Excel forbids the use of built-in macro sheet functions in worksheets. Try entering the
formula =Get.Note(A1) in a worksheet – Excel will complain that the function “is not valid”.
Fortunately, it does allow add-in functions declared as macro sheet functions to be called
from a worksheet. This opens up the possibility for worksheet functions to access a much
wider range of information and functionality.

Note: If a function that is only defined as a worksheet function attempts to reference
an uncalculated cell in a call to Excel4()/Excel12(), the call will fail, returning the
value xlretUncalced. There are also a number of workspace information functions
that cannot be called from worksheet functions. Attempts to do this will fail with a
nxlretInvXlfn error. (See section 8.10.18 Information about the calling function type
on page 315).

Default volatile note: Macro sheet functions that take xloper or xloper12 argu-
ments registered as type R or U respectively, are treated as volatile by default. (See also
next section).

Excel 2007 note: Excel 2007 supports multi-threaded workbook recalculation and per-
mits XLLs to register worksheet functions as thread-safe. It does not, however, permit
functions registered as macro-sheet equivalents to be thread-safe.

Accessing Excel Functionality Using the C API 253

8.6.5 Specifying functions as volatile

The concept of volatile functions is explained in section 2.12.3 Volatile functions on
page 35.

By default, DLL worksheet functions are not volatile: They only recalculate when their
precedents change. (There is an exception – see next paragraph). To make a DLL function
volatile it is only necessary to place an exclamation mark ‘!’ at the end of the type string
in argument 3. For example a function declared as “BB!” (a function that takes a double
and returns a double) will be recalculated every time Excel performs a recalculation.
Be careful about registering functions in this way. Excel not only recalculates volatile
functions with every recalculation, but also all their dependents too.

Functions registered as macro-sheet equivalents, type #, and as taking xloper or
xloper12 arguments, type R and U, rather than the value-only types P and Q, are by
default volatile. This echoes the behaviour of XLM macro sheets when the ARGUMENT()
function was used with the parameter 8 to specify that a given argument should be left
as a reference. The logic behind Excel treating these functions as volatile is that if you
want to calculate something based on the reference, i.e. the location of a cell, then you
must recalculate every time in case the location has changed but the value has stayed the
same.

It is possible to alter the volatile status of an XLL function with a call to the C
API function xlfVolatile, passing a Boolean false xloper/xloper12 argument.
However, there are reports that this can confuse Excel’s order-of-recalculation logic, so
the advice would be to decide at the outset whether your functions need to be volatile or
not, and stick with that.

8.6.6 Specifying functions as thread-safe (Excel 2007 only)

Excel 2007 introduces multi-threaded calculation. Developers of XLLs are given the
ability to tell Excel when their functions are thread-safe so that Excel will, where possible,
schedule these as safe to call simultaneously. Note that Excel expects the developer to take
responsibility for making functions thread-safe. (See section 7.6 Making add-in functions
thread safe on page 212). To register a DLL function as thread-safe it is necessary to
place an dollar sign ‘$’ at the end of the type string in argument 3, for example “BB$”.
Note that macro-sheet equivalent functions are not considered thread-safe and so you
cannot combine $ and # – the call to xlfRegister will fail.

8.6.7 Returning values by modifying arguments in place

Where an argument is passed to a DLL function via a pointer, it is possible for the DLL to
return its value via this argument – a technique known as modifying in place. This leaves
the burden of memory management to Excel. Excel will both allocate the memory for the
argument and clean up once it has copied out the returned data. Care must be taken not to
expect too much of Excel, however. Byte-strings in Excel are maximum 255 characters
in length (the amount of space Excel allocates for these). In Excel 2007 Unicode strings
are supported in the C API and can be up to 32,767 wide characters in length. Where
the data is an array of doubles (see section 6.2.2 Excel floating-point array structures:
xl4_array, xl12_array on page 129) the returned data can be no bigger than the
passed-in array. Arrays of strings cannot be returned in this way, and it is recommended

254 Excel Add-in Development in C/C++

that you do not use this technique to return xloper/xloper12s given the risks of
overwriting original Excel memory, or passing pointers back to Excel that it cannot free.

Excel also needs fair warning that you intend to do this and only permits one argument
(and always the same one) to be used in this way. This is done within the return and
argument type string passed as the 3rd argument to xlfRegister. Instead of specifying
a return type as the first character, a single digit from 1 to 9 informs Excel that the
corresponding argument, counting from 1, is to be used, which must be one of the passed-
by-ref types. Functions that Excel expects to return their arguments in this way must be
declared as void.

Excel also permits functions that return strings by modifying one of the F, F%, G or
G% types, to be declared as returning something other than void. This might be useful
if you have a function that returns some modified text both in this way and by returning
a pointer. The latter return method enables the function to be called within the calling of
another function. For example, a function might be declared as follows:

char * __stdcall my_conversion_function(char *input_text)
{
// Modify the input text

return input_text;
}

. . . and called as follows. . .

int length = strlen(my_conversion_function(input_text));

my_conversion_function() could be registered with Excel with a type string of
FF. This instructs Excel to find the first argument that matches the given return type,
in this case F, and extract the return value from that. The return value pointer that was
placed on the stack by the function is discarded and ignored.

When passing a null-terminated byte string to the DLL as type F, Excel allocates a
256 byte buffer, regardless of the length of the passed-in string, enabling the returned
string to be up to 255 characters in length including the null termination. This is the
maximum length permissible for byte strings. If there are precisely 255 characters before
the null-termination, the null can be omitted, but the buffer must not be over-written.
For a length-counted byte string which is to be used in this way, Excel also allocates
256 bytes, the first of which should be the length of the returned string when the function
exits. Excel does not expect type G strings to be null-terminated and, again, you must be
careful to limit the length to 255 bytes.

Excel 2007 introduces longer Unicode strings to the C API via xloper12s and types
C%, D%, and their respective modify-in-place versions, F% and G%, analogous to the
byte string versions but much longer. In the case of F% and G% types, Excel allocates a
32,767 wide character buffer (i.e. 65,534 bytes). The same care must be taken with these
as with the F and G types to avoid buffer over-run and the destabilisation of Excel that
will almost certainly occur as a result.

8.6.8 The Paste Function dialog (Function Wizard)

The dialogs shown below illustrate where some of the arguments to xlfRegister end
up being displayed.

Accessing Excel Functionality Using the C API 255

Argument 4

Argument 4

Argument 5

Argument 10

Argument 7

From
Argument 5

Argument 11

Access to help link in Argument 9

Figure 8.1 The Paste Function and argument construction dialogs

In Excel 2007, all the same information is still used in the same way, although the layout
and appearance of the dialog is altered:

256 Excel Add-in Development in C/C++

Note: At time of writing, arguments 11 to 30, or 11 to 255 in Excel 2007+, cannot be
assigned from VBA or via the COM interface for user-defined functions or COM DLLs.
If parameter names are too long, something which depends on the system font and widths
of the characters used, they will work, but they will not be fully displayed.

8.6.9 Function help parameter to xlfRegister

The above screen-shots show where the function help parameter, passed as the 10th
argument to xlfRegister, is used. Choosing your words well makes a big difference
to the ease with which the user can find the right function.

8.6.10 Argument help parameters to xlfRegister

As can be seen in the above screen-shot, the dialog that assists with the entry of function
arguments displays at the bottom the parameter name (as extracted from the 5th argument
passed to xlfRegister) in bold, followed by a short text explanation of the parameter.
For specialised or complex functions this is a very valuable piece of help to provide the
user. It could be as simple as detailing the units in which a number should be input, or
the limits within which the function will work properly.

These are provided to the xlfRegister function as arguments 11 to 30, or 11 to 255
in Excel 2007+.

These fields are not currently exposed via the COM interface and therefore not access-
ible to VBA. At the time of writing, the C API provides the only way to specify these
things for user-defined functions.

Note: One of the strange quirks of the xlfRegister function, at least as it is exposed
via the C API, is a small bug that truncates the very last of these strings (corresponding
to the help for the very last argument). It is not serious and easy to work around: Just
pad the last string with an extra space or two.

8.6.11 Managing the data needed to register exported functions

One practical issue to grapple with is how best to manage all the data associated with
the functions (and commands) you want to export. For every function there are at least
5 and up to 30 (in Excel 2003) and 255 (in Excel 2007) arguments to be passed to
xlfRegister. Deciding how best to initialise them and then pass them is quite impor-
tant. Getting it right makes adding to or modifying the data easy. Getting it wrong makes
your code a mess. It’s certainly not worth losing sleep over, but here are some thoughts
and suggestions.

The example in section 8.6.1 above showed a function dedicated to registering a single
exported function. While you can do this, and call all such functions from your imple-
mentation of xlAutoOpen, it’s error-prone and a lot of work. Not only this but your
project will suffer from rapid code inflation. If you are a contract programmer paid per
line of code then this is the approach to take.

The general approach is as follows:

1. Define a data structure or class that can be initialised statically with all the data you
need to register a single function. (Note that you might want this to include a dual

Accessing Excel Functionality Using the C API 257

interface to your code for optimum performance in Excel 2007 as well as earlier
versions. See section 8.6.12 Registering functions with dual interfaces for Excel 2007
and earlier versions on page 263 below);

2. Define an array of these structures/classes and statically initialise the array in one
place;

3. Create a function that iterates through the array, registering the functions one-by-one.

There is another class-based approach, outlined in section 8.6.13 below, which essentially
follows the above steps, except that the management of the array of structure (or class)
instances containing the registration data is handled in static class member functions and
variables. This enables the declaration of an instance of the class right next to the function
being exported, improving maintainability and removing the need for a large array in one
place of predetermined size.

One commonly-used approach is to define the structure as an array of string literals.
(All the arguments to xlfRegister can be passed as strings, even numbers can be
passed as “1” for example). These are often left with a leading space that the function-
registering code populates with the strings’ lengths. The string xlopers can then be
initialised by simply pointing them to these initialisation strings. This is the approach
used in the Microsoft Framework SDK. (In certain compilers running in Debug, static
string memory is read-only and therefore errors will occur when trying to set the length
on such strings). The array of these structures is therefore simply a 2-dimensional array
of char *, or whcar_t * where you are working with Excel 2007 and xloper12s.

One benefit of this approach, apart from its simplicity, is that the strings can all be
initialised statically. There’s no need to call some function, explicitly or implicitly, to set
everything up before calling the function that finally registers the exported functions. Any
missing arguments can be left uninitialised or as zero-length strings.

A slightly different approach is to initialise strings without the leading space and have
code that uses these to initialise xloper/xloper12s, perhaps by making deep copies
of the strings that are freed when no longer needed. This is the approach taken in the
examples below. Moreover, the initialisation strings are made part of a structure with
named elements to clarify the code that registers the exported functions.

A similar approach would be to use the cpp_xloper class, or a similar wrapper
class that contained a few basic constructors. A 2-dimensional array of such a class can
then be initialised in a very similar way to the char * array mentioned above. You
could also take the class-based approach one step further, creating a class and statically
instantiating one for each exported function one in your project. The class constructor
could pass a reference to itself to a container class that is then iterated in xlAutoOpen
(and xlAutoClose) . Whatever your preferred approach, the goal should be ease of
addition and deletion of XLL exports, modification of the help text, etc.

Preparing the arguments for the call to xlfRegister is then fairly straightfor-
ward. Set up an array of pointers to xloper/xloper12s and call the function using
Excel4v()/Excel12v(). This is preferable to using Excel4()/Excel12() as,
from function to function, you will be passing a different number of arguments. The
advantage of using a wrapper class over a char * array is that converting and preparing
the arguments can be made much simpler.

The following code sample shows the definition of a simple structure, and initialisation
of an array of these for the example function exponent_function() in section 8.6.1:

258 Excel Add-in Development in C/C++

#define MAX_XL12_UDF_ARGS 255
#define NUM_FUNCTIONS 1

// xlfRegister arguments not included in ws_func_export_data
// Arg1: DLL function path and filename
// Arg6: macro_type – always 1 for worksheet functions, so omitted here
// Arg8: Shortcut key (Mac only) – omitted

typedef struct
{

char *name_in_code; // Arg2: Function name as in code (v11-)
char *types; // Arg3: Return type and argument types (v11-)
char *ws_name; // Arg4: Fn name as it appears on worksheet
char *arg_names; // Arg5: Argument names (Excel 11-: max 30)
char *fn_category; // Arg7: Function category for Function Wizard
char *help_file; // Arg9: Help file (optional)
char *fn_description; // Arg10: Function description text (optional)
char *arg_help[MAX_XL12_UDF_ARGS - 11]; // Arg11...: Arg descriptions

}
ws_func_export_data;

ws_func_export_data WsFuncExports[NUM_FUNCTIONS] =
{

{
"exponent_function", // function name as exported
"BB", // return and argument types
"MY_EXP", // function name for Excel use
"Exponent", // Argument string (only 1 in this case)
"My functions", // Paste Function category
"", // Help file and topic (omitted in this case)
"Returns e to the power of Exponent", // Function help text
"Any number such that |arg1| <= 709 ", // Arg1 help text

}, // end of data for first function to be registered
};

The following code shows a very simple implementation of xlAutoOpen which cycles
through the array, just once in this case, registering each function.

xloper fn_ID[NUM_FUNCTIONS];

int __stdcall xlAutoOpen(void)
{

for(int i = 0 ; i < NUM_FUNCTIONS; i)
fn_ID[i] = register_function(WsFuncExports + i);

return 1;
}

A bug prevents the function (and command) IDs from being used for their intended
purpose of unregistering functions. (See sections 8.6.14 and 8.6.15 below.) Therefore the
above code can be replaced with this:

int __stdcall xlAutoOpen(void)
{

for(int i = 0 ; i < NUM_FUNCTIONS; i++)
register_function(WsFuncExports + i);

Accessing Excel Functionality Using the C API 259

return 1;
}

The function register_function() registers the specified function using the above
array. The code uses the cpp_xloper class, described in section 6.4 on page 146, to
simplify the handling of Excel4v() and it arguments. Although not water-tight, a
check is carried out to make sure the number of arguments specified in
WsFuncExports[].arg_names is consistent with the number of characters in the
type string.

xloper register_function(ws_func_export_data *ps)
{

if(!check_register_args(ps->ws_name, ps->types, ps->arg_names))
return *p_xlNil;

int arg_limit = (gExcelVersion12plus ? MAX_XL12_UDF_ARGS :
MAX_XL11_UDF_ARGS);

// Array of pointers to xloper that will be passed to Excel4v()
cpp_xloper const **PtrArray = new cpp_xloper const *[arg_limit];
cpp_xloper *FnArgs = new cpp_xloper[arg_limit];
for(int i = 0; i < arg_limit; i++)

PtrArray[i] = &FnArgs[i];

// Default to this value in case of a problem
cpp_xloper RetVal((WORD)xlerrValue);

// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister.

cpp_xloper ErrMsg;

if(FnArgs[0].Excel(xlGetName) != xlretSuccess)
{

ErrMsg = "Could not get XLL path,name";
ErrMsg.Alert(3);// Error alert type
delete[] PtrArray;
delete[] FnArgs;
return *p_xlNil;

}
FnArgs[1] = ps->name_in_code;
FnArgs[2] = ps->types;
FnArgs[3] = ps->ws_name;
FnArgs[4] = ps->arg_names;
FnArgs[5] = 1; // macro_type: 1 = worksheet function
FnArgs[6] = ps->fn_category;
FnArgs[8] = ps->help_file;
FnArgs[9] = ps->fn_description;

// Set up the argument description strings.
char *p_arg;
int num_args;
for(num_args = i = 10; i < arg_limit; i++)
{

if((p_arg = ps->arg_help[i-10]) == NULL)
break; // that was the last of the arguments for this fn

// Set the corresponding xlfRegister argument

260 Excel Add-in Development in C/C++

FnArgs[i] = p_arg; // convert the string to a cpp_xloper
num_args++;

}
if(RetVal.Excel(xlfRegister, num_args, PtrArray) != xlretSuccess)
{

cpp_xloper ErrMsg("Couldn’t register ");
ErrMsg += ps->ws_name;
ErrMsg.Alert(3); // Error alert dialog type

}
// RetVal type is xltypeErr or xltypeNum, so can return a shallow copy

delete[] PtrArray;
delete[] FnArgs;
return (xloper)RetVal; // overloaded cast makes a shallow copy

}

The equivalent code just using xlopers is listed here for comparison and to demonstrate
how much cleaner the resulting code is when using the cpp_xloper class or some
similar wrapper to the xloper data type and Excel4()/Excel4v() functions.

xloper register_function(ws_func_export_data *ps)
{

if(!check_register_args(ps->ws_name, ps->types, ps->arg_names))
return *p_xlNil;

int arg_limit = (gExcelVersion12plus ? MAX_XL12_UDF_ARGS :
MAX_XL11_UDF_ARGS);

xloper *fn_args = new xloper[arg_limit];
xloper const **ptr_array = new xloper const *[arg_limit];
for(int i = 0; i < arg_limit; i++)
{

fn_args[i].xltype = xltypeNil;
ptr_array[i] = fn_args + i;

}
//---
// default to this value in case of a problem
//---

xloper ret_val = *p_xlErrValue;

//---
// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister, so need
// to set first pointer in array to point to this.
//---

if(Excel4(xlGetName, &fn_args[0], 0) != xlretSuccess)
{

Excel4(xlFree, 0, 1, &fn_args[0]); // shouldn't need to do this
delete[] fn_args;
delete[] ptr_array;
return *p_xlNil;

}
fn_args[1].xltype =
fn_args[2].xltype =
fn_args[3].xltype =
fn_args[4].xltype = xltypeStr;
fn_args[5].xltype = xltypeInt;

Accessing Excel Functionality Using the C API 261

fn_args[6].xltype = xltypeStr;
fn_args[7].xltype = xltypeMissing;
fn_args[8].xltype =
fn_args[9].xltype = xltypeStr;

fn_args[1].val.str = new_xlstring(ps->name_in_code);
fn_args[2].val.str = new_xlstring(ps->types);
fn_args[3].val.str = new_xlstring(ps->ws_name);
fn_args[4].val.str = new_xlstring(ps->arg_names);
fn_args[5].val.w = 1;
fn_args[6].val.str = new_xlstring(ps->fn_category);
fn_args[8].val.str = new_xlstring(ps->help_file);
fn_args[9].val.str = new_xlstring(ps->fn_description);

for(i = 1; i < 10; i++)
if(fn_args[i].xltype == xltypeStr && fn_args[i].val.str == NULL)

fn_args[i].xltype = xltypeMissing;

int num_args;
char *p_arg;

// Set up the argument description strings.
for(num_args = i = 10; i < arg_limit - 1; i++)
{
// get the next string from the char * array

if((p_arg = ps->arg_help[i]) == NULL)
break;

fn_args[i].xltype = xltypeStr;
fn_args[i].val.str = new_xlstring(p_arg);
ptr_array[num_args++] = fn_args + i;

}
//---
// Now call Excel4v(xlfRegister, ...) to register the function.
//---

int xl4_retval = Excel4v(xlfRegister, &ret_val, num_args, ptr_array);

if(xl4_retval != xlretSuccess | | ret_val.xltype == xltypeErr)
display_register_error(ps->ws_name, xl4_retval, ret_val.val.err);

for(i = 1; i < arg_limit; i++)
if(fn_args[i].xltype == xltypeStr)

free(fn_args[i].val.str);

Excel4(xlFree, 0, 1, &fn_args[0]); // Free the DLL path/name

delete[] fn_args;
delete[] ptr_array;

// ret_val type is xltypeErr or xltypeNum, so can return
// without freeing any memory

return ret_val;
}

It would be a fairly simple matter to alter the above code so that statically initialised
arrays of cpp_xlopers, or arrays of look-alike xlopers, are initialised with function
information, instead of char * arrays.

Here’s a listing of the code that performs the checks on the register arguments. (The
string utility functions count_char() and count_chars() simply return the number
of occurrences of the specified characters in a null-terminated byte string).

262 Excel Add-in Development in C/C++

#define V12_NEW_CHARS "QU$" // New chars introduced in Excel 12 (2007)

bool check_register_args(char *fn_name, char *arg_types, char *arg_labels)
{
// Check for forbidden characters in the type string and count the args.
// %,Q,U,$ introduced in Excel 12 and CANNOT be passed in earlier versions.

char *ok_1st_chars, *ok_other_chars, *pch = NULL;

if(gExcelVersion12plus)
{

ok_1st_chars = "ABCDEFGHIJKLMNPQRU>123456789";
ok_other_chars = "ABCDEFGHIJKLMNPQRU!#$%";

}
else
{

ok_1st_chars = "ABCDEFGHIJKLMNPR>123456789";
ok_other_chars = "ABCDEFGHIJKLMNPR!#";

}
// If 1st char is not one of the permitted characters, point pch to it

if(!strchr(ok_1st_chars, arg_types[0]))
pch = arg_types;

else // check the others
pch = strspnp(arg_types + 1, ok_other_chars);

if(pch) // found something that shouldn't be there
{

// Don't display error if simply Excel12 typed fn and running Excel 11-
if(gExcelVersion11minus && strchr(V12_NEW_CHARS, *pch) != NULL)

return false;
char problem_char[2] = {*pch, 0};
cpp_xloper ErrMsg(fn_name);
ErrMsg += ": Arg type contains invalid character: ";
ErrMsg += problem_char;
ErrMsg.Alert(3); // Error alert dialog type
return false;

}
// Count the number of arg type characters. In Excel 12+, need to ignore
// %, i.e. K% is one argument, along with ignoring !, # and $

size_t num_args = strlen(arg_types)-count_chars(arg_types,"!#$%") - 1;

// Number of args should be number of commas + 1
if((num_args == 0 && *arg_labels != 0)
| | (num_args != 0 && num_args != count_char(arg_labels, ',') + 1))
{

cpp_xloper ErrMsg("Register function args invalid: ");
ErrMsg += fn_name;
ErrMsg.Alert(3); // Error alert dialog type
return false;

}
return true;

}

Accessing Excel Functionality Using the C API 263

8.6.12 Registering functions with dual interfaces for
Excel 2007 and earlier versions

Consider an XLL function that takes a string and returns a single argument that can be
any of the worksheet data types or a range. In Excel 2003 and Excel 2007 you could
export a function registered as type “RD” and prototyped as follows where the string is
passed as a length-counted byte string:

xloper * __stdcall my_xll_fn(unsigned char *arg);

Firstly, this works fine in all recent versions of Excel but is subject to the length limitations
of the old C API strings. Secondly, although Excel 2007 is quite happy to pass and accept
xlopers, internally it converts them to xloper12s, so there is an implicit conversion
overhead in Excel 2007 that is not there when the code runs in Excel 2003. Thirdly,
it may be that this function can be made thread-safe, but if the type string is changed
to “RD$” registration will fail in Excel 2003. For all these reasons you would ideally
like to export a function for your Excel 2007 users that was registered as “UD%$” and
prototyped:

xloper12 * __stdcall my_xll_fn_v12(wchar_t *arg);

Another reason why you might want to register a different function when running Excel
2007 is that it permits XLL functions to take up to 255 arguments. (The old limit is 30).
Fortunately, you can have the best of both worlds by exporting both versions from your
project. You simply need to detect the running Excel version and conditionally register
the most appropriate function.

As discussed in the above section, there are many ways that the data passed when
registering the XLL’s exports can be managed within a project. One simple way is to
define a data structure such as the following, and declare and initialise an array of these
that are then used to initialise the xlopers or xloper12s passed to xlfRegister.

#define XL12_UDF_ARG_LIMIT 255

typedef struct
{
// REQUIRED (if v12+ strings undefined use v11- strings):

char *name_in_code; // RegArg2: Function name as in code (v11-)
char *types; // RegArg3: Return type and argument types (v11-)
char *name_in_code12; // RegArg2: Function name as in code (v12+)
char *types12; // RegArg3: Return type and argument types (v12+)
char *ws_name; // RegArg4: Fn name as it appears on worksheet
char *arg_names; // RegArg5: Argument names (Excel 11-: max 30)
char *arg_names12; // RegArg5: Argument names (Excel 12+: max 255)

// OPTIONAL:
char *fn_category; // RegArg7: Function category for Function Wizard
char *help_file; // RegArg9: Help file (optional)
char *fn_description; // RegArg10: Function description text (optional)
char *arg_help[MAX_XL12_UDF_ARGS - 11]; // RegArg11...: Arg help text

}
dual_ws_func_export_data;

264 Excel Add-in Development in C/C++

String length note: If the above strings are used in the initialisation of xlopers, where
the maximum string length is 255 bytes, you have to make sure you work within these
limits. In particular, Excel 2007 allows worksheet functions to take up to 255 arguments.
Even if each argument name was only 1 letter, the arg_names12 string would be
509 bytes long (255 + 254 commas). This is not a problem for the example code that
follows that uses this structure as, in Excel 2007, it will automatically use the strings to
initialise xloper12s which accommodate Unicode strings up to 32,767 in length.

Whatever the registration function does with this data, only one worksheet function
name is provided so that worksheets do not know or care which function is actually being
called. Here’s an example of a function that calls standard library functions to reverse a
worksheet string:

// Excel 11-: Register as type "1F"
void __stdcall reverse_text_xl4(char *text) {strrev(text);}

// Excel 12+: Register as type "1F%$" (if linking with thread-safe library)
void __stdcall reverse_text_xl12(wchar_t *text) {wcsrev(text);}

The above structure for these functions could then be initialised like this:

dual_ws_func_export_data DualWsFuncExports[1] =
{

{
"reverse_text_xl4",
"1F",
"reverse_text_xl12",
"1F%$",
"Reverse",
"Text",
"", // arg_names12
"Text", // function category
"", // help file
"Reverse text",
"Text ",

},
};

Note that the above strings are null-terminated byte strings. Any code that uses these to
initialise xlopers will need to convert them to length-counted strings, and also from
bytes to Unicode in the case of xloper12s. Alternatively, the above strings could be
provided with a leading space that some other code can over-write with the strings’
lengths, although this can cause problems with some compilers running in debug mode.
The above structure definition could easily be modified to pass Unicode strings to Excel
when running version 2007. Clearly, this would entail the code that used the structure
being similarly modified.

// Version of the registration function that uses dual_ws_func_export_data
// structure to register the version-specific interface export
bool register_dual_function(dual_ws_func_export_data *ps, cpp_xloper

&RetVal)

Accessing Excel Functionality Using the C API 265

{
RetVal.SetType(xltypeNil);

// These depend on the the version and what is provided
char *types, *code_name, *arg_names;

if(gExcelVersion12plus)
{

if(ps->name_in_code12 && ps->name_in_code12[0])
{

code_name = ps->name_in_code12;
types = ps->types12;

}
else
{

code_name = ps->name_in_code;
types = ps->types;

}
if(ps->arg_names12 && ps->arg_names12[0])

arg_names = ps->arg_names12;
else

arg_names = ps->arg_names;
}
else
{

code_name = ps->name_in_code;
types = ps->types;
arg_names = ps->arg_names;

}
if(!check_register_args(ps->ws_name, types, arg_names))

return false;

int arg_limit = (gExcelVersion12plus ? MAX_XL12_UDF_ARGS :
MAX_XL11_UDF_ARGS);

// Array of pointers to xloper that will be passed to Excel4v()
const cpp_xloper *ptr_array[MAX_XL12_UDF_ARGS];
cpp_xloper FnArgs[MAX_XL12_UDF_ARGS];

// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister.

if(FnArgs[0].Excel(xlGetName))
{

cpp_xloper ErrMsg = "Could not get XLL path,name";
ErrMsg.Alert(3);// Error alert type
return false;

}
FnArgs[1] = code_name;
FnArgs[2] = types;
FnArgs[3] = ps->ws_name;
FnArgs[4] = arg_names;
FnArgs[5] = 1;
FnArgs[6] = ps->fn_category;
FnArgs[7].SetType(xltypeMissing); // Short cut text character
FnArgs[8] = ps->help_file;
FnArgs[9] = ps->fn_description;

char *p_arg;

266 Excel Add-in Development in C/C++

for(int i = 10; i < arg_limit; i++)
{

p_arg = ps->arg_help[i-10];
if(!(p_arg && *p_arg))

break; // that was the last of the arguments for this fn

// Set the corresponding xlfRegister argument
FnArgs[i] = p_arg; // convert the string to a cpp_xloper

}
// Set up the array of pointers

for(int num_args = i; --i >= 0;)
ptr_array[i] = FnArgs + i;

if(RetVal.Excel(xlfRegister, num_args, ptr_array) != xlretSuccess)
{

cpp_xloper ErrMsg("Couldn't register ");
ErrMsg += FnArgs[3];
ErrMsg.Alert(3); // Error alert dialog type
return false;

}
return true;

}

Note that the return value in this case is passed back via the cpp_xloper argument
RetVal rather than on the stack as in the example in the previous section.

8.6.13 A class based approach to managing registration data

It is also possible to define a class which can be instantiated right next to the function (or
command) to be exported, or pair of functions if using a dual-version interface. All the
required data can be passed to the class instance through its constructor. The class can
maintain a list of instances of itself and expose a static method which then registers all
of the functions. This approach has the advantage of keeping the registration data close
to the function itself, thereby simplifying changes and making bugs in the data easier to
find. Here’s an example of just such a class that uses the same code to do the registration
work as the dual-version approach outlined above:

class RegData
{
public:

RegData(void) {return;}
RegData(char *name_in_code, char *types, char *name_in_code12,

char *types12, char *ws_name, char *arg_names, char *arg_names12,
char *fn_category, char *help_file, char *fn_description, ...);

bool RegisterThis(void);

static void ClearData(void)
{

if(InstanceArray)
{

delete[] InstanceArray;
InstanceArray = NULL;
count = array_size = 0;

}

Accessing Excel Functionality Using the C API 267

}
static void RegisterAll(void);

private:
// Class member variables

static long count;
static long array_size;
static RegData **InstanceArray;

// Instance member variables
char *m_NameInCode; // Arg2: Function name as in code (v11-)
char *m_Types; // Arg3: Return type and argument types (v11-)
char *m_NameInCode12; // Arg2: Function name as in code (v12+)
char *m_Types12; // Arg3: Return type and argument types (v12+)
char *m_WsName; // Arg4: Fn name as it appears on worksheet
char *m_ArgNames; // Arg5: Argument names (Excel 11-: max 30)
char *m_ArgNames12; // Arg5: Argument names (Excel 12+: max 255)
char *m_FnCategory; // Arg7: Function category for Function Wizard
char *m_HelpFile; // Arg9: Help file (optional)
char *m_FnDescription; // Arg10: Function description text (optional)
char *m_ArgHelp[MAX_XL12_UDF_ARGS - 11]; // Arg11... arg help text

};

long RegData::count = 0;
long RegData::array_size = 0;
RegData **RegData::InstanceArray = NULL;

RegData::RegData(char *name_in_code, char *types, char *name_in_code12,
char *types12, char *ws_name, char *arg_names, char *arg_names12,
char *fn_category, char *help_file, char *fn_description, ...)

{
m_NameInCode = name_in_code;
m_Types = types;
m_NameInCode12 = name_in_code12;
m_Types12 = types12;
m_WsName = ws_name;
m_ArgNames = arg_names;
m_ArgNames12 = arg_names12;
m_FnCategory = fn_category;
m_HelpFile = help_file;
m_FnDescription = fn_description;

va_list arg_ptr;
va_start(arg_ptr, fn_description); // Initialize

for(int i = 0; i < MAX_XL12_UDF_ARGS - 11; i++)
if((m_ArgHelp[i] = va_arg(arg_ptr, char *)) == NULL)

break;

va_end(arg_ptr); // Reset

for(i++; i < MAX_XL12_UDF_ARGS - 11; i++)
m_ArgHelp[i] = NULL;

if(count == array_size) // then need to allocate more space
{

RegData **new_array = new RegData *[array_size + 20];
if(array_size)

memcpy(new_array, InstanceArray,
array_size * sizeof(RegData *));

array_size += 20;

268 Excel Add-in Development in C/C++

delete[] InstanceArray;
InstanceArray = new_array;

}
InstanceArray[count++] = this;

}

void RegData::RegisterAll(void)
{

for(long i = 0; i < count; i++)
InstanceArray[i]->RegisterThis();

}

bool RegData::RegisterThis(void)
{

dual_ws_func_export_data s;

s.name_in_code = m_NameInCode;
s.types = m_Types;
s.name_in_code12 = m_NameInCode12;
s.types12 = m_Types12;
s.ws_name = m_WsName;
s.arg_names = m_ArgNames;
s.arg_names12 = m_ArgNames12;
s.fn_category = m_FnCategory;
s.help_file = m_HelpFile;
s.fn_description = m_FnDescription;

for(int i = 0; i < MAX_XL12_UDF_ARGS - 11; i++)
s.arg_help[i] = m_ArgHelp[i];

cpp_xloper RetVal;
return register_dual_function(&s, RetVal);

}

All that’s then needed is an instance of the class outside the body of the function.
(Note that the variable argument list is terminated by an explicit NULL pointer and
any of the pre-argument help strings must be passed as empty strings if missing). For
example:

RegData RT_is_error_UDF(// Instance name is not important
"is_error_UDF",// Function name as in code (v11-)
"RP", // Return type and argument types (v11-)
"", // Function name as in code (v12+)
"", // Return type and argument types (v12+)
"IsErrUdf", // Fn name as it appears on worksheet
"Input", // Argument names (Excel 11-: max 30)
"", // Argument names (Excel 12+: max 255)
"Example", // Function category for Function Wizard
"", // Help file (optional)
"Example UDF function. Returns TRUE if passed an error value or"

" string starting with #.", // Function description text (optional)
"the value or single cell ref to be tested", // Fn arg help text
NULL); // Arg list terminator

Accessing Excel Functionality Using the C API 269

xloper * __stdcall is_error_UDF(xloper *p_op)
{
// code omitted
}

And then a line in xlAutoOpen to register the functions:

// Registration method 3:
// Register all instances of RegData (supports dual-version interface)

RegData::RegisterAll();

And a line in xlAutoClose to release the class’ instance array:

// Explicitly clear the RegData instance pointer table
RegData::ClearData();

The example projects on the CD ROM also contain a similar class-based approach for
exported commands.

8.6.14 Getting and using the function’s register ID

In the above sections, register_function() and register_dual_function()
register a function and return an xloper/cpp_xloper. If successful this is of type
xltypeNum and contains a unique register ID. This ID is intended to be used in calls to
xlfUnregister. However, a bug in Excel prevents this from un-registering functions
as intended – see next section.

If you did not record the ID that xlfRegister returned, you can get it at any time
using the xlfRegisterId function. This takes 3 arguments:

1. DllName: The name of the DLL as returned by the function xlGetName.
2. FunctionName: The name of the function as exported and passed in the 2nd argument

to xlfRegister.
3. ArgRtnTypes: The string that encodes the return and argument types, the call-

ing permission and volatile status of the function, as passed in the 3rd argument
to xlfRegister.

The macro sheet functions that take this ID as an argument are:

• xlfUnregister: (See next section.)
• xlfCall: Calls a DLL function. There is no point in calling this function where the

caller is in the same DLL, but it does provide a means for inter-DLL calling. (The
macro sheet version of this function, CALL(), used to be available on worksheets. This
enabled a spreadsheet with no XLM or VBA macros to access any DLL’s functionality
without alerting the user to the potential misuse that this could be put to. This security
chasm was closed in version 7.0.)

270 Excel Add-in Development in C/C++

8.6.15 Un-registering a DLL function

Excel keeps an internal list of the functions that have been registered from a given DLL
as well as the number of times each function has been registered. (You can interrogate
Excel about the loaded DLL functions using the xlfGetWorkspace, argument 44. See
section 8.10.11 Information about the workspace: xlfGetWorkspace on page 303 for
details.)

When registering a function, xlfRegister does two things.

1. Increments the count for the registered function.
2. Associates the function’s worksheet name, given as the 4th argument to

xlfRegister, with the DLL resource.

To un-register a function you therefore have to undo both of these actions in order
to restore Excel to the pre-DLL state. The xlfUnregister function, which takes
the register ID returned by the call to xlfRegister, decrements the usage count
of the function. To disassociate the function’s worksheet name, you need to call the
xlfSetName function, which usually associates a name with a resource, but without
specifying a resource. This clears the existing associated resource – the DLL function.
Sadly, a bug in Excel prevents even this two-pronged approach from successfully remov-
ing the reference to the function.

Another approach is as follows3:

1. Re-register the function as a hidden function by setting the 5th argument to
xlfRegister, macro type, to 0.

2. Use the returned register ID to unregister the function with xlfUnregister.

Even this approach does not return Excel to the pre-registration state where the function
in a worksheet cell returns #NAME? and where the function is not listed in the function
wizard lists. Microsoft recognise the existence of this bug but, sadly, they have not been
able to remove it even in Excel 2007. In practice, not un-registering functions has no
grave consequences.

Warning: The C API function xlfUnregister supports another syntax which takes
a DLL name, as returned by the function xlfGetName. Called in this way it un-registers
all that DLL’s resources. This syntax also causes Excel to call xlAutoClose(). You
will therefore crash Excel with a stack overflow if you call xlfUnregister with this
syntax from within xlAutoClose(). You should avoid using this syntax anywhere
within the DLL self-referentially.

The following code sample shows a simple implementation of xlAutoClose(),
called whenever the DLL is unloaded or the add-in is deselected in the Add-in Man-
ager, and the code for the function it calls, unregister_function(). The example
uses the same structures and constant definitions as section 8.6.14 above. As already
stated, even this will not work as intended, due to an Excel bug. Leaving the body of
xlAutoClose() empty in this example will not have grave consequences, although
there may be other cleaning up tasks you should be doing here.

3 See Professional Excel Development, (Bullen, Bovey, Green), Addison Wesley, 2005. The method is credited
to Laurent Longre.

Accessing Excel Functionality Using the C API 271

int __stdcall xlAutoClose(void)
{

for(int i = 0 ; i < NUM_FUNCS; i++)
unregister_function(i);

return 1;
}

bool unregister_function(int fn_index)
{
// Decrement the usage count for the function using a module-scope
// xloper array containing the function's ID, as returned by
// xlfRegister or xlfRegisterId

Excel4(xlfUnregister, 0, 1, fn_ID + fn_index);

// Get the name that Excel associates with the function
cpp_xloper xStr(WsFuncExports[fn_index].ws_name);

// Undo the association of the name with the resource
return Excel4(xlfSetName, 0 , 1, &xStr) == xlretSuccess;

}

8.7 REGISTERING AND UN-REGISTERING
DLL (XLL) COMMANDS

As with functions, XLL commands need to be registered in order to be directly accessible
within Excel (without going via VB). As with worksheet functions, the xlfRegister
function is used. (See section 8.6.1 for how to call this function.) To register a command,
the first 6 arguments to xlfRegister must all be passed.

Table 8.11 xlfRegister arguments for registering commands

Argument
number

Required or
optional

Description

1 Required The full drive, path and filename of the DLL containing the
function.

2 Required The command name as it is exported. Note: This is
case-sensitive.

3 Required The return type which should always be "J"

4 Required The command name as Excel will know how to reference it.
Note: This is case-sensitive.

5 Required The argument names, i.e., an xltypeNil or
xltypeMissing xloper/xloper12, since commands
take no arguments.

6 Required The function type: 2 = Command.

An exported command will always be of the following form:

272 Excel Add-in Development in C/C++

int __stdcall xll_command(void)
{

bool all_ok = is_everything_ok();

if(!all_ok)
return 0;

return 1;
}

In practice, Excel does not care about the return value, although the above is a good
standard to conform to.

As there are always 6 arguments to be passed to xlfRegister, it is best called using
Excel4()/Excel12(), in contrast to functions which are most easily registered using
Excel4v()/Excel12v(). The following code demonstrates how to register Excel
commands, requiring only the name of the command as exported in the DLL and the name
as Excel will refer to it. The code uses the cpp_xloper class, described in section 6.4
on page 146, to simplify the handling of Excel4() arguments and return values.

xloper register_command(char *code_name, char *Excel_name)
{

cpp_xloper RetVal, DllName;
//---
// Get the full path and name of the DLL.
// Passed as the first argument to xlfRegister, so need
// to set first pointer in array to point to this.
//---

if(DllName.Excel(xlGetName) != xlretSuccess)
return *p_xlNil;

//---
// Set up the rest of the arguments.
//---

cpp_xloper CodeName(code_name);
cpp_xloper ExcelName(Excel_name);
cpp_xloper RtnType("J");
cpp_xloper MacroType(2); // Command
cpp_xloper NilArgs; // defaults to xltypeNil
int xl_ret_val = RetVal.Excel(xlfRegister, 6, &DllName,

&CodeName, &RtnType, &ExcelName, & NilArgs, &MacroType);

if(xl_ret_val != xlretSuccess)
display_register_error(code_name, xl_ret_val, (int)RetVal);

return (xloper)RetVal;
}

Commands to be exported can simply be described by the two strings that need to be
passed to the above function. These strings can be held in a static array that is looped
through in the xlAutoOpen function. The following code shows the declaration and
initialisation of an array for the example command from section 8.1.2, and a very simple
implementation of xlAutoOpen which cycles through the array, registering each com-
mand.

#define NUM_COMMANDS 1
char *CommandExports[NUM_COMMANDS][2] =

Accessing Excel Functionality Using the C API 273

{
// Name in code, Name that Excel uses
{"define_new_name", "DefineNewName"},

};
xloper cmd_ID[NUM_COMMANDS];

int __stdcall xlAutoOpen(void)
{

for(int i = 0 ; i < NUM_COMMANDS; i++)
cmd_ID[i] =

register_command(CommandExports[i][0], CommandExports[i][1]);
return 1;

}

A bug prevents the function and command IDs from being used for their intended purpose
of unregistration. Therefore the above code can be replaced with:

int __stdcall xlAutoOpen(void)
{

for(int i = 0 ; i < NUM_COMMANDS; i++)
register_command(CommandExports[i][0], CommandExports[i][1]);

return 1;
}

8.7.1 Accessing XLL commands

There are a number of ways to access commands that have been exported and registered
as described above.

1. Via custom menus. (See section 8.12 Working with Excel menus on page 326.)
2. Via custom toolbars. (See section 8.13 Working with toolbars on page 344.)
3. Via a Custom Button on a toolbar. (See below.)
4. Directly via the Macro dialog. (See below.)
5. Via a VBA module. (See below.)
6. Via one of the C API event traps. (See section 8.15 Trapping events with the C API

on page 356.)

In addition, there are a number of C API functions that take a command reference (the
name of the command as registered with Excel), for example xlfCancelKey.

Pre-Excel 2007, to assign a command (or macro, as Excel often refers to commands)
to a custom button, you need to drag a new custom button onto the desired toolbar from
the Tools/Customize. . ./Commands dialog under the Macro category. Still with the customi-
sation dialog showing, right-clicking on the new button shows the properties menu which
enables you to specify the appearance of the button and assign the macro (command)
to it.

To access the command directly from the Macro dialog, you need simply to type the
command’s name as registered. The command will not be listed in the list box as Excel
treats XLL commands as if they had been defined on a hidden macro sheet, and therefore
are themselves hidden.

One limitation of current versions of Excel is the inability to assign XLL commands
directly to control objects on a worksheet. You can, however, access an XLL command in

274 Excel Add-in Development in C/C++

any VBA module, subject to scope, using the Application.Run("CmdName") VBA statement.
If you wish to associate an XLL command with worksheet control, you simply place this
statement in the control’s VBA code.

8.7.2 Breaking execution of an XLL command

The C API provides two functions xlAbort and xlfCancelKey. The first checks
for user breaks (the Esc key being pressed in Windows) and is covered in section 8.8.7
Yielding processor time and checking for user breaks: xlAbort on page 282.
xlfCancelKey disables/enables interruption of the currently executing task. If

enabled, the default state, it also permits the specification of another command to be
run on interruption to do any cleaning up before control is returned to Excel.

The function xlfCancelKey takes 2 arguments: (1) an optional Boolean specifying
whether interruption is permitted (true) or not (false), and (2) a command name registered
with Excel as a string. If the function is called with the first argument set to true or
omitted, then the command will be terminated if the user presses the Esc key. This is the
default state whenever Excel calls a command, so it is not necessary to call this function
except explicitly to disable or re-enable user breaks. If breaks have been disabled, it is not
strictly necessary to re-enable them before terminating a command, as Excel automatically
restores the default, but it is good practice.

8.8 FUNCTIONS DEFINED FOR THE C API ONLY

8.8.1 Freeing Excel-allocated memory within the DLL: xlFree

Overview: Frees memory allocated by Excel during a call to
Excel4()/Excel12() or Excel4v()/Excel12v() for the
return xloper/xloper12 value. This is only necessary where
the returned type involves the allocation of memory by Excel.
There are only 3 types that can have memory associated with
them in this way, xltypeStr, xltypeRef and
xltypeMulti, so it is only necessary to call xlFree if the
return type is or could be one of these. It is always safe to call
this function even if the type is not one of these. It is not safe to
call this function on an xloper/xloper12 that was passed
into the DLL as a function argument from Excel, or one that has
been initialised by the DLL with either static or dynamic
memory. xlFree sets the pointer contained in any
xloper/xloper12 to NULL after freeing memory and is the
only Excel callback function to modify its arguments.

(See Chapter 7 Memory Management on page 203 for an
explanation of the basic concepts and more examples of the use
of xlFree.)

Enumeration value: 16384 (x4000)

Callable from: Commands, worksheet and macro sheet functions.

Accessing Excel Functionality Using the C API 275

Return type: Void.

Arguments: Takes from 1 to 30 arguments in Excel 2003 and earlier, or
up to 255 arguments in Excel 2007, each of them the
address of an xloper/xloper12 that was returned by
Excel.

Warning: Where the type is xltypeMulti you do not need to (and must not) call
xlFree for any of the elements, whatever their types. Doing this will confuse and
destabilise Excel.

Note: Where an Excel-allocated xloper/xloper12 is being returned (via a pointer)
from a DLL function, it is necessary to set the xlbitXLFree bit in the xltype field
to alert Excel to the need to free the memory.

The following example, a command function, gets the full path and file name of the
DLL, displays it in a simple alert dialog and then frees the memory that Excel allocated
for the string. (Note that only command-equivalent functions can display dialogs.)

int __stdcall show_dll_name(void)
{

xloper dll_name;
if(Excel4(xlGetName, &dll_name, 0) != xlretSuccess)

return 0;
Excel4(xlcAlert, NULL, 1, &dll_name);
Excel4(xlFree, NULL, 1, &dll_name);
return 1;

}

The equivalent code using the cpp_xloper class would be as follows. The Excel()
method sets a flag within the class to tell it that DllName needs to be freed by Excel.
The class destructor then calls xlFree to release the memory. The use of a class like
this makes the code simpler and less bug-prone than the above code, where there’s a risk
that not all control paths will clean up properly.

int __stdcall show_dll_name(void)
{

cpp_xloper DllName;
if(DllName.Excel(xlGetName) != xlretSuccess)

return 0;
DllName.Alert();
return 1;

}

8.8.2 Getting the available stack space: xlStack

Overview: Returns the amount of available space on Excel’s stack in bytes.

Enumeration value: 16385 (x4001)

Callable from: Commands, worksheet and macro sheet functions.

Return type: xltypeInt.

Arguments: None.

276 Excel Add-in Development in C/C++

Stack space in Excel is not unlimited. (See section 7.1 Excel stack space limitations on
page 203.) If you are concerned (or just curious) you can find out how much stack space
there currently is with a call to Excel’s xlStack function as the following example
shows:

double __stdcall get_stack(void)
{

if(gExcelVersion12plus)
{

xloper12 retval;
if(xlretSuccess != Excel12(xlStack, &retval, 0))

return -1.0;

if(retval.xltype == xltypeInt)
return (double)retval.val.w; // returns min(64Kb, actual space)

// Microsoft state that this is not the returned type, but was returned in
// an Excel 12 beta, so the code is left here

if(retval.xltype == xltypeNum)
return retval.val.num;

}
else
{

xloper retval;
if(xlretSuccess != Excel4(xlStack, &retval, 0))

return -1.0;
if(retval.xltype == xltypeInt)

return (double)(unsigned short)retval.val.w;
}
return -1.0;

}

The need to cast the returned signed integer that xlStack returns in Excel 2003 – to an
unsigned integer is a left-over from the days when Excel provided even less stack space
and when the maximum positive value of the signed integer (32,768) was sufficient. Once
more stack was made available, the need for the cast emerged to avoid a negative result.

8.8.3 Converting one xloper/xloper12 type to another: xlCoerce

Overview: Converts an xloper/xloper12 from one type to another,
where possible.

Enumeration value: 16386 (x4002)

Callable from: Commands, worksheet and macro sheet functions.

Return type: Various depending on 2nd argument.

Arguments: 1: InputOper : A pointer to the xloper/xloper12 to be
converted

2: TargetType: (Optional.) An integer xloper/xloper12
whose value specifies the type of xloper/xloper12 to
which the first argument is to be converted. This can be more

Accessing Excel Functionality Using the C API 277

than one type bit-wise or’d, for example, xltypeNum |
xltypeStr tells Excel that either one will do.

If the second argument is omitted, the function returns one of
the four value types that worksheet cells can contain. This
will be a (deep) copy of the first argument unless it is a range
type (xltypeSRef or xltypeRef) in which case it returns
the value of a single cell reference or an xltypeMulti array of
the same shape and size as the range.

This function will not convert from each type to every one of the others. For example,
it will not convert error values to other types, or convert a number to a cell reference.
Therefore, checking the return value is important. Table 8.12 summarises what conver-
sions are and are not possible for types covered by this book. Note that even for type
conversions that are possible, the function might fail in some circumstances. For example,
you can always convert an xltypeSRef to xltypeRef, but not always the other way
round. (A question mark in the table indicates those conversions that may or may not
work depending on the contents of the source xloper/xloper12.)

Table 8.12 xlCoerce conversion summary

Conversion to

xltype. . . N
u
m

S
t
r

B
o
o
l

R
e
f

E
r
r

M
u
l
t
i

S
R
e
f

I
n
t

Num Y Y N N Y N Y

Str ? ? ? N Y ? ?

Bool Y Y N N Y N Y

Ref ? Y ? ? Y ? ?

Err N N N N N N N

Multi ? Y ? N ? N ?

Nil Y Y Y N N Y N Y

SRef ? Y ? Y ? Y ?

C
on

ve
rs

io
n

fr
om

Int Y Y Y N N Y N

The following example C++ code attempts to convert any xloper to an xloper of the
requested type. It returns false if unsuccessful and true if successful, returning the
converted value returned via the passed-in pointer. Note that the caller of this function
must take responsibility for ensuring that any memory allocated by Excel4() for the
xloper ret_val is eventually freed by Excel.

278 Excel Add-in Development in C/C++

bool coerce_xloper(const xloper *p_op, xloper &ret_val, int target_type)
{
// Target will contain the information that tells Excel what type to
// convert to.

xloper target;

target.xltype = xltypeInt;
target.val.w = target_type; // can be more than one type

if(Excel4(xlCoerce, &ret_val, 2, p_op, &target) != xlretSuccess
| | (ret_val.xltype & target_type) == 0)

return false;

return true;
}

This function is overloaded for xloper12 conversion, and works in exactly the same
way:

bool coerce_xloper(xloper12 *p_op, xloper12 &ret_val, int target_type);

The most useful application of xlCoerce, given the complexity of reproducing the
effect in other ways, is the conversion of references to values (by omitting the TargetType
argument), in particular conversion of multi-celled references to xltypeMulti arrays.
Sections 6.9.7 Array (mixed type): xltypeMulti on page 180, and 6.9.8 Worksheet
cell/range reference: xltypeRef and xltypeSRef on page 191 contain examples of
its use in this way.

8.8.4 Setting cell values from a command: xlSet

Overview: Sets the values of cells in a worksheet.

Enumeration value: 16387 (x4003)

Callable from: Commands only

Return type: xltypeBool : true if successful, otherwise false.

Arguments: 1: TargetRange: A reference (xltypeSRef or xltypeRef) to
the cell(s) to which values are to be assigned.

2: Value: (Optional.) A value (xltypeNum, xltypeInt,
xltypeStr, xltypeBool, xltypeErr) or array
(xltypeMulti) containing the values to be assigned to these
cells. A value of type xltypeNil, or an xloper of this
type in an array, will cause the relevant cell(s) to be blanked.

If Value is omitted, the TargetRange is blanked.

Accessing Excel Functionality Using the C API 279

For those cases where a command function needs to populate one or more cells on a
worksheet with certain fixed values, xlSet provides an efficient means to do this. It can
be a particularly useful way to clear cells. (Omission of the second argument has this
effect.) Excel does not permit this function to be called from worksheet or macro sheet
functions. It would confuse, or at least vastly complicate, its recalculation logic were this
not the case.

Excel maps the values to the target cells in the same way that it maps values to arrays
generally: a single value will be mapped to all cells in the given range; a single row will
be duplicated in all rows; a single column will be duplicated in all columns; a rectangular
array will be written once into the top-left corner of the range. If a single row/column is
too short for the given range or a rectangular array of values is too small then all cells
in the target range not covered will be assigned the #N/A value.

Bug warning: In Excel 2003 (version 11) and earlier, where xlSet is being used to
assign values to a range on a sheet that is not the active sheet, it will fail if the equivalent
range on the active sheet contains an array formula. Excel seems to be checking the
wrong sheet before assigning the values. In failing, Excel displays the alert “You cannot
change part of an array”. This bug is fixed in Excel 2007 (version 12).

8.8.5 Getting the internal ID of a named sheet: xlSheetId

Overview: Every worksheet in every open workbook is assigned an internal
DWORD ID by Excel. This ID can be obtained from the text name
of the sheet with the function xlSheetId, and can be used in a
number of C API functions that require a worksheet ID (rather
than a name), and in the construction of xltypeRef
xloper/xloper12s.

The ID is returned within the .val.mref.idSheet field of an
xltypeRef xloper/xloper12.

Enumeration value: 16388 (x4004)

Callable from: Commands, worksheet and macro sheet functions.

Return type: An xltypeRef if successful, otherwise #VALUE!.

Arguments: 1: SheetName: (Optional.) The sheet name as an xltypeStr
string in the form [Book1.xls]Sheet1 or simply Sheet1 if the
named sheet is within the workbook from which the function
is called. If omitted the ID of the active sheet is returned.

Note: The returned xltypeRef xloper has the xlmref pointer set to NULL, so there
is no need to call xlFree once the ID value has been extracted, although it won’t do any
harm. If you want to reuse this xloper to construct a valid reference, you will need to
allocate memory and assign it to this pointer. Then you can specify which cells on the sheet

280 Excel Add-in Development in C/C++

to reference. (See the example below.) Note that if you are allocating memory in the DLL
for this, you should not call Excel to free it, despite the fact that the xloper/xloper12
was originally initialised by Excel.

The following example returns a reference to the cell A1 on the given sheet.

xloper * __stdcall get_a1_ref(const xloper *sheet_name)
{

static xloper ret_val; // Not thread safe
Excel4(xlSheetId, &ret_val, 1, sheet_name);
if(ret_val.xltype == xltypeErr)

return &ret_val;

// Sheet ID is contained in ret_val.val.mref.idSheet
// Now fill in the other fields to refer to the cell A1

ret_val.val.mref.lpmref = (xlmref *)malloc(sizeof(xlmref));
ret_val.val.mref.lpmref->count = 1;
ret_val.val.mref.lpmref->reftbl[0].rwFirst = 0;
ret_val.val.mref.lpmref->reftbl[0].rwLast = 0;
ret_val.val.mref.lpmref->reftbl[0].colFirst = 0;
ret_val.val.mref.lpmref->reftbl[0].colLast = 0;

// Ensure Excel calls back into the DLL to free the memory
ret_val.xltype |= xlbitDLLFree;
return &ret_val;

}

Using the cpp_xloper class, the same function can be written as follows, constructing
an instance of the class that contains the correct xloper/xloper12 type, properly
initialised. Note that the cpp_xloper class is thread-safe.

xloper * __stdcall get_a1_ref_cpp(char *sheet_name)
{

cpp_xloper RetVal(sheet_name, (RW)0,(RW)0,(COL)0,(COL)0);
return RetVal.ExtractXloper();

}

The following code shows the use of this function, called with no arguments, to obtain
the ID of the active sheet.

DWORD get_active_sheet_ID(void)
{

xloper active_sheet_id;

if(Excel4(xlSheetId, &active_sheet_id, 0) == xlretSuccess
&& active_sheet_id.xltype == xltypeRef)
{

// No need to call xlFree, as xlmref pointer is NULL
return active_sheet_id.val.mref.idSheet;

}
return 0; // Failed! Caller must check for this condition

}

Accessing Excel Functionality Using the C API 281

8.8.6 Getting a sheet name from its internal ID: xlSheetNm

Overview: Every worksheet in every open workbook is assigned an internal
DWORD ID by Excel. This ID can be obtained from the text name
of the sheet with the function xlSheetId (see above).
Conversely, the text name, in the form [Book1.xls]Sheet1, can be
obtained from the ID using this function.

Enumeration value: 16389 (x4005)

Callable from: Commands, worksheet and macro sheet functions.

Return type: An xltypeStr xloper/xloper12.

Arguments: 1: SheetID : The sheet ID contained within the idSheet field of
an xltypeRef.

If ID is zero, the function returns the current sheet name. If the
argument was an xltypeSRef, which doesn’t contain a sheet
ID, the function again returns the current sheet name. This means
that, in calling this function, it is not necessary to check which
type of reference xloper/xloper12 was supplied.

The SheetID xloper/xloper12 can have the xlmref pointer field, lpmref, set to
NULL. This means that no memory need be allocated in constructing this argument. The
argument can also be a reference to a real range, where memory has been allocated.
One example use of this function is in finding the named range on a worksheet, if it
exists, that corresponds to a given range. The function used for this is xlfGetDef
which requires the name of the worksheet in which the name is defined as its second
argument.

Warning: If the ID is not valid, Excel can crash! Only use IDs that have been obtained
from calls to xlSheetId or from xltypeRefs, and that apply to worksheets that you
know are still open.

The following example returns the sheet name given an ID.

xloper * __stdcall sheet_name(double ID)
{

static xloper ret_val; // Not thread-safe
xloper ID_ref_oper;

if(ID < 0)
{

ID_ref_oper.xltype = xltypeMissing;
}
else
{

ID_ref_oper.xltype = xltypeRef;
ID_ref_oper.val.mref.idSheet = (DWORD)ID;
ID_ref_oper.val.mref.lpmref = NULL;

}
Excel4(xlSheetNm, &ret_val, 1, &ID_ref_oper); // Not thread-safe

282 Excel Add-in Development in C/C++

ret_val.xltype |= xlbitXLFree;
return &ret_val;

}

8.8.7 Yielding processor time and checking for user breaks: xlAbort

Overview: Returns true if the user has attempted to break execution of an
XLL command or worksheet function (by pressing Esc in
Windows). While checking for an outstanding break, it also
yields some time to the operating system to perform other tasks.

If PreserveBreak is set to false, the function clears any user
break condition it detects and continues execution of the
command. If set to true or omitted, the function checks to see if
the user pressed break, but does not clear the break condition.
This enables the DLL to detect the same break condition in
another part of the code.

Enumeration value: 16390 (x4006)

Callable from: Commands, worksheet and macro sheet functions.

Return type: xltypeBool

Arguments: 1: PreserveBreak : (Optional.) Boolean. Default is true.

User breaks can be disabled/enabled using xlfCancelKey, (enumeration 170 decimal),
which can take one Boolean argument: true to enable breaks, false to disable them.
Section 10.9 Monte Carlo simulation on page 506 contains an example of a command
that uses both xlfCancelKey and xlAbort.

As this function can be called from worksheet functions as well as commands, it can
be used to end prematurely the execution of very lengthy calculations, as the following
example code shows. Note that the break condition is not cleared in this case, so that a
single break event can terminate the execution of all instances of all functions that check
for this condition.

double __stdcall function_break_example(xloper *arg)
{

if(arg->xltype != xltypeNum)
return -1;

cpp_xloper BreakState;
for(long count = (long)arg->val.num; --count;)
{

// Detect a user break attempt but leave it set so that other
// worksheet functions can also detect it

BreakState.Excel(xlAbort);
if(BreakState.IsTrue())

break;

Accessing Excel Functionality Using the C API 283

}
return count;

}

Note that checking the break state is thread-safe, but altering it, as shown in the next
example, is not. When checking for a break in a command, you would typically clear the
break as shown here.

int __stdcall command_break_example(void)
{

cpp_xloper BreakState, False(false);
for(;;)
{

// Detect a user break and then clear it before exiting
BreakState.Excel(xlAbort);

if(BreakState.IsTrue()) // then reset it
{

BreakState.Excel(xlAbort, 1, &False);
return 0;

}
}
return 1;

}

8.8.8 Getting Excel’s instance handle: xlGetInst

This function, enumeration 0x4007, obtains an instance handle for the running instance
of Excel that made this call into the DLL. This is useful if there are multiple instances
of Excel running and your DLL needs to distinguish between them. This is far less nec-
essary than it used to be under 16-bit Windows, where different instances shared the
same DLL memory. The function takes no arguments. In Excel 2003 – it returns an
xltypeInt xloper containing the low part of the instance handle. In Excel 2007+
when called using Excel12() it returns an xltypeInt xloper12 containing the full
handle.

8.8.9 Getting the handle of the top-level Excel window: xlGetHwnd

This function, enumeration 0x4008, obtains Excel’s main Window handle. One example
of its use is given in section 9.4.1 Detecting when a worksheet function is called from
the Paste Function dialog (Function Wizard) on page 374. The function takes no argu-
ments and returns an xltypeInt containing the handle. In Excel 2003− the value
returned is a 2-byte short, whereas the HWND used by the Windows API is a 4-byte
long. The returned value is therefore the low part of the full handle. The following code
shows how to obtain the full handle using the Windows API EnumWindows() func-
tion in Excel 2003–. In Excel 2007 and later versions, when called using Excel12(),
the returned xltypeInt xloper12 contains a 4-byte signed integer which is the full
handle.

284 Excel Add-in Development in C/C++

#define CLASS_NAME_BUFFER_SIZE 50

typedef struct
{

short xl_low_handle;
HWND full_handle;

}
get_hwnd_struct;

// The callback function called by Windows for every top-level window
BOOL __stdcall get_hwnd_enum_proc(HWND hwnd, get_hwnd_struct *p_enum)
{
// Check if the low word of the handle matches Excel's

if(LOWORD((DWORD)hwnd) != p_enum->xl_low_handle)
return TRUE; // keep iterating

char class_name[CLASS_NAME_BUFFER_SIZE + 1];

// Ensure that class_name is always null terminated
class_name[CLASS_NAME_BUFFER_SIZE] = 0;
GetClassName(hwnd, class_name, CLASS_NAME_BUFFER_SIZE);

// Do a case-insensitive comparison for Excel's main window class name
if(_stricmp(class_name, "xlmain") == 0)
{

p_enum->full_handle = hwnd;
return FALSE; // Tells Windows to stop iterating

}
return TRUE; // Tells Windows to continue iterating

}
HWND get_xl_main_handle(void)
{

if(gExcelVersion12plus) // xlGetHwnd returns full handle
{

xloper12 main_xl_handle;
if(Excel12(xlGetHwnd, &main_xl_handle, 0) != xlretSuccess)

return 0;
return (HWND)main_xl_handle.val.w;

}
else // xlGetHwnd returns low handle only
{

xloper main_xl_handle;
if(Excel4(xlGetHwnd, &main_xl_handle, 0) != xlretSuccess)

return 0;
get_hwnd_enum_struct eproc_param = {main_xl_handle.val.w, 0};
EnumWindows((WNDENUMPROC)get_hwnd_enum_proc, (LPARAM)&eproc_param);
return eproc_param.full_handle;

}
}

8.8.10 Getting the path and file name of the DLL: xlGetName

Overview: It is sometimes necessary to get the path and file name of the
DLL that is currently being invoked. The one place this
information is required is in the registration of XLL functions
using xlfRegister, where the first argument is exactly this
information.

Accessing Excel Functionality Using the C API 285

Enumeration value: 16393 (x4009)

Callable from: Commands, worksheet and macro sheet functions.

Return type: xltypeStr

Arguments: None.

The following code examples show how to call this function using the cpp_xloper
class or just xlopers.

char *get_dll_name1(void)
{

cpp_xloper DllName;
// Return a deep copy of the string (needs to be freed by the caller)

return DllName.Excel(xlGetName) == xlretSuccess && DllName.IsStr()
? (char *)DllName : NULL;

}

char *get_dll_name2(void)
{

xloper dll_name;
if(Excel4(xlGetName, &dll_name, 0) != xlretSuccess
| | dll_name.xltype != xltypeStr)

return NULL;

// Make a copy of the string (needs to be freed by the caller)
size_t len = (BYTE)dll_name.val.str[0];
char *name = (char *)malloc(len + 1);

memcpy(name, dll_name.val.str + 1, len);
name[len] = 0;
Excel4(xlFree, 0, 1, &dll_name);
return name;

}

8.9 WORKING WITH BINARY NAMES

A binary name is a named block of unstructured memory associated with a worksheet that
an XLL is able to create, read from and write to, and that gets saved with the workbook. A
typical use for such a space would be the creation of a large table of data that you want to
store and access in your workbook, which might be too large, too cumbersome or perhaps
too public, if stored in worksheet cells. Another use might be to store configuration data
for a command that always and only acts on the active sheet.

The xltypeBigData xloper type is used to define and access these blocks
of binary data together with the C API functions xlDefineBinaryName and
xlGetBinaryName. (The enumeration codes for these functions are 16396/x400c and
16397/x400d respectively.)

Apart from this method of storing data being more memory-efficient, accessing a table
of data in the DLL is quicker than accessing the same data from the workbook, even if
the table is small and despite Excel providing some fairly efficient ways to do this. This
may be a consideration in optimising the performance of certain workbook recalculations.

286 Excel Add-in Development in C/C++

The fact that data get saved automatically with a workbook is clearly an advantage in
some circumstances.

However, there are a number of limitations that can make working with these names too
much trouble, given alternative approaches. Quite possibly, Microsoft may have originally
intended that these names work in a more friendly and flexible way, but that they never
became mainstream enough to justify a fix. The problems with binary names are:

• They are associated with the worksheet that was active at the time of creation.
• Data can only be retrieved when the associated worksheet is active.
• Worksheet functions cannot activate a sheet, so that one sheet’s binary names cannot

be accessed by a function in another sheet.
• Excel (including the C API) provides no straightforward4 way to interrogate the sheet

for all the binary names that are defined in a given (or even the active) sheet.
• If a name is created and then forgotten about, the workbook carries around excess

baggage.
• The data are inaccessible except via an add-in using the C API that knows the name

of the block in advance.

8.9.1 The xltypeBigData xloper

The xltypeBigData xloper is used to define, delete and access these blocks of
data. To create such a space in the workbook, the xltypeBigData is populated with
a pointer to the data to be stored and the data length, and passed to Excel in a call
to xlDefineBinaryName. When the block of binary data needs to be accessed, via
a call to xlGetBinaryName, the handle to the data is returned to the DLL in an
xltypeBigData xloper. The DLL then executes a Windows global lock to get a
pointer to the data. (This xloper type is only used in this context and is never passed
into the DLL or returned to Excel.) These two functions are only accessible via the C
API, in common with the functions in section 8.8 above.

This xloper type is only used when calling one of these two C API functions. Given
its limited uses, very little support for it is included in the cpp_xloper class.

8.9.2 Basic operations with binary names

In general, you need to be able to perform the following basic operations:

• Store a block of data in the active sheet with a given name.
• Retrieve a block of data from the active sheet with a given name.
• Find out if a block with a given name exists on the active sheet.
• Delete a block with a given name from the active sheet.

On top of this, one can easily see the need for some higher-level functions:

• Find out if a block with a given name exists in a workbook.
• Get a list of all the names in a given worksheet.

4 Straightforward means using standard Excel or C API functions. Reading the workbook file as a binary file
and interpreting the contents directly is one very non-straightforward way.

Accessing Excel Functionality Using the C API 287

The first of these last two operations involves changing the active worksheet, something
that can only be done from a command, not from a worksheet or macro-sheet function.
The second is most easily achieved with a higher-level strategy. Possible approaches are:

1. Use a restrictive naming scheme, for example, Bname1, Bname2, . . .

2. Store a list of names using a standard binary name, say, BnameList, and build
maintenance of this list into your binary name creation and deletion functions. Use
this list to find all the names in a sheet.

The second approach is the most sensible, as your add-in will then be able to mirror the
functionality of Excel’s worksheet ranges. This book does not provide an example as it
is assumed that, once the basics of binary names have been explained, any competent
programmer could implement such a scheme.

8.9.3 Creating, deleting and overwriting binary names

The following function creates or deletes a binary name according to the given inputs.
This function will only work when called from a command or macro sheet function. If
the name already exists, the call to xlDefineBinaryName is equivalent to deleting
and creating anew. This function is easily wrapped in an exportable worksheet function,
as shown in the example in section 8.9.5 on page 288 below.

int bin_name(char *name, int create, void *data, long len)
{

if(!name)
return 0;

cpp_xloper Name(name), RetVal;

if(create)
{

cpp_xloper Big(data, len);
if(RetVal.Excel(xlDefineBinaryName, 2, &Name, &Big) != xlretSuccess)

return 0;
}
else
{

RetVal.Excel(xlDefineBinaryName, 1, &Name);
}
return 1;

}

8.9.4 Retrieving binary name data

The following code gets a copy of the data and block size or returns zero if there is an
error. Note that this function hides the data handle and the calls to GlobalLock() and
GlobalUnlock(), and requires the caller to free the pointer to the data when done.
This function is only successful if the name is defined on the active sheet. It can be called
from either a command or a macro sheet equivalent worksheet function. Although the
following function is not exportable as it stands, wrappers can easily be created, say, to
provide access via VBA or an Excel worksheet function (see next section).

288 Excel Add-in Development in C/C++

int get_binary_data(char *name, void * &data, long &len)
{

if(!name)
return 0;

cpp_xloper Name(name);
cpp_xloper Big;

if(Big.Excel(xlGetBinaryName, 1, &Name) != xlretSuccess
| | !Big.IsBigData())

return 0;

if(gExcelVersion12plus)
{

xloper12 *p_big = Big.OpAddr12();
len = p_big->val.bigdata.cbData;
if(!(data = malloc(len)))

return 0;

void *p = GlobalLock(p_big->val.bigdata.h.hdata);
memcpy(data, p, len);
GlobalUnlock(p_big->val.bigdata.h.hdata);

}
else
{

xloper *p_big = Big.OpAddr();
len = p_big->val.bigdata.cbData;
if(!(data = malloc(len)))

return 0;

void *p = GlobalLock(p_big->val.bigdata.h.hdata);
memcpy(data, p, len);
GlobalUnlock(p_big->val.bigdata.h.hdata);

}
// work-around for bug that corrupts the null originally saved

((unsigned char *)data)[len-1] = 0;
return 1;

}

A stripped-down version of the above function can be used to determine if the name
exists on the active sheet. To find out if the name is defined in any sheet in a workbook,
it would be necessary to iterate through all of the sheets, making each sheet active in
turn; something that can only be done by a command function.

int __stdcall bin_exists(char *name)
{

if(!name)
return 0;

cpp_xloper Name(name);
cpp_xloper Big;
return Big.Excel(xlGetBinaryName, 1, &Name) && Big.IsBigData();

}

8.9.5 Example worksheet functions

The following exportable worksheet functions demonstrate the creation, deletion and
retrieval of a text string as a binary name in the active sheet. These functions are

Accessing Excel Functionality Using the C API 289

included in the example project in the source file BigData.cpp and are called in
the example worksheet Binary_Name_Example.xls. The functions are registered
as "RCP#" and "RC#!" respectively, i.e., both are macro sheet equivalent functions and
get_bin_string() is volatile.

xloper * __stdcall set_bin_string(char *name, xloper *p_string)
{

int create = (p_string->xltype == xltypeStr ? 1 : 0);

if(create)
{

long len = (BYTE)p_string->val.str[0] + 1; // Include null
char *p = p_string->val.str + 1; // Start of string

if(bin_name(name, create, p, len))
return p_xlTrue;

return p_xlErrValue; // couldn't create
}
if(bin_name(name, 0, NULL, 0))

return p_xlErrName; // deleted ok
else

return p_xlErrValue; // couldn't delete
}

xloper * __stdcall get_bin_string(char *name)
{

void *string;
long len;

if(get_binary_data(name, string, len))
{

// Constructor will truncate if too long
cpp_xloper RetVal((char *)string);
return RetVal.ExtractXloper();

}
return p_xlErrName;

}

8.10 WORKSPACE INFORMATION COMMANDS
AND FUNCTIONS

This section describes the most relevant capabilities of the following functions:

• xlfAppTitle
• xlfWindowTitle
• xlfActiveCell
• xlfDocuments
• xlfGetCell
• xlfGetDocument
• xlfGetFormula
• xlfGetNote
• xlfGetWindow
• xlfGetWorkbook

290 Excel Add-in Development in C/C++

• xlfGetWorkspace
• xlfSelection
• xlfWindows
• xlfFormulaConvert
• xlfTextRef
• xlfTexRef

Few, if any, details are given of these functions’ ability to get information about cell
formatting or graphs. The intention is to keep the focus primarily on the creation of
worksheet functions. For a full description of these functions you should refer to the
XLM macro language help file, Macrofun.hlp, freely downloadable at the time of
writing from Microsoft’s website.

Excel 2007 multi-threading note: Excel 2007 regards all XLM functions with the excep-
tion of xlfCaller as being thread-unsafe. For this reason alone XLL functions that call
them cannot be declared as thread-safe. Not only this, but in order to be able to call
XLM functions, XLL exports must be registered as macro-sheet equivalents, type #,
which Excel does not permit to be registered as thread-safe. Consequently, the example
exportable functions that follow are not thread-safe and can get away with passing pointers
to function-local static variables back to Excel.

8.10.1 Setting the application title: xlfAppTitle

Overview: Attempts to coerce the argument to a string and set this as the
application title. Returns true if successful, false if unsuccessful.

If the argument is omitted, resets the application title to the
default value, Microsoft Excel, and returns true.

Enumeration value: 262 (x106)

Callable from: Commands and macro sheet functions.

Return type: xltypeBool

Arguments: Application title (optional).

This function is useful if you want to display, say, some progress indicator or other
information on the title bar. This information is also shown on the application’s start-bar
button when minimised.

8.10.2 Setting the document window title: xlfWindowTitle

Overview: Attempts to coerce the argument to a string and then sets the
active document title to this string. Returns true if successful,
false if unsuccessful.

If the argument is omitted, resets the document title to the default
value and returns true.

Enumeration value: 263 (x107)

Accessing Excel Functionality Using the C API 291

Callable from: Commands and macro sheet functions.

Return type: xltypeBool

Arguments: 1: (Optional.) Document window title.

8.10.3 Getting a reference to the active cell: xlfActiveCell

Overview: Returns a reference to the active cell on the active work sheet, or
an error if this could not be obtained.

Enumeration value: 94 (x5e)

Callable from: Commands and macro sheet functions.

Return type: xltypeSRef

Arguments: None.

This function is useful in commands where the action to be performed relates to the active
cell’s contents or properties, or where the active cell is to be altered. It can also be used
in functions to detect if the caller is the active cell. You could use it to obtain a refer-
ence to the active sheet by coercing the active cell xltypeSRef to type xltypeRef,
containing the active sheet ID. It is far better to use xlSheetId, however as explained
in section 8.8.5 on page 279.

8.10.4 Getting a list of all open Excel documents: xlfDocuments

Overview: Returns a row vector containing a list of all open workbook
documents, or an error if unsuccessful. If there are no open
workbooks, the function returns #NA.

Enumeration value: 93 (x5d)

Callable from: Commands and macro sheet functions.

Return type: xltypeMulti row vector of xltypeStr

Arguments: None.

8.10.5 Information about a cell or a range of cells: xlfGetCell

Overview: The first argument corresponds to the information you are trying
to get, and the second is a reference to the cell or range of cells
about which you want to know something. The meaning of the
most relevant of the 66 values is given in Table 8.13.

Enumeration value: 185 (xb9)

Callable from: Commands and macro sheet functions.

292 Excel Add-in Development in C/C++

Return type: Various, depending on the value of the first argument.

Arguments: 1: ArgNum: A number from 1 to 66 inclusive.
2: Ref: A cell reference.

Table 8.13 Selected arguments to xlfGetCell

ArgNum What the function returns

1 Absolute-style reference of the top left cell in reference as text in the
[Book1.xls]Sheet1!A1 style.

5 The value of the top left cell.

6 The formula in the top left cell in A1 or R1C1 style as determined by
workspace settings.

7 The number format of the top left cell.

14 Returns true if the top left cell is locked.

15 Returns true if the top left cell’s formula is hidden.

16 Returns 2-column row vector:

1st column: Width of the left-most column

2nd column: True if the width is the standard width, false if a custom width
has been set.

17 Height of top row in points.

32 The name of the workbook and sheet containing the reference in the form
[Book1.xls]Sheet1, unless the window contains only a single sheet that has the
same name as the workbook without its extension, in which case the form
BOOK1.XLS.

41 Returns the formula in the active cell without translation into the language
set for the workspace.

46 True if the top left cell has a text note.

48 True if the top left cell contains a formula, false if constant.

49 True if the cell is part of an array formula.

52 If the top left cell is a string constant, the text alignment character (′) ,
otherwise empty text ("") .

53 The top left cell as displayed, converted to text, including formatting
numbers and symbols.

62 The name of the workbook and the current sheet in the form
[Book1.xls]Sheet1.

66 The workbook name containing the range in the form Book1.xls.

Accessing Excel Functionality Using the C API 293

The Excel4() function set-up and call would be as shown in the following C/C++
code. This is an example of an exportable function that simply wraps up the call to
xlfGetCell and returns whatever is returned from that call.

xloper * __stdcall get_cell(int arg_num, xloper *p_ref)
{

static xloper ret_xloper; // Not thread-safe
xloper arg;
arg.xltype = xltypeInt;
arg.val.w = arg_num;
Excel4(xlfGetCell, &ret_xloper, 2, &arg1, p_ref); // Not thread-safe

// Tell Excel to free memory it might have allocated for the return value.
ret_xloper.xltype |= xlbitXLFree;
return &ret_xloper;

}

Using the cpp_xloper class, the equivalent code would be as follows, with the added
safety of using a constructor that checks arg_num against its maximum and minimum
values.

xloper * __stdcall get_cell(xloper *pRef, int arg_num)
{

cpp_xloper RetVal, Ref(pRef), Arg(arg_num, 1, 66);
// Excel is called here with cpp_xloper * arguments only

RetVal.Excel(xlfGetCell, 2, &Arg, &Ref); // Not thread-safe
return RetVal.ExtractXloper();

}

8.10.6 Sheet or workbook information: xlfGetDocument

Overview: The first argument corresponds to the information you are
trying to get. The second is the name of a sheet or workbook,
depending on the context, about which you want to know
something. The meaning of the most useful of these 88 values
is given in Table 8.14.5 If the second argument is omitted,
information about the active (not the current) sheet or
workbook is returned.

Name can also be specified as workbook-and-sheet in the form
[Book1.xls]Sheet1 where the context allows.

Enumeration value: 188 (xbc)

Callable from: Commands and macro sheet functions.

Return type: Various, depending on the value of the first argument.

Arguments: 1: ArgNum: A number from 1 to 88 inclusive.
2: Name: (Optional.) Sheet or workbook name as text.

5 For values not covered, see the Macro Sheet Function Help file Macrofun.hlp.

294 Excel Add-in Development in C/C++

Table 8.14 Selected arguments to xlfGetDocument

ArgNum What the function returns

1 If Name is a sheet name:

• If more than one sheet in the current workbook, returns the name of
the sheet in the form [Book1.xls]Sheet1

• If only one sheet in the current workbook, but the name of the
workbook is not Name, returns the sheet Name in the form
[Book1.xls]Sheet1

• If only one sheet in the current workbook and the workbook and
sheet are both called Name, returns the name of the workbook in the
form Book1.xls

• If sheet Name does not exist in the current workbook, returns #N/A

If Name is a workbook name:

• If more than one sheet in the given workbook, the name of the first
sheet in the form [Book1.xls]Sheet1

• If one sheet in the given workbook, and the sheet name is not also
Name, the name of that sheet in the form [Book1.xls]Sheet1

• If one sheet with the same name as the given workbook, the name of
the workbook in the form Book1.xls

• If workbook Name is not open, returns #N/A

If Name is omitted:

• If more than one sheet in the active workbook or the sheet name is
not the same as the active workbook name, the name of the active
sheet in the form [Book1.xls]Sheet1

• If one sheet with the same name as the active workbook, the name of
the workbook in the form Book1.xls

(See also ArgNum 76 and 88 below, which return the names of the
active worksheet and the active workbook respectively.)

2 Path of the directory containing workbook Name if it has already been
saved, else #N/A

3 A number indicating the type of sheet. If given, Name is either a sheet
name or a workbook. If omitted the active sheet is assumed. If Name is
a workbook, the function returns 5 unless the book has only one sheet
with the same name as the book, in which case it returns the sheet type.
1 = Worksheet
2 = Chart
3 = Macro sheet
4 = Info window if active
5 = Reserved

Accessing Excel Functionality Using the C API 295

Table 8.14 (continued)

ArgNum What the function returns

6 = Module
7 = Dialog

4 True if changes made to the sheet since last saved.

5 True if the sheet is read-only.

6 True if the sheet is password protected.

7 True if cells in the sheet or the series in a chart are protected.

8 True if the workbook windows are protected. (Name can be either a
sheet name or a workbook. If omitted the active sheet is assumed.)

9 The first used row or 0 if the sheet is empty. (Counts from 1.)

10 The last used row or 0 if the sheet is empty. (Counts from 1.)

11 The first used column or 0 if the sheet is empty. (Counts from 1.)

12 The last used column or 0 if the sheet is empty. (Counts from 1.)

13 The number of windows that the sheet is displayed with.

14 The calculation mode:
1 = Automatic
2 = Automatic except tables
3 = Manual

15, 18, 19, 20 Options dialog box, Calculation tab checkbox settings as either true or
false:
15: Returns the Iteration checkbox state
18: Returns the Update Remote References checkbox state
19: Returns the Precision As Displayed checkbox state
20: Returns the 1904 Date System checkbox state

16 Maximum number of iterations.

17 Maximum change between iterations.

33 The state of the Recalculate Before Saving checkbox in the Calculation tab
of the Options dialog box.

34 True if the workbook is read-only recommended.

35 True if the workbook is write-reserved.

36 If the workbook has a write-reservation password and it is opened with
read/write permission, returns the name of the user who originally saved
it with the write-reservation password.

(continued overleaf)

296 Excel Add-in Development in C/C++

Table 8.14 (continued)

ArgNum What the function returns

If the workbook is opened as read-only, or if a password has not been
added, returns the name of the current user.

48 The standard column width setting.

68 The workbook name without path.

76 The name of the active sheet in the form [Book1.xls]Sheet1

84 The value of the first circular reference on the sheet, or #N/A if none.

87 The position of the given sheet in the workbook. If the workbook name
is not given with the sheet name, operates on the current workbook.
(Includes hidden sheets and counts from 1.)

88 The workbook name in the form Book1

The Excel4() function set-up and call would be as shown in the following C/C++
code example of an exportable function that wraps up the call to xlfGetDocument and
returns whatever is returned from that call.

xloper * __stdcall get_document(int arg_num, char *sheet_name)
{

static xloper ret_xloper; // Not thread-safe
xloper arg1, arg2;

if(arg_num < 1 | | arg_num > 88)
return p_xlErrValue;

arg1.xltype = xltypeInt;
arg1.val.w = arg_num;

if(sheet_name)
{

arg2.xltype = xltypeStr;
arg2.val.str = new_xlstring(sheet_name);

}
else

arg2.xltype = xltypeMissing;

Excel4(xlfGetDocument, &ret_xloper, 2, &arg1, &arg2); // Not thread-safe

if(sheet_name)
free(arg2.val.str);

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype | = xlbitXLFree;
return &ret_xloper;

}

Accessing Excel Functionality Using the C API 297

Using the cpp_xloper class, the equivalent code looks like this:

xloper * __stdcall get_document(int arg_num, char *sheet_name)
{

cpp_xloper Arg1(arg_num, 1, 88);
if(!Arg1.IsType(xltypeInt))

return p_xlErrValue;

cpp_xloper Arg2(sheet_name);
cpp_xloper RetVal;
RetVal.Excel(xlfGetDocument, 2, &Arg1, &Arg2); // Not thread-safe
return RetVal.ExtractXloper();

}

8.10.7 Getting the formula of a cell: xlfGetFormula

Overview: Returns the formula, as text, of the top left cell in a given
reference. The formula is returned in R1C1 style (see
section 2.2, A1 versus R1C1cell references for details).

Enumeration value: 106 (x6a)

Callable from: Commands and macro sheet functions.

Return type: xltypeStr or xltypeErr

Arguments: Ref. A reference xloper.

The Excel4() function set-up and call would be as shown in the following C/C++
code example of an exportable function that wraps up the call to xlfGetFormula. The
function returns the formula as a string.

xloper * __stdcall get_formula(xloper *p_ref)
{

cpp_xloper RetVal;
RetVal.Excel(xlfGetFormula, 1, p_ref);

// Extract and return the xloper, flagging Excel to free memory
return RetVal.ExtractXloper();

}

8.10.8 Getting a cell’s comment: xlfGetNote

Overview: Returns the text of the comment attached to the top left cell in
the given reference. If no comment has been added to the cell,
it returns an empty string.

Enumeration value: 191 (xbf)

Callable from: Commands and macro sheet functions.

298 Excel Add-in Development in C/C++

Return type: xltypeStr

Arguments: Ref. A reference xloper.

The Excel4() function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to xlfGetNote. The arguments
passed in are row and column numbers that count from 0. The function creates a reference
to a single cell on the current sheet and returns the comment as a string.

xloper * __stdcall get_note(long row, long column)
{

static xloper ret_xloper; // Not thread-safe
xloper arg;

// Create a simple single-cell reference to cell on current sheet
arg.xltype = xltypeSRef;
arg.val.sref.count = 1;

// First row in sheet = row 0
arg.val.sref.ref.rwFirst = arg.val.sref.ref.rwLast = (RW)row;

// First column in sheet = column 0
arg.val.sref.ref.colFirst = arg.val.sref.ref.colLast = (COL)column;
Excel4(xlfGetNote, &ret_xloper, 1, &arg); // Not thread-safe

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype |= xlbitXLFree;
return &ret_xloper;

}

The following code is equivalent to the above, but uses the cpp_xloper class.

xloper * __stdcall get_note(long row, long column)
{
// Create a simple single-cell reference to a cell on the current sheet

cpp_xloper RetVal, Arg((RW)row, (RW)row, (COL)column, (COL)column);
RetVal.Excel(xlfGetNote, 1, &Arg);
return RetVal.ExtractXloper();

}

8.10.9 Information about a window: xlfGetWindow

Overview: The function returns information about an open worksheet
window.
The first argument corresponds to the information you are
trying to get. The meaning of the most useful of these 31
values is given in Table 8.15.6

The second is the name of the window about which you want
to know something. If omitted, information about the active

6 For values not covered, see the Macro Sheet Function Help file Macrofun.hlp.

Accessing Excel Functionality Using the C API 299

window is returned. (Remember that Excel enables multiple
windows to be opened providing views to the same
workbook.) The text should be entered in the form it appears
in the window title bar, i.e. Book1.xls or Book1.xls:n if one of
multiple open windows.

Enumeration value: 187 (xbb)

Callable from: Commands and macro sheet functions.

Return type: Various, depending on the value of the first argument.

Arguments: 1: ArgNum: A number from 1 to 31 inclusive.
2: WindowName: (Optional.) Window name as text.

Table 8.15 Selected arguments to xlfGetWindow

ArgNum What the function returns

1 • If more than one sheet in the workbook, returns the name of the active sheet
in the form [Book1.xls]Sheet1

• If only one sheet in the workbook with a different name to the workbook,
returns the sheet name in the form [Book1.xls]Sheet1

• If one sheet in the workbook, both having the same name, returns the name
of the workbook in the form Book1.xls

• If a window of that name is not open, returns #VALUE!

2 The number of the window. Always 1 unless there are multiple windows, in
which case the number displayed after the colon in the window title.

7 True if hidden.

8 True if formulas are displayed.

9 True if gridlines are displayed.

10 True if row and column headings are displayed.

11 True if zeros are displayed.

20 True if window is maximised.

23 The size of the window:
1 = Restored
2 = Minimised
3 = Maximised

24 True if panes are frozen.

25 The magnification of the window as a % of normal size.

26 True if horizontal scrollbars displayed.

(continued overleaf)

300 Excel Add-in Development in C/C++

Table 8.15 (continued)

ArgNum What the function returns

27 True if vertical scrollbars displayed.

28 The ratio of horizontal space allotted to workbook tabs versus the horizontal
scrollbar. (Default = 1:0.6.)

29 True if workbook tabs displayed.

30 The title of the active sheet in the window in the form [Book1.xls]Sheet1

31 The workbook name, in the form Book.xls excluding the read/write status.

The Excel4() function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to xlfGetWindow and returns
whatever is returned from that call. Note that the argument window_name is assumed
to be a length-counted byte string, registered as type D.

xloper * __stdcall get_window(int arg_num, unsigned char *window_name)
{

static xloper ret_xloper; // Not thread-safe
xloper arg1, arg2;

if(arg_num < 1 | | arg_num > 31)
return p_xlErrValue;

arg1.xltype = xltypeInt;
arg1.val.w = arg_num;

if(window_name && window_name[0]) // non-trivial string
{

arg2.xltype = xltypeStr;
arg2.val.str = window_name;

}
else

arg2.xltype = xltypeMissing;

Excel4(xlfGetWindow, &ret_xloper, 2, &arg1, &arg2);

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype | = xlbitXLFree;
return &ret_xloper;

}

The following code is equivalent to the above, but uses the cpp_xloper class. Note
that in this case the argument window_name is a null-terminated byte string, registered
as type C.

xloper * __stdcall get_window(int arg_num, char *window_name)
{

cpp_xloper Arg1(arg_num, 1, 31);
if(!Arg1.IsType(xltypeInt))

Accessing Excel Functionality Using the C API 301

return p_xlErrValue;
cpp_xloper RetVal, Arg2(window_name);
RetVal.Excel(xlfGetWindow, 2, &Arg1, &Arg2);
return RetVal.ExtractXloper();

}

8.10.10 Information about a workbook: xlfGetWorkbook

Overview: The function returns information about an open workbook.

The first argument corresponds to the information you are
trying to get. The meaning of the most useful of these 38
values is given in Table 8.16.7

The second is the name of the workbook about which you
want to know something. If omitted, information about the
active workbook is returned.

Enumeration value: 268 (x10c)

Callable from: Commands and macro sheet functions.

Return type: Various, depending on the value of the first argument.

Arguments: 1: ArgNum: A number from 1 to 38 inclusive.

2: WorkbookName: (Optional.) Workbook name as text.

Table 8.16 Selected arguments to xlfGetWorkbook

ArgNum What the function returns

1 A horizontal array of the names of all sheets in the workbook.

3 A horizontal array of the names of workbook’s currently selected sheets.

4 The number of sheets in the workbook.

14 True if the workbook structure is protected.

15 True if the workbook windows are protected.

24 True if changes were made to the workbook since last saved.

33 The title of the workbook as in the Summary Info dialog box.

34 The subject of the workbook as in the Summary Info dialog box.

(continued overleaf)

7 For values not covered, see the Macro Sheet Function Help file Macrofun.hlp.

302 Excel Add-in Development in C/C++

Table 8.16 (continued)

ArgNum What the function returns

35 The author of the workbook as in the Summary Info dialog box.

36 The keywords for the workbook as in the Summary Info dialog box.

37 The comment for the workbook as in the Summary Info dialog box.

38 The name of the active worksheet.

The Excel4() function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to xlfGetWorkbook and
returns whatever is returned from that call. Note that the argument book_name is assumed
to be a length-counted byte string, registered as type D.

xloper * __stdcall get_workbook(int arg_num, unsigned char *book_name)
{

static xloper ret_xloper; // Not thread-safe
xloper arg1, arg2;

if(arg_num < 1 | | arg_num > 38)
return p_xlErrValue;

arg1.xltype = xltypeInt;
arg1.val.w = arg_num;

if(book_name)
{

arg2.xltype = xltypeStr;
arg2.val.str = book_name;

}
else

arg2.xltype = xltypeMissing;

Excel4(xlfGetWorkbook, &ret_xloper, 2, &arg1, &arg2);

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype |= xlbitXLFree;
return &ret_xloper;

}

The following code is equivalent to the above, but uses the cpp_xloper class. Note
that in this case the argument book_name is a null-terminated byte string, registered as
type C.

xloper * __stdcall get_workbook(int arg_num, char *book_name)
{

cpp_xloper Arg1(arg_num, 1, 38);
if(!Arg1.IsType(xltypeInt))

return p_xlErrValue;

Accessing Excel Functionality Using the C API 303

cpp_xloper RetVal, Arg2(book_name);
RetVal.Excel(xlfGetWorkbook, 2, &Arg1, &Arg2);
return RetVal.ExtractXloper();

}

8.10.11 Information about the workspace: xlfGetWorkspace

Overview: The function returns information about the workspace.

The argument corresponds to the information you are trying to
get. The meaning of the most useful of these 72 values is
given in Table 8.17.8

Enumeration value: 186 (xba)

Callable from: Commands and macro sheet functions.

Return type: Various, depending on the value of the first argument.

Arguments: ArgNum: A number from 1 to 72 inclusive.

Table 8.17 Selected argument to xlfGetWorkspace

ArgNum What the function returns

1 The current environment and version number, e.g., Windows (32-bit) NT 5.00.

2 The Excel version number as a string.

3 If fixed decimals are set, returns the number of decimals, otherwise 0.

4 True if in R1C1 mode.

5 True if scroll bars are displayed.
See also xlfGetWindow with ArgNum = 26 and 27.

6 True if the status bar is displayed.

7 True if the formula bar is displayed.

8 True if remote DDE requests are enabled.

9 The alternate menu key or #N/A if no alternate menu key is set.

10 The current mode that Excel is in:
0 = Normal
1 = Data Find
2 = Copy
3 = Cut

(continued overleaf)

8 For values not covered, see the Macro Sheet Function Help file Macrofun.hlp.

304 Excel Add-in Development in C/C++

Table 8.17 (continued)

ArgNum What the function returns

4 = Data Entry
5 = Unused
6 = Copy and Data Entry
7 = Cut and Data Entry

15 Maximised/minimised state of Excel:
1 = Neither
2 = Minimised
3 = Maximised

16 Kilobytes of free memory.

17 Kilobytes of total memory available to Excel.

20 If a group is present in the workspace, a horizontal array of sheets in the
group, otherwise #N/A

21 True if the standard toolbar is displayed.

22 DDE application-specific error code.

23 Full path of the default start-up directory.

24 Full path of the alternate start-up directory, or #N/A if not specified.

25 True if set for relative reference macro recording.

26 Name of user.

27 Name of organisation.

32 The full path of the location of Microsoft Excel.

33 A horizontal array of the names in the Insert. . . list (accessed from the
worksheet tab context menu) in the order they appear. (Note that not all of
these are available from the File/New. . . list.)

34 A horizontal array containing template path and filenames corresponding to the
array returned with ArgNum = 33. Returns #N/A for built-in document types.

36 True if the Allow Cell Drag And Drop check box is selected in the Edit tab of the
Options dialog box.

37 A 45-item horizontal array of the items related to country versions and
settings. (See next table for details.)

40 True if screen updating is enabled during macro execution.

41 A horizontal array of cell ranges, in R1C1 style, that were previously selected
with the Goto command from the Edit menu or macro function equivalent.

Accessing Excel Functionality Using the C API 305

Table 8.17 (continued)

ArgNum What the function returns

44 A three-column array of all currently registered DLL procedures. (See
section 8.5, Registering and un-registering DLL (XLL) functions for details of
the meaning of the data returned in column 3.)

Column 1:
The full path and filename of the DLLs that contains the procedure.

Column 2:
The exported name of the DLL function (which may not be the same as the
name as it appears in the worksheet).

Column 3:
String specifying the data type of the return value, the number and type of the
arguments, whether volatile or a macro sheet function.

46 True if the Move Selection After Enter checkbox is selected in the Edit tab of the
Options dialog box.

48 Pathname of the Excel library subdirectory.

50 True if the full screen mode is on.

51 True if the formula bar is displayed in full screen mode.

52 True if the status bar is displayed in full screen mode.

54 True if the Edit Directly In Cell checkbox is set on the Edit tab in the Options
dialog box.

55 True if the Alert Before Overwriting Cells checkbox in the Edit tab on Options
dialog box is set.

56 Standard font name in the General tab in the Options dialog box.

57 Standard font size in the General tab in the Options dialog box.

58 True if the Recently Used File List checkbox in the General tab on the Options
dialog box is set.

59 True if the Display Old Menus checkbox in the General tab on the Options dialog
box is set.

60 True if the Tip Wizard is enabled.

61 Number of custom list entries in the Custom Lists tab of the Options dialog box.

64 True if the Ask to Update Automatic Links checkbox in the Edit tab of the Options
dialog box is set.

65 True if the Cut, Copy, and Sort Objects with Cells checkbox in the Edit tab on
the Options dialog box is set.

(continued overleaf)

306 Excel Add-in Development in C/C++

Table 8.17 (continued)

ArgNum What the function returns

66 Default number of sheets in a new workbook from the Edit tab on Options
dialog box.

67 Default file location from the General tab in the Options dialog box.

68 True if the Show ToolTips checkbox on the Toolbars dialog box is set.

69 True if the Large Buttons checkbox in the Toolbars dialog box is set.

70 True if the Prompt for Summary Info checkbox in the General tab on the Options
dialog box is set.

71 True if Excel was opened for in-place object editing (OLE).

72 True if the Color Toolbars checkbox is set in the Toolbars dialog box.

Table 8.18 gives the meaning of the 45 horizontal array elements related to country
versions and settings returned by this function with ArgNum = 37.

Table 8.18 Country settings returned by xlfGetWorkspace

Category Array index Description of data returned

Country codes 1 Number corresponding to the country
version of Excel.

2 Number corresponding to the current
country setting in the Microsoft Windows
Control Panel.

Number separators 3 Decimal separator

4 1000s separator

5 List separator

R1C1-style references 6 Row character

7 Column character

8 Lower case row character

9 Lower case column character

10 Character used instead of [

11 Character used instead of]

Accessing Excel Functionality Using the C API 307

Table 8.18 (continued)

Category Array index Description of data returned

Array characters 12 Character used instead of {
13 Character used instead of }
14 Column separator

15 Row separator

16 Alternate array item separator used if the
array separator is the same as the decimal
separator

Format code symbols 17 Date separator

18 Time separator

19 Year symbol

20 Month symbol

21 Day symbol

22 Hour symbol

23 Minute symbol

24 Second symbol

25 Currency symbol

26 General symbol

Format codes 27 Number of decimal digits used in currency
formats

28 Number indicating the current format for
negative currencies where currency is any
number and $ represents the currency
symbol.

29 Number of decimal digits used in
non-currency formats

30 Number of characters to use in month
names

31 Number of characters to use in weekday
names

32 Number indicating the date order

(continued overleaf)

308 Excel Add-in Development in C/C++

Table 8.18 (continued)

Category Array index Description of data returned

Boolean
format values

33 True if using 24-hour time, otherwise false
for 12-hour time.

34 True if not displaying functions in English.

35 True if using the metric system, otherwise
false if imperial.

36 True if a space inserted before currency
symbol.

37 True if currency symbol precedes currency
values.

38 True if minus sign used for negative
numbers, otherwise false if parentheses.

39 True if trailing zeros displayed for zero
currency values.

40 True if leading zeros displayed for zero
currency values.

41 True if leading zero displayed in months
where months are displayed as numbers.

42 True if leading zero shown in days where
days are displayed as numbers.

43 True if using four-digit years, false if
two-digit.

44 True if date order is month-day-year when
displaying dates in long form, otherwise
false if day-month-year.

45 True if leading zero shown in the time.

The Excel4() function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to xlfGetWorkspace and
returns whatever is returned from that call:

xloper * __stdcall get_workspace(int arg_num)
{

static xloper ret_xloper; // Not thread-safe
xloper arg;

if(arg_num < 1 | | arg_num > 72)
return p_xlErrValue;

Accessing Excel Functionality Using the C API 309

arg.xltype = xltypeInt;
arg.val.w = arg_num;
Excel4(xlfGetWorkspace, &ret_xloper, 1, &arg); // Not thread-safe

// Tell Excel to free up memory that it might have allocated for
// the return value.

ret_xloper.xltype | = xlbitXLFree;
return &ret_xloper;

}

The following code is equivalent to the above, but uses the cpp_xloper class.

xloper * __stdcall get_workspace(int arg_num)
{

cpp_xloper Op(arg_num, 1, 72);
if(!Op.IsType(xltypeInt))

return p_xlErrValue;
Op.Excel(xlfGetWorkspace, 1, &Op); // Re-use Op
return Op.ExtractXloper();

}

The following code uses xlfGetWorkspace to set a global version variable.

int gExcelVersion = 0; // Global Excel version

void set_global_ExcelVersion(void)
{

xloper version, arg;
arg.val.w = 2;
arg.xltype = xltypeInt;

if(Excel4(xlfGetWorkspace, &version, 1, &arg) == xlretSuccess
&& version.xltype == xltypeStr)
{

arg.val.w = xltypeInt;
// Convert version from string to integer (re-use arg for the return value)

if(Excel4(xlCoerce, &arg, 2, &version, &arg) == xlretSuccess)
gExcelVersion = arg.val.w;

Excel4(xlFree, 0, 1, &version); // Free the Excel-allocated string
}

}

8.10.12 Information about the selected range or object: xlfSelection

Overview: The function returns information about the selected cells or
objects in the active sheet. If cells are selected, the function
returns the address in the form [Book1]Sheet1!A1:B2. If one or
more objects are selected, the function returns a
comma-delimited list of the object identifiers, e.g.,
CommandButton1,CommandButton2,. . ..

Enumeration value: 95 (x5f)

310 Excel Add-in Development in C/C++

Callable from: Commands and macro sheet functions.

Return type: xltypeStr

Arguments: None.

The following C/C++ code example shows an exportable function that wraps up the call
to xlfSelection. Note that a trigger argument is included in this case to provide a
means for the function to be called from a worksheet. Alternatively, the function could
be declared as taking void and registered as volatile.

xloper * __stdcall selection(int trigger)
{

cpp_xloper RetVal;
RetVal.Excel(xlfSelection);

// Extract and return xloper.
return RetVal.ExtractXloper();

}

8.10.13 Getting names of open Excel windows: xlfWindows

Overview: The function returns the names of currently open worksheet
windows in this instance of Excel. The names are returned in a
horizontal array in the form Book1.xls, or Book1.xls:2 if there are
multiple windows into the same workbook.

The first argument specifies to the type of windows to list:

1 or omitted = non-add-in windows only.

2 = add-in windows only.

3 = all windows.

The second is an optional text mask that may contain wildcard
characters. If supplied, only names that match are returned.

Enumeration value: 91 (x5b)

Callable from: Commands and macro sheet functions.

Return type: Various, depending on the value of the first argument.

Arguments: 1: MatchType: (Optional.) A number from 1 to 3 inclusive.
2: Mask: (Optional.) Window name mask as text.

The Excel4() function set-up and call are as shown in the following C/C++ code
example of an exportable function that wraps up the call to xlfWindows.

xloper * __stdcall xl_windows(int match_type, char *mask)
{

cpp_xloper Arg1(match_type, 1, 3);
cpp_xloper Arg2(mask);

Accessing Excel Functionality Using the C API 311

cpp_xloper RetVal;
RetVal.Excel(xlfWindows, 2, &Arg1, &Arg2);

// Extract and return xloper.
return RetVal.ExtractXloper();

}

8.10.14 Converting a range reference: xlfFormulaConvert

Overview: This function converts cell or range references contained in a
text formula to another form depending on its arguments. The
formula can be as simple as an equals sign and a cell or range
reference, but must always be valid. Conversion can be any
mixture of A1 to or from R1C1, or absolute to or from relative.
The converted formula is returned as a string.

Enumeration value: 241 (xf1)

Callable from: Commands and macro sheet functions.

Return type: xltypeStr

Arguments: 1: FormulaStr. Text string containing the input cell reference.

2: FromA1. Boolean.True if FormulaStr uses A1 style
references.

3: ToA1 : (Optional.) Boolean. True if function is to return a
formula using A1 style references. If omitted, the style is
the same as the supplied formula.

4: ToRefType: (Optional.) Number from 1 to 4 indicating the
absolute/relative type of the returned reference. If omitted,
no conversion is done. 1 = row and column absolute,
2 = absolute row only, 3 = absolute column only, 4 = row
and column relative.

5: RelativeRef : (Optional.) If required, the cell reference (an
xltypeSRef or xltypeRef xloper) which R1C1 style
references should be interpreted as being relative to.

The following C/C++ code example shows an exportable function that wraps up the call
to xlfFormulaConvert. Note that the Boolean arguments are passed to the function
as integers and converted in the cpp_xloper constructor call. Note also that the 5th
argument of the exported function should be registered as type R to prevent Excel con-
verting the reference to some other data type. As a result of this and the fact that it must
be registered as a macro sheet equivalent, type #, the function will be volatile by default.

xloper * __stdcall formula_convert(char *p_ref, int from_A1, int to_A1,
int abs_rel_type, xloper *p_rel_ref)

{

312 Excel Add-in Development in C/C++

cpp_xloper Ref(p_ref), Arg4(abs_rel_type, 1, 4);
cpp_xloper FromA1(from_A1 ? p_xlTrue : p_xlFalse);
cpp_xloper ToA1(to_A1 ? p_xlTrue : p_xlFalse);
cpp_xloper RelRef(p_rel_ref); // shallow copy if version < 12
cpp_xloper RetVal;

// All arguments passed as cpp_xloper *
RetVal.Excel(xlfFormulaConvert, 5, &Ref, &FromA1, &ToA1, &Arg4, &RelRef);

// Extract and return xloper.
return RetVal.ExtractXloper();

}

8.10.15 Converting text to a reference: xlfTextref

Overview: This function converts a text cell reference to an external
reference xloper/xloper12.

Enumeration value: 147 (x93)

Callable from: Commands and macro sheet functions.

Return type: xltypeRef

Arguments: 1: ReferenceStr: Text string containing the input cell reference

2: A1Style: (Optional.) Boolean. True indicates that the given
reference is in A1 style. False or omitted indicates R1C1 style.

The following C/C++ code example shows an exportable function that wraps up the call
to xlfTextref.

xloper * __stdcall text_ref(char *p_ref, int A1_style)
{

cpp_xloper Op(p_ref);
cpp_xloper A1Style(A1_style != 0); // Initialise to xltypeBool

// All arguments passed as cpp_xloper *
Op.Excel(xlfTextref, 2, &Op, &A1Style);

// Extract and return xloper.
return Op.ExtractXloper();

}

Note: The reference as text must not have a leading ‘=’. For example, the function
xlfGetName returns the address of a given named range but includes a leading ‘=’ that
should be removed before it can be converted to a range xloper using xlfTextRef.

8.10.16 Converting a reference to text: xlfReftext

Overview: This function converts a cell reference to xltypeStr of the
form [Book1.xls]Sheet1!R1C1.

Enumeration value: 146 (x92)

Callable from: Commands and macro sheet functions.

Accessing Excel Functionality Using the C API 313

Return type: xltypeStr

Arguments: 1: Reference: A reference xloper (xltypeSRef or
xltypeRef) .

2: A1Style: (Optional.) Boolean. True requests that the returned
text is in A1 style. False or omitted requests R1C1 style.

This function is useful when, for example, converting a reference to an R1C1 style string
to be passed to the xlfGetDef function, which returns the defined name (if it exists)
associated with the original reference. (See section 8.11 Working with Excel names on
page 316.) This function is used for this purpose in the example project in the code of the
xlName class. The function xlfGetCell, argument=1, also returns an address string
but only in A1 style.

The following C/C++ code example shows an exportable function that wraps up the
call to xlfReftext.

xloper * __stdcall ref_text(xloper *p_ref, int A1_style)
{

cpp_xloper RetVal;
// All arguments passed as xloper *

xloper *pA1_style = A1_style != 0 ? p_xlTrue : p_xlFalse;
RetVal.Excel(xlfReftext, 2, p_ref, pA1_style);

// Extract and return xloper.
return RetVal.ExtractXloper();

}

8.10.17 Information about the calling cell or object: xlfCaller

Overview: Returns information about what originally initiated this call into
the DLL. It can be called many times in the same call and will
return the same information every time.

Enumeration value: 89 (x59)

Callable from: Commands, worksheet and macro sheet functions.

Return type: Various depending on the how the DLL was called. (See
Table 8.19.)

Arguments: None.

Table 8.19 Return types and information for xlfCaller

Where the DLL was called from: What xlfCaller returns:

A single cell on a worksheet. A single-cell xltypeSRef or xltypeRef
of that cell.

A multi-cell array formula on a worksheet. A multi-cell xltypeSRef or xltypeRef.

(continued overleaf)

314 Excel Add-in Development in C/C++

Table 8.19 (continued)

Where the DLL was called from: What xlfCaller returns:

A command on a menu bar A horizontal 4-element array:
• the command’s position number
• the menu number
• the menu bar number
• the position on a submenu or 0 if not
called from a submenu

A command attached to a toolbar A horizontal 2-element array:
• the command’s position number
• the command bar name

A command attached to a control object The object’s ID

A trapped data entry or double-click event
on a worksheet

An xltypeSRef or xltypeRef of the
relevant cell or range of cells.

Others #REF!

Note that position numbers count from 1. Note also that xlfCaller can sometimes
return an xloper that has had memory allocated by Excel. When the xloper is done
with, the memory must be freed by Excel. (See section 7.3, Getting Excel to free memory
allocated by Excel for details.)

Warning: The DLL can be called by the operating system, for example, DllMain()
or during a Windows call-back. Calling xlfCaller in these contexts is not necessary
and may have strange and undesirable consequences.

Note that some of Excel’s built-in functions behave differently when called from a
single cell or a number of cells in an array formula. This kind of behaviour can be
replicated in DLL functions by detecting the type of the caller, and the size if it is a
range. (See section 2.6.8 Conversion of multi-cell range references on page 18 for more
detail.) You can also use the xlfGetCell function, with argument 49, to detect if a
given cell reference is part of an array.

Apart from the usefulness of this function in determining the type of caller, it plays
an important rôle in the naming and tracking of cells that are performing some important
task. See section 8.10.18 immediately below and sections 9.7 to 9.10. It also can play an
important rôle in returning the pre-call value of the calling cell. This can be useful in
stopping the propagation of errors as the following simple function demonstrates:

xloper * __stdcall CurrentValue(xloper *pRtnInput, xloper *pRtnValue)
{

if(pRtnInput->xltype == xltypeBool && pRtnInput->val.xbool == 1)
return pRtnValue;

cpp_xloper Caller;
if(Caller.Excel(Caller) != xlretSuccess
| | !Caller.IsType(xltypeSRef | xltypeRef))

return NULL;

cpp_xloper RetVal;

Accessing Excel Functionality Using the C API 315

if(RetVal.Excel(xlCoerce, 1, &Caller) != xlretSuccess)
RetVal = 0.0;

return RetVal.ExtractXloper();
}

The function takes two optional arguments. The default behaviour of the function is to
return the existing value of the cell. (For this to work the function must be registered as
a macro sheet equivalent function.) The optional arguments override this and force the
return of a supplied value if the first argument is set to true. An example of the use of
such a function would be as follows:

= IF(ISERROR(A1), CurrentValue(B1, C1), A1)

Any error that exists in A1 will not be propagated to the result of this formula. A more com-
prehensive discussion of this topic is given in section 9.13.2 Controlling error propagation
on page 429.

Note that this function needs to be registered as a macro-sheet equivalent, type #,
in order that the the call to xlCoerce does not fail with an xlretUncalced error.
However, this means that the function cannot be declared as thread-safe.

8.10.18 Information about the calling function type

There is no C API function that will directly tell you what kind of function call you
are currently in: worksheet function, macro-sheet function or command. However, given
that there are a number of workspace information functions that cannot be called from
worksheet functions, it is simple to implement a test. This is useful in cases where the
behaviour of your add-in or a C API function depends on what type of function was
called. (See 8.16.3 Evaluating a cell formula: xlfEvaluate on page 362, for example).

The following code returns true if called from a worksheet function, and false if called
from either a macro-sheet function or a command. For the sake of speed, it calls a
workspace information function that simply returns a Boolean if Excel is in R1C1 mode.
This fails if called from a worksheet function.

bool caller_is_ws_function(void) // Not thread-safe
{
// Retrieve the R1C1 state. Fails if called from WS function
// Don't need the return value so pass NULL.

if(gExcelVersion12plus)
{

xloper12 four;
four.val.w = 4; // Ask if Excel is in R1C1 mode
four.xltype = xltypeInt;
return Excel12(xlfGetWorkspace, 0, 1, &four) != xlretSuccess;

}
else
{

xloper four;
four.val.w = 4; // Ask if Excel is in R1C1 mode
four.xltype = xltypeInt;
return Excel4(xlfGetWorkspace, 0, 1, &four) != xlretSuccess;

}
}

316 Excel Add-in Development in C/C++

8.11 WORKING WITH EXCEL NAMES

Excel supports the concept of named ranges within sheets. In ordinary Excel use, these
are easy to create and access, and aid the formation of easy-to-read and easy-to-maintain
spreadsheets. The C API provides a number of functions for accessing and managing
these names. Excel also supports a type of hidden name that is only accessible within a
DLL using the C API. (The latter type has its origins as a private Excel 4 macro-sheet
name.)

In practice, Excel named ranges are best handled in the DLL with a C++ class. An
example of a simple class, xlName, is provided on the CD ROM and discussed in
section 9.7 A C++ Excel name class example, xlName on page 387. The class supports
the reading of values from named ranges, writing values to them using simple data types,
as well as creation, deletion and validation. It also assists with the creation of internal
names, especially those associated with the calling cell; a very useful technique when
dealing with internally held data structures and background tasks.

Before this, sections 8.11.1 to 8.11.8 provide a low-level look at Excel’s defined name
logic and the C API’s name handling capabilities.

Excel 2007 multi-threading note: Excel 2007 regards all XLM functions with the excep-
tion of xlfCaller as being thread-unsafe. For this reason alone XLL functions that call
them cannot be declared as thread-safe. Not only this, but in order to be able to call
XLM functions, XLL exports must be registered as macro-sheet equivalents, type #,
which Excel does not permit to be registered as thread-safe. Consequently, the example
exportable functions that follow are not thread-safe and can get away with passing pointers
to function-local static variables back to Excel.

8.11.1 Specifying worksheet names and name scope

A defined name in Excel is simply a text string that has an associated definition. The
definition can be a constant value (a number, Boolean value or string but not an error
value), an array of constant values, or a reference to a range of cells on a worksheet.

Names are associated with either a worksheet (or an Excel 4 macro sheet). The relevance
of macro sheets here is only that Excel treats functions in an XLL as if they were on
a hidden Macro sheet. Macro sheets and DLLs using the C API, can define worksheet
names on a given worksheet but also can create internal (or Macro sheet) names. Both
can represent all of the basic Excel data types including range references. From a DLL
point of view, it is helpful to think of the two types of names as follows:

1. Worksheet names: defined on a worksheet and persist when the workbook is saved
and reloaded.

2. DLL names: defined in a DLL and only accessible directly by DLLs. Persist only as
long as the current Excel session.

Both types of names follow the same naming rules:

• Names can be up to 255 characters in length. (You should use a much shorter length
so that worksheet names, when appended to a filename and sheet name, are still well
within the 255 character limit for C API byte-string compatibility.)

• Names are case-sensitive and can contain the characters ‘A’ to ‘Z’, ‘a’ to ‘z’, ‘\’ and
‘ ’, in fact it must start with one of these characters.

Accessing Excel Functionality Using the C API 317

• The numerals 0 to 9, ‘? ’ and ‘. ’ are permitted except that names cannot begin with
these.

• Names cannot contain spaces, tabs, non-printable characters or any of !"$%^ &*(){}
[] :; ′@# ∼<> /| − + = ¬ as well as some other non-alpha and extended ASCII
characters, including other currency symbols.

• Names must not look like cell addresses in either R1C1 or A1 notation (see note below).

Note: In Excel 2007, range names that are 3 letters followed by a number will be inter-
preted as cell references if less than XFE. . . . (The right most column is XFD). You might
have got away with names OPT1 and OPT2 prior to Excel 2007, but these should be
renamed to be Excel 2007-compliant. For example, OPT 1 and OPT1 are safe. When
Excel 2007 is running in compatibility mode, the grid size is restricted to the old size and
ranges such as OPT1 are permitted.

Worksheet names

In general, worksheet names are specified in formulae by the workbook, sheet and
name. The most general name specification in a worksheet cell would be of the form
[Book1.xls]Sheet1!Name. Where the use of the name is within the workbook that contains
the definition, the filename is not required and its display, including the brackets that
contain it, is suppressed. The sheet name and exclamation mark are also not required,
and their display suppressed, except when there are two identically named ranges on sep-
arate sheets of the same workbook. In this case, they do need to be referred to as, say,
Sheet1!Name and Sheet2!Name.

Worksheet names are saved with the workbook and can be used in the sheet in exactly
the same way that references are, for example =RangeName or =SUM(RangeName). Where
identical names are defined on different sheets in the same workbook, Excel can display
some curious behaviour. Ordinarily, cutting and pasting a named range from one sheet to
another simply redefines the name’s definition to reflect its new location. If a named range
with the same name already exists in the paste-to sheet, Excel suppresses the name but
does not invalidate or delete it: the pre-existing name masks the added name. Cutting and
pasting the (masked) named range to another sheet reveals the name again. The situation
can get quite confusing so, in general, it’s best not to tempt fate in this way, and to keep
range names unique within a workbook.

DLL names

Excel names that are defined as internal to a DLL (see function xlfSetName below
for details) cannot be accessed directly in worksheet formulae, unlike worksheet names.
They can only be accessed by the C API functions xlfSetName and xlfGetDef in
the DLL.

How Excel resolves worksheet and DLL names

The steps Excel takes when interpreting a reference in a worksheet (such as Name) are:

1. Look for a definition of the name on the current worksheet.
2. If not found, look for a definition in the current workbook.
3. If still not found, return a #NAME? error.

318 Excel Add-in Development in C/C++

If the name is referred to as Sheet1!Name then Excel looks for the name in the specified
sheet in the current workbook and returns #REF! if the sheet does not exist or #NAME? if
the name is not defined there.

If the name is referred to as [Book1.xls]Sheet1!Name then Excel looks for the name in the
specified sheet in the specified workbook and returns #REF! if the workbook is not open
or the sheet does not exist, or returns #NAME? if the name is not defined. If the workbook
is closed, the full path name is required as follows (Excel will prompt for the worksheet
name on a closed workbook, if omitted.):

=’C:\ExampleFolder\[Book1.xls]Sheet1’!Name
When accessing a worksheet named range from within the DLL using the xlfGetName
function (see below), the name must be prefixed by ‘!’ unless the worksheet name is
specified. Otherwise Excel will look for the given name in a hidden name-space that is
only accessible by DLLs running in this instance of Excel. (See DLL Names above.)

8.11.2 Basic operations with Excel names

There are a number of things you might want to do with names. These operations, and
the functions that you would use to execute them, are summarised here:

• Find out if a given name is defined and, if so, what its definition is (xlfGetName,
not to be confused with xlGetName which returns the name of the DLL).

• Given a reference or value, find out the corresponding defined name if it exists
(xlfGetDef).

• Create, define or redefine a name on a worksheet (xlcDefineName).
• Delete a defined name from a given worksheet (xlcDeleteName).
• Create, define or redefine a name in the DLL-space (xlfSetName).
• Delete a defined name from the DLL-space (xlfSetName).
• Get the value(s) corresponding to the defined name (xlfEvaluate).
• Set the value of cells in a given named range (xlfGetName and xlSet).
• Get a list of all defined worksheet names. (xlfNames).

All of these basic operations, except for the last, have been encapsulated in the xlName
class in section 9.7. The class also provides simple member functions that inform the
caller whether the name is defined and, if so, whether the range reference is still valid.

It is important to remember that Excel names can be valid in the sense that they are
defined, but at the same time have invalid range definitions. This can come about when
a named cell is deleted by a row or column deletion, a sheet deletion or as a result of a
cell cut and paste.

8.11.3 Defining a name on a worksheet: xlcDefineName

Overview: Defines a name on a worksheet. The name can represent a
constant value (which can be a number, Boolean value or string
but not an error value), an array of constant values or a reference
to one or more cells.

Accessing Excel Functionality Using the C API 319

The function performs the same operation as if the user had
selected the menu option Insert/Name/Define. . . and will, in fact,
display the dialog box if used in conjunction with the xlPrompt
bit.

Enumeration value: 32829 (x803d)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: Name: A string satisfying the rules in section 8.11.1.

2: Definition: (Optional.) One of the following:
• A formula (as text using R1C1 style references)
• A constant (as an xloper of that type or as text with or

without a leading =)
• An array of values. (See note below.)

If Definition is omitted, the function defines the name as
referring to the currently selected cell(s) on the active worksheet.

Note: There are two ways to specify a literal definition for a name that you wish to
define as a constant. For example, a literal array can be passed as a string of the form
"={1,2;3,4}", or as an xloper of type xltypeMulti. The following example com-
mands are equivalent and demonstrate this. Both create a name on the active sheet, so
that the formula =SUM(XLL_test_name), if entered anywhere in the active workbook, would
return 45.

int __stdcall define_name_example_1(void)
{

cpp_xloper Name("XLL_test_name");
cpp_xloper Definition("={1,2,3;4,5,6;7,8,9}");
Name.Excel(xlcDefineName, 2, &Name, &Definition); // Re-use Name
return 1;

}

int __stdcall define_name_example_2(void)
{

double array[9] = {1,2,3,4,5,6,7,8,9};
cpp_xloper Name("XLL_test_name");
cpp_xloper Definition((RW)3, (COL)3, array);
Name.Excel(xlcDefineName, 0, 2, &Name, &Definition); // Re-use Name
return 1;

}

8.11.4 Defining and deleting a name in the DLL: xlfSetName

Overview: Used to define or delete an Excel name that cannot be directly
seen or accessed from a worksheet, only from a DLL. The name
is created for the current session of Excel only and is defined in a

320 Excel Add-in Development in C/C++

name-space that is shared by all currently Excel-loaded DLLs.
This means that such names could be used for inter-DLL
communication, for example, or to advertise that a DLL is
present. Names should be chosen carefully to avoid conflicts or
accidental deletions.

Enumeration value: 88 (x58)

Callable from: Commands and macro sheet functions.

Return type: xltypeBool true if successful, otherwise xltypeErr #NAME?
if the name does not exist or if it could not be created.

Arguments: 1: Name: A string satisfying the rules in section 8.11.1.

2: Definition: (Optional.) One of the following:
• A formula (as text using R1C1 style references)
• A constant (as an xloper of that type or as text with or

without a leading =)
• An array of values.

If Definition is omitted, the function deletes the name.

The most useful application of such a name is to keep track of an instance of a DLL func-
tion call from a specific cell, even if the cell is moved. Unlike the function
xlcDefineName which can only be called from a command, this function can be called
from a worksheet function (provided it has been registered as macro-sheet equivalent),
enabling a function to name its calling cell. Remember that macro-sheet equivalent func-
tions cannot be registered as thread-safe. Chapter 9 and Chapter 10 both contain example
techniques and applications that rely on the DLL being able to do this.

The function xlfNames (see section 8.11.8 below) returns a horizontal array of all the
worksheet names defined in a specified workbook. Unfortunately, this does not include
names created with xlfSetName. For this reason, the DLL should maintain an internal
list of such names. The example class xlName, see section 9.7 below, adds every internal
name it creates to a Standard Template Library (STL) container class. The source files
XllNames.cpp and XllNames.h in the example project on the CD ROM contain a
full listing of the code for both the xlName class and the STL map.

As with the definition of a worksheet name, the Definition argument string can be a
formula, for example, "=SQRT(2*PI())". When retrieving the value of the name, this
formula must be evaluated using the xlfEvaluate function before the value can be
used. (In this rather simplistic example, it would be better to evaluate first and define the
name as the value instead.)

Note: If you want to set the name to be defined as the value of a cell reference, rather
than the reference itself, it is necessary to obtain that value using either the xlfDeref or
the xlCoerce function before passing it to xlfSetName. Passing the reference directly
defines the name as the reference rather than the value.

The following code lists a function that creates an internal DLL name, or retrieves its
value. If the 4th argument is Boolean and true, the function deletes the name. (The call
to xlfSetName fails gracefully if the name is not defined.)

Accessing Excel Functionality Using the C API 321

xloper * __stdcall xll_name(char *name_text, xloper *p_defn,
xloper *p_as_value, xloper *p_delete)

{
cpp_xloper Name(name_text); // make a shallow copy
cpp_xloper Defn(p_defn); // make a shallow copy
cpp_xloper AsValue(p_as_value); // make a shallow copy
cpp_xloper Delete(p_delete);
cpp_xloper RetVal;

if(Delete.IsTrue())
{

RetVal.Excel(xlfSetName, 1, &Name);
// Remove from the DLL's list of internal names.

clean_xll_name_list();
return p_xlTrue;

}
if(Defn.IsType(xltypeNil | xltypeMissing))
{

// function is just asking for the name to be evaluated
RetVal.Excel(xlfEvaluate, 1, &Name);
return RetVal.ExtractXloper();

}
if(AsValue.IsTrue() && Defn.IsType(xltypeSRef | xltypeRef))
{

// Create a name defined as the value of the given reference
cpp_xloper Val;

if(Val.Excel(xlCoerce, 1, &Defn) != xlretSuccess
| | Val.IsType(xltypeErr))

return p_xlFalse;

RetVal.Excel(xlfSetName, 2, &Name, &Val);
}
else
{

// Create a name defined as the given reference
RetVal.Excel(xlfSetName, 2, &Name, &Defn);

}
// Add to DLL's list of internal names. Done automatically by the
// the xlName constructor

xlName R(name_text);
return RetVal.ExtractXloper();

}

8.11.5 Deleting a worksheet name: xlcDeleteName

Overview: Deletes a defined worksheet name. Once this operation has
completed, any cells that reference the deleted name will return
the #NAME? error.

The function performs the same operation as if the user had
selected the menu option Insert/Name/Define. . . and deleted the
name in the Define Name dialog.

Enumeration value: 32878 (x806e)

322 Excel Add-in Development in C/C++

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: Name: A string satisfying the rules in section 8.11.1.

8.11.6 Getting the definition of a named range: xlfGetName

Overview: Returns the definition of a given named range as text. The
output of the function depends on where the input range is
defined and on whether the range was defined on the active
sheet.

Enumeration value: 107 (x6b)

Callable from: Commands only.

Return type: xltypeStr or xltypeErr

Arguments: 1: Name: A string satisfying the rules in section 8.11.1. (See
table below for examples.)

2: ReturnedInfo: A number specifying the type of information
to return about the name. If 1 or omitted, returns the name’s
definition (see following table for details). If 2, returns a
Boolean which is true if the scope of the name is limited to
the current sheet.

Example

Suppose that three ranges have been defined but with the same name, TestName, in three
places as shown in Table 8.20. Suppose also that Book1 is an open workbook containing
Sheet1, Sheet2 and Sheet3.

Table 8.20 Example range definitions

Full name Where defined Definition

TestName DLL (see xlfSetName) [Book1.xls]Sheet3!R1C1:R2C2

[Book1.xls]Sheet1!TestName Book1, Sheet1 [Book1.xls]Sheet1!R2C2:R3C3

[Book1.xls]Sheet2!TestName Book1, Sheet2 [Book1.xls]Sheet2!R3C3:R4C4

Table 8.21 summarises the values returned by xlfGetName in various contexts when the
second argument is omitted. (See section 2.2, A1 versus R1C1 cell references on page 12
for an explanation of the R1C1 address style.)

Accessing Excel Functionality Using the C API 323

Table 8.21 Example xlfGetName return values

Name passed as. . . The active
sheet:

The
current
sheet:

Value returned

TestName Any. Any. =[Book1.xls]
Sheet3!R1C1:R2C2 The
definition supplied in the
call to xlfSetName. This
may be a constant value,
array, or worksheet range as
in this example.

!TestName Sheet1 Any. =R2C2:R3C3

!TestName Sheet2 Any. =R3C3:R4C4

!TestName Sheet3 Any. =Sheet1!R2C2:R3C3 Name on
Sheet2 is masked by name
on Sheet1.

!TestName Any sheet
in any
other
workbook.

Any. #NAME?

Sheet1!TestName Sheet1 Any. =R2C2:R3C3

Sheet1!TestName Sheet2 Any. =[Book1.xls]
Sheet1!R2C2:R3C3

Sheet1!TestName Sheet3 Any. =[Book1.xls]
Sheet1!R2C2:R3C3

Sheet1!TestName Any sheet
in any
other
workbook.

Any sheet
in any
other
workbook.

#NAME?

Sheet1!TestName Any sheet
in any
other
workbook.

Book1:
Sheet1,
Sheet2 or
Sheet3

=[Book1.xls]
Sheet1!R2C2:R3C3

[Book1.xls]Sheet1!TestName Sheet1 Any. =R2C2:R3C3

[Book1.xls]Sheet1!TestName Any other
sheet in
any
workbook.

Any. =[Book1.xls]
Sheet1!R2C2:R3C3

324 Excel Add-in Development in C/C++

As you can see from the above table, the behaviour of this function, whilst being logical
in its own interesting way, is a little confusing. Consequently, it’s best to use the most
explicit form of the name, as shown at the bottom of the table, to avoid ambiguity or the
need to check which is the active sheet before interpreting the result. Where the name is
defined within the DLL, its definition is only accessible as shown at the top of Table 8.21.
If the name is a worksheet name it must be prefixed with at least the ‘!’.

Where a DLL name was defined as a constant value, even where this is a number, the
function returns a string in which the value is prefixed with ‘=’. For example, if the value
1 was assigned, it returns “=1” and if the value “xyz” was assigned it returns “=xyx”.

The following C/C++ code example shows an exportable function that wraps up the
call to xlfGetName.

xloper * __stdcall get_name(char *name, xloper *p_info_type)
{

cpp_xloper Name(name), InfoType(p_info_type);
Name.Excel(xlfGetName, 2, &Name, &InfoType);
return Name.ExtractXloper();

}

If the name is defined as a reference to one or more cells, (the most common reason
for defining a name), then to convert the text definition returned by xlfGetName you
need to use xlfTextRef, after stripping the leading ‘=’ from the text address. (See
section 8.10.15 Converting text to a reference: xlfTextref on page 312, and also the
xlName class code listed on the CD ROM and discussed below.) Alternatively, if the
range was defined on a worksheet and is in scope, you can use the C API function
xlfEvaluateto convert the text name to the name’s definition. If the name does not
exist, this call will return the #NAME? error. If the name was defined as a range, then a
reference xloper is returned, or the #REF! error if the range is not valid.

8.11.7 Getting the defined name of a range of cells: xlfGetDef

Overview: Returns the defined name of a range of cells (or other nameable
object) given the corresponding range as text (or object ID). If no
name corresponds to the reference provided, it returns #NAME?.

Enumeration value: 145 (x91)

Callable from: Commands and macro sheet functions.

Return type: xltypeStr or xltypeErr

Arguments: 1: DefinitionText : A text representation of anything that a name
can be assigned to. If a range of cells, then the range address
must be expressed in R1C1 form.

2: DocumentText : The name of the sheet in the current
workbook containing the object or range specified in
DefinitionText. If omitted the sheet is assumed to be the DLL,
i.e., the function returns the internal name if it exists.

Accessing Excel Functionality Using the C API 325

3: TypeNum: A number indicating the type of name to find. 1 or
omitted will only search for names that are not hidden, 2 only
for names that are hidden and 3 for all names.

Where the range name is defined on a worksheet, the first argument should be passed
as in the following code fragment, which places the name, if it exists, or #NAME? in
RetVal:

cpp_xloper Address("R1C1"); // Cell A1
cpp_xloper Sheet("Sheet1");
cpp_xloper RetVal;
RetVal.Excel(xlfGetDef, 2, &Address, &Sheet);

Where the range name is defined within the DLL, only the first argument should be
provided as in the following code fragment:

cpp_xloper Address("[Book1.xls]Sheet1!R1C1");
cpp_xloper RetVal;
RetVal.Excel(xlfGetDef, 1, &Address);

8.11.8 Getting a list of named ranges: xlfNames

Overview: Returns a horizontal array of all the names defined in the
specified workbook. (Unfortunately, this function does not return
Excel names created within the DLL using xlfSetName. For
this reason the DLL should maintain an internal list of the hidden
DLL names it has created.)

If no names match the criteria, the function returns #N/A.

Enumeration value: 122 (x7a)

Callable from: Commands and macro sheet functions.

Return type: xltypeMulti row vector of xltypeStr

Arguments: 1: Workbook/Worksheet : (Optional.) A string in the form
Book1.xls or [Book1.xls]Sheet1. If omitted the current workbook
is searched.

2: NameType: (Optional.) Integer indicating the type of names to
select: 1 or omitted = unhidden names, 2 = hidden names, 3 =
all names.

3: Mask : (Optional.) A wildcard match string. For example “S*”
will return all names starting with S. (Note: Searches are not
case-sensitive). If omitted all names of NameType are
returned.

326 Excel Add-in Development in C/C++

Note: This function will not return the names of binary storage blocks created with
the xlDefineBinaryName function (see section 8.9 Working with binary names on
page 285). Nor does it list names defined by a DLL within this session of Excel using
xlfSetName. The DLL should therefore maintain its own list of such names using, for
example, one of the C++ Standard Template Library containers or a simple linked list
coded in C.

Where a workbook contains distinct sheets which have duplicate defined names, as in
the example in section 8.11.6 on page 322, the function will behave slightly differently
depending on whether the first argument is omitted or not. If omitted, the function returns
an array of the names in the current workbook with no duplicates. If the workbook is
explicitly provided in the first argument, the function returns the array with duplicate
names repeated.

8.12 WORKING WITH EXCEL MENUS

IMPORTANT NOTE: This entire section only applies to versions of Excel prior to Excel
2007. Microsoft introduced a very different menu and command-access user-interface
in Office 2007 than earlier versions, based on a different logical arrangement, graphical
components and concepts such as the ribbon and groups. The Office 2007 UI can only be
customised properly in managed code. One approach to UI customisation in Excel 2007 is
to have a separate managed code resource or add-in, in which the functions that customise
the UI reside. This can then be tightly coupled to your XLL, calling back into your XLL
code to invoke the commands and functions it contains. The subject of managed code
and the Office 2007 interface are outside the scope of this book.

Where you are running an add-in that creates custom menus, and menu items, Excel
2007 places access to these in the Add-Ins chunk of the ribbon as shown in Figure 8.1.
You should consider the impact that this has on users of your add-ins who may run Excel
2007.

Figure 8.1

Accessing Excel Functionality Using the C API 327

Excel 2003 and earlier versions display one menu bar for each sheet type, the most
familiar being the default worksheet menu bar which normally contains nine menus:

Customising this and other menu bars, the menus they contain and the commands that
the menus contain, enables the DLL to make its own command functions easily access-
ible. (Remember that commands can perform operations that worksheet functions cannot.)
Creating menus using the XLM functions via the C API is fairly easy, as this section
aims to show, but complex commands, especially those with complex dialogs and so
on, are far better developed in VBA or some other code resource. However, the inclu-
sion of a few commands within an XLL can be a great help, even where the XLL
primarily exists to provide worksheet functions. For example, a command that displays
a simple dialog showing DLL version information or that allows configuration of one
or more worksheet functions, can make the DLL functionality very much more user-
friendly.

The highest level menu object is the menu bar, such as the one shown above, containing
one or more menus, e.g. F ile. Each menu in turn provides access to one or more commands
or sub-menus, the latter with its own commands. Excel has a number of built-in menu
bars relating to different types of sheet, for example, there is a worksheet menu bar and
a chart menu bar. Excel switches automatically between these when the type of active
sheet is changed by the user.

As well as the add-in developer being able to change existing menu bars, they can also
create custom menu bars. The creation of a custom menu bar does not automatically cause
its display – it must be explicitly invoked, replacing the previous menu bar in the process.
The display of a custom menu bar also suppresses the automatic switching between menu
bars when the sheet type changes. So, unless you deliberately want to restrict the user
in what they can do with Excel, it is better to add menus and/or commands to existing
menu bars than to use custom bars.

Menus and commands can be accessed with Alt-key sequences as well as the mouse.
These are defined at the point that the new menu or command is registered with Excel,
using an ampersand ‘&’ before the relevant letter in the displayed string. When adding
menus or commands care should be taken to avoid conflicts with existing items’ short-cut
keystrokes, especially Excel’s built-in menus and commands.

8.12.1 Menu bars and ID numbers and menu and command specifiers

Internally, Excel represents each of the built-in menu bars by an ID number as shown in
Table 8.22. Custom menu bars are assigned an ID number outside this range.

328 Excel Add-in Development in C/C++

Table 8.22 Built-in menu bar IDs

Bar ID number Built-in menu bar description

1 to 6 No longer used. These all correspond to versions of Excel 5.0 and
earlier.

7, 8, 9 Short-cut menu groups (see next section)

10 Worksheets (and Excel 4 macro sheets)

11 Chart sheets

12 No longer used (Excel 4.0 and earlier)

13 to 35 Reserved for use by Excel’s short-cut menus.

36 to 50 Returned by xlfAddBar when creating custom menu bars.

Each menu bar contains a number of menus which can either be referred to by name (the
displayed text) or position number counting from 1 from the left.

Each menu contains a number of lines, menu items, comprised of the following three
types:

• Commands
• Separator lines
• Sub-menus, containing. . .

◦ Commands
◦ Separator lines

These lines can also be referred to either by name (the displayed text) or position number
counting from 1, top to bottom. (Counting includes separator lines.) Where the menu item
is a sub-menu, its sub-commands can also be referred to by name or position number in
the same way.

Some of the menu management functions take search strings that can contain wildcards.
These strings can be the name of a menu or a menu item. Ampersands, indicating the
Alt-key access key, are ignored in these searches. An ellipsis ‘. . .’ needs to be included
if the command contains one. (The ellipsis has no function, but, by convention, indicates
that the command will display a dialog box.) Searches are not-case sensitive. Where text
is provided in order to create a new menu, the position of any ampersand is important to
avoid conflicts with built-in menus.

Note: Built-in menu-bars and menus can change from version to version and, as this
section shows, can be altered by add-ins even during an Excel session. Therefore, menus
and commands should generally be specified as text rather than by position.

8.12.2 Short-cut (context) menu groups

The short-cut drop-down menus referred to in the above table (Bar ID numbers 7, 8 and 9)
are displayed by right-clicking on the relevant object, and are consequently also referred to
as context menus. Conceptually, a short-cut menu bar is an invisible menu bar containing

Accessing Excel Functionality Using the C API 329

a number of invisible short-cut menus, whose drop-down list of commands only becomes
visible when you right-click on the associated object. For example, right clicking on a
worksheet cell displays a context menu containing the most common cell operations:
Cut, Copy, Paste, Paste Special. . . , Insert. . . , Delete. . . , Clear Contents, Insert Comment, Format
Cells. . . , Pick From List. . . , Hyperlink. . . . (The items on this particular menu are joined in
Excel 2007 by Filter and Sort, and the text of some others is altered).

Commands can be added and deleted in exactly the same way as with menus on visible
menu bars, except that instead of being able to specify a menu as either a text argument
or position number (see below), the drop-down menu relating to given object must be
specified by the number shown in Table 8.23:

Table 8.23 Short-cut menus

Worksheet short-cut bar
ID

Menu number Corresponding object description

7 1 Toolbars

2 Toolbar buttons

3 No longer used

4 Worksheet cells

5 Entire column selection

6 Entire row selection

7 Workbook tab

8 Excel 4 Macro sheet cells

9 Workbook title bar

10 Desktop (Windows only)

11, 12, 13, 14 These menus refer to VB code modules which are
no longer supported.

Non-worksheet object short-cut bar ID Menu number Corresponding object description

8 1 Drawn and imported objects

2 Buttons on sheets

3 Text boxes

4 Dialog sheet

Chart short-cut bar ID Menu number Corresponding object description

9 1 Series

2 Chart and axis titles

(continued overleaf)

330 Excel Add-in Development in C/C++

Table 8.23 (continued)

Chart short-cut bar ID Menu number Corresponding object description

9 (continued) 3 Plot area and walls

4 Entire chart

5 Axes

6 Gridlines

7 Floor and arrows

8 Legend

8.12.3 Getting information about a menu bar: xlfGetBar

Overview: Provides information about a menu bar.

Enumeration value: 182 (xb6)

Callable from: Commands only.

Return type: Various. (See below.)

Arguments: 1: MenuID : The menu bar ID number.
2: Menu: The menu as either text or position number.
3: MenuPosition: The command (i.e., menu item) as text or

position number.
4: SubMenuPosition: The sub-command as text or position

number.

If all arguments are omitted, the function returns the ID number of the currently displayed
menu bar, which can then be used as an argument to other menu-management functions.

Where MenuID is given, Menu and MenuPosition must also be provided, although
MenuPosition may be passed as xltypeMissing.

If MenuPosition is zero or xltypeMissing, the function returns the position number
of the menu on the menu bar (if the menu was specified as text), or as text (if specified
by its position number). If the menu is returned as text, it includes the ampersand if there
is an Alt-key associated with it. If the menu cannot be found or the position number is
not valid, the function returns #N/A.

If MenuPosition is specified as a number, the function returns the command in that
position as text including any ampersand or ellipsis. If the number corresponds to a
command separator line, the returned text is a single dash ‘-’. If there is no menu item
at that position or the menu is not valid the function returns #N/A.

If MenuPosition is specified as text, the function returns the position of the command
in the menu. If the text provided is a single dash, the function returns the position of the
first separator line, and if two dashes “--”, the position of the second separator line, and
so on. If the specified text cannot be located, the function returns #N/A. (Functions that

Accessing Excel Functionality Using the C API 331

take the position of a command on a menu or sub-menu also accept text. Two dashes will
be treated as equivalent to the position of the second separator.)

In calling the function to obtain command information as described above, SubMenu-
Position can be omitted.

If SubMenuPosition is specified, the first three arguments must also be provided. The
argument functions in the same way as when passed only three arguments, except that it
returns the position of a command on the sub-menu or the text, depending on whether it
was given as text or number. The function returns #N/A if the arguments are not valid.
Consequently, a call to this function with SubMenuPosition set to 1 will return #N/A if
the given menu item is not a sub-menu, giving a fairly easy means of determining which
type of menu item is at each position on a menu.

Note: Built-in menu-bars and menus can change from one Excel version to another,
and they can be altered by add-ins during an Excel session. Menus and commands should
therefore be specified as text rather than by position.

The following example function returns a number specifying whether a menu item is
a command, separator line or sub-menu, returning 1, 2 or 3 respectively. It returns 0 if
the position is invalid for this menu and −1 if the inputs did not correspond to a valid
menu. The menu argument is declared as an integer so that the function will work with
short-cut menus that cannot be specified by a text value. The function makes use of the
cpp_xloper class to simplify the management of the C API call arguments. Remember
that this function can only be called during execution of a command.

int menu_item_type(int bar_ID, xloper *pMenu, int position)
{

if(position <= 0)
return -1;

cpp_xloper BarID(bar_ID);
cpp_xloper Pos(1);
cpp_xloper RetVal;

// Check that bar_ID and menu are valid by asking for the
// text of the menu at position 1

if(RetVal.Excel(xlfGetBar, 3, &BarID, pMenu, &Pos) != xlretSuccess
| | !RetVal.IsType(xltypeStr))
return -1;

// Get the text of the menu item at the given position
Pos = position;

if(RetVal.Excel(xlfGetBar, 3, &BarID, pMenu, &Pos)
!= xlretSuccess | | !RetVal.IsType(xltypeStr))

return 0;

// Is it a separator line?
char *p = (char *)RetVal;
bool is_separator = (*p == '- ');
free(p);

if(is_separator)
return 2;

// Is it a command? Try and get the text of the 1st sub-menu item
cpp_xloper SubCmd(1);

332 Excel Add-in Development in C/C++

if(!RetVal.Excel(xlfGetBar, 4, &BarID, pMenu, &Pos, &SubCmd)
| | !RetVal.IsType(xltypeStr))

return 1; // It's a command

return 3; // It's a sub-menu
}

8.12.4 Creating a new menu bar or restoring a default bar: xlfAddBar

Overview: Creates a new user menu bar or restores a built-in menu bar.
If the argument is omitted it creates a new menu bar and returns
an ID. This ID is used when adding or deleting menus and
commands, displaying it (using xlfShowBar), deleting it and so
on. Excel permits up to 15 custom menu bars to be defined. If
this limit has already been reached the function will fail with a
#VALUE! error.

If the argument is a valid built-in menu bar ID number the
function restores the original menu bar, effectively removing any
and all customisations: yours and everyone else’s. If successful,
it returns the ID number of the restored menu bar, otherwise it
returns #VALUE!.

Enumeration value: 151 (x97)

Callable from: Commands only.

Return type: xltypeBool, xltypeInt or xltypeErr

Arguments: 1: MenuID. (Optional.) A menu bar ID number

8.12.5 Adding a menu or sub-menu: xlfAddMenu

Overview: Can be used to add a menu to an existing menu bar with one or
more commands, or to add a sub-menu and commands to an
existing menu. It can also restore a deleted built-in menu.

Enumeration value: 152 (x98)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : The menu bar ID number.
2: MenuRef : The name of a built-in menu or an array (or

reference to a block of cells) containing the menu description
(see below for details).

Accessing Excel Functionality Using the C API 333

3: MenuPosition: (Optional.) Specifies the position of the menu
item at which commands described in the menu description
are to be placed. This can be a number or the text of an
existing menu item. (The nth separator line can be specified by
a string of ‘n’ dashes.)

4: SubMenuPosition: (Optional.) Specifies the position on the
sub-menu at which commands described in the sub-menu
description are to be placed. This can be a number or the text
of an existing sub-menu item. (The nth separator line can be
specified by a string of ‘n’ dashes).

If MenuRef is simply the name of a built-in menu, the remaining arguments are not
required and the function restores the menu to its original default state, returning the
position number of the restored menu. To restore it to its original position, you need to
specify this in MenuPosition, otherwise it is placed at the right of the menu bar.

If not simply the name of a menu, MenuRef is an array that describes the menu to be
added or extended as shown in Table 8.24.

Table 8.24 Custom menu definition array

Required columns Optional columns

Menu text (blank) (blank) (blank) (blank)

Command1 text Command1 Name (not used) Status bar text Help reference

Command2 text Command2 Name (not used) Status bar text Help reference

.

Notes:

• The first two columns and at least two rows are required.
• The second column contains the command name as passed to Excel in the 4th argument

to xlfRegister or the name of some other command macro.
• If the command is not a recognised name Excel will not complain until the user attempts

to run the command, at which point an alert dialog with the message “The macro
'command_name' cannot be found.” is displayed.

• The third column would contain a short-cut key for Macintosh systems and is therefore
not used in Windows DLLs.

• The fifth column contains a help reference in the form HelpFile!TopicNum where
HelpFile is a standard Windows help file.

• The third, fourth and fifth columns are all optional.
• This table can be passed to the function as either an xltypeMulti or as a reference to

range of cells on a worksheet.

If MenuPosition is omitted, commands in the MenuRef are placed at the end of the list
of existing menu items and the function returns the position number of the first new
command.

334 Excel Add-in Development in C/C++

If argument SubMenuPosition is given, the function adds a sub-menu (or adds com-
mands if the sub-menu already exists) to the menu specified by the position in Menu-
Position. SubMenuPosition specifies the position on the sub-menu at which to place the
commands. Again, this can be a number or text specifying the line before which the
commands will be placed. If SubMenuPosition is omitted, then the commands are placed
at the end of the menu, not the sub-menu.

Example 1

The following code fragment adds a new menu, with two commands separated by a line,
at the right of the worksheet menu bar and records the position number so that it can be
modified or deleted. (Note: Referring to the menu by its text “&XLL test” is better as
the position number could be altered by other menu changes.)

The code creates an array of strings for the MenuRef parameter in an xltypeMulti
xloper, as shown in this table, using the cpp_xloper class.

"&XLL test" ""

"&XLL command 1" "XLL_CMD1"

"-" ""

"X&LL command 2" "XLL_CMD2"

char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
"-", "", "X&LL command 2", "XLL_CMD2"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper MenuRef((RW)4, (COL)2, menu_txt); // xltypeMulti constructor
cpp_xloper RetVal;
int test_menu_position;

if(RetVal.Excel(xlfAddMenu, 2, &BarNum, &MenuRef) == xlretSuccess)
test_menu_position = (int)RetVal;

// else... failed

Example 2

The following code fragment inserts the same new menu as in Example 1, to the imme-
diate left of the H elp menu on the worksheet menu bar.

char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
"-", "", "X&LL command 2", "XLL_CMD2"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper MenuRef((RW)4, (COL)2, menu_txt); // xltypeMulti constructor
cpp_xloper MenuPos("Help");
cpp_xloper RetVal;
int test_menu_position;

Accessing Excel Functionality Using the C API 335

if(RetVal.Excel(xlfAddMenu, 3, &BarNum, &MenuRef, &MenuPos)==xlretSuccess)
test_menu_position = (int)RetVal;

// else... failed

Example 3

The following code fragment inserts the same menu as in Example 1 as a sub-menu just
before the Table. . . command on the Data menu on the worksheet menu bar.

char *menu_txt[8] = {"&XLL test", "", "&XLL command 1", "XLL_CMD1",
"-", "", "X&LL command 2", "XLL_CMD2"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper MenuRef((RW)4, (COL)2, menu_txt); // xltypeMulti constructor
cpp_xloper MenuPos("Data");
cpp_xloper SubMenuPos("Table...");
cpp_xloper RetVal;
RetVal.Excel(xlfAddMenu, 4, &BarNum, &MenuRef, &MenuPos, &SubMenuPos);

Example 4

The following code fragment restores the Data menu to the worksheet menu bar in its
default position (just left of the Window menu). This presupposes that the menu was deleted
with the xlfDeleteMenu command. Note that the menu will be restored in the same
state in which it was deleted which may not be the Excel’s default. (To restore a menu
to its default state use the xlfAddCommand function.) Note also that this code assumes
that the Window menu has not itself been deleted.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper MenuRef("Data"); // Just the menu name needed
cpp_xloper MenuPos("Window"); // Default posn: left of Window menu
cpp_xloper RetVal;
RetVal.Excel(xlfAddMenu, 3, &BarNum, &MenuRef, &MenuPos);

8.12.6 Adding a command to a menu: xlfAddCommand

Overview: Adds a command to an existing menu or sub-menu, or restores a
modified built-in menu to its default state.

Enumeration value: 153 (x99)

Callable from: Commands only.

Return type: Various. (See below.)

Arguments: 1: MenuID. (Optional.) A menu bar ID number.

2: Menu: The name of a menu or its position from the left or its
designated number if a short-cut menu.

336 Excel Add-in Development in C/C++

3: CommandRef : The ID of a deleted built-in command obtained
from the xlfDeleteCommand function, or a horizontal
array (or range reference) containing the description of the
command to be added. (See below for details.)

4: CommandPosition: An optional argument specifying the
position of the menu item at which the command is to be
placed: a number or the text of an existing menu item. (The
nth separator line can be specified by a string of n dashes.)

5: SubMenuPosition: An optional argument specifying the
position on the sub-menu at which the command is to be
placed. This can be a number or the text of an existing
sub-menu item. (The nth separator line can be specified by a
string of n dashes.)

If CommandRef is simply the name of a built-in menu, the remaining arguments are not
required and the function restores the menu to its original default state, returning the
position number of the restored menu. To restore it to its original position, you need to
specify this in MenuPosition, otherwise it is placed at the right of the menu bar.

CommandRef is a horizontal array as that describes the menu to be added or extended
as shown in Table 8.25.

Table 8.25 Custom command definition array

Required columns Optional columns

Command text Command1 Name (not used) Status bar text Help reference

Notes:

• The array is the same as the 2nd (and subsequent) rows in the MenuRef array described
in the previous section.

• The first two columns are required.
• The second column contains the command name as passed to Excel in the 4th argument

to xlfRegister or the name of some other command macro or VBA function.
• If the command is not a recognised name Excel will not complain until the user attempts

to run the command, at which point an alert dialog with the message “The macro
'command_name' cannot be found.” is displayed.

• The third column would contain a short-cut key for Macintosh systems and is therefore
not used in Windows DLLs.

• The fifth column contains a help reference in the form HelpFile!TopicNum where
HelpFile is a standard Windows help file.

• The third, fourth and fifth columns are all optional.

If CommandRef is simply the text of a previously deleted built-in command on this menu,
the command is restored in the position specified by CommandPosition and
SubCommandPosition.

Accessing Excel Functionality Using the C API 337

If CommandPosition is omitted, the command is placed at the end of the menu and the
function returns the position number of the added command.

If argument SubMenuPosition is given, the function adds the command to the sub-menu
at CommandPosition. SubMenuPosition specifies the position on the sub-menu at which
to place the command. Again this can be a number or text specifying the line before which
the commands will be placed. If SubMenuPosition is zero, the command is placed at the
end sub-menu. If omitted, the command is added to the main menu, not the sub-menu.

Example 1

The following code fragment adds a new command to the bottom of the Tools menu. The
code creates an array of strings for the CommandRef parameter in an xltypeMulti
xloper using the cpp_xloper class.

char *cmd_txt[2] = {"&XLL command 1", "XLL_CMD1"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper CmdRef((RW)1, (COL)2, cmd_tx);
RetVal.Excel(xlfAddCommand, 3, &BarNum, &Menu, &CmdRef);

Example 2

The following code fragment adds a new command before the first separator on the Tools
menu.

char *cmd_txt[2] = {"&XLL command 1", "XLL_CMD1"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper CmdRef((RW)1, (COL)2, cmd_tx);
cpp_xloper CmdPos("-");
RetVal.Excel(xlfAddCommand, 4, &BarNum, &Menu, &CmdRef, &CmdPos);

Example 3

The following code fragment adds a new command to the end of the Macro sub-menu on
the Tools menu.

char *cmd_txt[2] = {"&XLL command 1", "XLL_CMD1"};
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper CmdRef((RW)1, (COL)2, cmd_tx);
cpp_xloper CmdPos("Macro");
cpp_xloper SubMenuPos(0);
RetVal.Excel(xlfAddCommand, 5, &BarNum,&Menu,&CmdRef,&CmdPos,&SubMenuPos);

Example 4

The following code fragment adds a new command to the end of the worksheet cells short-
cut menu (viewed by right-clicking on any cell). This code will also add the command
to the context menu in Excel 2007 as expected.

338 Excel Add-in Development in C/C++

char *cmd_txt[2] = {"&XLL command 1", "XLL_CMD1"};
cpp_xloper BarNum(7); // the worksheet short-cut menu-group
cpp_xloper Menu(4); // the worksheet cells short-cut menu
cpp_xloper CmdRef((RW)1, (COL)2, cmd_tx);
cpp_xloper CmdPos(0);
RetVal.Excel(xlfAddCommand, 4, &BarNum, &Menu, &CmdRef, &CmdPos);

Example 5

The following code fragment restores the deleted Goal Seek. . . command on the Tools
menu in its default position just above Scenarios. . ..

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper CmdRef("Goal Seek. . .");
cpp_xloper CmdPos("Scenarios. . .");
RetVal.Excel(xlfAddCommand, 4, &BarNum, &Menu, &CmdRef, &CmdPos);

8.12.7 Displaying a custom menu bar: xlfShowBar

Overview: Displays a custom menu bar or the default built-in menu for the
sheet type.

Enumeration value: 157 (x9d)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : (Optional.)

When you create a custom menu bar using xlfAddBar, it is not automatically dis-
played. This function takes one optional argument, the menu bar ID number returned by
xlfAddBar. It replaces the currently displayed menu with the specified one. If the argu-
ment is omitted, Excel displays the appropriate built-in menu bar for the active sheet type.

If the menu bar ID corresponds to a built-in menu bar, Excel only allows the DLL to
display the appropriate type. For example, you could not display the chart menu bar when
a worksheet is active.

Displaying a custom menu bar disables Excel’s automatic switching from one menu bar
to another when the active sheet type changes. Displaying a built-in menu bar reactivates
this feature.

8.12.8 Adding/removing a check mark on a menu command: xlfCheckCommand

Overview: Displays or removes a check mark from a custom command.

Enumeration value: 155 (x9b)

Callable from: Commands only.

Accessing Excel Functionality Using the C API 339

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : The menu bar ID number.

2: Menu: The menu as text or position number.

3: MenuItem: The command as text or position number.

4: DisplayCheck : A Boolean telling Excel to display a check if
true, remove it if false.

5: SubMenuItem: (Optional.) A sub-menu command as text or
position number.

The C API provides access to a more limited set of menu features than current versions of
Excel provide, and this function reflects this. With Excel 4.0, menus supported the display
of a check-mark immediately to the right of the command name as a visual indication
that something had been selected or toggled. The typical behaviour of such a command is
to toggle the check mark every time the command is run. This function, gives the add-in
developer access to this check-mark.

The function returns a Boolean reflecting the value that was set in DisplayCheck.

Example 1

The following code fragment toggles a check-mark on the custom command XLL command
1 on the Tools menu.

static bool show_check = false;
show_check = !show_check;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper Cmd("XLL command 1");
cpp_xloper Check(show_check);
RetVal.Excel(xlfCheckCommand, 4, &BarNum, &Menu, &Cmd, &Check);

Example 2

The following code fragment toggles a check-mark on the command XLL command 1 on
the sub-menu XLL on the Data menu.

static bool show_check = false;
show_check = !show_check;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data");
cpp_xloper Cmd("XLL test");
cpp_xloper Check(show_check);
cpp_xloper SubMenuCmd("XLL command 1");
RetVal.Excel(xlfCheckCommand, 5, &BarNum,&Menu,&Cmd,&Check,&SubMenuCmd);

8.12.9 Enabling/disabling a custom command or menu: xlfEnableCommand

Overview: Enables or disables (greys-out) custom commands on a menu or
sub-menu, or enables or disables the menu itself.

340 Excel Add-in Development in C/C++

Enumeration value: 154 (x9a)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : The menu bar ID number.

2: Menu: The menu as text or position number.

3: MenuItem: The command as text or position number.

4: Enable: A Boolean telling Excel to enable if true, disable if
false.

5: SubMenuItem: (Optional.) A sub-menu command as text or
position number.

The function returns a Boolean reflecting the Enable value.
If MenuItem is zero, the function enables or disables the entire menu provided that it

is also a custom menu. If SubMenuItem is zero and the specified MenuItem is a custom
sub-menu, the function toggles the state of the entire sub-menu.

Example 1

The following code fragment toggles the state of the command XLL command 1 on the
Tools menu.

static bool enable = false;
enable = !enable;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper Cmd("XLL command 1");
cpp_xloper State(enable);
RetVal.Excel(xlfEnableCommand, 4, &BarNum, &Menu, &Cmd, &State);

Example 2

The following code fragment toggles the state of the command XLL command 1 on the
sub-menu XLL on the Data menu.

static bool enable = false;
enable = !enable;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data");
cpp_xloper Cmd("XLL test");
cpp_xloper State(enable);
cpp_xloper SubMenuCmd("XLL command 1");
RetVal.Excel(xlfEnableCommand, 5, &BarNum,&Menu,&Cmd,&State,&SubMenuCmd);

Example 3

The following code fragment toggles the state of the custom menu XLL test.

Accessing Excel Functionality Using the C API 341

static bool enable = false;
enable = !enable;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("XLL test");
cpp_xloper Cmd(0);
cpp_xloper State(enable);
RetVal.Excel(xlfAddCommand, 4, &BarNum, &Menu, &Cmd, &State);

Example 4

The following code fragment toggles the state of the sub-menu XLL test on the Data
menu.

static bool enable = false;
enable = !enable;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data");
cpp_xloper Cmd("XLL test");
cpp_xloper State(enable);
cpp_xloper SubMenuCmd(0);
RetVal.Excel(xlfEnableCommand, 5, &BarNum,&Menu,&Cmd,&State,&SubMenuCmd);

8.12.10 Changing a menu command name: xlfRenameCommand

Overview: Changes the name of any menu or command, custom or built-in.

Enumeration value: 156 (x9c)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : The menu bar ID number.

2: Menu: The menu as text or position number.

3: MenuItem: The command as text or position number.

4: NewName: Text of the new name including any ampersand.

5: SubMenuItem: (Optional.) A sub-menu command as text or
position number.

Changing the name of a menu or command is a useful thing to do if the command’s
action is state-dependent and you want to reflect the next action in the command’s text.
This could be anything from showing a toggle that sets or clears some DLL state, or
may be more complex, cycling between many states. Such state-dependent commands are
particularly useful for managing background or remote processes.

If MenuItem is zero the menu is renamed. If the command could not be found the
function returns #VALUE!, otherwise it returns true.

342 Excel Add-in Development in C/C++

Example

The following code fragment changes the name of the command XLL command 1 on the
Tools menu.

static bool enable = false;
cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Tools");
cpp_xloper Cmd("XLL command 1");
cpp_xloper NewText("Ne&w name");
RetVal.Excel(xlfRenameCommand, 4, &BarNum, &Menu, &Cmd, &NewText);

8.12.11 Deleting a command from a menu: xlfDeleteCommand

Overview: Deletes a command or sub-menu from a menu.

Enumeration value: 159 (x9f)

Callable from: Commands only.

Return type: Various. (See below).

Arguments: 1: MenuID : The menu bar ID number.

2: Menu: The menu as text or position number.

3: MenuItem: The command as text or position number.

4: SubMenuItem: (Optional.) A sub-menu command as text or
position number.

If the command cannot be found the function returns #VALUE!, otherwise it returns true
when deleting a custom command or an ID when deleting an Excel command. This ID
is a string containing the text of the command including ampersand, that can be used as
the CommandRef parameter in a call to xlfAddCommand.

Note: If the deletion of a command promotes a separator line to the top of the menu,
Excel will automatically delete the separator too. If you want to be able to restore a
command and the separator, you will need to check for this before deleting the command.

Note: Remember to store the information needed to be able to restore commands and
undo your changes, especially when deleting built-in commands.

Example 1

The following code fragment deletes the command XLL command 1 on the XLL test custom
menu. In this case, RetVal will contain a Boolean xloper true if successful.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("XLL test");
cpp_xloper Cmd("&XLL command 1");
RetVal.Excel(xlfDeleteCommand, 3, &BarNum, &Menu, &Cmd);

Accessing Excel Functionality Using the C API 343

Example 2

The following code fragment deletes the command &Print. . . from the File menu. In this
case the function will return a string xloper if successful. By calling the Excel()
function to assign this to RetVal, the class code takes care of the freeing of the string
memory either at destruction or prior to it being overwritten.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("File");
cpp_xloper Cmd("&Print. . .");
RetVal.Excel(xlfDeleteCommand, 3, &BarNum, &Menu, &Cmd);

8.12.12 Deleting a custom menu: xlfDeleteMenu

Overview: Deletes a menu.

Enumeration value: 158 (x9e)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr

Arguments: 1: MenuID : The menu bar ID number.

2: Menu: The menu as text or position number.

3: SubMenuItem: (Optional.) A sub-menu command as text or
position number.

Note: Excel does not permit the deletion of short-cut menus, however, these can be
disabled and re-enabled with the xlfEnableCommand function.

If the function cannot find or delete the menu, it returns #VALUE!, otherwise it returns
true.

Warning: The action of SubMenuItem is intended, according to the XLM reference
manual, to delete the specified sub-menu on the given menu. Instead it deletes the menu
itself. Use xlfDeleteCommand to delete a sub-menu.

Note: Remember to store the information needed to restore menus and undo changes,
especially when deleting built-in menus. Simply restoring Excel defaults may delete other
custom menu items.

Example 1

The following code fragment deletes the Data menu.

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("Data");
RetVal.Excel(xlfDeleteMenu, 2, &BarNum, &Menu);

8.12.13 Deleting a custom menu bar: xlfDeleteBar

Overview: Deletes a custom menu bar.

344 Excel Add-in Development in C/C++

Enumeration value: 200 (xc8)

Callable from: Commands only.

Return type: xltypeBool or xltypeErr.

Arguments: 1: MenuID : The menu bar ID number returned by the call to
xlfAddBar.

If called with an invalid ID the function returns the #VALUE! error.

8.13 WORKING WITH TOOLBARS

IMPORTANT NOTE: This entire section only applies to versions of Excel prior to Excel
2007. Microsoft introduced a very different menu and command-access user-interface
in Office 2007 than earlier versions, based on a different logical arrangement, graphical
components and concepts such as the ribbon and groups. The Office 2007 UI can only be
customised properly in managed code. One approach to UI customisation in Excel 2007 is
to have a separate managed code resource or add-in, in which the functions that customise
the UI reside. This can then be tightly coupled to your XLL, calling back into your XLL
code to invoke the commands and functions it contains. The subject of managed code
and the Office 2007 interface are outside the scope of this book.

Toolbars (also known as command bars) provide the user with a number of graphical
controls, typically buttons, that give short-cuts to commands. They can also contain list
and text boxes that enable setting of certain object properties quickly.

This section only deals very briefly with the toolbar customising functions of the C API:
it is recommended that you use other means to modify command bars if you intend to rely
heavily on them. The functions and their argument types are listed and a little detail given,
but no code samples. Excel’s internal toolbar and tool IDs are not listed.9 If you want to
know them, you can fairly easily extract information about all Excel’s toolbars using the
xlfGetToolbar and xlfGetTool functions (described briefly below) using the fol-
lowing steps:

1. Get an array of all toolbar IDs as text (both visible and hidden) using the
xlfGetToolbar function, passing only the first argument set to 8.

2. For each ID in the returned horizontal array, call xlfGetToolbar again with the
first argument set to 1 and the second set to the ID, to obtain an array of all the tool
IDs on that toolbar.

The above section on customising menu bars provides a relatively easy way to provide
access to commands contained within the DLL if you need to.

9 For a full listing of tools and toolbar IDs, you should try to get a copy of a Visual Basic User’s Guide for
Excel, which lists them all.

Accessing Excel Functionality Using the C API 345

8.13.1 Getting information about a toolbar: xlfGetToolbar

Overview: Gets information about a toolbar.

Enumeration value: 258 (x102)

Callable from: Command and macro sheet functions.

Return type: Various. See Table 8.26 below.

Arguments: 1: InfoType: A number from 1 to 10 indicating the type of
information to obtain. (See table below.)

2: BarID : The name as text or the ID number of a toolbar.

Table 8.26 Information available using xlfGetToolbar

InfoType What the function returns

1 Horizontal array of all tool IDs on the toolbar. (Gaps = zero.)

2 Horizontal position in the docked or floating region.

3 Vertical position in the docked or floating region.

4 Toolbar width in points.

5 Toolbar height in points.

6 Docked at the top (1), left (2), right (3), bottom (4) or floating (5).

7 True if the toolbar is visible.

8 Horizontal array of toolbar IDs, names or numbers, all toolbars.

9 Horizontal array of toolbar IDs, names or numbers, all visible toolbars.

10 True if the toolbar is visible in full-screen mode.

Values of InfoType 8 and 9 do not require a BarID argument.

8.13.2 Getting information about a tool button on a toolbar: xlfGetTool

Overview: Gets information about a tool button on a toolbar.

Enumeration value: 259 (x103)

Callable from: Command and macro sheet functions.

Return type: Various. See Table 8.27 below.

Arguments: 1: InfoType: A number from 1 to 9 indicating the type of
information to obtain. (See table below.)

2: BarID : The name as text or the ID number of a toolbar.
3: Position: The position of the button (or gap) on the toolbar

counting from 1 at the left if horizontal, or the top if vertical.

346 Excel Add-in Development in C/C++

Table 8.27 Information available using xlfGetTool

InfoType What the function returns

1 The button’s ID number or zero if a gap at this position.

2 The reference of the macro assigned to the button or #N/A if none assigned.

3 True if the button is down.

4 True if the button is enabled.

5 True if the face on the button is a bitmap, false if a default button face.

6 The help reference of a custom button, or #N/A if built-in.

7 The balloon text reference of a custom button, or #N/A if built-in.

8 The help context string of a custom button.

9 The tip text of a custom button.

8.13.3 Creating a new toolbar: xlfAddToolbar

Overview: Creates a custom toolbar.

Enumeration value: 253 (xfd)

Callable from: Commands only.

Arguments: 1: BarText : A string that you want to be associated with the new
toolbar.

2: ToolRef : A number specifying a built-in button or an array
containing a definition of one or more custom and/or built-in
buttons. (See Table 8.28 below.)

Table 8.28 Array of information for adding buttons to a toolbar

Required Do not provide for built-in tool IDs or zero.
Optional for custom tools.

Tool ID Command
text

Default
state is
down

Default
state is
enabled

Face
graphic
reference

Status
text

Balloon
text

Help
topic

Tip text

. .

Note: Any arguments omitted from such a range should be passed as xloper array
elements of xltypeNil.

Column notes (from left to right):

1. Can contain the ID of a built-in button, zero to represent a gap or the ID (text name
or number between 201 and 231 inclusive) of a custom tool.

Accessing Excel Functionality Using the C API 347

2. The name of the DLL command as registered with Excel in the 4th argument of the
xlfRegister function.

3. A Boolean instructing Excel whether to display the button as depressed by default if
true. If omitted or true, the button is up by default.

4. A Boolean determining whether the tool is enabled by default (true) or not (false or
omitted).

5. A reference to a defined picture object. If omitted, Excel uses a default face graphic.
6. The text to be displayed in the status bar when the button is pressed.
7. The balloon text for the tool.
8. A reference to a help topic as text of the form HelpFile!TopicNum.
9. The mouse-over text displayed when the mouse is over the button.

8.13.4 Adding buttons to a toolbar: xlcAddTool

Overview: Adds a tool button to a toolbar.

Enumeration value: 33045 (x8115)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted.

3: ToolRef : A number specifying a built-in button or an array
containing a definition of one or more custom and/or built-in
buttons. (See Table 8.28 above for a detailed description.)

8.13.5 Assigning/removing a command on a tool: xlcAssignToTool

Overview: Gets information about a tool button on a toolbar.

Enumeration value: 33061 (x8125)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

3: Command : The name of the DLL command as registered with
Excel in the 4th argument of the xlfRegister function.

If Command is omitted, the function removes the existing association between the tool
button and the command. If the button is a custom button then Excel prompts the user

348 Excel Add-in Development in C/C++

to assign a command next time the button is pressed by displaying the Assign Macro
dialog. The user can manually enter a registered DLL command name to assign another
command if they wish. If the button is a built-in tool, the action reverts to the Excel
default action.

8.13.6 Enabling/disabling a button on a toolbar: xlfEnableTool

Overview: Enables or disables a tool button on a toolbar.

Enumeration value: 265 (x109)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

3: Enable: A Boolean value enabling the button if true or
omitted, disabling it if false.

8.13.7 Moving/copying a command between toolbars: xlcMoveTool

Overview: Moves or copies tools between toolbars and resizes drop-down
lists on toolbars.

Enumeration value: 33058 (x8122)

Callable from: Commands only.

Return type: Various. See table below.

Arguments: 1: SourceBarID : A number of a built-in toolbar, or the text of a
custom toolbar.

2: SourcePosition: The position on the toolbar counting from 1
at the left if horizontal, or the top if vertical, at which tools
are to be inserted. Can be a built-in or custom button.

3: TargetBarID : A number of a built-in toolbar, or the text of a
custom toolbar.

4: TargetPosition: The position on the toolbar counting from 1 at
the left if horizontal, or the top if vertical, at which tools are
to be inserted. Can be a built-in or custom button.

5: Copy : A Boolean value: copy if true, move if false or omitted.

6: DropListWidth: The desired width in points of the drop-down
list.

Accessing Excel Functionality Using the C API 349

If TargetBarID is omitted, the tool is moved within the SourceBarID toolbar. If the reason
for calling the function is to resize a drop-down list, Copy and TargetPosition are not
required but should be supplied as xltypeMissing. If this is not the reason for the
call, the DropListWidth argument is ignored.

8.13.8 Showing a toolbar button as pressed: xlfPressTool

Overview: Depresses or releases a button on a toolbar.

Enumeration value: 266 (x10a)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

3: Pressed : A Boolean value. The button is depressed if true, or
normal if false or omitted.

Note: This function will not work on built-in buttons or buttons to which no command
has been assigned.

8.13.9 Displaying or hiding a toolbar: xlcShowToolbar

Overview: Activates a toolbar.

Enumeration value: 32988 (x80dc)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a
custom toolbar.

2: IsVisible: A Boolean value. The toolbar is visible if true,
hidden if false.

3: DockPosition: 1 top; 2 left; 3 right; 4 bottom; 5 floating.

4: HorizontalPosition: The distance in points between the left
of the toolbar and (1) the left of the docking area if docked,
(2) the right of the right-most toolbar in the left docking area
if floating.

5: VerticalPosition: The distance in points between the top of
the toolbar and the top of (1) the docking area if docked,
(2) Excel’s workspace if floating.

6: ToolbarWidth: The width in points. If omitted, the existing
width is applied.

350 Excel Add-in Development in C/C++

7: Protection: A number specifying the degree of protection
given to the toolbar. (See Table 8.29 below.)

8: ShowToolTips: Boolean. Mouse-over ToolTips are displayed
if true, not if false.

9: ShowLargeButtons: Boolean. Large buttons are displayed if
true, not if false.

10: ShowColourButtons: Boolean. Toolbar buttons are displayed
in colour if true, not if false.

Table 8.29 Toolbar protection parameter values

Protection Description

0 or omitted Can be resized, docked, floated and buttons can be added and removed.

1 As 0 except that buttons can not be added or removed.

2 As 1 except that it cannot be resized.

3 As 2 except that it cannot be moved between docked and floating states.

4 As 3 except that it cannot be moved at all.

8.13.10 Resetting a built-in toolbar: xlfResetToolbar

Overview: Resets a built-in toolbar.

Enumeration value: 256 (x100)

Callable from: Command and macro sheet functions.

Arguments: 1: BarID : The number of a built-in toolbar.

8.13.11 Deleting a button from a toolbar: xlcDeleteTool

Overview: Deletes a tool button from a toolbar.

Enumeration value: 33057 (x8121)

Callable from: Commands only.

Arguments: 1: BarID : A number of a built-in toolbar, or the text of a custom
toolbar.

2: Position: The position on the toolbar counting from 1 at the
left if horizontal, or the top if vertical, at which tools are to be
inserted. Can be a built-in or custom button.

Accessing Excel Functionality Using the C API 351

8.13.12 Deleting a custom toolbar: xlfDeleteToolbar

Overview: Deletes a custom toolbar.

Enumeration value: 254 (xfe)

Callable from: Commands and macro sheet functions.

Arguments: 1: BarName: The text name of a custom toolbar

8.14 WORKING WITH CUSTOM DIALOG BOXES
IMPORTANT NOTE: The C API only provides access to the dialog capabilities of the
Excel 4.0 macro language which are very limited and awkward in comparison to those of
VBA or MFC. The C API does not support different font sizes, colours, and lacks some
control objects: toggle buttons, spinner buttons, scroll bars, among others. Nevertheless,
getting input from users, say, to configure a DLL function or to input a username, is
something you might decide is most convenient to do using the C API. This section
provides a bare-bones description of the relevant functions. You should use an alternative
approach for more sophisticated interaction with the user.

8.14.1 Displaying an alert dialog box: xlcAlert

Overview: Displays an alert dialog.

Enumeration value: 32886 (x8076)

Callable from: Commands only.

Return type: xltypeBool. See Table 8.30 below.

Arguments: 1: Message: The message text (max length 255 characters: the
limit of a byte-counted string, or 32,767 Unicode characters if
using xloper12s in Excel 2007+).

2: AlertType: An optional number determining the type of alert
box. (See table below.)

3: HelpReference: An optional reference of the form
HelpFile!TopicNum. If this argument is given, a help button
is displayed in the dialog.

Table 8.30 xlcAlert dialog types

AlertType Description Return value

1 Displays message with an OK and a Cancel button. True if OK pressed. False
if Cancel pressed.

2 or omitted Displays message with an OK button only and an
information icon.

True.

3 Displays message with an OK button only and a
warning icon.

True.

352 Excel Add-in Development in C/C++

The cpp_xloper class described in section 6.4 on page 146 wraps this function with
a member function that (1) converts the xloper type to a temporary string if necessary,
(2) displays the alert dialog, (3) returns Boolean false if the conversion failed, or the
return value of the call to xlcAlert. The code for this method is listed here:

// Display cpp_xloper as string in specified type alert
bool cpp_xloper::Alert(int dialog_type)
{

if(dialog_type < 1 | | dialog_type > 3)
dialog_type = 2; // Excel and this function's default

if(gExcelVersion12plus)
{

xloper12 alert_type, ret_val;
alert_type.val.w = dialog_type;
alert_type.xltype = xltypeInt;

if(m_Op12.xltype != xltypeStr)
{

xloper12 temp;
if(!coerce_xloper(&m_Op12, temp, xltypeStr))

return false;

Excel12(xlcAlert, &ret_val, 2, &temp, &alert_type);
Excel12(xlFree, 0, 1, &temp);
return (ret_val.xltype == xltypeBool && ret_val.val.xbool == 1);

}
Excel12(xlcAlert, &ret_val, 2, &m_Op12, &alert_type);
return (ret_val.xltype == xltypeBool && ret_val.val.xbool == 1);

}
else
{

xloper alert_type, ret_val;
alert_type.val.w = dialog_type;
alert_type.xltype = xltypeInt;

if(m_Op.xltype != xltypeStr)
{

xloper temp;
if(!coerce_xloper(&m_Op, temp, xltypeStr))

return false;

Excel4(xlcAlert, &ret_val, 2, &temp, &alert_type);
Excel4(xlFree, 0, 1, &temp);
return (ret_val.xltype == xltypeBool && ret_val.val.xbool == 1);

}
Excel4(xlcAlert, &ret_val, 2, &m_Op, &alert_type);
return (ret_val.xltype == xltypeBool && ret_val.val.xbool == 1);

}
}

8.14.2 Displaying a custom dialog box: xlfDialogBox

IMPORTANT NOTE: It is recommended that this function is only used for relatively
simple dialogs that need to be completely contained within an XLL add-in.

Accessing Excel Functionality Using the C API 353

Overview: Displays a custom dialog box.

Enumeration value: 161 (xa1)

Callable from: Commands only.

Return type: xltypeMulti or xltypeBool false. See below for details.

Arguments: 1: DialogRef : An array containing the data needed to define the
dialog box (see Table 8.31), or a Boolean false value to clear
a still-displayed dialog that has returned control to the DLL.

Returns a modified copy of the original array with values of the elements in the 7th
column of the 2nd and subsequent rows and the position of the button pressed to exit the
dialog in the 7th column, 1st row. Returns false if the Cancel button was pressed.

Strings within the returned array are copies of the original strings or are new strings
input by the user. (Remember that these are byte-counted and not, in general, null-
terminated). A call to xlFree should be used to free the memory of the returned array.

The DialogRef table must be seven columns wide and at least two rows high. The
contents are interpreted as shown in the Table 8.31.

Table 8.31 Custom dialog definition array

1 2 3 4 5 6 7

[HelpRef]
Usually blank,
with ref placed
in 7th col of
help button

Dialog
Horizontal
position

Dialog
Vertical
position

Dialog
width

Dialog
height

Dialog
name/title

[Default item
position]/Item
chosen as trigger

Item number Horizontal
position

Vertical
position

Item
width

Item
height

Item text Initial value/result

. .

Positions are measured in screen units from the top left of the dialog. Screen units corre-
spond to characters in the (fixed-width) system font, where each character is 8 units wide
and 12 units high. Note that the font used in a C API dialog is not in general fixed-width.

Table 8.32 Custom dialog item numbers

Item number Item type Item number Item type

1 OK button (default) 6 Text box

2 Cancel button 7 Integer box

3 OK button 8 Floating point box

4 Cancel button (default) 9 Formula edit box

5 Text 10 Reference edit box

(continued overleaf)

354 Excel Add-in Development in C/C++

Table 8.32 (continued)

Item number Item type Item number Item type

11 Radio button group 18 Linked file list box

12 Radio button 19 Linked drive and directory box

13 Check box 20 Directory text box

14 Group box 21 Drop-down list box

15 List box 22 Drop-down combo box

16 Linked list box 23 Picture button

17 Icons 24 Help button

Adding 100 to certain item numbers causes the function to return control to the DLL code
when the item is clicked on with the dialog still displayed. This enables the command
function to alter the dialog, validate input and so on, before returning for more user
interaction. The position of the item number chosen in this way is returned in the 1st row,
7th column of the returned array. This feature does not work with edit boxes (items 6, 7,
8, 9 and 10), group boxes (14), the help button (24), or pictures (23). Adding 200 to any
item number, disables (greys-out) the item.

Most of the dialog items are simple and no further explanation is required. For some a
little more explanation is helpful.

Text and edit boxes

Vertical alignment of a text label to the text that appears in an edit box is important
aesthetically. For edit boxes with the default height (set by leaving the height field blank)
this is achieved by setting the vertical position of the text to be that of the edit box+3.

Buttons

Selecting a cancel button (2 or 4) causes the dialog to terminate returning FALSE. Pressing
any other button causes the function to return the offset of that button in the definition
table in the 7th column, 1st row of the returned array.

Where you just require OK and Cancel buttons, you should use either types 1 and 2
together, or 3 and 4, depending on which default action you want to occur if the user
presses enter as soon as the dialog appears.

If item width and/or item height are omitted, the button is given the width and/or height
of the previous button in the definition table, or default values if this is the first button in
the definition table.

Radio buttons

A group of radio buttons (12) must be preceded immediately by a radio group item (11)
and must be uninterrupted by other item types. If the radio group item has no text label
the group is not contained within a border. If the height and/or width of the radio group

Accessing Excel Functionality Using the C API 355

are omitted but text is provided, a border is drawn that surrounds the radio buttons and
their labels.

List-boxes

The text supplied in a list box item row should either be a name (DLL-internal or on a
worksheet) that resolves to a literal array or range of cells, or a string that looks like a
literal array, e.g. "{1,2,3,4,5,\"A\",\"B\",\"C\"}" (where coded in a C source
file). List-boxes return the position (counting from 1) of the selected item in the list in
the 7th column of the list-box item line. Drop-down list-boxes (21) behave exactly as list
boxes (15) except that the list is only displayed when the item is selected.

Linked list-boxes

Linked list-boxes (16), linked file-boxes (18) and drop-down combo-boxes (22) should
be preceded immediately by an edit box that can support the data types in the list. The
lists themselves are drawn from the text field of the definition row which should be a
range name or a string that represents a literal array. A linked path box (19) must be
preceded immediately by a linked file-box (18).

Drop down combo-boxes return the value selected in the 7th column of the associated
edit box and the position (counting from 1) of the selected item in the list in the 7th
column of the combo-box item line.

Creating dialogs

The difficulty of manually putting together dialogs, with trial-and-error positioning and
sizing of components, cried out for the kind of graphical design interface that Excel 5.0
first introduced and that VBA provides in current versions. (This is one of the reasons
for not using the C API to create dialogs.)

Given that there may be times where it is more appropriate or convenient to package
a simple dialog interface into your XLL, the task is made much easier using an XLM
macro sheet to prototype the dialog. The steps are:

1. Open a new Excel workbook.
2. Insert an XLM macro sheet by right-clicking on one of the worksheet tabs and selecting

Insert. . . /MS Excel 4.0 Macro.
3. Place a label in cell A1 in the macro sheet, say, DlgTest, and define this as a name for

cell A2.
4. Place the formula =DIALOG.BOX(DIALOG_DEFN) in cell A2. – (The range name

DIALOG_DEFN is created in a later step).
5. Place the formula =RETURN() in cell A3.
6. Create a table to contain the definition of the dialog (see above) and name the range

DIALOG_DEFN. Do not include a title row in the definition. The location of the table is
not important.

7. Via the Insert/Name/Define. . . dialog, define the name DlgTest as a command and assign
a keystroke to it for easy running.

356 Excel Add-in Development in C/C++

By modifying the contents of your named definition range and executing the command
macro, you can fairly easily design simple dialogs that can be recoded in C/C++ within
the DLL. (This is still a laborious process compared to the use of graphical design tools
such as those that now exist in VB.)

Creating a static initialisation of an array of xloper/xloper12s in C/C++, to hard-
code your table, is complicated by the fact that C only provides a very limited ability
to initialise unions, such as val in the xloper/xloper12. Section 6.10 Initialising
xloper/xloper12 s on page 198 provides a discussion of this subject and an example
of a dialog definition table for a simple username and password dialog.

A more complex example dialog is included in the example project on the CD ROM
in the Background.cpp source file. It is used to configure and control a background
thread used for lengthy worksheet function execution. The workbook used to design this
dialog, XLM_ThreadCfg_Dialog.xls, is included on the CD ROM. It also generates
cpp_xloper array initialisation strings that can be cut and pasted into a C++ source file.

8.14.3 Restricting user input to dialog boxes: xlcDisableInput

Overview: Restricts all mouse and keyboard input to the dialog rather than
Excel.

Enumeration value: 32908 (x808c)

Callable from: Commands only.

Return type: Various. See table below.

Arguments: 1: Disable: Boolean. True disables input to Excel, false enables it.

Warning: Commands that call this function passing true should call passing false before
returning control to Excel.

8.15 TRAPPING EVENTS WITH THE C API

The C API provides a few simple Excel event traps which can easily be associated with
DLL commands. The C API enables the setting of traps within the DLL for only a few
of its events, namely:

• data coming in from an external DDE source;
• the user double-clicking on a cell in a worksheet;
• the user entering data into a cell in a worksheet;
• the user pressing a certain key combination;
• the user or the system initiating a recalculation;
• the user selecting a new worksheet window;
• the system clock reaching a specified time.

Excel generates many events that cannot be trapped (directly) by the DLL using the
C API. For example, it is not possible to trap a change of selection on the worksheet
or, most sadly, the opening or closing of a workbook. The most straightforward, albeit

Accessing Excel Functionality Using the C API 357

slightly messy, way to have your DLL called when a non-C API event occurs is to set a
trap within VBA and use this to call into your DLL. For more details of VBA events see
section 3.4 Using VBA to trap Excel events on page 59. For details of how to call into
your DLL from VBA, see section 3.6 Using VBA as an interface to external DLL add-ins
on page 62.

8.15.1 Trapping a DDE data update event: xlcOnData

Overview: Instructs Excel to call a specified command whenever DDE data
is received for a specified worksheet or from a specified source
application. The command is called before Excel performs any
recalculation of the worksheet resulting from the new data.

Enumeration value: 32907 (x808b)

Callable from: Commands only.

Arguments: 1: DataSourceSink : A string determining either the DDE data
source application or the worksheet to which the data is being
sent.

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

DataSourceSink should be in the format [Book1.xls]Sheet1 if referring to a work-
sheet or, if referring to a DDE source application, SourceApp|DataTopic!DataItem
or SourceApp|DataTopic or just SourceApp|, where the omission of the later parts
of the specifier implies a wildcard. The given command is run whenever data is being
sent to the sheet (if specified) or from the source application (if specified).

If the DataSourceSink argument is missing and a valid Command argument is provided,
the given command is run whenever any DDE data is received provided that it is not
trapped by a previous, more specific, call to this function.

If Command is missing, the function clears the command associated with the
DataSourceSink argument.

8.15.2 Trapping a double-click event: xlcOnDoubleclick

Overview: Instructs Excel to call a specified command whenever the user
double-clicks any object in the specified worksheet or chart,
overriding any default Excel action.

Enumeration value: 33047 (x8117)

Callable from: Commands only.

Arguments: 1: SheetRef : A string of the format [Book1.xls]Sheet1 specifying
the sheet to which the event applies.

358 Excel Add-in Development in C/C++

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet
where the event has not already been trapped by a previous, more specific, call to this
function.

If Command is missing, the function clears the command associated with this event
and sheet.

8.15.3 Trapping a worksheet data entry event: xlcOnEntry

Overview: Instructs Excel to call a specified command whenever the user
enters new data into the specified worksheet. The command is
called before Excel performs any recalculation of the worksheet
resulting from the new data.

Enumeration value: 33048 (x8118)

Callable from: Commands only.

Arguments: 1: SheetRef : A string of the format [Book1.xls]Sheet1 specifying
the sheet to which the event applies.

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet
where the event has not already been trapped by a previous, more specific, call to this
function.

If Command is missing, the function clears the command associated with this combi-
nation of event and sheet.

The use of other C API functions in the called command may be required to, say,
determine which cell was changed. (A call to xlfActiveCell will determine this.)

8.15.4 Trapping a keyboard event: xlcOnKey

Overview: Instructs Excel to call a specified command whenever the user
executes the given keystroke.

Enumeration value: 32936 (x80a8)

Callable from: Commands only.
Arguments: 1: Keystroke: A string that describes the keystroke to be trapped.

(See Table 8.33 below.)

Accessing Excel Functionality Using the C API 359

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

If Keystroke is missing, the command is run whenever this event occurs on any sheet
where the event is not already trapped by a previous, more specific, call to this function.

If Command is an empty string ("") the keystroke is effectively disabled. If Command
is missing, the function clears the command associated with this keystroke, or re-enables
it if it was disabled in previous call.

The Keystroke argument is constructed as follows: [modifier-key-symbol(s)][key-code],
for example +{PGDN}.

The modifier key symbols are + (Shift), ^ (Ctrl) and % (Alt) and can be used in any
combination or not at all. The key code can be any one of the following:

• Any printable single-key character (e.g. 0 or ; or a or Z).
• One of the modifier keys +, ^ and %.
• Other keys that do not correspond to a single character, represented within braces as

shown in the following table.

Table 8.33 Key codes for xlcOnKey keyboard traps

Key Key-code Key Key-code

Backspace {BACKSPACE} {BS} Home {HOME}
Break {BREAK} Ins {INSERT}
Caps Lock {CAPSLOCK} Left {LEFT}
Clear {CLEAR} Num lock {NUMLOCK}
Delete {DELETE} {DEL} Page down {PGDN}
Down {DOWN} Page up {PGUP}
End {END} Right {RIGHT}
Numeric keypad enter {ENTER} Scroll lock {SCROLLLOCK}
Enter ∼ Tab {TAB}
Esc {ESCAPE} {ESC} Up {UP}
Help {HELP} Function keys {Fn}, n=1,2,3. . .

Note: The trapped keyboard event is based on the physical keys pressed, as mapped for
the geographical settings, rather than the character interpreted by the operating system.
For this reason, pressing the Caps Lock key is itself a keyboard event. Pressing, say, the
A key will always return lowercase a regardless of the Caps Lock state. If you want to
trap Ctrl-a you would pass the string “^a”. If you pass the string “^A” you will need to
press Ctrl-Shift-a on the keyboard even if Caps Lock is set; in other words the strings
“^A” and “^+a” are equivalent.

360 Excel Add-in Development in C/C++

8.15.5 Trapping a recalculation event: xlcOnRecalc

Overview: Instructs Excel to call a specified command whenever Excel is
about to recalculate the specified worksheet, provided that this
recalculation is a result of the user pressing {F9} or the
equivalent via Excel’s built-in dialogs, or as the result of a
change in worksheet data. The command is not called where the
recalculation is prompted by another command or macro. Unlike
other event traps, there can only be one trap for this event.

Enumeration value: 32995 (x80e3)

Callable from: Commands only.

Arguments: 1: SheetRef : A string of the format [Book1.xls]Sheet1 specifying
the sheet to which the event applies.

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

If SheetRef is missing, the command is run whenever this event occurs on any sheet.
If Command is missing, the function clears the command associated with this combi-

nation of event and sheet.

8.15.6 Trapping a window selection event: xlcOnWindow

Overview: Instructs Excel to call a specified command whenever Excel is
about to switch to the specified worksheet. The command is not
called where the switch is the result of actions of another
command or macro or as a result of a DDE instruction.

Enumeration value: 32906 (x808a)

Callable from: Commands only.

Arguments: 1: WindowRef : A string of the format [Book1.xls]Sheet1[:n]
specifying the window to which the event applies.

2: Command : The name of the command to be run as passed to
Excel in the 4th argument to xlfRegister or the name of
some other command macro or VBA function.

If WindowRef is missing, the command is run whenever this event occurs on any window
where the event has not already been trapped by a previous, more specific, call to this
function.

If Command is missing, the function clears the command associated with this combi-
nation of event and window.

Accessing Excel Functionality Using the C API 361

8.15.7 Trapping a system clock event: xlcOnTime

Overview: Instructs Excel to call a specified command when the system
clock reaches a specified time.

Enumeration value: 32916 (x8094)

Callable from: Commands only.

Arguments: 1: Time: The time as a serial number.

2: Command : The name of the command to be run as passed
to Excel in the 4th argument to xlfRegister or the
name of some other command macro or VBA function.

3: MaxWaitTime: (Optional.) The time as a serial number that
you want Excel to wait before giving up (if it was not able
to call the function at the given time).

4: Clear: (Optional.) A Boolean that clears a scheduled trap if
false.

This function is covered in more detail in section 9.9.1 Setting up timed calls to DLL
commands: xlcOnTime on page 402.

8.16 MISCELLANEOUS COMMANDS AND FUNCTIONS

8.16.1 Disabling screen updating during command execution: xlcEcho

Overview: Disables screen updating during command execution.

Enumeration value: 32909 (x808d)

Callable from: Commands only.

Arguments: 1: UpdateScreen: Boolean. If true Excel updates the
worksheet screen, if false disables it. If omitted, Excel
toggles the state.

Note: Screen updating is automatically re-enabled when a command stops executing.

8.16.2 Displaying text in the status bar: xlcMessage

Overview: Displays or clears text on the status bar.

Enumeration value: 32890 (x807a)

Callable from: Commands only.

362 Excel Add-in Development in C/C++

Arguments: 1: Display : Boolean. If true, Excel displays the given message
and suppresses Excel’s status messages. If false, Excel reverts
to displaying the usual Excel status messages.

2: MessageText : The message to display.

8.16.3 Evaluating a cell formula: xlfEvaluate

Overview: Converts a string cell formula to one of the basic xloper types,
which may be an array or a reference. If the conversion fails,
returns #VALUE!

Enumeration value: 257 (x101)

Callable from: Commands, macro and worksheet functions. (See note below).

Arguments: 1: Formula: Any string that is syntactically correct. Note that an
equals sign at the start of the string is optional.

This function is useful for retrieving the values corresponding to named ranges on a
worksheet (see the example in section 8.11.4 on page 319), and for evaluating functions
that are not available via the C API. (The COM interface if available can also be used
in this case. See section 9.5 Accessing Excel functionality using COM/OLE automation
using C++ on page 376.)

Note: The function behaves differently if called from a command or a macro-sheet
equivalent function (registered with ‘#’) than if called from a worksheet function when it
comes to resolving defined names. This is summarised in Table 8.34 where it is assumed
that WsName is a name defined on Sheet1 as range Sheet1!A1, and XllName is defined within
the XLL as Sheet1!B1. This behaviour is the same whether the range is part of a longer
formula or on its own. (See also section 8.10.18 Information about the calling function
type on page 315).

Table 8.34

Formula passed to
xlfEvaluate:

Worksheet function
returns. . .

Command or macro-sheet
function returns. . .

"WsName" Range reference A1 #NAME?

"!WsName" #VALUE! Range reference A1

"Sheet1!WsName" Range reference A1 Range reference A1

"DllName" #NAME? Range reference B1

The following function is included in the example project and duplicated as
evaluate2(). Both functions are exported as EvaluateFormula() and
EvaluateFormula2() respectively, registered as macro-sheet equivalent in the sec-
ond case. Exporting the same function twice would confuse Excel, hence the need to
duplicate it.

Accessing Excel Functionality Using the C API 363

xloper * __stdcall evaluate(xloper p_formula)
{

cpp_xloper RetVal;
RetVal.Excel(xlfEvaluate, 1, p_formula);
return RetVal.ExtractXloper(true);

}

8.16.4 Calling user-defined functions from an XLL or DLL: xlUDF

Overview: Enables an XLL or DLL to call user-defined functions contained
in this or other add-ins or from active VBA code modules.

Enumeration value: 255 (xff)

Callable from: Commands, macro and worksheet functions.

Arguments: 1: FnRef : The name of the function as it would be entered into a
worksheet.

2–30 (Excel 2003−):
2–255 (Excel 2007+): Args: The function arguments.

This function is useful for calling functions in other installed add-ins or VBA modules.
For example, if the Analysis Toolpak is installed, the price of a bond can be calculated
using the PRICE() function as shown by this code fragment:

cpp_xloper Fn("PRICE");
cpp_xloper Arg1(36000.0); // Settlement date
cpp_xloper Arg2(37000.0); // Maturity date
cpp_xloper Arg3(0.04); // Annualised coupon rate
cpp_xloper Arg4(0.05); // Annualised yield
cpp_xloper Arg5(1.0); // Redemption value as % of face value
cpp_xloper Arg6(1.0); // Num cpns per annum
cpp_xloper Arg7(1.0); // Basis of rates (act/act here)
cpp_xloper RetVal;
double price = 0.0;
if(RetVal.Excel(xlUDF, 8, &Fn, &Arg1, &Arg2, &Arg3, &Arg4,

&Arg5, &Arg6, &Arg7) == xlretSuccess)
price = (double)RetVal;

Note: When calling add-in functions in this way, it is a sensible precaution to pass all
numbers as doubles in case the receiving function, say, in another XLL, specifically checks
for xltypeNum in which case xltypeInt would fail. For example, PRICE() displays
exactly this behaviour with the two date inputs.

Excel 2007 note: In the version, the Analysis Toolpak functions are integrated within
the worksheet, and so can be called more directly as, for example, Excel4(xlfPrice,
. . .).

8.16.5 Calling user-defined commands from an XLL or DLL: xlcRun

Overview: Enables an XLL or DLL to call user-defined commands from this
or other add-ins or from active VBA code modules.

364 Excel Add-in Development in C/C++

Enumeration value: 32785 (x8011)

Callable from: Commands only.

Arguments: 1: CmdRef : The name of the command as it would be entered
into the Run Macro dialog.

2: Step: (Used for debugging XLM sheets)

Excel permits this function to be called with numeric first arguments that relate to auto-
run XLM macros. Not only are these beyond the scope of this book, it is advised that
you use VBA for any auto-run behaviour that you want in your workbook.

This function is useful for calling commands in other installed add-ins or VBA modules.
For example, if you have a workbook containing a VBA command UpdateLogFile,
you can execute this command from your DLL or XLL as shown by in this code fragment.
Note that the command’s return value is ignored here by passing NULL as the second
parameter to Excel4(). If Excel cannot find the command it will display an alert dialog.

cpp_xloper Op, CmdName("UpdateLogFile");
short ret_val = Op.Excel(xlcRun, 1, &CmdName);

8.17 THE XLCallVer() C API FUNCTION

This function returns the version number of the C API interface functions contained within
it. Its prototype is:

int pascal XLCallVer(void);

In Excel 97 through to Excel 2003 XLCallVer returns 1280 = 0x0500 = 5*256, indi-
cating Excel version 5, the last time any change was made to the C API. In Excel 2007
it returns 0x0C00, which similarly indicates version 12.

Although you can use this to determine whether the new C API is available at run-time, you
might prefer to detect the running version of Excel using Excel4(xlfGetWorkspace,
&version, 1, &arg), where arg is a numeric xloper set to 2 and version is a
string xloper which can then be coerced to an integer. The reason for this is that there are
differences between versions 9, 10 and 11 (2000, 2002 and 2003) that your add-in might also
need to detect. For example, changes were made to the accuracy of some of the statistics
functions and you may need to detect this.

The following example command, simply displays the version number in a dialog box.

int __stdcall xl_call_version(void)
{

cpp_xloper Version(XLCallVer()); // returns an integer
Version = ((int)Version) / 256;
Version.Alert(); // convert to string and display in dialog
return 1;

}

9
Miscellaneous Topics

9.1 TIMING FUNCTION EXECUTION IN VBA AND C/C++

Section 9.2 Relative performance of VBA, C/C++: Tests and results relies on the ability
to time the execution of both VBA and C/C++ DLL worksheet functions. One fairly
obvious strategy for timing how long a function takes to execute in Excel would be to
do the following:

(i) Record the start time, T1.
(ii) Call the function.

(iii) Record the end time, T2.
(iv) Calculate the test execution time T2 – T1.

There are a number of problems to overcome, however, before getting Excel to do this
and these are:

1. How do I start the test?
2. How do I record the time?
3. How do I make sure that steps (i) to (iii) happen in that order with no delays?
4. What if the granularity of the time I can record is large relative to T2 – T1?

1. How do I start the test?

Starting a test is something the tester has to do, and in Excel there are two ways this can
be done: (1) by executing a command, (2) by changing the value of a cell via a cell edit.
The second method simplifies the test set-up and provides an easy way to force other
cells to be recalculated, using trigger values if necessary.

2. How do I record the time?

The obvious (and wrong) answer might be to use Excel’s NOW() function, but this is
a volatile function and will be recalculated every time Excel feels the need to update
the sheet, destroying the results of the test. The right answer is to use a user-defined
function with a trigger argument. This will only be recalculated when the trigger argument
changes.1

3. How do I make sure that steps (i) to (iii) happen in that order with no delays?

To ensure that the time T1 is recorded in step (i) before the cell containing the function
is called in step (ii), the time T1 should be used as a trigger argument for the function to

1 There are a number of events that will cause Excel to do an entire rebuild of the calculation dependency tree
and/or a complete recalculation of all cells. One example is the insertion or deletion of a row or column.

366 Excel Add-in Development in C/C++

be tested. This requires that the function being tested is user-defined either in VBA or in
a C/C++ add-in. Given that these are exactly the things we want to compare, this is not
a problem.

Ensuring that the test function is called immediately after the time T1 is recorded is
a little trickier. We know that Excel will not call the test function before T1 has been
evaluated as T1 is an argument to the test function. The problem is that we don’t know
what Excel might choose to do in the meantime. The solution is to not give Excel any
other work to do. Create a very simple sheet and have the initial cell edit that started the
test to only be a trigger for this test and no others.

So, for example, you could start the test by editing cell A1, record the time of this edit
in B1 using the Get_Time()macro, then set up the function call in C1 and finally record
the time that Excel finishes calculating C1 with another call to Get_Time() in D1. The
time difference can then be calculated in E1. So, these cells would contain the formulae:

Table 9.1 Example execution timing formulae

Cell Formula

A1 No formula, just some value acting as a trigger for the test

B1 =Get−Time(A1)

C1 =Test Function(B1, other arguments)

D1 =Get−Time(C1)

E1 =D1−B1

The code for the VBA function Get_Time() is simply:

Function Get_Time(trigger As Double) As Double
Get_Time = Now

End Function

Provided that A1, B1 or C1 have no other dependents, the test should give a fairly good
measurement.

Note that Excel 2007 includes a multi-threaded calculation engine. To run these tests
in this version you should prevent Excel using more than one thread by unchecking the
File/Excel Options/Advanced/Formulas/Enable multi-threaded calculation checkbox.

4. What if the granularity of the time I can record is large relative to T2 – T1?

Excel reports the system time to a granularity of 1/100 of a second. (Just use the NOW()
function with a custom time display format of [h]:mm:ss.000 and you will see that the
third decimal place on the seconds is always zero.) Unfortunately, VB’s Now function
only provides access to the system time rounded down to the nearest second. (Display
the results of the Get_Time() VBA macro with the same display format if you need
convincing.) The C run-time library function time() only provides access to the system
time to the nearest second as well.

Miscellaneous Topics 367

Timing things to VBA or C run-time granularity may be fine if all you’re doing is,
say, recording the time-stamp of a piece of data from a live feed – the nearest second
would be fine – or if the calculation you want to time was expected to take 30 seconds
or more. Where you need to calculate time with a finer granularity, you might think
the obvious thing to do would be to access Excel’s NOW() function from within VBA
improving accuracy by two orders of magnitude. Sadly, this is not one of the functions
that VBA has access to.2

C/C++ programmers have access to a supposedly higher-granularity way of measuring
time than either VB or Excel: the C run-time library function clock(), prototyped in
time.h. This returns a clock_t variable. The constant CLOCKS_PER_SEC is defined
as 1000 so that clock() appears to provide the means of measuring time to the nearest
1/1,000 of a second. Unfortunately, this is not quite true. The value returned by clock()
is in fact incremented approximately once every 10.0144 milliseconds, usually by 10 but
sometimes by 11 to catch up. This has the effect of giving a value of time that is reasonably
correct when rounded to the nearest 10 milliseconds, i.e., to a 100 of a second: effectively
no better than Excel’s NOW() function.

Nevertheless, the following example function,get_time_C(), usesclock()wrapped
in a DLL function to return this value. The function still has to do some work to return a
time value consistent with Excel and VB’s time format. (An alternative solution is simply
to access Excel’s NOW() function using xlfNow.) This function can be accessed via VBA
or exported to Excel as part of an XLL.

double __stdcall get_time_C(short trigger)
{

static bool first_call = true;
static long initial_100ths;
static double initial_time;

if(first_call)
{

long T, T_last = current_system_time();

first_call = false; // do this part only once

// Wait till the second changes, so no fractional second
while((T = current_system_time()) == T_last);

// Round to the nearest 100th second
initial_100ths = (clock() + 5) / CLOCKS_PER_100TH_SEC;
return initial_time = (T / SECS_PER_DAY);

}
return initial_time + ((clock() + 5) / CLOCKS_PER_100TH_SEC

- initial_100ths) / (SECS_PER_DAY * 100.0);
}

So now we have a way of measuring time to 1/100 of a second, we still have to address
the question of the granularity being large relative to T2 – T1. A spreadsheet user might
really be in trouble if every cell takes many hundredths of a second to evaluate. In this
section, the goal is to test some elementary operations which should take very much less

2 To see the list of worksheet functions that are accessible from within VBA, type WorksheetFunction. in a VB
module. On typing the dot, the editor will display a list.

368 Excel Add-in Development in C/C++

than 1/100 of a second. Fortunately, the final piece of the puzzle is simple to overcome:
have the test function repeat the operation many times. In practice, the best solution is to
enclose the test within two nested for loops, and pass in limits for each loop as arguments
to the test function.

Finally, we are in a position to specify what is required to run the test:

1. A get_time_C() worksheet function that takes a trigger argument and returns the
time to the nearest 1/100 of a second in an Excel-compatible number format.

2. A wrapper function, that calls the test function in two nested for loops, and that takes a
trigger argument, an outer-loop limit, an inner-loop limit and whatever other arguments
are needed by the test code. (The test function itself performs the test operation within
the two nested for loops.)

3. One version of the wrapper function written in VBA and one written in C/C++ so that
a fair comparison can be made.3

In order to simplify the test, the number of worksheet cells can be reduced by enclosing
the two calls to get_time_C() in the test function wrapper. An example VB wrapper
function would look like this:

Declare Function get_time_C Lib "example.dll" (trigger As Integer) _
As Double

Function VB_Test_Example(trigger As Variant, _
Inner_Loops As Integer, Outer_Loops As Integer) As Double

Dim t As Double
Dim i As Integer
Dim j As Integer
Dim Val As Double

t = get_time_C(0) ' record the start time
Val = VB_Test_Function(Inner_Loops, Outer_Loops)
VB_Test_Example = get_time_C(0) - t

End Function

The worksheet formulae for running a test would then be:

Table 9.2 Example single-cell timing formula

Cell Formula

A1 No formula, just some value acting as a trigger for the test

B1 =VB Test Example(A1, other arguments)

3 The intention is to measure the execution time of the test function only. However, some account should be
taken of the relative performance of the wrapper functions as well. As later sections show, this is easy to do
and the overhead is not that significant.

Miscellaneous Topics 369

The equivalent C code wrapper would look like this:

double __stdcall C_test_example(long trigger, long inner_loops,
long outer_loops)

{
double t = get_time_C(0);
double val = C_test_fn(0, inner_loops, outer_loops);
return get_time_C(0) - t;

}

The next section discusses a number of test operations carried out in exactly this way.

9.2 RELATIVE PERFORMANCE OF VBA, C/C++: TESTS
AND RESULTS

This section applies the above test process to the relative performance of VB and C/C++
code for some fundamental types of operations:

Test 0. No action. Tests the relative performance of the wrappers.
Test 1. Assignment of a constant to an integer.
Test 2. Assignment of a constant to a floating-point double.
Test 3. Copying of the value of one integer to another.
Test 4. Copying of the value of one double to another.
Test 5. Assignment of the result of double multiplication to a double.
Test 6. Assignment of the result of an exp() function call to a double.
Test 7. Evaluation of a degree-4 polynomial.
Test 8. Evaluation of the sum of a 10-element double vector.
Test 9. Allocation and de-allocation of memory for an array of doubles.
Test 10. Call to a trivial sub-routine.
Test 11. String manipulation: summing the character values of a string.

More detail, including source code for all of these in C and VBA and the test spreadsheet
is provided in the example worksheets and VC project on the CD ROM.

It’s important to remember that this kind of test is not 100 % scientific: many factors
can interfere with the results, such as the operating system or Excel deciding to do some
housework behind the scenes. The tests results varied slightly (up to ±5 %) each time the
tests were run, so they should only be used as a guide to help make the decision about
which environment makes most sense.

The tests gave the following results for 2 quite different environments and ver-
sions:

Environment 1:

Hardware: Dell Inspiron 4100 laptop computer with a 730 Megahertz Intel Pentium
4 processor and 128 Megabytes of RAM of which about 20 were free at the time the
test was run.

370 Excel Add-in Development in C/C++

OS version: Windows 2000 Professional version 5.0 (Service Pack 1, build 2195).

Excel Version: Excel 2000.

No other applications were using significant CPU during the tests on the PC which was
not connected to a network. The DLL tested was built from the Release configuration.

Environment 2:

Hardware: Fujitsu Siemens A8NE-FM desktop computer with a dual-core 2 Gigahertz
AMD processor and 2 Gigabytes of RAM of which about 1.5 were free at the time
the test was run.

OS version: Windows XP Home Edition 5.1.2600 (Service Pack 2, build 2600).

Excel Version: Excel 2007 (Beta 2 Technical Refresh).

No other applications were using significant CPU during the tests on the PC which was
not connected to a network. The DLL tested was built from the Release configuration.

Important note: that the relative performance of Excel 2007 may be different in the
final release. The spreadsheet and add-in needed to repeat these tests are included on the
CD ROM.

Table 9.3 Test results ratios

Test Action Performance ratios:
C/C++ : VBA

Environment 1 Environment 2

Test0 No action 1:2.2 1:3.9

Test1 Integer const assignment 1:6.7 1:14.8

Test2 Double const assignment 1:8.8 1:12.6

Test3 Integer variable assignment 1:7.9 1:16.5

Test4 Double variable assignment 1:6.8 1:12.9

Test5 Double const multiplication 1:5.6 1:7.1

Test6 Exp() evaluation and assignment 1:1.1 1:1.6

Test7 Deg-4 double polynomial evaluation (const coefficients) 1:9.5 1:14.2

Test8 Sum of double vector elements (10) 1:21.8 1:35.8

Test9 Double array allocation test 1:2.1 1:4.8

Test10 Simple function call 1:4.5 1:24.6

Test11 Sum of ASCII values of string 1:309 1:43.7

Miscellaneous Topics 371

Notes:

Test 0

This was a do nothing test to measure the difference in wrapper function execution times.

Tests 1 to 5

These tests show that C/C++ code is faster by a factor of 6 to 8 in environment 1, and 7.5
to 13 in environment 2, for regular variable assignments and simple algebraic operations.

Test 6

In this test, most of the time is being spent calling the VB Exp() or the C exp() library
functions, which are roughly as efficient as each other. This reflects the fact that, unsur-
prisingly, VBA can call a compiled Microsoft library function just about as quickly as C
can. In environment 1, if you take out the times of Test 0 from scaled-up times for Test
6, the ratio becomes even closer at 1:1.002. In environment 2, the relative performance is
slightly worse. (It is also interesting to note that the statement v = exp(1.5); executes
roughly 45 times slower than v = 1.5; and about 40 times slower than v1 = v2.)

Test 7

In both cases the test code was written so as to use the minimum number of multiplications,
as well additions, to evaluate the polynomial. The relatively large ratio indicates partly
that VBA takes far more time to process all of the symbols in the line, despite being
partially pre-compiled. This tends to exaggerate the ratios seen in tests 1 through 5.

Test 8

The same reasoning applies in part to this test as Test 7, i.e., the large number of sym-
bols exaggerate the performance differential. However, it’s clear that C/C++ is far more
efficient at evaluating array index references than VBA.

Test 9

This test compares the relative abilities to dynamically allocate memory in the applica-
tion’s process and freeing it again. Given that well-written code should not be doing this
too often, the difference here is not significant.

Test 10

The function called in both cases simply returns its Boolean argument. The ratio here
seems to be typical of simple statements and operations under Excel 2000, but quite a bit
higher under Excel 2007 (Beta 2 Technical Refresh).

Test 11

In this test it was difficult to make a fair comparison without deliberately restraining C
and the powerful low-level string manipulation that it makes possible. The C code makes

372 Excel Add-in Development in C/C++

use of C’s powerful pointer arithmetic and null-terminated strings to do the job with
typical efficiency. VBA, on the other hand, was shackled by its lack of efficient low-level
string handling.

9.2.1 Conclusion of test results

VBA is very efficient, all things considered. However, C/C++ is typically 5 to 10 times
faster for simple operations. If a function needs to do a lot of array manipulation then
the ratio could be closer to 15 to 20. If you are considering writing intensive matrix
manipulation functions or functions that are evaluating complex algebraic expressions
then C/C++ is the best solution. This is especially true if the resulting spreadsheet needs
to be able to recalculate in near real-time or is going to be large (or if you’re the impatient
type).

String manipulation is clearly what C excels at (small e). Some might say that test 11
was an unfair test. Not so. If string manipulation is a large part of what you want to do
then don’t hesitate to use C or C++. String-intensive activities would include functions
that, say, read and analysed all types of cell contents and formulae.

9.3 RELATIVE PERFORMANCE OF C API VERSUS VBA
CALLING FROM A WORKSHEET CELL

Apart from the code execution speed of C/C++ versus VBA, reviewed in the above
section, there is also the difference between the time it takes Excel to call a VBA function,
compared to an XLL function registered via the C API. This is easily tested using a simple
example function:

In C:

double __stdcall C_call_test(double d)
{

return d;
}

In VBA:

Function VBA_call_test(d As Double)
VBA_call_test = d

End Function

The example spreadsheets Call Speed Test – C API.xls4 and Call Speed
Test – VBA.xls on the CD ROM contain replications of this formula with one cell
depending on the previous in the same pattern across all columns from row 2 down. Cell
A1 drives a recalculation of all cells. The former workbook contains just over 1,000,000
copies of the function (one per cell) and the latter just over 50,000. From a crude test
(counting the seconds), it can be seen that each C API call is made approximately 20

4 Care should be taken when opening and running this example test sheet as it is very large, over 41 Mbytes,
and could cause Excel severe performance problems if there is insufficient available memory.

Miscellaneous Topics 373

times faster than a VBA call with the VB editor closed and a staggering 2,000 times
faster than a VBA call with the editor open. Given that the code execution ratio is about
7:1, the difference in the speed of the calling interface with the editor closed is therefore
about 3:1 (or 300:1 with the VBE open).

When calling an XLL function, Excel only has to look up the function in an internal
table to obtain the address, prepare the arguments on the stack, call the function, read the
result back from the stack and deposit it in the cell. The looking-up of the function address
is optimised: the position in the table is noted, so to speak, at the point the function is
entered into the cell. This is a very fast overall operation.

When calling a VBA function, Excel has to do all the work that it previously did,
but must use the COM interface to prepare arguments, call the function and retrieve the
result. As can be seen, this is an extremely slow operation.

In conclusion, where there are a large number of calls to user-defined functions, the
benefit of using the C API becomes even more compelling, especially in applications that
need to run in near real time. The very latest versions of Excel and Windows support a
more direct access of COM DLLs, whether written in VBA or C++, from the worksheet,
but there is still a significant calling overhead compared to the directness of the C API.

9.4 DETECTING WHEN A WORKSHEET FUNCTION
IS CALLED FROM AN EXCEL DIALOG

For a number of reasons, you may not want one of your worksheet functions to evaluate
when the user is entering or editing arguments using the Paste Function dialog (otherwise
known as the Function Wizard) or from the Replace dialog. The reason might be per-
formance or that the function communicates with some remote process, for example.
Detecting that your function is being called from these dialogs is fairly straightfor-
ward.

Both dialogs have the class name bosa_sdm_XLn where n is the current Excel ver-
sion. Windows provides an API function, GetClassName(), that obtains this name
from a Windows handle, an HWND variable type. It also provides another function,
EnumWindows(), that calls a supplied callback function (within your DLL) once for
every top-level window that is currently open. The callback function only needs to perform
the following steps:

1. Check if the parent of this window is the current version of Excel (in case there are
multiple versions running).

2. Get the class name from the handle passed in by Windows.
3. Check if the class name is of the form bosa_sdm_XLn (ignoring the Excel version

number).
4. Optionally check if the dialog’s title, obtained using the Windows API call

GetWindowText(), contains some identifying text.

The following C++ code shows a class and call-back to be passed to Windows, that per-
forms these steps. This is called by the functions given in the next two sub-sections
that test specifically for either of the dialogs concerned. Note that window titles of
future Excel versions may change and invalidate this code. Note also that setting
window_title_text to NULL has the effect of ignoring window title in the call-back
search.

374 Excel Add-in Development in C/C++

#define CLASS_NAME_BUFFER_SIZE 50
#define WINDOW_TEXT_BUFFER_SIZE 50

// Data structure used as input to xldlg_enum_proc(), which is called by
// called_from_paste_fn_dlg(), called_from_replace_dlg(), and
// called_from_Excel_dlg(). These functions tell the caller whether
// the current worksheet function was called from one or either of
// these dialogs

typedef struct
{

bool is_dlg;
short low_hwnd;
char *window_title_text; // set to NULL if don't care

}
xldlg_enum_struct;

// The callback function called by Windows for every top-level window
BOOL __stdcall xldlg_enum_proc(HWND hwnd, xldlg_enum_struct *p_enum)
{
// Check if the parent window is Excel

if(LOWORD((DWORD)GetParent(hwnd)) != p_enum->low_hwnd)
return TRUE; // keep iterating

char class_name[CLASS_NAME_BUFFER_SIZE + 1];
// Ensure that class_name is always null terminated

class_name[CLASS_NAME_BUFFER_SIZE] = 0;

GetClassName(hwnd, class_name, CLASS_NAME_BUFFER_SIZE);

// Do a case-insensitive comparison for the Excel dialog window
// class name with the Excel version number truncated

if(_strnicmp(class_name, "bosa_sdm_xl", 11) == 0)
{

// Check if a searching for a specific title string
if(p_enum->window_title_text)
{

// Get the window's title and see if it matches the given text
char buffer[WINDOW_TEXT_BUFFER_SIZE + 1];
buffer[WINDOW_TEXT_BUFFER_SIZE] = 0;

// If title was "" and if we're looking for specific text
if(GetWindowText(hwnd, buffer, WINDOW_TEXT_BUFFER_SIZE) == 0
&& p_enum->window_title_text[0] != 0)

return TRUE; // No match, so keep iterating

if(buffer[0] != 0 && p_enum->window_title_text[0] != 0
&& _stricmp(buffer, p_enum->window_title_text) != 0)

return TRUE; // Keep iterating
}
p_enum->is_dlg = true;
return FALSE; // Tells Windows to stop iterating

}
return TRUE; // Tells Windows to continue iterating

}

9.4.1 Detecting when a worksheet function is called from the Paste Function
dialog (Function Wizard)

The Paste Function dialog does not have a title, so the following function passes a search
title string of "", i.e., an empty string.

Miscellaneous Topics 375

bool called_from_paste_fn_dlg(void)
{

xloper hwnd = {0.0, xltypeNil}; // super-safe

// Calls Excel4, so only returns the low part of Excel's
// main window handle. This is ok for the search however.

if(Excel4(xlGetHwnd, &hwnd, 0))
return false; // Couldn't get it, so assume not

// Search for bosa_sdm_xl* dialog with no title string
xldlg_enum_struct es = {FALSE, hwnd.val.w, ""};
EnumWindows((WNDENUMPROC)xldlg_enum_proc, (LPARAM)&es);
return es.is_dlg;

}

9.4.2 Detecting when a worksheet function is called from the Search
and Replace dialog

During a search and replace, Excel recalculates all affected cells and the functions they
contain from the same dialog class as used by the Paste Function dialog. If you want you
function to work in the same way if called from either dialog then you need to detect
this as demonstrated in the next sub-section. You can explicitly check for the Search and
Replace dialog as shown here:

bool called_from_replace_dlg(void)
{

xloper hwnd = {0.0, xltypeNil}; // super-safe

// Calls Excel4, so only returns the low part of Excel's
// main window handle. This is ok for the search however.

if(Excel4(xlGetHwnd, &hwnd, 0))
return false; // Couldn't get it, so assume not

// Search for bosa_sdm_xl* dialog containing "Replace"
xldlg_enum_struct es = {FALSE, hwnd.val.w, "Replace"};
EnumWindows((WNDENUMPROC)xldlg_enum_proc, (LPARAM)&es);
return es.is_dlg;

}

9.4.3 Detecting when a worksheet function is called from either the Search
and Replace or Paste Function dialogs

bool called_from_Excel_dlg(void)
{

xloper hwnd = {0.0, xltypeNil}; // super-safe

// Calls Excel4, so only returns the low part of Excel's
// main window handle. This is ok for the search however.

if(Excel4(xlGetHwnd, &hwnd, 0))
return false; // Couldn't get it, so assume not

// Search for bosa_sdm_xl* dialog (ignore title)

376 Excel Add-in Development in C/C++

xldlg_enum_struct es = {FALSE, hwnd.val.w, NULL};
EnumWindows((WNDENUMPROC)xldlg_enum_proc, (LPARAM)&es);
return es.is_dlg;

}

9.5 ACCESSING EXCEL FUNCTIONALITY USING COM/OLE
AUTOMATION USING C++

Full coverage of the COM/OLE Automation and IDispatch interfaces to Excel, as used
by VBA, for example, is beyond the scope of this book. One reason for this is that you
don’t often need to do things that OLE permits, and the C API does not, when writing
high-performance worksheet functions. There are, however, a few situations where COM
can be useful or important and this section provides a rudimentary coverage of some of
these.

It is important to note that Excel was not designed to allow OLE Automation calls
during normal calls to either XLL commands or functions. The Microsoft view appears
to be that such calls probably won’t work, are definitely not safe and are not recommended.

The MSDN Microsoft Knowledge Base Article (KBA) 301443: Automation Calls to
Excel from an XLL May Fail or Return Unexpected Results explains why. However, many
developers’ experience is that in certain cases it is safe to call COM, although care is
needed. Table 9.4 summarises these cases:

Table 9.4 When COM can be called safely:

Excel’s COM interface called from where: Is it safe?

From an XLL function called directly by Excel No (see KBA 301443)

From an XLL command called directly by
Excel. (This includes the xlAuto* interface
functions5 and C API event traps such as
xlcOnTime.)

KBA 301443 says no.
Many developers say yes.

From a Window’s call-back to an XLL No

From an XLL function called via VBA No

From an XLL command called via VBA Yes

From a stand-alone application Yes

From a COM DLL Yes, subject to the usual distinctions
between commands and functions and
the associated restrictions.

As an aside, there are a few cases where the C API, accessed via Excel4() and
Excel12(), is not available even to the XLL. Calling these functions at these times

5 Note that xlAutoFree is an exception: it is a macro-sheet function equivalent, not a command.

Miscellaneous Topics 377

will have unpredictable results and almost certainly cause Excel to crash. The two most
important cases where the C API is not available are (1) from a background thread, and
(2) when the DLL has been called directly by Windows as a result of, say, a timed call-
back request or during calls to DllMain. (See sections 8.4 What C API functions can
the DLL call and when and 9.9 Multi-tasking, multi-threading and asynchronous calls in
DLLs for more details.)

Where an XLL worksheet function needs to access, say, a function that may not be
available for a given version of the C API, the C API function xlfEvaluate should
be used, since the COM interface cannot safely be called. (See section 8.16.3 Evaluating
a cell formula: xlfEvaluate on page 362.)

There are two ways to access Excel’s functionality using COM, commonly known
as late binding and early (or vtable) binding. Without going into too much detail, this
section only discusses late binding. This is the method by which a program (or DLL)
must interrogate Excel’s objects at run-time before it is able to access them. There is
an inefficiency associated with this, and the marshalling and conversion of arguments to
object method calls, that is largely addressed and removed by early binding. With early
binding, the compiler makes use of an object library to remove this inefficiency, and is
not covered here in order to keep this section simple and compiler-independent. However,
most of the inefficiency can be removed with the use of static or global variables so that
the interrogations need only be done once.

If you want to access COM-exposed Excel methods or properties other than those
discussed in the following sections, you can fairly easily get the syntax and names of
these from VBA, either by recording a macro or via the VBA Excel help.

As a final note before moving on, this section only shows code examples that work
when part of a C++ source module. The syntax for C modules is a little different, and is
not described, in the interests of simplicity.

9.5.1 Initialising and un-initialising COM

A number of things need to be initialised when the XLL is activated and then un-
initialised when the XLL is deactivated. The following outline and code examples get
around many of the inefficiencies of late binding by caching object references and dis-
patch function IDs (DISPIDs) in global or static variables. The steps to initialise the
interface are:

1. Include the system header <comdef.h> in source files using the COM/OLE interface.
2. Make sure Excel has registered itself in the ROT (Running Object Table).6

3. Initialise the COM interface with a call to OleInitialize(NULL).
4. Initialise a CLSID variable with a call to CLSIDFromProgID().
5. Initialise an IUnknown object pointer with a call to GetActiveObject(). If

there are two instances of Excel running, GetActiveObject() will return the
first.

6. Initialise a global pointer to an IDispatch object for Excel with a call to the Query-
Interface() method of the IUnknown object.

6 The Microsoft Knowledge Base Articles 147573, 153025 and 138723 provide more background on this topic
as well as links to related articles.

378 Excel Add-in Development in C/C++

The Excel.Application’s methods and properties are now available. The most sensible
place to call the function that executes these steps is from xlAutoOpen(). The following
code shows how these steps can be accomplished:

IDispatch *pExcelDisp = NULL; // Global pointer

bool InitExcelOLE(void)
{

if(pExcelDisp)
return true; // already initialised

// Make sure Excel is registered in the Running Object Table. Even
// if it already is, telling it to do so again will do no harm.

HWND hWnd;
if((hWnd = FindWindow("XLMAIN", 0)) != NULL)
{

// Sending WM_USER + 18 tells Excel to register itself in the ROT
SendMessage(hWnd, WM_USER + 18, 0, 0);

}

// Initialise the COM library for this compartment
OleInitialize(NULL);

CLSID clsid;
HRESULT hr;
char cErr[64];
IUnknown *pUnk;

hr = CLSIDFromProgID(L"Excel.Application", &clsid);

if(FAILED(hr))
{

// This is unlikely unless you have forgotten to call OleInitialize
sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "CLSIDFromProgID",

MB_OK | MB_SETFOREGROUND);
return false;

}

hr = GetActiveObject(clsid, NULL, &pUnk);

if(FAILED(hr))
{

// Excel may not have registered itself in the ROT
sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "GetActiveObject",

MB_OK | MB_SETFOREGROUND);
return false;

}

hr = pUnk->QueryInterface(IID_IDispatch,(void**)&pExcelDisp);

if(FAILED(hr))
{

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "QueryInterface",

MB_OK | MB_SETFOREGROUND);
return false;

}
// We no longer need pUnk

pUnk->Release();

Miscellaneous Topics 379

// We have now done everything necessary to be able to access all of
// the methods and properties of the Excel.Application interface.

return true;
}

When the XLL is unloaded the XLL should undo the above steps in the following order:

1. Release the global IDispatch object pointer with a call to its Release() method.
2. Set the global IDispatch object pointer to NULL to ensure that subsequent reacti-

vation of the XLL is not fooled into thinking that the object still exists.
3. Un-initialise the COM interface with a call to OleUninitialize().

The most sensible place to call the function that executes these steps is xlAutoClose(),
making sure that this is after any other function calls that might still want to access COM.

The following code shows how these steps can be accomplished:

void UninitExcelOLE(void)
{
// Release the IDispatch pointer. This will decrement its RefCount

pExcelDisp->Release();
pExcelDisp = NULL; // Good practice
OleUninitialize();

}

Once this is done, the Excel application’s methods and properties can fairly straight-
forwardly be accessed as demonstrated in the following sections. Note that access to
Excel’s worksheet functions, for example, requires the getting of the worksheet functions
interface, something that is beyond the scope of this book.

9.5.2 Getting Excel to recalculate worksheets using COM

This is achieved using the Calculate method exposed by Excel via the COM interface.
Once the above initialisation of the pExcelDisp IDispatch object has taken place,
the following code will have the equivalent effect of the user pressing the {F9} key.
Note that the call to the GetIDsOfNames() method is executed only once for the
Calculate command, greatly speeding up subsequent calls.

HRESULT OLE_ExcelCalculate(void)
{

if(!pExcelDisp)
return S_FALSE;

static DISPID dispid = 0;
DISPPARAMS Params;
char cErr[64];
HRESULT hr;

// DISPPARAMS has four members which should all be initialised
Params.rgdispidNamedArgs = NULL; // Dispatch IDs of named args

380 Excel Add-in Development in C/C++

Params.rgvarg = NULL; // Array of arguments
Params.cArgs = 0; // Number of arguments
Params.cNamedArgs = 0; // Number of named arguments

// Get the Calculate method's dispid
if(dispid == 0) // first call to this function
{

// GetIDsOfNames will only be called once. Dispid is cached since it
// is a static variable. Subsequent calls will be faster

wchar_t *ucName = L"Calculate";
hr = pExcelDisp->GetIDsOfNames(IID_NULL, &ucName, 1,

LOCALE_SYSTEM_DEFAULT, &dispid);

if(FAILED(hr))
{

// Perhaps VBA command or function does not exist
sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "GetIDsOfNames",

MB_OK | MB_SETFOREGROUND);
return hr;

}
}

// Call the Calculate method
hr = pExcelDisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &Params, NULL, NULL, NULL);

if(FAILED(hr))
{

// Most likely reason to get an error is because of an error in a
// UDF that makes a COM call to Excel or some other automation
// interface

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "Calculate", MB_OK | MB_SETFOREGROUND);

}
return hr; // = S_OK if successful

}

Note that calls to Invoke do not have to be method calls such as this. Invoke is also
called for accessor functions that get and/or set Excel properties. For a full explanation
of Invoke’s syntax, see the Win32 SDK help.

9.5.3 Calling user-defined commands using COM

This is achieved using the Run method exposed by Excel via the COM interface. Once
the above initialisation of the pExcelDisp IDispatch object has taken place, the fol-
lowing code will run any command that takes no arguments and that has been registered
with Excel in this session. (The function could, of course, be generalised to accom-
modate commands that take arguments.) Where the command is within the XLL, the
required parameter cmd_name should be the same as the 4th argument passed to the
xlfRegister function, i.e., the name Excel recognises the command rather than the
source code name. Note that the call to the GetIDsOfNames() method to get the
DISPID is done only once for the Run command, greatly speeding up subsequent calls.

Miscellaneous Topics 381

#define MAX_COM_CMD_LEN 512

HRESULT OLE_RunXllCommand(char *cmd_name)
{

static DISPID dispid = 0;
VARIANTARG Command;
DISPPARAMS Params;
HRESULT hr;
wchar_t w[MAX_COM_CMD_LEN + 1];
char cErr[64];
int cmd_len = strlen(cmd_name);

if(!pExcelDisp || !cmd_name || !*cmd_name
|| (cmd_len = strlen(cmd_name)) > MAX_COM_CMD_LEN)

return S_FALSE;

try
{

// Convert the byte string into a wide char string. A simple C-style
// type cast would not work!

mbstowcs(w, cmd_name, cmd_len + 1);

Command.vt = VT_BSTR;
Command.bstrVal = SysAllocString(w);

Params.rgdispidNamedArgs = NULL;
Params.rgvarg = &Command;
Params.cArgs = 1;
Params.cNamedArgs = 0;

if(dispid == 0)
{

wchar_t *ucName = L"Run";
hr = pExcelDisp->GetIDsOfNames(IID_NULL, &ucName, 1,

LOCALE_SYSTEM_DEFAULT, &dispid);

if (FAILED(hr))
{

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "GetIDsOfNames",

MB_OK|MB_SETFOREGROUND);

SysFreeString(Command.bstrVal);
return hr;

}
}

hr = pExcelDisp->Invoke(dispid,IID_NULL,LOCALE_SYSTEM_DEFAULT,
DISPATCH_METHOD, &Params, NULL, NULL, NULL);

if(FAILED(hr))
{

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "Invoke",

MB_OK | MB_SETFOREGROUND);

SysFreeString(Command.bstrVal);
return hr;

}
// Success.

}
catch (_com_error &ce)

382 Excel Add-in Development in C/C++

{
// If COM throws an exception, we end up here. Most probably we will
// get a useful description of the error.

MessageBoxW(NULL, ce.Description(), L"Run",
MB_OK | MB_SETFOREGROUND);

// Get and display the error code in case the message wasn't helpful
hr = ce.Error();

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "The Error code",

MB_OK|MB_SETFOREGROUND);
}
SysFreeString(Command.bstrVal);
return hr;

}

9.5.4 Calling user-defined functions using COM

This is achieved using the Run method exposed by Excel via the COM interface.
There are some limitations on the exported XLL functions that can be called using

COM: the OLE Automation interface for Excel only accepts and returns Variants of
types that this interface supports. It is not possible to pass or retrieve Variant equiva-
lents of xloper types xltypeSRef, xltypeRef, xltypeMissing, xltypeNil or
xltypeFlow. Only types xltypeNum, xltypeInt, xltypeBool, xltypeErr and
xltypeMulti arrays of these types have Variant equivalents that are supported. There-
fore only functions that accept and return these things can be accessed in this way. (The
cpp_xloper class contains xloper-VARIANT conversion routines.)

Once the above initialisation of the pExcelDisp IDispatch object has taken place,
the following code will run any command that has been registered with Excel in this
session. Where the command is within the XLL, the parameter CmdName should be
same as the 4th argument passed to the xlfRegister function, i.e. the name Excel
recognises the command by rather than the source code name. Note that the call to the
GetIDsOfNames() method to get the DISPID is executed only once for the Run
command, greatly speeding up subsequent calls.

HRESULT OLE_RunXllFunction(VARIANT &RetVal, int NumArgs, VARIANTARG
*ArgArray)
{

if(!pExcelDisp)
return S_FALSE;

static DISPID dispid = 0;
DISPPARAMS Params;
HRESULT hr;

Params.cArgs = NumArgs;
Params.rgvarg = ArgArray;
Params.cNamedArgs = 0;

if(dispid == 0)
{

Miscellaneous Topics 383

wchar_t *ucName = L"Run";
hr = pExcelDisp->GetIDsOfNames(IID_NULL, &ucName, 1,

LOCALE_SYSTEM_DEFAULT, &dispid);

if(hr != S_OK)
return hr;

}

if(dispid)
{

VariantInit(&RetVal);
hr = pExcelDisp->Invoke(dispid, IID_NULL,

LOCALE_SYSTEM_DEFAULT, DISPATCH_METHOD, &Params,
&RetVal, NULL, NULL);

}
return hr;

}

9.5.5 Calling XLM functions using COM

This can be done using the ExecuteExcel4Macro method. This provides access to less of
Excel’s current functionality than is available via VBA. However, there may be times
where it is simpler to use ExecuteExcel4Macro than COM. For example, you could set a
cell’s note using the XLM NOTE via ExecuteExcel4Macro, or you could perform the COM
equivalent of the following VB code:

With Range("A1")
.AddComment
.Comment.Visible = False
.Comment.Text Text:="Test comment."

End With

Using late binding, the above VB code is fairly complex to replicate. Using early bind-
ing, once set up with a capable compiler, programming in C++ is almost as easy as in
VBA.

The syntax of the ExecuteExcel4Macro method is straightforward and can be found using
the VBA online help. The C/C++ code to execute the method is easily created by mod-
ifying the OLE_RunXllCommand() function above to use this method instead of L
"Run".

9.5.6 Calling worksheet functions using COM

When using late binding, worksheet functions are mostly called using the Evaluate
method. This enables the evaluation, and therefore the calculation, of anything that
can be entered into a worksheet cell. Within VBA, worksheet functions can be called
more directly, for example, Excel.WorksheetFunction.LogNormDist(. . .). Using late
binding, the interface for WorksheetFunction would have to be obtained and then
the dispid of the individual worksheet function. As stated above, using early bind-
ing, once set up with a capable compiler, programming in C++ is almost as easy as
in VBA.

384 Excel Add-in Development in C/C++

The following example function evaluates a string expression placing the result in the
given Variant, and returning S_OK if successful.

#define MAX_COM_EXPR_LEN 1024

HRESULT CallVBAEvaluate(char *expr, VARIANT &RetVal)
{

static DISPID dispid = 0;
VARIANTARG String;
DISPPARAMS Params;
HRESULT hr;
wchar_t w[MAX_COM_EXPR_LEN + 1];
char cErr[64];
int expr_len;

if(!pExcelDisp || !expr || !*expr
|| (expr_len = strlen(expr)) > MAX_COM_EXPR_LEN)

return S_FALSE;

try
{

VariantInit(&String);

// Convert the byte string into a wide char string
mbstowcs(w, expr, expr_len + 1);

String.vt = VT_BSTR;
String.bstrVal = SysAllocString(w);

Params.rgdispidNamedArgs = NULL;
Params.rgvarg = &String;
Params.cArgs = 1;
Params.cNamedArgs = 0;

if(dispid == 0)
{

wchar_t *ucName = L"Evaluate";
hr = pExcelDisp->GetIDsOfNames(IID_NULL, &ucName, 1,

LOCALE_SYSTEM_DEFAULT, &dispid);

if(FAILED(hr))
{

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "GetIDsOfNames",

MB_OK | MB_SETFOREGROUND);

SysFreeString(String.bstrVal);
return hr;

}
}

// Initialise the VARIANT that receives the return value, if any.
// If we don't care we can pass NULL to Invoke instead of &RetVal

VariantInit(&RetVal);

hr = pExcelDisp->Invoke(dispid,IID_NULL,LOCALE_SYSTEM_DEFAULT,
DISPATCH_METHOD, &Params, &RetVal, NULL, NULL);

if(FAILED(hr))
{

sprintf(cErr, "Error, hr = 0x%08lx", hr);

Miscellaneous Topics 385

MessageBox(NULL, cErr, "Invoke",
MB_OK | MB_SETFOREGROUND);

SysFreeString(String.bstrVal);
return hr;

}
// Success.

}
catch(_com_error &ce)
{

// If COM throws an exception, we end up here. Most probably we will
// get a useful description of the error. You can force arrival in
// this block by passing a division by zero in the string

MessageBoxW(NULL, ce.Description(), L"Evaluate",
MB_OK | MB_SETFOREGROUND);

// Get and display the error code in case the message wasn't helpful
hr = ce.Error();

sprintf(cErr, "Error, hr = 0x%08lx", hr);
MessageBox(NULL, cErr, "The error code",

MB_OK | MB_SETFOREGROUND);
}
SysFreeString(String.bstrVal);
return hr;

}

9.6 MAINTAINING LARGE DATA STRUCTURES
WITHIN THE DLL

Suppose you have a DLL function, call it UseArray, that takes as an argument a large
array of data or other data structure that has been created, or loaded, by another function
in the same DLL, call it MakeArray. The most obvious and easiest way of making this
array available to UseArray would be to return the array from MakeArray to a range
of worksheet cells, then call UseArray with a reference to that range of cells. The work
that then gets done each time MakeArray is called is as follows:

1. The DLL creates the data structure in a call to MakeArray.
2. The DLL creates, populates and returns an array structure that Excel understands. (See

sections 6.2.2 Excel floating-point array structures: xl4 array, xl12 array on
page 129 and 6.9.7 Array (mixed type): xltypeMulti on page 180.)

3. Excel copies out the data into the spreadsheet cells from which MakeArray was
called (as an array formula) and frees the resources calling xlAutoFree if required.

4. Excel recalculates all cells that depend on the returned values, including UseArray.
5. Excel passes a reference to the range of cells to UseArray.
6. The DLL converts the reference to an array of values.
7. The DLL uses the values.

Despite the simplicity of implementation, there are a number of disadvantages with the
above approach:

• MakeArray might return a variable-sized array which can only be returned to a block
of cells whose size is fixed from edit to edit.

386 Excel Add-in Development in C/C++

• There is significant overhead in the conversion and hand-over of the data.
• There is significant overhead in keeping large blocks of data in the spreadsheet.
• The data structures are limited in size by the dimensions of the spreadsheet. (This is a

much less likely limitation in Excel 2007).
• The interim data are in full view of the spreadsheet user; a problem if they are private

or confidential.

If the values in the data structure do not need to be viewed or accessed directly from the
worksheet, then a far more efficient approach is as follows:

1. DLL creates the data structure in a call to MakeArray as a persistent object.
2. DLL creates a text label that it can later associate with the data structure and returns

this to Excel.
3. Excel recalculates all cells that depend on the returned label, including UseArray.
4. Excel passes the label to UseArray.
5. DLL converts the label to some reference to the data structure.
6. DLL uses the original data structure directly.

Even if the structure’s data do need to be accessed, the DLL can export access functions
that can get (and set) values indirectly. (When setting values in this way it is important
to remember that Excel will not automatically recalculate the data structure’s dependants,
and trigger arguments may be required.) These access functions can be made to operate
at least as efficiently as Excel’s INDEX(), MATCH() or LOOKUP() functions.

This strategy keeps control of the order of calculation of dependant cells on the spread-
sheet, with many instances of UseArray being able to use the result of a single call
to MakeArray. It is a good idea to change the label returned in some way after every
recalculation, say, by appending a sequence number. (See section 2.11 Excel recalcula-
tion logic, for a discussion of how Excel recalculates dependants when the precedents
have been recalculated and how this is affected by whether the precedent’s values change
or not.)

To implement this strategy safely, it is necessary to generate a unique label that cannot
be confused with the return values of other calls to the same or similar functions. It is also
necessary to make sure that there is adequate clearing up of resources in the event that a
formula for MakeArray gets deleted or overwritten or the workbook gets closed. This
creates a need to keep track of those cells from which MakeArray has been called. The
next section covers the most sensible and robust way to do just this. The added complexity
of keeping track of calls, compared with returning the array in question, means that where
MakeArray returns a small array, or one that will not be used frequently, this strategy
is overkill. However, for large, computationally intense calculations, the added efficiency
makes it worth the effort. The class discussed in section 9.7 A C++ Excel name class
example, xlName, on page 387, simplifies this effort considerably.

A simpler approach is to return a sequence number, and not worry about keeping track
of the calling cell. However, you should only do this when you know that you will
only be maintaining the data structure from one cell, in order to avoid many cells trying
to set conflicting values. A changing sequence number ensures that dependencies and
recalculations are handled properly by Excel, although it can only be used as a trigger,
not a reference to the data structure. A function that uses this trigger must be able to find
the data structure without being supplied a reference: it must know from the context or

Miscellaneous Topics 387

from other arguments. This simpler strategy works well where the DLL needs to maintain
a table of global or unique data. Calls to MakeArray would update the table and return
an incremented sequence number. Calls to UseArray would be triggered to recalculate
something that depended on the values in the table.

9.7 A C++ EXCEL NAME CLASS EXAMPLE, xlName

This section describes a class that encapsulates the most common named range handling
tasks that an add-in is likely to need to do. In particular it facilitates:

• the creation of references to already-defined names;
• the discovery of the defined name corresponding to a given range reference;
• the reading of values from worksheet names (commands and macro sheet functions

only);
• the assignment of values to worksheet names (commands only);
• the creation and deletion of worksheet names (commands only);
• the creation and deletion of DLL-internal names (all DLL functions);
• the assignment of an internal name to the calling cell.

It would be possible to build much more functionality into a class than is contained in
xlName, but the point here is to highlight the benefit of even a simple wrapper to the C
API’s name-handling capabilities. A more sophisticated class would, for example, provide
some exception handling – a subject deliberately not covered by this book.

The definition of the class follows. (Note that the class uses the cpp xloper class for
two of its data members.) The definition and code are contained in the example project
on the CD ROM in the files XllNames.h and XllNames.cpp respectively.

class xlName
{
public:
//---
// constructors & destructor
//---

xlName():m_Defined(false),m_RefValid(false),m_Worksheet(false){}
xlName(const char *name) {Set(name);} // Reference to existing range
∼xlName() {Clear();}

// Copy constructor uses operator= function
xlName(const xlName & source) {*this = source;}

//---
// Overloaded operators
//---
// Object assignment operator

xlName & operator=(const xlName& source);

//---
// Assignment operators place values in cell(s) that range refers to.
// Cast operators retrieve values or assign nil if range is not valid
// or conversion was not possible. Casting to char * will return
// dynamically allocated memory that the caller must free.
//---

388 Excel Add-in Development in C/C++

int operator=(int);
bool operator=(bool b);
double operator=(double);
WORD operator=(WORD e);
const char * operator=(const char *);
const xloper * operator=(const xloper *);
const xloper12 * operator=(const xloper12 *);
const cpp_xloper & operator=(const cpp_xloper &);
const VARIANT * operator=(const VARIANT *);
const xl4_array * operator=(const xl4_array *array);
double operator+=(double);
double operator++(void) {return operator+=(1.0);}
double operator--(void) {return operator+=(-1.0);}
operator int(void) const;
operator bool(void) const;
operator double(void) const;
operator char *(void) const; // DLL-allocated copy, caller must free
operator wchar_t *(void) const; // DLL-allocated copy, caller must free

bool IsDefined(void) const {return m_Defined;}
bool IsRefValid(void) const {return m_RefValid;}
bool IsWorksheetName(void) const {return m_Worksheet;}
char *GetDef(void) const; // get definition as string (caller must free)
char *GetName(void) const; // returns deep copy that caller must free
void GetName(cpp_xloper &Name) const; // Initialises cpp_xloper to name
bool GetRangeSize(DWORD &size) const;
bool GetRangeSize(RW &rows, COL &columns) const;
bool GetValues(cpp_xloper &Ref) const; // range contents as xltypeMulti
bool GetValues(double *array, DWORD array_size) const;
bool GetRef(cpp_xloper &Values) const; // range as xltypeRef
bool SetValues(const cpp_xloper &Values);
bool SetValues(const double *array, RW rows, COL columns);
bool NameIs(const char *name) const;
bool RefreshRef(void); // refreshes state of name and defn ref

// SetToRef sets instance to ref's name if it exists
bool SetToRef(const cpp_xloper &Ref, bool internal);
bool SetToCallersName(void); // set to caller's name if it exists
bool NameCaller(const char *name); // create internal name for caller
bool Set(const char *name); // Create a reference to an existing range
bool Define(const cpp_xloper &Definition, bool in_dll);
bool Define(const char *name, const cpp_xloper &Definition, bool in_dll);
void Delete(void); // Delete name and free instance resources
void Clear(void); // Clear instance memory but don't delete name
void SetNote(const char *text); // Doesn't work - might be C API bug
char *GetNote(void);

static int GetNumInternalNames(void) {return m_NumInternalNames;}
static void IncrNumInternalNames(void) {m_NumInternalNames++;}
static void DecrNumInternalNames(void) {m_NumInternalNames--;}

private:
static int m_NumInternalNames; // Keep a count of all created names

protected:
bool m_Defined; // Name has been defined
bool m_RefValid; // Name's definition (if a ref) is valid
bool m_Worksheet; // Name is worksheet name, not internal to DLL
cpp_xloper m_RangeRef;
cpp_xloper m_RangeName;

};

Miscellaneous Topics 389

Note that the overloaded operators (char *) and (wchar_t *) return a deep copy
of the contents of the named cell as a null-terminated string which needs to be freed
by the caller using free(). One version of GetName() also returns a null-terminated
string which needs to be freed explicitly by the caller, whereas the other relies on the
cpp_xloper class to manage the memory.

A simple example of the use of this class is the function range_name() which
returns the defined name corresponding to the given range reference. This function is
also included in the example project on the CD ROM and is registered with Excel as
RangeName(). Note that the function is registered with the type string "RRP#" (volatile by
default) so that the first argument is passed as a reference rather than being de-referenced
to a value, as happens with the second argument.

xloper * __stdcall range_name(xloper *p_ref, xloper *p_dll)
{

xlName R;

// Are we looking for a worksheet name or a DLL name?
bool dll = (p_dll->xltype==xltypeBool && p_dll->val._xbool != 0);

if(!R.SetToRef(p_ref, dll))
return p_xlErrRef;

cpp_xloper RetVal;
R.GetName(RetVal);
return RetVal.ExtractXloper();

}

The following section provides other examples of the use of this class as well as listings
of some of the code.

9.8 KEEPING TRACK OF THE CALLING CELL OF A DLL
FUNCTION

Consider a worksheet function, call it CreateOne, that creates a data structure within
the DLL unique to the cell from which the function is called. There are a number of
things that have to be considered:

• What happens if the user moves the calling cell and Excel recalculates the function?
How will the function know that the thing originally created is still to be associated
with the cell in its new position, instead of creating a new one for the new cell location?

• What happens if the user clears the formula from the cell? What happens if the user
deletes the cell with a column or row deletion or by pasting another cell over it? What
happens if the worksheet is deleted or the workbook closed? How will the DLL know
how to clean up the resources that the thing was using?

If these questions cannot be addressed properly in your DLL, then you will spring memory
leaks (at the very least). The same questions arise where a function is sending some
request to a remote process or placing a task on a background thread. The answers to
these questions all revolve around an ability to keep track of the calling cell that created

390 Excel Add-in Development in C/C++

the internal object, or remote request, or background task. In general, this needs to be
done when:

• The DLL is maintaining large data structures in the DLL (see above section).
• A background thread is used to perform lengthy computations. The DLL needs to know

how to return the result to the right cell when next called, bearing in mind the cell may
have been moved in the meantime.

• The cell is being used as a means of contributing data, that is only allowed to have
one source of updates, to a remote application.

• The cell is being used to create a request for data from a remote application.

Finding out which cell called a worksheet function is done using the C API function
xlfCaller. However, given that the user can move/delete/overwrite a cell, the cell
reference itself cannot be relied upon to be constant from one call to the next. The solution
is to name the calling cell; that is, define a name whose definition is the range reference of
the calling cell. For a worksheet function to name the calling cell, the name can only be an
internal DLL name created using xlfSetName. (Worksheet names can only be created
from commands.) The xlfSetName function is used to define a hidden DLL name. As
with regular worksheet names, Excel takes care of altering the definition of the name
whenever the corresponding cell is moved. Also, the DLL can very straightforwardly
check that the definition is still valid (for example, that the cell has not been deleted in
a row or column deletion) and that it still contains the function for which the name was
originally created.

The class discussed in section section 9.7 A C++ Excel name class example, xlName,
on page 387, contains a member function that initialises a class instance to the internal
name that corresponds to the calling cell, if it exists, or names it otherwise. Many of the
code examples that follow use this class which is provided in the example project on the
CD ROM. The sections that immediately follow use the class’ member function code to
demonstrate the handling of internal names, etc.

9.8.1 Generating a unique name

Generating a valid and unique name for a cell is not too complex and various methods
can be devised that will do this. Here’s an example:

1. Get the current time as an integer in the form of seconds from some base time.
2. Increment a counter for the number of names created within this second. (See multi-

threading note below).
3. Create a name that incorporates text representations these two numbers.7 (This could

be a simple 0–9 representation or something more compact if storage space and string
comparison speed are concerns.)

Multi-threading note: The counter used to record how many names have been created in
this second needs to be accessible by all threads and so protected by a critical section

7 The name created must conform to the rules described in section 8.11 Working with Excel names on page
316.

Miscellaneous Topics 391

where your code might be called from XLL functions that are declared as thread-safe in
Excel 2007+. The second example below shows a class that achieves this.

The following code shows an example of just such a method that is not thread-safe.
Apart from the problems that could arise if multiple threads are trying to access the static
variables, two or more threads could return the same not-so-unique name.

#include <windows.h>
#include <stdio.h>
#include <time.h>

unsigned long now_serial_seconds(void)
{

time_t time_t_T;
time(&time_t_T);
tm tm_T = *localtime(&time_t_T);
return (unsigned long)tm_T.tm_sec

+ 60 * (tm_T.tm_min
+ 60 * (tm_T.tm_hour
+ 24 * (tm_T.tm_yday
+ 366 * tm_T.tm_year % 100)));

}

// This function is not thread-safe
char *make_unique_name(void)
{

static long name_count = 0;
static unsigned long T_last = 0;

// Need an unsigned long to contain max possible value
unsigned long T = now_serial_seconds();

if(T != T_last)
{

T_last = T;
name_count = 0;

}

char buffer[32]; // More than enough space

// Increment name_count so that names created in the current
// second are still unique. The name_count forms the first
// part of the name.

int ch_count = sprintf(buffer, "x%ld.", ++name_count);

int r;
// Represent the time number in base 62 using 0-9, A-Z, a-z.
// Puts the characters most likely to differ at the front
// of the name to optimise name searches and comparisons

for(;T; T /= 62)
{

if((r = T % 62) < 10)
r += '0' ;

else if(r < 36)
r += 'A' - 10;

else
r += 'a' - 36;

buffer[ch_count++] = r;
}
buffer[ch_count] = 0;

392 Excel Add-in Development in C/C++

// Make a copy of the string and return it
char *new_name = (char *)malloc(ch_count + 1);
strcpy(new_name, buffer);
return new_name; // caller must free the memory

}

The following code wraps the generation of unique names in a C++ class that can be
called by multiple threads simultaneously and will still generate unique names.

class UniqueNameFactory
{
public:

UniqueNameFactory(void)
{

InitializeCriticalSection(&m_CS);
m_Count = 0;
m_Tlast = 0;

}
∼UniqueNameFactory(void)
{

DeleteCriticalSection(&m_CS);
}

char *GetNewName(void)
{
// Need an unsigned long to contain max possible value

unsigned long T = now_serial_seconds();

EnterCriticalSection(&m_CS);
if(T != m_Tlast)
{

m_Tlast = T;
m_Count = 0;

}
else
{

++m_Count;
}
char buffer[32]; // More than enough space

// Increment name_count so that names created in the current
// second are still unique. The name_count forms the first
// part of the name.

int ch_count = sprintf(buffer, "x%ld.", m_Count);
LeaveCriticalSection(&m_CS);

int r;
// Represent the time number in base 62 using 0-9, A-Z, a-z.
// Puts the characters most likely to differ at the front
// of the name to optimise name searches and comparisons

for(;T; T /= 62)
{

if((r = T % 62) < 10)
r += '0' ;

else if(r < 36)
r += 'A' - 10;

else
r += 'a' - 36;

Miscellaneous Topics 393

buffer[ch_count++] = r;
}
buffer[ch_count] = 0;

// Make a copy of the string and return it
char *new_name = (char *)malloc(ch_count + 1);
strcpy(new_name, buffer);
return new_name; // caller must free the memory

}

private:
long m_Count;
unsigned long m_Tlast;
CRITICAL_SECTION m_CS;

};

9.8.2 Obtaining the internal name of the calling cell

The steps for this are:

1. Get a reference to the calling cell using xlfCaller.
2. Convert the reference to a full address specifier complete with workbook and sheet

name in R1C1 form using xlfReftext.
3. Get the name, if it exists, from the R1C1 reference using xlfGetDef.

The following two pieces of code list two member functions of the xlName class that,
together, perform these steps.

bool xlName::SetToCallersName(void)
{

Clear();

// Get a reference to the calling cell
cpp_xloper Caller;

if(!Caller.Excel(xlfCaller) != xlretSuccess)
return false;

return SetToRef(&Caller, true); // true: look for internal name
}

bool xlName::SetToRef(const cpp_xloper &Ref, bool internal)
{

Clear();

if(!Ref.IsRef())
return false;

//---
// Convert to text of form [Book1.xls]Sheet1!R1C1
//---

cpp_xloper RefTextR1C1;
if(RefTextR1C1.Excel(xlfReftext, 1, &Ref) != xlretSuccess
|| RefTextR1C1.IsType(xltypeErr))

return false;

394 Excel Add-in Development in C/C++

//---
// Get the name, if it exists, otherwise fail.
//
// First look for an internal name (the default if the 2nd
// argument to xlfGetDef is omitted).
//---

if(internal)
{

if(m_RangeName.Excel(xlfGetDef, 1, &RefTextR1C1)
!= xlretSuccess || !m_RangeName.IsType(xltypeStr))

return m_Defined = m_RefValid = false;

m_Worksheet = false;
m_Defined = m_RefValid = true;

// If name exists and is internal, add to the list.
// add_name_record() has no effect if already there.
// Need m_Defined = true before calling this:

add_name_record(NULL, *this);
}
else
{

// Extract the sheet name and specify this explicitly
cpp_xloper SheetName;

if(SheetName.Excel(xlSheetNm, 1, &Ref) != xlretSuccess
|| !SheetName.IsType(xltypeStr))

return m_Defined = m_RefValid = false;

// Truncate RefTextR1C1 at the R1C1 part
char *p = (char *)RefTextR1C1; // need to free this
RefTextR1C1 = strchr(p, '!’) + 1;
free(p); // free the deep copy

// Truncate SheetName at the sheet name
p = (char *)SheetName;
SheetName = strchr(p, ']') + 1;
free(p); // free the deep copy

if(m_RangeName.Excel(xlfGetDef, 2, &RefTextR1C1, &SheetName)
!= xlretSuccess || !m_RangeName.IsType(xltypeStr))

return m_Defined = m_RefValid = false;

m_Worksheet = true;
m_Defined = m_RefValid = true;

}
return true;

}

9.8.3 Naming the calling cell

Where internal names are being used, the task is simply one of obtaining a reference to
the calling cell and using the function xlfSetName to define a name whose definition
is that reference. However, repeated calls to a naı̈ve function that did this would lead to
more and more names existing. The first thing to consider is whether the caller already
has a name associated with it (see section 9.8.2 above).

Sometimes the reason for naming a cell will be to associate it with a particular function,
not just a given cell. Therefore, it may be necessary to look at whether the calling function

Miscellaneous Topics 395

is the function for which the cell was originally named. If not, the appropriate cleaning
up or undoing of the old association should occur where necessary. If the name already
exists, and is associated with the calling function, then no action need be taken to rename
the cell.

The following code lists the member function of xlName that names the calling cell, if
not already named. Note that if the name is specified and a name already exists, it deletes
the old name before creating the new one.

bool xlName::NameCaller(const char *name)
{
//---
// Check if given internal name already exists for this caller
//---

if(SetToCallersName() && !m_Worksheet)
{

// If no name specified, then the existing name is what's required
if(!name || !*name)

return true;

// Check if name is the same as the specified one
if(m_RangeName == name)

return true;

// If not, delete the old name, create a new one.
Delete();

}

//---
// If no name provided, create a unique name
//---

if(!name || !*name)
{

char *p = make_unique_name();
m_RangeName = p;
free(p);

}
else
{

m_RangeName = name;
}
m_Worksheet = false; // This will be an internal name

//---
// Get a reference to the calling cell
//---

cpp_xloper Caller;

if(Caller.Excel(xlfCaller) != xlretSuccess)
return m_Defined = m_RefValid = false;

//---
// Associate the new internal name with the calling cell(s)
//---

cpp_xloper RetVal;
if(RetVal.Excel(xlfSetName, 2, &m_RangeName, &Caller)

!= xlretSuccess)
return m_Defined = m_RefValid = false;

//---

396 Excel Add-in Development in C/C++

// Add the new internal name to the list
//---

m_Defined = m_RefValid = true;
add_name_record(NULL, *this);
return true;

}

The function add_name_record() adds this new internal name to a list that enables
management of all such names. (See next section for details.) A simple example of
how you would use xlName’s ability to do this is the following worksheet function
name_me() that assigns an internal name to the calling cell, unless it already has one,
and returns the name. (This function has no obvious use other than demonstration.)

xloper * __stdcall name_me(int create)
{

if(called_from_paste_fn_dlg())
return p_xlErrValue;

// Set the xlName to refer to the calling cell.
xlName Caller;
bool name_exists = Caller.SetToCallersName();

if(create)
{

if(!name_exists)
Caller.NameCaller(NULL);

// Get the defined name.
cpp_xloper Name;
Caller.GetName(Name);
return Name.ExtractXloper();

}

// Not creating, so deleting
if(!name_exists)

return p_xlFalse;

// Delete from Excel's own list of defined names
Caller.Delete();

// Delete from DLL's list of internal names. This is a
// slightly inefficient method, especially if a large
// number of internal names are in the list. A more
// specific method of deleting from list could easily
// be coded.

clean_xll_name_list();
return p_xlTrue;

}

9.8.4 Internal XLL name housekeeping

The reference associated with an internal XLL name can, for a number of reasons, become
invalid or no longer refer to an open workbook. The user may have deleted a row or
column containing the original caller, or cut and pasted another cell on top of it. The sheet
it was on could have been deleted, or the workbook could have been deleted without ever
being saved.

Miscellaneous Topics 397

In general Excel is very good at changing the reference when cells are moved, the
range expands or contracts, the sheet is renamed or moved, the workbook is saved under
a different name, etc. This is one of the main reasons for defining an internal name within
the XLL, of course, as the events through which a user can do these things are not easily
trapped. Being able to clean up unused or invalid internal names, and associated resources,
is clearly very important.

The C API function xlfNames returns an array of worksheet names, but not, unfor-
tunately, internal DLL names. Therefore, it is necessary for the DLL to maintain some
kind of container for the internal names it has created, through which it can iterate to
perform this housekeeping. For C++ programmers, the most sensible way to do this is
using a Standard Template Library (STL) container. (The source file XllNames.cpp in
the example project on the CD ROM contains an implementation of an STL map that is
used by the xlName class for this purpose.)

The easiest way to identify whether an internal name is valid and associated with a
valid range reference is to use xlfEvaluate as shown in the following xlName member
function RefreshRef() which confirms that the name and the reference are (still) valid.
(See section 9.7 A C++ Excel name class example, xlName on page 387). This function is
called whenever the class needs to be sure that the name still exists and the cell reference
is up-to-date. Care should be taken when using xlfEvaluate, however, as it behaves
differently when called from a worksheet function than from either a macro-sheet function
or a command. (See sections 8.16.3 Evaluating a cell formula:xlfEvaluate on page
362, and 8.10.18 Information about the calling function type on page 315).

bool xlName::RefreshRef(void)
{
// Update the reference corresponding to m_RangeName
// by asking Excel to evaluate it using xlfEvaluate.
// The method frees m_RangeRef resources before assigning new value

if(!m_RangeRef.Excel(xlfEvaluate, 1, &m_RangeName) != xlretSuccess
|| m_RangeRef.IsNameErr()) // Name not defined

return m_Defined = m_RefValid = false;

if(!m_RangeRef.IsRef())
{

m_Defined = true;
return m_RefValid = false;

}
return m_Defined = m_RefValid = true;

}

As well as having a way of detecting whether a name is valid, it is necessary to have a
strategy for when and/or how often the DLL checks the list of internally defined names.
This depends largely on the application. There needs to be a balance between the overhead
associated with frequent checking and the benefit of knowing that the list is good. In some
cases you may not be concerned if the list contains old and invalid names. In this case
a clean-up function that is invoked (1) as a command, or (2) when a new name is being
added or explicitly deleted, would do fine.

In other cases, for example, where you are using a function to contribute some piece
of real-time data, it may be imperative that the application informs the recipient within
a set time that the source cell has been deleted. In this case, it might be sufficient to
set up a trap for a recalculation event using the xlcOnRecalc function that calls such

398 Excel Add-in Development in C/C++

a function. Or it may be necessary to create an automatically repeating command (see
sections 8.15.7 on page 361 and 9.11.9 on page 415 for examples of this).

Finally, it is probably a good idea, depending on your application, to delete all the
internal names when your XLL is unloaded: calling a function that iterates through the
list to do this from xlAutoClose is the most convenient and reliable way. The function
delete_all_xll_names() in the example project on the CD ROM does just this.

9.9 PASSING REFERENCES TO EXCEL WORKSHEET
FUNCTIONS

This section outlines some of the issues related to passing references and pointers to data
or functions, from worksheet functions to add-in functions in VBA modules or XLLs.
Two ways are discussed: passing text references; passing addresses cast to 8-byte doubles.

WARNING: The casting of pointers to and from doubles is potentially very dangerous.
There are conceivably some addresses that cannot be interpreted as valid IEEE 8-byte
doubles. More seriously, using invalid addresses cast from doubles is almost sure to crash
Excel. If a double is stored on a worksheet and precision as-displayed is turned on, the
address will be modified. Given that the first rule of writing add-ins is don’t do anything
that might destabilise Excel, it is well worth spending a little time validating them against
a table of known valid addresses, for example, or better still, avoiding this technique
altogether.

9.9.1 Data references

Excel, of course, provides range references as a means for passing data indirectly to
worksheet functions. Therefore, it is not ordinarily necessary to pass data to worksheet
functions by passing a pointer or other lower-level reference. There may be times, how-
ever, when the data you want to refer to are not on the worksheet but in an XLL add-in.
Sections 9.6 and 9.7 together provide a way of doing this that involves the association of
data structures with cells on a worksheet using internal named ranges. A quicker, but less
robust, approach is to return a pointer to the XLL-internal data to the worksheet by cast-
ing it to a double or a text string from which the address can be retrieved. The resulting
address should only be used once it has been validated, something that necessitates some
organised address management.

9.9.2 Function references

In C, functions can be written that take other functions as arguments enabling a process
to be coded that does not depend specifically on one method or another. Provided that a
function has the right form it can be passed. In C++ and VB, this abstraction concept is
extended and formalised with class artefacts such as virtual functions and interfaces. When
working in Excel there may be times when you want to create a worksheet function, be it
in an XLL or in VBA, that can be given any one of a number of functions to work with.
For example, you might want to create a function that performs a numerical integration
of an unspecified function. This section outlines some of the options that are available
for doing this in Excel. There are two categories of function that are considered here:

Miscellaneous Topics 399

(1) functions recognised by Excel as accessible from the worksheet (or macro sheet), and
(2) functions defined in an add-in (VBA or XLL).

There is no Excel analogue to the C/C++ syntax of a function name equating to a
pointer to the function: Excel will try and interpret a function name without parentheses
as a defined name, resulting in #NAME? normally. Where the function you want to call
is user-defined, either in a VBA module or an XLL, one way around this is to pass
the function’s name as text. From within VBA, the function can then be called using
the Application.Run() method (see section 3.6.15 Calling user-defined functions and
commands from VBA: Application.Run() on page 71) as shown here:

Function CallThisFn(fn_name As String, arg As Double) As Variant

CallThisFn = Application.Run(fn_name, arg)

End Function

This method does not work with Excel’s own functions, however. If you want to cope
with both user-defined functions and Excel functions in the same code, one solution is to
use the Application.Evaluate()method as shown here, albeit that the construction
of the expression is a little messy.

Function CallThisFn2(fn_name As String, arg As Double) As Variant

CallThisFn2 = Application.Evaluate(fn_name & "(" & CStr(arg) & ")")

End Function

These two approaches can also be implemented in exactly the same way in an XLL using
the C API functions xlUDF, analogous to Application.Run, and xlfEvaluate. In
an XLL, where you want to avoid using xlfEvaluate to call an arbitrary function that
might be a built-in Excel function, you can implement a simple table search. A table of
text strings or hashes with associated C API function enumeration is easily created.

When the functions you want to refer to are in your XLL, you can avoid the overhead
of the text conversions in the above approaches altogether. Address pointers in Win32,
whether they point to functions or data, can be cast to doubles and returned to a worksheet.
They can be just as easily cast back to pointers and then called. A safe strategy to enable
a worksheet function to call one of a number of functions specified by calling address
would be as follows:

1. Maintain a table of the functions that can be called in this way within the XLL
2. Validate the passed-in function address against the table
3. Call the function

WARNING: Exposing any function on a worksheet that takes a double and converts it to
an address is capable of crashing Excel if the address is used without safeguards. Also,

400 Excel Add-in Development in C/C++

care must be taken to ensure that only functions that have the same prototype are included
in the verification table to avoid the potential for stack corruption.

If you want to be able to include built-in functions as well as functions defined in
other add-ins in your table, then you could create a wrapper function for each one in your
XLL. Exporting the function table from the XLL to the worksheet, say, with a function
GetFunctionTable(), enables you to validate the user’s choice of function with
Excel’s list validation. Note that a function such as GetFunctionTable() would
need to be called only once: the later of when (i) the add-in is loaded and (ii) the work-
book that contains it is opened. It should therefore be non-volatile, even though it might
be trivially fast to call, to avoid unnecessary recalculation dependency. This raises the
question of how to refresh the table. This is easily addressed by the use of a trigger
argument that could itself be modified by a workbook Open event in conjunction with a
forced complete recalculation when the add-in is loaded.

When using either xlUDF (in an XLL) or Application.Run (in VBA), the functions
referred to only need to have the same number of arguments. Both approaches will
coerce supplied arguments to the required types and fail if the supplied types could not be
converted. Therefore, you do not need to worry about the fact that, for example, a function
that prices options using your VBA function takes Variants or VB strings, etc., whereas
your XLL function might take xlopers. Provided that the arguments supplied when
the function is called can be converted to the right types both will work. Section 10.11
discusses a function that finds a best fit for a commonly-used stochastic volatility model.
The function outlined needs to be passed a table of option prices and could, if you needed
the flexibility, also be passed a function to price the options. Or you might want to pass
instead a solver function, and have as one of the choices, a VBA wrapper to the Solver
add-in, and as another, an exported XLL function that provides an interface to code within
the XLL or other add-in or library.

The following very simple example illustrates this principle. First, the VBA pric-
ing function:

Function VBA_Pricer(InstrumentType As String, OtherParameter As Variant) _
As Variant

Dim ReturnValue As Variant

' Code to price the instrument or return failure condition...
VBA_Pricer = ReturnValue

End Function

And the exported XLL function

xloper * __stdcall XLL_Pricer(xloper *InstrumentType, xloper *OtherParamter)
{

static xloper ReturnValue; // Not thread-safe
// Code to price the instrument or return failure condition...

return &ReturnValue;
}

Miscellaneous Topics 401

Then in VBA you could invoke either using Application.Run as follows:

Function CallPricer(PricerFn As String, { InstrumentType} As Variant, _
OtherParameter As Variant) As Variant

CallPricer = Application.Run(PricerFn, InstrumentType, OtherParameter)

End Function

Or from an XLL:

xloper * __stdcall CallPricer(char *PricerFn, xloper *pInstrumentType,
xloper *pOtherParameter)

{
cpp_xloper Fn(PricerFn); // String type xloper
cpp_xloper InstrumentType(pInstrumentType);
cpp_xloper OtherParameter(pOtherParameter);

// cpp_xloper::Excel called with cpp_xloper arguments only
Fn.Excel(xlUDF, 3, &Fn, &InstrumentType, &OtherParamter); // re-use Fn
return Fn.ExtractXloper();

}

Both versions of CallPricer() will call both the VBA and the XLL functions. How-
ever, these functions still could fail if the types of the passed-in arguments can’t be
converted to the defined types. In this example, XLL_Pricer() might takes strings or
numbers for the InstrumentType argument, whereas the VBA_Pricer(), as declared,
only takes strings. Both versions of CallPricer() accept any kind of input for this
argument.

The flexibility of this approach comes at a cost: calling functions in this way is slow
relative to calling them directly. Once the function has been called though, it executes as
fast as it otherwise would, so unless you are making a large number of calls, this cost is
likely to be low.

9.10 MULTI-TASKING, MULTI-THREADING
AND ASYNCHRONOUS CALLS IN DLLS

Prior to Excel 2007, Excel used a single thread for all worksheet function execution and
so would effectively lock out the user during recalculation. The ideas described in the
section enable certain long calculations to be placed on one or more background threads
so that the main thread returns quickly, giving control back to the user, with the final
results of the long tasks being displayed as part of a later recalculation. With Excel 2007,
the recalculation can be configured to be multi-threaded, but the issue of the user being
locked out during recalculation still remains unless the real workload is being passed off
to a server.

The inter-play between Excel 2007’s multiple calculation threads and an XLL-created
background thread is not very much more complicated than in previous versions’ single-
threaded world, although a little more care is required to protect resources that Excel’s

402 Excel Add-in Development in C/C++

threads might want to access simultaneously. These issues are raised and addressed in
detail, where relevant, in the following sections.

9.10.1 Setting up timed calls to DLL commands: xlcOnTime

There are two readily accessible ways to execute a command at a given point in the
future. One is to use VBA Application.OnTime method. The other is to use the C API
command xlcOnTime whose enumeration value is 32916 (0x8094). (It is also possible
to set up a Windows timed callback from a DLL command or a function. However, a
function called back in this way cannot safely use the C API or the COM interface.)

The most accessible of the two is VBA’s Application.OnTime which sets up a
scheduled call to a user-defined command. The method takes an absolute time argument,
but in conjunction with the VB Now function, can be used to set up a relative-time call.
Once the specified time is reached, VB uses COM to call the command function. This
call will fail if Excel is not in a state where a command can be run.8

The C API function is analogous to the VBA method, and both are analogous to the
XLM ON.TIME command which takes 4 parameters.

1. The time as a serial number at which the command is to be executed. If the integer
(day) part is omitted, the command is run the next time that time occurs, which may
be the next day.

2. The name of the command function, as set in the 4th argument to the xlfRegister
function.

3. (Optional.) Another time, up until which you would like Excel to wait before trying to
execute the command again if it was unable the first time round. If omitted Excel will
wait as long as it takes: until the state of Excel is such that it can run the command.

4. (Optional.) A Boolean value that if set to false will cancel a timed call that has not
yet been executed.

One key difference between the C API and VBA versions is the third parameter, which
tells Excel to execute a command as soon as it can after the specified time. (Excel cannot
execute commands when, for example, a user is editing a cell.) Using xlcOnTime, it is
Excel itself that calls the command directly. This avoids any subtle problems that VBA
might encounter calling the command via COM. A further advantage is that Excel will
not make more than one call to the DLL at a time. (Excel executes only one command at a
time and a command will not be called while a worksheet recalculation is in progress). In
other words, the DLL command will not be called at the same time as another command
or a worksheet function. This makes the safe management of shared data in the DLL
much easier.

The xlcOnTime call returns true if the call was scheduled successfully, otherwise
false. (If an attempt was made to cancel a timed callback that did not exist or was already
executed, it returns a #VALUE! error.)

Two example inter-dependant commands, on time example cmd() and
increment counter() are given below. Both examples rely heavily

8 The author has also experienced Excel behaving in an unusual or unexpected way when using this function
to set up a command to be run every n seconds, say. For this reason, this book recommends using the C API
function where robustness is proving hard to achieve.

Miscellaneous Topics 403

on the cpp_xloper class (see section 6.4 A C++ class wrapper for the
xloper/xloper12 – cpp xloper on page 146) and the xlName class (see
section 6.4 A C++ class wrapper for the xloper/xloper12 – cpp xloper on
page 146).

The command on_time_example_cmd() toggles (enables/disables) repeated timed
calls to increment_counter(). The command also toggles a check mark on a menu
item associated with the OnTimeExample command in order to inform the user whether
the timed calls are running and when not.

The command increment_counter() increments the value held in a named work-
sheet range in the active workbook, Counter, and then sets up the next call to itself using
the xlcOnTime command. Note that both commands need to be registered with Excel
using the xlfRegister command, and that increment_counter needs to be regis-
tered with the 4th argument as "IncrementCounter" in order for Excel to be able to
call the command properly as coded below:

#define SECS_PER_DAY (60.0 * 60.0 * 24.0)
bool on_time_example_running = false;

int __stdcall increment_counter(void)
{

if(!on_time_example_running)
return 0;

xlName Counter("!Counter");

++Counter; // Does nothing if Counter not defined

// Schedule the next call to this command in 10 seconds' time
cpp_xloper Now;
Now.Excel(xlfNow);
cpp_xloper ExecTime((double)Now + 10.0 / SECS_PER_DAY);
cpp_xloper CmdName("IncrementCounter");
cpp_xloper RetVal;
RetVal.Excel(xlcOnTime, 2, &ExecTime, &CmdName);
return 1;

}

int __stdcall on_time_example_cmd(void)
{
// Toggle the module-scope boolean flag and, if now true, start the
// first of the repeated calls to increment_counter()

if(on_time_example_running = !on_time_example_running)
increment_counter();

cpp_xloper BarNum(10); // the worksheet menu bar
cpp_xloper Menu("&XLL Example");
cpp_xloper Cmd("OnT&ime example");
cpp_xloper Status(on_time_example_running);
Excel4(xlfCheckCommand, 0, 4, &BarNum, &Menu, &Cmd, &Status);
return 1;

}

Note: When Excel executes the timed command it will clear the cut or copy mode state
if set. It can be very frustrating for a user if they only have a few seconds to complete
a cut and paste within the spreadsheet. Making the enabling/disabling of such repeated
calls easily accessible is therefore critically important. This means adding a menu item or

404 Excel Add-in Development in C/C++

toolbar button, or at the very least, a keyboard short-cut, with which to run the equivalent
of the on_time_example_cmd() command above.

9.10.2 Starting and stopping threads from within a DLL

Setting up threads to perform tasks in the background is straightforward. The following
example code contains a few module-scope variables used to store a handle for the
background thread and for communication between the thread and a function that would
be called by Excel. The function thread_example() when called with a non-zero
argument from an Excel spreadsheet for the first time, starts up a thread that executes
the function thread_main(). This example function simply increments a counter with
a frequency of the argument in milliseconds. The function thread_example() when
called subsequently with a non-zero argument returns the incremented counter value. If
called with a zero argument, thread example() terminates the thread and deletes the
thread object.

#include <windows.h>
bool keep_thread_running = false;
long thread_counter;
HANDLE thread_handle = 0;

// Thread is defined using a pointer to this function. Thread
// executes this function and terminates automatically when this
// functions returns. The void * pointer is interpreted as a pointer
// to long containing the number of milliseconds the thread should
// sleep in each loop in this example.
DWORD WINAPI thread_main(void *vp)
{

for(;keep_thread_running;)
{

// Do whatever work the thread needs to do here:
thread_counter++;
if(vp)

Sleep(*(long *)vp);
else

Sleep(100); // Make life easy for the OS
}
return !(STILL_ACTIVE);

}

This function thread_example() either kills the background thread, sets up or gets the
value of thread_counter, depending on the value of activate_ms and the current
state of the thread. It is declared as __stdcall so that it can be accessed as a worksheet
function.

long __stdcall thread_example(long activate_ms)
{
// Address of thread_param is passed to OS, so needs to persist

static long thread_param; // Not thread-safe

// Not used, but pointer to this needs to be passed to CreateThread()
DWORD thread_ID;
if(activate_ms) // then thread should run

Miscellaneous Topics 405

{
if(thread_handle == 0) // then start the thread
{

thread_counter = 0;
keep_thread_running = true;
thread_param = activate_ms;
thread_handle = CreateThread(NULL, 0, thread_main,

(void *)& thread_param, 0, &thread_ID);
return 0;

}
return thread_counter;

}

if(thread_handle) // then stop the thread
{

// Set flag to tell thread to exit
keep_thread_running = false;

// Wait for the thread to terminate.
DWORD code;
for(;GetExitCodeThread(thread_handle, &code) && code==STILL_ACTIVE;)

Sleep(10);

// Delete the thread object by releasing the handle
CloseHandle(thread_handle);

thread_handle = 0;
}
return -1;

}

The above code makes assumptions that may not be thread-safe. In particular the
system could be simultaneously reading (in thread_example()) and writing (in
thread_main()) to the variable thread_counter. In practice, in a Win32
environment, the reading and writing of a 32-bit integer will not be split from one slice
of execution to another on a single processor machine. Nevertheless, to be really safe,
all instructions that read from or write to memory that can be accessed by multiple
threads should be contained within a Critical Section. In Excel 2007, there is the
further complication of multiple Excel recalculation threads concurrently calling the above
function and overwriting the static thread_param mid-use. Given this, and the purpose
of this function, which is mostly demonstration, it should not be registered as thread-safe
in Excel 2007.

Creating a thread from a worksheet function creates the possibility of leaving a thread
running when it is no longer needed, simply by closing the worksheet that contained
the formula that created it. A better solution is to create and destroy threads from, say,
the xlAutoOpen() and xlAutoClose() XLL interface functions or some other user
command. Section 9.11 A background task management class and strategy on page 406
and the associated code on the CD ROM, present a more robust and sophisticated example
of managing and using background threads.

9.10.3 Calling the C API from a DLL-created thread

This is not permitted. Excel is not expecting such calls which will fail in a way which
might destabilise or crash Excel. This is, of course, unfortunate. It would be nice to be

406 Excel Add-in Development in C/C++

able to access the C API in this way, say, to initiate a recalculation asynchronously from
a background thread when a background task has been completed. One way around this
particular limitation is to have the background thread set a flag that a timed command can
periodically check, triggering a recalculation, say, if the flag is set. (See section 9.10.3
Calling the C API from a DLL-created thread on page 405.)

9.11 A BACKGROUND TASK MANAGEMENT CLASS
AND STRATEGY

This section brings together a number of topics, discussed so far. It describes a strategy for
managing a background thread, using just the C API, that can be used for lengthy work-
sheet function recalculations. For brevity, worksheet functions that require this approach
are referred to in this section as long tasks. The reason for wanting to assign long tasks to
their own thread is so that the user is not locked-out of Excel while these cells recalcu-
late. On a single-processor machine the total recalculation time will, in general, be very
slightly worse, but the difference in usability will be enormous.

To make this work, the key sections that are relied on are:

• Registration of custom commands and of volatile macro-sheet equivalent worksheet
functions (section 8.6, page 244).

• The use of a repeated timed command call (section 9.10.1, page 402).
• Managing a background thread (section 9.10.2, page 404).
• Working with internal Excel names (section 8.11, page 316).
• Keeping track of the calling cell (section 9.8, page 389).
• Creating custom menu items (section 8.12, page 326).
• Creating a custom dialog box (section 8.14, page 351).

This section discusses the requirements, the design and the function of the various software
components needed to make the strategy work.

Both the strategy and the class around which it is centred, are intended simply to
illustrate the issues involved. They are not intended to represent the only or best way
of achieving this goal. Whatever you do, you should satisfy yourself that your chosen
approach is suitable and stable for your particular needs. More sophisticated solutions are
certainly possible than that proposed here, but are beyond this book’s scope.

This section provides examples that use xlopers rather than xloper12s. The
examples could be changed to provide dual-interfaces for both Excel 2003− and Excel
2007+ (see section 8.6.12 Registering functions with dual interfaces for Excel 2007 and
earlier versions on page 263) to improve efficiency when running 2007, although the
xloper functions will work perfectly well.

9.11.1 Requirements

The high level requirements that drive this example strategy are these:

1. The user must be able to disable/re-enable the background thread from a command.
2. Long task worksheet functions should not, ideally, impose restrictions on the user that

ordinary worksheet functions are not limited by.

Miscellaneous Topics 407

3. Long task worksheet functions must be given the ability to return intermediate values.
4. A number of different long task functions should be supportable without extra coding

other than of the function itself.
5. Changing input values for an in-progress task should cause the existing (old) task to be

abandoned as soon as possible and the task to be re-queued with the new parameters.
6. There should be no hard limit to the number of worksheet functions that can be queued.

Other requirements could be envisaged, such as the prioritisation of certain tasks, but for
simplicity the above requirements are all that are considered here.

When farming out tasks to threads there are a number of possible approaches:

(a) Create a thread for each task.
(b) Create a thread for each worksheet function.
(c) Create a single thread on which you execute all tasks for all functions.
(d) Create a pool of threads that have tasks assigned according to their availability.

Strategy (a) could very quickly lead to the thread management overhead bringing your
machine to a grinding halt, especially where each worksheet cell might get its own thread.
Strategy (b) improves on this considerably unless there are, say, dozens of functions.
Strategy (d) is perhaps the best approach, but for simplicity of the example, strategy
(c) is chosen here. Whilst not having all the capabilities of (d), it still touches on all the
important issues. It also requires that the code is flexible enough to handle many different
functions taking different numbers and types of arguments and returning different values,
both intermediate and final. This satisfies requirements (3) and (4) above.

9.11.2 Communication between Excel and a background thread

There are a number of reasons why the foreground thread, or threads in Excel 2007,
(Excel, essentially) and the background thread need to communicate with each other.
Firstly, there is contention for resources, typically threads trying to access the same block
of memory at the same time. This is addressed with the use of critical sections. Secondly,
the worksheet functions need to tell the background thread about a new task, or a change
to an outstanding task. Getting the worksheet to communicate with the background thread
is simple, requiring only that memory contention is handled well. Two flags are used in
the example class below that enable the user, via a custom command, to request that the
background thread

1. stops processing the current task.
2. stops processing all tasks.

Lastly, the background thread needs to be able to tell Excel that new information is
available to the worksheet, in response to which Excel needs to recalculate those functions
so that this new information can be acquired. Getting the background thread to tell Excel
that something needs to happen requires that Excel polls to see if something needs to be
done, say, every n seconds. (Remember that background threads cannot safely call directly
into Excel via the C API or COM.) This is achieved here with the use of xlcOnTime
embedded in a command associated with the background thread. This command is referred

408 Excel Add-in Development in C/C++

to below as the polling command. (See also section 8.15.7 Trapping a system clock event:
xlcOnTime on page 361).

9.11.3 The software components needed

The list of components required is as follows:

Table 9.5 Software components for a background thread strategy

Component Notes

TaskList class • Creates, deletes, suspends and resumes the background thread
and the polling command (in foreground)

• Handles memory contention between threads using critical
sections

• Creates and deletes DLL-internal Excel names associated with
each caller of a long task function (in foreground). Names are
mapped 1-1 to tasks.

• Maintains a list of tasks and manages the following:
◦ Addition of new tasks (in foreground)
◦ Modification of existing tasks (in foreground)
◦ Deletion of orphaned tasks (in foreground)
◦ Execution of a task, and the associated state changes (in

background)
• Provides an interface for information about current tasks and

access to configuration parameters

Polling command • Associated with a given instance of a TaskList class
• Registered with Excel so that it can be executed via the
xlcOnTime command

• Deletes any invalid names in the list
• Initiates Excel recalculation
• After recalculation initiates cleaning up of orphaned tasks
• Schedules the next call to itself

Control/configuration
command(s)

• Accessible to the user via custom menu or toolbar
• Provides enable/disable thread function
• Provides some task execution information
• Provides ability to configure thread settings

Long task interface
function

• Registered with Excel as a volatile macro sheet function
• Takes value xloper arguments (registered as type P)9

• Returns immediately if called from the Function Wizard
• Responsible for verification of inputs
• Returns immediately if inputs invalid or task list thread is

deactivated

9 This is a simplifying restriction that ensures the tasks are driven by values not ranges, and simplifies the
handling of different functions that take different numbers of arguments of different types.

Miscellaneous Topics 409

Table 9.5 (continued)

Component Notes

Long task main function • Takes a pointer to a task object/structure and returns a
Boolean

• Makes no calls, directly or indirectly, to Excel via the C
API or COM

• Periodically checks the break task flag within the task
object/structure while performing its task

Excel 2007 multi-threading note: One reason for registering a long task interface function
as a macro sheet function is to give it the ability to read and return the current value of
the calling cell. This may be the required behaviour if the task has not been completed.
This prevents these functions being registered as thread-safe in Excel 2007, as macro-
sheet functions are not considered thread-safe. If you want the functions that pass tasks
to your background thread to be thread-safe also, then you need only remove this ability
and prevent your interface function making any thread-unsafe calls.

9.11.4 Imposing restrictions on the worksheet function

One potential complication is the possibility that a user might enter a number of long task
function calls into a single cell. For example, a user might enter the following formula
into a cell:

=IF(A1,LONG TASK(B1),LONG TASK(B2))

Excel’s recalculation logic would attempt to recalculate both calls to the function
LONG_TASK(). (In this example the user should enter =LONG_TASK(IF(A1,B1,B2))
instead.) In any case, it is not too burdensome to restrict the user to only entering a
single long task in a single cell, say. Should you wish to do so, such rules are easily
implemented using xlfGetFormula described in section 8.10.7 on page 297. This is
one of the things that should be taken care of in the long task interface function. The fact
that you might need to do this is one of the reasons for registering it as a macro sheet
function. Again, giving your function this ability precludes it from being registered as
thread-safe in Excel 2007.

The example in this section makes no restriction on the way the interface function is
used in a cell, although this is a weakness: the user is relied upon only to enter one such
function per cell.

9.11.5 Organising the task list

The example in this section uses the following fairly simple structure to represent a task.
A better approach might be to use a Standard Template Library (STL) container class.
The linked list used here could easily be replaced with such a container. The intention
is not to propose the best way of coding such things, but simply to lay out a complete
approach that can be modified to suit coding preferences and experience.

410 Excel Add-in Development in C/C++

enum {TASK_PENDING = 0, TASK_CURRENT = 1, TASK_READY = 2,
TASK_UNCLAIMED = 4, TASK_COMPLETE = 8};

struct task
{

task();
task(int n_args, const cpp_xloper *InArray);
∼task();
void clear(void);
void modify_args(const cpp_xloper *InArray, int n_args);
bool args_changed(const cpp_xloper *InArray, int n_args) const;

task *prev; // prev task, NULL if this is top
task *next; // next task, NULL if this is tail
long start_clock; // set by TaskList
long end_clock; // set by TaskList
bool break_task; // if true, processing of this task should end
short status; // TASK_PENDING, TASK_CURRENT, etc.
char *caller_name; // dll-internal defined name of calling cell(s)
bool (* fn_ptr)(task *); // passed-in fn ptr: this does the real work
cpp_xloper FnRetVal; // used for intermediate and final value
int num_args; // can be zero
cpp_xloper *ArgArray; // array of args for this task

};

Note that this structure uses wrapped xloper/xloper12s, i.e., the cpp_xloper class.
This is to make the task structure version-independent, as well as to simplify memory
management, assignment, etc.

This structure lends itself to either a simple linked list with a head and tail, or a more
flexible circular list. For this illustration, the simple list has been chosen. New tasks are
added at the tail, and processing of tasks moves from the head down. A decision needs
to be made about whether modified tasks are also moved to the end or left where they
are. If moved to the end, the next task in the list is always the next to be processed. If a
modified task were left in its previous position, the algorithm to pick the next task would
have to start looking at the top of the list every time, just in case a task that had already
been completed had subsequently been modified.

The decision made here is that modified tasks are moved to the end of the list. The
TaskList class, discussed below and listed in full on the CD ROM, contains three pointers,
one to the top of the list, m_pHead, one to the bottom of the list, m_pTail, and one to
the task currently being executed, m_pCurrent.

A more sophisticated queuing approach would in general be better, for example, one
with a pending queue and a done queue, or even a queue for each state. The above
approach has been chosen in the interests of simplicity.

It is important to analyse how a list of these tasks can be altered and by which thread,
background or foreground. The pointers m_pHead and m_pTail will only be modified
by the foreground thread (Excel) as it adds, moves or deletes tasks. The m_pCurrent
pointer is modified by the background thread as it completes one task and looks for the
next one. Therefore, the foreground thread must be extremely careful when accessing the
m_pCurrent pointer or assuming it knows its value, as it can alter from one moment
to the next. The foreground can freely read through the list of tasks but must use a
critical section when altering a task that is, or could at any moment become, pointed
to by m_pCurrent. If it wants to update m_pCurrent’s arguments, then it must first

Miscellaneous Topics 411

break the task so that it is no longer current. If it wants to change the order of tasks in
the list, it must enter a critical section to avoid this being done at the same time that the
background thread is looking for the next task.

By limiting the scope of the background thread to the value of m_pCurrent, and the
task it points to, the class maintains a fairly simple thread-safe design, only needing to
use critical sections in a few places.

The strategy assigns a state to a task at each point in its life-cycle. Identifying the
states, what they mean, the transition from one to another, is an important part of making
any complex multi-threaded strategy work reliably. For more complex projects than this
example, it is advisable to use a formal architectural design standard, such as UML, with
integral state-transition diagrams. For this example, the simple table of the states below
is sufficient.

Table 9.6 Task states and transitions for a background thread strategy

State Notes

Pending • The task has been placed on the list and is waiting its turn to be processed.
• The foreground thread can delete pending tasks.

Current • Changed from pending to current by the background thread within a critical
section

• The background thread is processing the task
• If the task’s execution is interrupted, its state reverts to pending

Ready • The task has been completed by the background thread which has changed the
state from current to ready

• The task is ready for the foreground thread to retrieve the result

Unclaimed • The foreground thread has seen that the task is either ready or complete and
has marked it as unclaimed pending recalculation of the workbook(s)

• If still unclaimed after a workbook recalculation, the task should be deleted

Complete • The recalculation of the worksheet cell that originally scheduled the task
changes the state from unclaimed to complete

• The task has been processed and the originating cell has been given the final
value

• A change of inputs will change the status back to pending

The unclaimed state ensures that the foreground thread can clean up any orphaned tasks:
those whose originating cells have been deleted, overwritten, or were in worksheets that
are now closed. The distinction between ready and unclaimed ensures that tasks completed
immediately after a worksheet recalculation don’t get mistakenly cleaned up as unclaimed
before their calling cell has had a chance to retrieve the value.

9.11.6 Creating, deleting, suspending, resuming the thread

In this example, where management of the thread is embedded in a class, the most obvious
place to start and finally stop the thread might seem to be the constructor and destructor.
It is preferable, in fact, to have more control than this and start the thread with an explicit

412 Excel Add-in Development in C/C++

call to a class member function, ideally from xlAutoOpen. Similarly, it is better to
delete the thread in the same way from xlAutoClose.

Threads under Windows can be created in a suspended state. This gives you two choices
about how you run your thread: firstly, you can create it in a suspended state and bring it
to life later, perhaps only when it has some work to do. Secondly, you can create it in an
active state and have the main function that the thread executes loop and sleep until there
is something for it to do. Again for simplicity, the second approach has been adopted in
this example.

Similarly, when it comes to suspending and resuming threads, there are two Windows
calls that will do this. Or you can set some flag in foreground that tells your background
loop not to do anything until you reset the flag. The latter approach is simpler and easier to
debug, and, more importantly, it also allows the background thread to clean up its current
task before becoming inactive. For these reasons, this is the approach chosen here.

9.11.7 The task processing loop

Most of the code involved in making this strategy work is not listed in this book. (It is
included on the CD ROM in the source files Background.cpp and Background.h
which also call on other code in the example project.) Nevertheless, it is helpful to discuss
the logic in this code behind the main function that the thread executes. (When creating the
thread, the wrapper function background_thread_main() is passed as an argument
together with a pointer to the instance of the TaskList class that is creating the thread.)
The loop references three flags, all private class data members, that are used to signal
between the fore- and background threads. These are:

• m_ThreadExitFlagSet: Signals that the thread should exit the loop and return,
thereby terminating the thread. This is set by the foreground thread in the
DeleteTaskThread() member function of the TaskList class.

• m_SuspendAllFlagSet: Signals that the background thread is to stop (suspend)
processing tasks after the next task has been completed. This is set by the foreground
thread in the SuspendTaskThread() member function of the TaskList class.

• m_ThreadIsRunning: This flag tells both the background and foreground threads
whether tasks are being processed or not. It is cleared by the background thread in
response to m_SuspendAllFlagSet being set. This gives the foreground thread
a way of confirming that the background thread is no longer processing tasks. It is
set by the foreground thread in the ResumeTaskThread() member function of the
TaskList class.

// This is the function that is passed to Windows when creating
// the thread.
DWORD WINAPI background_thread_main(void *vp)
{

return ((TaskList *)vp)->TaskThreadMain();
}

DWORD TaskList::TaskThreadMain(void)
{

for(;!m_ThreadExitFlagSet;)
{

Miscellaneous Topics 413

if(!m_ThreadIsRunning)
{

// Thread has been put into inactive state
Sleep(THREAD_INACTIVE_SLEEP_MS);
continue;

}

if(m_SuspendAllFlagSet)
{

m_ThreadIsRunning = false;
m_pCurrent = NULL;
continue;

}

// Find next task to be executed. Sets m_pCurrent to
// point to the next task, or to NULL if no more to do.

GetNextTask();

if(m_pCurrent)
{

// Execute the current task and time it. Status == TASK_CURRENT
m_pCurrent->start_clock = clock();
if(m_pCurrent->fn_ptr(m_pCurrent))
{

// Task completed successfully and result is ready to be read out
m_pCurrent->status = TASK_READY;

}
else
{

// Task was broken or failed so need to re-queue it
m_pCurrent->status = TASK_PENDING;

}
m_pCurrent->end_clock = clock();

}
else // nothing to do, so have a little rest

Sleep(m_ThreadSleepMs);
}
return !(STILL_ACTIVE);

}

The function TaskList::GetNextTask() points m_pCurrent to the next task, or
sets it to NULL if they are all done.

9.11.8 The task interface and main functions

In this example, the only constraint on the interface function is that it is registered as
volatile. It is also helpful to register it as a macro-sheet equivalent function which only
takes dereferenced, i.e., value-only, xloper arguments (type P). Its responsibilities are:

1. To validate arguments and place them into an array of xlopers.
2. To call TaskList::UpdateTask().
3. To interpret the returned value of UpdateTask() and pass something appropriate

back to the calling cell.

The associated function that does the work is constrained, in this case, by the imple-
mentation of the TaskList class and the task structure, to be a function that takes a
pointer to a task and returns a bool. The following code shows an example interface

414 Excel Add-in Development in C/C++

and main function pair. The long task in this case counts from one to the value of its only
argument. (This is a useful test function, given its predictable execution time.) Note that
LongTaskExampleMain() regularly checks the state of the break_task flag. It also
regularly calls Sleep(0), a very small overhead, in order to make thread management
easier for the operating system.

// LongTaskExampleMain() executes the task and does the work.
// It is only ever called from the background thread. It is
// required to check the break_task flag regularly to see if the
// foreground thread needs execution to stop. It is not required
// that the task populates the return value, fn_ret_val, as it does
// in this case. It could just wait till the final result is known.
bool LongTaskExampleMain(task *pTask)
{

long limit;

if((limit = (long)(double)pTask->ArgArray[0]) < 1)
return false;

pTask->FnRetVal = 0.0;

for(long i = 1; i <= limit; i++)
{

if(i % 1000)
{

if(pTask->break_task)
return false;

Sleep(0);
}
pTask->FnRetVal = (double)i;

}
return true;

}

The interface function example below shows how the TaskList class uses Excel error
values to communicate back to the interface function some of the possible states of the
task. It is straightforward to make this much richer if required.

// LongTaskExampleInterface() is a worksheet function called
// directly by Excel from the foreground thread. It is only
// required to check arguments and call ExampleTaskList.UpdateTask()
// which returns either an error, or the intermediate or final value
// of the calculation. UpdateTask() errors can be returned directly
// or, as in this case, the function can return the current
// (previous) value of the calling cell. This function is registered
// with Excel as a volatile macro sheet function. As a macro sheet
// function it will only be recalculated by Excel 2007 on the main thread.
xloper * __stdcall LongTaskInterfaceFn(xloper *arg)
{

if(called_from_Excel_dlg())
return p_xlErrNa;

if(arg->xltype != xltypeNum || arg->val.num < 1)
return p_xlErrValue;

cpp_xloper InArray[1] = {arg}; // only 1 argument in this case
cpp_xloper RetVal;

Miscellaneous Topics 415

// UpdateTask makes deep copies of all the supplied arguments
ExampleTaskList.UpdateTask(LongTaskExampleMain, InArray, 1, RetVal);

if(RetVal.IsErr())
{

WORD err_val;
RetVal.GetErrVal(err_val);

switch(err_val)
{
// the arguments were not valid
case xlerrValue:

break;

// task has never been completed and is now pending or current
case xlerrNum:

break;

// the thread is inactive
case xlerrNA:

break;
}

// Set RetVal to the existing cell value. Need macro-sheet
// permissions to do this, and so this line is not thread-safe.
// under Excel 2007. If thread-safety is required, return
// some other value.

RetVal.SetToCallerValue();
}
return RetVal.ExtractXloper();

}

9.11.9 The polling command

The polling command only has the following two responsibilities:

• Detect when a recalculation is necessary in order to update the values of volatile long
task functions. (In the example code below the recalculation is done on every call into
the polling function.)

• Reschedule itself to be called again in a number of seconds determined by a configurable
TaskList class data member.

int __stdcall LongTaskPollingCmd(void)
{

if(ExampleTaskList.m_BreakPollingCmdFlag)
return 0; // return without rescheduling next call

// Run through the list of tasks setting TASK_READY tasks to
// TASK_UNCLAIMED. Tasks still unclaimed after recalculation are
// assumed to be orphaned and deleted by DeleteUnclaimedTasks().

bool need_recalc = ExampleTaskList.SetDoneTasks();

cpp_xloper Op; // Used to access Excel via the C API

// if(need_recalc) // Commented out in this example
{

// Cause Excel to recalculate. This forces all volatile fns to be
// re-evaluated, including the long task functions, which will then
// return the most up-to-date values. This also causes status of

416 Excel Add-in Development in C/C++

// tasks to be changed to TASK_COMPLETE from TASK_UNCLAIMED.
Op.Excel(xlcCalculateNow);

// Run through the list of tasks again to clean up unclaimed tasks
ExampleTaskList.DeleteUnclaimedTasks();

}

// Reschedule the command to repeat in m_PollingCmdFreqSecs seconds.
Op.Excel(xlfNow); // Now as a serial time
cpp_xloper ExecTime((double)Op +

ExampleTaskList.GetPollingSecs() / SECS_PER_DAY);

// Use command name as given to Excel in xlfRegister 4th arg
cpp_xloper CmdName("LongTaskPoll"); // as registered with Excel

if(Op.Excel(xlcOnTime, 2, &ExecTime, &CmdName) != xlretSuccess)
{

Op = "Can't reschedule long task polling cmd";
Op.Alert(3);

}
return 1;

}

9.11.10 Configuring and controlling the background thread

The TaskList::CreateTaskThread() member function creates a thread that is
active as far as the OS is concerned, but inactive as far as the handling of background
worksheet calculations is concerned. The user, therefore, needs a way to activate and
deactivate the thread and the polling command.

As stressed previously, the C API is far from being an ideal way to create dialogs
through which the user can interact with your application. In this case, however, it is very
convenient to place a dialog within the same body of code as the long task functions. You
can avoid using C API dialogs completely by exporting a number of accessor functions
and calling them from a VBA dialog.

The example project source file, Background.cpp, contains a command function
LongTaskConfigCmd(), that displays the following C API dialog enabling the user
to control the thread and see some very simple statistics. (See section 8.14 Working with
custom dialog boxes on page 351.)

Figure 9.1 Long task thread configuration dialog

Miscellaneous Topics 417

This dialog needs to be accessed from either a toolbar or menu. The example project
palce a menu item on the example menu to enable access to this dialog. (The
spreadsheet used to design and generate the dialog definition table for this dialog,
XLM_ThreadCfg_Dialog.xls, is included on the CD ROM.)

9.11.11 Other possible background thread applications and strategies

The strategy and example outlined above lends itself well to certain types of lengthy
background calculations. There are other reasons for wanting to run tasks in background,
most importantly for communicating with remote applications and servers. Examples
of this are beyond the scope of this book, but can be implemented fairly easily as an
extension to the above. One key difference in setting up a strategy for communication
between worksheet cells and a server is the need to include a sent/waiting task state that
enables the background thread to move on and send the next task without having to wait
for the server to respond to the last. The other key difference is that the background
thread, or even an additional thread, must do the job of checking for communication back
from the server.

9.12 HOW TO CRASH EXCEL

This section is, of course, about how not to crash Excel. Old versions of Excel were not
without their problems, some of which were serious enough to cause occasional crashes
through no fault of the user. This has caused some to view Excel as an unsafe choice
for a front-end application. This is unfair when considering modern versions. Excel, if
treated with understanding, can be as robust as any complex system. Third-party add-ins
and users’ own macros are usually the most likely cause of instability. This brief section
aims to expose some of the more common ways that these instabilities arise, so that they
can be avoided more easily.

There are a few ways to guarantee a crash in Excel. One is to call the C API when
Excel is not expecting it: from a thread created by a DLL or from a call-back function
invoked by Windows. Another is to mismanage memory. Most of the following examples
involve memory abuse of one kind or another.

If Excel allocated some memory, Excel must free it. If the DLL allocated some memory,
the DLL must free it. Using one to free the other’s memory will cause a heap error. Over-
running the bounds of memory that Excel has set aside for modify-in-place arguments to
DLL functions is an equally effective method of bringing Excel to its knees. Over-running
the bounds of DLL-allocated memory is also asking for trouble.

Passing xloper/xloper12 types with invalid memory pointers to Excel4()/
Excel12() will cause a crash. Such types are strings (xltypeStr), external range
references (xltypeRef), arrays (xltypeMulti) and string elements within arrays.

Memory Excel has allocated in calls to Excel4(), Excel4v(), Excel12() or
Excel12v() should be freed with calls to xlFree. Leaks resulting from these calls not
being made will eventually result in Excel complaining about a lack of system resources.
Excel may have difficulty redrawing the screen, saving files, or may crash completely.

Memory can be easily abused within VBA despite its lack of pointers. For example,
overwriting memory allocated by VB in a call to String() will cause heap errors that
may crash Excel.

418 Excel Add-in Development in C/C++

Great care must be taken where a DLL exposes functions that take data types that
are (or contain) pointers to blocks of memory. Two examples of this are strings and
xl4_array/xl12_arrays. (See section 6.2.2 Excel floating-point array structures:
xl4 array, xl12 array on page 129.) The danger arises when the DLL is either
fooled into thinking that more memory has been allocated than is the case, say,
if the passed-in structure was not properly initialised, or if the DLL is not well
behaved in the way it reads or writes to the structure’s memory. In the case of the
xl4_array/xl12_array, whenever Excel itself is passing such an argument, it can be
trusted. Where this structure has been created in a VBA macro by the user’s own code,
care must be taken. Such dangers can usually be avoided by only exposing functions that
take safe arguments such as VARIANT or BSTR strings and SAFEARRAYs.

Excel is very vulnerable to stress when it comes close to the limits of its available
memory. Creating very large spreadsheets and performing certain operations can crash
Excel, or almost as bad, bring it to a virtual grinding halt. Even operations such as copy
or delete can have this effect. Memory leaks will eventually stress Excel in this way.

Calls to C API functions that take array arguments, xlfAddMenu for example, may
crash Excel if the arrays are not properly formed. One way to achieve this is to have
the memory allocated for the array to be smaller than required for the specified rows and
columns.

There are some basic coding errors that will render Excel useless, although not neces-
sarily crashing it, for example, a loop that might never end because it waits for a condition
that might never happen. From the user’s perspective, Excel will be dead if control has
been passed to a DLL that does this.

A more subtle version of the previous problem can occur when using a background
thread, or multi-threaded recalculation in Excel 2007, and critical sections. Not using
critical sections to manage contention for resources is, in itself, dangerous and inadvisable.
However, if thread A enters a critical section and then waits for a state to occur set by
thread B, and if thread B is waiting for thread A to leave the critical section before it
can set this state, then both threads effectively freeze each other. Careful design is needed
to avoid such deadlocks. (See section 7.6.5 Using critical sections with memory shared
between threads on page 219).

Only slightly better than this are DLL functions, especially worksheet functions, that
can take a very long time to complete. Worksheet functions cannot report progress to
the user. It is, therefore, extremely important to have an idea of the worst-case execution
time of worksheet functions, say, if they are given an enormous range to process. If this
worst-case time is unacceptable, from the point of view of Excel appearing to have hung,
then you must either check for and limit the size of your inputs or use a background thread
and/or remote process. Or your function can check for user breaks (the user pressing Esc
in Windows) – see section 8.8.7 on page 282.

Care should be taken with some of the C API functions that request information about
or modify Excel objects. For example, xlSheetNm must be passed a valid sheet ID
otherwise Excel will crash or become unstable.

Using macro-sheet equivalent XLL functions (i.e., registered with # – see section 8.6.4
Giving functions macro sheet function permissions on page 252) in defined names which
are then used in conditional formatting expressions, can cause Excel to crash when copy-
ing, saving or loading the workbook containing the name and conditionally-formatted
cell(s). (It is not clear at the time of writing if this bug will be fixed in Excel 2007).

Miscellaneous Topics 419

The Microsoft newsgroup news.microsoft.excel.crashgpfs is a good resource for reading
about things that, at least apparently, cause Excel to crash, or for getting feedback from
people who may be able to help get to the root of your problem.

9.13 ADD-IN DESIGN

This section outlines some practices and advice regarding the high-level design of an
add-in and the separation of interfaces. The overriding objective is, of course, to create
add-ins where

• the resulting code is efficient and bug-free (or at least, easy to debug);
• future modifications can be made easily;
• code can be easily understood by others;
• core business logic code is kept independent of the user-interface.

Much (if not all) of what is said here is just common sense and can be applied just as
easily to other very different environments, but it is, nevertheless, important to get these
things right when dealing with Excel.

9.13.1 Separating interface code from core function code

Excel interacts with other environments via a number of interface models, some of which
are hidden from the user, such as the COM (common object model) interface used by
VBA to talk to Excel. The C API, for example, uses WINAPI calls and data types.
VB.NET, and other .NET components use the .NET interface (supported in Excel 2002
and later).

Speaking generally, different interfaces to Excel can be expected to have their own
logic and may have different data types. The goal is to create code where a change of
model or interface only requires a change to the code that sits between Excel and the core
logic. Clearly, interface is an over-used term. We could easily fall into the trap of talking
about the interface between the interface and the code, but we won’t. From here on in
this section, the term model is used to distinguish between, say, the C API and COM,
and the term interface is used for the function within the DLL that gets called by Excel,
and so has to know about this model, and which in turn calls the core logic.

When using the C API, the model is the Win32 API, or WINAPI, since the add-in
is a Win32 DLL. This uses the __stdcall calling convention, and supports the basic
data types and pointers. These are used, as described extensively in earlier sections, to
support a number of Excel-specific data structures, in particular xloper/xloper12s
and xl4_array/xl12_arrays (the latter being floating point 2-dimensional arrays).
If these data types are used in the core code, a change of model that did not support these
would result in the need to modify all of the core business code or shoe-horn in a very
clumsy layer that did the conversion. This can always be, and should always be, avoided.

The steps, in roughly this order, that should be executed in an Excel add-in interface
function are as follows:

1. Check the Excel and add-in environment: whether called from the function wizard
or the search and replace dialog; is the version of Excel known; has the add-in been
properly initialised; and so on.

420 Excel Add-in Development in C/C++

2. Check that all required arguments are provided with values within permissible ranges
and convert to data types supported by the core code, otherwise return an appropriate
error message or error data type.

3. Convert inputs to units expected by core function if necessary. (For example, an interest
rate might be entered as 5.12 instead of 0.512 or 5.12 %, and should in this case be
divided by 100).

4. Call the core code function and convert any error condition to an appropriate error
message or error data type.

5. Convert return values to units promised by the add-in function if necessary.
6. Convert return values to the appropriate data type and return to Excel.

The interface functions that carry out steps 1 to 6 above, should do nothing else. These
steps are independent of the model being used. In the case of the C API, the data types are
xlopers, xl4_arrays, (xloper12s, xl12_arrays in Excel 2007), basic data types
such as doubles, and pointers (for strings, for example). For VBA, the data types are
the OLE data types such as variants, OLE Safearrays, OLE BSTR text strings, IDispatch
object pointers as well as basic data types and pointers to these.

It is recommended that scaling of inputs is done outside the core code. You might
decide to go one step further and require that all inputs to add-in functions should be
correctly scaled. This may mean converting user input in the worksheet or in the func-
tion formula. For example, a system that allows users to enter the price of an option in
points (1/100ths of 1 %) obviously needs these to be divided by 10,000 (1 % of 1 %)
and functions returning unscaled prices need to scale back up. It is perhaps a ques-
tion of preference, but on balance the removal of ambiguity when all functions take
unscaled inputs wins out over the small performance advantage of placing the con-
version in the DLL code, even though it might also make the workbook a little more
complex.

An example XLL interface function should, therefore, look much like this. In this
example, #NUM! is used to signify that a numerical input was not provided or was not
within the valid range. The error #VALUE! is used to signify that the core function exe-
cution failed. The handling of the second argument is deliberately contrived in order to
demonstrate conversion in very obvious way.

#define MAX_ARG1 100.0
#define MIN_RTN_VALUE 0.00000001
#define MAX_RTN_VALUE 100.0

bool example_core_fn(double arg_1, bool arg_2, double &rtn_value);

xloper * __stdcall ExampleXllFn(double Arg1, xloper *pArg2)
{
// Step 1:
// If required, check to see if called from an Excel dialog, or
// check that the required add-in resources have been properly
// initialised.

if(called_from_Excel_dlg())
return p_xlErrValue; // in this example, fail with #VALUE!

// Step 2:
// Convert any arguments from input types to types expected by
// core function and check that required inputs exist and are

Miscellaneous Topics 421

// within the correct limits.
if(Arg1 <= 0.0 || Arg1 > MAX_ARG1)

return p_xlErrNum;

// Declare a variable for the second core function argument.
// Assume here that false is the default value

bool core_boolean_arg = false;

switch(pArg2->xltype)
{
case xltypeNum:

if(pArg2->val.num != 0.0)
core_boolean_arg = true;

break;

case xltypeBool:
if(pArg2->val.xbool != 0)

core_boolean_arg = true;
break;

case xltypeStr:
if(pArg2->val.str[0] > 0
&& (pArg2->val.str[1] == 'T' || pArg2->val.str[1] == 't'))

core_boolean_arg = true;
break;

default: // Not a type that this function can convert
return p_xlErrNum;

}

// Step 3:
// Convert any arguments from input units to units expected by
// core function.

Arg1 /= 100.0;

// Step 4:
// Call the core function and check the return value.
// Declare a variable for the core function return value.

double rtn_value;

if(example_core_fn(Arg1, core_boolean_arg, rtn_value) == false
|| rtn_value < MIN_RTN_VALUE || rtn_value > MAX_RTN_VALUE)

return p_xlErrValue;

// Step 5:
// Convert the return value to units promised by Excel add-in function

rtn_value *= 100.0;

// Step 6:
// Convert the return value back to the right data type for this
// model, i.e., an xloper

cpp_xloper RetVal(rtn_value);
return RetVal.ExtractXloper();

}

If the above code needed to be converted so that it could be called from VBA where,
instead of xlopers, Variants are used, then there is no need to change the core function.
The result of such conversion might look like this:

422 Excel Add-in Development in C/C++

// Excel worksheet cell error codes are passed via VB OLE Variant
// arguments in 'ulVal'. These are equivalent to the offset below
// plus the value defined in "xlcall.h"

// This is easier than using the VT_SCODE variant property 'scode'.
#define VT_XL_ERR_OFFSET 2148141008ul

VARIANT __stdcall ExampleVtFn(double Arg1, VARIANT *pArg2)
{

VARIANT return_vt;
VariantInit(&return_vt); // type is set to VT_EMPTY

// Step 1:
// If required, check to see if called from an Excel dialog, or
// check that the required add-in resources have been properly
// initialised.

// Step 2:
// Convert any arguments from input types to types expected by
// core function and check that required inputs exist and are
// within the correct limits.

if(Arg1 <= 0.0 || Arg1 > MAX_ARG1)
{

return_vt.vt = VT_ERROR;
return_vt.ulVal = VT_XL_ERR_OFFSET + xlerrNum;
return return_vt;

}

// Declare a variable for the second core function argument.
// Assume here that false is the default value

bool core_boolean_arg = false;

if(pArg2 == NULL)
{

return_vt.vt = VT_ERROR;
return_vt.ulVal = VT_XL_ERR_OFFSET + xlerrNum;
return return_vt;

}

switch(pArg2->vt)
{
case VT_R8:

if(pArg2->dblVal != 0.0)
core_boolean_arg = true;

break;

case VT_BOOL:
if(pArg2->boolVal != 0)

core_boolean_arg = true;
break;

// NOTE: Called from Excel/VBA so string is byte-string
// not wide-char string, so need C cast to (char *) to
// read it.

case VT_BSTR:
{

char *text = (char *)pArg2->bstrVal;

if(text != NULL
&& (text[0] == 'T' || text[0] == 't'))

core_boolean_arg = true;
break;

Miscellaneous Topics 423

}

default: // Not a type that this function can convert
return_vt.vt = VT_ERROR;
return_vt.ulVal = VT_XL_ERR_OFFSET + xlerrNum;
return return_vt;

}

// Step 3:
// Convert any arguments from input units to units expected by
// core function.

Arg1 /= 100.0;

// Step 4:
// Call the core function and check the return value.
// Declare a variable for the core function return value.

double rtn_value;

if(example_core_fn(Arg1, core_boolean_arg, rtn_value) == false
|| rtn_value < MIN_RTN_VALUE || rtn_value > MAX_RTN_VALUE)
{

return_vt.vt = VT_ERROR;
return_vt.ulVal = VT_XL_ERR_OFFSET + xlerrValue;
return return_vt;

}

// Step 5:
// Convert the return value to units promised by Excel add-in function

rtn_value *= 100.0;

// Step 6:
// Convert the return value back to the right data type for this
// model, i.e., an xloper

return_vt.vt = VT_R8;
return_vt.dblVal = rtn_value;
return return_vt;

}

The VB statement to include this function would be:

Declare Function ExampleVtFn Lib "example.dll" _
(ByVal Arg1 As Double, ByRef Arg2 As Variant) As Variant

Following on from the reasoning in section 8.6.12 Registering functions with dual inter-
faces for Excel 2007 and earlier versions on page 263, where you have functions that
you want to expose via VBA with, say, Variant arguments and return values, but also
via the worksheet directly with xloper/xloper12 arguments and returns values, it is
better still to use an common data type that understands all of Variants, xlopers and
xloper12s as well as the ordinary data types. The cpp_xloper class, see section 6.4 on
page 146, can be initialised and can be converted to Variants as well as both
xlopers and xloper12s. The various steps can then be written into a single function
which operates on cpp_xlopers and the common data types only, as follows:

424 Excel Add-in Development in C/C++

// This example presents a cpp_xloper-wrapped interface to the real
// core function, so that the various steps are coded only once, and
// can be called by a VBA/Variant export, or an XLL/xloper or
// XLL/xloper12 export.
bool example_xll_core_fn(cpp_xloper &RetVal, double Arg1, cpp_xloper &Arg2)
{
// Step 1:
// If required, check to see if called from an Excel dialog, or
// check that the required add-in resources have been properly
// initialised.

if(called_from_Excel_dlg())
{

RetVal.SetToError(xlerrValue);
return false; // in this example, fail with #VALUE!

}

// Step 2:
// Convert any arguments from input types to types expected by
// core function and check that required inputs exist and are
// within the correct limits.

if(Arg1 <= 0.0 || Arg1 > MAX_ARG1)
{

RetVal.SetToError(xlerrNum);
return false; // in this example, fail with #VALUE!

}

// Declare a variable for the second core function argument.
// Assume here that false is the default value

bool core_boolean_arg = false;

if(Arg2.IsNum())
{

if((double)Arg2 != 0.0)
core_boolean_arg = true;

}
else if(Arg2.IsBool())
{

core_boolean_arg = (bool)Arg2;
}
else if(Arg2.IsStr())
{

if(Arg2.First() == L'T' || Arg2.First() == L't')
core_boolean_arg = true;

}
else
{

// Not a type that this function can convert
RetVal.SetToError(xlerrNum);
return false;

}

// Step 3:
// Convert any arguments from input units to units expected by
// core function.

Arg1 /= 100.0;

// Step 4:
// Call the core function and check the return value.
// Declare a variable for the core function return value.

double rtn_value;

if(example_core_fn(Arg1, core_boolean_arg, rtn_value) == false

Miscellaneous Topics 425

|| rtn_value < MIN_RTN_VALUE || rtn_value > MAX_RTN_VALUE)
{

RetVal.SetToError(xlerrValue);
return false;

}

// Step 5:
// Convert the return value to units promised by Excel add-in function

rtn_value *= 100.0;

// Step 6:
// Convert the return value back to the right data type for this
// model, i.e., an xloper

RetVal = rtn_value;
return true;

}

The above two interface functions can then be re-written simply as:

xloper * __stdcall ExampleXllFn(double Arg1, xloper *pArg2)
{

cpp_xloper RetVal, Arg2(pArg2);
example_xll_core_fn(RetVal, Arg1, Arg2);
return RetVal.ExtractXloper();

}

VARIANT __stdcall ExampleVtFn(double Arg1, VARIANT *pArg2)
{

cpp_xloper RetVal, Arg2(pArg2);
example_xll_core_fn(RetVal, Arg1, Arg2);
return RetVal.ExtractVariant();

}

And with no further effort, an xloper12 version can also be created:

xloper12 * __stdcall ExampleXllFn12(double Arg1, xloper12 *pArg2)
{

cpp_xloper RetVal, Arg2(pArg2);
example_xll_core_fn(RetVal, Arg1, Arg2);
return RetVal.ExtractXloper12();

}

Suppose, further, that you wanted to be able to call example_core_fn() directly from
VBA but with the argument checking etc. done in the VBA code. In this case, the only
problem is that example_core_fn() is declared as taking and returning a C++ type
bool. However, this is simply a short int set to 0 (False) or to 1 (True) and the VBA
Integer is equivalent to a short int, and so you can declare the function in VBA
like this:

Declare Function example_core_fn Lib "example.dll" _
(ByVal arg_1 As Double, ByVal arg_2 As Integer, _
ByRef rtn_value As Double) As Integer

426 Excel Add-in Development in C/C++

You would also need to change the declaration of example_core_fn() in the DLL to
use the __stdcall WinAPI calling convention, as follows:

bool __stdcall example_core_fn(double arg_1, bool arg_2, double &rtn_value);

In order to check that the add-in is properly initialised, you would also need to export
and declare within VBA, an additional function, say, AddInOK(), as follows:

bool __stdcall AddInOK(void) {return global_AddInOK;}

Declare Function AddInOK Lib "example.dll" () As Integer

Then the same steps 1 to 6 can be performed but in VBA, as shown here.

Function ExampleVbaFn(Arg1 As Double, Arg2 As Variant) As Variant

Dim return_vt As Variant ' type is set to vbEmpty

' Step 1:
' If required, check to see if called from an Excel dialog, or
' check that the required add-in resources have been properly
' initialised.

If Not AddInOK() Then
ExampleVbaFn = CVErr(2042) ' xlerrNA
Exit Function

End If

' Step 2:
' Convert any arguments from input types to types expected by
' core function and check that required inputs exist and are
' within the correct limits.

If Arg1 <= 0# Or Arg1 > MAX_ARG1 Then
ExampleVbaFn = CVErr(2036) ' xlerrNum
Exit Function

End If

' Declare a variable for the second core function argument.
' Assume here that false is the default value

Dim core_boolean_arg As Integer
core_boolean_arg = 0 ' = False

Select Case VarType(Arg2)
Case vbDouble

If Arg2 <> 0# Then
core_boolean_arg = 1 ' True

End If
Case vbBoolean

If Arg2 = True Then
core_boolean_arg = 1 ' True

End If
Case vbString

If Arg2 <> "" And (Left(Arg2, 1) = "T" _
Or Left(Arg2, 1) = "t") Then

core_boolean_arg = 1 ' True

Miscellaneous Topics 427

End If
Case Else ' Not a type that this function can convert

ExampleVbaFn = CVErr(2036) ' xlerrNum
Exit Function

End Select

' Step 3:
' Convert any arguments from input units to units expected by
' core function.

Arg1 = Arg1 * 100#

' Step 4:
' Call the core function and check the return value.
' Declare a variable for the core function return value.

Dim rtn_value As Double

If example_core_fn(Arg1, core_boolean_arg, rtn_value) = 0 _
Or rtn_value < MIN_RTN_VALUE Or rtn_value > MAX_RTN_VALUE Then

ExampleVbaFn = CVErr(2015) ' xlerrValue
Exit Function

End If

' Step 5:
' Convert the return value to units promised by Excel add-in function

rtn_value = rtn_value * 100#

' Step 6:
' Convert the return value back to the right data type

ExampleVbaFn = rtn_value
End Function

In all the above cases, the logic is essentially the same, and the core function has not had
to change. You might feel that the reliance on the fact that the C++ bool is actually a
16-bit signed integer and therefore equivalent to VBA’s Integer, is unsafe: VBA might
one day switch to a 32- or even 64-bit integer, or Microsoft might decide to change
the implementation of a C++ bool. This might be one reason for restricting inputs
and outputs from core functions to ANSI standard data types only. A more practical
step would be to implement a wrapper to the function taking and returning the problem
data type, in this case bool, that converts to, say, an integer, or better still perhaps,
a Variant. The following two examples demonstrate this approach using nothing but
Variants.

// Wraps example_core_fn() and hides the core function's
// data types using VARIANTS

VARIANT __stdcall ExampleWrapper(VARIANT Arg1, VARIANT Arg2, VARIANT
*pRtnVal)
{

VARIANT return_vt;
VariantInit(&return_vt); // type is set to VT_EMPTY
return_vt.vt = VT_BOOL;

// Mimimal type checking only done here
if(Arg1.vt != VT_R8 || Arg2.vt != VT_BOOL)
{

return_vt.boolVal = 0; // False

428 Excel Add-in Development in C/C++

return return_vt;
}

// Call the core function and return the return value.
// Do not check the return values - this is left the
// caller of this wrapper function.

// Declare a variable for the core function return value.
double rtn_value;
bool b = example_core_fn(Arg1.dblVal, Arg2.boolVal==1, rtn_value);

// Convert true to 1, false to 0
return_vt.boolVal = (b ? 1 : 0);

VariantInit(pRtnVal); // type is set to VT_EMPTY
pRtnVal->vt = VT_R8;
pRtnVal->dblVal = rtn_value;
return return_vt;

}

VARIANT __stdcall AddInOK(void)
{

VARIANT vt;
VariantInit(&return_vt); // type is set to VT_EMPTY
return_vt.vt = VT_BOOL;
return_vt.boolVal = global_AddInOK ? 1 : 0;
return return_vt;

}

The above VBA code can then be written as follows:

Declare Function ExampleWrapper Lib "example.dll" _
(ByVal arg_1 As Variant, ByVal arg_2 As Variant, _
ByRef rtn_value As Variant) As Variant

Declare Function AddInOK Lib "example.dll" () As Variant

Function ExampleVbaFn(Arg1 As Double, Arg2 As Variant) As Variant

Dim return_vt As Variant ' type is set to vbEmpty

' Step 1:
' If required, check to see if called from an Excel dialog, or
' check that the required add-in resources have been properly
' initialised.

If Not AddInOK() Then
ExampleVbaFn = CVErr(2042) ' xlerrNA
Exit Function

End If

' Step 2:
' Convert any arguments from input types to types expected by
' core function and check that required inputs exist and are
' within the correct limits.

If Arg1 <= 0# Or Arg1 > MAX_ARG1 Then
ExampleVbaFn = CVErr(2036) ' xlerrNum
Exit Function

End If

Miscellaneous Topics 429

' Declare a variable for the second core function argument.
' Assume here that false is the default value

Dim core_boolean_arg As Variant
core_boolean_arg = False

Select Case VarType(Arg2)
Case vbDouble

Arg2 = (Arg2 <> 0#)
Case vbString

If Arg2 <> "" And (Left(Arg2, 1) = "T" _
Or Left(Arg2, 1) = "t") Then

Arg2 = True
End If

Case Else ' Not a type that this function can convert
ExampleVbaFn = CVErr(2036) ' xlerrNum
Exit Function

End Select

' Step 3:
' Convert any arguments from input units to units expected by
' core function.

Arg1 = Arg1 * 100#

' Step 4:
' Call the core function and check the return value.
' Declare a variable for the core function return value.

Dim rtn_value As Variant

If ExampleWrapper(Arg1, Arg2, rtn_value) = False _
Or rtn_value < MIN_RTN_VALUE Or rtn_value > MAX_RTN_VALUE Then

ExampleVbaFn = CVErr(2015) ' xlerrValue
Exit Function

End If

' Step 5:
' Convert the return value to units promised by Excel add-in function

rtn_value = rtn_value * 100#

' Step 6:
' Convert the return value back to the right data type

ExampleVbaFn = rtn_value
End Function

9.13.2 Controlling error propagation

The default behaviour of many of Excel’s functions and of regular expressions within
cells where one of the precedents is an error, is to propagate the error. This is certainly a
safe thing to do, alerting the user to the fact that something somewhere upstream of the
given cell is not right.

There are, however, times when you might want to override this default behaviour.
Excel provides a couple of functions ISERR() and ISERROR() that enable you to test for
errors. ISERR() returns true when its single argument evaluates to any error except #NA.
ISERROR() does the same but also catches #NA. Wrapping your inputs up in statements such
as IF(ISERROR(A1),safe value,A1) is laborious, but maybe sometimes necessary, although
you are still faced with deciding what the safe value should be. Excel 2007 introduces

430 Excel Add-in Development in C/C++

a new function IFERROR(value, value if error) which simplifies things a little. Table 9.7
demonstrates how these functions work.

Table 9.7 Error detection and processing
examples in Excel

A1: #NA #VALUE!

IF(ISERR(A1),1,0) 0 1

IF(ISERROR(A1),1,0) 1 1

IF(A1,1,0) #NA #VALUE!

IFERROR(A1,0) 0 0

You may also want to extend what you consider to be errors to include strings starting
with a #. Again, you could wrap an input up within an expression like IF(ISERROR(A1),
safe value,IF(AND(ISTEXT(A1),LEFT(A1,1)= "#"),safe value,A1) but this is even more cumber-
some.

One practical example of this problem is where you are linking to external data via
a third-party real-time data function such as Reuters’ RtUpdate() which returns strings
starting with # whenever there is a problem with an input or a data feed. You might be
happy with a safety-first approach that treats this as an error and then propagates it to all
dependents. On the other hand, the fact that this might render a whole workbook useless
might be a bigger problem than stale data.

One solution is to create a function that takes the input to be tested, returns it unchanged
if it is not an error, otherwise returns the previous value of this cell, call it, NoErr(). For
example, if A1 contains the source value, and B1 contains the formula =NoErr(A1), then
B1 would equal A1 whenever A1 was not an error, else it would contain the value held
by B1immediately prior. Such a function needs to be able to access and return its own
value, something that can only be done by macro-sheet equivalent functions, i.e., functions
registered with a # in the type argument. Note that it will only have the desired effect
if used on its own within a cell. For example, if A1 contained an error, the expression
=SQR(NoErr(A1)) would return zero or a sequence of numbers converging on 1, instead of
the last good value of A1.

Creating such a function is reasonably straightforward using the C API functions
xlfCaller and xlCoerce to retrieve the most recent value of the caller. The fol-
lowing code lists a function that behaves as described above, using is_error() to test
for errors. Note that, where the input is an array, it is necessary to test every element in
the array individually and to replace errors with the corresponding element of the calling
array where they contain errors.

The following example permits a more flexible definition of what constitutes an error: It
optionally calls a specified user-defined function (UDF) using the C API function xlUDF.
The name of the UDF is passed in as an optional string argument. The function could
be another XLL function (from the same or a different add-in) or a VBA function. (See
xlUDF on page 363 for examples).

Miscellaneous Topics 431

bool is_error(xloper *p_op, xloper *pUDF = NULL)
{

if(pUDF && pUDF->xltype == xltypeStr)
{

cpp_xloper UdfRetVal;
return UdfRetVal.Excel(xlUDF, 2, pUDF, p_op)
!= xlretSuccess) || UdfRetVal.IsTrue();

}
// Default test if UDF is not a string

return p_op->xltype == xltypeErr;
}

// Returns input value unless it is an error in which case returns last
value

xloper * __stdcall no_error(xloper *p_input, xloper *pUDF)
{

cpp_xloper Caller;

if(p_input->xltype == xltypeMulti) // need to check elt-by-elt
{

Caller.Excel(xlfCaller);

if(!Caller.ConvertRefToMulti())
return p_xlErrNa;

// First check that input and calling range are same size and shape
cpp_xloper Input(p_input); // Shallow copy
if(!Input.SameShapeAs(Caller))

return p_xlErrValue;

DWORD i, size;
Input.GetArraySize(size);
xloper *p_op = p_input->val.array.lparray;
for(i = 0; i < size; i++, p_op++)
{

if(is_error(p_op, pUDF))
continue;

// else copy the input value into the array
Caller.SetArrayElt(i, p_op);

}
return Caller.ExtractXloper();

}
if(is_error(p_input, pUDF))

goto rtn_current_val;

return p_input;

rtn_current_val:
Caller.Excel(xlfCaller);
if(!Caller.IsType(xltypeSRef | xltypeRef))

return NULL;

cpp_xloper RetVal;
RetVal.Excel(xlCoerce, 1, &Caller);
if(RetVal.IsType(xltypeErr))

RetVal = 0.0;
return RetVal.ExtractXloper();

}

432 Excel Add-in Development in C/C++

Note that the user-defined function passed should be the registered name of a function
in an XLL or XLA add-in. If passed an invalid function name or a function that is
defined in a module outside the calling workbook, the call to xlUDF will fail with an
error xlretInvXloper (8). The following example UDF tests the passed-in value or
cell-reference for the additional condition of it being a string starting with #. (This is
registered in the example project on the CD ROM as IsErrUdf.)

xloper * __stdcall is_error_UDF(xloper *p_op)
{

cpp_xloper Op(p_op);

// If a reference type, coerce to a value (dereference) before testing
// Don't need this if p_op registered as type P

if(Op.IsRef() && !Op.ConvertRefToSingleValue())
return p_xlTrue; // Could not coerce

if(Op.IsErr() || (Op.IsStr() && Op.First() == L'#'))
return p_xlTrue;

return p_xlFalse;
}

9.13.3 Making add-in behaviour Excel version-sensitive
and backwards-compatible

It is a good idea to set a global variable in your add-in at start up (from xlAutoOpen)
that contains the current Excel version number. This is particularly important with the
release of Excel 2007 which introduces a larger grid, new worksheet functions and a
multi-threaded calculation capability. The version is easily obtained using the C API
function xlfGetWorkspace with argument 2, which returns the number as a string:

int gExcelVersion = 0; // Interpret zero as version unknown

void set_global_ExcelVersion(void)
{
// Use xlopers, as we don't yet know if Excel 2007 and xloper12s are
// available.

xloper version, arg;
arg.val.w = 2;
arg.xltype = xltypeInt;

if(Excel4(xlfGetWorkspace, &version, 1, &arg) == xlretSuccess
&& version.xltype == xltypeStr)
{

arg.val.w = xltypeInt;
// Convert version from string to integer (re-use arg for the return value)

if(Excel4(xlCoerce, &arg, 2, &version, &arg) == xlretSuccess)
gExcelVersion = arg.val.w;

Excel4(xlFree, 0, 1, &version); // Free the Excel-allocated string
}

}

You might also want to make your VBA code version-specific. Again, this is easily
done using the Application.Version property which returns the same information, the
version number as a string, as xlfGetWorkspace(2).

Miscellaneous Topics 433

The example in section 10.2.5 The normal distribution on page 470 assumes this vari-
able exists and uses it to determine whether to use Excel’s own functions or the XLL’s if
the version is 9 or below. This is to work around the deficiencies in these earlier versions.

As well as making your add-in code version-specific and backwards-compatible, you
might need to do the same with your workbooks. The simplest way to do this is by
defining a name such as XL VERSION as either =INFO("release") or =GET.WORKSPACE(2),
both of which return the version as a string, and referring to this in worksheet formulae.
Where an older version of Excel contains a worksheet formula that calls a function that
does not exist, the formula will evaluate to #NAME?, so you may need to control the
propagation of these errors as discussed in the previous section. Note that a formula such
as IF(XL VERSION>=12,NewFunc(A1),OldFunc(A1)) will evaluate to #NAME? if called in, say,
version 10 where NewFunc() does not exist, even though OldFunc() does.

You should include some useful version-related constants in your project, for example:

#define MAX_XL11_ROWS 65536
#define MAX_XL11_COLS 256
#define MAX_XL12_ROWS 1048576
#define MAX_XL12_COLS 16384
#define MAX_XL11_UDF_ARGS 30
#define MAX_XL12_UDF_ARGS 255
#define MAX_XL4_STR_LEN 255u
#define MAX_XL12_STR_LEN 32767u

You may want to access a different DLL function in Excel 2007 when a given XLL-
exported worksheet is called than in earlier versions. This may be to take advantage of
one of the new features of Excel 2007 or the updated C API such as bigger grids, longer
strings, or more function arguments, for example. Section 8.6.12 Registering functions
with dual interfaces for Excel 2007 and earlier versions on page 263 covers this subject
in detail.

9.13.4 Version-dependent workbook recalculation results

The above approach outlined in section 8.6.12 on page 263 leads to the possibility that
a worksheet running in 2003 might display different results than the same sheet running
in 2007. For example a Unicode string in a 2003 worksheet cell would be mapped down
to an ASCII byte string and truncated for an XLL function call, but not in 2007. This
might lead to a different return result. You should be aware of this possibility and the
consequences to your users of version-dependent results, not just in the upgrade to Excel
2007. Some built-in numerical functions were improved between Excel 2000 and Excel
2003, for example.

9.14 OPTIMISATION

The main reason for choosing to develop an XLL is to make the most of the performance
benefit of compiled over VBA code. The C API also provides the quickest way for Excel
to access that functionality. Beyond the choice of add-in development environment, there
is still a need to make sure that Excel is not doing more work than it needs to. This section
contains practical advice on how to optimise your workbook and add-in functions.

434 Excel Add-in Development in C/C++

9.14.1 Low level code optimisation

Code optimisation has almost become the guilty pleasure of developers: a foolish practice
to be kept secret from a mainstream that tends to view overall design as the only important
concern. The main reasons for this are easy to understand: early optimisation might close
the door on generalisation of code at a later date, forcing extensive re-writing; developers
waste time improving their code in ways that optimising compilers may do for them;
over-optimised code is often difficult to follow, modify and debug; machines are getting
faster and cheaper so development time is becoming relatively more expensive. The two
golden rules of optimisation, (1. Optimise later; 2. Don’t optimise.) have become the
accepted wisdom.

That said, the author is firmly in the camp that believes that writing efficient code is an
important basic skill, and that certain things should be done as a matter good habit. The
problem is that developers who don’t think they need to worry, often write code that can be
an order of magnitude or more slower than it needs to be. It would not matter except that
this can make the difference between a system working within design parameters or not.
Performance problems in large systems may not be apparent until all the pieces have been
written, tested and put together. Performance-testing individual components might only
be possible where the other components already exist or sophisticated test-harnesses have
been created. Every developer with more than a few years experience will have first-hand
experience of the chaos that can occur when an entire development team suddenly realises
they need to make big improvements to the performance of a large system in a hurry.

Excel add-ins are unlikely to be critical core components of a large system, but the
philosophy should still be one of budgeting time. The rest of this section discusses the cost
of software in that loose context. An awareness of cost is based on a good understanding
some very basic software concepts, the most important of which are:

• Avoid loop-invariant expressions within a loop
• Code polynomials and algebraic expressions efficiently
• Use expensive functions, e.g trigonometric functions, sparingly
• Minimise implicit type conversions
• Save expensive results that are more than likely to be used again
• Minimise implicit calls to constructors and destructors

As it is not the intention of this book to lecture the reader on basic development concepts
and practice, there follows only brief examples of the right way and the wrong way to
do some of these things.

Consider the following (admittedly unlikely) code:

#include <math.h>

class loop_example_class
{
public:

loop_example_class() : m_Size(0) {}
loop_example_class(int size) : m_Size(size) {}
∼loop_example_class();
int GetSize(void) const {return m_Size;}
double GetPower(double arg) const {return pow((double)m_Size, arg);}

Miscellaneous Topics 435

private:
int m_Size;

};

double bad_loop_example(int arg)
{

int i, j;
double result = 0.0;
loop_example_class Inst(arg);

for(i = 0; i < Inst.GetSize(); i++)
for(j = 0; j < exp(i); j++)

result += Inst.GetPower(i) + j;

return result;
}

The loop invariant expressions Inst.GetSize(), Inst.GetPower(i) and exp(i)
are obvious, but less obvious are the three implicit type conversions, made explicit here:

double bad_loop_example_explicit(int arg)
{

int i, j;
double result = 0.0;
loop_example_class Inst(arg);

for(i = 0; i < Inst.GetSize(); i++)
for(j = 0; j < (int)exp((double)i); j++)

result += Inst.GetPower((double)i) + j;

return result;
}

Type conversions of this sort might not be too expensive for basic data types, and might
even be handled by temporary variables created by an optimising compiler, but this may
not be true with more complex data types with, say, overloaded cast operators. Solving
both of these problem in one go results in the following code:

double better_loop_example(int arg)
{

int i, j;
double result = 0.0;
loop_example_class Inst(arg);
int i_limit = Inst.GetSize(); // = arg, but we can't know
int j_limit;
double power;

for(i = 0; i < i_limit; i++) // i_limit only evaluated once
{

j_limit = (int)exp(i); // j_limit only evaluated arg times
power = Inst.GetPower(i);

for(j = 0; j < j_limit; j++)
result += power + j;

436 Excel Add-in Development in C/C++

}
return result;

}

You can be tempted to go too far: The following code shows examples of this, the
comments explaining why the optimisations are not necessarily a good idea:

double over_optimised_loop_example(int arg)
{

int i;
double result = 0.0;
loop_example_class Inst(arg);

// Assumes knowledge of private logic in loop_example_class
int i_limit = arg;
int j_limit;
double power;

for(i = 0; i < i_limit;)
{

j_limit = (int)exp(i);

// Very small saving from inclusion of i++ in this, and runs
// risk of lines being added later in error after increment

power = Inst.GetPower(i++);

// Next line assumes that logic that was in the j loop will
// never change in a way that invalidates this algebraic
// simplification. Also hides what might otherwise have been
// obvious and clear logic or requirements

result += j_limit * (power + (j_limit + 1) / 2.0);
}
return result;

}

Although demonstrated with C++ examples, these problems appear just as much in other
languages including VB. VB in some ways has worse problems with implicit data con-
version when Variants are being used: A very straight-forward optimisation in VB is to
restrict data types to, say, Doubles or Integers instead of Variants, where possible.

In C/C++, use of pointer-incrementation instead of array-indexation within loops is a
good idea, but only where this does not obscure the logic of the code.

Polynomials of known degree should be coded along the following lines:

// Evaluate cf[0] + cf[1].x + cf[2].x^2 + cf[3].x^3 + cf[4].x^4
double good_deg4_polynomial(double *cf, double x)
{

return cf[0] + x*(cf[1] + x*(cf[2] + x*(cf[3] + x*cf[4])));
}

You should consider an alternative career if you like the idea of either of the following
two examples.

Miscellaneous Topics 437

double bad_deg4_polynomial(double *cf, double x)
{

return cf[0] + x*cf[1] + x*x*cf[2] + x*x*x*cf[3] + x*x*x*x*cf[4];
}

double shockingly_bad_deg4_polynomial(double *cf, double x)
{

return cf[0] + pow(x,1) * cf[1] + pow(x,2) * cf[2]
+ pow(x,3) * cf[3] + pow(x,4) * cf[4];

}

Where the degree is unknown, something simple like this is recommended:

double good_degN_polynomial(double *cf, double x, int degree)
{

double pow_x = 1.0;
double result = cf[0];

for(int i = 1; i <= degree;)
result += (pow_x *= x) * cf[i++];

return result;
}

Where code is mathematically expensive, for example, relying heavily on trigonometric
functions, thought should be given to storing results that might be needed again: memory is
plentiful and access is fast. An example of when this is a good idea is during the evaluation
of the Black(-Scholes) option model. The following very simple class encapsulates the
Black option model. The additional cost of calculating both call and put is very small
if put-call parity is used. If simple derivatives are required, the computational benefit of
these being evaluated at the same time as price is significant, compared with evaluating
each independently, especially given the expense of the normal distribution function.
The following example class is a no-frills Black option class. It has a member function,
Calc(), that evaluates both put and call prices, and the greeks if called with the optional
argument set to true, with the results being read using accessor functions.

class BlackOption
{
public:

BlackOption(double t_exp, double fwd, double strike, double vol)
: m_Texp(t_exp), m_Fwd(fwd), m_Strike(strike), m_Vol(vol)

{
if(m_Texp < 0.0)

m_Texp = 0.0;

m_Intrinsic = m_Strike - m_Fwd; // intrinsic value of put
m_vRootT = m_Vol * (m_RootT = sqrt(m_Texp));

}

BlackOption() {memset(this, 0, sizeof(BlackOption));}

void SetVol(double vol) {m_vRootT = (m_Vol = vol) * m_RootT;}

438 Excel Add-in Development in C/C++

void SetFwd(double fwd) {m_Intrinsic = m_Strike - (m_Fwd = fwd);}
void SetStrike(double strike) {m_Intrinsic = (m_Strike=strike)-m_Fwd;}
void SetTexp(double t_exp)
{

if(t_exp < 0.0)
return;

m_vRootT = m_Vol * (m_RootT = sqrt(m_Texp = t_exp));
}
bool Calc(bool calc_derivs = false);
double GetCallPrice() {return m_Call;}
double GetPutPrice() {return m_Put;}
double GetCallDelta() {return m_CallDelta;}
double GetPutDelta() {return m_PutDelta;}
double GetGamma() {return m_Gamma;}
double GetVega() {return m_Vega;}

protected:
// Inputs

double m_Texp, m_Fwd, m_Strike, m_Vol;

// Outputs
double m_Call, m_Put, m_Straddle, m_Intrinsic;
double m_CallDelta, m_PutDelta;
double m_Gamma, m_Vega;

// Interim calculations
double m_RootT, m_vRootT;

};

#define MAX_DOUBLE (1.7976931348623158e308)
#define ROOT_2PI (2.506628274631)
#define n(x) (exp(-0.5 * (x) * (x)) / ROOT_2PI)
double __stdcall ndist(double d);

bool BlackOption::Calc(bool calc_derivs)
{

if(m_Strike <= 0.0 || m_Fwd <= 0.0 || m_Texp < 0.0)
return false;

if(m_Texp == 0.0) // Intrinsic value only
{

if(m_Intrinsic > 0.0) // put in-the-money
{

m_Put = m_Intrinsic;
m_PutDelta = 1.0;
m_Call = m_CallDelta = 0.0;

}
else if(m_Intrinsic < 0.0)
{

m_Put = m_PutDelta = 0.0;
m_Call = -m_Intrinsic;
m_CallDelta = 1.0;

}
else
{

m_Put = m_PutDelta = m_Call = m_CallDelta = 0.0;
}
m_Straddle = m_Call + m_Put;
m_Gamma = MAX_DOUBLE; // really infinity but...
m_Vega = 0.0;
return true;

Miscellaneous Topics 439

}

if(m_Vol <= 0.0)
return false;

double d1 = log(m_Fwd / m_Strike) / m_vRootT + m_vRootT / 2.0;
double N1 = ndist(d1); // ndist(x) = N(x)
double N2 = ndist(d1 - m_vRootT);

m_Call = m_Fwd * N1 - m_Strike * N2;
m_Put = m_Call + m_Intrinsic;
m_Straddle = m_Call + m_Put;

if(!calc_derivs)
return true;

// Hedge calculations assume constant volatility
double n1 = n(d1); // n = dN(x)/dx
m_PutDelta = (m_CallDelta = N1) - 1.0;
m_Gamma = n1 / m_vRootT / m_Fwd / m_Vol;
m_Vega = n1 * m_vRootT * m_Fwd;
return true;

}

The following XLL-exportable function shows a simple example of its use. It is also used
in the example implementation of CMS derivative pricing (see section 10.11 on page
513).

xloper * __stdcall BlackOpt(double t_exp, double fwd, double strike,
double vol)

{
BlackOption Opt(t_exp, fwd, strike, vol);
Opt.Calc(true); // true: calc greeks

#define NUM_BLACK_RTN_VALS 6

double ret_vals[NUM_BLACK_RTN_VALS] = {
Opt.GetCallPrice(), Opt.GetPutPrice(),
Opt.GetCallDelta(), Opt.GetPutDelta(),
Opt.GetGamma(), Opt.GetVega()};

// Return a single row array
cpp_xloper RetVal((RW)1, (COL)NUM_BLACK_RTN_VALS, ret_vals);
return RetVal.ExtractXloper();

}

C++ class construction iteratively (and implicitly) calls the constructor of any contained
class. Consider the following example:

class A
{
public:

A() {m_iVal = 0;}
A(int i) {m_iVal = i;}
void SetVal(int i) {m_iVal = i;}
int GetVal(void) const {return m_iVal;}

440 Excel Add-in Development in C/C++

private:
int m_iVal;

};

class B
{
public:

B(int i) {m_Ainstance.SetVal(i);}
int GetVal(void) const {return m_Ainstance.GetVal();}

private:
A m_Ainstance;

};

class C
{
public:

C(int i) : m_Ainstance(i) {}
int GetVal(void) const {return m_Ainstance.GetVal();}

private:
A m_Ainstance;

};

When an instance of class B is created, the contained instance of class A’s member
variable m_iVal is first initialised to zero in an implicit call to A’s default constructor,
and then is reset with an explicit call to SetVal(). In class C, on the other hand, A’s
second constructor is called explicitly and m_iVal is set only once. This is a trivial
example of something that experienced C++ programmers will be well aware of, but with
more complex objects such things can have a significant impact on performance.

Also on the subject of minimising constructor and destructor calls, classes should always
be passed and returned by reference (or by pointer). Passing or returning by value causes
the implicit creation, copying and destruction of temporary class instances.

You should also avoid calling into Excel through the C API for functions that are also
available in standard string or mathematics libraries, for example. This is because the
overhead of calling into Excel is significant. You can break this rule where you are not
calling back into Excel very often, or where you need compatible behaviour with the
worksheet functions.

There are many other ways in which code can leak performance, such as the inefficient
use of arrays, for example. These are too numerous to go into in great detail, suffice to
say that there is still good reason to write nice code.

9.14.2 VBA code optimisation

Given that VBA is much slower than compiled C++, it is likely that at some point you
will find there is a performance bottleneck in your VBA code. The highly-recommended
Professional Excel Development10 contains a chapter specifically about the optimisation of
VBA. The following list reproduces some of the optimisations they recommend, although
there is a great deal more said in their text.

10 Bullen, Bovey and Green, 2005, Addisson Wesley.

Miscellaneous Topics 441

• Use matching data types to avoid implicit conversions, and use Variants only where
necessary.

• Perform explicit type conversions CStr(), CDbl(), etc., instead of VBA’s implicit
conversions.

• Use Len(string)= 0 instead of string= "" to detect zero length/empty strings.
• Use string-typed string functions instead of Variant functions, e.g., use Left() instead

of Left().
• Pass strings and arrays ByRef instead of ByVal.
• Use Option Compare Text to make string comparisons case-sensitive by default,

using the CompareMethod of StrComp() when case-insensitivity is needed.
• Avoid late binding by declaring object variables as their explicit types instead of As
Object.

• Use integer division instead of floating point division (\ instead of /) where integer
arguments are being evaluated to an integer.

• Iterate collections using For Each instead of For Next and indexing.
• Iterate arrays using For Next and indexing instead of For Each.
• Use If bVariable Then. . . instead of If bVariable = True Then. . ..
• Use If. . . Then. . . ElseIf. . . Then. . . instead of IIF() or Select Case
• Use With. . . End With blocks wherever possible.

There may be times when you feel the readability of your code is improved with one of
the less-efficient ways of doing things. Select Case for example leads to very readable
maintainable code, so you might justifiably prefer it.

9.14.3 Excel calculation optimisation

Optimising the calculation time of an Excel spreadsheet is a far more complex topic than
the code optimisations discussed briefly above. There are many more factors that can
affect the perceived amount of time spent in recalculation:

• System resource availability and performance (memory, processor, disk and network
access time, multi-threading settings in Excel 2007, etc.)

• Workbook complexity (inter-workbook and inter-worksheet links, number of cells con-
taining formulae, display complexity, etc.)

• Worksheet formula choices (use of volatile functions, use of inefficient functions)
• XLL add-in and user-defined function performance
• VBA user-defined function performance
• COM add-in function performance

Understanding the first point, resource availability, is key to knowing how much effort
to put into resolving the others. A system that’s low on memory or that makes frequent
access to a remote system via a slow network connection, or a remote system that is
struggling to keep up, will not be helped much by increasing the speed of execution of an
add-in function. Equally, where a simple and cheap upgrade of hardware will restore the
recalculation time expected by the user, relatively costly development hours are probably
better not spent on optimisation. With Excel 2007, the purchase of a second processor or
a dual-core machine could reduce calculation times by up to half.

442 Excel Add-in Development in C/C++

Multi-threading in Excel 2007 can also improve performance on a single processor
machine where a UDF makes a call to a remote calculation server (or server farm or
cluster) where the server has many processors. This enables the single processor machine
to send many requests off to the server roughly at the same time, fully loading the server,
rather than having to wait for each calculation request to complete before sending the next.

Even given the often better alternatives to re-coding, you would hope not to end up in
a situation where you have to perform emergency optimisation on your workbooks and
projects. Following sound principles from the outset, performance should only deteriorate
slowly as new features/code/cells are added. However, there are times when things can
get a little sluggish and the rest of this section aims to provide some practical advice on
what to do.

Many of the previous chapters and sections of this book refer to performance. In fact,
given that the use of XLLs is largely a performance-driven choice, you could say that
this entire book is about improving performance. So rather than restating all that has been
said already, this section refers back to those sections and adds additional advice where
necessary. There is one important point that applies to all programming optimisation, and
that is to avoid, or at least be aware of, implicit type conversions. When designing the
interfaces for your XLL worksheet function exports, and you need to get best possible
performance, it is better to register all of your arguments as value xloper/xloper12s
(type P/Q) as this avoids the overhead of Excel conversion. You do, of course, then need
to check that the types in your code are correct, and convert them or fail, depending on
how exacting you are with the caller.

Before getting to that, there is some ancient Excel-lore that states that you should
try to arrange your calculations on the sheet such that dependencies run from top-
left to bottom-right. For example, B2 depending on A1 is good; vice versa is bad.
Whilst this might have been good advice in some past version of Excel (or perhaps some
other spreadsheet package) the author can find nothing to suggest this will
improve performance. The two workbooks TopLeftDrivenCalcTest.xls and
BottomRightDrivenCalcTest.xls contain named ranges of 50,000 cells, contain-
ing volatile formulae, that are recalculated 1,000 times under VBA macro control. As you
can verify for yourself, the recalculation times are as good as identical.

Section 2.12 Excel recalculation logic, page 33, covers the differences between the
way Excel 97 and 2000 differ from versions 2002+ with respect to the recalculation of
inter-worksheet (not inter-workbook) links. If you or your users are or might be using
97 or 2000 you should be aware of the recalculation problems that careless use of such
links can cause and follow the advice in that section. The section also covers the use and
mis-use of volatile functions, another potential performance black hole, as well as data
tables, where completion of recalculations may not always be obvious, as well as being
slow.

Section 2.16 Good spreadsheet design and practice, page 49, covers some basic ideas
relating to the choice of worksheet function that you make. In particular it discusses
formula repetition and using MATCH() and INDEX() instead of VLOOKUP(). There are
myriad examples that could be thought up of two or more ways to use Excel’s own
functions to do the same thing, for example:

=IF(INT(A1)= 1,C1,IF(INT(A1)= 2,C2,IF(INT(A1)= 3,C3,# VALUE!)))
=CHOOSE(A1,C1,C2,C3)
=INDEX(C1:C3,A1)

Miscellaneous Topics 443

These 3 expressions all do almost the same thing. (The third will return a #REF!
error if A1¿3 and INDEX(C1:C3,1.999999761466)will round up to 2 and return C2, whereas
1.999999761465 will round down). Clearly, without some good reason for choosing the
first, the second and third are far more succinct, readable and efficient. It is amazing
that people struggle with the limitation of the number of nested IF()s that Excel allows
([v11–]: 7, [v12+]: 64) and the ingenious work-arounds, such as splitting more nested
IF()s across more than one cell. If you need more than 3 or 4 in a single expression you
should certainly be considering something like CHOOSE or INDEX instead, for reasons of
readability, if not performance.

Much of the skill of knowing which combination of Excel’s own functions to best use
can only come with experience, although the general advice is that keeping things simple
and readable will automatically keep them efficient in most cases. This is explained further
in section 2.12.8 on page 41, which covers argument evaluation in functions that condi-
tionally ignore some of their arguments, for example, the functions IF(), OR(), AND() and
CHOOSE(): All arguments are recalculated prior to Excel calling the function, regardless
of whether or not the result will be ignored. This clearly has an impact on recalculation
time and the section’s advice of using only simple arguments, even if that means refer-
ences to cells containing complex expressions, should always be followed. This is even
true to the extent that an expression like =B5*IF(C6,1,±1) is slightly more efficient than
=IF(C6,B5,±B5), since in the first example B5 is only dereferenced once.

Once you are happy that any sluggishness cannot easily be removed by optimising
add-in code (after all, you may only have Excel formulae in your workbook), and you
have scoured the workbook for inefficient formulae, you must turn to fine-tuning what
Excel does and does not calculate. In a large workbook, you may have sheets that do not
need to be calculated when the sheet is not being viewed. In other words you may want
to turn off a sheet’s calculation unless it is active. This can make a huge difference to a
large workbook, and fortunately there are a couple of ways to achieve this. An example
of such a sheet might be one that shows a detailed breakdown of something that you
ordinarily do not need to see, or that calculates and displays data graphically.

The Excel.Worksheet object exposes a property EnableCalculation whose default
state is True and can be switched off in a VBA macro or with a call via COM. The most
straightforward approach is to place a couple of event traps in the worksheet’s VBA code
module, as shown here:

Private Sub Worksheet_Activate()
EnableCalculation = True

End Sub

Private Sub Worksheet_Deactivate()
EnableCalculation = False

End Sub

This will have the effect of stopping calculation except when active. On activation, the
setting of the property from False to True triggers Excel to recalculate the sheet, so
that, from the user’s point of view, data will always seem up-to-date (once recalculation
is complete).

The following event will cause the sheet to be updated once only when it becomes
active, but then to be static. There may not be many times when you can get away with
this or need to do it, however.

444 Excel Add-in Development in C/C++

Private Sub Worksheet_Activate()
EnableCalculation = True
EnableCalculation = false

End Sub

Given that you can do these things, you should be designing your workbook to maximise
the number of sheets that you can do this with. This means sketching out the function
of each sheet, the dependencies, and the drivers of calculations. For example, suppose
you want to create a simple workbook that pulls in real-time market data and prices a
small portfolio of derivatives. A sensible hierarchy of worksheets might look something
like this:

Worksheet Notes

Config EnableCalculation: always true

Processes configuration data that is used when building curves, pricing
positions, etc. Calculations are driven by changes to configuration data and a
master non-volatile trigger (could be today’s date).

Curves EnableCalculation: always true

Contains all links to external dynamic real-time data. Processes data for use in
pricing, and increments triggers for dependent calculations.

Portfolio EnableCalculation: true when active only, or always true (see note)

Calculates present value of position in the portfolio using configuration data
from Config and market data from Curves.

Note: Provided other sheets that need real-time updates do not link to this
sheet, this can be recalculated when active only.

Risk EnableCalculation: true when active only

Calculates portfolio risk and display graphs. Depends on volatile curve data
and non-volatile data from Portfolio sheet, i.e., does not depend on Portfolio
being recalculated when curves change.

xCashflow EnableCalculation: true when active only

Calculate and display actual and anticipated cashflows.

Note that xCashflow is so named to ensure that it is after Config and Curves alphabetically,
for the benefit of those running the workbook in versions 97 and 2000.

You may need to go one step further, and be more selective in what you let be recal-
culated on a given sheet. For example, you may have some cells that drive calculations
in other sheets, but other related cells that take a long time to recalculate but do not
drive such things. In this case you would ideally like to be able to tell a function to
recalculate only when it is on the active sheet. As such functions are likely to be either

Miscellaneous Topics 445

VBA user-defined functions or XLL functions, the question is then how can a function
determine this.

In both these cases the trick is to find out where the function is being called from: is
it a worksheet cell or range of cells; are they on the active sheet; and so on. In VBA
this is done using Application.Caller. This example returns an incremented counter
if called from the active sheet and returns zero otherwise:

Option Explicit

Dim count As Integer

Function CallerIsActive() As Boolean
Dim r As Range
With Application

If IsObject(.Caller) Then
Set r = .Caller
CallerIsActive = (r.Worksheet.Index = ActiveSheet.Index)
Set r = Nothing
Exit Function

End If
End With
CallerIsActive = False

End Function

Function ExampleActiveOnly(trigger As Integer) As Variant

If CallerIsActive() Then
count = count + 1
ExampleActiveOnly = count

Else
ExampleActiveOnly = 0 ' return default value

End If

End Function

Note that the function CallerIsActive compares the Worksheet.Index property rather
than the .Name property, a much faster operation and safe within the context of a function
whose scope is this workbook. Note also the explicit use of a Range object to ensure
early binding of the .Worksheet property. Though the saving may be small, it’s good
practice. The statement Set r = Nothing in theory ought not to be necessary as VBA’s
garbage collector should free any resources associated with the reference. However, this
may not always happen as it should so it is good practice to do this explicitly all the same.

You should remember that all this check saves you is the recalculation time of the
given function. It does not prevent dependents being recalculated.

One limitation of doing this with VBA is that it cannot return the last value(s) of the
calling cell(s). The statement ExampleActiveOnly = Application.Caller.Value2,
apart from its assumption that Caller is a Range object, would lead Excel to complain
of a circular reference. This is unfortunate, as this is precisely what you would like to be
able to do: return the old value so that the dependent values do not change to something
invalid.

Fortunately the C API permits XLL functions registered as macro-sheet equivalent to
read the calling cell’s old value, as shown in the following code. This does essentially the
same thing as the above VBA code but with the added benefit of returning the caller’s
last value if not on the active sheet.

446 Excel Add-in Development in C/C++

xloper * __stdcall ExampleActiveOnly(xloper *pTrigger)
{

static count = 0; // could be incremented by more than one thread
cpp_xloper Op;
Op.Excel(xlfCaller); // Set Op = caller's reference

if(Op.IsActiveRef())
Op = ++count; // re-use Op for the return value

else // return the last value
Op.ConvertRefToValues(); // fails if not registered as type #

return Op.ExtractXloper();
}

The cpp_xloper’s member function Excel() calls Excel4v()/Excel12v(), and
sets a flag to tell the class to use xlFree to free the memory. (xloper/xloper12s
of type xltypeRef point to allocated memory). The code for IsActiveRef(), listed
below, uses the C API-only function xlSheetId to obtain the ID of the active sheet.
Note that this ID is not the same as the .Index property from the above VBA example,
which is simply the index in the workbook’s collection of sheets.

// Is the xloper a reference on the active sheet?
bool cpp_xloper::IsActiveRef(void) const
{

DWORD id;
if(gExcelVersion12plus)
{

if(m_Op12.xltype == xltypeSRef) // then convert to xltypeRef
{

xloper12 as_ref = {0, xltypeNil};
xloper12 type = {0, xltypeInt};
type.val.w = xltypeRef;
Excel12(xlCoerce, &as_ref, 2, &m_Op12, &type);

if(as_ref.xltype != xltypeRef)
return false;

id = as_ref.val.mref.idSheet;
Excel12(xlFree, 0, 1, &as_ref);

}
else if(m_Op12.xltype == xltypeRef)

id = m_Op12.val.mref.idSheet;
else

return false;

xloper12 active_sheet_id;

if(Excel12(xlSheetId, &active_sheet_id, 0)
|| active_sheet_id.xltype != xltypeRef
|| id != active_sheet_id.val.mref.idSheet)
{

// No need to call xlFree: active_sheet_id's xlmref pointer is NULL
return false;

}
}
else
{

if(m_Op.xltype == xltypeSRef) // then convert to xltypeRef

Miscellaneous Topics 447

{
xloper as_ref = {0, xltypeNil};
xloper type = {0, xltypeInt};
type.val.w = xltypeRef;
Excel4(xlCoerce, &as_ref, 2, &m_Op, &type);

if(as_ref.xltype != xltypeRef)
return false;

id = as_ref.val.mref.idSheet;
Excel4(xlFree, 0, 1, &as_ref);

}
else if(m_Op.xltype == xltypeRef)

id = m_Op.val.mref.idSheet;
else

return false;

xloper active_sheet_id;

if(Excel4(xlSheetId, &active_sheet_id, 0)
|| active_sheet_id.xltype != xltypeRef
|| id != active_sheet_id.val.mref.idSheet)
{

// No need to call xlFree: active_sheet_id's xlmref pointer is NULL
return false;

}
}
return true;

}

Excel 2007 multi-threading note: Excel 2007 regards functions registered as macro-sheet
equivalents, type #, as thread-unsafe. This prevents ExampleActiveOnly() being
registered as type $ in Excel 2007.

You may also like to create worksheet functions that are only recalculated, say, when
a button on the active sheet is pressed. One way to achieve this is to create functions
that take an argument, perhaps optional, where the functions only recalculate when that
argument is TRUE, and otherwise return the cell’s last value. Again, using VBA this is not
possible. Using the C API this is straightforward, as the following function demonstrates.

xloper * __stdcall ExampleRecalcSwitch(xloper *pArg, xloper *pDontRecalc)
{

cpp_xloper Op, DontRecalc(pDontRecalc);

if(DontRecalc.IsTrue()) // then return the last value
{

Op.SetToCallerValue();
}
else // recalculate
{

Op = pArg;
Op = process_arg((double)Op);

}
return Op.ExtractXloper();

}

448 Excel Add-in Development in C/C++

bool cpp_xloper::SetToCallerValue(void)
{

Free();

if(gExcelVersion11minus)
{

// Get a reference to the calling cell(s)
xloper caller;
if(Excel4(xlfCaller, &caller, 0) != xlretSuccess)

return false;

if(!(caller.xltype & (xltypeRef | xltypeSRef)))
{

Excel4(xlFree, 0, 1, &caller);
return false;

}

// Get the calling cell's value
if(Excel4(xlCoerce, &m_Op, 1, &caller) != xlretSuccess)
{

Excel4(xlFree, 0, 1, &caller);
return false;

}
return m_XLtoFree = true;

}
else
{

// Get a reference to the calling cell(s)
xloper12 caller;
if(Excel12(xlfCaller, &caller, 0) != xlretSuccess)

return false;

if(!(caller.xltype & (xltypeRef | xltypeSRef)))
{

Excel12(xlFree, 0, 1, &caller);
return false;

}

// Get the calling cell's value
if(Excel12(xlCoerce, &m_Op12, 1, &caller) != xlretSuccess)
{

Excel12(xlFree, 0, 1, &caller);
return false;

}
return m_XLtoFree12 = true;

}
}

Without using the cpp_xloper class, the above code could be implemented as follows
in a function registered as type #.

xloper * __stdcall ExampleRecalcSwitch(xloper *pArg, xloper *pDontRecalc)
{
// Not thread-safe, but this function must be registered as type #
// so cannot also be registered as thread-safe in Excel 12

static xloper ret_val;

if(pDontRecalc->xltype == xltypeBool && pDontRecalc->val.xbool == 1)
{

Miscellaneous Topics 449

xloper caller;
Excel4(xlfCaller, &caller, 0);
Excel4(xlCoerce, &ret_val, 1, &caller);
Excel4(xlFree, 0, 1, &caller);
ret_val.xltype |= xlbitXLFree;
return &ret_val;

}
// else recalculate

double result = pArg->xltype == xltypeNum ? pArg->val.num : 0.0;
result = process_arg(result);
ret_val.xltype = xltypeNum;
ret_val.val.num = result;
return &ret_val;

}

All that is then required is a control button on the workbook, a named cell to contain the
switch, call it RecalcSwitch, and the following VBA event trap:

Private Sub CommandButton1_Click()
With Range("RecalcSwitch")

.Value = True // Excel will recalc if calculation set to Automatic

.Value = False
End With

End Sub

One drawback with this approach is the fact that the functions that depend on RecalcSwitch
are recalculated twice every time the button is pressed. In one of these cases recalculation
is slow, and in the other fast, so this is not a serious concern for those functions themselves.
However their dependents are also recalculated, so you should only do this where the
dependents are few or fast and where the initial function execution time is very slow.

10
Example Add-ins and Financial Applications

Developers are always faced with the need to balance freedoms and constraints when
deciding the best way to implement a model. Arguably the most important skill a developer
can have is the ability to choose the most appropriate approach all things considered:
Failure can result in code that is cumbersome, or slow, or difficult to maintain or extend,
or bug-ridden, or that fails completely to meet a completion time target.

This chapter aims to do two things:

1. Present a few simple worksheet function examples that demonstrate some of the basic
considerations, such as argument and return types. For these examples source code is
included on the CD ROM in the example project. Sections 10.1 to 10.4 cover these
functions.

2. Discuss the development choices available and constraints for a number of financial
markets applications. Some of these applications are not all fully worked through in
the book, and some source code is not provided on the CD ROM. Sections 10.5 and
beyond cover these functions and applications.

Some of the simple example functions could easily be coded in VBA or duplicated with
perhaps only a small number of worksheet cells. The point is not to say that these things
can only be done in C/C++ or using the C API. If you have decided that you want or
need to use C/C++, these examples aim to provide a template or guide.

The most important thing that an add-in developer must get right is the function inter-
face. The choices made as to the types of arguments a function takes, are they required or
optional; if optional what the default behaviour is; and so on, are often critical. Much of
the discussion in this chapter is on this and similar issues, rather than on one algorithm
versus another. The discussion of which algorithm to use, etc., is left to other texts and
to the reader whose own experience may very well be more informed or advanced than
the author’s.

Important note: You should not rely on any of these examples, or the methods they
contain, in your own applications without having completely satisfied yourself that
they are correct and appropriate for your needs. They are intended only to illustrate
how techniques discussed in earlier chapters can be applied.

10.1 STRING FUNCTIONS

Excel has a number of very efficient basic string functions, but string operations can
quickly become unnecessarily complex when just using these. Consider, for example, the
case where you want to substitute commas for stops (periods) dynamically. This is easily
done using Excel’s SUBSTITUTE(). However, if you want to simultaneously substitute
commas for stops and stops for commas things are more complex. (You could do this in

452 Excel Add-in Development in C/C++

three applications of SUBSTITUTE(), but this is messy.) Writing a function in C that does
this is straightforward (see replace_mask() below).

The C and C++ libraries both contain a number of low-level string functions that can
easily be given Excel worksheet wrappers. This section presents a number of example
functions, some of which just wrap standard library functions. The code for all of
these functions is listed in the Example project on the CD ROM in the source file
XllStrings.cpp. When registered with Excel, they are added to the Text category.

Excel 2007 gives the C API access to Unicode strings of much greater length than the
byte-strings of earlier versions. Section 8.6.12 Registering functions with dual interfaces
for Excel 2007 and earlier versions on page 263 explains how to register worksheet
functions that call a different underlying DLL export depending on the running version.
This enables your functions to get the optimum behaviour. The examples in this section
are, therefore, given in both 2003− and 2007+ flavours.

Function
name

count_char_xl4 or count_char_xl12 (exported)
CountChar (registered with Excel)

Description Counts the number of occurrences of a given ASCII character.

Type string "HCP" (2003), "HC%Q$" (2007)

Notes Function does not need to be volatile and does not access any C
API functions that might require it to be registered as a macro sheet
equivalent function. 2007 version is thread-safe.

// Core functions
size_t count_char(char *text, char ch)
{

if(!text | | !ch)
return 0;

for(size_t count = 0; *text;)
if(*text++ == ch)

count++;
return count;

}
size_t count_char(wchar_t *text, wchar_t ch)
{

if(!text | | !ch)
return 0;

for(size_t count = 0; *text;)
if(*text++ == ch)

count++;
return count;

}

// Excel 11- interface function. Uses xlopers and byte-string
size_t __stdcall count_char_xl4(char *text, xloper *p_ch)
{

cpp_xloper Ch(p_ch);
char ch;
if(Ch.IsStr())

Example Add-ins and Financial Applications 453

ch = (char)Ch.First();
else if(Ch.IsNum())

ch = (char)(double)Ch;
else

return 0;

return count_char(text, ch);
}

// Excel 12+ interface function. Uses xloper12s and Unicode string
size_t __stdcall count_char_xl12(wchar_t *text, xloper12 *p_ch)
{

cpp_xloper Ch(p_ch);
wchar_t ch;
if(Ch.IsStr())

ch = Ch.First();
else if(Ch.IsNum())

ch = (wchar_t)(double)Ch;
else

return 0;

return count_char(text, ch);
}

Function
name

replace_mask_xl4 or replace_mask_xl12 (exported)
ReplaceMask (registered with Excel)

Description Replaces all occurrences of characters in a search string with
corresponding characters from a replacement string, or removes all
such occurrences if no replacement string is provided.

Type string "1FCP" (2003), "1F%C%Q$" (2007)

Notes Declared as returning void. Return value is the 1st argument
modified in place. Third argument is optional and passed as a value
xloper/xloper12 (see section 6.2.6) to avoid the need to
dereference a range reference.

// Core functions
void replace_mask(char *text, char *old_chars, char *new_chars)
{

if(!text | | !old_chars)
return;

char *p_old, *p, *pt;

if(!new_chars)
{

// Remove all occurrences of all characters in old_chars
for(p_old = old_chars; *p_old; p_old++)
{

454 Excel Add-in Development in C/C++

for(pt = text; *pt;)
{

if(*pt == *p_old)
{

p = pt;
do {*p = p[1];} while (*(++p));

}
else

pt++;
}

}
return;

}

// Substitute all occurrences of old chars with corresponding new
if(strlen(old_chars) != strlen(new_chars))

return;

char *p_new;

for(p = text; *p; p++)
{

p_old = old_chars;
p_new = new_chars;

for(; *p_old; p_old++, p_new++)
{

if(*p == *p_old)
{

*p = *p_new;
break;

}
}

}
}
void replace_mask(wchar_t *text, wchar_t *old_chars, wchar_t *new_chars);

// Excel 11- interface function. Uses xlopers and byte-string
void __stdcall replace_mask_xl4(char *text, char *old_chars, xloper
*p_new_chars)
{

cpp_xloper NewChars(p_new_chars);
char *new_chars = NewChars.IsStr() ? (char *)NewChars : NULL;
if(new_chars)
{

replace_mask(text, old_chars, new_chars);
free(new_chars);

}
}

// Excel 12+ interface function. Uses xloper12s and Unicode string
void __stdcall replace_mask_xl12(wchar_t *text, wchar_t *old_chars, xloper12
*p_new_chars)
{

cpp_xloper NewChars(p_new_chars);
wchar_t *new_chars = NewChars.IsStr() ? (wchar_t *)NewChars : NULL;
if(new_chars)
{

Example Add-ins and Financial Applications 455

replace_mask(text, old_chars, new_chars);
free(new_chars);

}
}

Function
name

reverse_text_xl4 or reverse_text_xl12 (exported)
Reverse Text (registered with Excel)

Description Reverses a string.

Prototype void __stdcall reverse_text(char *text);

Type string "1F" (2003), "1F%$" (2007)

Notes Declared as returning void. Return value is the 1st argument
modified in place. These functions simply wrap the C library
functions strrev() and wcsrev(), and are useful in the creation
of Halton quasi-random number sequences, for example.

// Excel 11- interface function. Uses xlopers and byte-string
void __stdcall reverse_text_xl4(char *text) {strrev(text);}

// Excel 12+ interface function. Uses xloper12s and Unicode string
void __stdcall reverse_text_xl12(wchar_t *text) {wcsrev(text);}

Function
name

find_first_xl4 or find_first_xl12 (exported)
FindFirst (registered with Excel)

Description Returns the position of the first occurrence of any character from a
search string, or zero if none found.

Type string "HCC" (2003), "HC%C%$" (2007)

Notes Any error in input is reflected with a zero return value, rather than
an error type. These functions simply wrap the C library functions
strpbrk() and wcspbrk().

// Core functions
size_t find_first(char *text, char *search_text)
{

if(!text | | !search_text) return 0;
char *p = strpbrk(text, search_text);
return p ? 1 + p - text : 0;

}
size_t find_first(wchar_t *text, wchar_t *search_text)
{

456 Excel Add-in Development in C/C++

if(!text | | !search_text) return 0;
wchar_t *p = wcspbrk(text, search_text);
return p ? 1 + p - text : 0;

}

// Excel 11- interface function. Uses xlopers and byte-string
size_t __stdcall find_first_xl4(char *text, char *search_text)
{

return find_first(text, search_text);
}
// Excel 12+ interface function. Uses xloper12s and Unicode string
size_t __stdcall find_first_xl12(wchar_t *text, wchar_t *search_text)
{

return find_first(text, search_text);
}

Function name find_first_excluded_xl4 or
find_first_excluded_xl12 (exported)
FindFirstExcl (registered with Excel)

Description Returns the position of the first occurrence of any character that
is not in the search string, or zero if no such character is found.

Type string "HCC" (2003), "HC%C%$" (2007)

Notes Any error in input is reflected with a zero return value, rather
than an error type.

// Core functions
size_t find_first_excluded(char *text, char *search_text)
{

if(!text | | !search_text)
return 0;

for(char *t = text; *t; t++)
if(!strchr(search_text, *t)) // *t not in search_text: return posn

return 1 + t - text;

return 0; // all of text chars are in search_text (but not vice versa)
}

size_t find_first_excluded(wchar_t *text, wchar_t *search_text)
{

if(!text | | !search_text)
return 0;

for(wchar_t *t = text; *t; t++)
if(!wcschr(search_text, *t)) // *t not in search_text: return posn

return 1 + t - text;

return 0; // all of text chars are in search_text (but not vice versa)
}

Example Add-ins and Financial Applications 457

// Excel 11- interface function. Uses xlopers and byte-string
size_t __stdcall find_first_excluded_xl4(char *text, char *search_text)
{

return find_first_excluded(text, search_text);
}

// Excel 12+ interface function. Uses xloper12s and Unicode string
size_t __stdcall find_first_excluded_xl12(wchar_t *text, wchar_t
*search_text)
{

return find_first_excluded(text, search_text);
}

Function
name

find_last_xl4 or find_last_xl12 (exported)
FindLast (registered with Excel)

Description Returns the position of the last occurrence of a given character, or
zero if not found.

Type string "HCP" (2003), "HC%Q$" (2007)

Notes Any error in input is reflected with a zero return value, rather than
an error type. These functions simply wrap the C library functions
strrchr() and wcsrchr().

// Core functions
size_t find_last(char *text, char ch)
{

if(!text | | !ch) return 0;
char *p = strrchr(text, ch);
return p ? 1 + p - text : 0;

}
size_t find_last(wchar_t *text, wchar_t ch)
{

if(!text | | !ch) return 0;
wchar_t *p = wcsrchr(text, ch);
return p ? 1 + p - text : 0;

}

// Excel 11- interface function. Uses xlopers and byte-string
size_t __stdcall find_last_xl4(char *text, xloper *p_ch)
{

cpp_xloper Ch(p_ch);
char ch;
if(Ch.IsStr())

ch = (char)Ch.First();
else if(Ch.IsNum())

ch = (char)(double)Ch;
else

return 0;

return find_last(text, ch);
}

458 Excel Add-in Development in C/C++

// Excel 12+ interface function. Uses xloper12s and Unicode string
size_t __stdcall find_last_xl12(wchar_t *text, xloper12 *p_ch)
{

cpp_xloper Ch(p_ch);
wchar_t ch;
if(Ch.IsStr())

ch = Ch.First();
else if(Ch.IsNum())

ch = (wchar_t)(double)Ch;
else

return 0;

return find_last(text, ch);
}

Function
name

compare_text_xl4 or compare_text_xl12 (exported)
CompareText (registered with Excel)

Description Compare two strings for equality (return 0), A < B (return −1),
A > B (return 1), case sensitive or not (default).

Type string "RCCP" (2003), "UC%C%Q$" (2007)

Notes Any error in input is reflected with an Excel #VALUE! error.
Excel’s comparison operators <,> and = are not case-sensitive
and Excel’s EXACT() function only performs a case-sensitive
check for equality.

// Core functions
int compare_text(char *a, char *b, bool case_sensitive)
{

if(!a | | !b)
return -2; // str*cmp functions return <0, 0, >0

return case_sensitive ? strcmp(a, b) : stricmp(a, b);
}
int compare_text(wchar_t *a, wchar_t *b, bool case_sensitive)
{

if(!a | | !b)
return -2; // str*cmp functions return <0, 0, >0

return case_sensitive ? wcscmp(a, b) : wcsicmp(a, b);
}

// Excel 11- interface function. Uses xlopers and byte-string
xloper * __stdcall compare_text_xl4(char *a_text, char *b_text, xloper
*is_case_sensitive)
{

cpp_xloper CaseSensitive(is_case_sensitive);
bool case_sensitive = !CaseSensitive.IsFalse();
int ret_val = compare_text(a_text, b_text, case_sensitive);
if(ret_val == -2) // compare_text error value

return p_xlErrValue;
cpp_xloper RetVal(ret_val);

Example Add-ins and Financial Applications 459

return RetVal.ExtractXloper();
}

// Excel 12+ interface function. Uses xloper12s and Unicode string
xloper12 * __stdcall compare_text_xl12(wchar_t *a_text, wchar_t *b_text,
xloper12 *is_case_sensitive)
{

cpp_xloper CaseSensitive(is_case_sensitive);
bool case_sensitive = !CaseSensitive.IsBool() | |

CaseSensitive.IsTrue();
int ret_val = compare_text(a_text, b_text, case_sensitive);
if(ret_val == -2) // compare_text error value

return p_xl12ErrValue;
cpp_xloper RetVal(ret_val);
return RetVal.ExtractXloper12();

}

Function
name

compare_nchars_xl4 or compare_nchars_xl12 (exported)
CompareNchars (registered with Excel)

Description Compare the first n (1 to 255 in Excel 2003; 1 to 32,767 in Excel
2007) characters of two strings for equality (return 0), A < B
(return −1), A > B (return 1), case sensitive or not (default).

Type string "RCCHP" (2003) "UC%C%HQ$" (2007)

// Excel 11- interface function. Uses xlopers and byte-string
xloper * __stdcall compare_nchars_xl4(char *a_text, char *b_text,
size_t n_chars, xloper *case_sensitive)
{

if(!a_text | | !b_text | | !n_chars | | n_chars > MAX_XL4_STR_LEN)
return p_xlErrNum;

// Case-sensitive unless explicitly Boolean False
int ret_val = case_sensitive->xltype != xltypeBool

| | case_sensitive->val.xbool == 1 ?
strncmp(a_text, b_text, n_chars) :
strnicmp(a_text, b_text, n_chars);

cpp_xloper RetVal(ret_val);
return RetVal.ExtractXloper();

}

// Excel 12+ interface function. Uses xloper12s and Unicode string
xloper12 * __stdcall compare_nchars_xl12(wchar_t *a_text, wchar_t *b_text,
size_t n_chars, xloper12 *case_sensitive)
{

if(!a_text | | !b_text | | !n_chars | | n_chars > MAX_XL12_STR_LEN)
return p_xl12ErrNum;

// Case-sensitive unless explicitly Boolean False
int ret_val = case_sensitive->xltype != xltypeBool

460 Excel Add-in Development in C/C++

| | case_sensitive->val.xbool == 1 ?
wcsncmp(a_text, b_text, n_chars) :
wcsnicmp(a_text, b_text, n_chars);

cpp_xloper RetVal(ret_val);
return RetVal.ExtractXloper12();

}

Function
name

concat_xl4 or concat_xl12 (exported)
Concat (registered with Excel)

Description Concatenate the contents of the given range (row-by-row) using the
given separator (or comma by default). Returned string length limit
is 255 characters (2003) or 32,767 (2007) by default, but can be set
lower. Caller can specify the number of decimal places to use when
converting numbers.

Type string "RPPPPP" (2003), "UQQQQQ$" (2007)

// Core code function written in terms of cpp_xlopers to make it
// version-independent. cpp_xloper class is version-aware and
// uses either xlopers or xloper12s depending on the running
// version.
bool concat_xl(cpp_xloper &RetVal, const cpp_xloper &Inputs,

const cpp_xloper &Delim, const cpp_xloper &MaxLen,
const cpp_xloper &NumDecs, const cpp_xloper &NumScaling)

{
if(Inputs.IsType(xltypeMissing | xltypeNil))
{

RetVal.SetToError(xlerrValue);
return false;

}

char delim_str[2] = {Delim.IsStr() ? (char)Delim.First() : ',', 0};
int num_decs = NumDecs.IsNum() ? (int)NumDecs : -1;
size_t max_len = MAX_XL12_STR_LEN;

if(MaxLen.IsNum())
max_len = (size_t)(int)MaxLen;

if(max_len > (gExcelVersion12plus ? MAX_XL12_STR_LEN : MAX_XL4_STR_LEN))
max_len = (gExcelVersion12plus ? MAX_XL12_STR_LEN: MAX_XL4_STR_LEN);

DWORD size;
Inputs.GetArraySize(size);
bool scaling = NumScaling.IsNum();
double scale = scaling ? (double)NumScaling : 0.0;
cpp_xloper Op;

for(DWORD i = 0; i < size; i++)
{

if(i)
RetVal += delim_str;

Inputs.GetArrayElt(i, Op);

Example Add-ins and Financial Applications 461

if(num_decs >= 0 && Op.IsNum())
{

Op.Excel(xlfRound, 2, &Op, &NumDecs);
if(scaling)

Op *= scale;
}

if(i == 0)
{

RetVal = Op;
RetVal.ConvertToString();

}
else

RetVal += Op; // RetVal is a string, so += concatenates

if(RetVal.Len() >= max_len)
break;

}
return true;

}

// Excel 11- interface function. Uses xlopers
xloper * __stdcall concat_xl4(xloper *inputs, xloper *p_delim,

xloper *p_max_len, xloper *p_num_decs, xloper *p_num_scaling)
{

cpp_xloper RetVal, Inputs(inputs), Delim(p_delim), MaxLen(p_max_len),
NumDecs(p_num_decs), NumScaling(p_num_scaling);

concat_xl(RetVal, Inputs, Delim, MaxLen, NumDecs, NumScaling);
return RetVal.ExtractXloper();

}
// Excel 12+ interface function. Uses xloper12s
xloper12 * __stdcall concat_xl12(xloper12 *inputs, xloper12 *p_delim,

xloper12 *p_max_len, xloper12 *p_num_decs, xloper12 *p_num_scaling)
{

cpp_xloper RetVal, Inputs(inputs), Delim(p_delim), MaxLen(p_max_len),
NumDecs(p_num_decs), NumScaling(p_num_scaling);

concat_xl(RetVal, Inputs, Delim, MaxLen, NumDecs, NumScaling);
return RetVal.ExtractXloper12();

}

Function
name

parse_xl4 or parse_xl12 (exported)
ParseText (registered with Excel)

Description Parse the input string using the given separator (or comma by
default) and return an array. Caller can request conversion of all
fields to numbers, or to zero if no conversion possible. Caller can
specify a value to be assigned to empty fields (zero by default).

Type string "RCPP" (2003), "UC%QQ$" (2007)

Notes Registered name avoids conflict with the XLM PARSE() function.

462 Excel Add-in Development in C/C++

// Core code function written in terms of cpp_xlopers to make it
// version-independent. cpp_xloper class is version-aware and
// uses either xlopers or xloper12s depending on the running
// version.
bool parse_xl(cpp_xloper &RetVal, const cpp_xloper &Input,

const cpp_xloper &Delim, const cpp_xloper &Numeric,
const cpp_xloper &Empty, const cpp_xloper &NumScaling)

{
if(!Input.IsStr())
{

RetVal.SetToError(xlerrValue);
return false;

}
cpp_xloper Caller;
Caller.Excel(xlfCaller);

// Get the caller's size and shape
RW c_rows;
COL c_cols;
if(!Caller.GetRangeSize(c_rows, c_cols)) // Checks type is Sref, Ref

return NULL; // return NULL in case was not called by Excel

DWORD num_calling_cells = c_rows * c_cols;
wchar_t delimiter = Delim.IsStr() ? Delim.First() : L',';
wchar_t *input_copy = (wchar_t *)Input; // Work with Unicode strings
wchar_t *p_last = input_copy, *p;
DWORD count = 1;

for(p = input_copy; *p;)
if(*p++ == delimiter)

++count;

RetVal.SetTypeMulti(c_rows, c_cols); // Same shape as caller
// CLIB strtok ignores empty fields, so must do our own tokenizing

DWORD i = 0;
bool numeric = Numeric.IsTrue();
bool have_empty_val = // single value types only

Empty.IsType(xltypeNum | xltypeStr | xltypeErr | xltypeBool);
bool scaling = NumScaling.IsNum();
double scale = scaling ? (double)NumScaling : 0.0;

// Fill the target range in row-by-row
if(count > num_calling_cells) // Need to avoid overwriting array bounds

count = num_calling_cells;

while(i < count)
{

if((p = wcschr(p_last, (int)delimiter)))
*p = 0;

if((!p && *p_last) | | p > p_last)
{

if(numeric)
{

// Need to convert p_last to a byte-string to convert to a double
// as there is no wchar equivalent of atof

char mbstr[100];
wcstombs(mbstr, p_last, 100);
mbstr[99] = 0;
RetVal.SetArrayElt(i, atof(mbstr) * (scaling ? scale : 1.0));

}
else

Example Add-ins and Financial Applications 463

RetVal.SetArrayElt(i, p_last);
}
else if(have_empty_val)
{

RetVal.SetArrayElt(i, Empty);
}
i++;
if(!p) break;
p_last = p + 1;

}

// If there's space at the end of the calling range, fill with empty value
if(have_empty_val)

for(; i < num_calling_cells; i++)
RetVal.SetArrayElt(i, Empty);

free(input_copy);
return true;

}

// Excel 11- interface function. Uses xlopers and byte-string
xloper * __stdcall parse_xl4(char *input, xloper *p_delim,

xloper *p_numeric, xloper *p_empty, xloper *p_num_scaling)
{

cpp_xloper RetVal, Input(input), Delim(p_delim), Numeric(p_numeric),
Empty(p_empty), NumScaling(p_num_scaling);

parse_xl(RetVal, Input, Delim, Numeric, Empty, NumScaling);
return RetVal.ExtractXloper();

}

// Excel 12+ interface function. Uses xloper12s and Unicode string
xloper12 * __stdcall parse_xl12(wchar_t *input, xloper12 *p_delim,

xloper12 *p_numeric, xloper12 *p_empty, xloper12 *p_num_scaling)
{

cpp_xloper RetVal, Input(input), Delim(p_delim), Numeric(p_numeric),
Empty(p_empty), NumScaling(p_num_scaling);

parse_xl(RetVal, Input, Delim, Numeric, Empty, NumScaling);
return RetVal.ExtractXloper12();

}

10.2 STATISTICAL FUNCTIONS

As a mathematics professor once told the author (his student), a statistician is someone
with their feet in the fridge, their head in the oven, who thinks on average they are quite
comfortable. This scurrilous remark does no justice at all to what is a vast, complex
and, of course, essential branch of numerical science. Excel provides many functions
that statisticians, actuaries, and so on, will use frequently and be familiar with. Finance
professionals too are heavy users of these built-in capabilities.1 This section only aims
to provide a few examples of useful functions, or slight improvements on existing ones,
that also demonstrate some of the interface issues discussed in earlier chapters.

1 See Jackson and Staunton, 2001, John Wiley & Sons, Ltd, for numerous examples of applications of these
functions to finance.

464 Excel Add-in Development in C/C++

10.2.1 Pseudo-random number generation

A random number generator with a repeat cycle that is small compared to the number
of samples required is something that can seriously distort or hide behaviours of systems
being simulated using Monte Carlo methods. Versions of Excel prior to 2003 (version 11)
used a generator that would repeat results after 1,000,000 or so calls. This was improved
in Excel 2003 with an algorithm, developed by Wichman and Hill, that produces at least
1013 distinct iterations (see MSDN KB 828795). If you you need 2003-quality results in
an earlier version you should consider implementing your own equivalent of RAND(). One
important thing to ensure is that your generator is thread-safe, as it is precisely this sort
of application, Monte-Carlo simulation, where you will want to take advantage of 2007’s
multi-threading. The following structure implements the algorithm used by Excel 2003,
in a thread-safe way when running 2007+, and is used in the examples on the CD ROM.

Note that even when running Excel 2003+, it is significantly more efficient to call your
own implementation of RAND() than Excel’s via the C API.

// Algorithm used by Excel 2003, wrapped in a thread-safe structure.

// Wichman, B.A. and I.D. Hill, Algorithm AS 183:
// An Efficient and Portable Pseudo-Random Number Generator,
// Applied Statistics, 31, 188-190, 1982.

// Wichman, B.A. and I.D. Hill
// Building a Random-Number Generator, BYTE, pp. 127-128, March 1987.

#define SEED_1_DFT 8000
#define SEED_2_DFT 16000
#define SEED_3_DFT 24000

struct ts_rand
{

ts_rand(int ix_seed, int iy_seed, int iz_seed)
{

if(gExcelVersion12plus)
InitializeCriticalSection(&cs_rand);

set_seeds(ix_seed, iy_seed, iz_seed);
}

∼ts_rand(void)
{

if(gExcelVersion12plus)
DeleteCriticalSection(&cs_rand);

}

bool set_seeds(int ix_seed, int iy_seed, int iz_seed)
{

if(ix_seed < 1 | | ix_seed >= 30000) ix_seed = SEED_1_DFT;
if(iy_seed < 1 | | iy_seed >= 30000) iy_seed = SEED_2_DFT;
if(iz_seed < 1 | | iz_seed >= 30000) iz_seed = SEED_3_DFT;
if(gExcelVersion12plus)

EnterCriticalSection(&cs_rand);
ix = ix_seed;
iy = iy_seed;
iz = iz_seed;
if(gExcelVersion12plus)

LeaveCriticalSection(&cs_rand);
return true;

}

Example Add-ins and Financial Applications 465

double get(void)
{

double d, x, y, z;
if(gExcelVersion12plus)

EnterCriticalSection(&cs_rand);
x = ix = (171 * ix) % 30269;
y = iy = (172 * iy) % 30307;
z = iz = (170 * iz) % 30323;
if(gExcelVersion12plus)

LeaveCriticalSection(&cs_rand);
d = x / 30269.0 + y / 30307.0 + z / 30323.0;
return modf(d, &d); // &d passed but integer part not used

}
private:

CRITICAL_SECTION cs_rand; // Only used when version is 12+
int ix, iy, iz;

};

ts_rand rand_xl2003(SEED_1_DFT, SEED_2_DFT, SEED_3_DFT);

The following function provides a wrapper to an instance of the above structure.

Function
name

xll_rand_xl4 or xll_rand_xl12 (exported)
RandXll (registered with Excel)

Description Takes three optional seed arguments which if all between 1 and
30,000 reinitialises the algorithm.

Type string "BPPP!" (2003), "BQQQ!$" (2007)

Notes Function is declared as volatile to ensure it is called whenever the
workbook is recalculated.

double __stdcall xll_rand_xl4(xloper *pSeed1, xloper *pSeed2, xloper
*pSeed3)
{

if(pSeed1->xltype == xltypeNum
&& pSeed2->xltype == xltypeNum
&& pSeed3->xltype == xltypeNum)
{

rand_xl2003.set_seeds((int)pSeed1->val.num,
(int)pSeed2->val.num, (int)pSeed3->val.num);

}
return rand_xl2003.get();

}

double __stdcall xll_rand_xl12(xloper12 *pSeed1, xloper12 *pSeed2,
xloper12 *pSeed3)

{
if(pSeed1->xltype == xltypeNum
&& pSeed2->xltype == xltypeNum
&& pSeed3->xltype == xltypeNum)
{

rand_xl2003.set_seeds((int)pSeed1->val.num,

466 Excel Add-in Development in C/C++

(int)pSeed2->val.num, (int)pSeed3->val.num);
}
return rand_xl2003.get();

}

NRC (Press et al., §7.1), discuss and describe various other methods for producing uniform
random variates that are straight-forward to implement. A good choice is the Park and
Miller generator with Bays-Durham shuffle, or better still the L’Ecuyer generator again
with Bays-Durham shuffle.

If the function is called from a worksheet with three valid numeric values then the
generator will be reinitialised with every recalculation, as the function is (needs to be)
declared as volatile. This makes it possible to fall into the trap of generating the same set
of numbers every time, clearly, not what is required. However, it provides the ability to
generate the same sequence repeatedly, useful if you want to test what impact a change
of pricing method has independent of the pseudo-randomness of the sequence, or if you
want to start with your own ‘random’ seed.

You may also want to implement a non-volatile version where the function is only
called as a result of a trigger value changing. This trigger could be the return value of
another call to this function or some other value that might, say, be changed under the
control of a macro or external data. The advantage of this approach is, of course, better
recalculation times as a result of only calling the function when you really need to.

Function
name

xll_rand_non_vol_xl4 or xll_rand_non_vol_xl12
(exported)
RandXllnv (registered with Excel)

Description Takes a numeric trigger and three optional seed arguments which if
all between 1 and 30,000 reinitialises the algorithm.

Type string "BPPPP" (2003), "BQQQQ$" (2007)

Notes Function recalculation is driven by the trigger argument instead of
being volatile.

double __stdcall xll_rand_non_vol_xl4(double trigger, xloper *pSeed1,
xloper *pSeed2, xloper *pSeed3)

{
return xll_rand_xl4(pSeed1, pSeed2, pSeed3);

}

double __stdcall xll_rand_non_vol_xl12(double trigger, xloper12 *pSeed1,
xloper12 *pSeed2, xloper12 *pSeed3)

{
return xll_rand_xl12(pSeed1, pSeed2, pSeed3);

}

Example Add-ins and Financial Applications 467

10.2.2 Generating random samples from the normal distribution

The next two functions return samples from the normal distribution based on the Box-
Muller transform of a standard random variable. (See Clewlow and Strickland, 1998,
modified to use half-tan formulae to minimise trigonometric function calls.)

Function
name

nsample_BM_pair (exported)
NsampleBoxMullerPair (registered with Excel)

Description Takes an array of two uncorrelated uniform random numbers in the
range (0, 1] and returns two uncorrelated samples from the normal
distribution as a 1 × 2 or 2 × 1 array, depending on the shape of the
input array.

Type string "1K" (2003), "1K$" (2007)

Notes Makes use of the floating point array structure, xl4_array, for
input and output. (See section 6.2.2 on page 129.) Does not need to
manage memory and is therefore fast. Only drawback is the limited
error handling: any error in input is reflected with return values of 0.

#define PI 3.14159265358979323846264

void generate_BM_pair(double &z1, double &z2)
{
// Use Excel 2003's algorithm to generate std random numbers.
// More reliable than earlier Excel algorithms and calling
// this implementation of it is much faster than calling
// back into Excel with xlfRand.

double r1 = rand_xl2003.get();
double r2 = rand_xl2003.get();

// Use half-angle tan formulae to minimise trig fn calls
double t = tan(r2 * PI), tt = t * t;
r1 = sqrt(-2.0 * log(r1)) / (1.0 + tt);
z1 = r1 * (1.0 - tt);
z2 = r1 * 2.0 * t;

}

void __stdcall nsample_BM_pair(xl4_array *p_array)
{

size_t array_size = p_array->columns * p_array->rows;
if(array_size == 2)

generate_BM_pair(p_array->array[0], p_array->array[1]);
else

memset(p_array->array, 0, array_size * sizeof(double));
}

Function
name

nsample_BM (exported)
NsampleBoxMuller (registered with Excel)

468 Excel Add-in Development in C/C++

Description Takes no arguments and returns a sample from the normal
distribution. Generates a pair at a time; stores one and returns the
other. Uses the structure ts_rand, listed on pages 464 and 465, to
generate pseudo random number inputs for the transformation. This
is equivalent to Excel 2003’s RAND() worksheet function and faster
than calling xlfRand via the C API.

Type string "B!" (2003), "B!$" (2007)

Notes Function takes no arguments and is declared as volatile to ensure it
is called whenever the workbook is recalculated.

// Define this to be greater than the maximum number of threads that
// could reasonably be expected to run, so that pushed values are not
// lost.
#define NSAMPLE_BM_STACK_SIZE 20

simple_stack nsample_BM_stack(NSAMPLE_BM_STACK_SIZE);

// Need to use a thread-safe stack to store and retrieve
// values as many threads could be accessing (reading/storing)
// values simultaneously
double __stdcall nsample_BM(void)
{

double z1, z2;
if(nsample_BM_stack.pop(z2))

return z2;
generate_BM_pair(z1, z2);
nsample_BM_stack.push(z2); // save for next call
return z1;

}

The simple_stack structure is described in section 7.6.5 Using critical sections with
memory shared between threads on page 219.

Both the above functions perform the same task but in very different ways. The first
can take static or volatile inputs and always returns a pair of samples. The second returns
a single sample but is volatile. This gives the spreadsheet developer less control than the
first. It would be possible to modify the second so that it took a trigger argument, which
would then obviate the need for it to be declared as volatile.

It is a straightforward exercise to generalise the Box-Muller functions above to generate,
as an option, samples using the more efficient polar rejection method. (See Clewlow and
Strickland (1998) for details).

10.2.3 Generating correlated random samples

When using Monte Carlo simulation (see next section) to model a system that depends
on many partially-related variables, it is often necessary to generate vectors of correlated
random samples from a normal distribution. These are computed using the (real sym-
metric) covariance matrix of the correlated variables. Once the eigenvalues have been
computed (see section 10.3 on page 474)2 they can be combined many times with many

2 Note that this relies on code from Numerical Recipes in C omitted from the CD ROM.

Example Add-ins and Financial Applications 469

sets of normal samples in order to generate the correlated samples. (See Clewlow and
Strickland, Chapter 4.)

In practice, therefore, the process needs to be broken down into the following steps:

1. Obtain or create the covariance matrix.
2. Generate the eigenvalues and eigenvectors from the covariance matrix.
3. Generate a vector of uncorrelated normal samples.
4. Transform these into correlated normal samples using the eigenvalues and eigenvectors.
5. Perform the calculations associated with the Monte Carlo trial.
6. Repeat steps (3) to (5) until the simulation is complete.

The calculation of the correlated samples is essentially one of matrix multiplication. Excel
does this fairly efficiently on the worksheet, with only a small overhead of conversion from
worksheet range to array of doubles and back again. If the simulation is unacceptably
slow, removing this overhead by storing eigenvalues and vectors within the DLL and
calculating the correlated samples entirely within the DLL is one possible optimisation.

10.2.4 Quasi-random number sequences

Quasi-random sequences aim to reduce the number of samples that must be drawn at
random from a given distribution, in order to achieve a certain statistical smoothness; in
other words, to avoid clusters that bias the sample. This is particularly useful in Monte
Carlo simulation (see section 10.9 on page 506). A simulation using a sequence of pseudo-
random numbers will involve as many trials as are needed to obtain the required degree
of accuracy. The use of a predetermined set of quasi-random samples that cover the
sample space more evenly, in some sense, reduces the number of trials while preserving
the required statistical properties of the entire set.

In practice such sequences can be thought of simply as arrays of numbers of a given
size, the size being predetermined by some analysis of the problem or by experiment. Any
function or command that uses this information simply needs to read in the array. Where
a command is the end-user of the sequence, you can deposit the array in a range of cells
on a worksheet and access this, most sensibly, as a named range from the command’s
code (whether it be C/C++ or VBA). Alternatively, you can create the array in a persistent
structure in the DLL or VBA module. There is little in the way of performance difference
between these choices provided that the code executing the simulation reads the array
from a worksheet, if that’s where it’s kept, once en bloc rather than making individual
cell references.

There is some appeal to creating such sequences in a worksheet – it allows you to
verify the statistical properties easily – the only drawback being if the sequence is so
large that it risks the spreadsheet becoming unwieldy or stretches the available memory.
Where the sequence is to be used by a DLL function, the same choice of worksheet range
or DLL structure is there. Provided that the sequence is not so large as to cause problems,
the appeal of being able to see and test the numbers is a powerful one.

If the sequence is to be stored in a persistent structure in the add-in, it is advisable to
link its existence to the cell that created it, so that deletion of the cell’s contents, or of
the cell itself, can be used as a trigger for freeing the resources used. This also enables
the return value for the sequence to be passed as a parameter to a worksheet function.

470 Excel Add-in Development in C/C++

(See sections 9.6 Maintaining large data structures within the DLL on page 385 and 9.8
Keeping track of the calling cell of a DLL function on page 389.)

As far as the creation of sequences is concerned, the functions for this are well doc-
umented in a number of places, (e.g., Clewlow and Strickland). The creation of large
sequences can be time-consuming. This may or may not be a problem for your applica-
tion as, once created, sequences can be stored and reused. Such sequences are a possible
candidate for storage in the worksheet using binary names. (See section 8.9 Working with
binary names on page 285.) If creation time is a problem, C/C++ makes light work of
the task, otherwise VBA code might even be sufficient. (Remember that C/C++ with its
powerful pointer capabilities, can access arrays much faster than VBA can.)

10.2.5 The normal distribution

Financial markets option pricing relies heavily on the calculation of the cumulative normal
(Gaussian) distribution for a given value of the underlying variable (and its inverse). Excel
provides four built-in functions: NORMDIST(), NORMSDIST(), NORMINV() and NORMSINV().
In version 9 (Excel 2000) and earlier there are a number of serious problems with the
working ranges and accuracy of these functions:

• The inverse functions are not precise inverses;
• The range of probabilities for which NORMSINV() works is roughly 3.024e-7 to 0.999999;
• The function NORMSDIST(X) is accurate only to about ±7.3 × 10e–8;3

These problems are fixed in version 10 (Excel 2002) and later versions, but they could
lead to accumulated errors in some cases or complete failure.4

There is no Excel function that returns a random sample from the normal distribu-
tion. The compound NORMSINV(RAND()) will provide this, but is volatile and therefore
may not be desirable in all cases. This is quite apart from the problems faced when
RAND() returns something outside the working limits of versions 9 and earlier. In ad-
dition to these problems, it is far from being the most efficient way to calculate such
samples.

This section provides a consistent and more accurate alternative to the NORMSDIST()
and NORMSINV() whose behaviour depends on the version of Excel. The next section
provides functions (volatile and non-volatile) that return random normal
samples.

The normal distribution with mean zero and standard deviation of 1 is given by the
formula:

N(x) = 1√
2π

∫ x

−∞
e−t2/2 dt

3 It appears to be based on the approximation given in Abramowitz and Stegun (1970), §26.2.17, except that
for X > 6 it returns 1 and X < −8.3 it returns zero.
4 Inaccuracies in these functions could cause problems when, say, evaluating probability distribution functions
from certain models.

Example Add-ins and Financial Applications 471

From this the following Taylor series expansion and iterative scheme can be derived:

N(x) = 1

2
+ 1√

2π

∞∑
n=0

tn

t0 = x

tn = tn−1.
x2(1 − 2n)

2n(1 + 2n)

Starting with this, it is straightforward to construct a function that evaluates this series
to the limits of machine accuracy, roughly speaking, subject to cumulative errors in the
terms of the summation. These cumulative errors mean that, for approximately |x| > 5.5,
a different scheme for the tails is needed.

The source code for all these functions in this section is in the module XllStats.cpp
in the example project on the CD ROM. They are registered with Excel under the category
Statistical.

Function
name

ndist (exported)
Ndist (registered with Excel)

Description Returns the value of N(x) calculated using the above Taylor series
expansion. For |x| < 5.5 this is accurate roughly to within 10−14.
Outside this limit, calls Excel’s own functions.

Type string "BB" (2003), "BB$" (2007)

Notes Uses the expansion for |x| < 5.5 and the same approximation as
Excel (but not Excel’s implementation of it) for the tails. The
function called is a wrapper to a function that has no knowledge of
Excel data types.

#define ROOT_2PI 2.506628274631

double __stdcall ndist(double d)
{
// Excel's own functions are not reliable for versions 9 or lower.
// If uninitialised, gExcelVersion is zero, so will use the DLL
// code to be safe.

if(gExcelVersion <= 9)
{

int iterations; // not used here
return cndist_taylor(d, iterations);

}
// Else use Excel's own NORMSDIST function

cpp_xloper Op(d);
Op.Excel(xlfNormsdist, 1, &Op); // re-use Op
return (double)Op;

}

472 Excel Add-in Development in C/C++

double cndist_taylor(double d, int &iterations)
{

if(fabs(d) > 5.5)
{

// Small difference between the cndist() approximation and the real
// thing in the tails, although this might upset some pdf functions,
// where kinks in the gradient create large jumps in the pdf. Should
// ideally be replaced with a more accurate method for the tails.

iterations = 0;
return cndist(d);

}
double d2 = d * d, last_sum = 0, sum = 1.0, factor = 1.0, k2;
for(int k = 1; k <= MAX_CNDIST_ITERS; k++)
{

k2 = k << 1;
sum += (factor *= d2 * (1.0 - k2) / k2 / (1.0 + k2));
if(last_sum == sum)

break;
last_sum = sum;

}
iterations = k;
return 0.5 + sum * d / ROOT_2PI;

}

The function cndist() below provides a reasonable approximation that is more accurate
in the tails than the Taylor series implemented above. It also appears to be the basis of
Excel’s own functions for versions 2000 and earlier.

#define B1 0.31938153
#define B2 -0.356563782
#define B3 1.781477937
#define B4 -1.821255978
#define B5 1.330274429
#define PP 0.2316419
#define NEG_LN_ROOT_2PI -0.918938533204673

double cndist(double d)
{

if(d == 0.0) return 0.5;
double t = 1.0 / (1.0 + PP * fabs(d));
double e = exp(NEG_LN_ROOT_2PI - 0.5 * d * d);
double n = ((((B5 * t + B4) * t + B3) * t + B2) * t + B1) * t;
return (d > 0.0) ? 1.0 - e * n : e * n;

}

Function
name

norm_dist_inv_xl4 or norm_dist_inv_xl12 (exported)
NdistInv (registered with Excel)

Description Returns the inverse of N(x) consistent with the ndist() above.

Type string "RB" (2003), "UB$" (2007)

Notes Returns the inverse of ndist(). Uses a simple solver to return, as
far as possible, the exact corresponding value and for this reason
may be slower than some other functions.

Example Add-ins and Financial Applications 473

// Core function
#define NDINV_ITER_LIMIT 50
#define NDINV_EPSILON 1e-12 // How precise do we want to be
#define NDINV_FIRST_NUDGE 1e-7

// Minimum change in answer from one iteration to the next
#define NDINV_DELTA 1e-10

// Approximate working limits of Excel's NORMSINV() function in Excel 2000
#define NORMSINV_LOWER_LIMIT 3.024e-7
#define NORMSINV_UPPER_LIMIT 0.999999

void ndist_inv(double prob, cpp_xloper &RetVal)
{

if(gExcelVersion > 9) // OK to use Excel's own NORMSINV function
{

RetVal = prob;
RetVal.Excel(xlfNormsinv, 1, &RetVal);
return;

}

// For versions below 9 (Excel 2000) Excel's own functions are not reliable
// so use a Taylor series

if(prob <= 0.0 | | prob >= 1.0)
{

RetVal.SetToError(xlerrNum);
return;

}

// Get a (pretty) good first approximation using Excel's NORMSINV()
// worksheet function. First check that prob is within NORMSINV's
// working limits

int iterations;
double v1, v2, p1, p2, pdiff, temp;

if(prob < NORMSINV_LOWER_LIMIT)
{

v2 = (v1 = -5.0) - NDINV_FIRST_NUDGE;
}
else if(prob > NORMSINV_UPPER_LIMIT)
{

v2 = (v1 = 5.0) + NDINV_FIRST_NUDGE;
}
else
{

RetVal = prob;
RetVal.Excel(xlfNormsinv, 1, &RetVal);
if(!RetVal.IsNum()) // shouldn't ever be true
{

RetVal.SetToError(xlerrNum);
return;

}
v2 = (double)RetVal;
v1 = v2 - NDINV_FIRST_NUDGE;

}

// Use a secant method to make the result consistent with the
// cndist_taylor() function

p2 = cndist_taylor(v2, iterations) - prob;

if(fabs(p2) <= NDINV_EPSILON)

474 Excel Add-in Development in C/C++

{
RetVal = v2;
return; // already close enough

}

p1 = cndist_taylor(v1, iterations) - prob;

for(short i = NDINV_ITER_LIMIT; --i;)
{

if(fabs(p1) <= NDINV_EPSILON | | (pdiff = p2 - p1) == 0.0)
{

// Result is close enough, or need to avoid divide by zero
RetVal = v1;
return;

}
temp = v1;
v1 = (v1 * p2 - v2 * p1) / pdiff;

if(fabs(v1 - temp) <= NDINV_DELTA) // not much improvement
{

RetVal = v1;
return;

}
v2 = temp;
p2 = p1;
p1 = cndist_taylor(v1, iterations) - prob;

}
RetVal.SetToError(xlerrValue);

}

// Excel 11- interface function. Uses xlopers
xloper * __stdcall ndist_inv_xl4(double prob)
{

cpp_xloper RetVal;
ndist_inv(prob, RetVal);
return RetVal.ExtractXloper();

}
// Excel 12+ interface function. Uses xloper12s
xloper12 * __stdcall ndist_inv_xl12(double prob)
{

cpp_xloper RetVal;
ndist_inv(prob, RetVal);
return RetVal.ExtractXloper12();

}

10.3 MATRIX FUNCTIONS – EIGENVALUES
AND EIGENVECTORS

Excel has a number of matrix routines, in particular MMULT(), MINVERSE(), MDETERM(),
TRANSPOSE() and SUMPRODUCT(). As well as this, the way that Excel treats range refer-
ences in array formulae greatly extends its matrix capabilities. Nevertheless, there are a
number of matrix operations which, though not as fundamental as these, are valuable for
those analysing linear systems. Perhaps the most useful is the calculation of eigenvectors
and eigenvalues. The following example function takes a square symmetric (real) N ×
N matrix and returns an N × (N + 1) array containing the eigenvectors and eigenvalues.
The code is contained in the CD ROM and is based on the Jacobi algorithm published

Example Add-ins and Financial Applications 475

in section 11.1 of Numerical Recipes in C++. (The code for the Jacobi algorithm itself is
omitted from the XllMatrix.cpp source code module in the example project on the
CD ROM. However, it can easily be inserted into one of the member functions of the
class, d_matrix. See the read me file on the CD ROM for details.)

The intention here is not to provide a comprehensive set of functions that will attempt
to find the eigenvectors and values of any matrix. As NRC explains very well, this is
a complex subject. The intention of this example is to show how to bridge from Excel
ranges to C/C++ matrices in a safe and efficient way.

Function
name

eigen_system_xl4 (exported)
EigenSystem (registered with Excel)

Description Takes a square symmetrical range, or array, containing only
numbers. Returns a square matrix whose columns are the
eigenvectors of the input matrix, with an extra row at the bottom
containing the corresponding eigenvalues. Output is sorted in
descending size of eigenvalue from left to right.

Type string "RK" (2003), "RK$" (2007)

Notes The function takes a pointer to an xl4_array rather than, say, an
xloper. It uses a simple matrix class, d_matrix (see
XllMatrix.h and .cpp in the example project on the CD ROM),
passing the xl4_array data directly to the d_matrix
constructor. The core function returns a cpp_xloper, rather than
another xl4_array, so that errors can be communicated more
flexibly. The routine sets a limit of 100 × 100 on the input matrix.
Excel’s own matrix functions have a 60 × 60 limit. (This limit is
removed in Excel 2007).

This function is an example of the kind of worksheet function that
can take significant time to execute. Some understanding of how the
execution time grows with matrix size is therefore important.

The interface function for this is split into two for reasons explained below:

void eigen_system(xl4_array *p_input, cpp_xloper &RetVal)
{

RW rows = p_input->rows;
COL columns = p_input->columns;

if(rows < 2 | | rows > 100 | | rows != columns)
{

RetVal.SetToError(xlerrValue);
return;

}

d_matrix Mat(rows, columns, p_input->array), Eigenvectors;
d_vector Eigenvalues;

if(Mat.GetEigenvectors(Eigenvectors, Eigenvalues)

476 Excel Add-in Development in C/C++

&& Eigenvectors.InsertRow(Eigenvalues, -1)) // -1: insert row at bottom
RetVal.InitialiseArray(rows + 1, columns, Eigenvectors.data);

else
RetVal.SetToError(xlerrNum);

}

xloper * __stdcall eigen_system_xl4(xl4_array *p_input)
{

if(called_from_paste_fn_dlg())
return NULL;

cpp_xloper RetVal;
eigen_system(p_input, RetVal);
return RetVal.ExtractXloper();

}

Section 10.9 Monte Carlo simulation below discusses an Excel-VBA-only solution. The
above function is one that you might want to access directly from VBA in this case. The
following example code shows a VBA wrapper to the above code. It does not require that
the XLL be loaded by the Add-in Manager, but it does require that the C API interface
be available, i.e., that the XLL is built or linked with the xlcall32 library. This VBA
wrapper is not the most efficient possible, but does demonstrate the use of a number of
the conversion routines built into the cpp_xloper class.

VARIANT __stdcall VBA_eigen_system(VARIANT *pv)
{
// Convert the passed-in Variant to a cpp_xloper

cpp_xloper Op(pv);

// Convert the cpp_xloper to an xl4_array of doubles
xl4_array *p_array = Op.AsDblArray();

if(!p_array)
{

Op.SetToError(xlerrValue);
return Op.ExtractVariant();

}
// Attempt to convert the array to an xloper xltypeMulti containing
// the required output. Function returns a pointer to a static xloper

eigen_system(p_array, Op); // Re-use Op for returned values
free(p_array); // Don't need this anymore

// Extract the values as a Variant or Variant array
return Op.ExtractVariant();

}

Here is an example of the corresponding VBA declaration and its use within VBA:

Declare Function VBA_eigen_system Lib "example.xll" _
(ByRef arg As Variant) As Variant

Function VbaEigenSystem(v As Variant) As Variant
If IsObject(v) Then

VbaEigenSystem = VBA_eigen_system(v.Value) ' Range input

Example Add-ins and Financial Applications 477

Else
VbaEigenSystem = VBA_eigen_system(v) ' Literal array input

End If
End Function

10.4 INTERPOLATION

Interpolation is an area where Excel provides very little built-in support. Most people
working with data need to interpolate or extrapolate regularly, in at least one dimension.
The recalculation time difference between an inefficient interpolation function, such as
one that uses VBA or numerous worksheet cells, and an efficient one can be significant.

For something fundamental to so many data analysis and modelling applications, the
fact that Excel is so short of interpolation functions is a little surprising. The Analysis
ToolPak add-in provides linear and logarithmic estimation functions and a linear pre-
diction function, LINEST(), LOGEST() and FORCAST(), but no, say, INTERP() function. The
examples included do not pretend to fill this gap completely, but do provide example
implementations of three common types of interpolation:

• Linear interpolation
• Bilinear interpolation
• Cubic spline

◦ Natural
◦ Gradient constrained at one end
◦ Gradient constrained at both ends

The assumption is that there exists a table of known x’s and known y’s, sorted in ascending
order of x, and that the user wishes to interpolate/extrapolate some unknown value of y

for a given value of x.

10.4.1 Linear interpolation

Linear interpolation is straight-forward: find the pair of points x1 and x2 that bracket the
given value of x, and return the value of y such that (y − y1)/(x − x1) is in the same ratio
as the gradient (y2 − y1)/(x2 − x1). You could pre-calculate the gradients between each
pair of points to speed up the calculation of the interpolates, but the work is so light that
a single function that does everything in one go suffices. Where you are working with
other types of interpolation, this kind of pre-processing might make a significant enough
difference to warrant it being split into two tasks. (See splines in the next section).

Function
name

interp_xl4 or interp_xl12 (exported)
Interp (registered with Excel)

Description Takes two columns of inputs, the first being values of x in
ascending order, the second being corresponding values of y.

478 Excel Add-in Development in C/C++

Takes the value of x for which the corresponding value of y is to be
found. Takes an optional Boolean to override default behaviour of
extrapolating outside the data range.

Type string "RBKKPPPP" (2003), "UBKKQQQQ$" (2007)

Notes The function returns an xloper/xloper12 so that error values
can be passed back easily. The input is passed as two
xl4_arrays, allowing the range of x’s to be in a separate block
from the known y’s. Excel will not call the function unless it can
convert all of the inputs to numbers. The function assumes that the
x’s are in ascending order. The code permits the input ranges/arrays
to be either columns or rows but both must be the same.

The code for this function is as follows:

// Core code
void interp(cpp_xloper &RetVal, double x, xl4_array *yy, xl4_array *xx,

bool dont_extrapolate)
{
// Check that input ranges are same size and shape and input
// is either a row or column

if(yy->columns != xx->columns | | yy->rows != xx->rows
| | (yy->rows != 1 && yy->columns != 1))
{

RetVal.SetToError(xlerrValue);
return;

}

int low = 0, high;

if(yy->rows == 1)
high = yy->columns - 1;

else // yy->columns == 1
high = yy->rows - 1;

if(high == 0)
{

RetVal = yy->array[0];
return;

}

if(x < xx->array[0] | | x > xx->array[high])
{

if(dont_extrapolate)
{

RetVal.SetToError(xlerrNum);
return;

}

if(x < xx->array[0])
high = 1;

else
low = high - 1;

}
else

Example Add-ins and Financial Applications 479

{
int i;
while(high - low > 1)
{

if(xx->array[i = (high + low) >> 1] > x)
high = i;

else
low = i;

}
}
RetVal = yy->array[low] + (x - xx->array[low]) *
(yy->array[high] - yy->array[low]) / (xx->array[high] - xx->array[low]);

}

xloper * __stdcall interp_xl4(double x, xl4_array *yy, xl4_array *xx,
xloper *p_dont_extrap)

{
cpp_xloper RetVal(p_dont_extrap); // temporary use of this
interp(RetVal, x, yy, xx, RetVal.IsTrue());
return RetVal.ExtractXloper();

}

xloper12 * __stdcall interp_xl12(double x, xl4_array *yy, xl4_array *xx,
xloper12 *p_dont_extrap)

{
cpp_xloper RetVal(p_dont_extrap); // temporary use of this
interp(RetVal, x, yy, xx, RetVal.IsTrue());
return RetVal.ExtractXloper12();

}

10.4.2 Bilinear interpolation

Bilinear interpolation of a point from a 2-dimensional array is not much more complex
than linear interpolation. It involves the same basic steps: finding the x values that bracket
the given x value and then interpolating the corresponding y values. It is complicated only
by the fact that this is happening in 2 dimensions. The following code shows how this is
done. (For more explanation of the algorithm see, for example, Numerical Recipes in C.
The following code is also included in the example project and exported as BilinearInterp.
See also Bilinear Interpolation Example.xls).

Note that the following code will not extrapolate outside the bounds of the given x

ranges. Note also that the function bilinear_interp_xl4() simply sets up the call to
bilinear_interp(). This separates the Excel-specific input checking and data types
from the core code. It would be trivial to also create an Excel 2007 data type version of
bilinear_interp_xl4(), say bilinear_interp_xl12(), that also called the
same core code.

xloper * __stdcall bilinear_interp_xl4(double row_x, xl4_array *row_x_vals,
double col_x, xl4_array *col_x_vals, xl4_array *y_vals,
xloper *pCheckXvals)

{
// Check the input array sizes

if(y_vals->columns != col_x_vals->columns

480 Excel Add-in Development in C/C++

| | y_vals->rows != row_x_vals->rows
| | col_x_vals->rows != 1 | | row_x_vals->columns != 1)

return p_xlErrNum;

cpp_xloper Op(pCheckXvals);
double y;

if(!bilinear_interp(y, row_x, row_x_vals->array,
col_x, col_x_vals->array, y_vals->array,
y_vals->rows, y_vals->columns, Op.IsTrue()))
return p_xlErrNum;

Op = y;
return Op.ExtractXloper();

}

bool bilinear_interp(double &y, double row_x, double *row_x_vals,
double col_x, double *col_x_vals, double *y_vals,
int num_rows, int num_cols, bool check_x_vals)

{
// If check_x_vals == true, check the x-vals are all ascending

if(check_x_vals)
{

double d, last = row_x_vals[0];

for(int i = 1; i < num_rows; i++, last = d)
if(last >= (d = row_x_vals[i]))

return false;

last = col_x_vals[0];

for(i = 1; i < num_cols; i++, last = d)
if(last >= (d = col_x_vals[i]))

return false;
}

// Check that row_x and col_x are within the respective ranges
if(row_x < row_x_vals[0]
| | row_x > row_x_vals[num_rows - 1]
| | col_x < col_x_vals[0]
| | col_x > col_x_vals[num_cols - 1])

return false;

// Find the x-pair in the column of x-values that correspond to
// each row (row_x_vals) that bracket the given value of x, and
// calculate the parameter t that determines how far from the
// first of the two bracketing points x is.

int row_low_index, row_high_index;
double row_t;

if(!bilinear_calc_t(num_rows, row_x_vals,
row_x, row_low_index, row_high_index, row_t))
return false;

// Find the x-pair in the row of x-values that correspond to each
// column (col_x_vals) that bracket the given value of x, and
// calculate the parameter t that determines how far from the
// first of the two bracketing points x is.

int col_low_index, col_high_index;
double col_t;

Example Add-ins and Financial Applications 481

if(!bilinear_calc_t(num_cols, col_x_vals,
col_x, col_low_index, col_high_index, col_t))
return false;

// Extract the four y-values corresponding to the corners of the
// rectangle described by row_low_index, row_high_index,
// col_low_index, col_high_index.
// col_index
// low high
// y_rl_cl---------------y_rl_ch
// | | low
// | |
// | | row_index
// | |
// | | high
// y_rh_cl---------------y_rh_ch

double y_rl_cl = y_vals[num_cols * row_low_index + col_low_index];
double y_rh_cl = y_vals[num_cols * row_high_index + col_low_index];
double y_rl_ch = y_vals[num_cols * row_low_index + col_high_index];
double y_rh_ch = y_vals[num_cols * row_high_index + col_high_index];

// Perform the bilinear interpolation
double ll = (1-row_t) * (1-col_t);
double lh = (1-row_t) * col_t;
double hh = row_t * col_t;
double hl = row_t * (1-col_t);

y = ll * y_rl_cl + lh * y_rl_ch + hh * y_rh_ch + hl * y_rh_cl;
return true;

}

// Calculate the value t = (x - x[j]) / (x[j+1] - x[j]) where
// (x[j], x[j+1]) brackets x. Also return the indices low_index
// and high_index
//
// Used in bilinear interpolation:
// y(x1, x2) = (1-t1)(1-t2).yll + t1(1-t2).yhl + t1.t2.yhh + (1-t1)t2.ylh

bool bilinear_calc_t(int n_vals, double *x_vals, double x, int &low_index,
int &high_index, double &t)

{
if(!get_bracket(n_vals, x_vals, x, low_index, high_index))

return false;

if(low_index == -1) low_index = 0;
if(high_index == n_vals) high_index--;

if(x_vals[high_index] == x_vals[low_index])
// Could be a problem with the x's or high_index == low_index

t = 0.0;
else

t = (x - x_vals[low_index])/(x_vals[high_index]-x_vals[low_index]);
return true;

}

482 Excel Add-in Development in C/C++

bool get_bracket(int n_vals, double *values, double search_val,
int &low_index, int &high_index)

{
if(search_val < values[0])
{

low_index = -1; // out of bounds
high_index = 0;
return true;

}

if(search_val > values[n_vals - 1])
{

low_index = n_vals - 1;
high_index = n_vals; // out of bounds
return true;

}

// Use bisection search to find the bracketing rows for search_val
int i;
high_index = n_vals;
low_index = 0;

while(high_index - low_index > 1)
{

// max(i) == n_vals - 1, min(i) == 0
i = (high_index + low_index) >> 1;

if(values[i] > search_val)
high_index = i;

else
low_index = i;

}
return true;

}

10.4.3 Cubic splines

The cubic spline is an interpolation workhorse. However, splines have some problems,
in common with other polynomial based approaches: Where the y values are naturally
bounded but the function has a maximum or minimum near the boundary, the spline may
want to put the peak or trough out-of-bounds. A piece-wise linear approach does not have
this problem. Another big problem with splines is that the known y value at any one point
affects all of the curves between all points. This is particularly problematic when dealing
with yield curves where the input data may well have sparse patches with less reliable
price data. Changing one price can alter parts of the curve that should, intuitively at least,
be unaffected.

A simple modification to the spline function is to add a blend parameter (between 0
and 1) that the returned tabulated 2nd derivatives are scaled by: A value of 0 produces
piece-wise linear interpolation; a value of 1, a cubic spline. This blend value can easily
be associated with a slider control on a worksheet.

The second problem can be minimised, although not removed, with a sensible choice
of the y function (or function of y, depending on your point of view) to be interpo-
lated – something that should always be given careful consideration in any case.

The goal with all of these functions is simplicity and speed. Where very large ranges
are involved, the main effort may well be finding the values that surround the value to

Example Add-ins and Financial Applications 483

be interpolated. The example functions use a bisection method to do this. (If successive
calls are always related, a more efficient strategy is to start the search in the last known
position.)

With cubic spline interpolation, the example opts for a two-stage approach: one function
that returns an array of second derivatives of y with respect to x, MakeSpline(), and
another that interpolates given the x’s, y’s and these derivatives, SplineInterp().
The first function allows the user to specify whether the spline is natural or constrained
at one or both ends.

The code for these functions is listed on the CD ROM in the source file Spline.cpp
in the example project, except that code derived from the Numerical Recipes in C is
omitted but can be easily inserted by anyone licensed to do so. See the read me file on
the CD ROM for details.

Function
name

make_spline_xl4 or make_spline_xl12 (exported)
MakeSpline (registered with Excel)

Description Takes a two-column input array with the first column being values
of x in ascending order, the second being corresponding values of y.
Also takes a starting gradient, an end gradient and a mode argument
that determines which, if either, of these is used. 0 = neither is used,
1 = the start is defined, 2 = the end is defined, 3 = both are defined.
Returns a column of 2nd derivatives of y with respect to x.

Type string "RKBBJ" (2003), "UKBBJ$" (2007)

Notes The function returns an xloper/xloper12 so that errors can be
passed back easily. The input array is passed as an xl4_array to
simplify the code. Excel will not call the function unless it can
convert all of the inputs to numbers.

void make_spline(cpp_xloper &RetVal, xl4_array *input, double grad_start,
double grad_end, int mode)

{
RW rows = input->rows;
COL cols = input->columns;

if(cols != 2 | | rows < 2)
{

RetVal.SetToError(xlerrValue);
return;

}

double *array = input->array;
double *x = (double *)calloc(4 * rows, sizeof(double));
double *y = x + rows, *u = y + rows, *y2 = u + rows;
int i, index;

// Input is expected to be in 2 columns: x-vals then y-vals
for(index = i = 0; i < rows;)
{

x[i] = array[index++];

484 Excel Add-in Development in C/C++

y[i++] = array[index++];
}

// The code here is omitted. See Numerical Recipes in C (Cambridge Press),
// Section 3.3 for the function spline(...) which can be called
// from here with suitable conversion of arguments. The result
// of calling this function is a vector of 2nd derivatives of
// y w.r.t. x, called y2[]. This is returned to the caller
// in a cpp_xloper of type xltypeMulti as a single column.

RetVal.InitialiseArray((RW)rows, (COL)1, y2);
free(x); // can't free this till finished with y2 as in the same block

}

xloper * __stdcall make_spline_xl4(xl4_array *input, double grad_start,
double grad_end, int mode)

{
cpp_xloper RetVal;
make_spline(RetVal, input, grad_start, grad_end, mode);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall make_spline_xl12(xl4_array *input, double grad_start,
double grad_end, int mode)

{
cpp_xloper RetVal;
make_spline(RetVal, input, grad_start, grad_end, mode);
return RetVal.ExtractXloper12();

}

Function
name

spline_interp_xl4 or spline_interp_xl12 (exported)
SplineInterp (registered with Excel)

Description Takes a three-column input array with the first column being values
of x in ascending order, the second being corresponding values of
y, the third being 2nd derivatives of y with respect to x. Takes the
value of x for which the corresponding value of y is to be found.
Takes an optional number between 0 and 1 representing a blend of
linear to cubic interpolation.

Type string "RBKP" (2003), "UBKQ$" (2007)

Notes The function returns an xloper/xloper12 so that errors can be
passed back easily. The input array is passed as an xl4_array to
simplify the code. Excel will not call the function unless it can
convert all of the inputs to numbers.
The function spline_interp() uses a binary search on the first
column of the input array, the x’s. For this to work, the input must
be sorted in ascending order of x. The function does not check that
this is true. This is nevertheless a safe assumption if using the
output of make_spline(), which fails if this is not the case.

Example Add-ins and Financial Applications 485

void spline_interp(cpp_xloper &RetVal, double x, xl4_array *input,
cpp_xloper &Blend)

{
// Blend is used to scale the 2nd derivatives. This is most
// efficiently done in the last step of the cubic interpolation
// where the entire term that relates to these can be factored
// by this amount. When 0, the effect is to produce straight
// line interpolation between points, and when 1, a normal
// cubic spline.

double blend = (double)Blend;
if(blend < 0.0 | | blend > 1.0)

blend = 1.0;

RW rows = input->rows;
COL cols = input->columns;

// Check the dimensions of the input array and then
// transpose the input (supplied as 3 columns: x-vals, y-vals
// d2y/dx2 vals) to ease access to the data in rows.

if(cols != 3 | | rows < 2 | | transpose_xl4_array(input) == false)
{

RetVal.SetToError(xlerrValue);
return;

}
double *xa = input->array;
double *ya = input->array + rows;
double *y2a = input->array + 2 * rows;
double y = 0.0; // safe default given missing code below

// The code is omitted. See Numerical Recipes in C (Cambridge Press),
// Section 3.3 for the function splint(...) which can be called
// from here with suitable conversion of arguments. The result
// of calling this function is a value y, returned to the caller
// in a cpp_xloper of type xltypeNum.

RetVal = y;
}

xloper * __stdcall spline_interp_xl4(double x, xl4_array *input,
xloper *pBlend)

{
cpp_xloper RetVal, Blend(pBlend);
spline_interp(RetVal, x, input, Blend);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall spline_interp_xl12(double x, xl4_array *input,
xloper12 *pBlend)

{
cpp_xloper RetVal, Blend(pBlend);
spline_interp(RetVal, x, input, Blend);
return RetVal.ExtractXloper12();

}

10.5 LOOKUP AND SEARCH FUNCTIONS

Lookup and search functions, especially those where the input arrays contain strings, are
far more efficiently coded in C/C++ than the alternatives. Where you need to use two- or

486 Excel Add-in Development in C/C++

higher-dimensional lookups or searches, or where more complex search or match criteria
are needed, on large amounts of data, you should seriously consider using C/C++. The
following table briefly outlines the limitations of Excel’s own lookup and search functions.

Table 10.1 Excel’s lookup and search functions

Function Limitations

VLOOKUP()
HLOOKUP()

Left-most column (top row) needs to be in ascending order for the function
to work. Lookup value and returned value need to be in the same single
range. Only one lookup value can be matched and only against the
left-most column (top row).

LOOKUP() Form: LOOKUP(Lookup value,Lookup vector,Result vector): left-most column
needs to be in ascending order for the function to work. Only one lookup
value can be matched.

MATCH() Only one lookup value can be matched.

COUNTIF()
SUMIF()

Only one criterion can be applied.

AVERAGEIF() (Note that AVERAGEIF() does not exist in versions prior to Excel 2007).

Excel includes a number of database functions which provide a way around many, if not
all, of these limitations, albeit at the expense of some simplicity. These functions are also
available via the C API.

The primary extension in the following examples is to allow for a search on more
than one range, so, for example, a value can be retrieved from a row in a table when
values of two or more elements in that row match specified search criteria. The func-
tion MatchMulti() returns the same kind of information as MATCH() – the offset into the
range where the match was found or #N/A if none found – and, if used in conjunction
with the INDEX() function, extends VLOOKUP() functionality. The functions SumIfMulti()
and CountIfMulti() similarly extend the functions COUNTIF() and SUMIF() respectively, and
AverageIfMulti() is self-explanatory.

These functions rely heavily on the cpp_xloper class, making the code far cleaner
than it would otherwise be if only xlopers had been used, and version-independent. The
use of the cpp_xloper class also enables dual interface functions that make the most
of Excel 2007 features, both calling the same underlying version-independent code. Code
for these functions is listed in the example project source file Lookup.cpp.

All of these function rely on a single core function, do_multi(), which not only
provides the base for all these functions, but also provides a version-independent function
for dual-function interfaces.

#define NUM_MULTI_FN_RANGES 5

#define DO_MULTI_MODE_MATCH 1
#define DO_MULTI_MODE_SUM 2
#define DO_MULTI_MODE_COUNT 4
#define DO_MULTI_AVERAGE 8

Example Add-ins and Financial Applications 487

void do_multi(cpp_xloper &RetVal, cpp_xloper &SumRange, cpp_xloper *Args,
int operation)

{
if(operation & (DO_MULTI_SUM | DO_MULTI_AVERAGE))
&& !SumRange.IsType(xltypeMulti))
{

RetVal.SetToError(xlerrValue);
return;

}

// Find the last non-missing value/range pair
int num_searches = 0;
int i, index = 0;

do
{

if(Args[index++].IsType(xltypeMissing | xltypeNil | xltypeErr)
| | !Args[index++].IsType(xltypeMulti))

break;
}
while(++num_searches < NUM_MULTI_FN_RANGES);

if(!num_searches)
{

RetVal.SetToError(xlerrValue);
return;

}

// Check that all the input arrays are the same shape and size
RW rows, temp_rows;
COL columns, temp_columns;

if(operation & (DO_MULTI_SUM | DO_MULTI_AVERAGE))
SumRange.GetArraySize(rows, columns);

else
Args[0].GetArraySize(rows, columns);

// Check that input is either single row or single column
if(rows != 1 && columns != 1)
{

RetVal.SetToError(xlerrValue);
return;

}

for(index = 2 * num_searches; --index;)
{

Args[index].GetArraySize(temp_rows, temp_columns);
if(rows != temp_rows | | columns != temp_columns)
{

RetVal.SetToError(xlerrValue);
return;

}
}

// Simple search does not assume search ranges are sorted and
// looks for an exact match

DWORD limit = rows * columns, offset;
double temp, sum = 0.0;
int count = 0;
for(offset = 0; offset < limit; offset++)

488 Excel Add-in Development in C/C++

{
for(index = i = 0; i < num_searches; i++, index += 2)

if(!Args[index + 1].ArrayEltEq(offset, Args[index]))
break;

if(i == num_searches) // Match found!
{

if((operation & (DO_MULTI_SUM | DO_MULTI_AVERAGE))
{

if(SumRange.GetArrayElt(offset, temp))
sum += temp;

if(operation == DO_MULTI_AVERAGE)
count++;

}
else if(operation == DO_MULTI_COUNT)
{

count++;
}
else if(operation == DO_MULTI_MATCH)
{

// Increment the offset as INDEX() counts from 1
RetVal = (double)(offset + 1);
return;

}
}

}
if(operation == DO_MULTI_SUM)

RetVal = sum;
else if(operation == DO_MULTI_COUNT)

RetVal = (double)count;
else if(operation == DO_MULTI_AVERAGE)

RetVal = sum / count;
else if(operation == DO_MULTI_MATCH)

RetVal.SetToError(xlerrNA);
}

Function
name

match_multi_xl4 or match_multi_xl12 (exported)
MatchMulti (registered with Excel)

Description Returns the offset corresponding to the position in one to five search
ranges that match the corresponding supplied values. The offset
counts from 1 so that it can be used with the INDEX() function to
retrieve values from, say, an associated data table. Input search
ranges are expected to be either single columns or single rows, and
all search ranges must be the same shape and size and have at least
2 elements each. Search ranges do not need to be sorted or all of the
same data type. The function looks for exact matches and is
case-sensitive when comparing strings. The function returns #VALUE!
if inputs are not valid and #N/A if a match cannot be found.

Type string "RPPPPPPPPPP" (2003), "UQQQQQQQQQQ$" (2007)

Example Add-ins and Financial Applications 489

Notes Function arguments are registered as value xloper/xloper12s,
which causes Excel to convert range references to xltypeMulti,
simplifying the type-checking and conversion in the DLL. (If a
search range reference is a single cell it will be converted to a single
value, rather than an array, and the function will fail.) The function
returns an xloper/xloper12 so that errors can be returned.

The code for this function is as follows. The function relies heavily on the cpp_xloper
class to simplify the code, in particular for handling arrays.

xloper * __stdcall match_multi_xl4(
xloper *value1, xloper *range1,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

{
// Arguments are registered as type P so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal, SumRange; // SumRange not used
do_multi(RetVal, SumRange, Args, DO_MULTI_MATCH);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall match_multi_xl12(
xloper12 *value1, xloper12 *range1,
xloper12 *value2, xloper12 *range2,
xloper12 *value3, xloper12 *range3,
xloper12 *value4, xloper12 *range4,
xloper12 *value5, xloper12 *range5)

{
// Arguments are registered as type Q so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal, SumRange; // SumRange not used
do_multi(RetVal, SumRange, Args, DO_MULTI_MATCH);
return RetVal.ExtractXloper12();

}

Function
name

sum_if_multi_xl4 or sum_if_multi_xl12 (exported)
SumIfMulti (registered with Excel)

Description Returns the sum of all values in a sum range, where corresponding
values in up to five search ranges match corresponding search

490 Excel Add-in Development in C/C++

values. Input ranges are expected to be either single columns or
single rows, and all search ranges must be the same shape and size
and have at least 2 elements each. Search ranges are not required to
be sorted or all the same data type. The function looks for exact
matches and is case-sensitive when comparing strings. The function
returns #VALUE! if inputs are not valid. Values in the sum range are
converted to numbers if possible and skipped if not.

Type string "RPPPPPPPPPPP" (2003), "UQQQQQQQQQQQ$" (2007)

Notes Function arguments are registered as value xloper/xloper12s,
which causes Excel to convert from references to xltypeMulti,
simplifying the type-checking and conversion that the DLL function
needs to do. (If a search range reference is a single cell it will be
converted to a single value, rather than an array, and the function
will fail.) The function returns an xloper/xloper12 so that
errors can be returned.

xloper * __stdcall sum_if_multi_xl4(xloper *sum_range,
xloper *value1, xloper *range1,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

{
// Arguments are registered as type P so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal;
cpp_xloper SumRange(sum_range);
do_multi(RetVal, SumRange, Args, DO_MULTI_SUM);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall sum_if_multi_xl12(xloper *sum_range,
xloper12 *value1, xloper12 *range1,
xloper12 *value2, xloper12 *range2,
xloper12 *value3, xloper12 *range3,
xloper12 *value4, xloper12 *range4,
xloper12 *value5, xloper12 *range5)

{
// Arguments are registered as type Q so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal;

Example Add-ins and Financial Applications 491

cpp_xloper SumRange(sum_range);
do_multi(RetVal, SumRange, Args, DO_MULTI_SUM);
return RetVal.ExtractXloper12();

}

Function
name

count_if_multi_xl4 or count_if_multi_xl12 (exported)
CountIfMulti (registered with Excel)

Description Counts the number of cases where values in up to five search ranges
match corresponding search values. Input ranges are expected to be
either single columns or single rows, and all search ranges must be
the same shape and size and have at least 2 elements each. Search
ranges are not required to be sorted or all the same data type. The
function looks for exact matches and is case-sensitive when
comparing strings. The function returns #VALUE! if inputs are not
valid.

Type string "RPPPPPPPPPP" (2003), "UQQQQQQQQQQ$" (2007)

Notes Function arguments are registered as value xloper/xloper12s,
which causes Excel to convert from references to xltypeMulti,
simplifying the type-checking and conversion that the DLL function
needs to do. (If a search range reference is a single cell it will be
converted to a single value, rather than an array, and the function
will fail.) The function returns an xloper/xloper12 so that
errors can be returned.

xloper * __stdcall count_if_multi_xl4(
xloper *value1, xloper *range1,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

{
// Arguments are registered as type P so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal, SumRange; // SumRange not used
do_multi(RetVal, SumRange, Args, DO_MULTI_COUNT);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall count_if_multi_xl12(
xloper12 *value1, xloper12 *range1,
xloper12 *value2, xloper12 *range2,
xloper12 *value3, xloper12 *range3,

492 Excel Add-in Development in C/C++

xloper12 *value4, xloper12 *range4,
xloper12 *value5, xloper12 *range5)

{
// Arguments are registered as type Q so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal, SumRange; // SumRange not used
do_multi(RetVal, SumRange, Args, DO_MULTI_COUNT);
return RetVal.ExtractXloper12();

}

Function
name

average_if_multi_xl4 or average_if_multi_xl12
(exported)
SumIfMulti (registered with Excel)

Description Returns the average of all values in a range, where corresponding
values in up to five search ranges match corresponding search values.
Input ranges are expected to be either single columns or single rows,
and all search ranges must be the same shape and size and have at
least 2 elements each. Search ranges are not required to be sorted or
all the same data type. The function looks for exact matches and is
case-sensitive when comparing strings. The function returns #VALUE!
if inputs are not valid. Values in the sum range are converted to
numbers if possible and skipped if not.

Type string "RPPPPPPPPPPP" (2003), "UQQQQQQQQQQQ$" (2007)

Notes Function arguments are registered as value xloper/xloper12s,
which causes Excel to convert from references to xltypeMulti,
simplifying the type-checking and conversion that the DLL function
needs to do. (If a search range reference is a single cell it will be
converted to a single value, rather than an array, and the function will
fail.) The function returns an xloper/xloper12 so that errors can
be returned.

xloper * __stdcall average_if_multi_xl4(xloper *average_range,
xloper *value1, xloper *range1,
xloper *value2, xloper *range2,
xloper *value3, xloper *range3,
xloper *value4, xloper *range4,
xloper *value5, xloper *range5)

{
// Arguments are registered as type P so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,

Example Add-ins and Financial Applications 493

value4, range4, value5, range5,
};
cpp_xloper RetVal;
cpp_xloper AverageRange(average_range);
do_multi(RetVal, AverageRange, Args, DO_MULTI_AVERAGE);
return RetVal.ExtractXloper();

}

xloper12 * __stdcall average_if_multi_xl12(xloper *average_range,
xloper12 *value1, xloper12 *range1,
xloper12 *value2, xloper12 *range2,
xloper12 *value3, xloper12 *range3,
xloper12 *value4, xloper12 *range4,
xloper12 *value5, xloper12 *range5)

{
// Arguments are registered as type Q so range references are
// already converted to xltypeMulti.

cpp_xloper Args[2 * NUM_MULTI_FN_RANGES] =
{

value1, range1, value2, range2, value3, range3,
value4, range4, value5, range5,

};
cpp_xloper RetVal;
cpp_xloper AverageRange(average_range);
do_multi(RetVal, AverageRange, Args, DO_MULTI_AVERAGE);
return RetVal.ExtractXloper12();

}

10.6 FINANCIAL MARKETS DATE FUNCTIONS

Financial markets rely on conventions that govern the dates on which certain things
happen. For example, there are conventions that determine

• interest payment dates;
• settlement dates for commodity, stock, bond, cash and currency transactions;
• option exercise/expiry dates;
• dates on which price or rate fixings are recorded and published;
• futures contract expiry and settlement dates;
• bond coupon ex-dividend and payment dates;
• the list could go on.

The correct calculation of dates and holidays, and the proper application of day-count
and days-in-year conventions are the first things to get right. Pricing and valuation errors
caused by just one extra day of interest can be significant in the narrow bid-offer spreads
of the professional markets. This section does not attempt to document all conventions in
all markets. Instead, it picks a few examples of the kinds of things that need to be done
and explores how best to implement functions that do them.

The date functionality of Excel on its own is stretched to do the job of working with
these date conventions. The choices for a financial markets application are:

• Use combinations of Excel’s worksheet functions.
• Use VBA functions.

494 Excel Add-in Development in C/C++

• Use C/C++ functions in a DLL.
• Use Microsoft or third-party add-ins.

The first choice, while possible, can lead to complex sets of formulae that are difficult
to debug and change. They can also produce a spreadsheet that is slow to recalculate,
difficult to expand, or that has logic that is difficult for others to follow. VBA functions,
though accessible, can be slow. Compiled C/C++ code is fast and, if well commented,
has none of these problems. An example of the fourth choice is the Analysis ToolPak
shipped with Excel which contains a number of bond market date functions, for example,
COUPPCD() which returns the previous coupon payment date on a coupon-bearing bond.
Performance of third party add-ins may not always be sufficient, especially where these
are VBA XLA add-ins.

Market date functions can get surprisingly complex. Take the simple question, ‘Given a
certain start date for a US dollar interest rate swap, what is the first LIBOR fixing date?’.
(This is normally the trade date if the swap is spot-starting, but could be the exercise date
if a swaption.) The solution requires knowledge of London bank holidays, US banking
holidays, and the convention for spot date calculations for dollars in London. (The spot
date is two good London business days forward, unless this falls on a NY holiday in
which case the next day that is not a holiday in either centre.) Even in this case, it might
be possible that two banks trading a dollar swap in Tokyo might also want to avoid
Tokyo banking holidays for spot and settlement dates. Designing function interfaces and
function code that balance flexibility with simplicity is part of the programmer’s art. It is
not possible to say there is a best way, and every set of choices may inevitably have its
drawbacks, but choices must be made.

The discussion focuses on the following market date tasks:5

1. Given any date, find out if it is a GBD in a given centre or union of centres, returning
information about the date if it is not.

2. Given any date, find out if it is the last GBD of the month for a given centre or union
of centres.

3. Given any date, adjust it, if it is not a GBD, to the next or previous GDB given a
centre or centres and a modification rule (for example, FMBDC).

4. Given a valid business trade (fixing) date, calculate the spot (settlement) date in a
given centre or centres for a given transaction type in a given currency or currency
pair.

5. Given a valid spot (settlement) date, calculate the trade (fixing) date in a given centre
or centres for a given transaction type in a given currency or currency pair.

6. Given any date, calculate the GBD that is n (interim) GBDs after (before if n < 0),
given an interim holiday database and final date holiday database. (Interim holidays
only are counted in determining whether n GBDs have elapsed. Final and interim
holidays are avoided once n GBDs have elapsed).

7. Given an interest payment date in a regular series, calculate the next date given
the frequency of the series, the rollover day-of-month, the holiday centre or centres,
according to FMBDC.

5 The abbreviations GBD (good business day) and FMBDC (following modified business day convention) are
used from here on.

Example Add-ins and Financial Applications 495

8. Given two dates, calculate the fraction of a year or the number of days between them
given (i) a day-count/year convention (e.g., Actual/365, Actual/360, 30/360, 30E/360,
Actual/Actual), adjusting the dates if necessary to GBDs given a centre or centres,
and (ii) a modification rule (for example, FMBDC) and a rollover day-of-month.

9. Given any GBD, calculate a date that is m whole months forward or backward, in a
given centre or centres for a given modification rule.

10. Calculate the number of GBDs between two dates given a holiday database.

Many more functions could be added to this list, for example, those relating to futures
contract expiries: This is not intended to be an exhaustive list. It can easily be seen
that (3), (4) and (5) can all be accomplished by a suitably flexible implementation of
(6) assuming that the holiday database(s) reflect all of the centres that are relevant. Less
obviously, there are issues with the mapping of trade dates to settlement dates which is
not, in general, one-to-one. In some cases two or three consecutive trade dates can map
to the same spot date. When n < 0, function (6) must therefore provide a means for the
user to determine which of the possible trade dates, consistent with the given settlement
date, they wish to get – or perhaps a means to get all of them.

The first questions to consider are those relating to holidays. There are three choices:

(i) Generate holidays within the code from algorithms.
(ii) Source holidays externally and store them on the worksheet.

(iii) Source holidays externally and store them in the DLL (or a VBA module).

Choice (i) is perhaps the ideal choice but does require the coding and testing of the
algorithms which must be capable of adapting to new holidays and rules. For this reason
it may not be the most practical. Choice (ii) provides greater flexibility for the date
functions, which can simply be passed ranges of holidays, but requires that the holidays
are always on an open workbook that uses the data functions. (Holidays can be read from
a closed workbook, but this can be quite inefficient.) Choice (iii) is computationally the
most efficient. Holidays can be loaded into the DLL with worksheet functions that return,
say, a label and sequence number to be passed as an argument to the date functions.
(See section 9.6 Maintaining large data structures within the DLL on page 385.) The raw
holiday input only needs to be verified, sorted and converted once, enabling the most
efficient internal coding of an ‘is it a holiday?’ routine.

It may be that you want your DLL to load holiday tables from a central source. You may
choose to use Excel’s ability to access data from external sources, for example, via DDE
or VBA or by accessing an external database. (See Excel’s online help for detail about
the external database access and web access choices.) From within the DLL, the choices
are use the C API’s DDE commands or COM to communicate with another application,
or use some other means, perhaps a socket library via one or more background threads. In
the interests of simplicity, which correlates highly with reliability, separating the sourcing
of holidays from the DLL/XLL that contains the date functions is a good idea.

The following set of tables describe a possible interface for functions (1), (2), (6), (7),
(8) and (9). Choice (ii) above is assumed to have been made, i.e., that the holidays are
passed in as ranges of dates on the workbook. It is implementation-dependant, and left
indeterminate, whether holidays would need to be pre-sorted. The functions all expect
that holidays are in a contiguous range in an accessible workbook. Where a function is
to use holidays from multiple centres, it is assumed that a combined range of holidays
exists on a worksheet.

496 Excel Add-in Development in C/C++

Dates are passed in as numbers (doubles) and should be interpreted according to the
state of the 1904 date system checkbox on the Tools/Options. . ./Calculation dialog. This can
be determined within the DLL with a call to xlfGetDocument with ArgNum set to
20. (See section 8.10.6 on page 293 for details.) If individual dates were passed in as
16-bit integers, type I, the range of dates supported would be too limited, although 32-bit
integers, type J, can be used safely.

Optional arguments are prototyped as xlopers, enabling them to be omitted, but reg-
istered as type P so that range arguments are de-referenced by Excel. Required arguments
may also be prototyped as xlopers for the flexibility that this brings, the assumption
being that the function code will fail if a missing or nil type is passed in. Excel will not
call a function if non-xloper arguments cannot be converted to the registered types. All
of the functions return an xloper to provide the greatest flexibility in return type.

Required ranges of holidays are passed in as xl4_arrays. Excel will not call the
function if the range contains strings that can’t be converted to numbers, Booleans or
error values. The values of the holidays then needs to be extracted. The cpp_xloper
class contains member functions that do just this. (See section 6.4 A C++ class wrapper
for the xloper/xloper12 – cpp_xloper on page 146.)

Little or no discussion is made of the body of the functions. It is assumed that any
competent programmer could code efficient and safe routines to do the work of testing if
a date (truncated to an integer) occurs in a list of holidays, stepping forward one day if
it is, and so on.

Conversion of day counts to day-month-year structures is less obvious. The following
code shows how this can be done efficiently for dates up to 28-Feb-2200. Note that the
code serialises day-counts using a signed 32-bit integer, ample for storing the maximum
Excel date of 31-Dec-9999. (Note also that the year argument below is the whole number,
e.g., 1997 or 2006, rather than the 97 or 106 used in the first edition of this book).

enum {JAN=1,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC};
int m_days[12] = {0,31,59,90,120,151,181,212,243,273,304,334};

inline bool is_leap_year(short year)
{

return (year % 400) == 0 | | ((year % 4) == 0 && (year % 100) != 0);
}

// 'year' is the whole year, e.g., 2006
inline int day_count(int day, int month, int year)
{

return 1 + day + m_days[month - JAN]
+ (month > FEB && is_leap_year(date.y))
+ year * 365 + ((year - 1) >> 2);

}

#define DAYS_IN_4_YEARS (365 * 4 + 1)

void count_to_date(int count, int &day, int &month, int &year)
{

year = (--count << 2) / DAYS_IN_4_YEARS;
day = count - year * 365 - ((year - 1901) >> 2);

for(month = JAN; month < MAR; month ++)
{

if(m_days[month] >= d)

Example Add-ins and Financial Applications 497

{
day -= m_days[month - 1];
return;
}

}

if(is_leap_year(y))
{

if(m_days[FEB] == --day)
{

day = 29;
month = FEB;
return;

}
}
for(; month < DEC; month++)

if(m_days[month] >= day)
break;

day -= m_days[month - 1];
}

The above code assumes that the serial day-count is that which Excel stores when using
its default 1900 date system.6 If your application is critically dependent on dates, you
should check the status of this setting and convert all incoming and returned dates. The
following code samples show how to do this. Note that the exported worksheet function
accepts and returns dates as 32-bit integers, type J. Note also that the state of Excel will
not change during a single call to a function, but would need to be checked on every call
to be super-safe. In practice, this is overkill. A more efficient approach would be to use
xlcOnRecalc to capture those recalculation events that the C API can handle and set
a global variable then, or use the more specific VBA recalculation event traps to call a
function in the XLL that resets this.

bool excel_using_1904_system(void)
{

cpp_xloper Using1904; // initialised to xltypeNil
cpp_xloper Arg(20); // initialised to xltypeInt
Using1904.Excel(xlfGetDocument, 1, &Arg);
return Using1904.IsTrue();

}

#define DAYS_1900_TO_1904 1462 // = 1-Jan-1904 in 1900 system

int __stdcall worksheet_date_fn(int input_date)
{

bool using_1904 = excel_using_1904_system();

if(using_1904)
input_date += DAYS_1900_TO_1904;

// Do something with the date
int result = some_date_fn(input_date);

6 Excel mistakenly thinks that 1900 was a leap year and therefore the first correct interpretation of a date under
this system is 1-Mar-1900 which equates to the value 61.

498 Excel Add-in Development in C/C++

if(using_1904)
result -= DAYS_1900_TO_1904;

return result;
}

The following is a slightly quicker implementation of excel_using_1904_system()
that uses xlopers directly, as creator and destructor calls and overloaded operator calls
are not required. An optimising compiler might produce code this efficient, of course. You
might prefer this stripped-down function if you are making a lot of calls to this function
and require it to be as fast as possible.

bool excel_using_1904_system(void)
{

if(gExcelVersion12plus)
{

xloper12 Using1904, Arg;
Arg.xltype = xltypeInt;
Arg.val.w = 20;
Excel12(xlfGetDocument, &Using1904, 1, &Arg);
return Using1904.xltype == xltypeBool && Using1904.val.xbool == 1;

}
else
{

xloper Using1904, Arg;
Arg.xltype = xltypeInt;
Arg.val.w = 20;
Excel4(xlfGetDocument, &Using1904, 1, &Arg);
return Using1904.xltype == xltypeBool && Using1904.val.xbool == 1;

}
}

The following functions are described but code is not supplied in the text or on the CD
ROM. Where Excel 2003 and 2007 interfaces are described (prototyped) it is assumed that
these would be registered only in the appropriate version, as described in section 8.6.12
Registering functions with dual interfaces for Excel 2007 and earlier versions on page 263.

Description Given any date, find out if it is a GBD in a given centre or union of
centres, returning either true or false, or information about the date
if not a GBD when requested.

Prototype (2003):
xloper *__stdcall is_gbd_xl4(double ref_date,
xl4_array *hols_array, xloper *rtn_string);
(2007):
xloper12 *__stdcall is_gbd_xl12(double ref_date,
xl4_array *hols_array, xloper12 *rtn_string);

Type string "RBKP" (2003), "UBKQ$" (2007)

Example Add-ins and Financial Applications 499

Notes Returns a Boolean, a more descriptive string or an error value. The
first two arguments are required. The first is the reference date. The
second is an array of holidays.

The third argument is optional and, once coerced to a Boolean,
enables the caller to specify a simple true/false return value or, say,
a descriptive string. Where the DLL assumes this is Boolean, a
blank cell would be interpreted as false, i.e., do not return a string.

Description Given any date, find out if it is the last GBD of the month for a
given centre or union of centres, or obtain the last GBD of the
month in which the date falls.

Prototype (2003):
xloper *__stdcall last_gbd_xl4(double date,
xl_array *hols_array, xloper *rtn_last_gbd);
(2007):
xloper12 *__stdcall last_gbd_xl12(double date,
xl4_array *hols_array, xloper12 *rtn_last_gbd);

Type string "RBKP" (2003), "UBKQ$" (2007)

Notes Returns a Boolean, a date or an error value. The first two arguments
are required.
The first is the date being tested. The second is an array of holidays.
The third argument is optional and, once coerced to a Boolean,
enables the caller to specify a simple true/false return value or the
actual last GBD of the month. Where the DLL assumes this is
Boolean, a blank cell would be interpreted as false.

Description Given any date, calculate the GBD that is n (interim) GBDs after
(before if n < 0), given an interim holiday database and final date
holiday database. (Interim holidays only are counted in determining
whether n GBDs have elapsed and final and interim holidays are
avoided once n GBDs have elapsed.) If n is zero adjust the date
forwards or backwards as instructed if not a GBD. If n < 0 and a
final holidays database has been provided and a number of dates
would map forwards to the same given date, return the latest or all
as directed.

Prototype (2003):
xloper *__stdcall adjust_date_xl4(double
ref_date, short n_gbds, xl4_array *interim_hols,
xloper *final_hols, xloper *adj_backwards,
xloper *rtn_all);

500 Excel Add-in Development in C/C++

(2007):
xloper12 *__stdcall adjust_date_xl12(double
ref_date, short n_gbds, xl4_array *interim_hols,
xloper12 *final_hols, xloper12 *adj_backwards,
xloper12 *rtn_all);

Type string "RBIKPPP" (2003), "UBIKQQQ$" (2007)

Notes Returns a Boolean, a date, an array of dates or an error value. The
first three arguments are required. The first is the date being
adjusted. The second is the number of GBDs to adjust the date by.
The third is an array of interim holidays.
The fourth argument tells the function whether to adjust dates
forwards or backwards if n = zero. It is optional, but a default
behaviour, in this case, needs to be coded.
The fifth argument is optional and, interpreted as a Boolean,
instructs the function to return the closest or all of the possible dates
when adjusting backwards.

Description Given an interest payment date in a regular series, calculate the next
date given the frequency of the series, the rollover day-of-month,
the holiday centre or centres, according to the following modified
date convention.

Prototype (2003):
xloper *__stdcall next_rollover_xl4(double
ref_date, short roll_day, short roll_month,
short rolls_pa, xl4_array *hols_array, xloper
*get_previous);
(2007):
xloper12 *__stdcall next_rollover_xl12(double
ref_date, short roll_day, short roll_month,
short rolls_pa, xl12_array *hols_array, xloper12
*get_previous);

Type string "RBIIIKP"(2003), "UBIIIKQ$"(2007)

Notes Returns a date or an error value. All arguments bar the last are
required. The rollover day of month (roll_day) is a number in
the range 1 to 31 inclusive, with 31 being equivalent to an end-end
rollover convention. The roll_month argument need only be one
of the months on which rollovers can occur.

Description Given two dates, calculate the fraction of a year or the number of
days between them given a day-count/year convention (e.g.,

Example Add-ins and Financial Applications 501

Actual/365, Actual/360, 30/360, 30E/360, Actual/Actual), adjusting
the dates if necessary to GBDs given a centre or centres and a
modification rule (for example, FMBDC) and a rollover
day-of-month.

Prototype (2003):
xloper *__stdcall date_diff_xl4(double date1,
double date2, char *basis, xloper
*rtn_days_diff, xloper *hols_range, xloper
*roll_day, xloper *apply_fmbdc);
(2007):
xloper12 *__stdcall date_diff_xl12(double date1,
double date2, wchar_t *basis, xloper12
*rtn_days_diff, xloper12 *hols_range, xloper12
*roll_day, xloper12 *apply_fmbdc);

Type string "RBBCPPPP" (2003), "UBBC%QQQQ$" (2007)

Notes Returns a number of days or fraction of year(s) or an error value.
The first three arguments are required. The requirements for the
basis strings would be implementation-dependent, with as much
flexibility and intelligence as required being built into the function.
The fourth argument is optional and implies that the function returns
a year fraction by default. The last three arguments are optional,
given that none of them might be required if either the basis does
not require GBD correction, or the dates are already known to be
GBDs.

Description Given any GBD, calculate a date that is m whole months forward or
backward, in a given centre or centres for a given modification rule.

Prototype (2003):
xloper *__stdcall months_from_date_xl4(double
ref_date, int months, xl_array *hols_array,
xloper *roll_day, xloper *apply_end_end);
(2007):
xloper12 *__stdcall months_from_date_xl12(double
ref_date, int months, xl4_array *hols_array,
xloper12 *roll_day, xloper12 *apply_end_end);

Type string "RBJKPP" (2003), "UBJKQQ$" (2007)

Notes Returns a date or an error value. The first three arguments are
required. The last two arguments are optional. If roll_day is
omitted, the assumption is that this information would be extracted
from ref_date subject to whether or not the end-end rule is to be
applied.

502 Excel Add-in Development in C/C++

Description Calculate the number of GBDs between two dates given a holiday
database.

Prototype (2003):
xloper *__stdcall gbds_between_dates_xl4(double
date1, double date2, xl_array *hols_array);
(2007):
xloper12 *__stdcall
gbds_between_dates_xl12(double date1, double
date2, xl4_array *hols_array);

Type string "RBBK" (2003), "UBBK$" (2007)

Notes Returns an integer or an error value. All arguments are required. An
efficient implementation of this function is not complicated.
Calculating the number of weekdays and then calculating and
subtracting the number of (non-weekend) holidays is the most
obvious approach.

10.7 BUILDING AND READING DISCOUNT CURVES

There are many aspects of this subject which are beyond the scope of this book. It
is assumed that this is not a new area for readers but for clarity, what is referred to
here is the construction of a tabulated function (with an associated interpolation and
extrapolation scheme) from which the present value of any future cash-flow can be cal-
culated. (Such curves are often referred to as zero curves, as a point on the curve is
equivalent to a zero-coupon bond price.) Curves implicitly contain information about a
certain level of credit risk. A curve constructed from government debt instruments will, in
general, imply lower interest rates than curves constructed from inter-bank instruments,
which are, in turn, lower than those constructed from sub-investment grade corporate
bonds.

This section focuses on the issues that any strategy for building such curves needs to
address. The assumption is that an application in Excel needs to be able to value future
cashflows consistent with a set of market prices of various financial instruments (the input
prices). There are several questions to address before deciding how best to implement
this in Excel:

• Where do the input prices come from? Are they manually input or sourced from a live
feed or a combination of both?

• Are the input prices changing in real-time?
• Does the user’s spreadsheet have access to the input prices or is the discount curve

constructed centrally? If constructed centrally, how is Excel informed of changes and
how does it retrieve the tabulated values and associated information?

• Is the discount curve intended to be a best fit or exact fit to the input prices?
• How is the curve interpolated? What is modelled over time – the instantaneous forward

rate, the continuously compounded rate, the discount factor, or something else?

Example Add-ins and Financial Applications 503

• How is the curve’s data structure maintained? Is there a need for many instances of
similar curves?

• How is the curve used? What information does the user need to get from the curve?

There is little about building curves that can’t be accomplished in an Excel worksheet,
although this may become very complex and unwieldy, especially if not supported by an
add-in with appropriate date and interpolation functions. The following discussion assumes
that this is not a practical approach and that there is a need to create an encapsulated and
fast solution. There is nothing about the construction of such curves that can’t be done
in VBA either: the assumption is that C/C++ has been chosen.

The possibility that the curve is calculated and maintained centrally is not discussed in
any detail, although it is worth noting the following two points:

• The remote server would need a means to inform the spreadsheet or the add-in that the
curve has changed so that dependent cells can be recalculated. One approach would be
for the server to provide a curve sequence number to the worksheet, which can then
be used as a trigger argument.

• The server could communicate via a background thread which would initiate recalcu-
lation of volatile curve-dependent functions when the curve had changed.

In any case, delays that might arise in communicating with a remote server would make
this a strong candidate for use of one or more background threads. It is almost certain
that a worksheet would make a large number of references to various parts of a curve,
meaning that such a strategy would ideally involve the communication of an entire curve
from server to Excel, or to the DLL, to minimise communication overhead.

The discussion that follows focuses on the design of function interfaces that reflect the
following assumptions:

1. Input prices are fed into worksheet cells automatically under the control of some
external process, causing Excel to recalculate when new data arrive.

2. The user can also manually enter input price data, to augment or override.
3. The user will want to make many references to the same curve.

Assumptions (1) and (2) necessitate that a local copy of the curve be generated. Assump-
tion (3) then dictates that the curve be calculated once and a reference to that curve be
used as a trigger to functions that use the curve.

The first issue to address is how to prepare the input data for passing to the curve
building function. The most flexible approach is the creation of a table of information in
a worksheet along the following lines:

Instrument Start date End date Price or Instrument-specific data. . .
type Rate (multiple columns)

.

The format, size and contents of this table would be governed by the variety of instruments
used to construct the curves and by the implementation of the curve builder function.

504 Excel Add-in Development in C/C++

Doing this leads to a very simple interface function when compared to one alternative of,
say, an input range for each type of instrument. The addition of new instrument types,
with perhaps more columns, can be accommodated with full backwards compatibility – an
important consideration. For this discussion, it is assumed that the day basis, coupon
amount and frequency, etc., of input instruments are all contained in the instrument-
specific data columns at the right of the table. (Clearly, there is little to stop the above
table being in columns instead of rows. Even where a function is designed to accept row
input, use of the TRANSPOSE() function is all that’s required.)

Description Takes a range of input instruments, sorts and verifies the contents as
required, creates and constructs a persistent discount curve object
associated with the calling cell, based on the type of interpolation or
fitting encoded in a method argument. Returns a two-cell array of
(1) a label containing a sequence number that can be used as a
trigger and reference for curve-dependent functions, and (2) a
time-of-last-update timestamp.

Prototype (2003):
xloper *__stdcall
create_discount_curve_xl4(xloper *input_table,
xloper *method);
(2007):
xloper12 *__stdcall
create_discount_curve_xl12(xloper12
*input_table, xloper12 *method);

Type string "RPP" (2003), "UQQ$" (2007)

Notes Returns an array label, timestamp or an error value. The first
argument is required but as it is an xloper/xloper12, Excel will
always call the function, so the function needs to check the
xloper/xloper12 type.
Returning a timestamp is a good idea when there is a need to know
whether a data-feed is still feeding live rates or has been silent for
more than a certain threshold time.
The function needs to record the calling cell and determine if this is
the first call or whether a curve has already been built by this caller.
(See sections 9.6 on page 385 and 9.8 on page 389.) A strategy for
cleaning up disused curves, where an instance of this function has
been deleted, also needs to be implemented in the DLL.

Description Takes a reference to a discount curve returned by a call to
create_discount_curve() above, and a date, and returns the
(interpolated) discount curve value for that date.

Example Add-ins and Financial Applications 505

Prototype (2003):
xloper *__stdcall get_discount_value_xl4(char
*curve_ref, double date, xloper *rtn_type);
(2007):
xloper12 *__stdcall
get_discount_value_xl12(wchar_t *curve_ref,
double date, xloper12 *rtn_type);

Type string "RCBP" (2003), "UC%BQ$" (2007)

Notes Returns the discount function or other curve data at the given date,
depending on the optional rtn_type argument, or an error value.

The above is a minimal set of curve functions. Others can easily be imagined and imple-
mented, such as a function that returns an array of discount values corresponding to an
array of input dates, or a function that calculates a forward rate given two dates and
a day-basis. Functions that price complex derivatives can be implemented taking only
a reference to a curve and to the data that describe the derivative, without the need to
retrieve and store all the associated discount points in a spreadsheet.

10.8 BUILDING TREES AND LATTICES

The construction of trees and lattices for pricing complex derivatives raises similar issues
to those involved in curve-building. (For simplicity, the term tree is used for both trees
and lattices.) In both cases decisions need to be made about whether or not to use a
remote server. If the decision is to use a server, the same issues arise regarding how to
inform dependent cells on the worksheet that the tree has changed, and how to retrieve
tree information. (See the above section for a brief discussion of these points.) If the
decision is to create the tree locally, then the model of one function that creates the tree
and returns a reference for tree-dependent cells to refer to, works just as well for trees as
for discount curves.

There is however, a new layer of complexity compared to curve building: whereas an
efficient curve-building routine will be quick enough to run in foreground, simple enough
to be included in a distributed add-in, and simple enough to have all its inputs available
locally in a user’s workbook, the same might not be true of a tree. It may be that creating
a simple tree might be fine in foreground on a fast machine, in which case the creation and
reference functions need be no more complex than those for discount curves. However, a
tree might be very much more complex to define and create, taking orders of magnitude
more time to construct than a discount curve. In this case, the use of background threads
becomes important.

Background threads can be used in two ways: (1) to communicate with a remote server
that does all the work, or (2) to create and maintain a tree locally as a background task.
(Sections 9.10 Multi-tasking, multi-threading and asynchronous calls in DLLs on page
401, and 9.11 A background task management class and strategy on page 406, cover
these topics in detail.) Use of a remote server can be made without the use of background
threads, although only if the communication between the two will always be fast enough
to be done without slowing the recalculation of Excel unacceptably. (Excel 2007 enables

506 Excel Add-in Development in C/C++

multi-threading of such calls, enabling even a single processor machine to make the most
of a many-processor server).

Trees also raise questions about using the worksheet as a tool for relating instances
of tree nodes, by having one node to each cell or to a compact group of cells. This
then supposes that the relationship between the nodes is set up on the spreadsheet. The
flexibility that this provides might be ideal where the structure of the tree is experimental
or irregular. However, there are some difficult conceptual barriers to overcome to make
this work: tree construction is generally a multi-stage process. Trees that model interest
rates might first be calibrated to the current yield curve, as represented by a set of
discrete zero-coupon bond prices, then to a stochastic process that the rate is assumed to
follow, perhaps represented by a set of market options prices. This may involve forward
induction through the tree and backward induction, as well as numerical root-finding or
error-minimising processes to match the input data. Excel is unidirectional when it comes
to calculations, with a very clear line of dependence going one way only. Some of these
things are too complex to leave entirely in the hands of Excel, even if the node objects
are held within the DLL. In practice, it is easier to relate nodes to each other in code and
have the worksheet functions act as an interface to the entire tree.

10.9 MONTE CARLO SIMULATION

Monte Carlo (MC) simulation is a numerical technique used to model complex randomly-
driven processes. The purpose of this section is to demonstrate ways in which such
processes can be implemented in Excel, rather than to present a textbook guide to Monte
Carlo techniques.7

Simulations are comprised of many thousands of repeated trials and can take a long
time to execute. If the user can tolerate Excel being tied up during the simulation, then
running it from a VBA or an XLL command is a sensible choice. If long simulations need
to be hidden within worksheet functions, then the use of background threads becomes
necessary. The following sections discuss both of these options.

Each MC trial is driven by one or more random samples from one or more probability
distributions. Once the outcome of a single trial is known, the desired quantity can be
calculated. This is repeated many times so that an average of the calculated quantity can
be derived.

In general, a large number of trials need to be performed to obtain statistically reliable
results. This means that MC simulation is usually a time-consuming process. A number
of techniques have been developed for the world of financial derivatives that reduce the
number of trials required to yield a given statistical accuracy. Two important examples
are variance reduction and the use of quasi-random sequences (see above).

Variance reduction techniques aim to find some measure, the control, that is closely
correlated to the required result, and for which an exact value can be calculated ana-
lytically. With each trial both the control and the result are calculated and difference in
value recorded. Since the error in the calculation of the control is known at each trial, the

7 There are numerous excellent texts on the subject of Monte Carlo simulation, dealing with issues such as
numbers of trials, error estimates and other related topics such as variance reduction. Numerical Recipes in
C contains an introduction to Monte Carlo methods applied to integration. Implementing Derivative Models
(Clewlow and Strickland), published by John Wiley & Sons, Ltd, contains an excellent introduction of MC to
financial instrument pricing.

Example Add-ins and Financial Applications 507

average result can be calculated from the control’s true value and the average difference
between the control and the result. With a well-chosen control, the number of required
trials can be reduced dramatically.

The use of quasi-random sequences aims to reduce the amount of clustering in a random
series of samples. (See section 10.2.4 above.) The use of this technique assumes that a
decision is made before running the simulation as to how many trials, and therefore
samples, are needed. These can be created and stored before the simulation is run. Once
generated, they can be used many times of course.

Within Excel, there are a number of ways to tackle MC simulation. The following
sub-sections discuss the most sensible of these.

10.9.1 Using Excel and VBA only

A straightforward approach to Monte Carlo simulation is as follows:

1. Set up the calculation of the one-trial result in a single worksheet, as a function of
random samples from the desired distribution(s).

2. Generate the distribution samples using a volatile function (e.g., RAND()).
3. Set up a command macro that recalculates the worksheet as many times as instructed,

each time reading the required result from the worksheet, and evaluating the average.
4. Deposit the result of the calculation, and perhaps the standard error, in a cell or cells

on a worksheet, periodically or at the end of the simulation.

Using Excel and VBA in this way can be very slow. The biggest optimisation is to control
screen updating, using the Application.ScreenUpdating = True/False statements,
analogous to the C API xlcEcho function. This speeds things up considerably.

The following VBA code example shows how this can be accomplished, and is included
in the example workbook MCexample1.xls on the CD ROM. The workbook calculates
a very simple spread option payoff, MAX(asset price 1±asset price 2, 0), using this VBA
command attached to a button control on the worksheet. The worksheet example assumes
that both assets are lognormally distributed and uses an on-sheet Box-Muller transform.
The VBA command neither knows nor cares about the option being priced nor the pricing
method used. A completely different option or model could be placed in the workbook
without the need to alter the VBA command. (Changing the macro so that it calculates
and records more data at each trial would involve some fairly obvious modifications, of
course.)

Option Explicit

Private Sub CommandButton1_Click()
Dim trials As Long, max_trials As Long
Dim dont_do_screen As Long, refresh_count As Long
Dim payoff As Double, sum_payoff As Double
Dim sum_sq_payoff As Double, std_dev As Double
Dim rAvgPayoff As Range, rPayoff As Range, rTrials As Range
Dim rStdDev As Range, rStdErr As Range

' Set up error trap in case ranges are not defined
' or calculations fail or ranges contain error values

508 Excel Add-in Development in C/C++

On Error GoTo handleCancel

' Set up references to named ranges for optimum access
Set rAvgPayoff = Range("AvgPayoff")
Set rPayoff = Range("Payoff")
Set rTrials = Range("Trials")
Set rStdDev = Range("StdDev")
Set rStdErr = Range("StdErr")

With Application
.EnableCancelKey = xlErrorHandler 'Esc will exit macro
.ScreenUpdating = False
.Calculation = xlCalculationManual

End With

max_trials = Range("MaxTrials")

' Macro will refresh the screen every RefreshCount trials
refresh_count = Range("RefreshCount")
dont_do_screen = refresh_count

For trials=1 To max_trials
dont_do_screen = dont_do_screen - 1
Application.Calculate
payoff = rPayoff
sum_payoff = sum_payoff + payoff
sum_sq_payoff = sum_sq_payoff + payoff * payoff

If dont_do_screen = 0 Then
std_dev = Sqr(sum_sq_payoff - sum_payoff * sum_payoff / trials) _

/ (trials - 1)
Application.ScreenUpdating = True
rAvgPayoff = sum_payoff / trials
rTrials = trials
rStdDev = std_dev
rStdErr = std_dev / Sqr(trials)
Application.ScreenUpdating = False
dont_do_screen = refresh_count

End If
Next

handleCancel:
' Reflect all of the iterations done so far in the results

Application.ScreenUpdating = False
std_dev = Sqr(sum_sq_payoff - sum_payoff * sum_payoff / trials) _

/ (trials - 1)
rAvgPayoff = sum_payoff / trials
rTrials = trials
rStdDev = std_dev
rStdErr = std_dev / Sqr(trials)
Application.Calculation = xlCalculationAutomatic
Set rAvgPayoff = Nothing
Set rPayoff = Nothing
Set rTrials = Nothing
Set rStdDev = Nothing
Set rStdErr = Nothing

End Sub

Example Add-ins and Financial Applications 509

The Application.Calculate = xlAutomatic/xlManual statements control whether
or not a whole workbook should be recalculated when a cell changes. (The C API
analogue is xlcCalculation with the first argument set to 1 or 3 respectively.)
The VBA Range().Calculate method allows the more specific calculation of a
range of cells. Unfortunately, the C API has no equivalent of this method. having
only the functions xlcCalculateNow, which calculates all open workbooks, and
xlcCalculateDocument, which calculates the active worksheet (See below).

10.9.2 Using Excel and C/C++ only

If the above approach is sufficient for your needs, then there is little point in making life
more complicated. If it is too slow then the following steps should be considered, in this
order, until the desired performance has been achieved:

1. Optimise the speed of the worksheet calculations. This might mean wrapping an entire
trial calculation in a few C/C++ XLL add-in functions.

2. Port the above command to an exported C/C++ command and associate this with a
command button or menu item.

3. If the simulation is simple enough and quick enough, create a (foreground) worksheet
function that performs the entire simulation within the XLL so that, to the user, it is
just another function that takes arguments and returns a result.

4. If the simulation is too lengthy for (3) use a background thread for a worksheet function
that performs the simulation within the XLL. (See section 9.11 A background task
management class and strategy on page 406.)

Optimisations (3) and (4) are discussed in the next section. If the simulation is too lengthy
for (3) and/or too complex for (4), then you are left with optimisations (1) and (2).

For optimisation (1), the goal is to speed up the recalculation of the worksheet. Where
multiple correlated variables are being simulated, it is necessary to generate correlated
samples in the most efficient way. Once a covariance matrix has been converted to a sys-
tem of eigenvectors and eigenvalues, this is simply a question of generating samples and
using Excel’s own (very efficient) matrix multiplication routines. Generation of normal
samples using, say, Box-Muller is best done in the XLL. Valuation of the instruments
involved in the trial will in many cases be far more efficiently done in the XLL especially
where interest rate curves are being simulated and discount curves need to be built with
each trial.

For optimisation (2), the C/C++ equivalent of the above VBA code is given below. (See
sections 8.7 Registering and un-registering DLL (XLL) on page 271 and 8.7.1 Accessing
XLL commands on page 273 for details of how to register XLL commands and access
them from Excel.) The command monte_carlo_control() runs the simulation, and
can be terminated by the user pressing the Esc key. (See section 8.7.2 Breaking execution
of an XLL command on page 274.) Note that in this case, there is precise control over
where the user break is checked and detected, whereas with the VBA example, execution
is passed to the error handler as soon as Esc is pressed.

int __stdcall monte_carlo_control(void)
{

double payoff, sum_payoff = 0.0, sum_sq_payoff = 0.0, std_dev;
cpp_xloper CalcSetting(3); // Manual recalculation

510 Excel Add-in Development in C/C++

cpp_xloper True(true), False(false), Op; // Used to call Excel C API

Op.Excel(xlfCancelKey, 1, &True); // Enable user breaks
Op.Excel(xlfEcho, 1, &False); // Disable screen updating
Op.Excel(xlcCalculation, 1, &CalcSetting); // Manual

long trials, max_trials, dont_do_screen, refresh_count;

// Set up references to named ranges which must exist
xlName MaxTrials("!MaxTrials"), Payoff("!Payoff"),

AvgPayoff("!AvgPayoff");

// Set up references to named ranges whose existence is optional
xlName Trials("!Trials"), StdDev("!StdDev"), StdErr("!StdErr"),

RefreshCount("!RefreshCount");

if(!MaxTrials.IsRefValid() | | !Payoff.IsRefValid()
| | !AvgPayoff.IsRefValid())

goto cleanup;

if(!RefreshCount.IsRefValid())
dont_do_screen = refresh_count = 1000;

else
dont_do_screen = refresh_count = (long)(double)RefreshCount;

max_trials = (long)(double)MaxTrials;

for(trials = 1; trials <= max_trials; trials++)
{

Op.Excel(xlcCalculateDocument);
payoff = (double)Payoff;
sum_payoff += payoff;
sum_sq_payoff += payoff * payoff;

if(!--dont_do_screen)
{

std_dev = sqrt(sum_sq_payoff - sum_payoff * sum_payoff
/ trials) / (trials - 1);

Op.Excel(xlfEcho, 1, &True);

AvgPayoff = sum_payoff / trials;
Trials = (double)trials;
StdDev = std_dev;
StdErr = std_dev / sqrt((double)trials);

Op.Excel(xlfEcho, 1, &False);
dont_do_screen = refresh_count;

// Detect and clear any user break attempt
Op.Excel(xlAbort, 1, &False);
if(Op.IsTrue())

goto cleanup;
}

}
cleanup:

CalcSetting = 1; // Automatic recalculation
Op.Excel(xlfEcho, 1, &True);
Op.Excel(xlcCalculation, 1, &CalcSetting);
return 1;

}

Example Add-ins and Financial Applications 511

The above code is listed in MonteCarlo.cpp in the example project on the CD ROM.
Note that the command uses xlcCalculateDocument to recalculate the active sheet
only. If using this function you should be careful to ensure that all the calculations are on
this sheet, otherwise you should use xlcCalculateNow. Note also that the command
does not exit (fail) if named ranges Trials, StdDev or StdErr do not exist on the
active sheet, as these are not critical to the simulation.

The above code can easily be modified to remove the recalculation of the payoff from
the worksheet entirely: the input values for the simulation can be retrieved from the
worksheet, the calculations done entirely within the DLL, and the results deposited as
above. The use of the xlcCalculateDocument becomes redundant, and the named
range Payoff becomes write-only. You may still want to disable automatic recalculation
so that Excel does not recalculate things that depend on the interim results during the
simulation.

When considering a hybrid worksheet-DLL solution, you should be careful not to make
the entire trial calculation difficult to understand or modify as a result of being split. It
is better to have the entire calculation in one place or the other. It is in general better to
use the worksheet, relying heavily on XLL functions for performance if needs be. Bugs
in the trial calculations are far more easily found when a single trial can be inspected
openly in the worksheet.

10.9.3 Using worksheet functions only

If a family of simulations can be accommodated within a manageable worksheet function
interface, there is nothing to prevent the simulation being done entirely in the DLL, i.e.,
without the use of VBA or XLL commands. Where this involves, or can involve, a very
lengthy execution time, then use of a background thread is strongly advised. Section 9.11
A background task management class and strategy on page 406, describes an approach
for this that also enables the function to periodically return interim results before the
simulation is complete – something particularly suited to an MC simulation where you
might be unsure at the outset how many trials you want to perform.

One important consideration when only using functions, whether running on foreground
or background threads, is the early ending of the simulation. This is possible with the
use of an input parameter that can be used as a flag to background tasks. Worksheet
functions that are executed in the foreground cannot communicate interim results back to
the worksheet and can only be terminated early through use of the xlAbort function.

This approach hides all of the complexity of the MC simulation. One problem is that
MC is a technique often used in cases where the calculations are particularly difficult,
experimental or non-standard. This suggests that placing the calculations in the worksheet,
where they can be inspected, is generally the right approach.

10.10 CALIBRATION

The calibration of models is a very complex and subtle subject, often requiring a deep
understanding not only of the model being calibrated but also the background of data – its
meaning and reliability; embedded information about market costs, taxation, regulation,
inefficiency; etc. – and the purpose to which the model is to be put. This very brief
section has nothing to add to the vast pool of professional literature and experience. It
does nevertheless aim to make a couple of useful points on this in relation to Excel.

512 Excel Add-in Development in C/C++

One of the most powerful tools in Excel is the Solver. (See also section 2.11.2 Goal
Seek and Solver Add-in on page 32.) If used well, very complex calibrations can be
performed within an acceptable amount of time, especially if the spreadsheet calculations
are optimised. In many cases this will require the use of XLL worksheet functions. It
should be noted that worksheet functions that perform long tasks in a background thread
(see section 9.10) are not suitable for use with the Solver: the Solver will think that the
cells have been recalculated when, in fact, the background thread has simply accepted the
task onto its to-do list, but not yet returned a final value.

The most flexible and user-friendly way to harness the Solver is via VBA. The functions
that the Solver makes available in VBA are:

• SolverAdd
• SolverChange
• SolverDelete
• SolverFinish
• SolverFinishDialog
• SolverGet
• SolverLoad
• SolverOk
• SolverOkDialog
• SolverOptions
• SolverReset
• SolverSave
• SolverSolve

The full syntax for all of these commands can be found on Microsoft’s MSDN web site.
Before these can be used, the VBA project needs to have a reference for the Solver add-in.
This is simply done via the VB editor Tools/References. . . dialog.

The example spreadsheet Solver VBA Example.xls on the CD ROM contains a
very simple example of a few of these being used to find the square root of a given
number. The Solver is invoked automatically from a worksheet-change event trap, and
deposits the result in the desired cell without displaying any Solver dialogs.

The VBA code is:

' For this event trap command macro to run properly, VBA must
' have a reference to the Solver project established. See
' Tools/References...

Private Sub Worksheet_Change(ByVal Target As Range)

If Target.Address = Range("Input").Address Then
SolverReset
SolverOK setCell:=Range("SolverError"), maxMinVal:=2, _

byChange:=Range("Output")
SolverSolve UserFinish:=True ' Don't show a dialog when done

End If

End Sub

Note that the named range Input is simply a trigger for this code to run. In the example
spreadsheet it is also an input into the calculation of SolverError. The Solver will

Example Add-ins and Financial Applications 513

complain if SolverError does not contain a formula, which, at the very least, should
depend on Output, i.e., the thing that the Solver has been asked to find the value of. It is a
straightforward matter to associate a similar VBA sub-routine with a control object, such
as a command button, and also to create many Solver tasks on a single sheet, something
which is fiddly to achieve using Excel’s menus alone.

10.11 CMS DERIVATIVE PRICING
A CMS (constant maturity swap) derivative is one that makes a payment contingent on a
future level of a fixed/floating interest rate swap, and where the payment is over a much
shorter period than the term of the underlying swap. For example, one leg of a CMS swap
might pay the 10 year swap rate as if it were a 3 month deposit rate, typically without
any conversion.

Pricing requires correct calculation of the expectation of the CMS rate. The CMS payoff
is very nearly a linear function of the fixing rate, whereas the present value of a swap
is significantly curved by discounting over the full swap term. This introduces a bias in
favour of receiving the CMS rate, so that the fair CMS swaplet rate is always higher
than the underlying forward swap rate. The difference is often referred to as the convexity
bias, requiring a convexity adjustment.

One commonly-used method for pricing CMS derivatives is the construction of a port-
folio of vanilla swaptions that approximate the payoff of the CMS swaplet or caplet. A
CMS caplet can be replicated with payer swaptions struck at and above the caplet strike;
a floorlet with receiver swaptions struck at and below the floorlet strike; a CMS swaplet
with payer and receiver swaptions across all strikes. In effect, the fair swaplet rate can be
calculated by valuing a CMS caplet and a CMS floorlet and using put-call parity to back
out the fair CMS swaplet rate.

The calculation of these biases, fair-value CMS rates, and caplet and floorlet costs is
fairly straight-forward but computationally expensive. The rest of this section outlines the
algebra, an algorithm, and implementation choices for their calculation.

The overview of the process for a single forward CMS swaplet is as follows:

1. Price the forward swap. (You could use a simplifying assumption, such as constant
lognormal volatility, to calculate an adjusted forward swap rate to get a better starting
approximation for the next steps).

2. Choose a strike close to the forward swap rate and calculate the cost of the portfolio
that replicates a caplet at that strike.

3. Calculate the cost of a portfolio that replicates the cost of a floorlet at that strike.
4. Use the difference in the costs of the two portfolios to calculate how far the forward

swap is from the adjusted CMS swaplet rate.

Expanding step 3 above, one approach to calculating the value of a caplet portfolio is as
follows:

1. Choose a strike increment, �S
2. Set the initial strike to be the caplet strike, S0

3. Initialise the portfolio to contain only a CMS caplet struck at S0 in a given unit of
notional

4. Calculate the payoff of the portfolio if rates fix at F0 = S0 + λ�S, where 0.5 < λ ≤ 1.
(Below 0.5 there can be convergence problems).

514 Excel Add-in Development in C/C++

5. Calculate the notional amount N0 of payer swaption struck at S0 required to net off the
CMS caplet payoff at F0, subject to the usual conventions governing cash-settlement
of swaptions in that market.

6. Calculate the cost of the vanilla payer swaption at strike S0.
7. Add the required notional amount of S0 swaption to the portfolio and accrue the cost.
8. Increment the strike by �S.
9. Repeat steps (4) to (8) substituting S0 with Si = S0+ i.�S until some convergence or

accuracy condition has been met.

Pricing a CMS floorlet is analogous to pricing a CMS caplet except that you would (nor-
mally) assume a lower boundary to the decremented Si , which may alter the termination
criteria in step (9). Hedge sensitivities are easily calculated once the portfolio is known,
or, more efficiently, can be calculated during the building of the portfolio.

Note also that the only step that depends on the volatility etc. of the underlying swap
rate is (6), where the vanilla swaption at a given strike is priced. In other words, the
above steps are independent of any particular model, and work equally well for a constant
lognormal Black assumption8, or a given set of SABR stochastic volatility assumptions
(see next section), or any other model or set of assumptions. The portfolio amounts, Ni ,
depend only on the expiry and term of the underlying and CMS period and the level
of rates. Therefore they can in fact be calculated before any of the option values at the
various strikes, enabling these things to be separated in code, although at the expense of
some of the clarity of the code perhaps.

There is a subtle point relating to the volatility of the short rate of the same term as
the CMS caplet period and its correlation to the underlying swap rate when revaluing
the portfolio at a given swap fixing level. For a proper analysis of this question you
are reading the wrong book. In practice, this effect is quite small, so any reasonable
assumption, such as the short and swap rates maintaining a constant ratio, despite being
a little unrealistic, works reasonably well.

From a calculation point of view, this is a lot of work. Consider what needs to be
done to price a 20 year maturity CMS swap that makes quarterly payments based on the
10y swap (a 20 year swap on 10 year CMS). Ignoring the value of the first (spot-start)
payments, there are 79 CMS swaplets to be valued. If the above method were used with
�S = 0.25 % and 0 < Si ≤ 40 %, then apart from the work of rebalancing the portfolio
at each fixing, there would be 28,461 vanilla swaptions to price, including application of,
say, the SABR model. The workload can quickly overwhelm Excel and/or VBA.

If real-time pricing is important, a fast DLL/XLL or server-based solution is required.
Apart from a brief discussion of what you might be able to achieve in Excel only, the
rest of this section deals with a C++/DLL/XLL approach.

Looking at the algebra behind portfolio replication for a �T caplet, we can define the
following:

• Fi as the fixing rate used at the ith portfolio revaluation, so Fi = Si + λ�S;
• Pi as the unit present value of the swap at the fixing rate Fi under the appropriate

cash-settlement assumptions;

8 In this special case, there are analytic approximations that are far quicker to implement. See Hull & White
(1989).

Example Add-ins and Financial Applications 515

• Ri as the �T short rate corresponding to the swap rate fixing at Fi;
• Ci as the undiscounted call price per unit notional struck at Si;
• Ni as the notional of the ith swaption struck at Si.

The present value of the caplet is X = D.Pcur.�NiCi, where Pcur is the unit present value
of the swap at its start date and at the current forward rate, Fcur, consistent with cash-
settlement conventions for swaptions and D is the discount factor from the valuation
point to the underlying swap start date. At expiry, when Fi ≤ S0 the caplet portfolio has
no value. Taking the notional of the CMS caplet to be 1, for Fi > S0 the portfolio has
expiry-value V given here.

Vi = (Fi − S0).�T

(1 + Ri�T)
− Pi

i∑
j=0

(Fi − Sj)
+Nj

Assuming that all Nj where j < i are known, we want to determine Ni such that Vi = 0.
Clearly, the summation only goes up to the highest value of Sj less than Fi, since Sj ≥ Fi

is at- or out-of-the-money and so worthless, so we drop the + notation. Rearranging and
solving for Ni gives

Ni =

(Fi − S0).�T

Pi(1 + Ri�T)
−

i−1∑
j=0

(Fi − Sj)Nj

(Fi − Si)

This expression makes no assumption about how the valuation points Fi are chosen. If
we now apply the method outlined above where Si = S0+ i�S and Fi = Si + λ�S to this
we get:

Fi − Sj = �S(i − j + λ)

Fi − S0 = �S(i + λ)

Fi − Si = λ�S

and so

Ni = 1

λ


 (i + λ).�T

Pi(1 + Ri�T)
+

i−1∑
j=0

j.Nj − (i + λ)

i−1∑
j=0

Nj




with

N0 = �T

P0(1 + R0�T)

Note that P0 is the unit present value of the swap at a fixing rate of F0, P0 = P(F0), and
is not the same as Pcur = P(Fcur), since F0 = S0 + λ�S is not in general Fcur.

The starting of �jNj at j = 0 rather than j = 1 simplifies the resulting code at the
expense of one unnecessary multiplication by zero. Note that Ni is completely independent
of Ci and therefore the distributional assumptions of the underlying rate, except insofar
as they affect Ri. The choice of λ impacts the behaviour of the sequence of Ni and also
the average portfolio payoff across all fixings. These relationships and algorithms hold
for the calculation of floorlet portfolio notionals also, where the only change is to use

516 Excel Add-in Development in C/C++

a negative value of �S, so that F0 = S0 + λ�S still, but F0 < S0. Note also that for
floorlets, N0 > 0, but Ni>0 < 0.

It is fairly straightforward to construct from this an algorithm to calculate the total cost
of a portfolio X(�S) that replicates a CMS caplet of strike S0, subject to methods for
evaluating the following:

• The price of a swaption of any strike, Ci = C(Si)

• The unit present value of the underlying swap, Pi = P(Fi)

• The conditional expectation of the short rate Ri = R(Fi)

• A suitable condition for terminating the summation

These points provide ample room for debate and differences of opinion, and it is well
beyond the scope of this book to promote one view over another. In practice however,
many practitioners find a model such as SABR will give reasonably good Black swaption
volatilities, up to a point, and therefore prices. In euros and sterling, the cash-settlement
conventions dictate that Pi is given by a simple annuity calculation.9

The rest of this section provides an example implementation of the above method of
pricing CMS caplets/floorlets and swaplets that relies on the stochastic volatility model
SABR (see next section). The code stops building a caplet portfolio when a maximum
strike is reached or less than some minimum is added to the portfolio’s value. The
condition for floors is simply to iterate only while the strike is positive. Other conditions
might be more practical or theoretically more sound. The intention of this example is not to
recommend an approach, but to demonstrate how one approach can be implemented, and
for this to provide the basis for an exploration of the method and an implementation in an
XLL. (A VBA implementation is possible but would be very slow). The SabrWrapper
class used in the following code is described in the next section, and the Black class is
described in section 9.14.1 on page 434.

#define MAX_ITERATIONS 10000 // Just to stop the loop running away

// Returns the cost of a CMS caplet or floorlet, as valued at the start
// date of the underlying swap.

double CMS_portfolio_cost(double Texp, double delta_T, double fwd_swap,
double short_rate, double strike, int term_yrs,
int fixed_pmts_pa, bool is_call, double delta_S,
double max_strike, double min_value_increment,
double lambda)

{
// Check the inputs

if(Texp <= 0.0 | | delta_T <= 0.0 | | fwd_swap <= 0.0
| | short_rate <= 0.0 | | strike <= 0.0 | | term_yrs <= 0
| | (fixed_pmts_pa != 1 && fixed_pmts_pa != 2 && fixed_pmts_pa != 4)
| | delta_S <= 0.0 | | max_strike <= 0.0 | | min_value_increment <= 0.0)

return false;

if(!is_call) // for floorlet, add -ve increment

9 The conventions for euros and sterling are that the settlement value is only a function of the underlying swap
term, the frequency of fixed rate payments, the fixing rate, and a simplified unadjusted 30/360 (i.e. actual/actual)
day-count/year assumption, and is based on a simple bond IRR calculation. In US dollars, swaptions are valued
against the entire swap curve, so simplifying assumptions may be required.

Example Add-ins and Financial Applications 517

delta_S *= -1.0;

// First retrieve the SABR parameters for this underlying option
// and initialise an instance of the wrapper SabrWrapper.
// Just use some static numbers for this example.

double Alpha = 0.03;
double Beta = 0.5;
double Rho = -0.15;
double VolVol = 0.35;

SabrWrapper Sabr(Alpha, Beta, VolVol, Rho, Texp);
Sabr.SetStrikeIndependents(fwd_swap);

// Create an instance of BlackOption class for vanilla swaption
// pricing. For now, just set up the things that don't change.

BlackOption Black;
Black.SetTexp(Texp);
Black.SetFwd(fwd_swap);

double P_fwd; // the unit PV of the swap at the current forward rate
double P; // the unit PV of the swap at the fixing rate
double N; // the swaption notional of the strike being added
double last_X = 0.0, X = 0.0, sum_N = 0.0, sum_iN = 0.0;
double i_plus_lambda;
double black_vol, black_price, last_black_price = MAX_DOUBLE;
double inv_delta_T = 1.0 / delta_T;

// Assume that initial swap and short rates are same ratio and
// use this to calculate short_r given a swap fixing rate

double current_ratio = short_rate / fwd_swap;

// Set initial fixing rate
double fixing = strike + delta_S * lambda;
P_fwd = swap_unit_pv(term_yrs, fixed_pmts_pa, fwd_swap);

for(int i = 0; i < MAX_ITERATIONS; i++)
{

// Calculate the unit PV of a swap at this fixing rate, at
// which the value of the portfolio is about to be recalculated.

P = swap_unit_pv(term_yrs, fixed_pmts_pa, fixing);

// Use very simplified assumption for the short rate given this swap fixing
short_rate = current_ratio * fixing;

// Calculate the notional amount of payer swaption
// at strike = (fixing - lambda * delta_S)

i_plus_lambda = i + lambda;
N = (i_plus_lambda / (inv_delta_T + short_rate) / P

+ sum_iN - i_plus_lambda * sum_N) / lambda;

// Calculate the cost of the vanilla swaption at this strike
if(!Sabr.GetVolOfStrike(strike, black_vol, false)) // false: log vol

return 0.0; // Couldn't get a good vol

Black.SetStrike(strike);
Black.SetVol(black_vol);
Black.Calc(false); // false: don't calculate greeks
black_price = (is_call ? Black.GetCallPrice() : Black.GetPutPrice());

// Check if more out-of-the-money option is more expensive than
// the last option. This should, in theory, not happen, but

518 Excel Add-in Development in C/C++

// is possible using the SABR expressions, where the limits of
// the underlying assumptions have been exceeded. If so, just
// terminate the building of the portfolio.

if(last_black_price <= black_price)
break;

// Calculate and add the cost of this notional of this strike to the
// portfolio

X += black_price * P_fwd * N;

// Could/should accumulate portfolio hedge sensitivities here (omitted)

// Check if the change in value is less than the specified level
if(fabs(last_X - X) < min_value_increment)

break;

// Increment the sums, strike and fixing for the next loop
strike += delta_S;
if(is_call && strike > max_strike)

break;
if((fixing += delta_S) <= 0.0)

break;

sum_N += N;
sum_iN += i * N;
last_X = X;
last_black_price = black_price;

}
return X;

}

The following simple XLL wrapper function provides worksheet access to this function,
through which the behaviour of this pricing approach can be explored for different inputs.

double __stdcall CmsPortfolioCost(double Texp, double delta_T,
double fwd_swap, double short_rate, double strike, int term_yrs,
int fixed_pmts_pa, int is_call, double delta_S, double max_strike,
double min_value_increment, double lambda)

{
// Inputs are checked in CMS_portfolio_cost(), so don't bother here

return CMS_portfolio_cost(Texp, delta_T, fwd_swap,
short_rate, strike, term_yrs, fixed_pmts_pa,
is_call == 0 ? false : true,
delta_S, max_strike, min_value_increment, lambda);

}

The function swap_unit_pv() uses a simple bond IRR calculation, consistent with the
cash-settlement conventions for swaptions in, for example, euros and sterling.

double swap_unit_pv(int term_yrs, int fixed_pmts_pa, double rate)
{

double D = 1.0 / (1.0 + rate / fixed_pmts_pa);
return (1.0 - pow(D, fixed_pmts_pa * term_yrs)) / rate * fixed_pmts_pa;

}

Example Add-ins and Financial Applications 519

Alternative implementations could abstract the SABR and Black models from the function
CMS_portfolio_cost() so that other models could be used without changing the
code. A better approach might also be to define a class for the CMS caplet, with sensible
defaults for the parameters that affect the building of the portfolio, and place this algorithm
within the class. Where you want to plug in a different stochastic volatility model or option
pricing model, and specify this from the worksheet, you need to be able to pass some
reference to the function to be used. Section 9.9.2 on page 398x discusses ways in which
functions can be passed as arguments to other worksheet functions, leading to worksheet
functions that are independent of the precise model used.

10.12 THE SABR STOCHASTIC VOLATILITY MODEL

The SABR (stochastic alpha beta rho) model10 describes a 2-factor process:

dF = αFβdzi1

dα = ναdz2

dz1dz2 = ρdt

The parameter β provides for a range of model assumptions from normal (Gaussian)
(β = 0) through to lognormal (β = 1), with the parameter α being the instantaneous
volatility of the forward F. When ν (Greek letter Nu) is greater than zero, the volatility
α is itself stochastic with an assumed lognormal distribution and instantaneous volatility
ν (the ‘vol of vol’). The correlation ρ of the two Weiner processes is the fourth model
parameter.

As many practitioners will tell you, the model has some limitations: It struggles to cap-
ture the skews of short-expiry options where observed jumps are not effectively accounted
for; some practitioners doubt the model’s implications for very high strikes.

This book aims to add or subtract nothing to or from this debate, but simply acknowl-
edges its widespread use and discusses issues involved with its implementation in Excel.

The authors of the SABR paper10 provide in their analysis of the model approximate
algebraic expressions for equivalent Black and Gaussian model volatilities as functions of
the four SABR parameters (ν, α, β, ρ) and other option inputs (time to expiry, forward
and strike). These expressions, and the intuitive nature of the model parameters, make
SABR one of the more popular ways of modelling skews in foreign exchange, equity and
interest rate markets.

The expression for the lognormal (Black) volatility case is:

σB = α(FS)(β−1)/2{
1 + (1 − β)2

24
log2 (F/S) + (1 − β)4

1920
log4 (F/S) + . . .

}

.

(
z

x(z)

)
.

{
1 +

[
(1 − β)2α2

24(FS)1−β
+ ρβαν

4(FS)(1−β)/2
+ 2 − 3ρ2

24
ν2

]
tex + . . .

}

10 Managing Smile Risk (2002) Hagan P., Kumar D., Lesniekski A., Woodward D.

520 Excel Add-in Development in C/C++

and, for the normal (Gaussian) case:

σN =
α(FS)β/2

{
1 + 1

24
log2 (F/S) + 1

1920
log4 (F/S) + . . .

}
{

1 + (1 − β)2

24
log2 (F/S) + (1 − β)4

1920
log4 (F/S) + . . .

}

.

(
z

x(z)

)
.

{
1 +

[−β(2 − β)α2

24(FS)1−β
+ ρβαν

4(FS)(1−β)/2 + 2 − 3ρ2

24
ν2

]
tex + . . .

}

where, in both cases

z = ν

α
(FS)(1−β)/2 log (F/S)

x(z) = log

{√
1 − 2ρz + z2 + z − ρ

1 − ρ

}

and where F is the forward price of the asset, S is the strike of the option and tex is the
time to expiry in years.11

These expressions are easily tidied up (in the interests of computational efficiency):

σi = APi

(H)
.

(
z

x(z)

)
.

{
1 +

[
A

4

[
A�i

6
+ ρβν

]
+ 2 − 3ρ2

24
ν2

]
tex

}

z = ν

A
log (F/S)

where
�B = (β − 1)2

�N = β(β − 2) = �B − 1

A = α(FS)(β−1)/2

(y) =
[
1 + y

24

[
1 + y

80

]]
h = log2 (F/S)

H = �Bh

PB = 1

PN = FS
(h)

The equations blow up at x(z) = 0, i.e., when z = 0. But as z → 0, z/x → 1, which
happens as either F → S or ν → 0. In fact, for small values of |z| (say, < 10−9) it
is better to set z/x = 1 to avoid very close-to-the-money volatilities being distorted.
It is better still to set z/x = (1 − 2ρz)1/2 which is how the limit is approached. As
ρ → 1, x → − ln(1 − z) which implies the additional constraint that z cannot be 1 in this
case.

11 The SABR paper’s authors use f for forward and K for strike instead.

Example Add-ins and Financial Applications 521

It is not too expensive to improve the accuracy (very slightly) of the above expressions
by extending the definition of
 by another term:

(y) =
[
1 + y

24

[
1 + y

80

[
1 + y

168

]]]
The SABR paper also provides expressions for the ATM cases, which can be easily
obtained from the above expressions setting S = F:

σ ATM
B = αFβ−1

{
1 +

[
(1 − β)2α2

24F2(1−β)
+ ρβαν

4F(1−β)
+ 2 − 3ρ2

24
ν2

]
tex + . . .

}

σ ATM
N = αFβ

{
1 +

[
β(β − 2)α2

24F2(1−β)
+ ρβαν

4F(1−β)
+ 2 − 3ρ2

24
ν2

]
tex + . . .

}

For reasons explained below, it is useful to express these ATM formulae as cubic equations
in α:

σ ATM
B = α(B1 + α(B2 + αB3))

σ ATM
N = α(N1 + α(N2 + αN3))

where

B1 = Fβ−1

(
1 + tex

(2 − 3ρ2)ν2

24

)
N1 = Fβ

(
1 + tex

(2 − 3ρ2)ν2

24

)
B2 = texF2(β−1)

ρβν

4
N2 = texF2β−1 ρβν

4

B3 = texF3(β−1)
(β − 1)2

24
N3 = texF3β−2 β(β − 2)

24

As can be readily seen,
N1 = B1F
N2 = B2F

However, for β 	= 1, N3 = B3F
β(β − 2)

(β − 1)2
.

In the case of β = 1, the expression for σ ATM
B reduces to a quadratic in α. Given that

α is small (typically of the order of 0.1 to 0.01), α3 is very small, the above expressions
for at-the-money volatility are roughly consistent with the commonly-used relationship:

σ ATM
B F = σ ATM

N

The discrepancy is due both to the fact that this relationship is an approximation, albeit
quite a good one, and that the SABR formulae for volatility are derived from truncations
of expansions of other expressions and so are also approximate.

In implementing the model it is first necessary to be clear about what needs to be
done with it. Options markets work mostly in terms of at-the-money (ATM) volatility,
expressed in the most liquid options: ATM straddles. Depending on the market or context,
you might prefer to work with a normal or a lognormal volatility. In either case, SABR
has no ATM market volatility parameter. Looking at the above expressions, it is clear that

522 Excel Add-in Development in C/C++

the parameters β, ν and ρ ought not to be affected by small movements in underlying
or implied volatilities. Therefore, assuming that choices for these three parameters have
been made, α can be determined from the ATM volatility. In fact, the expressions for
ATM vol reduce to α when ν = 0 and either β = 1 in the case of the lognormal volatility,
or β = 0 in the case of the normal volatility.

The above cubics in α for the ATM volatility lend themselves easily to Newton-Raphson
or some other stable scheme. In the author’s experience, a safe strategy is a Newton-
Raphson backed up with Ridder’s method if N-R doesn’t converge within an acceptably
small number of iterations. The example code below only implements a Newton-Raphson
root search.

There are a few basic functions that we might want code:

1. Calculate α given values for tex, F, β, ν, ρ and either normal or lognormal σ ATM

2. Calculate the skewed normal or lognormal volatility for any option given values for
tex, F, S, α, β, ν, ρ

3. Given an at-least sufficient set of options prices and some constraints, calculate a
best-fit set of SABR parameters for a particular option (underlying and expiry).

Variations can be easily imagined – functions that return option prices instead of just
volatilities, for example – but these functions are enough to explore the main issues
related to implementation in Excel.

Additional functions, not described in any detail in this section, could calculate option
price or volatility derivatives with respect to the SABR parameters. (The derivative with
respect to strike is of particular significance when pricing options with digital payoffs). A
function that calculates the volatility for a given Black delta, rather than for a given strike,
would be useful for the FX options markets, for example, where it is easier to standardise
what is meant by delta. (Such a function might require an iterated approach, given that,
depending on your view of these things, what you are calling delta may depend on how
skewed the volatility is). Another useful function would be one that returned the value of
the probability distribution function for a given level of underlying, and/or the integrated
probability between any two levels of underlying.

For the functions that are discussed here, we need to decide their precise form: what
arguments are required or optional; what is returned; and so on. Note that the requirement
for the forward rate and strike to be strictly greater than zero might seem unnecessary
if using a Gaussian model, but the expression above for the volatility σN contains terms
which depend on logs which clearly blow up unless these restrictions are applied. Even
the expressions for the ATM volatility in terms of the SABR parameters could result in
complex roots for negative values of the forward rate.

SabrCalcAlpha

Argument Notes

Texp Required number > 0.

AtmVol Required number > 0.

Fwd Required number > 0.

Example Add-ins and Financial Applications 523

Argument Notes

Beta Required number, such that 0 ≤ Beta ≤1, although some might
consider values > 1.

VolVol Required number ≥ 0. If zero, assumptions are non-stochastic.

Rho Required number, such that −1 ≤ Rho ≤ 1.

IsNormal Optional Boolean indicating if the input volatility is normal or
lognormal. (Default: FALSE = lognormal)

A sensible implementation for the XLL interface function is therefore:

xloper * __stdcall SabrCalcAlpha(double Texp, double AtmVol,
double Fwd, double Beta, double VolVol, double Rho,
xloper *pIsNormal)

{
// Check inputs:

if(Texp <= 0.0 | | AtmVol <= 0.0 | | Fwd <= 0.0
| | Beta < 0.0 | | Beta > 1.0 // Could relax upper limit on Beta
| | VolVol < 0.0 // Allow zero: non-stochastic case
| | Rho < -1.0 | | Rho > 1.0)

return p_xlErrValue;

cpp_xloper IsNormal(p_is_normal);
double Alpha;
if(!sabr_calc_alpha(Fwd, AtmVol, Texp, Beta, VolVol, Rho,

Alpha, IsNormal.IsTrue()))
return p_xlErrNum;

cpp_xloper RetVal(Alpha);
return RetVal.ExtractXloper();

}

The core function, using Newton-Raphson to locate the root Alpha, can be implemented
as follows:

#define SABR_CALC_ALPHA_MAX_NR_ITERS 10

bool sabr_calc_alpha(double FwdRate, double AtmVol, double TexpYrs,
double Beta, double VolVol, double Rho, double &Alpha,
bool is_normal)

{
double a0, a1, a2, a3, b1, b2, b3;
double pow_f = pow(FwdRate, Beta - 1.0);
double var = pow_f * pow_f * TexpYrs; // to simplify calculations

a0 = -AtmVol;
a1 = pow_f * (1.0 + TexpYrs * (2.0 - 3.0 * Rho * Rho)

* VolVol * VolVol / 24.0);
a2 = var * Rho * Beta * VolVol / 4.0;
a3 = var * pow_f / 24.0; // not the final value

if(is_normal)

524 Excel Add-in Development in C/C++

{
a1 *= FwdRate;
a2 *= FwdRate;
a3 *= FwdRate * Beta * (Beta - 2.0);
Alpha = 0.01; // Rough first guess = 1%

}
else
{

a3 *= (Beta - 1.0) * (Beta - 1.0);
Alpha = AtmVol / a1; // Reasonable first guess

}

// Calculate coefficients of 1st derivative polynomial
b1 = a1;
b2 = 2.0 * a2;
b3 = 3.0 * a3;

// Run a Newton-Raphson search for the root, Alpha
double correction;
for(short i = SABR_CALC_ALPHA_MAX_NR_ITERS; i--;)
{

correction = (a0 + Alpha * (a1 + Alpha * (a2 + Alpha * a3)))
/ (b1 + Alpha * (b2 + Alpha * b3));

Alpha -= correction;
if(fabs(correction) <= 1e-12)

return true;
}

// Should have converged by now but didn't, so should really
// implement a fall-back scheme here. Instead, just fail.

return false;
}

SabrCalcVol

Argument Notes

Texp Required number > 0.

AtmVol Required number > 0.

Fwd Required number > 0. (See note below).

Strike Required number > 0. (See note below).

Alpha Required number > 0.

Beta Required number, such that 0 ≤ Beta ≤1, although some might
consider values > 1.

VolVol Required number ≥ 0. If zero, assumptions are non-stochastic.

Rho Required number, such that −1 ≤ Rho ≤ 1.

IsNormal Optional Boolean indicating if the input volatility is normal or
lognormal. (Default: FALSE = lognormal)

Example Add-ins and Financial Applications 525

A sensible prototype and implementation for this function is therefore:

xloper * __stdcall SabrCalcVol(double Texp, double AtmVol,
double Fwd, double Strike, double Alpha, double Beta,
double VolVol, double Rho, xloper *pIsNormal)

{
// Check inputs:

if(Texp <= 0.0 | | AtmVol <= 0.0 | | Fwd <= 0.0 | | Strike <= 0.0
| | Alpha <= 0.0
| | Beta < 0.0 | | Beta > 1.0 // Could relax upper limit on Beta
| | VolVol < 0.0 // Allow zero: non-stochastic case
| | Rho < -1.0 | | Rho > 1.0)

return p_xlErrValue;

cpp_xloper IsNormal(p_is_normal);
double Vol;
if(!sabr_vol(Fwd, Strike, Texp, Alpha, Beta, VolVol, Rho,

Vol, IsNormal.IsTrue()))
return p_xlErrNum;

cpp_xloper RetVal(Vol);
return RetVal.ExtractXloper();

}

The core function can be coded as follows, using the above notation:

#define PHI(y) (1.0 + (y) / 24.0 * (1.0 + (y) / 80.0))

bool sabr_vol(double FwdRate, double Strike, double Texp,
double Alpha, double Beta, double VolVol,
double Rho, double &Vol, bool is_normal)

{
double A = Alpha * pow(FwdRate * Strike, (Beta - 1.0) / 2.0);
double h = log(FwdRate / Strike); // Strike always > 0
double z = VolVol * h / A; // A always > 0
double H = (Beta - 1.0) * (Beta - 1.0) * (h *= h);
double Phi_H = PHI(H);
double P, lambda, z_by_x;

if(is_normal)
{

P = FwdRate * Strike * PHI(h);
lambda = Beta * (Beta - 2.0);

}
else // Lognormal (Black) vol
{

P = 1.0;
lambda = (Beta - 1.0) * (Beta - 1.0);

}

if(fabs(z) < 1e-9)
{

z_by_x = sqrt(1.0 - Rho * z);
}
else
{

if(Rho == 1.0)
{

if(z >= 1.0)

526 Excel Add-in Development in C/C++

return false;

z_by_x = z / -log(1.0 - z);
}
else
{

z_by_x = z /
log((sqrt(1.0 + z * (z - 2.0 * Rho)) + z - Rho)

/ (1.0 - Rho));
}

}
Vol = A * P / Phi_H * z_by_x

* (1.0 + (A / 4.0 * (A * lambda / 6.0 + Rho * Beta * VolVol)
+ (2.0 - 3.0 * Rho * Rho) * VolVol * VolVol / 24.0) * Texp);

return true;
}

SabrCalcBestFit

In the case of this function, you could, and might prefer, to implement it entirely in a
worksheet using, say, the Solver add-in. Or perhaps in VBA and again, perhaps, using
the Solver add-in. Both of these approaches are perfectly sensible, although would run
more slowly than an XLL, but Excel and VBA have the advantages of being both visible
(not so black-box) and requiring no coding of solver algorithms. You can also easily link
the running of the solver to events such as user input (see sections 3.4 Using VBA to
trap Excel events on page 59 and 8.15 Trapping events with the C API on page 356),
regardless of whether your solver and pricing functionality are in VBA, Excel or an XLL.

Argument Notes

Texp Required number > 0.

Fwd Required number > 0.

Alpha Optional. If number > 0, take value as fixed and fit free parameters.

Beta Optional. If number, such that 0 ≤ Beta ≤ 1, take value as fixed
and fit free parameters. (Could relax the upper limit on Beta).

VolVol Optional. If number > 0, take value as fixed and fit free parameters.

Rho Optional. If number such that −1 ≤ Rho ≤ 1, take value as fixed
and fit free parameters.

UseNormal Optional Boolean indicating whether to use the normal or lognormal
SABR equations. (Default: FALSE = lognormal)

OptionData Required. Range of option structure and price data for this expiry
and underlying.

Constraints. . . One or more (perhaps optional) arguments telling the fitting
algorithm how to work and when to quit.

Example Add-ins and Financial Applications 527

The structure of the option data table passed as the penultimate parameter is something
driven by the particular market. For example, where these parameters are being fitted to
European-style swaptions you might expect the table to include columns for:

• Price (discounted to present value)
• Option type (payer, receiver, straddle, strangle, collar/risk reversal)
• Absolute strike, outness of strike, width around the ATM forward rate.
• Weight (to force a better fit to some prices than to others)

Again with the example of swaptions, you might also want to pass a discount factor and
the present value of a basis point over the life of the underlying swap, so that simple
Black or Gaussian option prices can be converted to present value market prices.

Whether using an XLL function or not, you might also want to pass as a parameter a
reference to the function to be used to price the options in the data set, or perhaps the
function that will perform the optimisation. Section 9.2.2 discusses techniques for doing
this, where the only constraint is that the various functions that you want to pass take the
same number of arguments.

Allowing a solver to best-fit all four SABR parameters may well result in large changes
to the solved parameters for small changes to the input data. Among the reasons for this
are that markets are influenced by many different models and opinions, and certainly
not ruled by any one of them. Supply and demand also distort perception of fair-value
for very specific options or strikes, and can therefore lead to the data set having what
appear to be internal inconsistencies when measured against a model. If a given set of
parameters provide reasonably good agreement with the data set, there might be a quite
different-looking set that agrees only very slightly better.

In practice, therefore, it makes sense to fix, or rather externally adjust, one of the
parameters at a level that makes sense for other reasons, provides a good fit given the
remaining degrees of freedom, and that seems stable over time. The obvious candidates
for this are the parameters β and ρ. Some practitioners prefer to fix β, and some ρ, and
some will fix both. In either case, the remaining two parameters, α and ν, representing
the volatility of the underlying and the volatility of that volatility respectively, are the
main quantities that are traded and therefore subject to change over short timescales.

A sensible prototype for a worksheet function is as follows, except that, as stated
above, a number of extra arguments could be added. Since the solved-for values cannot
be returned by reference, the function would, if successful, return an xltypeMulti
array containing the SABR parameters and, possibly, the error(s).

xloper * __stdcall SabrCalcBestFit(double Texp, double AtmVol,
double Fwd, xloper *pAlpha, xloper *pBeta,
xloper *pVolVol, xloper *pRho, xloper *pIsNormal
xloper *pOptionData, xloper *pConstraints);

An implementation of this function entirely within an XLL could rely, say, on the downhill
simplex method12 to minimise a function of (1) the free parameters and (2) the fixed
parameters and the option data set.

12 See NRC, 1988, 1992, and NRC++, 2002, Press et al., section 10.4.

528 Excel Add-in Development in C/C++

10.13 OPTIMISING THE SABR IMPLEMENTATION
FOR CMS DERIVATIVES

The previous section on CMS derivative pricing demonstrates the use of a SABR model for
obtaining volatilities for a given option over various strikes. The fact that this involves set-
ting an option and then calculating many strikes allows a certain amount of optimisation,
namely that all the strike-independent elements in the calculations can be pre-computed
once the option parameters (time to expiry, forward, etc.) are known. The following
example class demonstrates this and could, of course, be extended to include other acces-
sor functions, a function to calculate Alpha, etc., but these are omitted since they are not
required in the CMS examples.

The expression on page 520 above (where the subscript i is either N (normal) or B
(Black/lognormal):

σi = APi

(H)
.

(
z

x(z)

)
.

{
1 +

[
A

4

[
A�i

6
+ ρβν

]
+ 2 − 3ρ2

24
ν2

]
tex

}

can be re-written as

σi = APi

(H)
.

(
z

x(z)

)
.(1 + [A[A.ai + b] + c]tex)

where the following are all strike-independent

ai = �i

24

b = ρβν

4

c = 2 − 3ρ2

24
ν2

and all other symbols are as defined above, noting that

�B = (β − 1)2

�N = β(β − 2) = �B − 1

are also strike-independent. It is also possible to take things a little further and define
d = (β − 1)/2 and e = ν/α, to speed up the calculation of A and z respectively.

class SabrWrapper
{
public:

SabrWrapper(void) {}
SabrWrapper(double Alpha, double Beta, double VolVol,

double Rho, double Texp) : m_Alpha(Alpha), m_Beta(Beta),
m_VolVol(VolVol), m_Rho(Rho), m_Texp(Texp) {}

void SetSabrParams(double Alpha, double Beta, double VolVol,
double Rho, double Texp)

Example Add-ins and Financial Applications 529

{
m_Alpha = Alpha;
m_Beta = Beta;
m_VolVol = VolVol;
m_Rho = Rho;
m_Texp = Texp;

}

bool SetStrikeIndependents(double fwd_rate);
bool GetVolOfStrike(double Strike, double &Vol, bool is_normal);

protected:
double m_Texp;
double m_Alpha;
double m_Beta;
double m_VolVol;
double m_Rho;

// Strike-independent values:
double m_FwdRate; // fwd rate
double m_lambda_B; // = (m_Beta - 1)^2
double m_lambda_N; // = m_Beta * (m_Beta - 2) = m_lambda_B - 1
double m_a_B; // = m_lambda_B / 24
double m_a_N; // = m_lambda_N / 24
double m_b; // = m_Rho * m_Beta * m_VolVol / 4
double m_c; // = (2 - 3 * m_Rho^2)/24 * m_VolVol^2
double m_d; // = (m_Beta - 1) / 2

};

bool SabrWrapper::SetStrikeIndependents(double fwd_rate)
{

m_FwdRate = fwd_rate;
m_lambda_B = (m_Beta - 1.0) * (m_Beta - 1.0);
m_lambda_N = m_lambda_B - 1.0;
m_a_B = m_lambda_B / 24.0;
m_a_N = m_lambda_N / 24.0;
m_b = m_Rho * m_Beta * m_VolVol / 4.0;
m_c = (2.0 - 3.0 * m_Rho * m_Rho) / 24.0 * m_VolVol * m_VolVol;
m_d = (m_Beta - 1.0) / 2.0;
return true;

}

bool SabrWrapper::GetVolOfStrike(double Strike, double &Vol,
bool is_normal)

{
double A = m_Alpha * pow(m_FwdRate * Strike, m_d); // > 0
double h = log(m_FwdRate / Strike); // Strike always > 0
double z = m_VolVol * h / A; // A always > 0
double H = m_lambda_B * (h *= h); // h is squared
double Phi_H = PHI(H);
double P, lambda, z_by_x, a;

if(is_normal)
{

P = m_FwdRate * Strike * PHI(h);
lambda = m_lambda_N;
a = m_a_N;

}

530 Excel Add-in Development in C/C++

else // Lognormal (Black) vol
{

P = 1.0;
lambda = m_lambda_N;
a = m_a_B;

}

if(fabs(z) < 1e-9)
{

z_by_x = sqrt(1.0 - m_Rho * z);
}
else
{

if(m_Rho == 1.0)
{

if(z >= 1.0) return false;
z_by_x = z / -log(1.0 - z);

}
else
{

z_by_x = z / log((sqrt(1.0 + z * (z - 2.0 * m_Rho))
+ z - m_Rho) / (1.0 - m_Rho));

}
}
Vol = A * P / Phi_H * z_by_x

* (1.0 + (A * (A * a + m_b) + m_c) * m_Texp);
return true;

}

Appendix 1
Contents of the CD ROM

This appendix briefly outlines the contents of the CD ROM that accompanies this book.
The CD contains a number of workbooks which demonstrate or contain functions that

are referred to in the book. These are not described in further detail in this appendix.
The CD also contains three DLL projects, each in two formats: Microsoft Visual Studio

version 6.0 (described as VC6 in this appendix); Microsoft Visual Studio .NET C++ v
6.0. Note that code provided with this edition of the book should not in any way be
considered as compatible with the code supplied with the first edition of this book.

No warranty, explicit or implied, is made by either the author or publisher as to the
quality, fitness for a particular purpose, accuracy or appropriateness of the source
code on the CD ROM. You should not rely on any part of this code without having
completely satisfied yourself that it is correct and appropriate for your needs.

The projects are:

• GetTime – a simple Win32 DLL project that exports three functions that can be called
from a VBA project in Excel.

• Skeleton – a Win32 DLL that contains all of the interface code needed to be recognised
as an XLL by all recent versions of Excel including Excel 2007, as well as the classes
cpp_xloper, xlName, and much of the useful code described in detail in the book.
This is intended to serve as an empty project to which you can add your own exports.

• Example – a Win32 DLL that contains all of the code contained in the Skeleton project,
as well as all most of the example code listed in the book.

VC++ Project “GetTime”

Source files Overview

GetTime.cpp Code relating to getting the system time and system clock.

GetTime.def Definition file containing the exported functions.

VC++ Project “Skeleton”

Source files Overview

Background.cpp
Background.h

Structure definitions and functions for creating, managing
background threads, and assignment of long tasks to these.

(continued overleaf)

532 Excel Add-in Development in C/C++

Source files Overview

cpp_xloper.cpp
cpp_xloper.h

Class definition and code for the class that contains an
xloper and xloper12, simplifying access to the contained
structures, and wrapping access to the C API functions
Excel4 and Excel12.

CustomUI.cpp Examples relating to the addition and removal of custom
menus and event traps, the display of custom dialogs and the
running of regularly-repeating timed commands.

Exports.def Definition file containing the exported functions and
commands.

TLS.cpp
TLS.h

Thread-local storage (TLS) structure and initialisation and
retrieval functions to enable the add-in to manage thread-local
data. This enables the add-in to export thread-safe functions
that Excel 2007 can call multi-threadedly.

xlcall.cpp
xlcall.h

Microsoft SDK header and source files. Contain the definitions
of Excel’s data structures, function and command call-back
enumerations, and the C API call-backs Excel4, Excel4v,
Excel12 and Excel12v.

XllAddIn.h Structure and constant definitions useful to all the code in the
add-in project. Class definitions used to register XLL functions
(class FnRegData) and commands (class
CmdRegData).

XllExports.cpp Definitions of some (but not necessarily all) of the XLL’s
exported function interfaces. These function interfaces in
general call into core code in other modules or libraries in the
project.

XllInterface.cpp Functions that Excel’s Add-in Manager looks for as part of the
XLL interface to the DLL’s functionality – the xlAuto
functions. Code that registers the DLL’s functions and
commands and cleans-up when the XLL is being closed.

XllNames.cpp
XllNames.h

Definition of a class for managing and accessing Excel names,
both worksheet names and DLL-internal names, and an STL
container for managing DLL-internal Excel names.

XllRegister.cpp Class code and related functions used to register XLL
functions (class FnRegData) and commands (class
CmdRegData).

XllStrings.cpp Functions that manipulate text strings.

(continued overleaf)

Contents of the CD ROM 533

Source files Overview

xloper.cpp
xloper.h

Definitions of constant xlopers, functions that convert
between xlopers and other data types, compare xlopers,
clone xlopers, convert to and from Variant data types.

xloper12.cpp
xloper12.h

Definitions of constant xloper12s, functions that convert
between xloper12s and other data types, compare
xloper12s, clone xloper12s, convert to and from
Variant data types and xlopers.

xl_array.cpp
xl_array.h

Examples relating to the use of the xl4_array (FP) and
xl12array (FP12) Excel data types.

VC++ Project “Example”

All the source files in the project “Skeleton” are also part of this project.

Source files Overview

BigData.cpp Examples that demonstrate some possible uses of the
BigData xloper (xltypeBigData).

Black.cpp
Black.h

A simple Black option class

CMS.cpp Functions that relate to the pricing of constant
maturity swap (CMS) derivatives.

Excel4_examples.cpp Miscellaneous examples relating to the use of the C
API accessed via the Excel4() and Excel4v()
functions.

GetTime.cpp Code relating to getting the system time and system
clock.

InterfaceExample.cpp Examples of XLL interface functions.

Lookup.cpp Examples that extend the functionality of functions
such as MATCH, COUNTIF and SUMIF to
accommodate multiple match criteria.

MonteCarlo.cpp Command code used to run a Monte Carlo simulation
on a workbook that contains the appropriate named
ranges.

OLE_utils.cpp Examples relating to the use of COM from within a
DLL to access Excel’s functionality.

(continued overleaf)

534 Excel Add-in Development in C/C++

Source files Overview

Performance.cpp Functions used to time the performance of compiled
C/C++ code. This is used to test the relative
performance compared to VBA.

SABR.cpp
SABR.h

Example implementation of the SABR stochastic
volatility model. (Hagan, P., Kumar, D., Lesniekski,
A. and Woodward D. (2002) Managing Smile Risk).

Spline.cpp Functions that create cubic splines and interpolate
them, and a simple linear interpolation function.

Stack.h A simple thread-safe FILO stack.

VB_interface.cpp Examples relating to the use of VB as an interface to
the DLL. It contains examples of functions that
demonstrate the acceptance from and return to VBA
of different data types.

XllMatrix.cpp
XllMatrix.h

Definitions of simple classes for vectors and matrices
of doubles, and example functions that calculates
eigenvectors and eigenvalues for real symmetric
matrices.

XllStats.cpp Functions that calculate the cumulative normal
distribution and its inverse and that calculate random
samples from this distribution using the Box-Muller
transformation.

Related Reading

Abramowitz, M. and Stegun, I. (1970) Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables. Mineola, NY: Dover Publications, Inc.

Bullen, S., Bovey, R. and Green, S. (2005) Professional Excel Development. Boston. MA: Addison-Wesley
Publishing Company.

Clewlow, L. and Strickland, C. (1998) Implementing Derivative Models. Chichester: John Wiley & Sons, Ltd.
Jackson, M. and Staunton, M. (2001) Advanced Modelling in Finance Using Excel and VBA. Chichester: John

Wiley & Sons, Ltd.
Kernighan, B. and Ritchie, D. (1988) The C Programming Language, 2nd edn. Upper Saddle River, NJ: Prentice

Hall.
Liberty, J. (2001) Teach Yourself C++, 4th edn. Indiana: Sams Publishing.
Microsoft Excel 97 Developer’s Kit (1997) Buffalo, NY: Microsoft Press.
Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (1988, 1992) Numerical Recipes in C. Cambridge:

Cambridge University Press.
Press, W., Teukolsky, S., Vetterling, W. and Flannery, B., 2002, Numerical Recipes in C++. Cambridge:

Cambridge University Press.
Satir, G. and Brown, D. (1995, 1996) C++: The Core Language, O’Reilly & Associates, Inc.
Stroustrup, B. (1991) The C++ Programming Language, 2nd edn. Boston, MA: Addison-Wesley Publishing

Company.

Web Links and Other Resources

There are many web resources that are useful and relevant to the subject of this book. Some
are private, run by interested and enthusiastic individuals. Some are run by consultants
both as a public service and as a means of promoting their own services. Many are run
by companies who sell relevant software or services; Microsoft being the most important
example. Some time spent searching the web with keywords such as Excel, XLM, XLL,
will quickly yield the majority of these. A review of these sites or the products and
services they provide is, of course, completely beyond this book’s scope and nothing is
said or implied about their content or quality. Here are just a very few examples that were
current at the time of writing:

http://www.microsoft.com/downloads/search.asp.

http://www.cppreference.com/index.html

http://www.as-ltd.co.uk/xllplus/default.htm

http://managedxll.com

http://www.appspro.com

http://www.cpearson.com

http://xcelfiles.homestead.com

The following three links are all discussed in section 1.2 What tools and resources are
required to write add-ins on page 21:

download.microsoft.com/download/platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe

download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/Macrofun.exe

Microsoft run a number of Internet newsgroups that provide a useful forum for questions
and answers, as well as occasional general announcements from Microsoft technical staff.
Here are just three of the many examples:

news://msnews.microsoft.com/microsoft.public.excel

news://msnews.microsoft.com/microsoft.public.excel.sdk

news://msnews.microsoft.com/microsoft.public.excel.programming

The Microsoft Developer Network (MSDN), and the library of Knowledge Base arti-
cles accessible through it, are an invaluable source of information about all Microsoft
products including Excel, VB and Visual Studio. For example, Knowledge Base arti-
cle 198477 relates to access violation run-time errors occurring when writing to static

1 Microsoft will be making an updated SDK for Excel 2007 available for download. No URL was available at
the time of writing.

538 Excel Add-in Development in C/C++

strings under debug with the /ZI compiler flag set in certain versions of Visual Studio.2

There are too many useful and relevant articles to list, but Microsoft’s MSDN site at
http://msdn.microsoft.com provides a comprehensive search facility.

http://xlw.sourceforge.net
A freely available C++ wrapper developed by Jérôme Lecomte.

Microsoft make available an executable utility called B2C.EXE which converts passages
of VB COM Automation code into C++ Automation code, with some limitations. (Search
for the executable on the Microsoft download site at the first URL in this section).
Resulting code can be cut and pasted into your Visual C++ source code. The utility is
also available at the following link:

http://support.microsoft.com/kb/216388/en-us

2 This problem can be encountered when trying to set the length byte on byte-counted static strings.

Index

#pragma pack 76–9, 97
+ -- */ number-arithmetic binary operators, concepts

17–22
=,<,>,<=,>=,<> boolean binary operators 17–22
= unary operator, concepts 16–22
-- unary operator, concepts 16–22
& string concatenation operator 17–22
__declspec 95–7
.DEF files 92–7, 116
__fastcall 93–4
__FUNCDNAME__ 97
__FUNCTION__ 97
__int64 66
.NET add-ins 3–5
__stdcall 83–6, 90–1, 93–7, 100–2, 108–60,

214–15, 217–18, 225–36, 367–73, 400–1,
404–17, 419–28, 431–2, 447–9, 452–63,
465–6, 518–19, 523–7

.XLA files 46, 61–2, 87

.XLL files 46
A1 cell references

concepts 12–13
R1C1 contrasts 12–13, 297, 303–12, 319–26,

393
active concepts 27–8, 114–17, 279–80, 291, 444–6
ActiveSheet 45
add-in manager

concepts 46–7, 55, 71, 89–90, 97–8, 102,
111–25, 127–202, 244–5

DLL/XLL transformations 111–25, 163–4,
244–5

information provisions 47, 115–17, 120–5
uses 114–15, 127–8

add-ins
active/inactive concepts 114–15
coding selections 2
concepts 2–8, 38–47, 90, 97–8, 111–25,

127–202, 212–22, 398–401, 417–33,
451–530

definition 7
deletions 114–15
design considerations 10, 44, 209–10, 419–49,

451–530
desired objectives 419
error-propagation controls 429–32
financial applications 10, 451–530
interface/core-function code separation 419–29
loading/unloading processes 46–7, 61–2,

114–16
optimisation considerations 10, 44, 209–10,

433–49
overview 2–8

resource requirements 2–5, 90, 97–8, 111,
441–9

thread-safe functions 212–22, 253, 290, 316,
390–1, 447–8

tool requirements 2–5, 90, 97–8, 111
types 7–8
version-sensitivity/backwards-compatibility

considerations 432–3
Add/Add new item 106
add_name_record 396
ADDRESS 30, 214
adjust_date_xl4 499–502
adjust_date_xl12 499–502
alert displays, custom dialog boxes 351–2
algebraic expressions, optimisation considerations

434–40
Alias 62–88
alpha 10, 514, 516–30
Alt key 45, 327–8
Alt-F11 keystroke 55–6
ampersands 328
Analysis ToolPak 6, 7, 79
AND 41–2, 51
ANSI codes 66, 71, 427
appendices 531–8
Application 42–5
Application.Calculate 508–9
Application.Caller 445
Application.Evaluate 16, 399–400
Application.ExecuteExcel4Macro 79
Application.OnTime 402
Application.Run 79, 274, 399–401
Application.ScreenUpdating 507–9
Application.Volatile 61–3
Application.WorksheetFunction.Price 79
ArgRtnTypes 269–74
arguments

coding/typographical conventions 1–2, 316–18
concepts 1–2, 5–7, 20–2, 29–31, 41–2, 48,

127–202, 203–22, 249–74, 421–9
construction dialog 48–9
evaluation 41–2
Excel 2007 (V12) 263–6
Excel/DLL data-passing 127–202, 225–31,

249–74
Excel4 226–71
lists 31, 48–9
mandatory/optional arguments 31, 201–2, 496–7

540 Index

arguments (continued)
memory-management guidelines 203–22, 274–6,

417–19
missing arguments 201–2, 496–7
modifying-in-place techniques 211–12, 253–4
Paste Function dialog 47–9, 115–16, 245–74,

373–6
specification processes 249–52
variable lists 31, 226–8
worksheet-function argument-type conversions

20–2, 29–31, 64–9, 80–6, 127–202,
229–36, 249–74

Array 65–8
array variants, concepts 80–6, 155–9, 417–19
ArrayElt 210
arrays

C/C++ 80–6, 128–202, 385–7
column vectors 82–3
concepts 9, 13–16, 21–2, 29–31, 65–8, 71–6,

80–6, 123–5, 128–202, 203–22, 249–74,
370–3, 385–7, 417–19, 431–2, 440

Ctrl-Shift-Enter keystroke 30–1, 82–3
declarations 81–6, 257–62
Excel 9, 13–16, 21–2, 30–1, 65–8, 71–6, 80–6,

123–5, 128–202, 249–74, 385–7, 417–19
formulae 30–1, 81–6
literal arrays 83–6, 180–1
memory management 86, 130–1, 417–19
range references 83–6, 123–5, 311–12
rectangular arrays 82, 141–2
row vectors 82–3
types 80–6
VB 65–8, 71–6, 80–6, 155–9

array_vt_to_xloper 155–9
As Object 441
ASCII codes 14, 23–4, 26–7, 170–1, 249–50,

370–3, 433, 452
asynchronous calls 9, 377, 401–6
at-the-money (ATM) volatilities 521–7
automatic variables, C++ features 1
Automation see COM
AVERAGE 196–8, 214
AVERAGEIF 486–93
AverageIfMulti 486–93
average_if_multi_xl4 492–3
average_if_multi_xl12 492–3

background task management
concepts 404–17, 505–6, 509
configuring/controlling processes 416–17
critical sections 407–17, 418–19, 468
Excel communications 407–8
interfaces 413–17
memory considerations 418–19
polling commands 415–17
processing loops 412–14
requirements 406–7

software requirements 407–9
suspensions 411–17
task lists 407–17
thread amendments 411–17
worksheet-function restrictions 409

Background.cpp 412, 416–17
Background.h 412
backwards-compatibility considerations, add-ins

432–3
basic multilingual plane (BMP) 24
Bays-Durham shuffle 466
beta 10, 514, 516–30
BIFF see binary interchange file format
BigData.cpp 289
bilinear interpolation, concepts 477, 479–82
BilinearInterp 479–82
bilinear_interp 479–82
binary interchange file format (BIFF) 6
binary names

amendment functions 287–9
basic operations 285–9
concepts 198, 285–9, 325–6, 396–8, 469–70
examples 287–9
problems 286
retrievals 287–9, 325–6

Binary_Name_Example.xls 289
Black 437–9, 516–19, 529, 533
Black-Scholes option pricing model 437–9, 514,

516–19, 529, 533
BlackOption 437–9, 517–19
BMP see basic multilingual plane
bonds

dates 493–502
zero-coupon bonds 502

bool data types, C++ features 1, 128, 135–6
Boolean 64–8
boolean binary operators (=,<,>,<=,>=,<>) 17–22
boolean values

concepts 1, 13–16, 17–22, 29–31, 64–8,
128–202, 249–74, 290–326, 421–9

worksheet-function argument-type conversions
21–2, 30, 64–8, 128–202, 249–74

bosa_sdm_XLn 373–6
Box-Muller transform 467–8, 509
breaks, commands 274, 282–3, 509
BSTR 2, 23–5, 65–6, 88, 156–9, 418–19, 420–3
buffer overruns 2, 27
buttons see custom dialog boxes; toolbars
ByRef 25, 63–4, 68–76, 86, 423–9, 441, 476–7
Byte 64–8
bytes, VB 64–8
ByVal 25, 63–4, 68–76, 94, 108–10, 423–9, 441

C# 3, 4, 8
C++

see also financial applications; Visual C++

Index 541

arrays 80–6, 128–202, 385–7
call-by-reference/value arguments 63–4, 68–76,

86, 94, 432
calling conventions 91–7
coding/typographical conventions 1–2, 91–2
concepts 2, 86, 119–25, 127, 146–202, 206–22,

316–17, 365–73, 387–9, 396–8, 451–530
cpp_xloper 2, 85–6, 119–25, 127, 141,

146–202, 206–22, 231–6, 257–73, 280,
285–9, 296–7, 300–1, 309, 311–12,
334–44, 364, 382–3, 402–6, 415–17,
446–9, 475–7, 496–502

data types 64–88, 91, 127–202
execution speeds 365–73, 494
features 1–2, 223
Monte Carlo simulation 509–11
name classes 2, 316–17, 387–9, 402–6
name decoration 91–2
object-oriented features 2, 127, 146–7, 238–9
OLE/COM automation 3–4, 64–88, 146–7, 237,

362–3, 376–85, 419–33
overview 1–10
performance issues 8, 365–73, 433–49, 494
resource requirements 2–5, 90, 97–8, 407–9,

441–9
Standard Template Library 2, 325–6, 397,

409–11
trigger arguments 35–6, 100, 309–10, 365–73
VB 8, 55, 62–88, 94, 368–73

C
see also financial applications
arrays 80–6, 128–202, 385–7
call-by-reference/value arguments 63–4, 68–76,

86, 94, 432
calling conventions 91–7, 389–98
data types 64–88, 91, 127–202
execution speeds 365–73, 494
initialisation processes 187–8, 198–202, 355–6
library functions 2, 27
Monte Carlo simulation 509–11
name decoration 91–2
OLE/COM automation 3–4, 64–88, 146–7, 237,

362–3, 376–85, 419–33
overview 1–10
performance issues 8, 365–73, 433–49, 494
resource requirements 2–5, 90, 97–8, 407–9,

441–9
trigger arguments 35–6, 100, 309–10, 365–73
VB 8, 55, 62–88, 94, 368–73
xlopers 2, 16, 23–7, 45, 74–6, 85–6, 115–16,

119–25, 127–202, 205–22, 226–364, 382–3,
400–1, 410, 413–28, 442–9, 451–530

C API 3–8, 23–9, 40–1, 71–6, 79, 85–8, 97–8,
116, 127–202, 203–22, 223–364, 401–6,
464–5, 526–7

see also xlc. . .; xlf. . .

access methods 223–36

arrays 85
background task management 404–17, 509
bugs 116, 419
commands 223–364, 401–6
concepts 8, 23–7, 28–9, 41–4, 71, 72, 85–8,

97–8, 111–14, 116, 127, 135–41, 159,
163–4, 195–202, 212–13, 223–364, 372–3,
401–6, 526–7

custom dialog boxes 351–6, 416–17
DLL calls 236–71, 377, 389–98, 405–6
documentation 8, 291–7
event trapping 356–61
Excel4 111–14, 140–1, 144, 154–9, 195–6,

203–22, 223–364, 376–7
Excel12 159, 164, 226–364
exclusive functions 274–85
financial applications 9, 451–530
functions 223–364
memory management 417–19
menus 326–44
miscellaneous commands/functions 361–4
name-handling capabilities 316–26
toolbars 344–51
uses 223–364, 372–3, 526–7
VBA contrasts 40–1, 44, 223–4, 372–3, 402–6,

433
volatile functions 35–6, 252–4
workspace information commands/functions

270–1, 289–315, 318–26, 389–98, 418–19
wrapped functions 146–53, 238–44, 259–62,

352, 392–3, 400, 410, 424–8, 465–6,
518–19

xlcall32 library 111–14
XLCallVer 111–14, 364
XLM 223–364
xlopers 127–202

CalcMe 43–4
Calculate 42–5
calculated data, concepts 50–1
CALCULATE.DOCUMENT 44–5
CalculateFullRebuild 45
CALCULATE.NOW 45
calibration 33, 511–13
CALL 269
call options 438–40
Call Speed Test-C API.xls 372
Call Speed Test-VBA.xls 372
call-by-reference arguments, concepts 1–2, 63–4,

68–76, 86, 94, 108–10, 398–401, 423–9,
432

call-by-value arguments, concepts 63–4, 68–76,
108–10, 423–9, 432

CALLER 231–6
CallerIsActive 445–6
calling conventions, concepts 91–7, 389–98
calloc 2
CallPricer 401

542 Index

caplets 513–19
case comparisons, concepts 17–22
catch, exception handling 2
CD ROM 5, 27, 33, 40, 52, 97, 111, 147, 153,

184–5, 241–2, 269, 316–17, 356, 369, 370,
372, 387–9, 390, 397, 410, 432, 451–2, 464,
471, 474–5, 483, 498, 507, 511, 512, 531–4

__cdecl 93–4, 100–2, 226
cells

active/current contrasts 27–8, 291
concepts 11–27, 213, 278–9, 291–3, 309–10,

316–26, 362–3, 389–98
conditional formatting 40–1
contents 13–27, 291–3, 297–8, 309–10,

316–26, 362–3, 409–10
evaluations 318, 362–3
format issues 6, 13–15, 40–1, 51
information 291–3, 297–8, 309–10, 316–26,

389–98, 409–10
multi-cell range reference conversions 18–22,

64–8, 80–6, 311–15
naming processes 389–98
single-cell reference conversions 18–22, 312–15
tracked calling-cells 389–98
unique names 390–3
values 13–15, 197–8, 224, 274–85, 362–3

char 23, 25, 27, 65, 68–9, 92, 127–202, 212,
249–74

CHOOSE 41–2, 51, 442–3
C_INDIRECT... 40
circular references 32, 232–6, 291
classes

background task management 406–17
coding/typographical conventions 1–2
concepts 2, 146–202, 266–9, 316–17, 387–9,

406–17
cpp_xloper 2, 85–6, 119–25, 127, 141,

146–202, 206–22, 231–6, 257–73, 280,
285–9, 296–7, 300–1, 309, 311–12,
334–44, 364, 382–3, 402–6, 415–17,
446–9, 475–7, 496–502

registration data 266–9
clock 367–73
CLOCKS_PER_SEC 367–73
clock_t 367–73
close-to-the-money volatilities 520–1
CLSID 377–85
CMS_portfolio_cost 516–19
CMSs see constant maturity swaps
cndist 472–4
coding conventions 1–2, 91–2, 223–4, 316–18
columns

concepts 5–7, 11–16, 51–4, 82–6, 129–202
VB vectors 82–3

COM see Common Object Model
command bars see toolbars
command-access objects

see also menus; toolbars
concepts 11

commands
access methods 273–4
Alt key 45, 326–8
breaks 274, 282–3, 509
C API 223–364, 401–6
complex commands 31–3
concepts 9–10, 28–9, 55–88, 223–9, 271–4,

278–9, 379–82, 401–6
custom dialog boxes 199–201, 351–6, 416–17
dialog displays 225
disabled screens 361–4
event trapping 356–61
function contrasts 9–10, 28–9, 55, 86–7,

224–5, 327
list 29
menus 326–44
miscellaneous commands/functions 361–4
OLE/COM automation 379–82
polling commands 415–17
registering/unregistering processes 271–4, 509
timed calls 9, 401–6
toolbars 344–51
user-defined commands 10, 79, 363–4, 379–82
VB 28–9, 55–88, 223–4, 402
workspace information commands/functions

270–1, 289–315, 318–26, 389–98
XLM 79, 223–364

comments 1, 57, 297–8
C++ features 1
VBE 57

Common Object Model (COM)
see also OLE...
commands 379–82
concepts 7–10, 64–88, 146–7, 212–14, 237,

238–9, 254–6, 362–3, 376–85, 419, 441–9
functions 382–5
initialisation/un-initialisation processes 297–9
recalculation logic 379–80, 441–9

CompareMethod 441
CompareNchars 459–60
compare_nchars_xl4 459–60
compare_nchars_xl12 459–60
CompareText 458–9
compare_text_xl4 458–9
compare_text_xl12 458–9
Compatibility Checker, Excel 6–7
compiled function names, DLLs 91–7
compilers 3–5, 7–8, 46, 91–2, 101–2, 106–8,

433–4
concepts 7–8, 46, 91–2, 101–2, 106–8
DLLs 101–2, 106–8

complex commands/functions, concepts 31–3
Concat 460–1
concatenation operator (&), strings 17–22
concat_xl4 460–1

Index 543

concat_xl12 460–1
conditional formatting, cells 40–1
const 112, 242–3
constant maturity swaps (CMSs) 10, 439–40,

513–19, 528–30
concepts 513–19, 528–30
SABR (stochastic alpha beta rho) model

528–30
constant xloper12s, concepts 144–6
constant xlopers, concepts 144–6, 195–6
constants see fixed input data
construction dialog, arguments 48–9
constructors, optimisation considerations 434–40
control buttons, coding/typographical conventions

1–2
control objects, VB command macros 58–9
Control Toolbox 58
conversions

array variants 84–6, 155–9
data types 16–22, 64–88, 127–202, 225–31,

249–74, 421–9
defined range names 19–22, 311–12
explicit type conversion functions 20–2
multi-cell range references 18–22, 64–8, 80–6,

311–15
optimisation considerations 434–40
single-cell references 18–22, 312–15
strings 26
worksheet-function argument-type conversions

20–2, 30, 64–9, 80–6, 127–202, 229–36,
249–74

xloper12s 154–63, 276–8
xlopers 154–9, 167–8, 172–3, 175–6,

178–80, 188–90, 194–5, 197, 229–36,
276–8, 312

xltype 167–8
xltypeBool 175–6
xltypeErr 178
xltypeInt 179–80
xltypeMulti 188–90
xltypeNil 197
xltypeRef 194–5
xltypeSRef 194–5
xltypeStr 172–3

ConvertMultiToDouble 153–5, 194–5
convexity adjustments 513
copies, XLLs 114–15
correlated random samples, examples 468–9
cost factors, software 434–49
COUNT 195–6
count 226–36, 242–3, 261–2
count_char_xl4 452–3
count_char_xl12 452–3
COUNTIF 486–93
CountIfMulti 486–93
count_if_multi_xl4 491–3
count_if_multi_xl12 491–3

count_to_date 496–502
count_used_cells 195–6
COUPPCD 494
covariance 468–9, 509
cpp_xloper 2, 85–6, 119–25, 127, 141,

146–202, 206–22, 231–6, 238–44, 257–73,
280, 285–9, 296–7, 300–1, 309, 311–12,
334–44, 364, 382–3, 402–6, 415–17,
446–9, 475–7, 496–502

concepts 127, 146–202, 206–22, 231–6,
238–44, 257–73, 280, 285–9, 300–1, 309,
311–12, 334–44, 382–3, 402–6, 415–17,
446–9, 475–7, 496–502

initialisation processes 199–200
requirements 146–7
structure 146–53, 199–200
wrapped functions 146–53, 238–44, 259–62,

352, 410, 424–8
cpp_xloper::Alert 244
cpp_xloper::Free 164–202
cpp_xloper.cpp 153
cpp_xloper::Excel 200–1, 208, 242–4
crashes 9, 377, 399–400, 417–19

see also memory...
causes 417–19

create_discount_curve_xl4 504–5
create_discount_curve_xl12 504–5
credit risks 502–5
critical sections

background task management 407–17, 418–19,
468

memory management 219–22
CRITICAL_SECTION 219–22
cross-worksheet dependencies, Excel versions 36–8
Ctrl-Alt-F9 keystroke 45
Ctrl-Alt-Shift-F9 keystroke 45
Ctrl-K keystroke (hyperlinks) 51
Ctrl-Shift-Enter keystroke, arrays 30–1, 82–3
CUBE... 213–14
cubic equations 521–2
cubic splines, concepts 477, 482–5
cumulative normal distributions 470–4
Currency 64–8, 72–6
current concepts 27–8, 279–80, 291, 317–18
current_system_time 94, 100–2
curves

discount curves 502–5
interpolation functions 477–85

custom dialog boxes
alert displays 351–2
concepts 199–201, 351–6, 416–17
creation processes 355–6
input restrictions 356

custom menus 326–8, 332, 338–44
CVerr 76, 426–9
CY 64–8, 72–6

544 Index

DATA 81–2
data organisation

good design/practice 50–4, 417–19
spreadsheets 50–4

data references, worksheets 398–401
data structures 9, 20–2, 64–9, 76–9, 127–202,

385–7, 469–70
data tables

circular references 32, 232–6
concepts 31–3
recalculation logic 31–3, 40

data types 9, 13–27, 29–31, 64–88, 127–202,
249–74, 290–315, 417–19

C/C++ 64–88, 91, 127–202
concepts 9, 13–27, 29–31, 64–88, 127–202,

225–31, 249–74, 417–19
conversions 16–22, 64–88, 127–202, 225–31,

249–74, 421–9
Excel 9, 13–27, 29–31, 127–202, 225–31,

249–74, 417–19
Excel/DLL data-passing 127–202, 225–31,

249–74, 417–19
object data types 78–9
user-defined data structures 9, 20–2, 64–9, 76–9
variant data types 64–7, 71–6, 155–9, 382,

417–19, 421–9, 436, 441
VB 64–88
worksheets 13–15, 20–2, 64–88, 127–202,

249–74
data-organisation overview, Excel 11
Data/Table... 31–3
DATE 13, 31
Date 64, 65–8, 73–6
DATE 65, 73–6
date functions, financial markets 493–502
date_diff 501
dates 13, 31, 64, 73–6, 99–102, 493–502
day_count 496–502
DDE data-updates, event trapping 357
Debug 101–2, 106–8
debugging 3–5, 101–2, 106–8, 264, 419
Declare 62–88, 108–10, 244, 423–9, 476–7
_declspec 95–7
decoration, names 91–2
defined names, XLM functions 225
defined range names

see also named ranges
concepts 6, 19–22, 45, 311–12, 316–26
conversions 19–22, 311–12

definition files (DEF), concepts 92–102, 106–7, 116
delete 2, 214–15, 261–2, 266–7, 398
DeleteCriticalSection 219–22
delta 438–40, 516–19, 522–3
dependents, recalculation logic 33–45
derivatives

see also futures; options; swaps
examples 10, 493–502, 505–7

portfolios 444–5, 513–19
design considerations

see also good design...
add-ins 10, 44, 209–10, 419–49, 451–530

destructors, optimisation considerations 434–40
dialogs

custom dialog boxes 199–201, 351–6, 416–17
Paste Function dialog 47–9, 55, 88, 102, 107–8,

115–16, 245–74, 373–6
Search and Replace dialogs 375–6
worksheet-function-call detection processes

373–6
directory paths, coding/typographical conventions

1–2, 316–18
disabled screens, command execution 361–4
discount curves, examples 502–5
dispatch pointers 78, 377–85
DISPID 379–85
DLL radio button 105
DllMain 215–16, 236–71
DllName 269–74
DLLs 3–5, 9, 24, 28–9, 31, 38–47, 55–88,

89–125, 127–202, 205–22, 223–71, 316–26,
376–85, 389–406, 514–19

see also XLLs
add-in manager 46, 97–8, 102, 111–25,

127–202, 244–5
asynchronous calls 9, 377, 401–6
basics 89–90
binary names 198, 285–9, 325–6, 396–8,

469–70
C API functions 236–71, 377, 405–6
calling conventions 91–7, 231–6, 313–15,

389–98
code-adding processes 99–102, 106–8
compilations 101–2, 106–8
compiled function names 91–7
complexity issues 8
concepts 3–5, 9, 28–9, 38–47, 62–88, 89–125,

127–202, 205–22, 223–4, 231–71, 316–26,
376–85, 389–406

creation processes 98–110
data structures 127–202, 385–7, 469–70
debugging 101–2, 106–8
event trapping 356–61
Excel 31, 38–40, 62–88, 127–202, 226–364
exported function names 94–7, 100–10,

256–62, 293, 309–10
function declarations 62–88, 94–7, 244–71
interfaces 108–25, 244–74, 376–85
languages 46
large data structures 385–7, 418–19, 469–70
memory management 90, 115–17, 123–5,

127–202, 205–22, 274–6, 385–7, 417–19
missing arguments 201–2, 496–7
Monte Carlo simulation 509–11

Index 545

multi-threading 90–1, 131–5, 377, 401–17
multiple DLL instances 90, 204, 283–4
name-handling capabilities 316–26
names 91–7, 100–10, 198, 256–62, 285–9, 293,

309–10, 316–26, 390–401
passing-data considerations 127–202, 225–31,

249–74
registered/unregistered functions 244–71,

303–12
resource requirements 3–5, 90, 97–8, 111,

407–9
tracked calling-cells 389–98
VB 28–9, 55–88, 89–90, 108–10, 236–7
VC 89, 98–110
VC.NET 103–10

document information 8, 291–7
do_multi 486–93
Double 64, 65–8, 84, 425–6, 436
double 65–8, 92, 127–202, 220–1, 472–4,

498–502
double-clicks, event trapping 357–8
doubles 15, 61–88, 127–202, 220–1, 249–74,

370–3, 398, 436–7, 498–502
DSUM 214
dual-interfaced functions, Excel 2007 (V12) 263–9,

406, 423–9, 433, 452, 498–9
DWORD 135–8, 148–202, 249, 279–85, 446–7
dynamic libraries

see also DLLs
concepts 89–90, 111

dynamic memory, concepts 190

early binding, concepts 377–85
EigenSystem 474–7
eigen_system_xl4 475–7
eigenvalues, examples 468–9, 474–7
eigenvectors, examples 468–9, 474–7
ellipsis, menus 328
Empty Project 105
EnableCalculation 443–5
EnterCriticalSection 219–22
error codes, concepts 13–15, 17–22, 29–31, 73–6,

128–202, 414–15, 422–3
errors, error-propagation controls 429–32
Esc key 274
eternal loops 418–19
EVALUATE 16
evaluation precedence, operators 22
event trapping

C API 356–61
concepts 59–60, 356–61, 512–13, 526–7
DDE data-updates 357
double-clicks 357–8
keyboard events 358–9
recalculation logic 360, 398
system clocks 361, 402–4
VBA uses 59–60, 512–13, 526–7

window selection-events 360
worksheet data-entries 358, 512–13

EXACT 17
examples

calibration 511–13
constant maturity swaps (CMSs) 10, 439–40,

513–19, 528–30
date functions 493–502
discount curves 502–5
financial applications 9, 451–530
interpolation functions 477–85
lookup and search functions 485–93
matrix functions 30–1, 468–9, 474–7
Monte Carlo simulation 476–7, 506–11
pseudo-random numbers 464–9
quasi-random numbers 469–70
SABR (stochastic alpha beta rho) model 514,

516–30
statistical functions 463–74
string functions 451–63
trees and lattices 505–6

Example.xls 512–13
Excel

95 8–9
97 (V8) 5, 7, 36–8, 111, 203, 244, 442
2000 (V9) 5, 36–8, 48, 60, 370–2, 433
2002 (V10) 3, 4–5, 36–8, 48–9, 419
2003 (V11) 5, 36–8, 43–4, 45, 49, 60–1, 88,

127, 212, 223, 364, 433, 464
2007 (V12) 5–7, 11–12, 14, 23, 25–7, 41, 45,

61, 111–16, 121, 127–30, 135, 136–9,
143–4, 147, 159, 168, 184, 203–22, 226,
238, 243–4, 249–52, 262–3, 266–9, 316,
326, 337, 344, 363–4, 366, 370–2, 390–1,
401–2, 407, 418, 423–4, 433, 441–9, 452,
464, 479, 486, 498, 506

arrays 9, 13–16, 21–2, 30–1, 65–8, 71–6,
80–6, 123–5, 128–202, 249–74, 385–7,
417–19

background task management 407–8
coding/typographical conventions 1–2, 91–2,

223–4, 316–18
Compatibility Checker 6–7
concepts 1–10, 11–54
converted data types 16–22, 64–9, 80–8,

127–202
cross-worksheet dependencies 36–8
data structures 127–202, 385–7
data types 9, 13–27, 29–31, 127–202, 225–31,

249–74, 417–19
data-organisation overview 11
DLLs 3–5, 9, 28–9, 31, 38–47, 55–88, 89–125,

127–202, 205–22, 223–364, 376–85,
389–98

event trapping 59–60, 526–7
forced workbook recalculations 44–5
functionality issues 9, 11–54

546 Index

Excel (continued)
good design/practice 49–54, 417–33, 442–9,

451–530
input evaluation 15–16
interfaces 8–9, 46, 62–88, 108–25, 244–74,

376–85, 419–33
libraries 111
menus 1–2, 9, 11, 326–44
missing arguments 201–2, 496–7
Monte Carlo simulation 10, 44, 282–3, 464, 468,

476–7, 506–11, 533
names 2, 9, 19–22, 49–54, 274–85, 298–301,

310–11, 316–26, 390–401
OLE/COM automation 3–4, 64–88, 146–7, 237,

362–3, 376–85
optimisation considerations 10, 44, 209–10,

433–49
overview 1–10
passing-data considerations 127–202, 225–31,

249–74
recalculation logic 9, 15–16, 27–8, 31–45,

109–10, 379–80, 386–7
terminology 27–8
toolbars 344–51
versions 2, 4–7, 111–14, 127, 270–1, 364,

432–3
XLLs 9, 16, 46, 49, 111–25, 163–4, 231–6,

244–74, 389–98, 509–11
Excel4 111–14, 140–1, 146–8, 154–60, 195–6,

203–22, 223–364, 376–7, 417–19
see also C API; XLM...
arguments 226–71
concepts 223–364, 417–19
macro-sheet commands/functions 224–36,

252–326
prototype 226
return values 227–36, 249–74
syntax 226–7
worksheet-function calls 229–36
wrapped functions 238–44, 259–62

Excel4_err_msg 235–6
Excel4v 111–14, 140–1, 146–7, 205–22,

223–364, 376–7, 417–19, 446–9
C API functions 233–364
concepts 223–364, 417–19, 446–9
prototype 233
syntax 233–6
wrapped functions 238–44, 259–62

Excel12 111–14, 146–8, 154–9, 164, 203–22,
226–364

prototype 226
return values 227–36
worksheet-function calls 229–36
wrapped functions 238–44, 259–62

Excel12v 111–14, 146–7, 164, 205–22,
226–364, 446–9

C API functions 233–364

prototype 233
syntax 233–6
wrapped functions 238–44, 259–62

excel_using_1904_system 497–9
exception handling 2
ExecuteExcel4Macro 79
ExecuteExcel4Macro 383
execution speeds 9–10, 54, 88, 109–10, 282–3,

365–73, 418–19, 494
see also performance issues
C/C++ 365–73, 494
concepts 54, 365–73, 418–19, 494
conclusions 372
large spreadsheets 54, 417–19
timing tests 365–9
VB 365–73, 494

Exp 370–3
exp 370–3
Explicit 43, 71–6, 445
explicit type conversion functions, concepts 20–2
exponent_function 257–8
EXPORTS 100–2
exports 100–2, 130–202, 256–62, 266–9, 293,

309–10
extern "C" 92–7
ExtractXloper 190, 207–8, 210–11, 218–19,

280–1, 431–2, 447–9
ExtractXloper12 218–19

F5 key 102, 107
F9 key 34, 43, 44–5, 109–10, 379
__fastcall 93–4
File/New... 98–102
File/Open... 115–25
File/Save As... 87
files

access 284–5
coding/typographical conventions 1–2, 316–18
formats 6
good design/practice 49–54

FILO stacks 220
financial applications

calibration 33, 511–13
constant maturity swaps (CMSs) 10, 439–40,

513–19, 528–30
correlated random samples 468–9
date functions 493–502
discount curves 502–5
examples 9, 451–530
financial markets 493–502
interpolation functions 477–85
lookup and search functions 485–93
matrix functions 30–1, 468–9, 474–7
Monte Carlo simulation 10, 44, 282–3, 464, 468,

476–7, 506–11, 533
pseudo-random numbers 464–9
quasi-random numbers 469–70

Index 547

SABR (stochastic alpha beta rho) model 10, 514,
516–30

statistical functions 463–74
trees and lattices 505–6

financial markets, date functions 493–502
FindFirst 455–6
FindFirstExcl 456–7
find_first_excluded_xl4 456–7
find_first_excluded_xl12 456–7
find_first_xl4 455–6
find_first_xl12 455–6
FindLast 457–8
find_last_xl4 457–8
find_last_xl12 457–8
Finish 105
fixed input data, concepts 50–1
float 65, 92, 128
floating-point numbers 13–15, 21–2, 64–8, 92,

128–202, 212, 249–50, 253–74, 417–19, 441
floorlets 513–19
FORCAST 477
foreign exchange (FX) 494–5, 522
format issues

cells 6, 13–15, 40–1, 51
conditional formatting 40–1
files 6
good design/practice 51

formulae
arrays 30–1, 81–6
cell references 11–13, 311–12
coding/typographical conventions 1–2, 316–18
complexity issues 51
concepts 5–7, 11–13, 15–16, 17–22, 30–1,

50–1, 81–6, 297–8, 311–12, 362–3, 409–10
evaluations 318, 362–3
good design/practice 50–1, 442–9
information 297–8, 311–12, 409–10
input evaluation 15–16
repetition avoidance 50–1

forward swaps 513–19
free 2, 131–202
free_xloper 164–202
Freeze Panes 49
FUNCDNAME 97
FUNCTION 97

Function Wizard see Paste Function dialog
Function/End Function 61–3
functions

argument optionality 31, 496–7
C API 223–364
calibration 33, 511–13
calling conventions 91–7, 231–6, 313–15,

389–98
calling-function type information 315
categories 41–2, 47–8, 224–5, 248–9
class-based registration approach 266–9

coding/typographical conventions 1–2, 91–2,
316–18

command contrasts 9–10, 28–9, 55, 86–7,
224–5, 327

complex functions 31–3
concepts 5–7, 9–10, 28–31, 61–88, 224–5,

244–85, 382–3, 398–401
constant maturity swaps (CMSs) 10, 439–40,

513–19, 528–30
date functions 493–502
defined names 225
discount curves 502–5
DLL declarations 62–88, 94–7, 244–71, 423–9
dual-interfaced function registrations 263–9,

406, 423–9, 433, 452, 498–9
financial applications 9, 451–530
interpolation functions 477–85
lookup and search functions 485–93
mandatory/optional arguments 31, 201–2, 496–7
matrix functions 30–1, 468–9, 474–7
memory-management guidelines 203–22, 274–6,

417–19
miscellaneous commands/functions 361–4
Monte Carlo simulation 10, 44, 282–3, 464, 468,

476–7, 506–11, 533
names 48, 91–2, 94–7, 390–401
nested functions 5–6
OLE/COM automation 382–5
Paste Function dialog 47–9, 55, 102, 107–8,

115–16, 245–74, 373–6
pseudo-random numbers 464–9
quasi-random numbers 469–70
recursive function-calls 203–22
register IDs 269–71
registered functions 115–25, 128–30, 223–4,

244–71, 303–12, 452
SABR (stochastic alpha beta rho) model 10, 514,

516–30
scope issues 61–3, 316–18
statistical-function examples 470–4
string-function examples 451–63
tests 365–73
thread-safe functions 212–22, 253, 290, 316,

390–1, 447–8
toolbars 344–51
trees and lattices 505–6
trigger arguments 34–6, 100, 108–10, 309–10,

365–73
types 29–31
unregistered functions 118, 244–5, 270–1,

303–12
user-defined functions 16, 38–40, 79, 302–3,

363–4, 430–2, 441–9
VB 28–9, 55, 61–88, 93, 398–401
volatile functions 34, 35–6, 39–41, 49, 62–3,

109–10, 252–4

548 Index

functions (continued)
worksheet-function argument-type conversions

20–2, 30, 64–9, 80–6, 127–202, 229–36,
249–74

worksheet-function types 20–2, 29–31, 224–5
workspace information commands/functions

270–1, 289–315, 318–26, 389–98
wrapped functions 146–53, 238–44, 259–62,

352, 392–3, 400, 410, 424–8, 465–6,
518–19

XLL interface functions 116–25, 163–4, 231–6,
244–74, 363–4, 377–85

XLM 79, 223–364, 383
futures, settlement dates 493–502
FX options 522

gamma 438–40
Gaussian distributions 433, 470–4, 514–15, 519–27
gbds_between_dates_xl4 502
gbds_between_dates_xl12 502
g_csSharedTable 219–22
Get Time 366–73
GetActiveObject 377–85
GetArrayElt 189–90, 210–11
get_bin_string 289
GET.CELL 224, 231–6
GetClassName 373–6
Get_C_System_Time 108–10
GetCurrentThreadId 91, 215–16
get_discount_value_xl4 505
get_discount_value_xl12 505
GetIDsOfNames 379–85
GetName 389
Get.Note 252
GETPIVOTDATA 213–14
GetProcAddress 111–12
get_system_time_C 94–7, 100–2, 108–10
get_system_time_C 108–10
get_thread_local_xl4_array 131–5
get_thread_local_xloper 215
GetTime 98–102, 366–73
get_time_C 368–73
GetTime.cpp 99–102, 106
GetTime.def 99–102, 106
GetTime.dll 98–102, 108–10
GetTimeTest.xls 108–10
get_username 200–1
Get_VB_Time 108–10
GetWindowText 373–6
GlobalLock 287–8
GlobalUnlock 287–8
Goal Seek command, concepts 32–3
good design/practice, spreadsheets 49–54, 417–33,

442–9, 451–530

Hagan, P. 519
handles, top-level access 283–4, 373–6

header files 3–4, 64–5, 84, 92–4, 111, 127–8
help 3, 4, 223–4, 256, 333–5, 358–9, 377
Help 33
Hill, I.D. 464–5
HLOOKUP 486–93
HWND 213–14, 224, 283–5, 374–6
hybrid length-counted null-terminated strings 27
hyperlinks, good design/practice 51

ID numbers, menus 327–30, 332–44
IDEs see integrated development environments
IDispatch 9, 64–5, 80–6, 376–85, 420
IEEE 15
IF... 41–2, 426–9, 441
if... 41–2
IF function 41–2, 47–9, 51, 442–3
IFERROR 6
implicit conversions, optimisation considerations

434–40, 442
implied volatility 521–7
inactive concepts, add-ins 114–17
INDEX 31, 51–4, 223–4, 386, 442–3, 488–93
INDIRECT 30, 35, 38–40, 54, 213–14
information provisions 47, 115–17, 120–5,

279–82, 289–326, 389–98, 418–19
add-in manager 47, 115–17, 120–5
calling-function type 315
cells 291–3, 297–8, 309–10, 316–26, 389–98,

409–10
menus 330–2
toolbars 345–6
tracked calling-cells 389–98
workspace information commands/functions

270–1, 289–315, 318–26, 389–98, 418–19
InitializeCriticalSection 219–22
InitializeCriticalSectionAndSpinCount

222
input evaluation, Excel 15–16
Insert/Function... 47
Insert/Name/Define... 321–2
instances, multiple DLL instances 90, 204, 283–4
instantaneous volatility 519–27
INT 33, 35
int 127–202, 226–31, 249–74
_int64 66
Integer 64–8, 425–6, 436
integers, concepts 13–15, 21–2, 64–8, 71–8,

178–202, 204, 370–3, 425–6, 436
integrated development environments (IDEs),

concepts 3–6, 103–10
interest payments, dates 493–502
interfaces

add-in design considerations 419–33, 451–530
background task management 413–17
core-function-code separation 419–29
DLL/XLL transformations 111–25, 163–4,

231–71

Index 549

DLLs 108–25, 244–74
Excel 8–9, 46, 62–88, 111–25, 419–33
OLE/COM automation 3–4, 64–88, 146–7, 237,

362–3, 376–85, 419–33
VBA uses 62–88, 108–10, 419–33
VC 101–2

INTERP 477
interpolation functions

bilinear interpolation 477, 479–82
concepts 477–85
cubic splines 477, 482–5
linear interpolation 477–9

interpreted macros, concepts 4–5, 7–8
interp_xl4 477–8
interp_xl12 477–8
Intersect 59
Invoke 380
IRR 518
ISERR 429–30
ISERROR 429–30
IsErrUdf 432
IsObject 81–6, 476–7

Jacobi algorithm 474–5

keyboards 30–1, 34, 43–5, 55–6, 82–3, 102,
107–10, 274, 282–3, 327–8, 358–60, 379

see also individual keys
Kumar, D. 519

lambda 516–19, 525–9
languages, DLLs 46
large data structures, DLLs 385–7, 418–19, 469–70
large spreadsheets, problems 54, 417–19
last_gbd_xl4 499–502
last_gbd_xl12 499–502
late binding, concepts 377–85
lattices, examples 505–6
leaks 9, 123–5, 173–4, 417–19

see also memory...
LeaveCriticalSection 219–22
L’Ecuyer generator 466
length-prepended/null-terminated strings, contrasts

23, 26–7
Lesniekski, A. 519
LIBOR 494–5
libraries 2, 3–4, 27, 89–110, 111, 325–6, 397,

409–11, 440, 452–3
see also DLLs
concepts 89, 111, 440, 452–3
Excel 111
optimisation considerations 440
STD 2, 325–6, 397, 409–11
types 89, 111
Windows 89–110

limits, worksheet data types 13–15

linear interpolation, concepts 477–9
lines, interpolation functions 477–85
LINEST 477
link_Excel_API 113–14
list-boxes, custom dialog boxes 353–6
literals

Excel arrays 83–6, 180–1
worksheet-function argument-type conversions

21–2, 80–6
loading/unloading processes, add-ins 46–7, 61–2,

114–16
LoadLibrary 111–14
LOGEST 477
lognormal distributions 519–27
Long 64–8
long data type 64–8, 92–110, 128–202
long tasks, concepts 406–17
LONGLONG 65–8
LONG_TASK 409–10
LOOKUP 486–93
lookup and search functions, examples 485–93
lookups, concepts 31, 51–4, 386–7, 485–93
loop-invariant expressions, optimisation

considerations 434–40
low-level code optimisation considerations 434–40

m_ prefixes 1
Mcexample1.xls 507
macro-sheet commands/functions

concepts 41, 224–36, 252–326, 445–6
Excel4 224–36, 252, 316–17
Excel12 252
permissions 252, 418–19

Macrofun.hlp 4, 223–4, 290–1
macros

see also XLM...
concepts 7–8, 38–40, 56–88, 97, 119–25,

223–364
control objects 58–9
preprocessor linker directives 97
VB commands 56–88

magic numbers, concepts 49–50
MakeSpline 483–5
make_spline_xl4 483–5
make_spline_xl12 483–5
malloc 2
mandatory/optional arguments, functions 31, 201–2,

496–7
market data 444–5
MATCH 51–4, 229–30, 386, 442–3, 486–93
MatchMulti 486–93
match_multi_xl4 488–93
match_multi_xl12 488–93
matrix functions, examples 30–1, 468–9, 474–7
MAX 507–9
mbstowcs 74–6
MC see Monte Carlo simulation

550 Index

MDETERM 474–7
m_DLLtoFree 147–53, 172
m_DLLtoFree12 172
means, normal distributions 470–4
memcpy 26
memory categories 190–1
memory management

see also performance...
array variants 86, 130–1, 417–19
bad examples 203, 207
binary names 198, 285–9, 325–6
C API 417–19
concepts 2, 9, 54, 86, 115–17, 123–5, 127–202,

203–22, 227–36, 274–6, 303–12, 314–15,
385–7, 417–19, 441–9

crashes 9, 377, 399–400, 417–19
critical sections 219–22
DLLs 90, 115–17, 123–5, 127–202, 205–22,

274–6, 385–7, 417–19
free-memory processes 115–17, 123–5, 140–1,

147–53, 205–22, 274–6, 303–12, 314–15,
385–7, 417–19, 446–9

guidelines 203–22, 274–6, 417–19
large spreadsheets 54, 130–1, 417–19
leaks 9, 123–5, 173–4, 417–19
modifying-in-place techniques 211–12, 253–4
multiple Excel instances 204, 283–4
overflow problems 135, 203, 227–36
release 9
spin counts 222
stack space 203–4, 227–36, 274–6, 303–12,

373, 385–7, 417–19
static add-in memory 204
thread-safe add-in functions 212–22, 253, 290,

316, 390–1, 447–8
xlAutoFree sequencing of calls 218–19
xlopers 127–202, 205–22, 274–6, 285–9,

314–15, 417–19
menus 1–2, 9, 11, 326–44

see also toolbars
additions 332–44
Alt key 45, 327–8
bars 326–44
checkmarks 338–9
coding/typographical conventions 1–2
command additions 335–8
command specifiers 326–44
concepts 1–2, 11, 326–44
creation processes 326–44
custom menus 326–8, 332, 338–44
deletions 335–6, 342–4
enabled/disabled custom commands/menus

339–40
examples 331–44
help 333–5
ID numbers 327–30, 332–44
information 330–2

levels 327
line types 328
renamed commands 341–2
right clicks 328–30, 337–8
short-cut menus 328–30
sub-menus 330–44
types 326–8
xlopers 334–44

Microsoft
see also Windows
downloads 3–5, 223–4, 244, 290–1
newsgroup 419
Office 3
web resources 4, 537–8

Microsoft Excel Add-in (*.xla) 87
MINVERSE 474–7
MMULT 30–1, 474–7
model calibrations 33, 511–13
modifiers, function calling conventions 93–4,

211–12, 253–4
modifying-in-place techniques, memory

management 211–12, 253–4
Module Definition File 106
Monte Carlo simulation (MC) 10, 44, 282–3, 464,

468, 476–7, 506–11, 533
C/C++ 509–11
concepts 506–11
examples 476–7, 506–11
VB 476, 506–9
worksheet functions 511

monte_carlo_control 509–11
MonteCarlo.cpp 511, 533
months_from_date_xl4 501–2
months_from_date_xl12 501–2
MTRs see multi-threaded recalculations
multi-cell range reference conversions, concepts

18–22, 64–8, 80–6, 311–15
multi-tasking 9–10, 90–1, 377, 401–17
multi-threaded recalculations (MTRs), Excel 2007

(V12) 212–13, 316, 366, 390–1, 401–6,
418–19, 447, 464, 506

multi-threading 6, 9, 45, 90–1, 212–22, 377,
401–17, 505–6, 509

background task management 404–17, 505–6,
509

DLLs 90–1, 131–5, 377, 401–17
xlAutoFree sequencing of calls 218–19

MultiByteToWideChar 74–6
m_XLtoFree 147–53, 165–6, 243–4
m_XLtoFree12 243–4
MyAddInFunction 1

N 20
name classes, concepts 2, 316–17, 387–9, 402–6
named ranges 2, 9, 19–22, 51, 316–26, 387–9

see also defined range names
concepts 2, 51, 316–26, 387–9

Index 551

good design/practice 51
name_me 396–7
names

basic operations 274–85, 298–301, 310–11,
316–26

binary names 198, 285–9, 325–6, 396–8,
469–70

cells 389–98
decoration 91–2
DLLs 91–7, 100–10, 198, 256–62, 285–9, 293,

309–10, 316–26, 390–401
Excel 2, 9, 19–22, 49–54, 274–85, 298–301,

310–11, 316–26, 390–401
functions 48, 91–2, 94–7, 390–401
menu command names 341–2
worksheets 49–54, 279–82, 298–301, 310–11,

316–26, 390–401, 418–19
XLLs 198, 285–9, 325–6, 396–8

ndist 471–2
Ndist 471–2
NdistInv 472–4
.NET add-ins, resource requirements 3–5
NETGetTime.dll 103–10
new 2
New 98–102
New Project 103–5
Newton-Raphson method 522–7
new_xl12string 121–2, 223–4
new_xlstring 118–25, 169, 261–2
next_rollover_xl4 500–2
next_rollover_xl12 500–2
NoErr 430–2
normal distributions 433, 470–4, 514–15, 519–27
NORMDIST 470–4
norm_dist_inv_xl4 472–4
norm_dist_inv_xl12 472–4
NORMINV 470–4
NORMSDIST 470–4
NORMSINV 470–4
NOW 28, 33, 34–6, 109–10, 365–73, 415–17
nsample_BM 467–8
nsample_BM_pair 467–8
NsampleBoxMuller 467–8
NsampleBoxMullerPair 467–8
NULL arguments 112–14, 123, 131–202, 267,

279–82, 364
null-terminated/length-prepended strings, contrasts

23, 26–7
number-arithmetic binary operators (+-*/), concepts

17–22
numbers

data types 13–15, 17–22, 29–31
worksheet-function argument-type conversions

21–2, 30
num_calls 90–1
NumCalls_1 33–5
NumCalls_4 36–8

object data types, VB 78–9
object-oriented features (OO)

C++ 2, 127, 146–7, 238–9
concepts 2, 7, 127, 146–7, 238–9
VBE 7

OFFSET 30, 35, 51–4
OLE/COM automation 3–4, 64–88, 146–7, 237,

362–3, 376–85, 419–33
commands 379–82
concepts 376–85
functions 382–5
initialisation/un-initialisation processes 377–9
recalculation logic 379–80
worksheet functions 383–5

OleInitialize 377–85
ON.TIME 402
OO see object-oriented...
oper 143–4, 167–202, 233–6, 249–74

see also xlopers
concepts 143–4, 201–2
structure 143–4

oper12 143–4
operators

concepts 16–22, 66–7
evaluation precedence 22
types 16–22, 66–7

optimisation considerations 10, 44, 209–10, 433–49
see also performance issues
algebraic expressions 434–40
constructors/destructors 434–40
Excel calculation times 441–9
golden rules 434
implicit conversions 434–40, 442
loop-invariant expressions 434–40
low-level code 434–40
polynomials 434–40
SABR (stochastic alpha beta rho) model 528–30
saved results 434–40
software costs 434–49
VBA code 436, 440–1

Option Base 82–6
Option Compare Text 441
Option Explicit 71–6, 445
Option Private 61–3
options

ATM volatilities 521–7
Black-Scholes option pricing model 437–9, 514,

516–19, 529, 533
dates 493–502
FX options 522
pricing 400–1, 437–9, 444–5, 493–502, 505–6,

514–27
swaptions 513–19, 527

OR 41–2
OR 41–2
overloaded operators 167–202, 208, 435

552 Index

Parks and Miller generator 466
ParseText 461–3
parse_xl4 461–3
parse_xl12 461–3
Pascal 4
password protection 31, 199–201
Paste Function dialog 47–9, 55, 88, 102, 107–8,

115–16, 245–74, 373–6
bugs 184
concepts 47–9, 55, 88, 102, 107–8, 115–16,

245–74, 373–6
examples 254–6, 373–6
function categories 248–9, 373–6

path information, access 284–5
percentage operator (, concepts 17–22
performance issues 7–10, 37, 54, 88, 109–10,

282–3, 365–73, 494
see also execution speeds
C/C++ 8–9, 365–73, 433–49, 494
concepts 10, 44, 209–10, 365–73, 433–49, 494
conclusions 372
large spreadsheets 54, 417–19
optimisation considerations 10, 44, 209–10,

433–49
tests 365–73, 434
VB 8, 365–73, 433–49, 494

permissions, macro-sheet commands/functions 252,
418–19

pExcelDisp IDispatch 379–85
PHONETIC 213–14
pointers, concepts 63–88, 91–2, 129–202, 226–36,

371–3, 398–401, 436–7
polling commands, background task management

415–17
polynomials, optimisation considerations 434–40
portfolios, derivatives 444–5, 513–19
#pragma pack 76–9, 97
precedents, recalculation logic 33–45, 109–10, 253,

386–7
precision as-displayed switch 398
preprocessor linker directives 97
present values 502–5, 513
Price 79
pricing

constant maturity swaps (CMSs) 10, 439–40,
513–19, 528–30

financial instruments 400–1, 444–5, 493–502,
505–6, 513–19

options 400–1, 437–9, 444–5, 493–502, 505–6,
514–27

Private 62–88
PRIVATE 96–7
Professional Excel Development (Bullen,

Bovey and Green) 440
Project 98–102, 107–8
Project/NETGetTimeProperties... 107–8
pseudo-random numbers 35–6, 209–10, 464–70

Public 62–88
put options 438–40

quasi-random numbers 35–6, 469–70
QueryInterface 377–85

R1C1 cell references
A1 contrasts 12–13, 297, 303–12, 319–26, 393
concepts 12–13, 297, 303–12, 315, 319–26, 393

radio buttons 353–6
RAND 35, 464, 468, 470, 507–9
random numbers 35–6, 209–10, 469–70
random samples 468–71
RandXll 465–6
RandXllnv 466–7
Range 42–5, 59–60, 66, 73, 80–6, 449, 508–9
range references

arrays 83–6, 123–5, 311–12, 324–5
concepts 18–22, 64–8, 80–6, 123–5, 311–12,

324–5
Range.Font 40
Range.FormatConditions 40
range_name 389
RangeName 389
reading material 440, 535
real-time market data 444–5
RecalcExample 38–40
RecalcExample 38–40
Recalc_Examples.xls 33, 40
recalculation logic 9, 15–16, 27–8, 31–45,

109–10, 379–80, 386–7, 406–17
concepts 9, 15–16, 27–8, 31–45, 109–10,

379–80, 386–7, 406–17, 433
cross-worksheet dependencies 36–8
data tables 31–3, 40
dependents/precedents 33–45, 109–10, 253,

386–7
event trapping 360, 398
forced workbook recalculations 44–5
multi-threaded recalculations 45, 212–13, 366,

418–19, 447, 464, 506
optimisation considerations 441–9
programmatic controls 42–4
trigger arguments 34–6, 108–10, 309–10,

365–73
user-defined functions 38–40
version-dependent results 433
volatile functions 34, 35–6, 39–41, 62–3,

109–10, 252–4
rectangular ranges of cells, conversions 21–2, 82,

141–2
recursive function-calls, memory-management

guidelines 203–22
Refresh 396–8
RegData 266–9
REGISTER 223–4

Index 553

register_dual_function 264–9, 406, 433,
452

registered commands/functions 115–25, 128–30,
223–4, 244–71, 303–12, 452

register_function 117–18, 122–5, 259–62,
269

Release 101–2
release, memory management 9, 205–22
release configurations, concepts 101–2, 106–8
repetition avoidance, formulae 50–1
ReplaceMask 452–5
replace_mask_xl4 452–5
replace_mask_xl12 452–5
resource requirements

add-in writing 3–5, 90, 97–8, 111, 441–9
web resources 4, 537–8

ret_oper 121–2, 140–1, 207–8
return 128–9
return values

concepts 29–30, 64–71, 127–202, 227–36,
249–326, 419–20

Excel4 227–36, 249–74
Excel12 227–36
memory-management guidelines 203–22
worksheet functions 29–30, 64–71, 127–202,

227–36, 249–326
Reverse Text 455–6
reverse_text_xl4 455–6
reverse_text_xl12 455–6
revision history, good design/practice 49–54
rho 10, 514, 516–30
Ribbon concept 11, 326–7, 344
Ridder’s method 522
right clicks, menus 328–30, 337–8
ROOT_2PI 50
ROW 18
rows

concepts 5–7, 11–27, 51–4, 82–6, 129–202
VB vectors 82–3

SABR (stochastic alpha beta rho) model 10, 514,
516–30

concepts 519–30
constant maturity swaps (CMSs) 528–30
limitations 519
optimisation considerations 528–30

SabrCalcAlpha 522–4
SabrCalcBestFit 526–7
SabrCalcVol 524–6
SabrWrapper 516–19, 528–30
SAFEARRAY 73–6, 84–6, 157–9, 418–19
SafeArray... 80–6
safearrays, VB 73–6, 80–6, 417–19
SDK header file 127–8, 135–6, 141–2, 223–7
Search and Replace dialogs 375–6
sent/waiting task states 416–17
SetCell 147–53

SetCriticalSectionSpinCount 222
settlement dates 493–502
set_to_bool 179
set_to_int 178–9
set_to_text 171–2
Shift-F9 keystroke 45
short 65, 92, 128–202, 425–6
short-cuts, menus/toolbars 328–30, 343–4
signed long int 65, 128–202, 249–74
signed short int 65, 128–202, 249–74
Single 65–8
single-cell reference conversions, concepts 18–22,

312–15
smiles 519
software 2–3, 10, 44, 209–10, 407–9, 433–49

see also optimisation...
cost factors 434–49
tips 434–40

Solution Explorer 105
Solver... 512–13
Solver Add-in command, concepts 7, 32–3, 400,

512–13, 526
Solver tools 7, 32–3, 400, 512–13, 526

concepts 7, 32–3, 400, 512–13
VBA 512–13

Source Files 99–102, 106
spin counts 222
Spline.cpp 483–5
SplineInterp 483–5
spline_interp_xl4 484–5
spline_interp_xl12 484–5
splines see cubic splines
spreadsheets

complexity issues 50–1
data organisation 50–1
good design/practice 49–54, 417–33, 442–9,

451–530
large spreadsheets 54, 417–19

sprintf 2
stack space, memory management 203–22, 227–36,

274–6, 303–12, 373, 385–7, 417–19
standard deviations 470–4
Standard Template Library (STL) 2, 325–6, 397,

409–11
static 90–1, 203–22
static add-in memory, memory management 204
static cells, recalculation logic 33–4
static data, concepts 50–1, 198–9, 203–22, 257
static libraries, concepts 3–4, 89–90, 111
static memory, concepts 190
Statistical 471–4
statistical functions, examples 463–74
status bars, text displays 361–2
__stdcall 83–6, 90–1, 93–7, 100–2, 108–60,

214–15, 217–18, 225–36, 367–73, 400–1,
404–17, 419–28, 431–2, 447–9, 452–63,
465–6, 518–19, 523–7

554 Index

StdDev 511
StdErr 511
STL see Standard Template Library
stochastic volatility 10, 514, 516–30
straddles 521–7
strchr 2
StrComp 441
String 2, 68–9
String 64, 65–9, 157–9, 417–19
string functions, examples 451–63
strings

concatenation operator (&) 17–22
concepts 2, 13–15, 17–22, 23–7, 29–31,

66–76, 88, 118–25, 128–202, 249–56,
263–9, 311–12, 370–3, 451–63

conversions 26
hybrid length-counted null-terminated strings 27
input evaluation 15
length 23, 26–7, 31, 264
length-prepended/null-terminated strings 23,

26–7
manipulations 2, 23–7, 66–71, 123–5, 253–4
mis-handling problems 23
summary of types 25
types 23–7
UNICODE 23–7, 69–70, 121, 147, 158–9,

170–1, 173, 184–5, 212, 249–50, 264–5,
433, 452

unmanaged/managed strings 24
VB 23–7, 64, 66–76, 88
wildcards 328
worksheet-function argument-type conversions

21–2, 30, 52–6, 127–202, 249–74
strncpy 26
sub-menus 330–44
Sub/End Sub 58, 87
SUBSTITUTE 451–2
SUM 18–19, 21, 31, 51, 180–1, 317–19
SUMIF 486–93
SumIfMulti 486–93
sum_if_multi_xl4 489–93
sum_if_multi_xl12 489–93
SUMPRODUCT 474–7
swaplets 513–19
swaps 10, 494–5, 513–19
swaptions 513–19, 527
swap_unit_pv 518–19
SysAllocStringByteLen 69–70, 74–6
SysFreeString 69–70, 74–6
SysReAllocString 69–70, 74–6
SysReAllocStringLen 69–70, 74–6
SysStringByteLen 25, 67–8, 74–6
SysStringLen 25, 67–8, 69–70, 74–6, 158–9
system clocks, event trapping 361, 402–4

T 20
TABLE 31–3

tables, data tables 31–3
Target 512–13
task lists, background task management 407–17
TaskList 407–17
taxation calculations, data tables 31–2
Taylor series 471–4
Templates 106
terminology, Excel 27–8
Test_Function 366–73
tests

performance issues 365–73, 434
types 365–72

TEXT 20
text displays, status bars 361–2
thread-local memory allocations 214–18
thread-local storage (TLS) 215–18
threads

amendment processes 411–17
concepts 131–5, 377, 401–17, 505–6, 509
critical sections 219–22
multi-threading 6, 9, 45, 90–1, 212–22, 377,

401–17, 505–6, 509
thread-local memory allocations 214–18
thread-safe functions 212–22, 253, 290, 316,

390–1, 447–8
throw, exception handling 2
timed calls, concepts 9, 401–6
times of cell-changes, trigger arguments 35–6
timing tests, execution speeds 365–9
titles

applications 290–1
windows 290–1
worksheets 49–54

TLS (thread-local storage) API 215–18
TlsAlloc 215–16
TlsData 216–17
TlsFree 215–16
TODAY 35–6
toolbars 9, 11, 55–9, 329–30, 344–51

see also menus
additions 346–7
concepts 11, 55–9, 329–30, 344–51
creation processes 346–51
deletions 350–1
enabled/disabled buttons 348–9
hidden toolbars 349–50
ID numbers 344–6
information 345–6
moved commands 348–9
pressed-button displays 349–50
resets 350–1
VBE 55–9

Tools/Add-ins... 46–7, 115–25
Tools/Customise 55–6, 273
Tools/Goal seek... 32–3
Tools/Macro/Record New Macro 55–8
Tools/Macro/Visual Basic Editor 55–6

Index 555

Tools/Options.../Calculation 31–3, 43, 496–7
Tools/Solver... 32–3
tracked calling-cells, DLLs 389–98
TRANSPOSE 474–7, 504–5
trapped events see event trapping
trees and lattices, examples 505–6
Trials 511
trigger arguments, concepts 35–6, 100, 108–10,

309–10, 365–73
trigonometric functions, optimisation considerations

434–40
ts_rand 464–5
Type 64–9, 76–9
type 143–202
Type/End Type 76–9
typedef struct 49, 76–9, 112, 129–202
typographical conventions 1–2, 91–2, 223–4,

316–18

UDF function category 45, 48, 212, 228, 430–2
ulVal 76
unary -- operator, concepts 16–22
unary = operator, concepts 16–22
undo information 54
UNICODE 6, 14, 23–7, 69–70, 74, 121, 147,

158–9, 170–1, 173, 184–5, 212, 249–50,
264–5, 433, 452

Union 59
unique names, cells 390–3
unloading processes, add-ins 46–7, 61–2, 114–16
unregistered functions 118, 244–5, 270–1, 303–12
unregister_function 118, 270–1
unsigned char 65, 128–202, 249–74
unsigned short int 65, 66–9, 71–6,

128–202, 249–74
UpdateTask 413–17
UseArray 385–7
user breaks 274, 282–3
User Defined function category 48
user-defined commands 10, 79, 363–4, 379–82

see also commands
DLL/XLL calls 363–4
OLE/COM automation 379–82

user-defined data structures 9, 20–2, 64–9, 76–9
user-defined dialogues, commands 10
user-defined functions 16, 29–31, 38–40, 79,

302–3, 363–4, 382–3, 430–2, 441–9
see also functions
DLL/XLL calls 363–4
OLE/COM automation 382–3
recalculation logic 38–40

User_Type 77–9

VALUE 16, 19–20, 30, 129–202, 342–4, 362, 402,
420–5, 442–3, 488–93

Value 66, 73–6, 83–6
variable input data, concepts 50–1

variable lists, arguments 31, 226–8
variable-length argument lists, concepts 31
variables

C++ features 1
coding/typographical conventions 1–2, 316–18
VB 64–9

variance reduction, concepts 506–7
VARIANT 25, 64–6, 71–88, 149, 157–9, 382,

418–19, 422–3, 427–8
Variant 64–8, 71–6, 421–9, 436, 476–7
variant data types

array variants 80–6, 155–9, 417–19
concepts 71–6, 155–9, 382, 417–19
definition 71
VB 64–7, 71–6, 155–9, 417–19, 421–9, 436,

441
xlopers 155–9, 382

VariantInit 70–1
VariantTypeC 75–6
VarType 75–6, 429
VARTYPE vt 71–6
VB see Visual Basic
VBA see Visual Basic for Applications
VbaEigenSystem 476–7
VBE see Visual Basic Editor
VB User Type 77–9
VC see Visual C++
VC.NET see Visual C++.NET...
vega 438–40
version numbers 49–54, 303–12, 364

Excel versions 2, 4–7, 111–14, 127, 270–1,
364, 432–3

good design/practice 49–54
XLCallVer 111–14, 364

Visual Basic for Applications (VBA)
C API contrasts 40–1, 44, 223–4, 372–3,

402–6, 433
commands 28–9, 55–88, 223–4, 402
concepts 3–5, 7–8, 9, 55–88, 89–90, 108–10,

212–13, 223–4, 363–4, 365–73, 398–401,
440–1, 476–7, 526–7

DLLs 28–9, 55, 62–88, 108–10, 236–7, 363–4
event trapping 59–60, 512–13, 526–7
Excel events 59–60, 526–7
financial applications 493–530
function creation 61–3
interface uses 62–88, 108–10
memory considerations 417–19
Monte Carlo simulation 506–9
OLE/COM automation 376–85
optimisation considerations 436, 440–1
recalculation issues 42–4
resource requirements 3–5
shortfalls 8, 372–3, 433, 526
Solver tools 512–13
user-defined functions/commands 79
XLM calls 79

556 Index

Visual Basic Editor (VBE)
concepts 7, 55–88, 372–3
opening methods 55–6
simplicity 55–6

Visual Basic (VB)
add-in manager 46, 55, 97–8
arrays 65–8, 71–6, 80–6, 155–9
assessment 88, 365–73
C/C++ 8, 55, 62–88, 94, 368–73
call-by-reference/value arguments 63–4, 68–76,

86, 94, 108–10, 423–9
coding/typographical conventions 1–2
command/function contrasts 86–7
commands 28–9, 55–88, 223–4, 402
concepts 1–2, 7–8, 28–9, 46, 55–88, 89–90,

93, 108–10, 155–9, 223–4, 365–73
control objects 58–9
currency data 65–8, 72–6
data types 64–88
DLLs 28–9, 55, 62–88, 89–90, 108–10, 236–7
errors 73–6, 422–3
execution speeds 365–73, 494
functions 28–9, 55, 61–88, 93, 108–10,

398–401
macro-commands 56–88
memory considerations 417–19
Monte Carlo simulation 476, 506–9
object data types 78–9
performance issues 8, 365–73, 433–49, 494
safearrays 73–6, 80–6, 417–19
Solver tools 512–13
strings 23–7, 64, 66–76, 88
user-defined data types 64–9, 76–9
variable range-values 64
variant data types 64–7, 71–9, 155–9, 417–19,

421–9, 436
volatile functions 35–6, 39–41, 62–3, 109–10
worksheets 7–8
XLA files 46, 61–2, 87
XLM calls 79

Visual C++ (VC) 9, 55, 89, 98–110, 369
see also C...
code-adding processes 99–102
concepts 9, 55, 89, 98–110
creation processes 98–102
DLLs 89, 98–110

Visual C++.NET 2003 (VC.NET)
code-adding processes 106–8
concepts 103–10, 129
creation processes 103–8
DLLs 103–10

Visual Studio.NET 3–4, 97–8, 103–10, 129, 204
see also Visual C++.NET 2003

VLOOKUP 31, 51–4, 386–7, 442–3, 486–93
Vlookup_Match_Example.xls 52
void 92, 115–16, 117–25, 129, 148–53, 164–6,

253–4, 275, 428–9

volatile functions
concepts 34, 35–6, 39–41, 49, 62–3, 109–10,

252–4
VB 35–6, 39–41, 62–3, 109–10

volatility 10, 437–8, 513–30
see also SABR (stochastic alpha beta rho) model

VT_ARRAY 73–6, 85–6, 157–9
VT_BOOL 73–6, 155–9, 422–3
VT_BSTR 73–6, 156–9, 422–3
VT_BYREF 73–6
VT_CY 72–6, 156–9
VT_DATE 73–6
VT_DISPATCH 73, 75–6, 83–6
VT_EMPTY 73–6, 156–9, 428
VT_ERROR 73–6, 156–9, 422–3
VT_R8 72–6, 155–9, 422–3

wchar_t 23, 25, 171, 212, 249–50, 263
wcsncpy 26
wcstombs 74–6
web resources 4, 537–8
Wichman, B.A. 464–5
WideCharToMultiByte 74–6
wildcards 328
Win32 DLLs

see also DLLs
concepts 3–5, 9, 46, 89–110, 419
resource requirements 3–5, 90, 97–8, 111
visual C++ 89–110

Win32 Project 103–5
WINAPI 419, 426
Windef.h 94
window selection-events, event trapping 360
Window/Freeze Panes 49
Windows

see also Microsoft
libraries 89–110
Registry 47
TLS (thread-local storage) API 215–18

windows.h 84
winnt.h 66
With...End With 43–4, 441
Woodward, D. 519
WORD 129–202
Workbook 42–4
workbooks

active/current contrasts 27–8, 317–18
concepts 5–6, 11, 19–22, 289–315, 433, 441–9
optimisation considerations 441–9
version-dependent recalculation results 433

Workbook_SheetCalculate 60–1
Worksheet 42–4
worksheet functions 20–2, 29–31, 64–71, 80–6,

127–202, 224–5, 229–36, 373–6, 409–17
background task management 409–17
concepts 29–31, 64–71, 127–202, 224–5,

229–36, 409–17

Index 557

Monte Carlo simulation 511
OLE/COM automation 383–5
Paste Function dialog 373–6
return values 29–30, 64–71, 127–202, 227–36,

249–326
worksheets

active/current contrasts 27–8, 279–80
complexity issues 50–1
concepts 5–7, 11–16, 20–2, 29–31, 49–54,

127–202, 290–1, 298–301, 310–11, 316–26,
441–9

cross-worksheet dependencies 36–8
data references 398–401
data types 13–15, 20–2, 29–31, 64–88,

127–202, 249–74
event trapping 358, 512–13
function argument-type conversions 20–2, 30,

64–9, 80–6, 127–202, 229–36
function references 398–401
function types 29–31
function-call detection processes 373–6
good design/practice 49–54, 417–33, 442–9,

451–530
information 290–1, 298–301, 310–11, 316–26,

418–19
limits 13–15
names 49–54, 279–82, 298–301, 310–11,

316–26, 390–401, 418–19
optimisation considerations 441–9
passing references/pointers 398–401
password protection 31, 199–201
titles 49–54

Worksheet_SelectionChange 59–60
workspace information commands/functions 270–1,

289–315, 318–26, 389–98, 418–19
wrapped functions, C API 146–53, 238–44,

259–62, 352, 392–3, 400, 410, 424–8,
465–6, 518–19

wtypes.h 65–8, 71
www.microsoft.com/downloads/search.asp 3

xbool 135–6
XCHAR 137–8
xl4_array 45, 85, 128–202, 212, 216–17, 238,

249–50, 253–4, 385, 418, 419–20, 467,
496–502

xl12_array 128–35, 191, 212, 216–17, 238,
253–4, 385, 418, 419–20

xlAbort 213–14, 224, 274–85
xlAddInManagerInfo 115–17, 120–5
xlAddInManagerInfo12 120–2
xl_array 129–202, 249–74, 417–19
xlAuto 115–25, 163–4, 236–7
xlAutoAdd 115–17, 118–25
xlAutoClose 112–14, 115–17, 118–25, 219–20,

244–71, 379–85, 398, 405–6, 412–17

xlAutoFree 115–17, 123–5, 184, 190, 209–22,
385–7

xlAutoFree12 123–5, 184, 190, 209–22
XL_AUTO_FREE_XLOPER 123–5, 165–6
xlAutoOpen 112–14, 115–25, 219–20, 256–62,

272–3, 377–85, 405–6, 412–17, 432–3
xlAutoRegister 115–17, 122–5
xlAutoRegister12 122–5
xlAutoRemove 115–17, 119–25
xlbitDLLFree 121–2, 123–5, 141, 165–6, 190,

209–22
xlbitXLfree 140–1, 185–6, 188–90, 206–22,

275–7
xlcAddTool 347–8
xlCalculation.̇. 43–4
xlcAlert 351–2
xlcAlertr 352
xlcall32.dll 4, 111–25, 226
xlcall32.h 76, 111–14
xlcall32.lib 4, 90, 111–25, 226, 476
xlcall.cpp 111–14, 226
xlcall.dll 90
xlcall.h 4, 111, 138, 141–3, 148, 226–7
XLCallVer 111–14, 364
xlcAssignToTool 347–8
xlcCalculateDocument 44–5, 509, 511
xlcCalculateNow 45, 509
xlcDefineName 225, 318–20
xlcDeleteName 318, 321–2
xlcDeleteTool 350–1
xlcDisableInput 356
xlcEcho 361–2, 507–9
xlcMessage 361–2
xlcMoveTool 348–9
xlCoerce 16, 154–9, 180–202, 213–14, 224,

232–4, 240–1, 276–8, 320, 430–2, 448–9
xlcOnData 357
xlcOnDoubleclick 357–8
xlcOnEntry 358
xlcOnKey 358–9
xlcOnRecalc 360, 397–8
xlcOnTime 361, 402–4, 408–17
xlcOnWindow 360
xlcRun 363–4
xlcShowToolbar 349–50
xlDefineBinaryName 213–14, 224, 274–89,

326
xlDisableXLMsgs 224, 274–85
xlEnableXLMsgs 224, 274–85
xlfActiveCell 291
xlfAddBar 328, 332, 338
xlfAddCommand 335–8, 342
xlfAddMenu 332–5, 418–19
xlfAddToolbar 346–7
xlfAppTitle 224, 290–1
xlfCall 269–74

558 Index

xlfCaller 41, 213–14, 231–6, 290, 313–15,
316, 389–98, 430–2, 448–9

xlfCancelKey 274, 282–3
xlfCheckCommand 338–9
xlfCommandName 224
xlfDeleteBar 343–4
xlfDeleteCommand 342–3
xlfDeleteMenu 335–6, 343
xlfDeleteToolbar 351
xlfDialogBox 200–1, 352–6
xlfDocuments 291
xlfEnableCommand 339–40, 343
xlfEnableTool 348–9
xlfEvaluate 16, 315, 318, 362–3, 399–400
xlfFormulaConvert 311–12
xlfFunctionName 224
xlfGetBar 330–2
xlfGetCell 213–14, 224, 231–6, 291–3, 314
xlfGetDef 317–18, 324–5, 393–401
xlfGetDocument 293–7, 496–502
xlfGetFormula 297, 409–17
xlfGetName 318, 322–4
xlfGetNote 297–8
xlfGetTool 344–6
xlfGetToolbar 344–6
xlfGetWindow 213–14, 298–301
xlfGetWorkbook 213–14, 237, 301–3
xlfGetWorkspace 213–14, 270–1, 303–12,

315, 432–3
xlfIndex 223–4
xlfLen 207–8
xlfMatch 229–36
xlfn 226–36
xlfNames 318, 320, 325–6, 396–8
xlfPressTool 349–50
xlfRand 209–10
xlFree 112, 116, 185–6, 190, 205–22, 224, 226,

239–40, 261–2, 274–85, 417–19, 432,
446–9

xlFree12 116
xlfReftext 312–13, 393–401
xlfRegister 122–3, 223–4, 245–74, 284–5,

333–44, 361, 380–5, 402–6
xlfRegisterId 269–70
xlfRenameCommand 341–2
xlfResetToolbar 350–1
xlfSelection 309–10
xlfSetName 270–1, 317–26, 390–401
xlfSheetId 191–6, 205
xlfShowBar 338
xlfTextref 312
xlfUnregister 269–74
xlfWindows 310–11
xlfWindowTitle 224, 290–1
xlGetBinaryName 213–14, 224, 274–89
xlGetHwnd 213–14, 224, 283–5
xlGetInst 213–14, 224, 283–5

xlGetName 224, 284–5, 318–26
XllMatrix.cpp 475
XllNames.cpp 387–9, 396–8
XllNames.h 387–9
xll_rand_non_vol_xl4 466–7
xll_rand_non_vol_xl12 466–7
xll_rand_xl4 465–6
xll_rand_xl12 465–6
XLLs 4, 9, 16, 24, 46, 49, 111–25, 163–4, 231–6,

244–74, 313–15, 373, 389–401, 509–11,
514–19

see also DLLs
binary names 198, 285–9, 325–6, 396–8,

469–70
coding/typographical conventions 1, 316–18
command breaks 274, 282–3, 509
command registering/unregistering processes

271–4, 509
concepts 4, 9, 46, 49, 111–25, 163–4, 231–6,

244–74, 389–98, 441–9, 509–11
copies 114–15
creation processes 115–25
definition 4
function calls 116–25, 231–6, 244–71, 313–15,

363–4, 377–85, 389–98
missing arguments 201–2, 496–7
Monte Carlo simulation 509–11
names 198, 285–9, 325–6, 396–8
OLE/COM automation 376–85

XllStats.cpp 471
XllStrings.cpp 452–3
XLM (Excel 4 macro language) 3, 4, 7–8, 28–9,

46, 79, 119–25, 223–364, 383
see also xlc...; xlf...
add-in manager 46, 119–25
C API 223–364
commands 79, 223–364, 402
concepts 3, 4, 7–8, 28–9, 46, 79, 223–364,

383
custom dialog boxes 351–6
functions 79, 223–364, 383
helpfile 3, 4, 223–4
menus 326–44
toolbars 344–51
weaknesses 223–4
workspace information commands/functions

270–1, 289–315, 318–26
xlmref

concepts 135–202
structure 142–3

xlmref12 137–8, 142–3, 160–3
xlName 2, 316–17, 387–9, 393–401, 402–6
xloper12.h 148
xloper12s 115–16, 120–5, 127–202, 226–364,

410, 442–9, 465–6, 489–93
conversions 154–63, 276–8
detailed discussion 163–98

Index 559

initialisation processes 188, 198–202
restrictions 159
xlopers conversions 159–63, 176–8

xloper.cpp 2, 74–6, 155–9
xloper.h 148
xlopers 2, 16, 23–7, 45, 74–6, 85–6, 115–16,

119–25, 127–202, 205–22, 226–364, 382–3,
400–1, 410, 413–28, 442–9, 451–530

see also xltype...
*arg... 227–44
*opers 233–6
*pRetVal 226–36, 421–2, 431–2
concepts 127–202, 205–22, 226–36, 276–8,

312–15, 382–3, 417–19
constant xlopers 144–6, 195–6
conversions 154–9, 167–8, 172–3, 175–6,

178–80, 188–90, 194–5, 197, 229–36,
276–8, 312

definition 135–6
detailed discussion 163–98
free memory 164–5, 314–15
hidden memory management 208
initialisation processes 187–8, 198–202, 355–6
memory management 127–202, 205–22, 274–6,

285–9, 314–15, 417–19, 442–9
menus 334–44
oper 143–4
optimisation considerations 442–9
snares 140–1, 417–19
structure 135–42, 164–5, 199
uses 135–6, 163–202, 226–36, 382, 417–19,

442–9, 451–530
variants 155–9, 382
xloper12s conversions 159–63, 176–8

XloperTypeStr 139–41
xlPrompt 225
xlref

concepts 135–202
structure 141–2

xlref12 137–8, 141–2
xlretAbort 228–36
xlretFailed 111–14, 140–1, 226, 228–36,

237
xlretInvCount 228–36
xlretInvXlfn 228–36
xlretInvXloper 228–36, 432
xlretNotCalled 243
xlretNotThreadSafe 228–36
xlretStackOvfl 228–36
xlretSuccess 228, 239–40, 260–1, 432–3
xlretUncalced 229–36, 252
xlSet 197, 213–14, 224, 278–85, 318
xlSheetId 191–6, 205, 213–14, 224, 279–85,

446–7
xlSheetNm 213–14, 224, 281–5, 418
xlStack 203–4, 213–14, 275–6

xltype 123–5, 135–202, 205–22, 275, 382,
413–19

see also xlopers
concepts 135–202, 382
conversions 167–8
creation processes 166–7
memory considerations 167–8
uses 166–8, 382
values table 137–8

xltypeBigData 135–6, 138–202, 205–22
concepts 135–6, 138–202, 285–9
uses 198, 285–9

xltypeBool 138–202, 205–22, 250, 278–9, 282,
421–2

concepts 138–202
conversions 175–6
creation processes 174–6
memory considerations 176
uses 174

xltypeErr 123–5, 137–202, 205–22, 230, 250,
260, 320

concepts 123–5, 137–202, 230, 320
conversions 178
creation processes 177–8
memory considerations 178
uses 177–8, 230

xltypeFlow 135–6
xltypeInt 135–202, 205–22, 447

concepts 135–6, 138–202
conversions 179–80
creation processes 178–9
memory considerations 180
uses 178

xltypeMissing 138–202, 205–22, 227–36, 250,
261–2, 330

xltypeMulti 123–4, 138–202, 205–22, 250,
274–5, 325, 337, 385, 417–19, 489–93, 527

bugs 181
concepts 138–202, 274–5, 417–19, 527
conversions 188–90
creation processes 181–8
memory considerations 190–1, 417–19
uses 138–9, 147, 180–1, 417–19, 527

xltypeMultixloper 85
xltypeNil 138–202, 205–22, 227–36, 250, 447

concepts 138–202, 227–36
conversions 197
creation processes 196–7
memory considerations 197–8
uses 196–7

xltypeNum 138–202, 205–22, 250, 260, 421–2,
449

concepts 138–202
uses 166–8

xltypeRef 123–5, 138–202, 205–22, 240–1,
250, 282–3, 417–19, 446–7

560 Index

xltypeRef (continued)
concepts 123–5, 138–202, 240–1, 417–19,

446–7
conversions 194–5
creation processes 191–4
memory considerations 195, 417–19
uses 191, 417–19

xltypeSRef 138–202, 205–22
concepts 123–5, 138–202, 239–40,

250
conversions 194–5
creation processes 191–4
memory considerations 195

uses 191
xltypeStr 25, 137–202, 205–22, 250, 261, 325,

417–19, 421–2
concepts 137–202, 212, 417–19
conversions 172–3
creation processes 168–74
memory considerations 173–4, 417–19
uses 168–9

xlUDF 7, 16, 213–14, 224, 228, 363, 399–400,
430–2

XML 6

zero-coupon bonds 502

Index compiled by Terry Halliday

	Financial Applications using Excel Add-in Development in C/C++
	Contents
	Preface to Second Edition
	Preface to First Edition
	Acknowledgements for the First Edition
	Acknowledgements for the Second Edition
	1 Introduction
	1.1 Typographical and code conventions used in this book
	1.2 What tools and resources are required to write add-ins
	1.2.1 VBA macros and add-ins
	1.2.2 C/C++ DLL add-ins
	1.2.3 C/C++ DLLs that can access the C API and XLL add-ins
	1.2.4 C/C++/C# .NET add-ins

	1.3 To which versions of Excel does this book apply?
	1.4 The future of Excel: Excel 2007 (Version 12)
	1.4.1 Summary of key workbook changes
	1.4.2 Aspects of Excel 2007 not covered in this book
	1.4.3 Excel 2007 file formats
	1.4.4 Compatibility between Excel 2007 and earlier versions

	1.5 About add-ins
	1.6 Why is this book needed?
	1.7 How this book is organised
	1.8 Scope and limitations

	2 Excel Functionality
	2.1 Overview of Excel data organisation
	2.2 A1 versus R1C1 cell references
	2.3 Cell contents
	2.4 Worksheet data types and limits
	2.5 Excel input evaluation
	2.6 Data type conversion
	2.6.1 The unary = operator
	2.6.2 The unary – operator (negation)
	2.6.3 Number-arithmetic binary operators: + - */^
	2.6.4 Percentage operator: %
	2.6.5 String concatenation operator: &
	2.6.6 Boolean binary operators: =,< , >,< =, >=,< >
	2.6.7 Conversion of single-cell references
	2.6.8 Conversion of multi-cell range references
	2.6.9 Conversion of defined range names
	2.6.10 Explicit type conversion functions: N(), T(), TEXT(), VALUE()
	2.6.11 Worksheet function argument type conversion
	2.6.12 Operator evaluation precedence

	2.7 Strings
	2.7.1 Length-prepended versus null-terminated strings
	2.7.2 Byte strings versus Unicode strings
	2.7.3 Unmanaged versus managed strings
	2.7.4 Summary of string types used in Excel
	2.7.5 Converting one string type to another
	2.7.6 Hybrid length-counted null-terminated strings

	2.8 Excel Terminology: Active and current
	2.9 Commands versus functions in Excel
	2.10 Types of worksheet function
	2.10.1 Function purpose and return type
	2.10.2 Array formulae – The Ctrl-Shift-Enter keystroke
	2.10.3 Required, optional and missing arguments and variable argument lists

	2.11 Complex functions and commands
	2.11.1 Data Tables
	2.11.2 Goal Seek and Solver Add-in

	2.12 Excel recalculation logic
	2.12.1 Marking dependents for recalculation
	2.12.2 Triggering functions to be called by Excel – the trigger argument
	2.12.3 Volatile functions
	2.12.4 Cross-worksheet dependencies – Excel 97/2000 versus 2002 and later versions
	2.12.5 User-defined functions (VB Macros) and add-in functions
	2.12.6 Data Table recalculation
	2.12.7 Conditional formatting
	2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). . .
	2.12.9 Controlling Excel recalculation programmatically
	2.12.10 Forcing Excel to recalculate a workbook or other object
	2.12.11 Using functions in name definitions
	2.12.12 Multi-threaded recalculation

	2.13 The Add-in Manager
	2.14 Loading and unloading add-ins
	2.14.1 Add-in information

	2.15 Paste function dialog
	2.15.1 Function category
	2.15.2 Function name, argument list and description
	2.15.3 Argument construction dialog

	2.16 Good spreadsheet design and practice
	2.16.1 Filename, sheet title and name, version and revision history
	2.16.2 Magic numbers
	2.16.3 Data organisation and design guidelines
	2.16.4 Formula repetition
	2.16.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus VLOOKUP()

	2.17 Problems with very large spreadsheets
	2.18 Conclusion

	3 Using VBA
	3.1 Opening the VB editor
	3.2 Using VBA to create new commands
	3.2.1 Recording VBA macro commands

	3.3 Assigning VBA command macros to control objects in a worksheet
	3.4 Using VBA to trap Excel events
	3.5 Using VBA to create new functions
	3.5.1 Function scope
	3.5.2 Declaring VBA functions as volatile

	3.6 Using VBA as an interface to external DLL add-ins
	3.6.1 Declaring DLL functions in VB
	3.6.2 Call-by-reference versus call-by-value
	3.6.3 Converting argument and return data types between VBA and C/C++
	3.6.4 VBA data types and limits
	3.6.5 VB/OLE Currency type
	3.6.6 VB/OLE Bstr Strings
	3.6.7 Passing strings to C/C++ functions from VBA
	3.6.8 Returning strings to VBA from a DLL
	3.6.9 Variant data type
	3.6.10 Variant types supported by VBA
	3.6.11 Variant types that Excel can pass to VBA functions
	3.6.12 User-defined data types in VB
	3.6.13 VB object data type
	3.6.14 Calling XLM functions and commands from VBA: Application.ExecuteExcel4Macro()
	3.6.15 Calling user-defined functions and commands from VBA: Application.Run()

	3.7 Excel ranges, VB arrays, SafeArrays, array Variants
	3.7.1 Declaring VB arrays and passing them back to Excel
	3.7.2 Passing arrays and ranges from Excel to VBA to C/C++
	3.7.3 Converting array Variants to and from C/C++ types
	3.7.4 Passing VB arrays to and from C/C++

	3.8 Commands versus functions in VBA
	3.9 Creating VB add-ins (XLA files)
	3.10 VBA versus C/C++: some basic questions

	4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET
	4.1 Windows library basics
	4.2 DLL basics
	4.3 DLL memory and multiple DLL instances
	4.4 Multi-threading
	4.5 Compiled function names
	4.5.1 Name decoration
	4.5.2 The extern "C" declaration

	4.6 Function calling conventions: __cdecl, __stdcall, __fastcall
	4.7 Exporting DLL function names
	4.7.1 The __declspec(dllexport) keyword
	4.7.2 Definition (*.DEF) files
	4.7.3 Using a preprocessor linker directive

	4.8 What you need to start developing add-ins in C/C++
	4.9 Creating a DLL using Visual C++ 6.0
	4.9.1 Creating the empty DLL project
	4.9.2 Adding code to the project
	4.9.3 Compiling and debugging the DLL

	4.10 Creating a DLL using Visual C++ .NET 2003
	4.10.1 Creating the empty DLL project
	4.10.2 Adding code to the project
	4.10.3 Compiling and debugging the DLL

	4.11 Accessing DLL functions from VB
	4.12 Accessing DLL functions from excel

	5 Turning DLLs into XLLs: The Add-in Manager Interface
	5.1 The xlcall32 library and the C API functions
	5.2 What does the Add-in manager do?
	5.2.1 Loading and unloading installed add-ins
	5.2.2 Active and inactive add-ins
	5.2.3 Deleted add-ins and loading of inactivate add-ins

	5.3 Creating an XLL: The xlAuto interface functions
	5.4 When and in what order does Excel call the XLL interface functions?
	5.5 XLL functions called by the Add-in Manager and Excel
	5.5.1 xlAutoOpen
	5.5.2 xlAutoClose
	5.5.3 xlAutoAdd
	5.5.4 xlAutoRemove
	5.5.5 xlAddInManagerInfo (xlAddInManagerInfo12)
	5.5.6 xlAutoRegister (xlAutoRegister12)
	5.5.7 xlAutoFree (xlAutoFree12)

	6 Passing Data Between Excel and the DLL
	6.1 Handling Excel’s internal data structures: C or C++?
	6.2 How Excel exchanges worksheet data with DLL add-in functions
	6.2.1 Native C/C++ data types
	6.2.2 Excel floating-point array structures: xl4_array, xl12_array
	6.2.3 The xloper/xloper12 structures
	6.2.4 The xlref/xlref12 structures
	6.2.5 The xlmref/xlmref12 structures
	6.2.6 The oper/oper12 structures

	6.3 Defining constant xlopers/xloper12s
	6.4 A C++ class wrapper for the xloper/xloper12 – cpp_xloper
	6.5 Converting between xloper/xloper12s and C/C++ data types
	6.6 Converting between xloper/xloper12 types
	6.7 Converting between xlopers and variants
	6.8 Converting between xlopers and xloper12s
	6.9 Detailed Discussion of xloper types
	6.9.1 Freeing xloper memory
	6.9.2 Worksheet (floating point) number: xltypeNum
	6.9.3 Length-counted string: xltypeStr
	6.9.4 Excel Boolean: xltypeBool
	6.9.5 Worksheet error value: xltypeErr
	6.9.6 Excel internal integer: xltypeInt
	6.9.7 Array (mixed type): xltypeMulti
	6.9.8 Worksheet cell/range reference: xltypeRef and xltypeSRef
	6.9.9 Empty worksheet cell: xltypeNil
	6.9.10 Worksheet binary name: xltypeBigData

	6.10 Initialising xloper/xloper12s
	6.11 Missing arguments

	7 Memory Management
	7.1 Excel stack space limitations
	7.2 Static add-in memory and multiple Excel instances
	7.3 Getting Excel to free memory allocated by Excel
	7.3.1 Freeing xloper memory within the DLL call
	7.3.2 Freeing Excel-allocated xloper memory returned by the DLL function
	7.3.3 Hiding xloper memory management within a C++ class

	7.4 Getting Excel to call back the DLL to free DLL-allocated memory
	7.5 Returning data by modifying arguments in place
	7.6 Making add-in functions thread safe
	7.6.1 Multi-threaded recalculations (MTR) in Excel 2007 (version 12)
	7.6.2 Which of Excel’s built-in functions are thread-safe
	7.6.3 Allocating thread-local memory
	7.6.4 Excel’s sequencing of calls to xlAutoFree in a multi-threaded system
	7.6.5 Using critical sections with memory shared between threads

	8 Accessing Excel Functionality using the C API
	8.1 The Excel 4 macro language (XLM)
	8.1.1 Commands, worksheet functions and macro sheet functions
	8.1.2 Commands that optionally display dialogs – the xlPrompt bit
	8.1.3 Accessing XLM functions from the worksheet using defined names

	8.2 The Excel4(), Excel12() C API functions
	8.2.1 Introduction
	8.2.2 Excel4(), Excel12() return values
	8.2.3 Calling Excel worksheet functions in the DLL using Excel4(), Excel12()
	8.2.4 Calling macro sheet functions from the DLL using Excel4(), Excel12()
	8.2.5 Calling macro sheet commands from the DLL using Excel4()/Excel12()

	8.3 The Excel4v()/Excel12v() C API functions
	8.4 What C API functions can the DLL call and when?
	8.5 Wrapping the C API
	8.6 Registering and un-registering DLL (XLL) functions
	8.6.1 The xlfRegister function
	8.6.2 Specifying which category the function should be listed under
	8.6.3 Specifying argument and return types
	8.6.4 Giving functions macro sheet function permissions
	8.6.5 Specifying functions as volatile
	8.6.6 Specifying functions as thread-safe (Excel 2007 only)
	8.6.7 Returning values by modifying arguments in place
	8.6.8 The Paste Function dialog (Function Wizard)
	8.6.9 Function help parameter to xlfRegister
	8.6.10 Argument help parameters to xlfRegister
	8.6.11 Managing the data needed to register exported functions
	8.6.12 Registering functions with dual interfaces for Excel 2007 and earlier versions
	8.6.13 A class based approach to managing registration data
	8.6.14 Getting and using the function’s register ID
	8.6.15 Un-registering a DLL function

	8.7 Registering and un-registering DLL (XLL) commands
	8.7.1 Accessing XLL commands
	8.7.2 Breaking execution of an XLL command

	8.8 Functions defined for the C API only
	8.8.1 Freeing Excel-allocated memory within the DLL: xlFree
	8.8.2 Getting the available stack space: xlStack
	8.8.3 Converting one xloper/xloper12 type to another: xlCoerce
	8.8.4 Setting cell values from a command: xlSet
	8.8.5 Getting the internal ID of a named sheet: xlSheetId
	8.8.6 Getting a sheet name from its internal ID: xlSheetNm
	8.8.7 Yielding processor time and checking for user breaks: xlAbort
	8.8.8 Getting Excel’s instance handle: xlGetInst
	8.8.9 Getting the handle of the top-level Excel window: xlGetHwnd
	8.8.10 Getting the path and file name of the DLL: xlGetName

	8.9 Working with binary names
	8.9.1 The xltypeBigData xloper
	8.9.2 Basic operations with binary names
	8.9.3 Creating, deleting and overwriting binary names
	8.9.4 Retrieving binary name data
	8.9.5 Example worksheet functions

	8.10 Workspace information commands and functions
	8.10.1 Setting the application title: xlfAppTitle
	8.10.2 Setting the document window title: xlfWindowTitle
	8.10.3 Getting a reference to the active cell: xlfActiveCell
	8.10.4 Getting a list of all open Excel documents: xlfDocuments
	8.10.5 Information about a cell or a range of cells: xlfGetCell
	8.10.6 Sheet or workbook information: xlfGetDocument
	8.10.7 Getting the formula of a cell: xlfGetFormula
	8.10.8 Getting a cell’s comment: xlfGetNote
	8.10.9 Information about a window: xlfGetWindow
	8.10.10 Information about a workbook: xlfGetWorkbook
	8.10.11 Information about the workspace: xlfGetWorkspace
	8.10.12 Information about the selected range or object: xlfSelection
	8.10.13 Getting names of open Excel windows: xlfWindows
	8.10.14 Converting a range reference: xlfFormulaConvert
	8.10.15 Converting text to a reference: xlfTextref
	8.10.16 Converting a reference to text: xlfReftext
	8.10.17 Information about the calling cell or object: xlfCaller
	8.10.18 Information about the calling function type

	8.11 Working with Excel names
	8.11.1 Specifying worksheet names and name scope
	8.11.2 Basic operations with Excel names
	8.11.3 Defining a name on a worksheet: xlcDefineName
	8.11.4 Defining and deleting a name in the DLL: xlfSetName
	8.11.5 Deleting a worksheet name: xlcDeleteName
	8.11.6 Getting the definition of a named range: xlfGetName
	8.11.7 Getting the defined name of a range of cells: xlfGetDef
	8.11.8 Getting a list of named ranges: xlfNames

	8.12 Working with Excel menus
	8.12.1 Menu bars and ID numbers and menu and command specifiers
	8.12.2 Short-cut (context) menu groups
	8.12.3 Getting information about a menu bar: xlfGetBar
	8.12.4 Creating a new menu bar or restoring a default bar: xlfAddBar
	8.12.5 Adding a menu or sub-menu: xlfAddMenu
	8.12.6 Adding a command to a menu: xlfAddCommand
	8.12.7 Displaying a custom menu bar: xlfShowBar
	8.12.8 Adding/removing a check mark on a menu command: xlfCheckCommand
	8.12.9 Enabling/disabling a custom command or menu: xlfEnableCommand
	8.12.10 Changing a menu command name: xlfRenameCommand
	8.12.11 Deleting a command from a menu: xlfDeleteCommand
	8.12.12 Deleting a custom menu: xlfDeleteMenu
	8.12.13 Deleting a custom menu bar: xlfDeleteBar

	8.13 Working with toolbars
	8.13.1 Getting information about a toolbar: xlfGetToolbar
	8.13.2 Getting information about a tool button on a toolbar: xlfGetTool
	8.13.3 Creating a new toolbar: xlfAddToolbar
	8.13.4 Adding buttons to a toolbar: xlcAddTool
	8.13.5 Assigning/removing a command on a tool: xlcAssignToTool
	8.13.6 Enabling/disabling a button on a toolbar: xlfEnableTool
	8.13.7 Moving/copying a command between toolbars: xlcMoveTool
	8.13.8 Showing a toolbar button as pressed: xlfPressTool
	8.13.9 Displaying or hiding a toolbar: xlcShowToolbar
	8.13.10 Resetting a built-in toolbar: xlfResetToolbar
	8.13.11 Deleting a button from a toolbar: xlcDeleteTool
	8.13.12 Deleting a custom toolbar: xlfDeleteToolbar

	8.14 Working with custom dialog boxes
	8.14.1 Displaying an alert dialog box: xlcAlert
	8.14.2 Displaying a custom dialog box: xlfDialogBox
	8.14.3 Restricting user input to dialog boxes: xlcDisableInput

	8.15 Trapping events with the C API
	8.15.1 Trapping a DDE data update event: xlcOnData
	8.15.2 Trapping a double-click event: xlcOnDoubleclick
	8.15.3 Trapping a worksheet data entry event: xlcOnEntry
	8.15.4 Trapping a keyboard event: xlcOnKey
	8.15.5 Trapping a recalculation event: xlcOnRecalc
	8.15.6 Trapping a window selection event: xlcOnWindow
	8.15.7 Trapping a system clock event: xlcOnTime

	8.16 Miscellaneous commands and functions
	8.16.1 Disabling screen updating during command execution: xlcEcho
	8.16.2 Displaying text in the status bar: xlcMessage
	8.16.3 Evaluating a cell formula: xlfEvaluate
	8.16.4 Calling user-defined functions from an XLL or DLL: xlUDF
	8.16.5 Calling user-defined commands from an XLL or DLL: xlcRun

	8.17 The XLCallVer() C API function

	9 Miscellaneous Topics
	9.1 Timing function execution in VBA and C/C++
	9.2 Relative performance of VBA, C/C++: Tests and results
	9.2.1 Conclusion of test results

	9.3 Relative performance of C API versus VBA calling from worksheet cell
	9.4 Detecting when a worksheet function is called from an Excel dialog
	9.4.1 Detecting when a worksheet function is called from the Paste Function dialog (Function Wizard)
	9.4.2 Detecting when a worksheet function is called from the Search and Replace dialog
	9.4.3 Detecting when a worksheet function is called from either the Search and Replace or Paste Function dialogs

	9.5 Accessing Excel functionality using COM/OLE automation using C++
	9.5.1 Initialising and un-initialising COM
	9.5.2 Getting Excel to recalculate worksheets using COM
	9.5.3 Calling user-defined commands using COM
	9.5.4 Calling user-defined functions using COM
	9.5.5 Calling XLM functions using COM
	9.5.6 Calling worksheet functions using COM

	9.6 Maintaining large data structures within the DLL
	9.7 A C++ Excel name class example, xlName
	9.8 Keeping track of the calling cell of a DLL function
	9.8.1 Generating a unique name
	9.8.2 Obtaining the internal name of the calling cell
	9.8.3 Naming the calling cell
	9.8.4 Internal XLL name housekeeping

	9.9 Passing references to Excel worksheet functions
	9.9.1 Data references
	9.9.2 Function references

	9.10 Multi-tasking, Multi-threading and asynchronous calls in DLLs
	9.10.1 Setting up timed calls to DLL commands: xlcOnTime
	9.10.2 Starting and stopping threads from within a DLL
	9.10.3 Calling the C API from a DLL-created thread

	9.11 A background task management class and strategy
	9.11.1 Requirements
	9.11.2 Communication between Excel and a background thread
	9.11.3 The software components needed
	9.11.4 Imposing restrictions on the worksheet function
	9.11.5 Organising the task list
	9.11.6 Creating, deleting, suspending, resuming the thread
	9.11.7 The task processing loop
	9.11.8 The task interface and main functions
	9.11.9 The polling command
	9.11.10 Configuring and controlling the background thread
	9.11.11 Other possible background thread applications and strategies

	9.12 How to crash Excel
	9.13 Add-in Design
	9.13.1 Separating interface code from core function code
	9.13.2 Controlling error propagation
	9.13.3 Making add-in behaviour Excel version-sensitive and backwards-compatible
	9.13.4 Version-dependent workbook recalculation results

	9.14 Optimisation
	9.14.1 Low level code optimisation
	9.14.2 VBA code optimisation
	9.14.3 Excel calculation optimisation

	10 Example Add-ins and Financial Applications
	10.1 String functions
	10.2 Statistical functions
	10.2.1 Pseudo-random number generation
	10.2.2 Generating random samples from the normal distribution
	10.2.3 Generating correlated random samples
	10.2.4 Quasi-random number sequences
	10.2.5 The normal distribution

	10.3 Matrix functions – eigenvalues and eigenvectors
	10.4 Interpolation
	10.4.1 Linear interpolation
	10.4.2 Bilinear interpolation
	10.4.3 Cubic splines

	10.5 Lookup and search functions
	10.6 Financial markets date functions
	10.7 Building and reading discount curves
	10.8 Building trees and lattices
	10.9 Monte Carlo simulation
	10.9.1 Using Excel and VBA only
	10.9.2 Using Excel and C/C++ only
	10.9.3 Using worksheet functions only

	10.10 Calibration
	10.11 CMS derivative pricing
	10.12 The SABR stochastic volatility model
	10.13 Optimising the SABR implementation for CMS derivatives

	Appendix 1 Contents of the CD ROM
	Related reading
	Web Links and Other Resources
	Index

