' Iee ' 7"‘" = o] > '1 .

deve opment in c'/c++

Second Edition

\/'\. STEVE DALTON

Financial Applications Using
. Excel Add-in Development in C/C++ |

Second Edition of Excel
Add-in Development in C/C++

Steve Dalton

NNNNNNNNNNNN

v
: »
11807

| DWILEY |;
20077 ;

o r
uuuuuuuuuuuu

John Wiley & Sons, Ltd

Financial Applications using
. Excel Add-in Development in C/C++ |

For other titles in the Wiley Finance Series
please see www.wiley.com/finance

Financial Applications Using
. Excel Add-in Development in C/C++ |

Second Edition of Excel
Add-in Development in C/C++

Steve Dalton

NNNNNNNNNNNN

v
: »
11807

| DWILEY |;
20077 ;

o r
uuuuuuuuuuuu

John Wiley & Sons, Ltd

Copyright © 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (4-44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wileyeurope.com or www.wiley.com|

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to

the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand
names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned
in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Dalton, Steve.
Financial applications using Excel add-in development in C/C++ / Steve Dalton.—2nd ed.
p. cm.
Earlier ed. published under title: Excel add-in development in C/C++ : applications in finance.
Chichester : Wiley, c2004.
Includes bibliographical references and index.
ISBN 978-0-470-02797-4 (cloth/cd : alk. paper)
1. Microsoft Excel (Computer file) 2. Business—Computer programs. 3. C (Computer program language)
4. C++ (Computer program language) 5. Computer software—Development. 1. Dalton, Steve.
Excel add-in development in C/C++. II. Title.
HF5548 . 4.M523D35 2007
005 . 54—dc22 2006036080

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 978-0-0470-02797-4 (HB)

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Preface to Second Edition
Preface to First Edition

Acknowledgements for the First Edition

Acknowledgements for the Second Edition

1 Introduction

1.1
1.2

1.3
1.4

1.5
1.6
1.7
1.8

Typographical and code conventions used in this book

What tools and resources are required to write add-ins

1.2.1 VBA macros and add-ins

1.2.2 C/C++ DLL add-ins

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins
1.24 C/C++/C# NET add-ins

To which versions of Excel does this book apply?

The future of Excel: Excel 2007 (Version 12)

1.4.1 Summary of key workbook changes

1.4.2 Aspects of Excel 2007 not covered in this book

1.43 Excel 2007 file formats

1.4.4 Compatibility between Excel 2007 and earlier versions
About add-ins

Why is this book needed?

How this book is organised

Scope and limitations

2 Excel Functionality

2.1
22
23
24
2.5
2.6

Overview of Excel data organisation

A1 versus R1C1 cell references

Cell contents

Worksheet data types and limits

Excel input evaluation

Data type conversion

2.6.1 The unary = operator

2.6.2 The unary — operator (negation)

xvii
Xix
xxi

xxiii

SOV NN UNUNUN R BRNBRWN— -

p—

11
12
13
13
15
16
16
16

vi

Contents

2.7

2.8
29
2.10

2.11

2.12

2.13
2.14

2.15

2.6.3 Number-arithmetic binary operators: + - */*

2.6.4 Percentage operator: %

2.6.5 String concatenation operator: &

2.6.6 Boolean binary operators: =,<, ><=, >=< >

2.6.7 Conversion of single-cell references

2.6.8 Conversion of multi-cell range references

2.6.9 Conversion of defined range names

2.6.10 Explicit type conversion functions: N(), T(), TEXT(),
VALUE()

2.6.11 Worksheet function argument type conversion

2.6.12 Operator evaluation precedence

Strings

2.7.1 Length-prepended versus null-terminated strings

2.7.2 Byte strings versus Unicode strings

2.7.3 Unmanaged versus managed strings

2.74 Summary of string types used in Excel

2.7.5 Converting one string type to another

2.7.6 Hybrid length-counted null-terminated strings

Excel Terminology: Active and current

Commands versus functions in Excel

Types of worksheet function

2.10.1 Function purpose and return type

2.10.2 Array formulae — The Ctrl-Shift-Enter keystroke

2.10.3 Required, optional and missing arguments and variable
argument lists

Complex functions and commands

2.11.1 Data Tables

2.11.2 Goal Seek and Solver Add-in

Excel recalculation logic

2.12.1 Marking dependents for recalculation

2.12.2 Triggering functions to be called by Excel — the trigger
argument

2.12.3 Volatile functions

2.12.4 Cross-worksheet dependencies — Excel 97/2000 versus
2002 and later versions

2.12.5 User-defined functions (VB Macros) and add-in functions

2.12.6 Data Table recalculation

2.12.7 Conditional formatting

2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). ..

2.12.9 Controlling Excel recalculation programmatically

2.12.10 Forcing Excel to recalculate a workbook or other object

2.12.11 Using functions in name definitions

2.12.12 Multi-threaded recalculation

The Add-in Manager

Loading and unloading add-ins

2.14.1 Add-in information

Paste function dialog

17
17
17
17
18
18
19

20
20
22
23
23
23
24
25
26
27
27
28
29
29
30

31
31
31
32
33
33

34
35

36
38
40
40
41
42
44
45
45
46
46
47
47

Contents

vil

2.15.1 Function category
2.15.2 Function name, argument list and description
2.15.3 Argument construction dialog

2.16 Good spreadsheet design and practice
2.16.1 Filename, sheet title and name, version and revision history
2.16.2 Magic numbers
2.16.3 Data organisation and design guidelines
2.16.4 Formula repetition
2.16.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus
VLOOKUP()
2.17 Problems with very large spreadsheets
2.18 Conclusion
Using VBA
3.1 Opening the VB editor
32 Using VBA to create new commands
3.2.1 Recording VBA macro commands
33 Assigning VBA command macros to control objects in a worksheet
34 Using VBA to trap Excel events
3.5 Using VBA to create new functions
3.5.1 Function scope
3.5.2 Declaring VBA functions as volatile
3.6 Using VBA as an interface to external DLL add-ins
3.6.1 Declaring DLL functions in VB
3.6.2 Call-by-reference versus call-by-value
3.6.3 Converting argument and return data types between VBA
and C/C++
3.64 VBA data types and limits
3.6.5 VB/OLE Currency type
3.6.6 VB/OLE Bstr Strings
3.6.7 Passing strings to C/C++ functions from VBA
3.6.8 Returning strings to VBA from a DLL
3.6.9 Variant data type
3.6.10 Variant types supported by VBA
3.6.11 Variant types that Excel can pass to VBA functions
3.6.12 User-defined data types in VB
3.6.13 VB object data type
3.6.14 Calling XLM functions and commands from VBA:
Application.ExecuteExcel4Macro()
3.6.15 Calling user-defined functions and commands from VBA:
Application.Run()
3.7 Excel ranges, VB arrays, SafeArrays, array Variants

3.7.1 Declaring VB arrays and passing them back to Excel
3.7.2 Passing arrays and ranges from Excel to VBA to C/C++
3.7.3 Converting array Variants to and from C/C++ types
3.7.4 Passing VB arrays to and from C/C++

47
48
48
49
49
49
50
51

51
54
54

55
55
56
57
58
59
61
61
62
62
62
63

64
64
66
66
68
70
71
72
74
76
78

79

79
80
81
83
84
86

viii

Contents

3.8 Commands versus functions in VBA
3.9 Creating VB add-ins (XLA files)
3.10 VBA versus C/C++: some basic questions

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or
Visual Studio .NET
4.1 Windows library basics
4.2 DLL basics
4.3 DLL memory and multiple DLL instances
4.4 Multi-threading
4.5 Compiled function names
4.5.1 Name decoration
452 The extern "C" declaration
4.6 Function calling conventions: __cdecl,
_ fastcall
4.7 Exporting DLL function names
4.7.1 The __declspec (dllexport) keyword
4.7.2 Definition (* . DEF) files
4.7.3 Using a preprocessor linker directive
4.8 What you need to start developing add-ins in C/C++
4.9 Creating a DLL using Visual C++ 6.0
49.1 Creating the empty DLL project
4.9.2 Adding code to the project
493 Compiling and debugging the DLL
4.10 Creating a DLL using Visual C++ .NET 2003
4.10.1 Creating the empty DLL project
4.10.2 Adding code to the project
4.10.3 Compiling and debugging the DLL
4.11 Accessing DLL functions from VB
4.12 Accessing DLL functions from excel

stdcall,

Turning DLLs into XLLs: The Add-in Manager Interface
5.1 The xlIcall32 library and the C API functions
5.2 What does the Add-in manager do?
5.2.1 Loading and unloading installed add-ins
5.2.2 Active and inactive add-ins
5.2.3 Deleted add-ins and loading of inactivate add-ins
5.3 Creating an XLL: The x1Auto interface functions
5.4 When and in what order does Excel call the XLL interface
functions?
5.5 XLL functions called by the Add-in Manager and Excel
5.5.1 xl1AutoOpen
5.52 xlAutoClose
5.53 xlAautoadd
5.54 xlAutoRemove
5.5,5 xlAddInManagerInfo (xlAddInManagerInfol2)

86
87
88

89
89
89
90
90
91
91
92

93
94
95
95
97
97
98
98
100
101
103
103
106
106
108
110

111
111
114
114
114
114
115

116
117
117
118
118
119
120

Contents

ix

556 xlAutoRegister (xlAutoRegisterl2)
557 xlAutoFree (xlAutoFreel2)

6 Passing Data Between Excel and the DLL

6.1
6.2

6.3
6.4

6.5

6.6
6.7
6.8
6.9

6.10
6.11

Handling Excel’s internal data structures: C or C++7?

How Excel exchanges worksheet data with DLL add-in functions

6.2.1 Native C/C++ data types

6.2.2 Excel floating-point array structures: x14_array,
x112_array

6.2.3 The xloper/xloperl2 structures

6.24 The xlref/xlrefl2 structures

6.2.5 The xImref/x1lmrefl2 structures

6.2.6 The oper/operl2 structures

Defining constant x1opers/xloperl2s

A C++ class wrapper for the

xloper/xloperl2 - cpp_xloper

Converting between x1loper/xloperl2s and C/C++

data types

Converting between xloper/xloperl2 types

Converting between x1opers and variants

Converting between x1lopers and xloperl2s

Detailed Discussion of x1oper types

6.9.1 Freeing xloper memory

6.9.2 Worksheet (floating point) number: x1typeNum

6.9.3 Length-counted string: x1typeStr

6.9.4 Excel Boolean: x1typeBool

6.9.5 Worksheet error value: x1typeErr

6.9.6 Excel internal integer: x1typeInt

6.9.7 Array (mixed type): x1typeMulti

6.9.8 Worksheet cell/range reference: x1typeRef and
xltypeSRef

6.9.9 Empty worksheet cell: x1typeNil

6.9.10 Worksheet binary name: x1typeBigData

Initialising xloper/xloperl2s

Missing arguments

7 Memory Management

7.1
7.2
7.3

7.4
7.5

Excel stack space limitations

Static add-in memory and multiple Excel instances

Getting Excel to free memory allocated by Excel

7.3.1 Freeing xloper memory within the DLL call

7.3.2 Freeing Excel-allocated x1oper memory returned by the
DLL function

7.3.3 Hiding x1loper memory management within a C++ class

Getting Excel to call back the DLL to free DLL-allocated memory

Returning data by modifying arguments in place

122
123

127
127
128
128

129
135
141
142
143
144

146

154
154
155
159
163
164
166
168
174
177
178
180

191
196
198
198
201

203
203
204
205
205

206
208
208
211

Contents

7.6

Making add-in functions thread safe

7.6.1
7.6.2
7.6.3
7.6.4

7.6.5

Multi-threaded recalculations (MTR) in Excel 2007
(version 12)

Which of Excel’s built-in functions are thread-safe
Allocating thread-local memory

Excel’s sequencing of calls to x1AutoFree in a
multi-threaded system

Using critical sections with memory shared between threads

8 Accessing Excel Functionality using the C API
The Excel 4 macro language (XLM)

8.1

8.2

8.3
8.4
8.5
8.6

8.7

8.1.1
8.1.2

8.1.3

Commands, worksheet functions and macro sheet functions
Commands that optionally display dialogs — the
x1Prompt bit

Accessing XLM functions from the worksheet using
defined names

The Excel4(), Excel12() C API functions

8.2.1
8.2.2
8.2.3
8.2.4

8.2.5

Introduction

Excel4(), Excell2() return values

Calling Excel worksheet functions in the DLL using
Excel4(), Excell2()

Calling macro sheet functions from the DLL using
Excel4(), Excell2()

Calling macro sheet commands from the DLL using
Excel4 () /Excell2 ()

The Exceldv () /Excell2v () C API functions
What C API functions can the DLL call and when?
Wrapping the C API

Registering and un-registering DLL (XLL) functions

8.6.1
8.6.2

8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12

8.6.13
8.6.14
8.6.15

The x1fRegister function

Specifying which category the function should be listed
under

Specifying argument and return types

Giving functions macro sheet function permissions
Specifying functions as volatile

Specifying functions as thread-safe (Excel 2007 only)
Returning values by modifying arguments in place

The Paste Function dialog (Function Wizard)

Function help parameter to x1fRegister

Argument help parameters to x1fRegister
Managing the data needed to register exported functions
Registering functions with dual interfaces for Excel 2007
and earlier versions

A class based approach to managing registration data
Getting and using the function’s register ID
Un-registering a DLL function

Registering and un-registering DLL (XLL) commands

212

212
213
214

218
219

223
223
224

225

225
226
226
227

229

231

233
233
236
238
244
245

248
249
252
253
253
253
254
256
256
256

263
266
269
270
271

Contents

X1

8.8

8.9

8.10

8.11

8.7.1 Accessing XLL commands

8.7.2 Breaking execution of an XLL command

Functions defined for the C API only

8.8.1 Freeing Excel-allocated memory within the DLL: x1Free

8.8.2 Getting the available stack space: x1Stack

8.8.3 Converting one xloper/xloperl?2 type to another:
x1lCoerce

8.8.4 Setting cell values from a command: x1Set

8.8.5 Getting the internal ID of a named sheet: x1SheetId

8.8.6 Getting a sheet name from its internal ID: x1SheetNm

8.8.7 Yielding processor time and checking for user breaks:
x1lAbort

8.8.8 Getting Excel’s instance handle: x1GetInst

8.8.9 Getting the handle of the top-level Excel window:
x1GetHwnd

8.8.10 Getting the path and file name of the DLL: x1GetName

Working with binary names

8.9.1 The xltypeBighata xloper

8.9.2 Basic operations with binary names

8.9.3 Creating, deleting and overwriting binary names

8.9.4 Retrieving binary name data

8.9.5 Example worksheet functions

Workspace information commands and functions

8.10.1 Setting the application title: x1fAppTitle

8.10.2 Setting the document window title: x1 fWindowTitle

8.10.3 Getting a reference to the active cell: x1fActiveCell

8.10.4 Getting a list of all open Excel documents:
x1lfDocuments

8.10.5 Information about a cell or a range of cells: x1fGetCell

8.10.6 Sheet or workbook information: x1fGetDocument

8.10.7 Getting the formula of a cell: x1fGetFormula

8.10.8 Getting a cell’s comment: x1 fGetNote

8.10.9 Information about a window: x1fGetWindow

8.10.10 Information about a workbook: x1fGetWorkbook

8.10.11 Information about the workspace: x1fGetWorkspace

8.10.12 Information about the selected range or object:
xlfSelection

8.10.13 Getting names of open Excel windows: x1fWindows

8.10.14 Converting a range reference: x1 fFormulaConvert

8.10.15 Converting text to a reference: x1fTextref

8.10.16 Converting a reference to text: x1fReftext

8.10.17 Information about the calling cell or object: x1fCaller

8.10.18 Information about the calling function type

Working with Excel names

8.11.1 Specifying worksheet names and name scope

8.11.2 Basic operations with Excel names

8.11.3 Defining a name on a worksheet: x1cDefineName

273
274
274
274
275

276
278
279
281

282
283

283
284
285
286
286
287
287
288
289
290
290
291

291
291
293
297
297
298
301
303

309
310
311
312
312
313
315
316
316
318
318

Xil

Contents

8.12

8.13

8.14

8.15

8.11.4
8.11.5
8.11.6
8.11.7
8.11.8

Defining and deleting a name in the DLL: x1fSetName
Deleting a worksheet name: x1cDeleteName

Getting the definition of a named range: x1fGetName
Getting the defined name of a range of cells: x1fGetDef
Getting a list of named ranges: x1fNames

Working with Excel menus

8.12.1

8.12.2
8.12.3
8.124

8.12.5
8.12.6
8.12.7
8.12.8

8.12.9

8.12.10
8.12.11
8.12.12
8.12.13

Menu bars and ID numbers and menu and command
specifiers

Short-cut (context) menu groups

Getting information about a menu bar: x1fGetBar
Creating a new menu bar or restoring a default bar:
x1fAddBar

Adding a menu or sub-menu: x1fAddMenu

Adding a command to a menu: x1 fAddCommand
Displaying a custom menu bar: x1fShowBar
Adding/removing a check mark on a menu command:
x1lfCheckCommand

Enabling/disabling a custom command or menu:
x1fEnableCommand

Changing a menu command name: x1fRenameCommand
Deleting a command from a menu: x1fDeleteCommand
Deleting a custom menu: x1fDeleteMenu

Deleting a custom menu bar: x1fDeleteBar

Working with toolbars

8.13.1
8.13.2

8.13.3
8.13.4
8.13.5

8.13.6
8.13.7

8.13.8
8.13.9
8.13.10
8.13.11
8.13.12

Getting information about a toolbar: x1fGetToolbar
Getting information about a tool button on a toolbar:
x1fGetTool

Creating a new toolbar: x1fAddToolbar

Adding buttons to a toolbar: x1cAddTool
Assigning/removing a command on a tool:
x1lcAssignToTool

Enabling/disabling a button on a toolbar: x1fEnableTool
Moving/copying a command between toolbars:
xlcMoveTool

Showing a toolbar button as pressed: x1fPressTool
Displaying or hiding a toolbar: x1cShowToolbar
Resetting a built-in toolbar: x1fResetToolbar
Deleting a button from a toolbar: x1cDeleteTool
Deleting a custom toolbar: x1fDeleteToolbar

Working with custom dialog boxes

8.14.1
8.14.2
8.14.3

Displaying an alert dialog box: x1lcAlert
Displaying a custom dialog box: x1fDialogBox
Restricting user input to dialog boxes:
xlcDisableInput

Trapping events with the C API

8.15.1
8.15.2

Trapping a DDE data update event: x1cOnData
Trapping a double-click event: x1cOnDoubleclick

319
321
322
324
325
326

327
328
330

332
332
335
338

338

339
341
342
343
343
344
345

345
346
347

347
348

348
349
349
350
350
351
351
351
352

356
356
357
357

Contents Xiii

8.15.3 Trapping a worksheet data entry event: x1cOnEntry 358
8.15.4 Trapping a keyboard event: x1cOnKey 358
8.15.5 Trapping a recalculation event: x1cOnRecalc 360
8.15.6 Trapping a window selection event: x1cOnWindow 360
8.15.7 Trapping a system clock event: x1cOnTime 361
8.16 Miscellaneous commands and functions 361
8.16.1 Disabling screen updating during command execution:
x1cEcho 361
8.16.2 Displaying text in the status bar: x1cMessage 361
8.16.3 Evaluating a cell formula: x1fEvaluate 362
8.16.4 Calling user-defined functions from an XLL or DLL:
x1UDF 363
8.16.5 Calling user-defined commands from an XLL or DLL:
x1cRun 363
8.17 The XLCallver () C API function 364
Miscellaneous Topics 365
9.1 Timing function execution in VBA and C/C++ 365
9.2 Relative performance of VBA, C/C++: Tests and results 369
9.2.1 Conclusion of test results 372
9.3 Relative performance of C API versus VBA calling from a
worksheet cell 372
9.4 Detecting when a worksheet function is called from an Excel dialog 373
9.4.1 Detecting when a worksheet function is called from the
Paste Function dialog (Function Wizard) 374
9.4.2 Detecting when a worksheet function is called from the
Search and Replace dialog 375
9.4.3 Detecting when a worksheet function is called from either
the Search and Replace or Paste Function dialogs 375
9.5 Accessing Excel functionality using COM/OLE automation using
C++ 376
9.5.1 Initialising and un-initialising COM 377
9.5.2 Getting Excel to recalculate worksheets using COM 379
9.5.3 Calling user-defined commands using COM 380
9.5.4 Calling user-defined functions using COM 382
9.5.5 Calling XLM functions using COM 383
9.5.6 Calling worksheet functions using COM 383
9.6 Maintaining large data structures within the DLL 385
9.7 A C++ Excel name class example, x1Name 387
9.8 Keeping track of the calling cell of a DLL function 389
9.8.1 Generating a unique name 390
9.8.2 Obtaining the internal name of the calling cell 393
9.8.3 Naming the calling cell 394
9.8.4 Internal XLL name housekeeping 396
9.9 Passing references to Excel worksheet functions 398
9.9.1 Data references 398

9.9.2 Function references 398

X1V

Contents

10

9.10

9.11

9.12
9.13

9.14

Multi-tasking, Multi-threading and asynchronous calls in DLLs

9.10.1 Setting up timed calls to DLL commands: x1cOnTime

9.10.2 Starting and stopping threads from within a DLL

9.10.3 Calling the C API from a DLL-created thread

A background task management class and strategy

9.11.1 Requirements

9.11.2 Communication between Excel and a background thread

9.11.3 The software components needed

9.11.4 Imposing restrictions on the worksheet function

9.11.5 Organising the task list

9.11.6 Creating, deleting, suspending, resuming the thread

9.11.7 The task processing loop

9.11.8 The task interface and main functions

9.11.9 The polling command

9.11.10 Configuring and controlling the background thread

9.11.11 Other possible background thread applications and
strategies

How to crash Excel

Add-in Design

9.13.1 Separating interface code from core function code

9.13.2 Controlling error propagation

9.13.3 Making add-in behaviour Excel version-sensitive and
backwards-compatible

9.13.4 Version-dependent workbook recalculation results

Optimisation

9.14.1 Low level code optimisation

9.14.2 VBA code optimisation

9.14.3 Excel calculation optimisation

Example Add-ins and Financial Applications

10.1
10.2

10.3
10.4

10.5
10.6
10.7
10.8
10.9

String functions

Statistical functions

10.2.1 Pseudo-random number generation
10.2.2 Generating random samples from the normal distribution
10.2.3 Generating correlated random samples
10.2.4 Quasi-random number sequences

10.2.5 The normal distribution

Matrix functions — eigenvalues and eigenvectors
Interpolation

10.4.1 Linear interpolation

10.4.2 Bilinear interpolation

10.4.3 Cubic splines

Lookup and search functions

Financial markets date functions

Building and reading discount curves

Building trees and lattices

Monte Carlo simulation

401
402
404
405
406
406
407
408
409
409
411
412
413
415
416

417
417
419
419
429

432
433
433
434
440
441

451
451
463
464
467
468
469
470
474
477
477
479
482
485
493
502
505
506

Contents

XV

10.9.1 Using Excel and VBA only
10.9.2 Using Excel and C/C++ only
10.9.3 Using worksheet functions only
10.10 Calibration
10.11 CMS derivative pricing
10.12 The SABR stochastic volatility model
10.13 Optimising the SABR implementation for CMS derivatives

Appendix 1 Contents of the CD ROM

Related reading

Web Links and Other Resources

Index

507
509
511
511
513
519
528

531

535

537

539

Preface to Second Edition

Since the publication of the first edition of this book late in 2004, Microsoft have
announced the release of Excel 2007 (version 12), one of the most important new releases
since Excel 97 (version 8). For those developing add-ins in C and C++ so little changed
between Excel 97 and Excel 2003 (version 11) that the entire first edition applied almost
equally to versions 8, 9, 10 and 11. Excel 2007 introduces some important and long-
awaited changes that have a significant impact on the text of this book, which has been
updated to reflect these new features.

For the first time in many releases, the Excel team have updated parts of the C API
interface to allow XLL add-in writers to take advantage of some of these new features.
The three areas that have the biggest impact are the introduction of multi-threaded recal-
culation, a worksheet grid over 1,000 times larger than is supported in previous versions,
and support in the C API for 32Kbyte Unicode strings. The implications for XLLs of
these changes and others are fully explored in this edition.

Beyond matters relating to Excel 2007, this edition adds a great deal of new material
to the first. There is a much expanded section of Excel’s recalculation logic, intended to
help you minimise calculation times and maximise control, as well as a new section that
spcifically addresses optimisation of calculations, both in the add-in and in the workbook.
The example C++ class described in the first edition that wraps the x1oper data type has
not only been enhanced to handle the new Excel 2007 data types but also to wrap calls
to the C API as well. There is a new section relating to add-in design, covering issues
such as good practice for the separation of interfaces, and techniques for controlling the
propagation of errors through a workbook.

There are numerous other small additions and modifications to the original text, not
significant enough to warrant mention here. As you would expect, the known errors and
omissions in the original text have also been fixed, although readers are asked to bear in
mind that the writing constraints of such a book mean that bug-free can only ever be a
goal not a promise where code samples are concerned.

Beyond this, new material relates to a few practical applications. These tend to be
those that are most relevant to the professional derivatives markets, but will I hope, still
provide some useful insights for people outside this world. There is a little more about
interpolation. The section relating to the Gaussian normal distribution is revised and now
takes a more sensible Excel version-specific approach, which also serves as an example
of backwards-compatible and version-aware add-in funtionality.

Xviil Preface to Second Edition

There are two new sections relating to the commonly-used stochastic volatility model
SABR, and the pricing of some constant maturity swap (CMS) derivatives. Neither of
these two sections is intended to serve as a model reference for the finance industry, or as
examples of what is correct from a strict quantitative analytical point of view. Instead, they
are intended to provide a little more substance to the, sometimes subtle, considerations
of fitting mathematical models into Excel in a sensible way.

The level of C++ knowledge assumed in this edition is slightly greater than the first,
though still not requiring advanced skills. This allows treatment of a number of program-
ming problems in a more mature way, making greater use of the power of C++ to harness
some of the messier aspects of the C APL

The sample code provided in the text and on the CD ROM, though in places unchanged
from the first edition, is nevertheless significantly different in many places and augmented
by new modules and functionality. This is at the expense of compatibility between code
in the first and second edition’s CD ROMs. The point to stress is that this book is not a
software product as such, and changes are not a software upgrade. The reader should not
assume any backwards compatibility.

Finally, I hope that this edition is now sufficiently complete and error-free to serve as
a useful reference and guide for many years to come.

Preface to First Edition

This book is intended to provide the reader with a guide to the issues involved with
creating powerful and reliable add-ins for Excel. With years of use, many people build
up the experience and understanding needed to create custom functions for Excel in C
and C++. However, given the very limited books and resources available, this can be a
largely trial-and-error process. The motivation in writing this book is to create something
I wish I had had through the years: a coherent explanation of the relevant technology,
what steps to follow, what pitfalls to avoid, and a good reference guide. With these things
at your side, writing C/C++ DLL and XLL resources can be almost as easy as writing
them in Visual Basic, but yields the enormous performance benefit of compiled C/C++
and the Excel C APL

In setting goals for this book, I was particularly inspired by two excellent books that I
have grown to admire more and more over the years, as they have repeatedly proven their
worth; The C Programming Language (Kernighan and Ritchie) and Numerical Recipes
in C (Press, Teukolsky, Vetterling and Flannery), albeit that the style of C-coding of the
latter can be somewhat dense. If this book achieves a fraction of the usefulness of either
of these then you will, I hope, be happy to own it and I will be happy to have written it.

This book is intended for anyone with at least solid C and/or C++ foundation skills, a
good working knowledge of Excel, a little experience with VBA (though not necessary)
and the need to make Excel do things it doesn’t really want to do, or do them faster,
more cleanly, more flexibly. A reasonable grasp of basic software development concepts
and techniques is assumed. (Section 1.1 Typographical and code conventions used in this
book, on page 1, provides more detail of the coding style of the examples given.)

The example add-in project included on the CD ROM is intended to demonstrate some
of the most important or difficult concepts described in the book, as well as the possibilities
that are opened up when you can really play with Excel. These reflect my professional
background in the financial markets, although if you are not of that world, you should
still find that the techniques described are very widely applicable.

There is an enormous amount of material that could have been included in a book on this
subject that has either been pared down to the briefest of coverage or omitted completely.
I fully accept that there will be those who, perhaps rightly, feel that certain things should
have been covered in a book that boasts such a title, and I can only apologise. Any future
editions will, I hope, provide an opportunity to rectify the most heinous and unpopular
of these shortcomings.

XX Preface to First Edition

The first spreadsheet application I encountered was a version of Visicalc in 1984 that
ran on a 64K RAM Atari games console. It was dizzyingly slow and I had no practical
use for it at the time. Nevertheless, all the essential elements of a modern spreadsheet
application were there. Like the bicycle, many improvements have been made since the
very early versions but the basic design was virtually right first time. Spreadsheet users
have continued to find applications well beyond the intentions of early designers. It’s a
safe bet that spreadsheets will be an important tool for many decades to come. It’s also
safe to say that, for some people, what comes out of the box will never be enough. This
book is for those people.

. Acknowledgements for the First Edition |

I would like to acknowledge and sincerely thank the following people: Alister Morton
for first demystifying the C API for me many many years ago; Sean Storey for his help
with certain C++ language and style points and for his general input and proof-reading;
Fredrik Wahlgren for his very valuable help with the section on COM and automation,
and for his general comments; Mike Trutt for his proof-reading and comments on writing
style; Rob Bovey for his early comments and encouragement, and for his later help; Mike
Clinch for his consistently good advice without which life would be very much more
difficult; Les Clewlow and Chris Strickland for their perspective as authors and for their
encouragement as friends and lastly, all those who’ve had to put up with me having one,
rather boring and obsessive, topic of conversation for the time it has taken to complete
this first edition.

L Acknowledgements for the Second Edition J

I would like to thank the Excel product team at Microsoft, in particular David Gainer,
for including me in the Beta testing group for Excel 2007, which enabled me to include
the new material in this book by a deadline that precedes the release of this new version.
I would also like to thank Martin Winnick and Matthew Haigh for their review and
comments regarding some of the new material from Chapter 10. Most of all I would like
to thank my wife Trish for her countless hours of invaluable help and for, once again,
putting up with a husband who can’t seem to stop working 7 days a week no matter how
much he tries to have a normal life.

1
Introduction

1.1 TYPOGRAPHICAL AND CODE CONVENTIONS USED
IN THIS BOOK

To distinguish between the text of the book, Visual Basic code, C/C++ code, and Excel
worksheet functions, formulae and cell references, the following fonts are used
throughout:

Excel functions and formulae

Windows application menus and control button text

Visual Basic code

C/C++ code

Directory paths, file names and file masks

Passages of source code appear as boxed text in the appropriate font.

The spelling and grammar used throughout this book are British Isles English, with the
occasional US variation such as dialog.

Examples of non-VB code are mostly in C++-flavoured C. That is, C written in C++
source modules so that some of the useful C++ features can be used including:

the declaration of automatic variables anywhere in a function body;

the use of the bool data type with associated true and false values;
the use of call-by-reference arguments;

C++ style comments.

C functions and variables are written in lower case with underscores to improve readabil-
ity, for example, c_thing. In the few places C++ classes are used, class and instance
names and member functions and variables are written in proper case, and in general,
without underscores, for example, CopThing. Class member variables are prefixed with
‘m_’ to clarify class body code. Beyond this, no coding standard or variable naming con-
vention is applied. Names of XLL functions, as registered with Excel, are generally in
proper case with no underlines, to distinguish them from Excel’s own uppercase function
names, for example, MyAddInFunction.

Where function names appear in the book text, they appear in the appropriate font
with trailing parentheses but, in general, without their arguments. For example, a C/C++
function is written as ¢_function() or CppFunction() and an Excel worksheet
function is written as Excel_Function(). VB functions may be written as VB_Function(),
or simply VB_Function where the function takes no arguments, consistent with VB
syntax.

2 Excel Add-in Development in C/C++

Code examples mostly rely on the Standard C Library functions rather than, say, the
C++ Standard Template Library or other C++ language artefacts. Memory allocation and
release use malloc (), calloc () and free (), rather than new and delete or the
Win32 global memory functions. (There are a few exceptions to this.) This is not because
the choice of the C functions is considered better, but because it is a simple common
denominator. It is assumed that any competent programmer can alter the examples given
to suit their own preferences. String manipulation is generally done with the standard
C library functions such as strchr (), rather than the C++ String class. (There is
some discussion of BSTR strings and the functions that handle them, where the topic is
interoperability of C/C++ DLLs and VB.)

The standard C library sprintf () function is used for formatted output to string
buffers, despite the fact that it is not type-safe and risks buffer overrun. (The book avoids
the use of any other standard input/output routines.)

The object oriented features of C++ have mostly been restricted to two classes. The
first is the cpp_xloper, which wraps the basic Excel storage unit (the xloper) and
greatly simplifies the use of the C APIL The second is the x1Name which simplifies
the use of named ranges. (Strictly speaking, defined names can refer to more than just
ranges of cells.) There are, of course, many places where an add-in programmer might
find object-abstraction useful, or the functionality of the classes provided in this book
lacking; the choice of how to code your add-in is entirely yours.

C++ throw and catch exception handling are not used or discussed, although it is
expected that any competent C++ programmer might, quite rightly, want to use these.
Their omission is intended to keep the Excel-related points as the main focus.

Many other C++ features are avoided in order to make the code examples accessible
to those with little C++ experience: namespaces, class inheritance and friends, streams
and templates. These are all things that an experienced C++ programmer will be able to
include in their own code with no problem, and are not needed in order to address the
issues of interfacing with Excel.

The C++ terms member variable and member function, and their VB analogues property
and method, are generally used in the appropriate context, except where readability is
improved.

Throughout the book, where information is Excel version-specific, the version to which
it applies is sometimes denoted as follows: [v11-] for versions up to and including 11
(Excel 2003); [v12+] for versions 12 (Excel 2007) and later; and so on. (See section 1.3
below).

1.2 WHAT TOOLS AND RESOURCES ARE REQUIRED
TO WRITE ADD-INS

Licensed copies of a 32-bit version of Excel and a 32-bit Windows OS are both assumed.
(16-bit systems are not covered by this book). In addition, and depending on how and
what you want to develop, other software tools may be required, and are described in this
section. Table 1.1 summarises the resources needed for the various levels of capability,
starting with the simplest.

Introduction 3

Table 1.1 Resources required for add-in development

What you want
to develop

Required resources

Where to get them

VBA macros and add-ins

VBA (for Excel)

Supplied with Excel

Win32 DLLs whose
functions can be
accessed via VB

VBA

A compiler capable of
building a Win32 DLL from
the chosen source language
(which does not have to be
C or C++)

Supplied with Excel

Various commercial and
shareware/freeware
sources

C/C++ Win32 DLLs
whose functions can be
accessed via VB and that
can control Excel using
OLE/COM Automation

VBA

A C/C++ compiler capable
of building Win32 DLLs,
and that has the necessary
library and header file
resources for OLE COM
Automation

Supplied with Excel

Various commercial and
shareware/freeware

sources. Microsoft IDEs
provide these resources.
(See below for details.)

C/C++ Win32 DLLs that
can access the Excel C
API whose functions can
be accessed directly by
Excel without the use of
VBA.

A C/C++ compiler capable
of building Win32 DLLs.

The C API library and
header files.

A copy of the XLM (Excel
4 macro language) help file.
(Not strictly required but a

very useful resource.)

Various commercial and
shareware/freeware
sources.

Downloadable free from
Microsoft at the time of
writing. (See below for
details.) Static library
also shipped with Excel.

NET add-ins and
controllers.

Excel 2002 or later.

A C/C++/C# compiler
capable of building .NET
components for Microsoft
Office applications.

At the time of writing, a good starting point for locating Microsoft downloads is
www.microsoft.com/downloads/search.asp.

1.2.1 VBA macros and add-ins

VBA is supplied and installed as part of all 32-bit versions of Excel. If you only want
to write add-ins in VB, then that’s all you need. The fact that you are reading this book
already suggests you want to do more than just use VBA.

4 Excel Add-in Development in C/C++

1.2.2 C/C++ DLL add-ins

It is, of course, possible to create Win32 DLLs using a variety of languages other than C
and C++. You may, for example, be far more comfortable with Pascal. Provided that you
can create standard DLLs you can access the exposed functions in Excel via VB. If this
is all you want to be able to do, then all you need is a compiler for your chosen language
that can build DLLs.

Chapter 4 Creating a 32-bit Windows (Win32) DLL using Visual C++ 6.0 or Visual
Studio .NET, page 89, contains step-by-step examples of the use of Microsoft’s Visual
Studio C++ version 6.0 Standard Edition and Visual Studio C++ .NET 2003 integrated
development environments (IDEs). The examples demonstrate compiler and project set-
tings and show how to debug the DLL from within Excel. No prior knowledge of these
IDEs is required. (Standard Win32 DLLs are among the simplest things to create.) Other
IDEs, or even simple command-line compilers, could be used, although it is beyond the
scope of this book to provide examples or comparisons.

1.2.3 C/C++ DLLs that can access the C API and XLL add-ins

If you want your DLL to be able to access the C API, then you need a C or C++ compiler,
as well as the C API library and header file. The C API functions and the definitions of the
data types that Excel uses are contained in the library and header files x1call32.1ib
and x1call.h. The pre-Excel 2007 versions of these files' are contained in a sample
project, downloadable from Microsoft at the time of writing, free of charge, at download.
microsoft.com/download/platformsdk/sample27/1/NT4/EN-US/Frmwrk32.exe. It is also
possible to link Excel’s library in its DLL form, x1cal132.d11, in your DLL project,
removing the need to obtain the static .1ib version. This file is created as part of a
standard Excel installation. Another approach is to create the .1ib file from the .d11
file, as discussed in section 5.1.

An XLL add-in is a DLL that exports a set of interface functions to help Excel load and
manage the add-in directly. These functions, in turn, need to be able to access Excel’s
functionality via the C API, if only to be able to register the exported functions and
commands. Only when registered can they be accessed directly from the worksheet (if
functions) or via menus and toolbars (if commands). The C API is based on the XLM
(Excel 4 macro language). This book provides guidance on the most relevant C API
functions in Chapter 8. However, for a full description of all the C API’s XLLM equivalents
you should ideally have a copy of the XLLM help file, Macrofun.hlp. This is, at the time
of writing, downloadable in the form of a self-extracting executable from Microsoft at
download.microsoft.com/download/excel97win/utility4/1/WIN98/EN-US/Macrofun.exe.

1.2.4 C/C++/C# .NET add-ins

This book does not cover .NET and C#. These technologies are an important part of
Microsoft’s vision for the future. The resources required to apply these technologies are
Visual Studio .NET and a .NET-compatible version of Excel, i.e., Excel 2002 and later.

! At the time of writing, Microsoft plan to release an updated Framework project, although details of where
and how this can be obtained are not known.

Introduction 5

The principle purpose of this book is to bring the power of compiled C and C++ to Excel
users, rather than to be a manual for implementing these technologies.

1.3 TO WHICH VERSIONS OF EXCEL DOES
THIS BOOK APPLY?

Table 1.2 shows the marketing names and the underlying version numbers to which this
book applies. Excel screenshots in this book (worksheets, dialogs, etc.) are mostly Excel
2000. Most of the interface differences between versions 2000 and 2003 are quite super-
ficial. In contrast, the interface changes introduced in Excel 2007 are significant. The
workbooks on the CD ROM are provided in both Excel 2000 and Excel 2007 format.
(Contact ccppaddin@eigensys.com if you require 97 format files.)

Table 1.2 Excel version numbers

Product name Version number
Excel 97 (SR-1, SR-2) 8
Excel 2000 9
Excel 2002 10
Excel 2003 11
Excel 2007 12

In some places, particularly in code examples, where information is Excel version-specific,
the version to which it applies is denoted as follows: v/ /— for versions up to and including
Excel 2003; vi2+ for versions Excel 2007 and later; and so on.

1.4 THE FUTURE OF EXCEL: EXCEL 2007 (VERSION 12)

At the time of writing, Excel 2007 (version 12) had only been released in beta. Whilst
every effort has been made to ensure that what is written about it in this book is accurate,
it is possible that the way some things work might be changed between beta and final
release.

1.4.1 Summary of key workbook changes

The Excel team at Microsoft have made significant changes in many areas that are outside
the scope of this book. As far as the subject matter of this book is concerned, however,
the key changes are these:

e The size of the worksheet grid is expanded from 256 (2%) to 16,384 (2'4) columns and
from 65,536 (2'%) to 1,048,576 (22°) rows, so from 22* to 23* cells — over 1,000 times
as many.

e The maximum number of arguments a function can take is increased from 30 to 255.

e The level of function nesting in Excel worksheet formulae is increased from 7 to 64.
(The author has some reservations about this being a good thing.)

6 Excel Add-in Development in C/C++

e Multi-threaded workbook recalculation is supported on single- and multi-processor
machines.

e The C API, XLL add-ins are still fully supported and are, for the first time in a very
long while, upgraded to take advantage of some of the new features. In particular the
Excel 2007 C API supports:

o UNICODE strings up to 32Kbytes in length (in addition to byte-strings up to 255
bytes in length);

o Larger grids;

o More function arguments;

o Multi-threaded recalculation;

o Direct access to new worksheet functions.

e The user interface changes quite dramatically, providing applications developers and
ordinary users with a much richer set of tools to control the appearance and behaviour
of their workbooks, albeit at the expense of some familiarity.

e There are significant changes to the conditional-formatting capabilities. (See section
2.12.7 on page 40).

e Management of defined names is made much easier with improved interfaces.

e There are many new worksheet functions that should enable simplification of the more
cumbersome data management, error handling and lookup tasks, e.g., IFERROR().

e The Analysis Toolpak worksheet functions are fully integrated into Excel and are also
available directly via the C APIL

Note that VBA and Automation add-ins will still not be able to take advantage of multi-
threaded recalculation.

1.4.2 Aspects of Excel 2007 not covered in this book

Outside the scope of this book are the other changes that Excel 2007 introduces, in
particular the radically different user interface through which built-in or custom commands
are made available. Customising the new UI presents very different problems and issues
than it did in previous versions, and where this book discusses these matters it does so
only in relation to earlier versions of Excel.

1.4.3 Excel 2007 file formats

While still supporting the older file binary file formats (BIFF5 and BIFFS8) and version
11 XML formats, Excel 2007 introduces a number of new formats and extensions:

XLSX — the XML-based default for code-less workbooks;

XLSM — the XML-based format for workbooks with VBA or XLLM code;

.XLSB - the new binary format (BIFF12);

XLAM - the XML-based add-in format (analogous to the .XLM of previous versions).

1.4.4 Compatibility between Excel 2007 and earlier versions

As stated above, Excel 2007 supports earlier versions’ file formats for backwards compat-
ibility, and contains a Compatibility Checker, which can be configured to run whenever a
binary format file is saved, to check for elements not supported in earlier versions. VBA is

Introduction 7

still supported in Excel 2007 and the object model is largely unchanged so that most VBA
code in Excel 2003 and earlier workbooks should be expected to run without problems.

Compiled add-ins that are simply DLL’s accessed via VBA (see section 4.11 Accessing
DLL functions from VB on page 108) should run identically provided that they are not
calling back into Excel via the C API or COM, in which case there are some cross-
version compatibility issues covered in later parts of this book. XLL add-ins compiled
with the old Excel SDK will work with Excel 2007 but again there are some compatibility
issues, particularly where older add-ins customise the UI or call, say, Analysis Toolpak
functions using x1UDF. VBA and compiled add-in code should therefore be modified to
be version-sensing and -specific where these compatibility issues arise. XLL add-ins that
rely on availability of Excel 2007 data types and C API, so that they can take advantage of
larger grids and Unicode strings for example, will not be compatible with earlier versions
of Excel. Sections 8.6.12 Registering functions with dual interfaces for Excel 2007 and
earlier versions on page 263 and 9.13.3 Making add-in behaviour Excel version-sensitive
and backwards-compatible on page 432 describe how to create XLLs that will run happily
with Excel versions 11— and 12+.

1.5 ABOUT ADD-INS

An add-in is simply a code resource that can be attached to a standard application to
enhance its functionality. Excel is supplied with a number of add-ins that can be installed
according to the user’s preference and need. Some provide specialist functions not needed
by the average user, such as the Analysis ToolPak (sic) (whose functions are integrated
into Excel in Excel 2007), and some that provide complex additional functionality such
as the Solver add-in.

Add-ins come in two main flavours: interpreted macros and compiled code resources.
Version 4 of Excel introduced macro sheets which could contain macros written in the
Excel macro language (XLM). These comprised columns of instructions and calculations
that either led to a result being returned to the caller, if functions, or that performed
some action such as formatting a cell, if commands. Macro sheets could be part of a
workbook or saved and loaded separately so as to be accessible to any workbook. Despite
their flexibility they were relatively slow and did not promote sensible structured coding.
In fact they encouraged the exact opposite given that, for example, they could modify
themselves whilst executing.

Version 5 introduced Visual Basic worksheets. This enabled coding of functions and
commands as before but promoted better coding practices and made implementation of
algorithms from other languages easier. Excel 97 replaced these VB sheets with Visual
Basic for Applications and the Visual Basic Editor (VBE) — a comprehensive IDE com-
plete with context-sensitive object-oriented help, pre-compiler, debugger and so on.

Macros, be they XLM or VB, are interpreted. When run, the interpreter reads each
line one-by-one, makes sense of it while checking for errors in syntax, compiles it and
only then executes the instructions. Despite the fact that VBA does some of this work in
advance, this is a slow process. The VBA approach avoids the need for tools to create fully
pre-compiled code making the creation of add-ins possible for the non-expert programmer.
VBA makes Excel application objects accessible and is therefore the obvious choice for
a host of user-defined commands and functions where speed of development rather than
speed of execution is the prime concern. Until Excel 2007, Microsoft had not updated the

8 Excel Add-in Development in C/C++

C API since the release of Excel 97 and only support XLLM for backwards compatibility.
Even within Excel 2007 most of the new functionality and objects added since Excel 97
are only available to applications that can access Excel’s COM-exposed objects. This is
not too serious as the type of functionality added is that which it is most appropriate to
access from VBA (or VB), rather than via the C API, anyway.

The other main flavour of add-in is the pre-compiled code resource which has none
of the execution overhead of interpreted languages and is therefore extremely fast by
comparison. The cost is the need to use, and so understand, another development language
and another compiler or IDE. In essence, this is no harder than using VBA and the VB
editor. The additional requirement is to know what Excel expects from and provides to
anything calling itself an Excel add-in. In other words, you need to understand the Excel
interface. The two interfaces that have been available over recent years are the C API and
COM (the Common Object Model also known as Automation). COM provides access to
Excel’s exposed objects, their methods and properties. VBA itself is a COM Automation
application. Section 9.5 Accessing Excel functionality using COM/OLE automation using
C++, on page 376, discusses some very basic COM concepts.

VBA macros can be saved as Excel add-ins with very little effort but the resulting
code is still slower than, say, compiled C add-ins. (Some performance comparisons are
given in section 9.2 Relative performance of VB, C/C++: Tests and results on page 369).
Despite the rapid development and flexibility of VBA, it lacks some of the key language
concepts present in C and C++, in particular, pointers. These are sometimes critical to the
efficient implementation of certain algorithms. One example of where this is especially
true is with the manipulation of strings.

The advent of .NET changes a number of things. For example, VB code resources can
be compiled and the functions contained made accessible directly from a worksheet, at
least in Excel 2002 and later. C, C++ and C# resources can similarly be accessed directly
from a worksheet without the need to use the C APIL.

1.6 WHY IS THIS BOOK NEEDED?

For anyone who decides that VBA just isn’t up to the task for their application or who
wants to decide the best way to make an existing C or C++ code resource available
within Excel, just the task of weighing up all the options can at first seem daunting. At
the publication of the first edition of this book, there were no published texts written
specifically to help someone make this decision and then follow it through with practical
step-by-step guidance. There are a number of commercial products that enable developers
to access the power of Excel via the C API indirectly, through some sort of managed
environment and set of classes. These are beyond the scope of this book, but do make
sense for certain kinds of project.

The Excel C API is documented in Microsoft’s Excel 97 Developer’s Kit (1997,
Microsoft Press), out of print at the time of writing. This book tries to complement
that text as far as possible, providing information and guidance that it lacks. Where they
overlap, this book tries to present information in a way that makes the subject as easy as
possible to grasp. The Developer’s Kit is a revision of an earlier version written for the 16-
bit Excel 95, and contains much that was only relevant to developers making a transition
from 16-bit to 32-bit. It provides a very comprehensive reference to the Microsoft BIFF
(binary interchange file format) which is, however, of little use to most add-in writers.

Introduction 9

Writing Win32 DLLs is fairly straightforward, but it is easy to get the impression that
it is highly technical and complex. This is partly because available literature and articles
often contain much that is no longer current (say relating to 16-bit versions of Windows),
or because they concentrate heavily on 16- to 32-bit transition issues, or are simply badly
written. Having said that, there are a few complexities and these need to be understood
by anyone whose add-ins need to be robust and reliable. Overcoming the complexities
to speed up the creation of fast-execution add-ins in C and C++ is what this book is all
about.

1.7 HOW THIS BOOK IS ORGANISED

The book is organised into the following chapters:

Chapter 2 Excel Functionality

Basic things that you need to know about Excel, data types, terminology, recalculation
logic and so on. Knowing these things is an important prerequisite to understanding
subsequent chapters.

Chapter 3 Using VBA

Basic things about using VBA: creating commands and functions; accessing DLL func-
tions via VB; VB data types; arrays and user-defined data structures, and how to pass
them to DLLs and return them to Excel.

Chapter 4 Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0

How to create a simple Win32 DLL, in VC or VC++ .NET, and export the functions
so they can be accessed by VB, for example. Lays the foundation for the creation of
XLLs — DLLs whose functions can be accessed directly by Excel.

Chapter 5 Turning DLLs into XLLs: The Add-in Manager Interface

How to turn a DLL into an add-in that Excel can load using the add-in manager: an
XLL. The functions that Excel needs to find in the DLL. How to make DLL functions
accessible directly from the worksheet.

Chapter 6 Passing Data between Excel and the DLL
The data structures used by the Excel C API. Converting between these data structures
and C/C++ data types. Getting data from and returning data to Excel.

Chapter 7 Memory Management
Stack limitations and how to avoid memory leaks and crashes. Communication between
Excel and the DLL regarding responsibility for memory release.

Chapter 8 Accessing Excel Functionality Using the C API

The C interface equivalent of the XLM macro language and how to use it in a DLL.
Information about some of the more useful functions and their parameters. Working with
named ranges, menus, toolbars and C API dialogs. Trapping events within a DLL.

Chapter 9 Miscellaneous Topics
Timing function execution speed. A brief look at how to access Excel’s objects and their
methods and properties using IDispatch and COM. Keeping track of cells. Multi-tasking,

10 Excel Add-in Development in C/C++

multi-threading and asynchronous calls into a DLL add-in. Setting up timed calls to
commands. Add-in design. Performance optimisation.

Chapter 10 Example Add-ins and Financial Applications

Examples that show how the previous chapters can be applied to financial applications
such as, for example, Monte Carlo simulation, a stochastic volatility model, and constant
maturity swap (CMS) derivative pricing.

1.8 SCOPE AND LIMITATIONS

The early chapters are intended to give just enough Excel and VBA background for the
later chapters. There are literally dozens of books about Excel and VBA ranging from
those whose titles are intended to coerce even the most timid out of the shadows, to
those with titles designed to make them a must-buy for MBA students, such as ‘Essential
Power Excel Tips For Captains Of Industry And Entrepreneurs’. (At the time of writing,
this was a fictitious book title.) There are, of course, many well-written and comprehensive
reference books on Excel and VBA. There are also a number of good specialist books
for people who need to know how best to use Excel for a specific discipline, such as
statistical analysis, for example.

The book is primarily focused on writing add-in worksheet functions. The reasons for
this are gone into in later sections, such as section 2.9 Commands versus functions in
Excel on page 27. One reason is that commands often rely on the creation of user-defined
dialogs, which is a task far better suited to VBA. Even if the functionality that your
command needs is already written in C/C++ code in a DLL, it can still easily be accessed
from VB. Another reason is that, in general, commands do not have the same speed
of execution requirements as worksheet functions — one of the main reasons for using a
C/C++ DLL for functions.

Commands are covered to a certain extent, nevertheless. They can be a useful part
of a well planned interface to a DLL. Knowing how to create and access them without
the use of VBA is therefore important. Knowing how to create menus and menu items
is important if you want DLL commands to be accessed in a seamless way. Chapter 8
Accessing Excel Functionality Using the C API on page 223 covers these topics.

The Excel COM interface is largely beyond the scope of this book, mainly to keep the
book focused on the writing of high performance worksheet functions which COM does
not help with. The other main reason is that if you need functionality that COM provides
and the C API does not, for example, access to certain Excel objects, you are probably
better off using VBA. That said, there are examples given in Chapter 9 of the use of
COM from an XLL or DLL.

This book is not intended to be industry-specific or profession-specific except in the final
chapter where applications of particular interest in certain areas of finance are discussed.
It should be noted that the book is not intended to be a finance text book and deliberately
avoids laborious explanations of things that finance professionals will know perfectly well.
Nor are examples intended to necessarily cover all of what is a very broad field. It is hoped
that readers will see enough parallel with their own field to be able to apply earlier sections
of the book to their own problems without too much consternation. There are two new key
sections in this second edition that contain applications with a little analytical background
as well as a discussion of how they can be implemented in Excel. These are the stochastic
volatility model SABR, and constant maturity swap (CMS) derivative pricing.

2
Excel Functionality

2.1 OVERVIEW OF EXCEL DATA ORGANISATION

Excel organises data, formulae and other objects into a 2-dimensional grid of cells
([v11—]: 2'® rows by 28 columns, [v12+]: 2?° rows by 2'* columns), one grid per work-
sheet, with as many sheets per workbook as system resources allow. Each cell can contain
several different types of data as well as format information and embedded comments. (A
workbook can also contain VB code modules associated with a particular worksheet object
or the workbook object.)

Excel, like all Microsoft Office applications, provides two types of command-access
objects: menu bars and toolbars. There are many other Windows objects, but cells, work-
sheets, workbooks and command-access objects are of most interest to an add-in devel-
oper. The hierarchy of these objects prior to Excel 2007, simply represented, is as follows:

Table 2.1 Controlling recalculation in Excel

Application: Excel

and individual

and other Excel

Workbooks Menu bars Toolbars
Worksheets and other sheet types Menus Toolbar buttons
Ranges of cells Charts, drawings | Control objects Menu items

(Command

cells

and non-Excel

buttons, etc.)

Sub-menu items

objects

In Excel 2007, the familiar menu bars and toolbars of earlier versions (see Figure 2.1) are
replaced (or in some cases hidden from display) by the concept of a Ribbon with groups
of related commands and dialogs (See Figure 2.2).

E3 Microsoft Excel - Book1 Q@g|

@) Ble Edt View Insert Format Took Data Window Help -8 x|
DERS SRY AT Q= &8 Mo -3 2 MY
Adial -0 - BI EEEF%, 8% 0 -5-A-AEEB

2
Kl

c D E F G H

0 00 0D e D B e
p=1
o
I+

ru 4 » M} Sheetl / sheet2 / sheet3 / |4]

Ready CAFS

Figure 2.1 Excel 2000 user interface

12 Excel Add-in Development in C/C++

@ﬂ” (EUT e 2u %
i |

Bookl - Microsoft Excel

o9 - o

Figure 2.2 Excel 2007 user interface

Home Insert Page Layout Formulas Data Review View Developer Add-Ing
& Calibei -ln - || g Sf | General - i Conditional Formatting = | S=Insett = E - AT ﬂ
2 B U-|A x| (B S (S -% v | (G Format as Table - 3= Detete = || 3] - Z
Past: - T ; " ., _ Sot& Find&
i I 1= e iE e WA (=5 Cell Styles = {EdFormat ~|| 2 = Fiter= Select~
Cipboard T+ Font Alignment Number 75 Stylet Cells Edtting
| R29 -0 5 [#]
| A B £ D E F G H I 1 L
1
=
3
4
5
6
7
s
H 4 ¥ ¥| Sheetl - Sheet2 “Sheetd ¥ 4 | . . -
REsdy L O N CPd|

2.2 A1 VERSUS R1C1 CELL REFERENCES

Excel supports two styles of cell reference, both used for display and input. The default
(and by far most commonly used) is the A1 style where the alphabetic part of the reference
represents the column (from A to V) and the numeric part represents the row (from 1 to
65,536). The other is referred to as the R1C1 style. The main reason for spending any time
discussing these is that some of the C API functions require or return range addresses
in one form only. Some of Excel’s VBA functionality also requires R1C1 notation, for
example, when setting graph source-data ranges. Table 2.2 summarises both styles.

Table 2.2 A1 and R1C1 style comparisons

A1 style

R1C1 style

Row-column order

Column then row

Row then column

by formula =A2 entered into cells B2 and A1.

Top row 1 R1

Bottom row [vI1-]: |65536 R65536
[vI2+]: | 1048576 R1048576

Left-most column A C1

Right-most column [vil-]: |IV C256
[vI2+]: | XFD C16384

Relative reference style as shown by formula =A2 =A2 =R[1]C[-1]

entered into cell B1.

Absolute reference style as shown by formula =§A$2 | =$A$2 =R2C1

entered into cell B1.

Mixed reference style as shown by formula =A$2 =$A2 =R2C[-1]

entered into cell B1.

Relative reference in same row or column as shown |=A2 =RC[1] (in cell A1)

=R[-1]C (in cell B2)

Excel Functionality 13

Note that the row index in square brackets in relative references in R1C1 style can be any
number from —65,535 to 465,535 inclusive in versions up to Excel 2003 so requires a
4-byte signed integer for storage. In Excel 2007 it can be any number from —1,048,575
to 41,048,575 inclusive which is still within the range of a 4-byte signed integer. A
2-byte signed integer is sufficient to store the column index not only in versions up to
Excel 2003 but also in Excel 2007. Note also that in Excel 2007, range names that are
3 letters followed by a number will be interpreted as cell references. You might have
got away with names OPT1 and OPT?2 prior to Excel 2007, but these should be renamed
to be Excel 2007-compliant. For example, OPT_1 and OPT_2 are safe. When a 2003
workbook containing ambiguous names is saved in a 2007 format, names such as OPT1
are automatically replaced with _OPT1, something which could cause problems for VBA
code, for example.

2.3 CELL CONTENTS

Internally, a cell within Excel has a great deal of data associated with it. This includes the
display format, attached comments (notes), protection status, etc. The two most important
properties for someone wishing to write functions are:

1. The cell’s formula — a text string that Excel parses to an internal compiled form, and
which is then used to re-evaluate the cell in a recalculation.

2. The cell’s value — if the cell contains a formula, the result of its evaluation, otherwise
the data that was entered directly by the user or an Excel command or macro.

2.4 WORKSHEET DATA TYPES AND LIMITS

From a spreadsheet user’s perspective, the fype of value of any non-empty cell (or group
of cells in the case of an array) will always be one of the following:

a number (floating point);

a Boolean value (TRUE or FALSE);

a character string;

an Excel-specific error code;

an array comprised, in general, of a mixture of the above types.

Excel will always evaluate a cell formula to one of these data types. Sometimes the
function in the cell will return something other than one of these, such as a range reference,
but Excel will then evaluate this to one of these types.

The formatting applied to a cell can, of course, make the appearance of a number it
contains very different. A number may appear as a date, a time, a percentage, a currency
amount, in scientific notation or as a formatted fraction. Note that Excel doesn’t distinguish
between integer and floating-point numbers on a worksheet. A function that takes integer
arguments, such as DATE(year, month, day), will truncate any non-whole number argument
rather than complain about the number type.

The limits on each of the above five data types are as follows:

14 Excel Add-in Development in C/C++

Table 2.3 Worksheet data types and limits

Number Floating point range:
=+ x where
1.0 x 107397 < |x| < 1.0 x 101308
(Max values of x may display as £1.0E+308.)
Floating point accuracy:
15 decimal places displayed. Sometimes 16 places are stored internally
depending on binary representation of mantissa.
Integer (stored by Excel as floating point):
+i where
0 < i| < 1,000,000,000,000,000 (10'3)
(Outside these bounds, floating point representations truncate lowest
order digits.)
Notes:
1. Certain number formats have narrower limits than these, e.g., dates
and times.
2. Integer division is, in fact, floating point division and may, in extreme
cases, yield non-integer results where the true result should be an integer.
Boolean TRUE
FALSE

Unicode string

Maximum length: 32,767 = 215 — 1

Minimum length: Zero (Empty string:= " ")

Allowable characters: All valid Unicode characters
(Note: Only codes 32 and above print on screen.)

Notes:

e In Excel 2003— not all characters can be displayed in a cell, but all
32,767 are displayed in the formula bar.

e In Excel 2007+ all 32,767 characters can be displayed in a cell.

e In Excel 2003— the C API is limited to ASCII byte strings up to 255
characters in length, only containing charaters 1 to 255 inclusive.

e In Excel 2007+ the C API supports 255-byte ASCII strings and

32,767 Unicode strings.

Excel error

#NULL!
#DIV/O!
#VALUE!
#REF!
#NAME?
#NUM!
#NIA

Array

A one- or two-dimensional collection of mixed-type elements that can be
any one of the above types. Literal arrays can also contain formulae (see
example). Literal arrays are enclosed in curly braces { and }, row-by-row
(sometimes referred to as row-major). Row elements are delimited by

Excel Functionality 15

Table 2.3 (continued)

commas, and rows themselves delimited by semi-colons. For example,
{1, “A”; TRUE, NA()} represents the 2 x 2 matrix

1 A
TRUE #N/A

Note that Excel doubles are not IEEE-compliant. The IEEE 8-byte double specification
has wider limits:

Max normal = 1.7976931348623157e+308

Min positive normal = 2.2250738585072014e—308
Max subnormal = 2.2250738585072009e—308

Min positive subnormal = 4.9406564584124654e—324.

Excel converts IEEE +/— infinity and invalid doubles to #NUM!, and all subnormal num-
bers to positive zero. IEEE negative zero is supported, i.e. can be returned by an XLL
function and is displayed as —0, but Excel’s understanding of what it is is a little naive,
as =A1<0 will evaluate to TRUE if A1 contains negative zero.

2.5 EXCEL INPUT EVALUATION

When a user types input to a cell in Excel and commits the data (by pressing enter, tab
or selecting another cell), Excel performs several operations in the order outlined below.
In essence, it attempts to figure out what kind of input the user was providing, and then
tries to interpret it accordingly. Understanding the order in which Excel does these things
may help you when creating your own functions or commands.

1. If the input starts with a string prefix (a single quote mark) Excel places all of the
input characters in the cell as fyped, with no modification. (The string prefix is not
displayed.) If the input begins with =, + or —, it assumes a formula and uses its
formula parser to check the syntax. An error dialog appears if the formula does not
make sense. Otherwise Excel will try and figure out if the user typed something that
looked like a date, a time, a currency amount, a percentage, or just a number. If none of
these, it reverts to considering the input as a string and places it in the cell unchanged.

Note: This tendency to recognise dates and times before text can be quite annoy-
ing, especially if you intended to input a string such as the ratio “2:1”. Excel will
change the format of the cell to a time format and convert the input to the numeric
value 0.084027777 (the fraction of the day that has passed at 02:10 a.m.). Having to
remember to prefix such inputs with a single quote mark can be frustrating.

2. Where the input is seen as a possible formula, Excel attempts to identify, convert and
evaluate function arguments and nested functions starting with the innermost, i.e., most
nested. Cell references and ranges are converted to values, which are then converted
to the right data types if necessary and so on. Where a token that is not recognised as
a function or defined name is encountered, the conversion and evaluation fails with a

16 Excel Add-in Development in C/C++

#NAME? error. Otherwise defined names are converted in the same way as the cells or
expressions they represent would be.

3. Once the input has been accepted, Excel attempts to recalculate those things that
depend on the new input. If the input was a number and cell previously contained a
number, Excel will only recalculate if the value has changed. If a new formula has been
entered with references to new inputs, Excel verifies that no circular references have
been created by this new formula. If a cell does depend on inputs which themselves
depend on the value of this cell, Excel complains.

4. Depending on the optional Excel or cell format settings, Excel may resize the column
width or row height.

This ability to reduce any valid character string to a worksheet value is exposed by Excel
via the Application.Evaluate(<expression>) method in VBA (or the shorthand
equivalent [<expression>]), the EVALUATE() function in the XLLM macro language and
the C API equivalent x1fEvaluate. It enables VBA to execute worksheet functions
that are otherwise inaccessible, and enables XLLs to access the functionality of other add-
ins, although x1UDF is a more efficient means (see section 8.16.4 Calling user-defined
functions from an XLL or DLL: xIUDF on page 363). (See also section 8.16.3 Evaluating
a cell formula: x1fEvaluate, page 362).

2.6 DATA TYPE CONVERSION

Excel always attempts to convert data from one type to another where required. This
section explains when Excel tries to do this, and when it is and is not successful.
(Section 8.8.3 Converting one xloper/xloperl2 type to another: xlCoerce, on
page 276, provides more information about how Excel does this, and how you can call
on this ability from within a DLL).

2.6.1 The unary = operator

It may seem too obvious to mention, but the = sign at the start of a cell or array formula
is a unary operator that evaluates whatever appears to its right. The result will always
be one of the four basic types: a number, a string, a Boolean true/false, or an error. Cell
references are converted to the values of the cells they refer to. Formulae are evaluated
to the outermost function’s return value or the lowest-precedence operator result. This
process results in an error value if a function could not be called or an operator could not
be applied. (Conversion of cell references is covered in more detail below.)

2.6.2 The unary — operator (negation)

The unary negation operator, or more simply the minus sign, converts the operand im-
mediately to its right to a number and then negates its value. Boolean true and false are
converted to 1 and 0. A double negation will therefore convert text representations of
numbers to real numbers, as does the VALUE() function. Both produce a #VALUE! error if
the conversion fails.

Excel Functionality 17

2.6.3 Number-arithmetic binary operators: + - */*

Where Excel is evaluating a cell that contains any of the number-arithmetic binary oper-
ators, strings will be converted to numbers where possible, i.e., where they are in one of
the number formats that Excel recognises. (This includes date and time formats where
the resulting number after conversion is the date-time serial number.)

2.6.4 Percentage operator: %

The unary percentage operator — the divide by 100 operator — acts on the operand im-
mediately to its left. It has the highest operator precedence so that =1/2% will evaluate to
50 not to 0.005. Excel attempts to convert this operand to a number where it is not already
one. As with the number arithmetic binary operators, all recognised number formats will
be converted, so that, perhaps bizarrely, the formula = "1-Jul-2002 12:37:03"% evaluates to
374.385 rather than to an error. (Note that in this example Excel converts the date string
to a number and then applies the % operator.) The equally strange formula =TRUE%
evaluates to 0.01.

2.6.5 String concatenation operator: &

Where the string concatenation operator & is used, Excel will convert numbers to strings
in a default number format, unrelated to any display format, with as much precision as
required to represent the number accurately, up to the maximum precision supported.

2.6.6 Boolean binary operators: =<, >,<=, >=,<>

Where these operators are acting on strings, evaluations are case-insensitive. (The Excel
function EXACT() performs a case-sensitive equality test.) In fact, Excel converts upper
case A-Z to lower case before making the comparison, as can be seen from the 3rd and
4th examples in Table 2.4:

Table 2.4 Case-insensitive string comparisons

Formula.evaluates to:
="A"="g" TRUE
="a">"Z2" FALSE
=7 TRUE
=CHAR(90)>CHAR(91) TRUE

Apart from string case conversion, Excel does not convert operands for these operators.
Table 2.5 shows some examples of the consequences:

18 Excel Add-in Development in C/C++

Table 2.5 Mixed-type comparisons

Formula.evaluates to:
=123="123" FALSE
=123>"121" FALSE
=123<>"123" TRUE
=TRUE ="TRUE" FALSE

2.6.7 Conversion of single-cell references

Excel will convert a single-cell reference to the value of the cell referred to, unless it is
being passed to a function that expects a reference as its parameter rather than a value.
(Later chapters go into detail on such functions, but a simple example is ROW(), which
extracts and returns the row number of a cell reference.) If an operator or function using
the reference requires a different data type than that of the reference’s value, then Excel
will also attempt to convert to the required type. (See next section for more detail.) For
example, if a cell contains the formula =SUM(A1,B1), with A1 containing the number 123
and B2 the string "456", Excel will convert the reference A1 to the value of that cell, 123,
and the reference B1 to the string "456" and then to the argument type expected by SUM(),
the number 456, leading finally to a result of 579.

2.6.8 Conversion of multi-cell range references

Some functions will work equally well with single cell references and range references,
for example, SUM(A1,B1,C1) gives the same result as SUM(A1:C1). In the latter case, the
SUM() function converts the range A1:C1 to a mixed type array of values and then iterates
through that converting and summing values where possible. The work of handling the
range argument is done within the code of the SUM() function.

However, there are cases where Excel needs to convert a range argument before calling
a function or applying an operator. Here the behaviour is a little more complex. Table 2.6
shows how Excel copes with range arguments in combination with a simple arithmetic

Table 2.6 Range reference argument conversion examples

B (D E F
3 Static values | {=B4:B8+1} | {=SUM(B4:B8+1)} | =SUM(B4:3B$8+1) | =$B$4:3B$8+1
4 1 2 20 2 2
® 2 3 20 3 3
6 3 4 20 4 4
7 4 5 20 5 5
8 5 6 20 6 6
9 #N/A 20 #VALUE! #VALUE!

Excel Functionality 19

operation, plus one in this case. (The strings in row 3 indicate the formulae entered in the
cells immediately below.) Clearly range + 1 is a meaningless operation without range
being converted or interpreted somehow.

In column C, range + 1 is entered as an array formula (see section 2.10.2 Array
Sformulae — The Ctrl-Shift-Enter keystroke on page 30). Excel interprets this as an instruc-
tion to add 1 to each of the cells in the input range, and place the results one-by-one into the
corresponding cells in the output range. Where there is no corresponding output cell, Excel
places #N/A. Essentially, B3:B8+1 is converted to an array which is then mapped onto the
array formula’s range. What Excel is doing is treating the range as if it were a matrix and
interpreting the operation ‘add 1’ as an instruction to add one to each element of the matrix.

In column D, Excel again performs the same matrix operation when confronted with
B3:B4+1, and passes the resulting matrix to SUM() which then adds the elements and returns
a single value. The formula is entered as an array formula and therefore this single value
gets copied to every cell under the array. (Note that the formula =SUM(B4:B8,1) would have
yielded 16, not 20.) Had the formula not been entered as an array formula, the behaviour
would have been very different, as shown in columns E and F.

In columns E and F, the respective formula is duplicated in each of the cells in rows
4 to 9. (The absolute reference $ signs do not affect the way the cells are evaluated.)
The perhaps surprising thing is that Excel returns a result that is different depending on
the location of the cell as well as the formula within it. This is a unique behaviour in
Excel. Excel converts the range reference to a single cell reference that corresponds to
the location of the calling cell. For example, cell F4 is calculated as if the reference were
to cell B4; cell F5 as if it were to cell B5, and so on. There is no corresponding cell in
the input range for cells E9 and F9 so Excel returns #VALUE! to indicate that it could not
convert the range argument.

Note that the function TRANSPOSE() takes either an array or a range, but returns an
array. Passing TRANSPOSE(Range) to a function that expects a range input will cause that
function to fail. One unexpected example of this comes in the way Excel handles the
formula SUMPRODUCT(TRANSPOSE(Range1),Range2). Even where the transposed Ranget
and Range2 have the right size relative to each other, the function returns #VALUE! unless
entered as an array formula, despite the fact that the result is a single number.!

2.6.9 Conversion of defined range names

Where a cell formula contains a token that cannot be interpreted as a constant (either
numeric or string within double-quotes) or a cell reference, Excel searches for a named
range on the current sheet and then the current workbook. (See below for an explanation
of the term current.)

Names can be specified in any of the following forms:

e [Book1.xIs]Sheet1!Name
o Sheet1!Name — where the workbook is taken to be the current workbook
e Name — where the workbook and sheet are the current ones.

If the sheet is specified, Excel will search for the name’s definition on that sheet. If a
workbook and sheet name are specified, Excel will search in that workbook and sheet.

'T am grateful to Martin Winnick for pointing this behaviour out to me.

20 Excel Add-in Development in C/C++

If the name is found, it is replaced by its definition (typically a reference to cells in a
workbook), then converted to a value or array of values following the same rules outlined
above. Note that if the name refers to a multi-cell range, this is interpreted and converted
as described above in section 2.6.8.

2.6.10 Explicit type conversion functions: N(), T(), TEXT(), VALUE()

Explicit type conversion is possible with the functions VALUE() and TEXT() with the advan-
tage that TEXT() provides control over the text format where an implicit conversion does
not. Type conversion can also be constrained with the functions N() and T(). Table 2.7
summarises the action of these functions on the basic data types:

Table 2.7 Explicit worksheet data type conversion

Input argument type

Number String Boolean Error
N() Returns the Returns zero. N(TRUE) — 1 Returns the Excel
(unformatted) N(FALSE) — 0 error unchanged.
number.
T() Returns empty Returns the string. Returns empty string.
string.

TEXT() | Returns a string of | Converts to a number | Converts to "TRUE" or
the number in the |then back to a string |"FALSE" regardless of
given format. in the given format. If | the given format.
the conversion fails,
returns #VALUE!

VALUE() | Returns the Converts to a number. | Returns #VALUE!
(unformatted) If the conversion
number. fails, returns #VALUE!

Other type conversion functions are also provided by Excel, i.e., DATEVALUE() which
converts a date string to a serial date-time number and TIMEVALUE() which converts a
time string to a serial date-time number.

2.6.11 Worksheet function argument type conversion

Excel will attempt to convert arguments being passed to functions, regardless of whether
they are Excel’s built-in worksheet functions, a third party’s add-in functions or user-
defined VB functions. Worksheet functions can take as arguments any combination of the
following:

1. a single literal value;
2. an array of literal values;

Excel Functionality 21

3. a reference to a single cell;
4. a reference to a rectangular range of cells.

In the first two cases, the values themselves can be any one of the basic Excel data types
(see Worksheet data types and limits above for more detail).

Excel attempts to convert from the supplied type to the function’s required type.
(Chapter 8 Accessing Excel Functionality Using the C API, on page 223, explains how
to construct and declare functions whose arguments are to be passed as is, without con-
version.) Where Excel cannot convert an argument to the declared type, the function is
evaluated to #VALUE! Note that Excel does not call the code of the underlying function
if this happens.

Consider a function that takes an array of values. Suppose it is passed a reference to a
rectangular range: Excel will convert the range to an array of the values that those cells
contain. However, in contrast to single-cell references, Excel will not convert the types
of those values. For example, the formula =SUM({123,"123"}) (note the curly braces which
surround a literal array in Excel) evaluates to the number 123 since the second value
in the array is not converted from a string to a number. The formula =SUM(123,"123"),
however, evaluates to 246 as Excel is quite happy to convert the string argument "123" to
the number 123 before passing it to SUM(). The reason for this is that such functions are
declared as taking an Excel array type in which each element can be any one of a number
of basic data types, regardless of the types of the other elements. Excel cannot know what
types the function ideally wants and leaves any element conversion to the function itself.

Note that some functions can accept one of a number of types, for example, in the
function IF(fest, if true, if false), the second and third arguments can be any type and are
passed and returned unconverted depending on the outcome of the test. The fact that
range references are not converted prior to IF() being called is most easily evidenced with
a formula such as =ROWS(IF(A1,B1:B2,C1:C3)), which will return either the value 2 or 3
depending on the value of A1.

Table 2.8 details the conversions that Excel attempts to make (if necessary) in passing
arguments to worksheet functions:

Table 2.8 Worksheet function argument type conversion

Supplied argument Excel will attempt, if required, to convert to. ..

Number Integer

Floating point — Integer (by truncation of digits after
the decimal point)

(Converse does not apply, as all worksheet numbers are
floating point.)

String

In default number format with as much precision as
required to represent the number up to the maximum
precision supported by Excel.

Boolean
Zero — FALSE

Non-zero — TRUE

(continued overleaf)

22

Excel Add-in Development in C/C++

Table 2.8 (continued)

Supplied argument

String Number
Must be any one of Excel’s known number formats

including date, time, etc.

Boolean

Boolean Number

True — 1
False — 0
(Conversion not always performed).

String
True — “TRUE”
False — “FALSE”

Single cell reference Ist step:

Value of cell referred to.

2nd step:

String — Number or Boolean
Boolean — Number or String

Multiple cell reference | Array
(Note: each element in the array has the same data type

as the corresponding cell’s value).

2.6.12 Operator evaluation precedence

Table 2.9 Operator evaluation precedence

Excel will attempt, if required, to convert to. ..

Must be ‘true’ or ‘false’ (not case-sensitive).

Number — Integer, String or Boolean

Operators (operation) Notes
Name lookup and substitution
Reference-to-value and type conversion
() and worksheet functions Evaluated left to right
%, unary —
) =4"50% evaluates to 2
*/
Binary +—
& =4+28&1+5="66" evaluates to TRUE

Binary =, <, >, <=, >=, <> Evaluated left to right

Excel Functionality 23

2.7 STRINGS

The handling of character strings in Excel, as in many areas of computing, is a potential
minefield for the unwary. The mis-handling of strings (for example, over-writing of string
buffers or attempting to read from or write to invalid pointers) is perhaps the most common
cause of instability problems in add-in code. Excel passes strings to and from VBA and
the C API in a variety of ways. This subject is made more complicated with Excel 2007
as the C API is upgraded to support longer Unicode strings as well as shorter byte-strings.
This section provides some background on the types of strings Excel supports and some
of the circumstances in which you might encounter them. There are many later areas of
this book that go into more detail on the various structures and techniques used to create
and handle them. The background provided here is intended to make the safe application
of later sections easier, as well to highlight some of the pitfalls.

2.7.1 Length-prepended versus null-terminated strings

Any code that receives a variable-length character string needs a way of determining its
length. It needs to know the length of a new buffer if copying, or how far along the
string to read if searching, for example. The three most common ways to enable this,
and the ways used by Excel, are (1) to pass the length of the string in the first character
(length-prepended); (2) to pass a reference to an object or data structure that contains the
length of the string as a data member (e.g., the OLE BSTR string used by VBA); (3) to
terminate the string with a null (zero) character (null-terminated).

In all these cases, at some point enough memory needs to have been put aside to accom-
modate all of the characters the string could contain. If an attempt to write more characters
to a string than the allocated memory buffer permits, then corruption of whatever was
stored after the string occurs with potentially fatal consequences for the application.

Examples of these 3 types are respectively:

1. The string x1oper and xloperl?2 types used by the C API;

2. The BSTR OLE string type used by VBA;

3. The char* or wchar_t* null-terminated strings that Excel will, if asked, pass to
XLL functions.

2.7.2 Byte strings versus Unicode strings

Character strings come in 2 widths: byte character strings and wide-character strings. Byte
strings, as the name suggests, comprise a series of byte values from 0 to 255 inclusive,
which encode the available characters. The character represented by each number is, to
some extent, arbitrary although for decades it has been determined according to the ASCII
standard, where for example ‘A’ is represented by 65, ‘B’ by 66 and so on. In fact the
original ASCII standard only determined characters for the numbers 0 to 127, leaving a
single bit free for use in communications protocols. The use of all 8 bits permitted double
the number of characters to be represented and became known as the extended ASCII
character set. Byte strings are still commonly referred to simply as ASCII strings, although
this hides the fact that many of the extended characters may be interpreted according to
the locale or font in use, in one case permitting accented European characters, and in
another Japanese katakana or Greek characters, or other symbols.

24 Excel Add-in Development in C/C++

The small number of supported characters became a severe limitation and prompted
the development of a new standard that used 16-bit characters, again assigning standard
characters to each number. This standard was created by the Unicode Consortium
(www.unicode.org) and so the standard interpretation of these 16-bit wide characters
is known as Unicode. According to their web-site at the time of writing, the standard cur-
rently encodes over 96,000 characters. The most commonly used are in the first 64,000
codes, an area known as the basic multilingual plane (BMP).

Excel has for a number of versions now supported Unicode strings. However, the C
API for versions up to and including Excel 2003 only supported length-prepended byte
strings, where the length is limited by the storage capacity of the length element. For byte
strings this imposes a 255 length limit. Access only to limited-length byte strings, instead
of the long Unicode strings supported in Excel workbooks, has been one of the most
limiting aspects of the C API relative to other Excel-exposed interfaces such as COM
and VBA. This restriction is lifted with Excel 2007 which enables the C API to access
Unicode strings up to 32Kbytes in length.

The original ANSI C standard specified that character strings were extended ASCII
null-terminated byte strings, and such strings are still sometimes referred to as C strings.
The original standard C library accepted and returned strings of this type. Current imple-
mentations of C and C++ libraries provide both ASCII byte string functions and Unicode
wide-character string equivalents. Clearly, null-termination of strings gets around the
length restrictions of, say, pre-pending a byte string with a length character, but at the
expense of having to read through the string up to the null to determine its length.

2.7.3 Unmanaged versus managed strings

Section 3.6.6 VB/OLE Bstr Strings on page 66 describes structure of the OLE Bstr data
type. This is a managed data type, in other words, a great deal of the mess of memory
management is taken care of implicitly by the operating system. For example, suppose
that a VBA routine calls a DLL function that returns a string. The string is created in the
DLL with a call to one of the OLE Bstr creation functions, something which involves
memory being allocated by the operating system. When a reference to the string is passed
back to VBA, the DLL does not need to worry about releasing the memory: VBA does
this automatically and safely because the OLE part of the operating system keeps track of
all strings created in this way. The operating system achieves this by storing information
about the string, such as how many references to it are currently in use and how long
it is, in a space before the start of the string itself. In other words the operating system
returns a pointer to one element of a hidden data structure. The Bstr, as then used by the
developer, is therefore a null-terminated string of bytes or wide characters, but with this
additional hidden support from the OS. It is this latter fact that necessitates the use of the
OLE Bstr functions for Bstr operations.

In contrast, unmanaged strings require more deliberate memory management to avoid
leaks. For example, when Excel returns a string x1loper in a call to a C API function,
Excel will have allocated memory and must at some point be called explicitly to free it.
Likewise, a DLL allocating a buffer for a string must free it at some point. This presents
difficulties when passing strings from one place to another: how will the recipient know
how to free the string when it no longer needs it? (This problem is solved for the C
API with the use of special flags and callbacks in the XLL, and is covered in detail in
Chapters 6, 7 and 8.)

Excel Functionality 25

2.7.4 Summary of string types used in Excel
C API xloper/xloperl2s

Byte strings:

xloper type: xltypeStr

Supported in all 32-bit versions of Excel.

Limited in length to 255 characters.

First unsigned byte contains string’s length.

Subsequent byte string is not, in general, null-terminated.

Wide character strings:

xloperl?2 type: xltypeStr

Supported in Excel 2007+ only

Maximum length 32,767 Unicode 16-bit characters.
First Unicode character contains string’s length.
Subsequent string is not, in general, null-terminated.

VBA Bstrs
VBA String:

A managed OLE data type.

Null-terminated byte string.

Only use with Byte versions of the OLE functions, e.g. SysStringByteLen ()
Maximum length 32,767.

VBA Variant string:

A managed OLE data type.

Null-terminated wide-character string.

Only use with wide versions of the OLE functions, e.g. SysStringLen ()
Maximum length 32,767.

C/C++ Strings:
Byte strings:

Null-terminated byte string (char* or unsigned char¥*).

Unlimited length.

DLL functions can take VBA Bstrs ByVal as char*.

XLL worksheet functions can take/return char* but strings will be limited in length.

Wide character strings:

Null-terminated wide-character string (wchar_t*).

Unlimited length.

DLL functions take VBA Variant strings ByRef as VARIANT*.

XLL worksheet functions can take/return wchar_t* but strings will be limited in
length.

26 Excel Add-in Development in C/C++

2.7.5 Converting one string type to another

When copying a string, determining not only the length of the source string but also the
length of the destination string is, of course, a fundamental step. In particular, care has
to be taken to ensure that the source string is not too long for the destination string type
or buffer. It is a matter of implementation whether or not to fail or truncate in this case.
The following steps simply refer to this being checked, and assume that more characters
than can be handled are never copied. The advice here may seem almost too obvious, but
it is the author’s experience that the the code most likely to contain some hard-to-spot
memory problem is that new little piece of code you wrote to do a quick copy of a string
from one place to another.

Null-terminated to length-counted

1. Obtain the length of the null-terminated source string using the library functions
strlen () for byte strings or wcslen () for wide-character strings, or equivalent
functions.

2. Determine the maximum size of length-counted string permitted and check that source

string length does not exceed this.

Allocate a block of memory big enough for the length element and the string characters.

Set the length element.

5. Copy the correct number of string characters from the source string to the new mem-
ory using strncpy () for byte strings or wesncpy () for wide-character strings, or
equivalent functions. (You could also use the slightly more efficient memcpy () with
appropriate arguments).

W

Length-counted to null-terminated

1. Obtain the length of the length-counted source string string from its length element.

2. Determine the maximum size of the null-terminated string permitted and check that
source string length does not exceed this.

3. Allocate a block of memory big enough for the string characters and a null-terminator.

4. Copy the correct number of string characters from the source string to the new mem-
ory using strncpy () for byte strings or wesncpy () for wide-character strings, or
equivalent functions. (You could also use the slightly more efficient memcpy () with
appropriate arguments).

5. Explicitly set the terminating to character to zero.

Warning: strncpy () and wesncpy () both look for null terminations or simply copy
until the specified maximum number of characters have been counted. It is therefore
extremely important when copying non-terminated sequences that the number of charac-
ters to copy is set correctly.

ASCII byte strings to/from Unicode wide-character strings

1. Obtain the length of the source string.

Excel Functionality 27

2. Determine the maximum size of the destination string and check that source string

length does not exceed this.

Allocate a block of memory big enough for the new string.

4. Convert and copy the correct number of source characters from the source string to the
new memory using mbstowcs () for ASCII to Unicode or wcstombs () for Unicode
to ASCII, or equivalent functions.

5. If the destination string is null-terminated explicitly set the terminating character to
zero, else if the destination string is length-counted set the length element.

hed

Warning: When converting strings that are not null-terminated it is essential that
mbstowcs () and wcstombs () are passed the correct number of characters to be
converted.

2.7.6 Hybrid length-counted null-terminated strings

You may find it easier to work with strings that are both length-counted and null-
terminated. These combine the benefits of both the x1oper/xloperl2’s quick access to
the string’s length and compatibility with C/C++ library and other functions that require
null-terminations. This requires some fairly straight-forward changes to the above steps,
such as allocating not only space for the length element but also for a null terminator.
However, care must be taken that the null-terminator does not overrun the maximum
buffer length of a restricted-length string. For example, Excel will pass unsigned char*
length-counted byte strings as arguments to XLL functions declared and registered in this
way (as later chapters describe). Such an argument can also be specified as the means by
which the function returns a string by modifying the argument in-place, in which case
Excel allocates 256 bytes for this: 1 for the length and 255 for the characters. An attempt
to write a null just beyond this can cause severe problems. (Similar care must be taken
with Excel 2007’s longer Unicode strings.)

Many of the code examples in this book and on the CD ROM use this idea of null-
terminating the length-counted strings used by xlopers and xloperl2s.

2.8 EXCEL TERMINOLOGY: ACTIVE AND CURRENT

Excel functions that provide information about a cell, a range of cells or a sheet in a
workbook often make a distinction between the workbook, sheet or cell that the user is
currently looking at, and the workbook, sheet or cell from which the function was called.?
The same is true of commands that affect a workbook or one of its constituents. The terms
active and current are used to make the distinction, which can be quite confusing. Here
is a clear definition:

2 There are other components that can be active, e.g., components of a chart that have been selected, which are
not covered here.

28 Excel Add-in Development in C/C++

Table 2.10 Active versus current terminology

Term Definition

Active workbook The one that the user is currently looking at. If Excel does not have
focus then the active workbook is the one that was visible when Excel
last had focus.

Active sheet The one that the user is currently looking at. If Excel does not have
focus then the active sheet is the one that was visible when Excel last
had focus. The active sheet is always in the active workbook.

Active cell The one into which input would be placed if the user started typing.
This cell may not be visible if the user has scrolled off to one side. If
Excel does not have focus then the active cell is that cell on the sheet
that was active when Excel last had focus. The active cell is always on
the active sheet.

Current workbook The one that is currently being recalculated by Excel. The active and the
current workbook may or may not be the same at any given moment.

Current sheet The one that is currently being recalculated. The active and the current
sheet may or may not be the same at any given moment. The current
sheet is always in the current workbook.

Current cell The one which is currently being evaluated. The active and the current
cell may or may not be the same at any given moment. They will be the
same if the calculation of the cell results from, say, the user entering
new contents to the cell. The current cell is always on the current sheet.

2.9 COMMANDS VERSUS FUNCTIONS IN EXCEL

There is an important distinction in Excel between functions, represented by formulae
in worksheet cells that may or may not take arguments but always return a value, and
commands which are equivalent to a user doing something. For example, NOW() is a
function: it returns a number representing the date and time right now. In contrast, the
action taken by Excel to format a cell when a user presses a formatting icon on a toolbar
is a command.

Commands are allowed to do just about anything in Excel. Functions are given far less
freedom. VBA functions are given a little more freedom than DLL add-ins. (Some of the
details of the differences between these two are discussed in the later chapters on VBA
and C/C++.) It is easy to see why there needs to be some difference between functions
and commands: it would be a bad thing to allow a function in a worksheet cell to press
the undo icon whenever it was calculated. On the other hand, allowing a user-defined
command to do this is perfectly reasonable.

Most (but not all) of this book is concerned with writing functions rather than commands
simply because commands are better written in VBA and may well require dialog boxes
and such things to interact with the user. Chapter 3 Using VBA on page 55 does talk about
VBA commands, but not in great detail; there are plenty of books which talk at great
length about these things. Later chapters concerning the C API do talk about commands,
but the focus is on worksheet functions.

Excel Functionality 29

Table 2.11 Capabilities of commands versus functions

Action Command Function

Open or close a workbook Yes No

Create or delete a worksheet Yes No

Change the current selection Yes No

Change the format of a cell, worksheet or other object Yes No

Take arguments when called Yes Yes

Return a value to the caller No Yes

Access a cell value (not via an argument) Yes C APL
Sometimes®
VBA: Yes

Change a cell value Yes Only the

calling cell or
array and only
by return value

Read/write files Yes Yes
Start another application or thread Yes Yes
Set up event-driven Windows call-backs Yes Yes
Call a command-equivalent Excel 4 macro, C API function, Yes No

or Excel object method

Table 2.11 gives a non-exhaustive summary of the things that commands can do that
functions can’t.

2.10 TYPES OF WORKSHEET FUNCTION

This book assumes a frequent-user level of familiarity with Windows, Windows applica-
tions, Excel and its user interface. This section assumes that readers are familiar with the
most common commands, menus, functions, how to use them, how to use Excel help and
so on. This section says nothing about these standard features, but instead discusses how
functions fall into certain types. When considering writing your own, it is important to
be clear about what kind of function you are creating.

2.10.1 Function purpose and return type

Individual worksheet cells are either empty or are evaluated to one of four different data
types:

3 Worksheet functions are more limited than macro sheet functions in their ability to access the values of other
cells not passed in as arguments. For more details on this subject see section 8.6.4 Giving functions macro
sheet function permissions on page 252.

30 Excel Add-in Development in C/C++

Numbers;

Boolean (TRUE/FALSE);
Strings;

Error values.

(See section 2.4 Worksheet data types and limits on page 13.) Functions, however, can
evaluate to arrays and range references as well as to these four types. (The functions
INDIRECT(), OFFSET() and ADDRESS(), for example, all return references.)

Functions that return references are generally only of use when used to create range
(or array) arguments to be passed to other functions. They are not usually intended as
the end-product of a calculation. Where such a function returns a single cell reference,
Excel will attempt to convert to a value, in the same way that =A1 on its own in a cell
will be reduced to the value of A1. The formula =A1:A3 on its own in a cell will produce
a #VALUE! error, unless it is entered as an array formula into one or more cells (see next
section).

As shown by examples later in this book, you can create functions that do useful things,
without needing to return anything important, except perhaps a value that tells you if they
completed the task successfully or not. A simple example might be a function that writes
to a data file whenever a certain piece of information changes.

In thinking about what you want your own functions to do, you should be clear about
the purpose of the function, and therefore of its return type and return values, before you
start to code it.

2.10.2 Array formulae — The Ctrl-Shift-Enter keystroke

Functions can return single values or arrays of values, and many can return either. For
example, the matrix formula, MMULT(), returns an array whose size depends on the sizes
of the input arrays. Such functions need to be called from a range, rather than from a
single cell, in order to return all their results to the worksheet.

To enter an array formula you need to use the Ctrl-Shift-Enter keystroke. Instead of the
usual Enter to commit a formula to a single cell, Ctrl-Shift-Enter instructs Excel to accept
the formula as an array formula into the selected group of cells, not just the active cell.
The resulting cell formula is displayed in the formula bar as usual but enclosed within
curly braces, e.g., {=MMULT(A1:D4,F1:14)}. The array formula can then only be modified as
a whole. Excel will complain if you attempt to edit or move part of an array, or if you
try to insert or delete rows or columns within it.

The all-or-nothing edit feature of array formulae makes them useful for helping to
protect calculations from being accidentally overwritten. The worksheet protection feature
of Excel is stronger. It allows precise control over what can be modified with password
protection. However, it also disables other features that you might want to be accessible,
such as the collapse and expansion of grouped rows and columns. Array formulae provide
a half-way house alternative.

Functions and operators that usually take single cell references can also be passed
range arguments in array formulae. How Excel deals with these is covered above in
section 2.10.2.

Excel Functionality 31

2.10.3 Required, optional and missing arguments and variable argument lists

Some functions take a fixed number of arguments, all of which need to be supplied
otherwise an error will be returned, for example DATE(). Some take required and optional
arguments, for example, VLOOKUP(). Some take a variable number such as SUM(). A few
functions have more than one form of argument-list, such as INDEX(), equivalent to the
concept of overloading in C++.

With C/C++ DLL functions, Excel handles variable-length argument lists by always
passing an argument, regardless of whether the user provided one. A special missing data
type is passed. If the argument can take different types, say, a string or a number, the
function can be declared in such a way that Excel will pass a general data type. It is then
up to the function’s code whether to execute or fail with the arguments as provided. This
and related subjects are covered in detail in Chapter 6 Passing Data between Excel and
the DLL on page 127 .

2.11 COMPLEX FUNCTIONS AND COMMANDS
2.11.1 Data Tables

Data Tables provide a very useful way of creating dynamic tables without having to
replicate the calculations for each cell in the table. Once the calculation has been set
up for a single result cell (not in the table), a table of results for a range of inputs is
produced. Excel plugs your inputs in one-by-one and then places the resulting value in
the Data Table. Data Tables can be based on one input to produce a single row or column
of results, or on two inputs to produce a 2-dimensional table.

Tables are set up with the Data/Table. . . command, invoking a simple wizard that prompts
you to specify the input row and/or column for the table. This book doesn’t go into any
detail (refer to Excel’s help to find out more), but it is worth considering what they are.
If you look at the formula that Excel puts in part of the table where the results are placed,
you will see that there is an array formula {=TABLE(...)}. On the face of it, therefore, it
looks like a Data Table is just another function entered as an array formula. It gives the
appearance of being recalculated like a function, except that Excel enables you to turn
the automatic recalculation of tables off using Tools/Options. . ./Calculation.

However: you can’t edit and re-enter the cells under the TABLE() function, even if you
have changed nothing; the Paste Function dialog does not recognise TABLE() as a valid
function; you can’t move the cells that are immediately above or to the left of the cells
occupied by the TABLE() function; you can’t set up a table other than with the Data Table
wizard.

The best way to think of a Data Table is as a completely different type of object that
allows a complex set of calculations in the worksheet to be treated as a user-defined
function in this very specific way. An example of where use of a Data Table might be
preferable to writing a VB or C/C++ function might be the calculation of net income after
tax. This depends on many pieces of information, such as gross income, tax allowances,
taxation bands, marital status, etc. Coding all this into a user-defined function may be
difficult, take an unjustifiably long time, involve the passing of a large number of argu-
ments, and might be hard to debug. A well laid-out spreadsheet calculation, complete with
descriptive labels for the inputs, and a Data Table, provide an excellent way of creating
a source for a lookup function.

32 Excel Add-in Development in C/C++

One thing to watch is that Excel does not detect circular references resulting from the
input calculation depending on the table itself. In other words, it will allow them. Every
time the table is recalculated, the circular reference will feed back one more time. There’s
no reason someone in their right mind would want to do this, of course, but be warned.

Warning: Data Tables can recalculate much more slowly than repeated calculation of
cells. Excel’s recalculation logic can also be a little hard to fathom with large Data
Tables — it’s not always clear when the calculation is complete.

2.11.2 Goal Seek and Solver Add-in

Excel provides two ways of solving for particular static cell values that produce a certain
value in another cell. These are both commands, not functions, so you cannot automatically
re-solve when something in your sheet changes. (To achieve this you would need to write
a user-defined function that will implement some kind of solver, or trap the change event
in VBA as in section 3.4 on page 59.) The simplest of Excel’s solvers is the Goal Seek
(Tools/Goal seek...) which invokes the following dialog, and provides a way of solving
for one final numerical value given one numerical input.

con see ST

Setcell: 043 %
To value: |1.S
By changing cell: |C3 %

.

Figure 2.3 Excel’s Goal Seek dialog

The second and more powerful method is the Solver Add-in, supplied with Excel and
accessible through the Tools/Solver. . . menu command once the add-in has been installed.
The dialog that appears is shown in Figure 2.4.

Solver Parameters

)
x

Set Target Cell: $0§3 %

Equal To: FMax C Mo O Valueof: [1-5
By Changing Cells:

[sc$3 X
~Subject to the Constraints: -

Change

1y I

Reset All

Ll Help

ol |

Figure 2.4 Excel’s Solver add-in dialog

This is a far more flexible solver, capable of solving for a number of inputs to get to the
desired single cell value, maximum or minimum. The user can also set constraints to avoid

Excel Functionality 33

unwanted solutions and options that dictate the behaviour of the algorithm. Section 10.10
Calibration, on page 511, talks a little more about this very powerful tool.

The complexities governing when solutions converge, when they are unlikely to, when
there may be multiple solutions, and to which one you are most likely to converge, are
beyond the scope of this book. (Excel provides help for the solver via the Tools/Solver. . .
dialog’s Help button.) If you intend to rely on a solver for something important you either
need to know that your function is very well behaved or that you understand its behaviour
well enough to know when it will be reliable.

2.12 EXCEL RECALCULATION LOGIC

The first thing to say on this often very subtle and complex subject is that there is much
more that can be said than is said here. This section attempts to provide some basic insight
and a foundation for further reading.

Excel recalculates by creating lists of cells which determine the order in which things
should be calculated. Excel constructs these by inspecting the formulae in cells to deter-
mine their precedents, establishing precedent/dependent relationships for all cells. Once
constructed, cells in the lists thus generated are marked for recalculation whenever a
precedent cell has either changed or has itself been marked for recalculation. Once this
is done Excel recalculates these cells in the order determined by the list.

After an edit to one or more formulae, lists may need to be reconstructed. However,
most of the time edits are made to static cells that do not contain formulae and are not
therefore dependent on anything. This means that Excel does not usually have to do this
work whenever there is new input.

As this section shows, this system is not infallible. Care must be taken in certain cir-
cumstances, and certain practices should be avoided altogether. (VB code and spreadsheet
examples are contained in the spreadsheet Recalc_Examples.xls on the CD ROM.)
Further, more technically in-depth reading on the subject of this section is available on
Microsoft’s website.

2.12.1 Marking dependents for recalculation

Excel’s method, outlined above, results in a rather brute-force recalculation of dependents
regardless of whether the value of one of the cells in a list has changed. Excel simply
marks all dependents as needing to be recalculated in one pass. Such cells are often
referred to as dirty*. In the second pass it recalculates them. This may well be the optimum
strategy over all, but it’s worth bearing in mind when writing and using functions that
may have long recalculation times. Consider the following cells:

Cell Formula

B3 =NOW()

B4 =INT(B3)

B5 =NumCalls_1(B4)

4Excel 2003 exposes a Range method that dirties cells to assist with programmatically controlled calculation.

34 Excel Add-in Development in C/C++

The VBA macro NumCal1s_1(), listed below, returns a number that is incremented with
every call, effectively counting the times BS5 is recalculated. (For more information on
creating VBA macro functions, see Chapter 3 Using VBA on page 55).

Dim CallCountl As Integer ' Scope is this VB module only
Function NumCalls_1(d As Double) As Integer

CallCountl = CallCountl + 1

NumCalls 1 = CallCountl
End Function

Pressing {F9} will cause Excel to mark cell B3, containing the volatile function NOW(),
for recalculation (see section 2.12.3 Volatile functions below). Its dependent, B4, and then
B4’s dependent, B5, also get marked as needing recalculation. Excel then recalculates all
three in that order. In this example, the value of B4 will only change once a day so
Excel shouldn’t need to recalculate B5 in most cases. But, Excel doesn’t take that into
consideration when deciding to mark B5 for recalculation, so it gets called all the same.
With every press of {F9} the value in BS will increment.

A more efficient method might appear to be only to mark cells as needing recalculation
if one or more of their precedents’ values had changed. However, this would involve Excel
changing the list of cells-to-be-recalculated after the evaluation of each and every cell.
This might well end up in a drastically less efficient algorithm.

Where a number is directly entered into a cell, Excel is a little more discerning about
triggering a recalculation of dependents: if the number is re-entered unchanged, Excel will
not bother. On the other hand, if a string is re-entered unchanged, Excel does recalculate
dependents.

2.12.2 Triggering functions to be called by Excel — the trigger argument

There are times when you want things to be calculated in a very specific order, or for
something to be triggered by the change in value of some cell or other. Of course, Excel
does this automatically, you might say. True, but the trigger is the change in value of
some input to the calculation. This is fine as long as you only want that to be the trigger.
What if you want something else to be the trigger? What if the function you want to
trigger doesn’t need any arguments? For example, what if you want to have a cell that
shows the time that another cell’s value last changed so that an observer can see how
fresh the information is?

The solution is simple: a trigger argument. This is a dummy argument that is of abso-
lutely no use to the function being triggered other than to force Excel to call it. (Section 9.1
Timing function execution in VB and C/C++ on page 365 relies heavily on this idea.) The
VBA function NumCalls_1() in the above section uses the argument solely to trigger
Excel to call the code.

In the case of wanting to record the time a static numeric cell’s value changes, a simple
VB function like this would have the desired effect:

Function Get_Time(trigger As Double) As Double
Get_Time = Now
End Function

Excel Functionality 35

The argument trigger is not used in the calculation which simply returns the current
date and time as the number of days from Ist January 1900 inclusive by calling VBA’s
Now function. It just ensures the calculation is done whenever the trigger changes value
(or when Excel decides it needs to do a brute-force recalculation of everything on the
sheet).’

The concept of a trigger argument can, of course, usefully be applied to C/C++ add-in
functions too, and is used extensively in later sections of this book.

2.12.3 Volatile functions

Excel supports the concept of a volatile function, one whose value cannot be assumed to
be the same from one moment to the next even if none of its arguments (if it takes any) has
changed. Excel re-evaluates cells containing volatile functions, along with all dependents,
every time it recalculates, usually any time anything in the workbook changes, or when
the user presses {F9} etc.

It is easy to create user-defined functions that are optionally volatile (see the VBA
macro NumCalls_1() in the above section), by using a built-in volatile function as a
trigger argument. Additionally, VBA and the C API both support ways to tell Excel that
an add-in function should be treated as volatile. With VBA, Excel only learns this when
it first calls the function. Using the C API, a function can be registered as volatile before
its first call.

Among the standard worksheet functions, there are five volatile functions:

NOW();

TODAY();

RAND();

OFFSET(reference, rows, column, [height], [width]);
INDIRECTY).

NOW() returns the current date and time, something which is, in the author’s experi-
ence, always changing. TODAY() is simply equivalent to INT(NOW()) and used not to exist.
RAND() returns a different pseudo-random number every time it is recalculated. These
three functions clearly deserve the volatile status Excel gives them. OFFSET() returns a
range reference, relative to the supplied range reference, whose size, shape and relative
position are determined by the other arguments. OFFSET()’s case for volatile status is a
little less obvious. The reason, simply stated, is that Excel cannot easily figure out from
the arguments given whether the contents of the resulting range have changed, even if
the range itself hasn’t, so it assumes they always have, to be on the safe side.

The function INDIRECT() causes Excel to reconstruct its precedent/dependant tree with
every recalculation in order to maintain its integrity, and is therefore high cost.

Volatile functions have good and bad points. Where you want to force a function that is
not volatile to be recalculated, the low-cost (in CPU terms) volatile functions NOW() and
RAND() act as very effective triggers. The down-side is that they and all their dependants
and their dependants’ dependants are recalculated every time anything changes. This
is true even if the value of the dependants themselves haven’t changed — see the VB
macro function NumCalls_1(Q) in the section immediately above. Where OFFSET() and

3 If the trigger were itself the result of a formula, this function might be called even when the value of the trigger
had not changed. See section 2.12.5 User-defined functions (VB Macros) and add-in functions on page 38.

36 Excel Add-in Development in C/C++

other volatile functions are used extensively, they can lead to very slow and inefficient
spreadsheets.

The extra step of rebuilding the precedent/dependant tree, which Excel would otherwise
almost only do after a cell edit, make use of INDIRECT even more costly.

When creating user-defined functions in an XLL it is possible to explicitly register
these with Excel as volatile. There are also times when Excel will implicitly assume
certain user-defined functions are volatile. Section 8.6.5 Specifying functions as volatile
on page 253 discusses both these points in detail.

2.12.4 Cross-worksheet dependencies — Excel 97/2000 versus 2002 and later
versions

Excel 97 and 2000

Excel 97 and 2000 construct a single list for each worksheet and then recalculate the
sheets in alphabetical order. As a result, inter-sheet dependencies can cause Excel to
recalculate very inefficiently.

For example, suppose a simple workbook only contains the following non-empty cells,
with the following formulae and values. (The VB macro NumCalls_4(), which returns
an incremented counter every time it is called, is a clone of NumCalls_1() which is
described in section 2.11.1 above.)

Sheet1:

Cell Formula Value

C11 | =NumCalls_4(NOW()+Sheet2!B3) 1

Sheet2:

Cell Formula Value
B3 =B4/2 1
B4 2

Excel is, of course, aware of the dependency of Sheet1!C11 on Sheet2!B3 but they both
appear in different lists. Excel’s thought process goes something like this:

1. Something has changed and I need to recalculate.

2. The first sheet in alphabetical order is Sheet! so I'll recalculate this first.

3. Cell Sheet1!C11 contains a volatile function so I'll mark it, and any dependants, for

recalculation, then recalculate them.

The second sheet in alphabetical order is Sheet2 so I'll recalculate this next.

Cell Sheet2!B4 has changed so I'll mark its dependants for recalculation, then recalculate

them.

6. Now I can see that Sheet2!B3 has changed, which is a precedent for a cell in Sheet1,
so I must go back and calculate Sheet! again.

7. Cell Sheet1!C11 not only contains a volatile function, but is dependent on a cell in
Sheet2 that has changed, so I’ll mark it, and any dependants, for recalculation, then
recalculate them.

ook

Excel Functionality 37

In this simple example, cell Sheet1!C11 only depends on Sheet2!B3 and the result of the
volatile NOW() function. Nothing else depends on Sheet1!C11, so the fact that it gets
recalculated twice when Sheet2!B4 changes is a fairly small inefficiency. However, if
Sheet2!B3 also depended on some other cell in Sheet1 then it is possible that it and all its
dependants could be recalculated twice — and that would be very bad.

If cell Sheet2!B4 is edited to take the value 4, then Excel will start to recalculate the
workbook starting with Sheet1. It will recognise that Sheet1!C11 needs recalculating as
it depends on the volatile NOW() function, but it will not yet know that the contents of
Sheet2!B3 are out of date. Once it is finished with Sheet1, halfway through workbook
recalculation, both sheets will look like this:

Sheetl:

Cell Formula Value

C11 =NumCalls_4(NOW()+Sheet2!B3) 2

Sheet2:

Cell Formula Value
B3 =B4/2 1
B4 4

Now Excel will recalculate Sheet2!B3, which it has marked for recalculation as a result of
Sheet2!B4 changing. At this point Sheet2 looks like this:

Sheet2:

Cell |Formula Display
B3 =B4/2 2

B4 4

Finally Excel will, again, mark Sheet1!C11 as needing recalculation as a result of Sheet2!B3
changing, and recalculate Sheet1, re-evaluating Sheet1!C11 for the second time including
the call to NOW() and to NumCalls_4(). After this Sheet1 will look like this:

Sheetl:

Cell Formula Display

C11 | =NumCalls_4(NOW()+Sheet2!B3) 3

If NumCalls_4() were doing a lot of work, or Sheet1!C11 were a precedent for a large
number of calculations on Sheet1 (or other sheets) then the inefficiency could be costly.

38 Excel Add-in Development in C/C++

One way around this is to place cells that are likely to drive calculations in other
sheets, in worksheets with alphabetically lower names (e.g., rename Sheet2 as A_Sheet2),
and those with cells that depend heavily on cells in other sheets with alphabetically higher
(e.g., rename Sheet1 as Z_Sheet?).

It is, of course, possible to create deliberately a workbook that really capitalises on this
inefficiency and results in a truly horrible recalculation time. This is left as an exercise
to the reader. (See section 2.16 Good Spreadsheet Design and Practice on page 49.)

Excel 2002 and later versions

The above problem is fixed in Excel 2002+ (version 10 and higher) by there being just one
tree for the entire workbook. In the above example, Excel would have figured out that it
needed to recalculate Sheet2!B3 before Sheet1!C11. When Sheet2!B4 is changed, Sheet1!C11
is only recalculated once. However, unless you know your spreadsheet will only be run
in Excel 2002 and later, it’s best to heed the alphabetical worksheet naming advice and
minimise cross-spreadsheet dependencies particularly in large and complex workbooks.

2.12.5 User-defined functions (VB Macros) and add-in functions

Excel’s very useful INDIRECT() function creates a reference to a range indirectly, i.e.,
using a string representation of the range address. From one recalculation to the next, the
value of the arguments can change and therefore the line of dependency can also change.
Excel copes fine with this uncertainty. With every recalculation it checks if the line of
dependency needs altering.

However, where a macro or DLL function does a similar thing, Excel can run into
trouble. The problem for Excel is that VBA functions and DLL add-in functions are able
to reference the values of cells other than those that are passed in as arguments and
therefore can hide the true line of dependency.

Consider the following example spreadsheet containing these cells, entered in the order
they appear:

Cell Formula Value/Display Comment
B4 1 Static numeric value
B5 =NOW() 14:03:02 Volatile input to B6
B6 =RecalcExample1(B5) | 1 Call to VB function

An associated VBA module contains the macro RecalcExample1() defined as follows:

Function RecalcExamplel(r As Range) As Double
RecalcExamplel = Range("B4").Value
End Function

Editing the cell B4 to 2, in all of Excel 97 and later versions, will leave the spreadsheet
looking like this:

Excel Functionality 39
Cell Formula Value/Display Comment
B4 2 New numeric value
B5 =NOW() 14:05:12 Updated input to B6
B6 =RecalcExample1(B5) |1 Call to VB function

In other words, Excel has failed to detect the dependency of RecalcExample1() on B4.
The argument passed to RecalcExample1() in this case is volatile so you might expect the
function to be called whenever there is a recalculation. However, the macro is declared
as taking a range as an argument, which itself is not volatile. Therefore Excel does not
mark B6 for recalculation and the cell does not reflect the change in value of B4. If cell
B5 is edited, say by pressing {F2} then {Enter}, then B6 is recalculated once, but then
reverts to the same blindness to changes in B4’s value.
Now consider the following cells and macro in the same test sheet:

Cell Formula Value/Display Comment

C4 1 Static numeric value
C5 =NOW() 14:12:13 Volatile input to C6

C6 =RecalcExample2(C5) |1 Call to VB function

Now consider the following the macro RecalcExample2 () defined as follows:

Function RecalcExample2(d As Double) As Double
RecalcExample2 = Range("C4").Value
End Function

Editing the cell C4 to 2 (in Excel 2000) will leave the spreadsheet looking like this:

Cell Formula Value/Display Comment

C4 2 New numeric value
C5 =NOW() 14:14:11 Updated input to C6
C6 =RecalcExample2(C5) |2 Call to VB function

In this case Excel has updated the value of C6. However, Excel has not detected the
dependency of RecalcExample2() on C4. The argument passed to RecalcExample2() is volatile
and the macro takes a double as an argument (rather than a range as in the previous
example), therefore Excel marks it for recalculation and the cell ends up reflecting the
change in value of C4. If C5 had not contained a volatile number, the dependency of C6
on C4 would still have been missed.

Because Excel is essentially blind to VBA functions accessing cells not passed to it
as arguments, it is a good idea to avoid doing this. In any case, it’s an ugly coding

40 Excel Add-in Development in C/C++

practice and should therefore be rejected purely on aesthetic grounds. There are perfectly
legitimate uses of Range() .value in VBA, but you should watch out for this kind of
behaviour.

Excel behaves a little (but not much) better with DLL functions called directly from the
worksheet. The workbook Recalc_Examples.xls contains a reference to an example
add-in function called C_INDIRECTA1(trigger, row, column) which takes a trigger argument,
the column (A =1, B =2,...) and the row of the cell to be referenced indirectly by the
DLL add-in. This function reads the value of the cell indicated by the row and column
arguments, tries to convert this to a number which it then returns if successful. (The source
for the function is contained in the example project on the CD ROM and is accessible by
loading the Example.x11 add-in.)

It is easy to see that Excel will have a problem making the association between values
for row and column of a cell and the value of the cell to which they refer. Where the
trigger is volatile, the function gets called in any case, so the return value will reflect any
change in the indirect source cell’s value. If the row and column arguments are replaced
with ROW(source cell) and COLUMN(source cell), Excel makes the connection and changes
are reflected, regardless of whether the trigger is volatile or not.

Where the cell reference is passed to the DLL function as a range, as is the case with
C_INDIRECT2(trigger, ref) in the example add-in — analogous to the VBA macro
RecalcExamplel() — Excel manages to keep track of the dependency, something that
VBA fails to do.

The advice is simple: avoid referencing cells indirectly in this way in worksheet func-
tions. You very rarely need to do this. If you think you do, then perhaps you need to
rethink how you’re organising your data.

2.12.6 Data Table recalculation

See section 2.11.1 Data Tables on page 31 for more about Data Tables and how Excel
treats them differently.

2.12.7 Conditional formatting

Excel supports conditional formatting of a cell, where the condition can be either some
threshold value in that cell or the True/False outcome of a formula. This formula can, with
some limitations outlined below, be any formula expression that could be entered into any
cell. Excel 2000 to 2003 support up to 3 sets of criteria per cell, each corresponding to
its own format. These are tested in order, with the first frue result determining the cell’s
display format. Where a criteria tests the cell’s value against a threshold, the limits against
which it is tested can also contain formulae. For example, a cell could be formatted to
show red text if its value is less than 10 or if its value is less than half of the cell above
it, or if the standard deviation of one range of cells is greater than the standard deviation
of another.

Conditional formatting only affects font colour, borders and shading effects. Moreover,
these formats are in addition to the normal format properties of the cell, accessible by
some of the C API functions, for example .VBA provides more access to a cell’s properties
than the C API and can access both the base formats (via the Range. Font property, etc.)
as well as details of the conditional formats applied (via the Range.FormatConditions
property). However, even VBA is unable to read the current format that results from these

Excel Functionality 41

conditional expressions. In short, it is not possible, in any straightforward way, to create
a worksheet function that returns a value that depends on the conditionally-applied format
of another cell.

Excel 2007 note: Conditional formatting logic is greatly enhanced in version 12. For
example, it also becomes possible to alter the number-format conditionally. However,
the formula =CELL("format",A1) will only return the base format of the cell A1, not its
conditional format, preserving the the way Excel treats dependencies. This new ability is
very useful, enabling you to vary the number of places displayed depending on the scale
of the number. This can also be achieved in earlier versions of Excel with text formulae
fairly easily.®

This means that, from a calculation dependency stand-point, a change to a worksheet
that results in a change to the display format of another cell, cannot lead to more dependent
calculations. If this were not the case, there would be significant risk of circular references.
The best way to think about formulae in conditional formats is that they are dead-end
calculations done when all other calculations have been finished.

Excel permits the user to include VBA functions from the same workbook in the
conditional format conditions, but not functions that it regards as external, for example
XLL add-in functions. The work-around is simply to provide a VBA wrapper to the
XLL function. The author is aware that some Excel users have reported crashes where
an XLL user-defined function with macro-sheet equivalence is used. (See section 8.6.4
Giving functions macro sheet function permissions on page 252 for an explanation of
macro-sheet equivalence).

Where a user-defined function is called from the conditional format criteria of a cell,
the caller is identified by Excel as being the cell that the conditional format is being
applied to. (See section 8.10.17 Information about the calling cell or object: x1fCaller
on page 313). This should be borne in mind when writing functions where the function
associates some resource with the calling cell. (See section 9.8 Keeping track of the calling
cell of a DLL function on page 389). Such a function might get confused as to whether
it is being called by the cell or by the conditional format.

The use of volatile functions causes the format to be re-evaluated on every calculation
event, as you would expect. However, this does not cause dependents of that cell to be
recalculated.

2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). . .

Excel’s treatment of all worksheet functions and operators is the same: When a cell
containing a function/operator is to be recalculated, Excel first evaluates all of the argu-
ments/operands. It is easy to forget this fundamental point: when being recalculated
everything in a cell is re-evaluated. There are no exceptions, and functions that con-
ditionally ignore some of their arguments are treated in exactly the same way. Such
functions include Excel’s logic functions IF(), OR() and AND(), as well as CHOOSE().
What this means is that they behave very differently to the programmatic IF... ELSE,
OR,and ANDof VB orthe if ()... else, || and && of C/C++. The programmatic versions

% For example, =LEFT(ROUND(A1,A2-2),A2), where A1 is to be displayed to a fixed width A2 including a decimal
point. If thousands separators are required, then =LEFT(FIXED(A1,A2-1),A2) will work. Both solutions are subject
to A1 not being too big for the number of places provided.

42 Excel Add-in Development in C/C++

execute from left to right and evaluation stops as soon as the final outcome is known.
Excel’s versions are not so efficient.

The Excel formula =IF(A1,FUNCTION1(C1),FUNCTION2(C2)) will cause the calling of both
FUNCTION1() and FUNCTION2() regardless of the value of A1. Equally, all OR() arguments
will be evaluated and passed regardless of whether the first was TRUE, and similarly
though inversely for AND(). The function CHOOSE() is passed all of its arguments reduced
to one of the basic types before it selects and returns the chosen value.

Where these and similar functions are being used with complex argument expressions,
recalculation times can suffer. The advice is to use only simple arguments with these
functions. Where complex arguments are needed these should be placed in their own
cells. This limits unnecessary calculation, and allows many logical expressions to use the
same arguments. For example, consider a spreadsheet consisting of the following cells:

Cell Formula/value

A1 1.234

B1 6.789

C1 TRUE

A3 =IF(C1,FUNCTION1(A1),FUNCTION2(B1)

In the above case both FUNCTION1() and FUNCTIONZ2() are called whenever either of A1 or
B1 change, however, if coded as shown below, only A2 is recalculated if only A1 changes,
and only B2 is recalculated if only B1 changes. Cell A3 is recalculated in both cases,
despite the fact that if only B1 and B2 change and C1 is TRUE, it needn’t be, since A2 will
not have changed.

Cell Formula/value
A1 1.234
B1 6.789
C1 TRUE

A2 |=FUNCTION1(A1)
B2 |=FUNCTION2(A1)
A3 |=IF(C1,A2B2)

2.12.9 Controlling Excel recalculation programmatically

Controlling when and what Excel recalculates on a worksheet can be done fairly straight-
forwardly in VBA using the Calculate method, which can be applied to a number of
objects including the Application, Workbook, Worksheet, and Range objects. (See
Chapter 3 for more about VBA). It is not necessary to call this method when Excel’s

Excel Functionality 43

Application.Calculation property is set to x1CalculationAutomatic. (This is the
calculation state seen in the Tools/Options. .. dialog.)

When the Application.Calculation property is set to x1CalculationManual
pressing the F9 key is one way to get Excel to recalculate dirty cells (including their
dependants). Another way is under the control of VBA as shown in this example applied
to a Range object:

Option Explicit

Private Sub CommandButtonl_Click()
Dim i As Integer

AppTlication.Calculation = x1CalculationManual
For i = 0 To 100

Range("CalcMe").Calculate
Next

Application.Calculation = x1CalculationAutomatic
End Sub

Note that resetting of this state to x1CalculationAutomatic causes Excel to recalculate
any uncalculated cells outside the CalcMe range. Note also that all cells in CalcMe are
recalculated, regardless of whether they are marked as dirty or not. In other words, the
Range.Calculate method performs a forced calculation. In contrast, when applied to the
Application, Workbook or Worksheet objects, the Calculate method only performs
a calculation of dirty cells and their dependents within that object.

It is better, in general, to record the calculation state on entry and restore it on exit
as shown here. From an efficiency point of view, it is also much better in this case to
enclose the loop in a With...End With block.

Option Explicit

Private Sub CommandButtonl_CTlick()
Dim i As Integer
Dim RecalcState As Variant

RecalcState = Application.Calculation
AppTlication.Calculation = x1CalculationManual

With Range("CalcMe")
For i = 0 To 100
.Calculate
Next
End With

AppTlication.Calculation = RecalcState
End Sub

Excel 2003+ (version 11 and higher) exposes a Range method that enables the programmer
to dirty cells, i.e., mark them as needing calculation. In manual calculation mode this
does not cause them to be recalculated until the calculate method is invoked at which
point they and their dependents within that object are recalculated. When used with,

44 Excel Add-in Development in C/C++

say, the Worksheet.Calculate method, this enables a very fine control of what gets
calculated.

This ability to be selective can be very useful when dealing with large workbooks,
slow-to-calculate functions, or cases where many iterations are required. (See Chapter 10,
Monte-Carlo Simulation for an example of the latter). The C API (see Chapter 8) provides
no equivalent way to do this and is one of the weaknesses of the C API relative to VBA.
However, Excel’s Range object and its methods are also exposed via COM and .NET
enabling applications or add-ins that use these technologies to do the same as VBA
above.

The use of selective calculation of ranges should only be considered as just one of the
choices when optimising calculations, all of which are discussed in section 9.14 Optimi-
sation on page 433.

2.12.10 Forcing Excel to recalculate a workbook or other object

In theory, if calculation is set to automatic, Excel recalculates all dependents whenever
a precedent changes or when triggered by some other event. For example, Excel will
recalculate everything whenever a row or column is inserted or deleted. In practice,
many people report that when dealing with large or complex workbooks with cross-
worksheet or cross-workbook dependencies, some cells are not always re-evaluated as
they should be. As well as this, a large and slow workbook might need to be used
with calculation set to manual to avoid every single piece of data entry triggering a
recalculation. Pressing {F9} to recalculate, again, may not cause everything to be evaluated
correctly. It should be pointed out that these problems are rare and elusive, and may be
version-specific, but in finance where the integrity of calculations may mean the difference
between a very large profit and a very large loss, they should be watched out for very
carefully.

Perhaps in recognition of some of these problems, Excel provides ways to force a
recalculation of every cell regardless of its need. Together with the specific calculation
methods of the exposed objects, this gives the developer and the user a number of ways
to control what gets calculated and when. The following table summarises these. (See
Chapter 8 for a full explanation of the C API entries in Table 2.12).

Table 2.12 Controlling Excel recalculation

Cause Effect
Keystroke: n/a When calculation is manual, recalculates just the
VBA: Range(...).Calculate cells in the given range regardless of whether
XLM: n/a they are dirty or not.
C APIL n/a
Keystroke: — When calculation is manual, recalculates the
VBA: Worksheet(...).Calculate dirty cells and their dependents in the specified
XLM: CALCULATE.DOCUMENT() worksheet only. In the case of the XLM and C
C API: x1cCalculateDocument API, this acts only on the active worksheet. (See

note below).

Excel Functionality 45

Table 2.12 (continued)

Cause

Effect

Keystroke: {F9}

VBA: Application.Calculate
XLM: CALCULATE.NOW()

C APIL: x1cCalculateNow

Recalculates all cells that Excel has marked as
dirty, i.e. dependants of volatile or changed data,
or [v11+] cells programmatically marked as
dirty.

Keystroke: {Shift-F9}
VBA: ActiveSheet.Calculate
XLM: n/a

When calculation is manual, recalculates just the
cells marked for calculation in the active
worksheet only.

C APL n/a

Keystroke: {Alt-F9} When calculation is manual, recalculates all the
VBA: n/a cells in the active worksheet only, regardless of
XLM: n/a their apparent need to be recalculated.

C APIL n/a

Keystroke: {Ctrl-Alt-F9}

VBA: Application.CalculateFull
XLM: n/a

C API: n/a

Recalculates all cells in all open workbooks.

[v10+]: Keystroke: {Ctrl-Alt-Shift-F9} Rebuilds entire dependency tree and recalculates
[v10+]: VBA: all cells in all open workbooks.
AppTlication.CalculateFullRebuild

Note that {Ctrl-F9}, the odd one out, has nothing to do with calculation and simply
minimises the active workbook.

2.12.11 Using functions in name definitions

All functions that can be called from the worksheet, including VBA UDFs, XLL and
other add-in functions, can be called in name definitions. In addition, XLLM functions,
not commands, can be called too. This topic is covered in section 8.1.3 Accessing XLM
Sfunctions from the worksheet using defined names on page 225.

2.12.12 Multi-threaded recalculation

Up to and including Excel 2003 (version 11), Excel’s worksheet recalculation engine
has been single-threaded. Excel 2007 (version 12) introduces multi-threaded recalculation
(MTR). XLL worksheet functions work can take advantage of this if registered with Excel
as being thread-safe, i.e., able to be called safely and simultaneously on multiple threads.
The first edition of this book gave examples of XLL worksheet functions that returned
addresses of static variables (in particular x1opers and x14_arrays) to Excel. In order
to make these examples thread-safe, they have been changed to make use of thread-local
copies of variables. You may have data in your project that cannot be made thread-local,
in which case you will need to protect them with critical sections. Section 7.6 Making
add-in functions thread safe on page 212 gives details of both of these techniques.

Excel will not run more than one command at once, so similar precautions are not
required for the command code examples.

46 Excel Add-in Development in C/C++
2.13 THE ADD-IN MANAGER

The Add-in Manager is that part of the Excel application that loads, manages and unloads
functions and commands supplied in add-ins. It recognises three kinds of add-ins:

e standard Win32 DLLs that contain a number of expected interface functions;
e compiled VB modules;
e Excel 4 Macros (XLM) modules (for backwards-compatibility).

(DLLs can be written in C/C++ or other languages such as Pascal.)

The file extensions expected for these types are * .XLA for VBA module add-ins and
* . XLL for DLL add-ins. Any file name and extension can be used, as Excel will recognise
(or reject) the file type on opening it. (See section 3.9 Creating VB add-ins (XLA files) on
page 87 for a brief description of how to create XLA add-ins.)

For XLL add-ins written in C and C++, there are a number of other things the pro-
grammer has to do to enable the Add-in Manager to load, access and then remove, the
functions and commands they contain. Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface, on page 111, describes the interface functions the add-in must provide
to enable Excel to do these things.

2.14 LOADING AND UNLOADING ADD-INS

Excel ships with a number of standard add-in packages, whose description is beyond the
scope of this book. The Tools/Add-ins. .. dialog (see Figure 2.6) lists all the add-ins that
Excel is aware of in that session, with those that are active having their check-boxes set.
Making a known add-in active is simply a case of checking the box. If Excel doesn’t
know of an add-in’s existence yet, it is simply a question of browsing to locate the file.

Add-Ins available:

21|
[~ Access Links - | ok |
I® £nalysis ToolPak

W Analysis ToolPak - VBA
™ Autnsave Add-in

™ Conditional Sum Wizard

™ Euro Currency Tools Browse... I
¥ Garkohl

[Internet Assistant VBA

W 1zd

™ Jsd_Rel

I Lockup Wizard |

—Analysis ToolPak

Provides functions and interfaces for financial and scientific
data analysis

Figure 2.6 Excel’s Add-in Manager dialog (Excel 2000)

Excel’s known list of add-ins is stored in the Windows Registry. Add-ins remain listed
even if the add-in is unselected — even if Excel is closed and restarted. To remove the

Excel Functionality 47

add-in from the list completely you must delete, move or rename the DLL file, restart
Excel, then try to select the add-in in the Add-in Manager dialog. At this point Excel will
alert you that the add-in no longer exists and ask you if you would like it removed from
the list.”

2.14.1 Add-in information

The Add-in Manager dialog (see Figure 2.6) displays a short description of the contents
of the add-in to help the user decide if they want or need to install it. Chapter 5 Turning
DLLs into XLLs: The Add-in Manager Interface, on page 111, explains how to include
and make available this piece of information for your own add-ins.

2.15 PASTE FUNCTION DIALOG

Hand-in-hand with the Add-in Manager is the Paste Function dialog (sometimes known
as the Function Wizard). The feature is invoked either through the Insert/Function. . . menu
or via the ‘fx’ icon on a toolbar. If invoked when the active cell is empty, the following
dialog appears (in Excel 2000) allowing you to select a function by category or from a
list of all registered functions. If invoked while the active cell contains a function, the
argument construction dialog box appears — see section below.

2/

Function category: Function name:

Most Recently Used a| [anD ;]
All FALSE

Financial

Date & Tima NOT

Math & Trig OR

Statistical TRUE

Lookup 8 Reference

Database

Text

|Inf0r mation _:] :_]

IF{logical_test,value_if_true value_if_false)

Returns one value if a condition you specify evaluates to TRUE and another
value if it evaluates to FALSE,

g el

Figure 2.7 Excel’s Paste Function dialog (Excel 2000)

2.15.1 Function category

In the left-hand list box are all the function categories, the top two being special categories
with obvious meanings. All functions are otherwise listed under one and only one specific
category. Many of these categories are hard-coded Excel standards. Add-ins can add
functions to existing categories or can create their own, or do both. If functions have

7 You can edit the registry, something you should not attempt unless you really know what you are doing. The
consequences can be catastrophic.

48 Excel Add-in Development in C/C++

been defined in a VB module or have been loaded by the Add-in Manager from an XLA
add-in file, then the category UDF (in Excel 2000) or User Defined (in Excel 2002 and
later) appears and the functions are listed under that.

2.15.2 Function name, argument list and description

Selecting a category will cause all the functions in that category to be listed in alphabetical
order in the right-hand list box. The figure shows the Logical category selected and all
six logical functions. Selecting a function name causes the name as it appears in the
spreadsheet, a named comma-separated argument list and a description of the function
to be displayed below the list boxes. In the above example the arguments and function
description for the IF() function are shown.

2.15.3 Argument construction dialog

Pressing OK in the Paste Function dialog causes the argument construction dialog to
appear for the highlighted function. Invoking the Paste Function command on an active
cell containing a function has the same effect. The figure below shows this for the IF()
function. Where invoked on an empty cell the dialog is blank. Where invoked on an
existing formula, the fields are populated with the expressions read from the cell’s formula.

This dialog has a number of important features that should be understood by anyone
wanting to enable users to access their own add-in functions in this way. These are
highlighted in the following diagram which shows the Excel 2000 dialog.

Logical_test | (2) e
\.'aba_!’_lnal =
value_if_fales | X =

G Returrs one value if a condition you specify evaluates to TRUE and another value if it
evaluates to FALSE.

Logical_test is any value or expression that can be evaluated to TRUE or FALQE@

(\ EJI Formula result = | OK | Cancel |
5

Figure 2.8 Paste Function argument construction dialog (Excel 2000)

(1) Argument name — from the argument list in the Paste Function dialog. (Bold type
indicates a required argument; normal type, an optional one.)

(2) Argument expression text box — into which the user enters the expression that Excel
evaluates in preparation for the function call.

(3) Function description — as shown in the Paste Function dialog.

(4) Argument description — for the currently selected argument, providing a brief expla-
nation of the argument purpose, limits, etc.

(5) A context-specific help icon — used to get help specific to this function. In Excel 2002
and 2003, the help button is replaced with a text hyperlink.

Excel Functionality 49

The dialog also provides helpful information relating to the values that the argument
expressions evaluate to and the interim function result. (Note that Excel attempts to
evaluate the function after each argument has been entered.) If the function is a built-
in volatile function, the word volatile appears after the equals just above the function
description.

Once all required arguments have been provided, pressing OK will commit the function,
with all its argument expressions as they appear in the dialog, to the active cell or cells.

Section 8.6 Registering and un-registering DLL (XLL) functions, on page 244, explains
in detail how to register DLL functions that the Paste Function dialogs can work with. In
other words, how to provide Excel with the above information for your own functions.

2.16 GOOD SPREADSHEET DESIGN AND PRACTICE

This section provides a brief discussion of some quite basic things to bear in mind
during Excel development. Section 9.13 Add-in Design on page 419 addresses some more
advanced but related topics.

2.16.1 Filename, sheet title and name, version and revision history

Ever since the demise of DOS 8.3 format filenames, it has been possible to give documents
more descriptive names. This is a good thing. Having to open old documents because you
can’t remember what they did is a real waste of time. You should add a version number
(e.g., v1-1, using a dash instead of a dot to avoid confusion with the filename/extension
separator), particularly where a document may go through many revisions or is used by
others.

In addition to the filename version, you should consider including version information
in the worksheets themselves, especially where workbooks are used by many people.
These could be for each sheet, for the whole workbook or whatever is appropriate, but at
least should include an overall workbook version number matching the filename version.

A revision history (the date; who made the changes; what changes were made) is easy
to create and maintain and can save a lot of time and confusion. For complex workbooks,
creating a revision history worksheet at the front of the workbook with all this information
for easy reference can save a great deal of time and heartache later.

You should consider giving every sheet a descriptive title in cell A1, in a good sized font
so that you can’t help but know what you’re looking at. Using the Freeze Panes feature
(Window/Freeze Panes) is a good idea, so that the title, and any other useful information,
is visible in cases where the data extends deep into the spreadsheet.

Naming sheets descriptively is also easy (double-click on the tab’s name) and pays
dividends. For display reasons these may need to be abbreviated where there are many
tabs. Be careful with the alphabetical order of sheet names where there are cross-worksheet
links. (See section 2.12.4 Cross-worksheet dependencies — Excel 97/2000 versus 2002 and
later versions on page 36 for an explanation.)

2.16.2 Magic numbers

Magic numbers are static numbers that appear in calculations or in their own cells without
much, if any, explanation. They are a very bad thing. Sometimes you may feel that

50 Excel Add-in Development in C/C++

numbers need no explanation, such as there being 24 hours in a day, but err on the side
of caution. It is not obvious that the number 86,400 is the number of seconds in a day,
for example. A simple comment attached to the cell might be all that’s needed to avoid
later confusion or wasted time spent decrypting and verifying the number.

Putting magic numbers directly into formulae, rather than accessing them by reference
to a cell that contains them, is generally to be avoided, even though this leads to a slightly
more efficient recalculation. They are hidden from view and awkward to change if the
assumptions that underpin them change. There may also be many less-obvious places
where the number occurs, perhaps as a result of cell copying, and all occurrences might
not be found when making changes.

Where magic numbers represent assumptions, these should be clearly annotated and
should ideally be grouped with other related assumptions in the worksheet (or even work-
book) so that they are easy to review and modify. Some magic numbers may be candidates
for a defined name, where the name is descriptive enough to avoid later confusion. For
example, defining ROOT_2PI as 2.506628274631 might be a good idea. (See section 8.11
Working with Excel Names on page 316 for more detail on this topic).

2.16.3 Data organisation and design guidelines

Data in a spreadsheet can be categorised as follows:

e Variable input data to be changed by the user, an external dynamic data source, the
system clock or other source of system data.

e Fixed input (constant) data to be changed only rarely, representing assumptions, numer-
ical coefficients, data from a particular publication or source that must be reproduced
faithfully, etc.

e Static data, typically labels, that make the spreadsheet readable and navigable and
provide users with help, instructions and information about the contents and algorithms.

e Calculated data resulting from the action of a function or command.

There might also be cells containing functions whose values are largely irrelevant but that
perform some useful action when they are re-evaluated, for example, writing to a log file
when something changes.

Here are some guidelines for creating spreadsheets that are easy to navigate, maintain
and understand:

1. Provide version and revision data (including name and contact details of the author(s)
if the workbook is to be used by others).

2. Group related assumptions and magic numbers together and provide clear comments
with references to other documents if necessary.

3. Group external links together, especially where they come from the same source, and
make it clear that they are external with comments.

4. Avoid too much complexity on a single worksheet. Where a worksheet is becoming
over-complex, split it in two being careful to make the split in such a way that cross-
worksheet links are minimised and that these links are clearly commented in both
sheets.

Excel Functionality 51

5. Avoid too much data on a single worksheet. Too much may be difficult to define:
a very large but simple table would be fine, but 100 small clusters of only loosely
related data and formulae are probably not.

6. Avoid excessive and unnecessary formula repetition, and repetition of expressions
within a single formula.

7. Avoid over-complex formulae. Even where repetition within the formula isn’t a con-
cern, consider breaking large formulae down into several stages. Large and complex
formulae are not only difficult to read and understand later, but make spreadsheets
harder to debug.

8. Use named ranges. This not only makes formulae that reference the data more readable
and easier to understand but also makes accessing the data in VB or a C/C++ add-in
easier and the resulting code independent of certain spreadsheet changes.

9. Use formatting (fonts, borders, shading and text colours) not only to clarify the
readability, but also to make a consistent distinction between, say, variable inputs,
external dynamic data and ‘static’ assumption data.

10. Use hyperlinks (press Ctrl-K) to navigate from one part of a large book to another.

2.16.4 Formula repetition

Excel is a faithful servant. It will do what you tell it to do without question and, more
significantly, without optimisation. A cell formula such as

=IF(VLOOKUP(WS5,B3:B10,1)<SUM(A3:A10),VLOOKUP(W5,83:810,1)+SUM(A3:A10),
VLOOKUP(W5,B3:810,1)-SUM(A3:A10))

will cause Excel to evaluate the VLOOKUP() and SUM() functions three times each (see
section 2.12.8 Argument evaluation: IF(), OR(), AND(), CHOOSE(). .. on page 41). It has no
ability to see that the same result is going to be used several times. (You can easily verify
this kind of behaviour using a VBA macro such as NumCalls_1() listed in section 2.12.1
on page 33). The obvious solution is to split the formula into 3 cells, the first containing
VLOOKUP(), the second containing SUM() and the third containing IF() with references to
the other 2 cells.

Repetitions may not be so obvious as this and do not all need to be removed. Sometimes
the action of a fairly complex formula is clearer to see when it contains simple repetitions
rather than references to cells somewhere far away in the workbook.

Generally speaking, trying to do things in a minimum number of cells can lead to
over-complex formulae that are difficult to debug and can lead to calculation repetition.
You should err on the side of using more cells, not fewer. Where this interferes with the
view you are trying to create for the user (or yourself), use the row/column hide feature
or the Data/Group and Outline/Group feature to conceal the interim calculations, or move the
interim calculations to another part of the same worksheet.

2.16.5 Efficient lookups: MATCH(), INDEX() and OFFSET() versus VLOOKUP()

One of the most commonly used and useful features of spreadsheets is the lookup. For
the basics of what a lookup is, how it works and the variations read Excel’s help. In using
lookups it is important to understand the relative costs, in terms of recalculation time, of
the various strategies for pulling values out of large tables of data.

52 Excel Add-in Development in C/C++

Tables of data usually stretch down rather than across. We think in terms of adding
lines at the bottom of a table of data rather than adding columns to the right. We read
documents line-by-line, and so on. This bias is, of course, reflected in the fact that Excel
has 2% times as many rows than columns (2% as many in Excel 2007). Consequently, most
lookup operations involve searching a vertical column of data, typically using VLOOKUP().
However, it is easy to create situations where the use of this function becomes very
inefficient.

Take, for example, the following task: to extract 3 pieces of data from the row in the
table shown below where the left-most column contains the number 11. (See V1ookup_
Match_Example.xls on the CD ROM.)

E3 Microsoft Excel - vlookup_example.xls =10 | X
|3 Fle Edt View Insert Format Tooks Data Window Help —|=|x
DeELERY i@ - - [A4 vOH »R 7=
C6 ~| = |
A . B | ¢ | o | E | F | 6 [=
| 1 |VLOOKUP EXAMPLE
2
| 3 |Lookup Column2| Column3| Column4 |
| 4 | 11, 03731 06945 02401
5
E Lookup table |
=] Column1 ColumnZ Column3| Column4
| 8 | 1| 09354| 01033 04158
Ex 2| 04829 08575 04813
| 10| 3| 00604 02573 01587
[11| 5/ 01090 08807 00161
| 12 | 7. 02971 09126| 0.3311]
| 13 | 1" 0.3731 06945 02401
| 14 | 17, 0.3986 06492| 0.9358|
| 15 | 19) 0.1499 0.8233| 0.6874
16| 23 00866 00616 0.7538
| 17 | 29 0.5559| 0.7869| 0.0481
18| 31 0.8354) 02200 07044
[19| 37| 02685 07189 02776 |
20 | | | |
21 >
K[[\ Viookup / Matchindex / [«] | LlH

Figure 2.9 VLOOKUP example worksheet

This is easily achieved, as shown, with the following three formulae:

Cell Formula

B4 =VLOOKUP(A4,A8:D19,2)
C4 =VLOOKUP(A4,A8:D19,3)
D4 =VLOOKUP(A4,A8:D19,4)

Excel Functionality 53

At first glance there seems to be no formula repetition, so no problem. In fact, Excel has
had to do the same thing three times: search down column A looking for the number 11.
In a small table this isn’t a big problem, but in a large table with hundreds or thousands
of entries this becomes a lot of work. The solution is to use the functions MATCH() and
INDEX() in combination as shown in Figure 2.10.

EA Microsoft Excel - viookup_example.xls I - Ilj |£[

|i) Fle Edit View Insert Format Took Data Window Help =18|x
DEEEGRY S B|o-c- Q= AdlB0e vOH »R JF 7
E20 ~| = |
A . B | ¢ [b [E [F | & [=

1 |MATCH & INDEX EXAMPLE

2
| 3 |Lookup Match | Column2| Column3 Columnéd
[4 | 11 6| 03731 06945 02401

5
| 6 |Lookup table | | |
| 7 | Column1 ColumnZ Column3| Column4
| 8 | 1| 09354| 01033 04158
B 2 04829 08575 04813
[10| 3| 00604 02573 0.1587]
[11| 5| 01000 08807 00161
[12| 70 02971] 09126] 0.3311]
| 13| 1 0.3731 06945 02401
[14 | 17| 0.3986 06492 0.9358)
| 15 | 19| 01499 08233 0.6874]
| 16 | 23 00866 00616 0.7538
| 17 | 29, 0.5559| 07869 0.0461
| 18 | 31 08354 022000 07044

19 37 02685 07189 0.2776 _ | B
21 h
W]« » [\ Viookup yMatchindex / |« | LUJ

Figure 2.10 MATCH & INDEX example worksheet

The MATCH() function does the part that Excel would otherwise repeat, determining the
correct row in the table. Once done, the required values can be extracted with the very
efficient INDEX() function. This will be close to three times faster than the VLOOKUP()-only
solution for large tables. The resulting formulae look like this:

Cell Formula
B4 =MATCH(A4,A8:D19,0)
C4 =INDEX(B8:B19,B4)
D4 =INDEX(C8:C19,B4)
E4 =INDEX(D8:D19,B4)

54 Excel Add-in Development in C/C++

Note: An additional benefit of MATCH() and INDEX() over VLOOKUP(), where you know
the lookup value is in the table and can safely pass zero as the 3rd parameter, is that it
doesn’t require the lookup column to be ordered. Also, Excel will happily find a string
not just a number. In this example, INDEX() takes a more precise reference to the source
column. If a column is inserted, MATCH() and INDEX() won’t care whereas the formulae
in the VLOOKUP() example will all need to be edited.

The OFFSET() function is similar to INDEX() except that it returns a reference to a cell or
range of cells rather than a value of a single cell. This gives it more power than INDEX()
but at a cost: it is a volatile function. (See section 2.12.3 Volatile functions on page 35.)
Excel can’t know from one call to the next what range will result, and needs to recalculate
each time. Therefore OFFSET() should never be used when INDEX() will do. Trying to get
around this with INDIRECT() will not work, as this function too is volatile.

2.17 PROBLEMS WITH VERY LARGE SPREADSHEETS

Despite being a wonderful tool for a surprisingly broad range of data analysis tasks, Excel
does have its limits. This is most obvious when it comes to memory utilisation in very
large workbooks. Excel can become alarmingly slow, and even unstable, when asked to
perform routine operations on large groups of cells. Even the act of deleting a large block
of cells in a workbook that is straining the memory resources of the machine, can take
tens of minutes to complete. If Excel runs out of memory for the undo information, it may
alert the user that the operation cannot continue with undo. Even then, it still may fail and
Excel might even crash. Excel’s often graceless handling of out-of-memory conditions is
one of its (very few) weaknesses, one which Microsoft improves with every new release.

2.18 CONCLUSION

For normal use you don’t need to worry about some of the subtle complexities that
this chapter tries to shed light on. Where the demands are more rigorous, however, the
need to be aware of the most efficient way to use Excel and how to avoid some of its
recalculation problems becomes more important. It can even be critical to the spreadsheet
doing properly what you want it to.

3
Using VBA

This chapter provides only a brief introduction to using VBA to create commands and
functions. It is not intended to be a detailed how-to guide to VB in Excel. It touches
briefly on:

the creation of VB commands and macro functions;
passing data between VBA and Excel;

accessing DLL functions from VBA;

passing data between VBA and a DLL.

If you don’t want to bother with the Add-in Manager and Paste Function dialog in Excel,
then you can access all of your C/C++ code from VBA and this chapter explains how. It
describes what you need to know to be able to access your DLL code and how to pass
and convert arguments and return types.

VBA is a very powerful application enabling complex things to be done very eas-
ily. But this book is intentionally about doing things that are beyond the scope or
performance of VBA. If you want to know more about VBA’s capabilities, experi-
ment. The VB editor is easy to use, especially to anyone with experience of, say,
Visual C++, and the Tools/Macro/Record New Macro. . . menu option provides a great how-to
guide for writing commands and is some help with code you might want to include in
a function.

Section 3.8 on page 86 includes a VBA-specific discussion of the differences between
commands and functions. Sections 2.9 Commands versus functions in Excel, on page 28,
and 8.1.1 Commands, worksheet functions and macro sheet functions, on page 224,
together provide a more general discussion of this topic.

3.1 OPENING THE VB EDITOR

There are several ways of bringing up the VB editor:

e through the Tools/Macro/Visual Basic Editor;

e with the keyboard short-cut {Alt F11};

e by installing the VB Editor command icon onto a toolbar via the Tools/Customise
dialog.

The third option is recommended, since, once done, it saves a lot of time, although the
keyboard short-cut is quick if you can remember it.

If you have done this with a blank spreadsheet, you should then see something like
this:

56 Excel Add-in Development in C/C++

£ Microsoft Visual Basic - Book1

| Fle Edt View Insert Format Debug Run Tooks Add-ins Window Help
Ma- B seamcc]), 1882 0

Project - VBAProject

afl--JI[=]

-8 funcres (FUNCRES XLA)
=88 vBAProject (Book1)
=-53 Microsoft Excel Objects
Sheetl (Shestl)
) Sheet2 (Sheet2)
|- i) Sheet3 (Sheetd)
8 Thisworkbook

Properties - Sheetl

{sheet1 warksheet
Alphabetic | categorized |

isplayPageBreaks False
isplayRightToLeft Fake
nabledutoFilter Falkse i
nableCalculation | True Expression
ableOutlinng |False
nablePivotTable |False
nableSelection |0 - xNoRestrictions
ame |Sheetl

tandardWidth (8,11
isible -1 - xiSheetyisible

L

Figure 3.1 The Visual Basic Editor interface

In the above example, you will see several documents referred to in the top left-hand pane
(the Project Explorer window). The first one in this screen shot belongs to a standard add-
in that has been loaded by Excel, and the second belongs to the default-named workbook,
Book1, that Excel created on being opened.

For each sheet in Book1 there is a corresponding object listed. There is also an object
associated with the entire workbook. Each of these has an associated VB code container
which can be opened and edited by double-clicking on the object’s name in the Project
Explorer window. The top right pane, which contains the VB source editor, then displays
whatever VB code is associated with that object. For a new spreadsheet, these VB code
modules are empty.

3.2 USING VBA TO CREATE NEW COMMANDS

Commands can be associated with individual worksheets or with the entire workbook.
To be accessible in the right place — to have the right scope — VBA code for these must
be placed in the appropriate code object. A command that is coded in the Sheet3 code
object will not run successfully if invoked from another sheet. If you only intend it to be
invoked from Sheet1, then code it into Sheet1. If you want it to be accessible in all sheets
in the workbook, place it in the Workbook code module.

Using VBA 57

3.2.1 Recording VBA macro commands

This is the easiest way to create simple commands and to learn how to use the Excel
VB objects to do things in your own commands. The Tools/Macro/Record new macro. . .
command is all you need to remember. The following dialog enables you to tell Excel
and the VBE where to place the code it generates and what to call it. It also places a
handy little comment into the code.

Record vacro TR

Macro name:
|Macr01
Shortout key: Store macro jn:
col| | [his werkoaok |
Description:

|F-1acra recorded 27/05/2002 by Steve Dalton

[|

Figure 3.2 VBA Record Macro dialog

If you elect to place the code in This Workbook (as shown) you will see that a new
folder appears called Modules, containing a new code module, by default called Module1.
Double-clicking on the name Module1 will cause the editor to display the code, something
like this:

@ Microsoft Visual Basic - Book1 - [Modulel (Code)]

8% Fle Edt View Insert Format Debug Run Toos AddHins Window Help =1=|x]
H3-Bi=e8oc|, a2 HEY 2| @ 011,001 1
i ject | X |General) =] [macro1 |
E@”E | Sub Macrol(}) ?
& 88 funcres (FUNCRESXLA) ' —
Eg\fwrniect (Book1) ' Macrol Macro
E1-E3 Microsoft Excel Objects ' Macro recorded 27/05/2002 by Steve Dalton
i) Sheatl (Sheetl) 3
) sheatz (Sheet)
) Shest3 (Sheetd)
Thisworkbook
& -ﬁﬁml’ess Range ("C4:E13") .Select
& Modulel Selection.ClearContents
' End Sub
|
s - Modulel
=
Alphabetic | categortzed | == | X5
Modulel
Expressi Value Type Context -

l«l

Figure 3.3 VBE Recorded Macro dialog

58 Excel Add-in Development in C/C++

The command code procedure is in a Sub/End Sub code block declaration. It has no
return type or return value and takes no arguments. If you want to communicate something
to the user, such as success or failure, your command will have to open an alert or dialog
box containing what you want to convey or write directly to a predetermined cell or
named range.

You can, of course, create your own code modules and add your own Sub/End Sub
commands manually.

3.3 ASSIGNING VBA COMMAND MACROS TO CONTROL
OBJECTS IN A WORKSHEET

Control objects include:

checkboxes;

text boxes;

command buttons;

option buttons (radio buttons);

list boxes;

combo boxes (text box with list box);
toggle buttons;

spin buttons;

scroll bars;

... and many others.

Each one of these objects can be placed into a worksheet using the Control Toolbox
toolbar. They all have events and properties associated with them and can have code
associated with those events. For example, creating a command button, which would be
given the default name CommandButtonl, and then right-clicking and selecting Edit code
will cause the VBE to appear with an empty command code declaration placed within
the container worksheet’s VB code object, like this:

@ Microsoft Visual Basic - Book1 [design] - [Sheetl (Code)] =10 l
|48 Fie Ecit View Isert Format Debug Run Tooks Addins Window Help -|=]x
HaE-B%2edoc]), 2ZNEY2| 0| nec U
|CammandBut|on1 :I I(.‘Iick ;I
DE "E Frivate Sub CommandButtonl Click() =
[¥4 funcres (FUNCRES XLA) =
524 vBAProject (Bookl) End Sub
E-55 Microsoft Excal Objects
Shearl (Sheetl)
i) Sheez2 (Sheetz)
Sheet3 (Sheel3)
&) Thisworkbook
£-E5 Modules =
% Modulel =P "I | ;r

!

Exprassio Value Type Context

141

Figure 3.4 VBE worksheet code showing command button event trap

Using VBA 59

Above the code editor pane are two list boxes, one showing the object to which the
event applies, in this case CommandButtonl, and the other the action, in this case Click.
Changing the action will cause the VBE to create a new empty command with a declaration
that reflects the selected action. The code these code blocks contain will then be invoked
whenever the specified action occurs.

3.4 USING VBA TO TRAP EXCEL EVENTS

As shown above, the VBA code associated with a worksheet can also contain code
associated with events corresponding to the worksheet itself. Selecting Worksheet in the
left-hand list box above the code editor pane will cause the VBE to create an empty code
block such as this:

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
End Sub

Whenever the cursor is in a piece of worksheet command code, the right-hand list box
will give access to all the events associated with the worksheet object. As with control
object actions, changing the action will cause the VBE to create a new empty command
with a declaration that reflects the selected action. Similarly, in the ThisWorkbook code
object, events relating to (or visible to) the entire workbook can be accessed and command
code written that will be executed every time that event occurs.

Trapping Excel events can, for example, enable you to do things when:

a workbook is closed;

a worksheet is selected;

a change is made;

a single cell is selected or edited.

To set the last trap, you create a trap for the whole worksheet and then inspect the range
argument passed in. The range functions Intersect and Union provide the most efficient
way to detect whether the input is in the desired range. The fact that an event is raised
by Excel for every selection change or input should not ordinarily cause too much degra-
dation in performance. The following example exits early if the newly selected cell(s)
is(are) not in or intersecting either Input! or Input2.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)

If Intersect(Target, Union(Range("Inputl"), Range("Input2"))) _
Is Nothing Then Exit Sub

' Target overlaps one or both of Inputl and Input2 so
' do the desired post-selection processing here...

End Sub

60 Excel Add-in Development in C/C++

What is important to remember is that code associated with a trapped Excel event is a
command. You can call function code from a command but you cannot call a command
from a worksheet function. Command code cannot return a value.

The code module associated with the workbook object supports the following event
traps in Excel 2000:

Activate;

AdddinInstall;
AdddinUninstall;
BeforeClose;
BeforePrint;
Deactivate;

NewSheet;

Open;

SheetActivate;
SheetBeforeDoubleClick;
SheetBeforeRightClick;
SheetCalculate;
SheetChange;
SheetDeactivate;
SheetFollowHyperlink;
SheetSelectionChange;
WindowActivate;
WindowDeactivate;
WindowResize.

By Excel 2003, the following traps also exist:

PivotTableCloseConnection;
PivotTableOpenConnection;
SheetPivotTableUpdate;
Sync.

In Excel 2007, the following are added:

AfterXmlExport;
AfterXmlImport;
BeforeSave;
BeforeXmlExport;
RowsetComplete;

Each of these events is trapped by a subroutine in this module with the name Workbook_*
where * is replaced by one of the above event names. For example, the following routine
traps the recalculation of any and all sheets in the workbook except those generated
programmatically.

Private Sub Workbook_SheetCalculate(ByVal Sh As Object)
End Sub

Using VBA 61

The code module associated with the worksheet supports the following subroutine traps:

Activate;
BeforeDoubleClick;
BeforeRightClick;
Calculate;

Change;

Deactivate;
FollowHyperlink;
SelectionChange.

By Excel 2003, the following trap also exists:
e PivotTableUpdate;
No new events are added in Excel 2007.

In other words, the sheet object supports the trapping of these events sheet-by-sheet. If
you want to trap an event for all sheets, use the event trap in the workbook module. If
you want to trap the event just in that sheet, use the event trap in the sheet module.
Similarly, user-form objects in VBA support a number of trappable events accessed via
routines in their associated code modules, as do other embedded objects in a workbook.

3.5 USING VBA TO CREATE NEW FUNCTIONS

Creating new functions is very straightforward. Code is declared and contained within
a Function/End Function code block. This must be placed in a VB code module
listed under Modules in the VBE in order for Excel to be able to recognise it as a user-
defined worksheet function. Function code placed in the code module associated with a
workbook or sheet will not be accessible from the worksheet. Creating a new code module
is easily done by right-clicking on any of the objects in the VB project associated with
the workbook (in the Workspace window: the left-most pane in the default view) and then
selecting Insert. .. /Module. This causes the editor to create a new VB code module object
in the workbook and opens it for editing in the edit window.

3.5.1 Function scope

Function code can, of course, be placed anywhere in any code module, but its scope will
be limited to the VB project associated with the workbook. Other open workbooks will
not be able to access the function.

Functions created in the code object associated with one of the workbook objects, such
as a worksheet, work fine, but can only be called by command code or another function
in that code object, and definitely not from the worksheet.

Commands within the project can also call the project’s functions including those in
code modules. (Remember, functions cannot call commands regardless of scope.)

VBA functions and commands can be given greater scope by saving and loading them
as an XLA add-in file. (See section 3.9 Creating VB Add-ins (XLA files) on page 87 for a

62 Excel Add-in Development in C/C++

brief description of how to create XLA add-ins.) Once loaded, worksheet functions they
contain can be accessed by any open workbook. Function scope can also be restricted by
prefacing function names with the Private keyword.

There is more to function and variable scope than touched on here; for example, there
are the Public and Private keywords and the Option Private Module statement.
For more about these you should refer to VBA’s help.

3.5.2 Declaring VBA functions as volatile

It is often useful and sometimes necessary for a function to be called every time Excel
recalculates rather than just when an input has changed. This requires that Excel be
informed that the function is volatile. This is easily achieved in VBA by calling the appli-
cation method Application.Volatile immediately after the dimensioning of variables.
(Note: Excel does not know the function is to be treated as volatile until it has been called
at least once.) The following VBA code shows an example.

Function Volatile_Fn_Example(trigger As Integer) As Double
Dim val As Double
AppTlication.Volatile
val = 2.123 ' arbitrary meaningless number for example only
Volatile_Fn_Example = Now * val
End Function

This is a particularly important thing to do when using VBA as a wrapper or interface
to DLL functions that need to be treated as volatile, say, those that return some external
dynamic information.

3.6 USING VBA AS AN INTERFACE TO EXTERNAL
DLL ADD-INS

3.6.1 Declaring DLL functions in VB

Both functions and commands written in C/C++ (or other languages where code is com-
piled to a Win32 DLL) can be accessed directly in VB using the Declare statement
whose syntax is as follows:

Syntax 1

[Public | Private] Declare Sub name Lib "Tibname" [Alias
"aliasname"] [([arglist])]

Syntax 2

[Public | Private] Declare Function name Lib "Tibname" [Alias
"aliasname"] [([arglist])] [As type]

Using VBA 63

Syntax 1 relates to commands; syntax 2, to functions. The optional Pub1ic and Private
keywords specify the scope of the imported function — the entire VB project or just the
VB module, respectively.

The name is the name you want to use within the VB code. If this is different from the
name in the DLL then the Alias "aliasname" specifier must be used and should give
the name of the function as exported in the DLL. If you want to access a DLL function
by reference to an ordinal number in the DLL, then specify an alias name which is the
ordinal prefixed by #.

If the imported function is to be treated as a volatile worksheet function, then the VBA
wrapper function must invoke the method AppTlication.VolatiTe.

Warning: VBA cannot check that the argument list (number of arguments and argument
types) agrees with the function as created in the DLL. A mistake could crash Excel.

3.6.2 Call-by-reference versus call-by-value

VB does not have the concept of pointers that exists in the world of C/C++. In the world
of VB, functions can modify their arguments if they have been passed by reference using
the ByRef keyword. In fact, this is the default behaviour for VB. In the example code
below go_doubTe_me(2.1) would return the value 4.2.

Function double_me(ByRef d as Double) as Boolean
d=d*2
double_me = True

End Function

Function go_double_me(d as Double) as Double
Call double_me(d)
go_double_me = d

End Function

As ByRef is the default in VB, this keyword can be removed with no change to the
behaviour of the code. In contrast, substituting ByRef with ByVal would have the effect
that go_doubTle_me () would return exactly what was passed to it un-doubled. (Note the
inclusion of the Call keyword, without which the function would be called as ByVal,
but which also has the effect of suppressing the return value of the called function.)

In C the default is call-by-value, with call-by-reference achievable only with the use of
pointers. In C++ there is also the option of passing reference arguments as well as pointers.
C++ reference arguments (prefixed with an ampersand ‘&’ in the function declaration)
work in exactly the same way as VB’s call-by-reference, allowing access to the value
of the variable without the need to de-reference a pointer. This is all summarised in
Table 3.1.

Table 3.1 Call by value versus by ref in VB, C and C++

VB C C++

Call by ref [ByRef] arg As VB_type C type *p arg CPP_type *p arg
CPP_type &arg

Call by value Byval arg As VB_type C_type arg CPP_type arg

64 Excel Add-in Development in C/C++

When passing arguments to C/C++ DLL functions, care should be taken with certain data
types. The VB String is passed as a pointer to a string structure when passed ByVal,
and as a pointer to a pointer when passed ByRef. (See next section for more detail on
String and other VBA data types.)

3.6.3 Converting argument and return data types between VBA and C/C++

By and large, VB uses similar native data types to C/C++, although there are some
differences:

e VBA integers are all signed 16-bit, equivalent to a C short. (VBA’s Long is equivalent
to a C 32-bit signed int.)
e VB doesn’t support pointers.

They also have much in common:

e VB allows definition of user-defined data types, using the Type statement, closely
analogous to C’s typedef.

e VB uses a number of OLE/COM data types such as Variant which are also defined
for C/C++ in Windows in the OLE/COM header files.

These things are all discussed in the following sections. Table 3.2 opposite gives a sum-
mary of the data types in VB, their value ranges where appropriate, and the equivalent
data types in C/C++.

Accuracy note

VBA permits greater ranges of value of its variables than Excel does. In particular:

e The range of a VBA Double is slightly greater than the range of an Excel number.
(All Excel numbers are stored as 8-byte floating-point.)

e The VBA Date type can represent dates as early as 1-Jan-0100 using negative serialised
dates. Excel only allows serialised dates greater than or equal to zero.

e The VBA Currency type — a scaled 64-bit integer — can achieve accuracy not matched
in Excel.

The table in section 2.4 Worksheet data types and limits on page 14 provides details of
Excel’s data type range values. Table 3.2 opposite summarises the VBA-supported types
and their C/C++ equivalents.

3.64 VBA data types and limits

VBA in Excel provides access to a very large number of pre-defined object types relating
to Excel, Microsoft Office, OLE Automation, etc. Only the following 12 (excluding user-
defined types) are easily accessible to C/C++ functions called from VBA. There is no easy
way to pass a VBA Range variable to a C/C++ DLL function. It’s not impossible — you
could assign it to a Variant argument and pass that, but you would then have to use the
COM IDispatch interface to interrogate the object that the C VARIANT would contain.

Using VBA 65

Table 3.2 VB data types and limits, and their C/C++ equivalents

Visual Basic

Range in VBA

C/C++

Byte Min: O unsigned char
Max: 255= 28-1
Boolean —1 (TRUE) [signed] short
0 (FALSE) (16-bit)
Integer Min: —32,768 = —2% [signed] short
Max: 432,767 =2 -1 (16-bit)
Long Min: —2,147,483,648 = —23! signed [long]
Max: +2,147,483,647 =231 -1 integer
(32-bit)
Currency Min: —922,337,203,685,477.5808 CY in <wtypes.h>
=-2%3/10,000 ___int64 (scaled)
Max: +922,337,203,685,477.5807 (see below)
= (23 —1)/10,000
Single Positive values float (4-byte)
Min: +41.401298e—45
Max: +3.402823e+38
Negative values
Min: —1.401298e—45
Max: —3.402823e+38
Double Positive values double (8-byte)
Min: +44.94065645841247e—324
Max: +1.79769313486232e+308
Negative values
Min: —4.94065645841247e—324
Max: —1.79769313486231e+308
Date Min: —657,434.0 DATE in <wtypes.h>
(1-Jan-0100 00:00:00 a.m.) double (8-byte)
Max: ~2,958,465.999,999,94 (see below)
(31-Dec-9999 23:59:59.995)
String BSTR in <wtypes.h> (see
below)
Variant VARIANT in <oaidl.h>

(see below)

Object type

(see below)

Array

(see below)

User-defined type

(see below)

66 Excel Add-in Development in C/C++

This starts to get complicated. Passing a range reference, for example, is far easier using
the C APIL But, be warned: the C API does not expose as many of Excel’s objects and
properties as VBA.

3.6.5 VB/OLE Currency type

The VB/OLE Currency data type is passed to C/C++ as a structure of type CY, defined
in the Windows header file <wtypes .h> as follows:

typedef union tagCy
{
struct
{
unsigned long Lo;
long Hi;
};
LONGLONG int64;

CY;

The 64-bit integer structure LONGLONG is defined using the non-ANSI 64-bit integer type
___int64 and represents non-integer numbers to 4 decimal places scaled up by a factor of
10,000. In Win32 environments, various operations and macro definitions are defined for
__int64 variables in <winnt .h>, such as logical and arithmetic bit shifts. However,
the simplest way to deal with this data type is to cast it to a double as in this example
code. In theory, this conversion is at the expense of some accuracy. However, this is true
only for values which are outside the range of Excel in the first place.

CY ¢ = some_function_that_returns_a_CY (some_argument) ;
double d = (double) (c.int64) / 1le4; // Divide to undo the scaling

You will encounter this data type when your C/C++ DLL is passed an array of VARIANTS
by VB created from an Excel Range object’s Value property, where one or more cells
in the Range have been formatted using the standard currency format for the regional
settings in force at the time. This is mildly annoying: the value of a cell should be its
underlying value regardless of the display format. (Excel and VB do a similar thing for
worksheet cells formatted as dates.) If you are handling arrays of data originating in Excel
worksheet ranges, you will need to deal with this data type. (See sections 3.6.9 Variant
data type and 3.7 Excel ranges, VB arrays, SafeArrays, array Variants below for more
detail and some example code.)

3.6.6 VB/OLE Bstr Strings

The VB String data type is an OLE data type defined for C/C++ as BSTR in
<wtypes.h>. The BSTR is implemented as a pointer to a zero-terminated array of type
unsigned short - astring of 16-bit wide characters. However, Excel exchanges null-
terminated byte-strings with VBA. VBA for Excel therefore stores the bytes of the string
in the high and low bytes of the array pointed to by the BSTR.

Using VBA 67

For example, the text "Test string" passed from VBA to a C/C++ function would
be stored as shown in Table 3.3.

Table 3.3 Excel VBA string passed to C/C++: Example 1

Passed in as Value (unsigned Value (byte string)
BSTR bstr short)
(*bstr) [0] 0x6554 ((char *) (*bstr))[0] = 0x54 = 'T
((char *) (*bstr))[1l] = 0x65 = 'e'
(*bstr) [1] 0x7473 ((char *) (*bstr))[2] = 0x73 = 's'
((char *) (*bstr))[3] = 0x74 = 't°
(*bstr) [2] 0x7320 ((char *) (*bstr))[4] = 0x20 = ' '
((char *) (*bstr))[5] = 0x73 = 's'
(*bstr) [3] 0x7274 ((char *) (*bstr))[6] = 0x74 = 't°
((char *) (*bstr))[7] = 0x72 = 'r'
(*bstr) [4] 0x6e69 ((char *) (*bstr))[8] = 0x69 = 'i°
((char *) (*bstr))[9] = O0x6e = 'n'
(*bstr) [5] 0x0067 ((char *) (*bstr))[10] = 0x67 = 'g'
((char *) (*bstr))[11] = 0x00 = Null
termination of ANSI byte string
(*bstr) [6] 0x0000 Zero termination of BSTR string
The text "Test" would be stored as shown in Table 3.4.
Table 3.4 Excel VBA string passed to C/C++: Example 2
Passed in as Value (unsigned Value (byte string)
BSTR bstr short)
(*bstr) [0] 0x6554 ((char *) (*bstr))[0] = 0x54 = 'T'
((char *) (*bstr))[1l] = 0x65 = 'e'
(*bstr) [1] 0x7473 ((char *) (*bstr)) [2] = 0x73 = 's'
((char *) (*bstr))[3] = 0x74 = 't
(*bstr) [2] 0x0000 Zero termination of BSTR string and null
termination of ANSI byte string combined

How long is a piece of string? As can be seen from these two examples, string length
is dependent on what you are thinking of as the string. OLE provides two functions for
determining the length of a BSTR: SysStringLen() and SysStringBytelLen ().
They would return the following when applied to these example strings as passed from
VBA to a DLL:

68 Excel Add-in Development in C/C++

Table 3.5 BSTR string length comparisons

String SysStringLen () SysStringByteLen () Bytes allocated
“Test string” 6 11 14
“Test” 2 4 6

For strings of bytes passed in a BSTR from VB you should use SysStringByteLen ().

Warning: When VBA passes strings to C/C++ via a Variant argument of type VT_BSTR,
the string is not a byte-string, but a null-terminated string of wide-chars, i.e., unsigned
shorts. Care must be taken to distinguish between these two cases, as different system
functions are required to read and create these. (See section 3.6.10 Variant types supported
by VBA on page 72.)

Note that it is possible to call standard C string library byte string functions from
VBA by declaring functions taking char * arguments as taking ByVal String arguments,
although it is not possible to accept return values from such functions returning char *
by declaring them As String. This is because VBA Strings are OLE objects and must
be created and modified by the OS OLE functions only.

Note that Excel internally works with wide-character Unicode strings. Where a VBA
function takes as String argument, the supplied string will have been converted to a byte-
string in a locale-specific way. Similarly, where a VBA function returns a (byte) String
to Excel, the returned string will cast up to a Unicode string in a way that is also locale-
specific. Where you want to avoid the loss of data associated with this Unicode-to-byte
conversion (and the overhead associated with it) you should declare your arguments as
Variants and your DLL functions as accepting and working with VARIANT strings.

3.6.7 Passing strings to C/C++ functions from VBA

When passed ByVal to C/C++ a VBA String arrives as a BSTR. You could declare
the argument as an unsigned short *. (Note that in doing this you would make your
code dependent on the particular implementation of the BSTR type.) You can also declare
your argument as char *, since the pointer received points to the BSTR’s null-terminated
byte-string.

When passed ByRef a VBA String arrives as a pointer to a BSTR, equivalent to a
pointer to a pointer to an unsigned short, which you can declare as BSTR * or
as char **. VBA will always pass a non-null pointer to the BSTR. The pointer that
this points to will be set to null if the string was declared in VBA (using Dim) but not
allocated a value. Consider the following piece of VBA code:

' Argument 1is passed ByRef by default
Declare Function C_BSTR_Examplel Lib "example.x11"_
(s As String) As Boolean

Function VB_BSTR_EXAMPLE(Trigger As Variant) As Boolean
Dim s As String

' Call 1: String is dimensioned but not initialised
C_BSTR_Example (s)

' Call 2: String is initialised to an empty string
G = mom

Using VBA 69

C_BSTR_Example (s)
''Call 3:

s = "Test string"

C_BSTR_Example (s)

VB_BSTR_EXAMPLE = True
End Function

Suppose that the C/C++ function is prototyped as follows:

// Function definition corresponding to VB definition of
// Declare Function C_BSTR_Examplel ... (s As String) As Boolean,
// i.e. argument passed ByRef.
short __stdcall C_BSTR_Examplel (BSTR *ptr_bstr)
{
if (!ptr_bstr) // Should never be NULL, but...
return 0; // Return VB False
if (! *ptr_bstr) // Is string initialised?
return 0; // Return VB False if not

for(int 1 = 0; ; i++)
{
1f(! ((char *) (*ptr_bstr))[1])
break;

}

return -1; // Return VB True

In call 1, ptr_bstr will have a non-null value so there is no need to check if ptr_bstr
is NULL (unless you’re particularly distrusting of VBA or think that something less reliable
might also call the function). On the other hand, the pointer pointed to by ptr_bstr
will have a null value in this case, so in general there is a need to check if *ptr_bstr
is NULL.

In call 2, the value *ptr_bstr will now be non-null as the VBA String variable was
assigned a value. However, as the string is an empty string, the first (and only) unsigned
short will be the zero string-terminator. In other words the value *ptr_bstr[0], or
equivalently **ptr_bstr, will be zero in this case. It is entirely up to you if you check
immediately for this condition or allow subsequently called functions that access the string
to do the checking.

In call 3, not only has the VB variable been assigned a value, but it is a non-empty
string and *ptr_bstr will, in this case, point to an array of unsigned shorts as detailed
above.

As such strings are firstly Unicode and secondly allocated in VBA, care is needed
on the C/C++ DLL side. OLE provides a number of functions that deal with BSTR
variables, among them SysAllocStringBytelen(), SysReAllocString(),
SysReAllocStringLen(), SysFreeString(), SysByteStringLen(),
SysStringLen (), and so on.

If you want to store the strings beyond the current call to your DLL, you should make
you own deep copies of them and store those, rather than store a shallow copy of the
pointer. Otherwise, if and when the calling program frees the memory later, it would
invalidate your pointer.

70 Excel Add-in Development in C/C++

3.6.8 Returning strings to VBA from a DLL

There are, of course, three ways to return any value to a calling program:

1. Modify the passed-in arguments (if you have access to them).
2. Via the function’s return value.
3. Via some commonly accessible memory.

You should ignore the third option as the first two are by far the most sensible and both
fairly straightforward.

In general, if you want to modify a passed-in argument in your C code, you should pass
it ByRef (the default), i.e., accept a pointer that you can de-reference to change the value
of the caller’s variable. For the BSTR type, even though it is already a pointer you must
still pass it as ByRef to be able to modify the passed in string. Also you must use the
OLE functions to resize the string if you want to increase or decrease its length. Resizing
frees the original memory and allocates some new space, but without causing the calling
program (VBA in this example) a problem, as it too uses the OLE interface. If you want
something you can chop about and manipulate locally, however, you should simply make
a deep copy of the string.

If you want to assign a new value to a passed-in argument, you must check first to
see if it has been allocated, i.e., if the BSTR’s value (a pointer) is not null, and free the
memory with a call to SysFreeString () before overwriting the pointer value in order
to prevent memory leaks.

The following code shows how to pass strings back from a C/C++ DLL to VBA via a
return value. The important point is the use of the OLE SysAllocStringByteLen ()
function to allocate new space for the string. This enables VBA to free the string when
it is done with it.

// Example code to create and return a BSTR to VBA.
// Creates a string of the 1lst 'n' A-Z characters.
BSTR __ stdcall C_BSTR_Example2 (short n) // C short = VBA Integer (l6-bit)
{

if(n <= 0 || n > 26)

return NULL;

// lst argument is initialisation string, but we want
// to initialise this ourselves so pass NULL. 2nd
// argument is number of bytes in the byte-string NOT
// including the null termination space for which space is
// allocated and which is added by SysAllocStringByteLen ()

//
// Returns NULL if unsuccessful at allocating memory, which
// must be freed by a call to SysFreeString(). In this

// example, freeing memory is left to the caller, i.e. VBA
BSTR bstr = SysAllocStringByteLen (NULL, n);

if (*bstr)

{
unsigned char ¢ = 'A';
for(int i = 0; 1 < n;)

((unsigned char *) (bstr)) [1++] = c++;
}

return bstr;

Using VBA 71

Here is the VBA declaration and an example of VBA code that calls it. (Note the explicit
inclusion of ByVal in the argument list.)

Declare Function C_BSTR_Example2 Lib "example.x11" _
(ByvVal n As Integer) As String

Function VB_BSTR_EXAMPLE2(Length As Integer) As String
VB_BSTR_EXAMPLE2 = C_BSTR_Example2(Length)
End Function

VBA takes care of freeing the returned BSTR using the correct OLE Automation interface
call. Even though it looks like the combination of these two pieces of code should result
in a memory leak, it is, in fact, perfectly fine.

(Note: The C API provides easier exchange of strings between the spreadsheet and add-
in than VBA. Excel can pass strings as ANSI C null-terminated byfe strings, enabling
functions that are accessed directly from Excel to declare strings as char *. Responsibil-
ity for freeing up DLL-allocated string memory, however, reverts to the DLL programmer.
See section 7.4 Getting Excel to call back the DLL to free DLL-allocated memory on
page 208 for details. Excel 2007 extends this so that the C API can pass wide-character
Unicode strings also.)

3.6.9 Variant data type

A Variant is a multi-type variable that can contain (or point to) a variety of different data
types. It superficially makes all data types look the same enabling functions to be declared
that take Variants as arguments or return them. Such functions can therefore process more
than one, or even all, data types. In VBA, it is the default data type for variables: the
omission of the As Type data type specifier anywhere it might appear is equivalent to a
declaration of As Variant.

It is good practice to declare all arguments, return and variable types explicitly. The
code is far more readable, errors in scope are also avoided and VBA is not saddled with
unnecessary type conversions. The Option Explicit statement at the top of a code
module forces the programmer to do just this.

The OLE Variant is represented in VBA by the Variant data type and in C/C++ by the
VARIANT structure. When passed ByVal to C/C++ a Variant arrives as a VARIANT.
The C structure can be thought of as containing two key (top-level) components:

e a VARTYPE vt (defined as an unsigned short in <wtypes.h>) containing a
numeric code corresponding to the type of data the variant contains;

e a large union of all the data types (some of which are pointers) that the OLE Variant
supports.

Here is a simple C/C++ example which, if exported from a DLL and declared in VBA,
would simply convert a VB Integer to a Variant of integer type:

VARIANT __stdcall int_to_variant (short val)
{
VARIANT v;
// Good practice to initialise the variant structure first

72 Excel Add-in Development in C/C++

VariantInit (&v) ;
// This VARTYPE specifies a 16-bit (2-byte) signed integer (i.e. a short),
// equivalent to a VBA Integer

v.vt = VI_I2;
// Assign the passed-in value to the 'short' union member

v.ival = val;

return v;

Variants are important in the context of this book insofar as they play an important role in
the simplest way of passing of arrays of data from worksheet ranges to C/C++ DLLs via
VBA. (There are ways to do this that don’t involve Variants.) They are also used to return
variable-sized arrays of data from VBA back to array formulae in the worksheet. (Use of
Variants is the only way to do this.) The subject of passing arrays to and fro is covered
in detail below in section 3.7 Excel ranges, VB Arrays, Safearrays, Array Variants on
page 80.

Variants are also useful in getting data from, and returning data to, cells in Excel where
the type could be one of a number of things, say a string or a number.

The C API opens up some of Excel’s internal data storage structures, by-passing the
need for Variants. These structures do, nevertheless, have much in common with Variants.
(See Chapter 6 Passing Data between Excel and the DLL on page 127.)

3.6.10 Variant types supported by VBA

Of the many data types supported by the OLE Variant, only the following are supported
by VBA in Excel, and therefore only these need to be handled by a DLL function that is
called from VBA.

Table 3.6 VBA — supported Variant types

Data type VARTYPE Numeric value C union member
Empty VT EMPTY 0 (No associated data)
Long signed 32-bit vT T4 2 long lval

integer

Short signed VT_I2 3 short ival

16-bit integer

4-byte VT_R4 4 float fltval
single-precision

8-byte VT_RS8 5 double dblval
double-precision

Currency VT _CY 6 CY *pcyVal

Using VBA 73

Table 3.6 (continued)

Date VT_DATE 7 DATE date (DATE is defined as
double)

String VT_BSTR 8 BSTR bstrval

Object VT DISPATCH 9 IDispatch *pdispval

(See VB Object type below)

Error VT_ERROR 10 ULONG ulval
(Easier to use than SCODE)

Boolean VT_BOOL 11 short boolval

Variant (see notes | VI_VARIANT | * 12 VARIANT *pvarVal or
below) SAFEARRAY *parray

ByRef (see notes | VT_BYREF | * 16384 Pointer to one of the above data
below) 0x4000 types

Array (see notes |VT_ARRAY |* 8192 SAFEARRAY *parray

below) 0x2000

Array and ByRef note

The VT_ARRAY and VT_BYREF bits are bit-wise or’d with the value of the associated
data type. In a Variant array, therefore, the data type not only says that the Variant is an
array but also what is the data type of the elements. If the Variant’s data type is bit-wise
or’d with the VT_BYREF bit, then the Variant contains a pointer to the given data type.
If both bits are set, then the array that the Variant contains is an array of pointers to the
given data type, rather than a pointer to an array.

Variant note

A Variant will only contain a Variant in conjunction with one or both of the VT_ARRAY
and VT_BYREF bits. If the VT_BYREF bit is set then the pointer is accessed via the
VARIANT *pvarVal data member. If it is the VT_ARRAY bit, then the Variant contains
an array of Variants whose individual elements may be of mixed-type, and are accessed
via the SAFEARRAY *parray data member. (See also note below.)

Array of Variants note

A Variant type of particular interest is a Variant containing an array of Variants. Such
arrays are created when assigning a worksheet Range.Value property in VBA to a
Variant — one of the ways of passing an array originating in a range of worksheet cells
to a C/C++ DLL. (See section 3.7 Excel ranges, VB arrays, SafeArrays, Array Variants
on page 80 for details.)

74 Excel Add-in Development in C/C++

String note

When VBA passes strings to C/C++ via a Variant argument of type VT_BSTR, the
string is a string of unsigned shorts, i.e., UNICODE wide characters. Care
must be taken to distinguish between this case and when VBA passes a String, which
is a BSTR interpreted as a byte-string. Different system functions are required to read
and create each type of string. (See also section 3.6.6 VB/OLE Bstr Strings on page
66.) In the case of Variant strings, the functions SysStringLen() and
SysAllocStringLen () should be used in place of SysStringByteLen () and
SysAllocStringByteLen () respectively. The wide-char string to byte-string system
conversion functions MultiByteToWideChar () and WideCharToMultiByte(),
and their C library analogues mbstowcs () and wcstombs (), are also useful. (See the
Variant conversion routines in the example project source file x1loper . cpp, and also
section 3.7 below.)

3.6.11 Variant types that Excel can pass to VBA functions

Within Excel, VBA functions declared with Variant arguments will be passed an even
more limited subset by Excel worksheet formulae, namely:

Table 3.7 Variant types passed to VBA from Excel worksheets

VARTYPE Arguments that will be passed as this type

VT _R8 All numbers, with the exception of those formatted as dates or in the
currency format.

VT _ BOOL Excel’s TRUE and FALSE values. NOTE: Excel converts TRUE and
FALSE to the numbers 1 and O respectively, whereas the Variant
stores these as —1 and 0. Care should be taken where conversions
are being made.

VT_DATE Any number formatted in one of Excel’s date formats or date-time
formats. (Numbers displayed with a time format are passed as
VT R8.)

VT BSTR All strings. (See note in above section.)

VT DISPATCH Ranges (single-cell and multi-cell).

VT_ARRAY | Literal arrays.

VT_VARIANT

VT_CY Any number formatted in the currency format defined for the current
regional settings.

VT_ERROR All Excel error values.

VT_EMPTY All empty cells or omitted arguments.

Using VBA 75

A VBA function declared as follows will return the type of the Variant as a number,
using the VB function VarType(), except that ranges are converted, rather than Var-
Type returning VT_DISPATCH. Single-cell ranges are converted to the data type of the
cell’s value. Multi-cell ranges are converted to arrays of Variants, type VI_ARRAY |
VT_VARIANT.

Function VariantType(v As Variant) As Integer
VariantType = VarType(v)
End Function

The following VB function will similarly convert the Range to a Variant before calling
VarType(Q).

Function VariantRangeType(r As Range) As Integer
VariantRangeType = VarType(r)
End Function

In both of these cases, the function VarType() is passing back the type of the Range
object’s Value property.

The following VB code, which declares and calls a simple DLL function that returns
a Variant, does no such conversion of ranges references, and therefore would return
the value 9 (VT_DISPATCH) for anything other than literal arguments. For example, a
worksheet formula =VariantType(A1) would return 9 regardless of the contents of cell Af.

Declare Function C_vt_type Lib "example.d11" _
(ByRef arg As Variant) As Integer

Function VariantTypeC(v As Variant) As Double
VariantTypeC = C_vt_type(v)
End Function

Where the intention of the DLL function is to operate on the value of the range passed
in, it is therefore necessary to convert the Range to one or more values. The simplest
way to achieve this is to detect that the passed-in Variant is a range and then convert it
to an array Variant, like so:

Declare Function C_vt_fn Lib "example.d11" _
(ByRef arg As Variant) As Integer

Function VariantFn(v As Variant) As Double
If IsObject(v) Then
VariantFn = C_vt_fn(v.Value)
Else
VariantFn = C_vt_fn(v)
End If
End Function

76 Excel Add-in Development in C/C++

It is then the task of the DLL code to determine if the passed-in Variant is a simple
value or an array. Note that in the above case, single-cell references are converted to 1x1
arrays. (See section 3.7 Excel ranges, VB arrays, SafeArrays, array Variants on page 80
for more about arrays.)

Excel error values are most easily read from the ulval property of the variant. The
numerical value is 2,148,141,008 plus the error code used in the C API and defined in
the header file x1call32.h. Variants containing Excel error values can also be cre-
ated in VB using the CVerr () function. Table 3.8 provides a comparison of the various
representations.

Table 3.8 Excel error codes

Error Variant ulval value |C API value |CVerr () argument
#NULL! 2148141008 0 2000
#DIV/0! 2148141015 7 2007
#VALUE! 2148141023 15 2015

#REF! 2148141031 23 2023
#NAME? 2148141037 29 2029

#NUM! 2148141044 36 2036

#N/A 2148141050 42 2042

3.6.12 User-defined data types in VB

In C, a user-defined type is typically defined with a typedef struct {...} name;
or struct name {...}; statement block. A virtually identical construct exists in VB:
Type name ... End Type. Care needs to be taken to ensure that the variables within
the type definition blocks in C and VB are equivalent data types and in the same order.
You don’t need to give the variables or the structure itself the same names in both
languages — all that is passed is a pointer to a block of memory that needs to be interpreted
in the same way in both places.

Important note

VBA aligns the elements of structures along 4-byte boundaries but the default for VC 6.0
and VC .NET is to align to an 8-byte boundary. To avoid run-time errors or what would
look like corruption of data you need to use a #pragma pack (4) statement where the
C structure is defined (the recommended approach), or change the project settings default
using a “/Zp4” compiler command line flag.

Here are some examples of good and bad user-type definitions:

Using VBA 77

Table 3.9 VB user type and C typedef examples

VB

C

Comments

Type VB_User_Type
i as Integer
d as Double
s as String
End Type

#pragma pack(4)

typedef struct

{
short ival;
double dval;
BSTR bstr;

}

C_user_type;

// restore default
#pragma pack()

GOOD.

Note the different names of the structure
and the variables contained within it.
Note also the #pragma pack(4)
which is required in order to prevent
run-time errors.

Type VB_User_Type
i as Integer
d as Double
s as String
End Type

typedef struct

{
short ival;
double dval;
BSTR bstr;

}

C user type;

BAD

Missing #pragma pack (4) will cause
the double and the string to be
misaligned and cause a run-time error.

Type VB_User_Type
i as Integer
End Type

#pragma pack(4)

typedef struct
{

int 1i;
C_user_type;

#pragma pack()

BAD

C/C++ int is a 32-bit variable. VBA’s
Integer is 16-bit.

Type VB_User_Type
i as Integer
d as Double
End Type

#pragma pack(4)

typedef struct
{
double d;
short 1i;

C_user_type;

#pragma pack()

BAD

Corresponding variables must
be in the same order.

User-defined types are best passed ByRef (the default) arriving at C/C++ as a pointer to
the structure. Here is some example code, first the VB...

78 Excel Add-in Development in C/C++

Type VB_User_Type
i As Integer
d As Double
s As String
End Type

Declare Function C_user_type_example Lib "example.d11" _
(Arg As VB_User_Type) As Integer

Function VB_USER_TYPE_TEST(i As Integer, d As Double, s As String) _
As Integer

D1 As VB_User_Type
t.1=
t.d=
t.s=s VB_USER_TYPE_TEST = C_user_type_example(t)
End Function

m t
i=i
d=d
S=S
unc

.. and the corresponding C/C++ code:

#pragma pack(4) // required to be consistent with VB

typedef struct
{
short ival;
double dval;
BSTR bstr;

C_user_type;
#pragma pack() // restore the default
short _ stdcall C_user_type_example (C_user_type *arg)

{

short retval;

if (arg = = NULL)
return 0;
retval = arg->iVal;
retval += (short) (arg->dval) ;

if (arg->bstr)
retval += SysStringByteLen (arg->bstr) ;

return retval;

This example code simply returns the sum of the integer argument, the integer part of the
floating-point argument and, if it has been initialised, the byte-length of the BSTR.

3.6.13 VB object data type

VB objects are passed from VB to DLLs as dispatch pointers for use with the OLE 2
IDispatch interface. For example, range arguments passed to VBA functions declared as
taking Variants are of this type. If passed directly to DLL functions also declared as taking
Variants, the DLL will have to understand the IDispatch interface in order to access the
cell values. This can be avoided by converting ranges to array Variants as demonstrated in

Using VBA 79

the example in section 3.6.11 above, and is discussed more in section 3.7 Excel ranges,
VB arrays, SafeArrays, array Variants on page 80.

The OLE/COM IDispatch interface enables programs (known as OLE Automation Con-
trollers) to access the objects of other applications. Although this is relevant to the general
subject of writing add-ins for Excel, this book does not cover these topics and all the
mechanisms that these things entail in any great detail.

3.6.14 Calling XLM functions and commands from VBA:
Application.ExecuteExcel4Macro()

VBA allows you to access the Excel 4 macro language (XLM) statements using the
Application.ExecuteExcel4Macro() method, which takes a string that looks like
any valid worksheet or macro sheet formula without a leading equals sign. In practice,
you should not need to use this, as VBA can pretty much do all of the things that the
XLM can.

However, the same method is exposed by Excel via COM allowing you to mix COM
with access to XLM. This may in some cases provide an easier way to access Excel
functionality than the use of equivalent COM expressions only, where also the C API is
not available.

3.6.15 Calling user-defined functions and commands from VBA:
Application.Run()

Excel exposes many of the worksheet functions through the Application.
WorksheetFunction. * method. However, this does not provide access to user-defined
VBA functions or functions provided by other add-ins. For example, if you have the An-
alysis Toolpak add-in installed and want to use the Price() function in your VBA code
in versions earlier than Excel 2007, you will need to do something like this:

Dim Settlement As Variant
Dim Maturity As Variant '
Dim Rate As Double

Dim Yield As Double

Dim Redemption As Double

Dim Frequency As Integer

Dim Basis As Integer

Dim P As Variant ' catch all return types

serial no. or string
serial no. or string

set up the arguments ... (code omitted)
' then call the function.
P = Application.Run("Price", Settlement, Maturity, Rate, _
Yield, Redemption, Frequency, Basis)

Excel 2007 integrates the Analysis Toopak’s functions within Excel, so that you will
no longer need to install the add-in to use a function such as PRICE(). For backwards
compatibility, the ATP functions are accessible in VBA via two methods, for example,
through Application.WorksheetFunction.Price() and AppTlication.Run().

80 Excel Add-in Development in C/C++

3.7 EXCEL RANGES, VB ARRAYS, SAFEARRAYS,
ARRAY VARIANTS

The usefulness of arrays, especially for exchanging blocks of data between Excel, VBA
and C/C++ makes them an important topic. There are a number of different ways in
which each of Excel, VBA and C/C++ treat arrays. This can lead to some confusion and
complexity. This section aims to reduce this by providing an overview of the different
ways arrays can be created and represented, and to recommend an approach that removes
much of the complexity.

Firstly, it is helpful to simply list all of the various array types:

e Excel literal worksheet array: can contain all of the basic worksheet data types. (See
section 2.4 Worksheet data types and limits on page 13 for more information.)

e Excel range reference: an Excel object that refers to a collection of cells, whose values
can intuitively be thought of as matrices or vectors, although, strictly speaking, not
really an array.

e VB array: OLE SafeArray type, used to represent an array whose elements are all of
the same type, determined at declaration. Supports all the basic data types and Variants.

e VB array Variant: An OLE Variant that contains an array; not to be confused with an
array of Variants. The array contained is of type SafeArray. Its elements can be of any
type including Variants.

e C/C++ SafeArray: An OLE SafeArray, analogous to the VB array.

e C/C++ array Variant: An OLE Variant containing an OLE SafeArray, analogous to the
VB array Variant.

e C/C++ array: A flexible memory block accessible with pointers and square-bracket
indexing.

The goal of this section, consistent with the focus of the book, is to demonstrate how
best to move data into and out of Excel worksheets, using user-defined functions. More
specifically, the goal is to get arrays of worksheet data into a C/C++ DLL via VBA and
to return data back to the worksheet. The key to the whole issue is the array Variant for
the following reasons:

It is supported in both VBA and C/C++.

. In C/C++ the contained SafeArray’s data are easily accessed and converted.

3. It supports arrays of all the required types, including Variants so that it can represent
mixed-type arrays of worksheet data. (See sections 3.6.10 Variant types supported by
VBA and 3.6.11 Variant types that Excel can pass to VBA functions.)

4. VB arrays are easily converted to array Variants.

5. Excel range objects are easily converted to array Variants.

6. Excel literal arrays are passed as array Variants to VBA functions declared with Variant
arguments.

7. Being an OLE data type, inter-process memory management is simplified.

N =

Reason number 5 is perhaps the most important: the Range object is fairly easily handled
in VBA, but if passed directly to C/C++, its properties (specifically, cell contents) can
only be accessed using the IDispatch interface. VBA worksheet functions declared as

Using VBA 81

taking Variant arguments can be passed either literal values and arrays, or ranges when
called from the worksheet.

Here is an overview of the best steps to take in setting up VBA and C/C++ functions
that together are capable of taking and returning an array:

1. Declare the VBA function as taking a Variant argument and returning a Variant. This
ensures that literal values, literal arrays, single- and multi-cell ranges are all passed to
the function and that an array Variant can be returned to Excel.

2. Detect passed-in range objects using the VB IsObject() function and convert them
to array Variants. (See below for details.)

3. Declare C/C++ functions as taking Variant arguments and returning a Variant.

4. Pass the VB Variant, which may be a single value or an array Variant, through to the
C/C++ function.

5. Let the C/C++ function detect whether or not it has been passed an array Variant.

6. Use the OLE SafeArray functions to access or convert the array Variant data. (See
below for details.)

7. Use the OLE Variant and SafeArray functions to create a new array Variant and to
populate its elements.

8. Return the array Variant to VBA from C/C++.

9. Return the array Variant to Excel from VBA.

The following sub-sections cover in more detail the various steps involved as well as
providing more background information.

3.7.1 Declaring VB arrays and passing them back to Excel

VB arrays are fairly straightforward. They can be declared statically with statements such
as these:

Dim integer_array(0 To 5) As Integer ' 6 elements, zero-indexed
Dim square_array(l To 3, 1 To 3) As Double ' 9 elts, unit-indexed
Dim variant_array(l to 4) As Variant ' 4 Variant elts

The Option Base statement at the top of the code module tells VB what the lower bound
on an omitted array index should be for all arrays in that module. For example. . .

' Specify a default array lower bound of 1
Option Base 1

... then the array square_array above can be declared with the equivalent but more
readable:

Dim square_array(3, 3) As Double ' 9 elements, unit-indexed

Arrays can also be declared without dimensions and then re-dimensioned dynamically
later. A data type must be specified at declaration and cannot be changed. Here’s an
example:

82 Excel Add-in Development in C/C++

' Don't need to specify the number of or size of the dimensions
Dim array() As Double

' Allocate space for NumRows x NumCols elements

ReDim array(NumRows, NumCols)

Arrays can be declared with up to 60 dimensions, but for practical Excel add-in purposes,
1 or 2 is usually all you need given the two-dimensional nature of Excel worksheets.

Arrays are most easily returned to Excel as array Variants as shown in the following
examples. The conversion from VB array to array Variant is implicit in the assignment of
the array to the Variant return value. The type of the array elements is inherited from the
data type of the VB array. Excel understands how to copy the contents of array Variants
into the calling cell(s).

Note that these VB functions would need to be entered on the worksheet as array
formulae. (See section 2.10.2 Array formulae — The Ctrl-Shift-Enter keystroke on page 30
for details of how to enter array formulae into a worksheet.) Note also that a 1-dimension
VB array is interpreted by Excel as a single row vector, and that a 2-dimension array has
its indices interpreted as row then column.

Returning a rectangular array

This example returns a 3x3 array of integers, populated row-by-row with the numbers 1
to 9.

Function VB_ARRAY_RETURN_EXAMPLE(trigger as Variant) As Variant
' a(num rows, num columns)
Dim a(1l To 3, 1 To 3) As Integer
' Row 1
a(l,) =1
a(l, 2) =2
a(l, 3) =3
' Row 2
a2, 1) =4
a2, 2) =5
a2, 3) =6
' Row 3
a3, » =7
a(3, 2) =8
a3, 3) =9
VB_ARRAY_RETURN_EXAMPLE = a
End Function

Returning a row vector

To return a row vector, the array, if static, should be declared as in this example. Note
that the base in this example is zero, not 1. It makes no difference to the worksheet cells
what the base of the array is, provided that there are 3 elements.

Function VB_ROW_VECTOR(trigger As Variant) As Variant
Dim a(0 To 2) As Integer
a(0) =1

Using VBA 83

a(l) =2

a(2) =3

VB_ROW_VECTOR = a
End Function

Returning a column vector

To return a column vector, the array, if static, should be declared as in this example:

Function VB_COLUMN_VECTOR(trigger As Variant) As Variant
' a(num rows, num columns)
Dim a(1 To 3, 1 To 1) As Integer

a(l, »H =1
a2, 1) =2
a3, 1) =3

VB_COLUMN_VECTOR = a

End Function

3.7.2 Passing arrays and ranges from Excel to VBA to C/C++

Arrays in Excel can either be literal arrays, e.g., {1,2,3;4,5,6}, or range references. A VBA
function must be declared as taking a Variant argument if it is to be able to accept either
form of input. (Such functions can then also accept single cell references and single literal
values t00.)

Literal arrays are passed as array Variants with Variant elements. The sub-types are
inherited from the types of the literal array elements. (Single literal values are passed as
simple Variants whose type is that of the literal value.)

Range references, including single cell references, are passed as object Variants of type
VT_DISPATCH,; easily detected using the function IsObject (). If these are to be passed
on to a C/C++ DLL function, they are best converted to array Variants. This is most easily
done using the Range object’s Value property. The array’s elements are initialised with
the data from the cells. The elements of the array are type Variant, and their sub-type is
inherited from the corresponding cell. Note that the sub-type of an array element is, in
general, affected by the display format of a cell — see section 3.6.4 on page 64 for details.

The following code shows an example VB interface function that either passes a single
Variant or an array Variant to a DLL function, depending on whether it was passed a
range reference or a literal array or value. Note that a single-cell reference is converted
to a 1x1 array.

Declare Function C_vt_function Lib "example.d11" _
(ByRef arg As Variant) As Variant

Function VtFunction(v As Variant) As Variant
If IsObject(v) Then
VtFunction = C_vt_function(v.Value)
Else
VtFunction = C_vt_function(v)
End If
End Function

84 Excel Add-in Development in C/C++

The C/C++ DLL function would be prototyped as follows:

VARIANT _ stdcall C_vt_function(VARIANT *pv);

A VBA interface function declared as taking a range argument, would not be able to
receive literal values from the worksheet. If this weren’t a problem, then the VBA code
might look like this, given that there is no need to call IsObject().

Function VtFunction(r As Range) As Variant
VtFunction = C_vt_function(r.Value)
End Function

Note that it is necessary to invoke explicitly the Value property when assigning values to
a Variant, despite the fact that this is the default property of an Excel Range, otherwise
the Variant will be assigned a copy of the Range object itself. For example, the following
VBA function returns the value of a cell, whose reference is passed as a string in A1 form,
without requiring that the Value property be used. This is because a Double cannot be
assigned an object reference, unlike a Variant, so VBA implicitly converts.

Function Db1Funtion(cell_ref as String) As Double
Db1Funtion = Range(cell_ref)
End Function

However, the following code would result in a Variant of type VT_DISPATCH being
passed to the DLL function C_vt_function().

Function VtFuntion(r As Range) As Variant
VtFuntion = C_vt_function(r)
End Function

3.7.3 Converting array Variants to and from C/C++ types

Array Variants are Variants that contain an array. The array itself is an OLE data type

called the SafeArray, declared as SAFEARRAY in the Windows header files. An under-

standing of the internal workings of the SAFEARRAY is not necessary to bridge between

VB and C/C++. All that’s required is a knowledge of some of the functions used to

create them, obtain handles to their data, release data handles, find out their size (upper

and lower bounds), find out what data-type the array contains, and, finally, destroy them.
The key functions, all accessible in C/C++ via the header windows . h, are:

SafeArrayCreate ()
SafeArrayDestroy ()
SafeArrayAccessData ()
SafeArrayUnaccessData ()
SafeArrayGetDim()
SafeArrayGetElemsize ()

Using VBA 85

SafeArrayGetLBound ()
SafeArrayGetUBound ()
SafeArrayGetElement ()
SafeArrayPutElement ()

To convert an array Variant, the C/C++ DLL code needs to do the following:

e Determine that the Variant is an array by testing its type for the VT_ARRAY bit.

e Determine the element type by masking the VT_ARRAY bit from its type.

e Determine the number of dimensions using the SafeArray cDims property or by using
the SafeArrayGetDim () function.

e Determine the size of the array using SafeArrayGetUBound() and
SafeArrayGetLBound () for each dimension.

e Convert each array element from the possible Variant types that could originate from
a worksheet cell to the desired data type(s).

To create an array Variant, the C/C++ DLL code needs to do the following:

Initialise an array of SAFEARRAYBOUND structures (one for each dimension).
Call safeArrayCreate () to obtain a pointer to the SafeArray.

Initialise a VARIANT using VariantInit ().

Assign the element type bit-wise or’d with VT_ARRAY to the Variant type.
Assign the SafeArray pointer to the Variant parray data member.

Set the array element data (and sub-types, if Variants).

The final points in each set of steps above can be done element-by-element using
SafeArrayGetElement () and SafeArrayPutElement (), or, more efficiently,
by accessing the whole array in one memory block using SafeArrayAccessData ()
and SafeArrayUnaccessData (). When accessing the whole block in one go, it
should be borne in mind that SafeArrays store their elements column-by-column (i.e., they
are column-major) in contrast to Excel’s C API array types, the x14_array/x112_
array (see page 129) and the x1ltypeMulti xloper/xloperl2 (see page 180),
which are row-major.

Array Variant arguments passed by reference can be modified in place, provided that
the passed-in array is first released using SafeArrayDestroy () before being replaced
with the array to be returned.

The cpp_xloper class converts Variants of any type to or from an equivalent x1oper
type. (See sections 6.2.3 The xloper/xloperl?2 structures on page 135, and 6.4 A
C++ class wrapper for the xloper/xloperl2 - cpp_xloper on page 144. See
also the Variant conversion routines in the example project source file, x1loper.cpp.)
The following example code demonstrates this:

VARIANT _ stdcall C_vt_array_ example (VARIANT *pv)

{

static VARIANT vt; // Not thread-safe

// Convert the passed-in Variant to an xloper within a cpp_xloper
cpp_xloper Array (pv) ;

86 Excel Add-in Development in C/C++

// Access the elements of the xloper array using the cpp_xloper
// accessor functions...

// Convert the xloper back to a Variant and return it
Array.AsVariant (vt) ;
return vt;

Note on memory management

One advantage of passing Variant SafeArrays back to VBA is that it can safely delete
the array and free its resources, and will do this automatically once it has finished with
it. If a passed-in array parameter is used as the means to return an array, and an array
is already assigned to it, the DLL must delete the array using SafeArrayDestroy ()
before creating and returning a new one. (The freeing of memory passed back to Excel
directly from an XLL is a little more complex — see Chapter 7 Memory Management on
page 203 for details.)

3.7.4 Passing VB arrays to and from C/C++

You may want to pass a VB array directly to or from a DLL function. When passing a
VB array to a DLL, the C/C++ function should be declared in the VB module as shown
in the following example. (The ByRef keyword is not required as it is the default.)

Declare Function C_safearray_example "example.d11" _
(ByRef arg() As Double) As Double

The corresponding C/C++ function would be prototyped as follows:

double __ _stdcall C_SafeArray_Example (SAFEARRAY **pp_Arg) ;

As you can see, the parameter ByRef arg() is delivered as a pointer to a pointer to a
SAFEARRAY. Therefore it must be de-referenced once in all calls to functions that take
pointers to SAFEARRAYs as arguments, for example, the OLE SafeArray functions.

When returning VB arrays (i.e., SafeArrays) from the DLL to VB, the process is similar
to that outlined in the previous sections for array Variants. SafeArray arguments passed by
reference can also be modified in place, provided that the passed-in array is first released
using SafeArrayDestroy ().

In practice, once you have code that accepts and converts array Variants, it is simpler
to first convert the VB array to array Variant. This is done by simple assignment of the
array name to a Variant.

3.8 COMMANDS VERSUS FUNCTIONS IN VBA

Section 2.9 Commands versus functions in Excel on page 28 describes the differences
between commands and functions within Excel. The differences between the parallel
concepts of commands and functions in VBA are summarised in the Table 3.10.

Using VBA 87

Table 3.10 Commands versus functions in VBA

Commands Functions
Purpose Code containing instructions to be Code intended to process arguments
executed in response to a user action | and/or return some useful information.
or system event. May be worksheet functions or VBA
functions.
VBA code Macro command: Function
(see also Sub CommandName(...) FunctionName(...)As_return_type
sections e
below) End Sub
Command object event: FunctionName = rtn_val
Sub CmdObjectName_event(...) .
End Function
End Sub
Workbook/worksheet event action:
Sub ObjectName_event (...)
End Sub
VBA code Macro command: Worksheet function:
location e Worksheet code object e VBA module in workbook
e Workbook code object e VBA module outside workbook
e VBA module in workbook VBA et functi
e VBA module outside workbook project tunc 1on..
e Worksheet code object
Command object event: e Workbook code object
e Code object of command object e VBA module in workbook
container e VBA module outside workbook
Worksheet object event:
e Worksheet code object
Workbook object event:
e Workbook code object

3.9 CREATING VB ADD-INS (XLA FILES)

VBA macros can be saved as Excel add-ins simply by saving the workbook containing the
VBA modules as an XLA file, using the File/Save As... menu and selecting the file type
of Microsoft Excel Add-in (*.xla). When the XLA is loaded, the Add-in Manager makes the
functions and commands contained in the XLA file available. There are no special steps
that the VBA programmer has to take for the Add-in Manager to be able to recognise
and load the functions. Note that the resulting code runs no faster than regular VBA
code — still much slower than, say, a compiled C add-in.

88 Excel Add-in Development in C/C++
3.10 VBA VERSUS C/C++: SOME BASIC QUESTIONS

This chapter has outlined what you need to do in order to create custom worksheet
functions and commands using only VBA (as well as using VBA as an interface to a
C/C++ DLL). You might at this point ask yourself if you need to go any further in the
direction of a full-blown C/C++ add-in. Breaking this down, the main questions to ask
yourself before making this decision are:

1. Do I really need to write my own functions or are there Excel functions that, either
on their own or in simple combination, will do what I need?
2. What Excel functionality/objects do I need to access: can I do this using the C API,
or do I need to use VBA or the OLE/COM interface?
Is execution speed important?
4. What kind of calculations or operations will my function(s) consist of and what kind
of performance advantage can I expect?
5. Is development time important to me and what language skills do I have or have
access to?
6. Is there existing source code that I want to reuse and how easily can it be ported to
any of VB, C or C++?
7. Does my algorithm involve complex dynamic memory management or extensive use
of pointers?
8. Who will need to be able to access or modify the resulting code?
9. Is the Paste Function (Function Wizard) important for the functions I want to create?
10. Do I need to write worksheet functions that might need a long time to execute, and
so need to be done on a background thread or by a remote application?

e

With regard to the second point, it should be noted that C API in versions up to Excel
2003 can only handle byte strings with a maximum length of 255 characters. At one time,
strings within Excel were limited to this length, but not any more. If you need to be able
to process longer strings you will not be able to use the C API in these versions. You will
still be able to use your C/C++ routines accessing them via VBA’s BSTR string variable
which is capable of supporting much longer strings. Excel 2007’s C API handles Unicode
strings and so removes this limitation.

This book cannot answer these questions for you, however, question 4 is addressed in
section 9.2 Relative performance of VB, C/C++: Tests and results on page 369.

4

Creating a 32-bit Windows (Win32) DLL
Using Visual C++ 6.0 or Visual Studio .NET

This chapter covers the steps involved in creating a stand-alone Win32 Dynamic-Link
Library using Microsoft Visual C++. It explains, through the creation of an example
project, how to create a DLL containing functions that can be accessed by VB without
the need for the Excel C API library and header files. Without these things, however, the
DLL cannot call back into Excel via the C API. Nevertheless, it is possible to create very
powerful C/C++ add-ins with just these tools.

A full description of DLLs and all the associated Windows terminology is beyond the
scope of this book. Instead, this section sets out all the things that someone who knows
nothing about DLLs needs to know to create add-ins for Excel; starting with the basics.

4.1 WINDOWS LIBRARY BASICS

A library is a body of (compiled) code which is not in itself an executable application but
provides some functionality and data to something that is. Libraries come in two flavours:
static and dynamic-link. Static libraries (such as the C run-time library) are intended to be
linked to an application when it is built, to become part of the resulting executable file.
Such an application can be supplied to a user as the executable file only. A dynamic-link
library (DLL) is loaded by the application when the application needs it, usually when
the application starts up. A user of application that depends on functionality or data in a
DLL must install the executable file plus the DLL file for it to work. One DLL can load
and dynamically link to another DLL.

The main advantage of a DLL is that applications that use it only need to have one copy
of it somewhere on disk, and have much smaller executable files as a result. A developer
can also update a DLL, perhaps fixing a bug or making it more efficient, without the need
to update all the dependent applications, provided that the interface doesn’t change.

4.2 DLL BASICS

The programming of DLLs breaks into two fairly straightforward tasks:

e How to write a DLL that exports functions.
e How to access functions within a DLL.

DLLs contain executable code but are not executable files. They need to be linked to
(or loaded by) an application before any of their code can be run. In the case of Excel,
that linking is taken care of by Excel via the Add-in Manager or by VBA, depending on
how you access the DLL’s functions. (Chapter 5 Turning DLLs into XLLs: The Add-in
Manager interface, on page 111, provides a full explanation of what the Add-In Manager
does.)

90 Excel Add-in Development in C/C++

If your DLL needs to access the C API it will either need to be linked statically
at compile-time with Excel’s 32-bit library, x1call32.1ib, or link dynamically with
the DLL version, x1call.dll, at run-time. The static library is downloadable from
Microsoft in an example framework project. (See section 1.2 What tools and resources
are required to write add-ins on page 2.) The dynamic-link version is supplied as part of
a standard 32-bit Excel installation.

4.3 DLL MEMORY AND MULTIPLE DLL INSTANCES

When an application runs, Win32 assigns it a 32-bit linear address space known as its
process. Applications cannot directly access memory outside their own process. A DLL
when loaded must have its code and data assigned to some memory somewhere in the
global heap (the operating system’s available memory). When an application loads a DLL,
the DLL’s code is loaded into the global heap, so that it can be run, and space is allocated
in the global heap for its data structures. Win32 then uses memory mapping to make these
areas of memory appear as if they are in the application’s process so that the application
can access them.

If a second application subsequently loads the DLL, Win 32 doesn’t bother to make
another copy of the DLL code: it doesn’t need to, as neither application can make changes
to it. Both just need to read the instructions contained. Win32 simply maps the DLL code
memory to both applications’ processes. It does, however, allocate a second space for a
private copy of the DLL’s data structures and maps this copy to the second process only.
This ensures that neither application can interfere with the DLL data of the other. (16-bit
Windows’ DLLs used a shared memory space making life very interesting indeed, but
the world has moved on since then.)

What this means in practice is that DLL writers don’t need to worry about static and
global variables and data structures being accessed by more than one user of their DLL.
Every instance of every application gets its own copy. Each copy of the DLL data is
referred to as an instance of the DLL.

44 MULTI-THREADING

DLL writers do need to worry about the same running instance of an application calling
their DLL many times from different threads. Take the following piece of C code for
example:

int _ stdcall get_num_calls(void)
{
static int num_calls = 0;
return ++num_calls;

The function returns an integer telling the caller how many times it has been called. The
declaration of the automatic variable num_calls as static, ensures that the value
persists from one call to the next. It also ensures that the memory for the variable is
placed in the application’s copy of the DLL’s data memory. This means that the memory
is private to the application so the function will only return the number of times it has
been called by this application.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 91

The problems arise when it may be possible for the application to call this function
twice from different threads at the same time. The function both reads and modifies the
value of the memory used for num_calls, so what if one thread is trying to write while
the other is trying to read? The answer is that it’s unpredictable. In practice, for a simple
integer, this is not a problem. For larger data structures it could be a serious problem.
One way to avoid this unpredictability is the use of critical sections.

There are also issues of ensuring that a static variable used as a return value from an
exported function (as above) does not get over-written by another thread calling the same
function before the recipient of the return value has time to read it. This is a problem that
particularly affects add-ins in Excel 2007 where multi-threaded worksheet recalculation
is possible. Later sections of this book go into detail on this and provide a solution based
on the Thread-Local Storage (TLS) APIL

Windows also provides a function GetCurrentThreadId () which returns the cur-
rent thread’s unique system-wide ID. This provides the developer with another way of
making their code thread-safe, or altering its behaviour depending on which thread is
currently executing.

This subject becomes more important in Excel 2007 as it supports multi-threaded
recalculation. (See sections 2.12.12 Multi-threaded recalculation on page 45, 7.6 Making
add-in functions thread safe on page 212, and 8.6.6 Specifying functions as thread-safe
(Excel 2007 only) on page 253).

4.5 COMPILED FUNCTION NAMES

4.5.1 Name decoration

When compilers compile source code they will, in general, change the names of the
functions from their appearance in the source code. This usually means adding things
to the beginning and/or end of the name and, in the case of Pascal compilers, chang-
ing the name to all uppercase. This is known as name decoration and it is important
to understand something about the way C and C++ compilers do this so that the func-
tions we want to be accessible in our DLL can be published in a way the application
expects.!

The way the name is decorated depends on the language and how the compiler is
instructed to make the function available, in other words the calling convention. (See
below for more details on and comparisons of calling conventions.) For 32-bit Windows
API function calls the convention for the decoration of C-compiled functions follows this
standard convention:

A function called function_name becomes _function_name@n where n is the
number of bytes taken up by all the arguments expressed as a decimal, with the bytes
for each argument rounded up to the nearest multiple of four in Win32.

Note that the decorated name is independent of the return type. Note also that all
pointers are 4 bytes wide in Win32, regardless of what they point to.

! The complexity of name decoration is avoided with the use of DEF files and C++ source code modules, see
later in this chapter.

92 Excel Add-in Development in C/C++

Expressed slightly differently, the C name decoration for Win API calls is:

e Prefix -
e Suffix @n where n = bytes stack space for arguments
e Case change None

Table 4.1 gives some examples:

Table 4.1 Name decoration examples for C-compiled exports

C source code function definition Decorated function name
void examplel (char argl) _examplel@4
void example2 (short argl) _example2@4
void example3 (long argl) _example3@4
void exampled (float argl) _exampled@4
void example5 (double argl) _example5@8
void example6b (void *argl) _example6@4
void example7 (short argl, double arg2) _example7@12
void example8 (short argl, char arg2) _example8@8

Win32 C++ compilers use a very different name-decoration scheme which is not described
as, among other reasons, it’s complicated. It can be avoided by making the compiler use
the standard C convention using the extern "C" declaration, or by the use of DEF
files. (See below for details of these last two approaches.)

4.5.2 The extern "C" declaration

The inclusion of the extern "C" declaration in the definition of a function in a C++
source file instructs the compiler to externalise the function name as if it were a C func-
tion. In other words, it gives it the standard C name decoration. An example declaration
would be:

extern "C" double c_name_function (double arg)
{
}

An important point to note is that such a function must also be given an extern "C"
declaration in all occurrences of a prototype, for example, in a header file. A number of
function prototypes, and the functions and the code they contain, can all be enclosed in a
single extern "C" statement block for convenience. For example, a header file might
contain:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 93

extern "C"
{

double c_name_function (double arg) ;

double another_c_name_function (double arg) ;
}

double cplusplus_name_function (double arg) ;

4.6 FUNCTION CALLING CONVENTIONS:
__cdecl, stdcall, fastcall

The Microsoft-specific keyword modifiers, _ cdecl, _ stdcall and _ fastcall,
are used in the declaration and prototyping of functions in C and C++. These modifiers
tell the compiler how to retrieve arguments from the stack, how to return values and what
cleaning up to do afterwards. The modifier should always come immediately before the
function name itself and should appear in all function prototypes as well as the definition.

Win32 API applications and DLLs, as well as Visual Basic, all use the _ stdcall
calling convention whereas the ANSI standard for C/C++ is ___cdecl. By default, VC
compiles functions as ___cdecl. This default can be overridden with the compiler option
/Gz. However, it’s better to leave the default compiler settings alone and make any
changes explicit in the code. Otherwise, you are setting a trap for you or someone else
in the future, or creating the need for big warning comments in the code.

The modifier _ fastcall enables the developer to request that the compiler use a
faster way of communicating some or all of the arguments and it is included only for
completeness. For example, the function declaration

void __fastcall fast_function(int i, int Jj)

would tell the compiler to pass the arguments via internal registers, if possible, rather
than via the stack.

Table 4.2 summarises the differences between the three calling conventions. (It’s really
not necessary to remember or understand all of this to be able to write add-ins).

Table 4.2 Summary of calling conventions and name decoration

__cdecl __stdcall _ fastcall

The first two DWORD (i.e.
4-byte) or smaller
arguments are passed in
registers ECX and EDX.
All others are passed
right-to-left on the stack.

Argument passing
order

Right-to-left on the
stack.

Right-to-left on the
stack.

Argument passing
convention

By value except
where a pointer or
reference is used.

By value except
where a pointer or
reference is used.

By value except where a
pointer or reference is
used.

Variable argument
lists

Supported

Not supported

Not supported

(continued overleaf’)

94 Excel Add-in Development in C/C++

Table 4.2 (continued)

_ cdecl

_ stdcall

_ fastcall

Responsibility for
cleaning up the stack

Caller pops the passed
arguments from the
stack.

Called function pops its
arguments from the
stack.

Called function pops its
arguments from the stack.

Name-decoration C functions: C functions: Prefix: @

convention C++ fns declared as C++ fns declared as Suffix: @n
extern "C": extern "C": n = bytes stack space for
Prefix:_ Prefix: _ arguments
Suffix: none Suffix: @n Case change: none

n = bytes stack space
for arguments

Case change: none

Case change: none

C++ functions:

A proprietary name
decoration scheme is
used for Win32.

C++ functions:

A proprietary name
decoration scheme is
used for Win32.

Compiler setting to /Gz /Gd or omitted /Gr

make this the
default:

Note: The VB argument passing convention is to pass arguments by reference unless
explicitly passed by value using the ByVal keyword. Calling C/C++ functions from VB
that take pointers or references is the default or is achieved by the explicit use of the
ByRef keyword.

Note: The Windows header file <wWwindef . h> contains the following definitions which,
some would say, you should use in order to make the code platform-independent. How-
ever, this book chooses not to use them so that code examples are more explicit.

#define WINAPT
#define WINAPIV

_ _stdcall
__cdecl

4.7 EXPORTING DLL FUNCTION NAMES

A DLL may contain many functions not all of which the developer wishes to be accessible
to an application. The first thing to consider is how should functions be declared so that
they can be called by a Windows application. The second thing to consider is how then
to make those functions, and only those, visible to an application that loads the DLL.
On the first point, the declaration has to be consistent with the Windows API calling
conventions, i.e., functions must be declared as ~ stdcall rather than _ cdecl.
For example, double _ stdcall get_system time C(long trigger) can
be used by the DLL’s host application but long current_system time (void)
cannot. (Both these functions appear in the example DLL later in this chapter.) In practice,
the only reason to declare functions as __stdcall in your DLL is precisely because
you intend to make them visible externally to a Windows application such as Excel.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 95

On the second point, the DLL project must be built in such a way that the addresses of
the _ stdcall functions you wish to export are listed in the DLL by the linker. There
are a few ways to do this:

Use the _declspec (dllexport) keyword in the function declaration.

. List the function name in a definition (* . DEF) file.

3. Use a #pragma preprocessor linker directive in combination with the _ FUNCTION_
and __ FUNCDNAME___ macros (in Visual Studio .NET).

o =

These three approaches are described in detail in the following sub-sections, but it is rec-
ommended that you use a DEF file if you are using Visual Studio 6.0 and the preprocessor
linker directive if using Visual Studio .NET.

471 The _ declspec(dllexport) keyword

The _ declspec (dllexport) keyword can be used in the declaration of the function
as follows:

__declspec(dllexport) double _ stdcall get_system time_C(long trigger)
{
}

The = declspec(dllexport) keyword must be placed at the extreme left of the
declaration. The advantages of this approach are that functions declared in this way do
not need to be listed in a DEEF file (see below) and that the export status is kept right with
the function definition. However, if you want to avoid the function being made available
with the C++ name decoration you would need to declare the function as follows:

extern "C" __declspec(dllexport) double __ stdcall
get_system_time_C(long trigger)

{

}

The problem now is that the linker will make the function available as _get_system_
time_C@4 and, if we are telling the application to look for a function called get_
system_time_ C, it will not be able to find it, so must look for the decorated name.

4.7.2 Definition (* . DEF) files

A definition file is a plain text file containing a number of keyword statements followed
by one or more pieces of information used by the linker during the creation of the DLL.
The only keyword that needs to be covered here is EXPORTS. This precedes a list of the
functions to be exported to the application. The general syntax of lines that follow an
EXPORTS statement is:

entryname[=internalname] [Qordinal [NONAME]] [DATA] [PRIVATE]

96 Excel Add-in Development in C/C++

Example 1

Consider the following function declaration in a C++ source file:

extern "C" double _ stdcall get_system_ time_C(long trigger) ;

Given the decoration of the function name, this would be represented in the definition file
as follows:

EXPORTS
; (Comment) This function takes a single 'long' argument
get_system_time_C=_get_system_ time_C@4

In the above example, get_system_time_C is the entryname: the name you want
the application to know the function by. In this example, the same undecorated name has
been chosen as in the source code, but it could have been something completely different.
The internalname is the decorated name. As the function is declared as both extern
"C" and __ stdcall it has been decorated as set out in the table in section 4.6 on
page 93.

The keywords PRIVATE, DATA and @ordinal [NONAME]are not discussed as they
are not critical to what we are trying to do here.

Example 2

We could also have declared the C++ function (in the C++ source code file) without the
extern "C" like this:

double _ stdcall get_system_time_C(long trigger) ;

The corresponding entry in the .DEF file would be:

EXPORTS
get_system_time_C

In this case the linker does all the hard work. We have no extern "C" statement and
no name decoration reflected in the DEF file. The linker makes sure on our behalf that
the C++ decorated name is accessible using just the undecorated name.

Example 2 is the best way to make functions available, as it’s the simplest. However,
if you find that Excel cannot find your functions, you can use extern "C" and the
decorated name in the DEF file as in Example 1.

The only other thing worth pointing out here is the very useful comment marker for
.DEF files, a semi-colon, after which all characters up to the end of the line are ignored.
For example, the above DEF file could look like this:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 97

EXPORTS
; My comment about the exported function can go here
; after a semi-colon...

get_system_time_C; ...plus more comments here

Note that when using Visual Studio .NET, the DEF file must be explicitly added to the
project settings, whereas in Visual Studio 6.0 it is only necessary to include the DEF file
in the project source folder. See sections 4.9.2 on page 100, and 4.10.2 on page 106 for
details.

4.7.3 Using a preprocessor linker directive

Visual Studio .NET introduced a number of new predefined macros that were not available
in Visual Studio 6.0. Two of these, _ FUNCTION___ and _ FUNCDNAME_ (note the
double underline at each end), are expanded to the undecorated and decorated function
names respectively. This enables the creation of a preprocessor linker directive within the
body of the function which instructs the linker to export the function as its undecorated
name.? For example:

// Include this in a common header file:

#if _MSC_VER > 1200 // Later than Visual Studio 6.0

#define EXPORT comment (linker, "/EXPORT:"__FUNCTION__"="__ FUNCDNAME__)
#else

#define EXPORT

#endif // else need to use DEF file or __declspec(dllexport)

double _ stdcall MyDllFunction (double Arg)
{
#pragma EXPORT

// Function body code here...

}

Note that the directive must be placed within the body of the function and, furthermore,
will only be expanded when neither of the compiler options /EP or /P is set. The use of
this technique completely removes the need for a DEF file and has the added advantage
of keeping the specification of its export status local to the function code.

To keep the text of this book as simple as possible, this directive is not included in
example code in the remainder of the book but is included on the CD ROM examples.

4.8 WHAT YOU NEED TO START DEVELOPING ADD-INS
IN C/C++

This chapter shows the use of Microsoft Visual C++ 6.0 Standard Edition and Visual
Studio .NET (in fact, Visual C++ .NET, which is a subset of VS .NET). Menu options
and displays may vary from version to version, but for something as simple as the creation

21 am grateful to Keith Lewis for this contribution.

98 Excel Add-in Development in C/C++

of DLLs, the steps are almost identical. This is all that’s needed to create a DLL whose
exported functions can be accessed via VB.

However, to create a DLL that can access Excel’s functionality or whose functions you
want to access directly from an Excel worksheet, you will need Excel’s C API library
and header file, or COM (see section 9.5). (See also section 4.12 below, and Chapter 5
Turning DLLs into XLLs: The Add-in Manager Interface on page 111.)

4.9 CREATING A DLL USING VISUAL C++ 6.0

This section refers to Visual C++ 6.0 as VC. Visual Studio 6.0 has the same menus and
dialogs. Section 4.10 on page 103 covers the same steps as this section, but for the Visual
C++ .NET 2003 and Visual Studio .NET 2003 IDEs, which this book refers to as VC.NET
to make the distinction between the two.

4.9.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called GetTime.d11l
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

The steps are:

Open the Visual C++ IDE.

Select File/New. . .

On the New dialog that appears select the Projects tab.

Select Win32 Dynamic-Link Library, enter a name for the project in the Project name: text
box and select a location for the project as shown and press OK.

el o

New x|
Files Projects I kspaces | OtherD |
ATL COM AppWizerd Project pame:
v DevStudio Add-in Wizard I"“j"lT"""'
1SAF| Exension Wizard
-1 Maketile
ton.
MFC ActivelX ControWizard o
MFC App\Wizard (dil) [CADEVELORGetTime _j
MFC AppiYizard (exa)
[T1 Uity Froject
[B]'Win32 Application
[—1'in32 Conscle Application & Create new workspace
L?]Win32 Dynarmic-Link Librarny € Add o cumentworkspace
o e
%] Win32 Stalic Librery o PP aend sneyof
I =
Elatforms.

|l?:‘ﬂ’in iz

ok | camce |

5. Select Create an empty DLL project on the following dialog and press Finish.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 99

6. Select OK to clear the message dialog that tells you that the project will be created
with no files.

7. Make sure the Workspace window is visible. (Select View/Workspace if it isn’t.)

8. Expand the GetTime files folder.

9. Right-click on the Source Files sub-folder and select Add Files to Folder. . .

0

. In the File name: text box type GetTime.cpp. [The Files of type: text box should now
contain C++ Files (...).]
11. The following dialog will appear. Select Yes.

Microsoft Visual C+ + £|

2 C:\DevelopiGetTime\GetTime.cpp
The specified file does not exist.
Do you want to add a reference to the project anyway?

:

12. Expand the Source Files folder in the Workspace window and you will now see the
new file listed.

13. Double-click on the icon immediately to the left of the file name GetTime.cpp. You
will see the following dialog:

Microsoft Visual C++ ll

? Project file C:\Develop\GetTime\GetTime.cpp does not exist.
Do you want to create a new file?

14. Select Yes.
15. Repeat steps 10 to 14 to create and add to Source Files a file called GetTime.def.

The project and the required files have now been created, and is now ready for you to
start writing code. If you explore the directory in which you created the project, you will
see the following files listed:

GetTime.cpp A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a .cpp file extension
allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def A definition file. This text file will contain a reference to the
function(s) we wish to make accessible to users of the DLL (Excel
and VBA in this case).

You will also see a number of project files of the form GetTime. *.

100 Excel Add-in Development in C/C++

4.9.2 Adding code to the project

To add code to a file, double-click on the file name and VC will open the text file in the
right hand pane. We will add some simple code that returns the system time, as reported
by the C run-time functions, as a fraction of the day, and export this function via a DLL so
that it can be called from VBA. Of course, VBA and Excel both have their own functions
for doing this but there are two reasons for starting with this particular example: firstly,
it introduces the idea of having to understand Excel’s time (and date) representations,
should you want to pass these between your DLL and Excel. Secondly, we want to be
able to do some relative-performance tests, and this is the first step to a high-accuracy
timing function.
For this example, add the following code to the file GetTime . cpp:

#include <windows.h>
#include <time.h>

#define SECS_PER_DAY (24 * 60 * 60)

// Returns the time of day rounded down to the nearest second as
// number of seconds since the start of day.

long current_system_time (void)
{
time_t time_t_T;
struct tm tm_T;
time (&time_t_T) ;
tm_T = *localtime(&time_t_T);
return tm_T.tm_sec + 60 * (tm_T.tm_min + 60 * tm_T.tm_hour) ;

// Returns the time of day rounded down to the nearest second as a
// fraction of 1 day, i.e. compatible with Excel time formatting.

// Wraps the function long current_system_ time(void) providing a
// trigger for Excel using the standard calling convention for
// Win32 DLLs.

double _ stdcall get_system_time_C(long trigger)
{

return current_system_time() / (double)SECS_PER_DAY;
}

The function long current_system_time(void) gets the system time as a
time_t, converts it to a struct tm and then extracts the hour, minute and second. It
then converts these to the number of seconds since the beginning of the day. This function
is for internal use only within the DLL and is, therefore, not declared as __stdcall.

The function double _ stdcall get_system_time_C(long trigger) takes
the return value from long current_system_time (void) and returns this divided
by the number of seconds in a day as a double. There are three things to note about this
function:

1. The declaration includes the __stdcall calling convention. This function is going
to be exported so we need to overwrite the default ___cdecl so that it will work with
the Windows APIL.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 101

2. There is a trigger argument enabling us to link the calling of this function to the change
in the value of a cell in an Excel spreadsheet. (See section 2.12.2 Triggering functions
to be called by Excel — the trigger argument on page 34.)

3. The converted return value is now consistent with Excel’s numeric time value storage.

Now we need to tell the linker to make our function visible to users of the DLL. To do
this we simply need to add the following to the file GetTime.def:

EXPORTS
get_system_time_C

(In later versions of IDE the preprocessor directive described in section 4.7.3 above can
be used instead).
That’s it.

4.9.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC will create output files in a debug sub-folder of the project folder called,
not surprisingly, Debug. Changing the active configuration to release causes build output
files to be written to the Release sub-folder. As the name suggests the debug configur-
ation enables code execution to be halted at breakpoints, the contents of variables to be
inspected, the step-by-step execution of code, etc.

Without getting into the details of the VC user interface, the Build menu contains the
commands for compiling and linking the DLL and changing the active configuration. The
Project menu provides access to a number of project related dialogs and commands. The
only one that’s important to mention here is Project/Settings, which displays the following
dialog (when the Debug tab is selected, as in this case):

21|

Setlings For: |'Win32 Debug EI General Debug I C/Ce= I Link. | Resources] MID; EE
E @ﬁ

Category. [General 3

Executable for debug session:
|C.‘\Program Files\Microsoft Office\Office\EXCEL EXE j

‘Working directory:

Program arguments:

Remaote executable path and file name:

l

Ok I Cancsl

102 Excel Add-in Development in C/C++

As you can see, these are the settings for the debug configuration. The full path and
filename for Excel has been entered as the debug executable. Now, if you select Build/Start
Debug. . ./Go, or press {F5}, VC will run Excel. If your project needs rebuilding because
of changes you’ve made to source code, VC will ask you if you want to rebuild first.

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s Add-in Manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC by debugging
the DLL. (Select Build/Start Debug. . ./Go or press {F5}.) This enables you to experiment by
setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get-
TimeTest.x1s entered into the Program arguments field. (Excel interprets a command
line argument as an auto-load spreadsheet.)

Project Settings i }.{

Settings For. |Win32 Debug Ll General Debug] CfC++ I Link. | Resources I MID§ D]
B
Cotegory [EER ~ |
Executable for debug session:
IC:\Progfam Files\Micros oft Office\Office\EXCEL EXE j
‘Working directony:
Frogram arguments:

Ic_\DeveI0p\GelTime\GetTlmeTest.xIs

Femote executable path and file name:

|

| 0K I Cancel

Next time Build/Start Debug. . ./Go is selected, or {F5} is pressed, VC will run Excel and
load this test spreadsheet automatically. This is a great time-saver and helps anyone who
might take over this project to see how the DLL was supposed to work.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 103

4.10 CREATING A DLL USING VISUAL
C++ .NET 2003

This section refers to Visual C++ .NET 2003 as VC.NET. Visual Studio .NET 2003 has
the same menus and dialogs. Section 4.9 on page 98 covers the same steps as this section,
but for the Visual C++ 6.0 and Visual Studio C++ 6.0 IDEs, which this section refers to
as VC to make the distinction between the two.

4.10.1 Creating the empty DLL project

This example goes step-by-step through the creation of a DLL called NETGetTime.d11
which is referred to in the following chapter and expanded later on. It will export one
function that, when called, will return the date and time in an Excel-compatible form to
the nearest second.

1. Open the Visual C++ .NET IDE.

0 Microsoft Development Environment [design] - Start Page o]
Fle Edt Vew Tooks Wndow Help
P LRR - -F-B ~ | g add_to_queue ~REERZ-
= Stal'ﬂ*agal 4bx
§ o I =
|| Open an Existing Project
2|
|Dynamic Help 2 x|
24
W Help Al
Salutico Explarer
M 5 Pro
j Samples —
Visual Studio Samples

([Getting Started
Upgrading Exstng Code

. n . Creating New Solutions and w

New Project Open Project «| | »

[Ready | I 4

2. On the New Project dialog that appears, select the Win32 folder.
3. Select Win32 Project and enter a name for the project in the Name: text box and select
a location for the project as shown and press OK.

104 Excel Add-in Development in C/C++

New Project ﬁl

Project Types: Templates:
E-@ Visual C++ Projects %wmaz Console Project

-8 NeT W32 Project
(0 ATL
-0 MFC
-3 Win32
- [General
-.{1] Setup and Deployment Projects
= Other Projects
{3 visual Studio Solutions

|A Win32 console application or other Win32 project.

Name: | NETGetTime

Location: I C:\Develop LI Browse.., |

Project will be created at C:\Develop\NETGetTime.

Fiore | oK I Cancel [Help |

4. The following dialog will then appear:

Win32 Application Wizard - NETGetTime

Welcome to the Win32 Application Wizard

This wizard generates a Win32 application project. The project can be a3 Windows application, a console application,
a OLL, or a static library,

These are the current project settings:
& Windows application
Click Finish from any window to accept the current settings.

After you creste the project, see the project's readme. tet file for
Infor mation about the project features and files that are generated.

Fish | cancel | Hep |

5. Select the Application Settings tab, after which the following dialog should appear:

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 105

Win32 Application Wizard - NETGetTime

Application Settings
Specify the type of application you will build with this project and the options or libraries you want supported,

Application type: Add support for:
" Windows application = a7
 Console application e
“pu
€ Static library

additional options:
¥ Empty project
= Erport oy miale

¥ 2renorrmlled header

Fish | cancel | Hep |

6. Select the DLL radio button, check the Empty Project checkbox and press Finish. You
should now see something like this:

Pe NETGetTime - Microsoft Visual C+ + [design] - Start Page

Ele Edt Yew Froject Buid Debug Tocks Window Help

-ta-2dd &[ﬁﬁ|ﬂ-r--m-|§| § Cebug -|wadd,lo_,q.r:uc
5| start page| Soltio
Projects Oopline Resources || ‘oA Schution WETGELTime' (1 project)
Bl 1ot Time |
| = References

2 Sourca Flles
|| Open an Existing Project —J Header Filas
2 2 Rescurce Files

|Dynamic Help o x|
204
() Help -
Snition Explorer I~
Wirdows Servie Apolcations
Lsing Sohtion Explorer
Mlanaging Sohtions, Prosects, snd Filey =
Source Control Sarvices
" samples
Viual Studio Samples
() Getting Started

1 [ntrochacticn o Wind=ws Forms e
New Project | | Dpen Project 4 | | »
7
[Ready I | 4

7. Make sure the Solution Explorer is visible. (Select View/Solution Explorer if it isn’t.)
8. Expand the NETGetTime folder.

106 Excel Add-in Development in C/C++

9. Right-click on the Source Files sub-folder and select Add/Add new item. ..
10. In the Add New ltem dialog, select the C++ File (.cpp) in the Templates pane, type
GetTime in to the Name: text box.
11. Expand the Source Files folder in the Solution Explorer and you will now see the new
(completely empty) file listed.

(The following steps are only required if using a DEF file. It is recommended that you
use a linker preprocessor directive instead. See section 4.7.3 above.)

12. Repeat steps 9 to 11, selecting instead the Module Definition File (.def) in the Templates
pane, to create and add to Source Files a file called GetTime.def.

13. Under Project/NetGetTime properties/Linker/Input enter GetTime.def into the Module
Definition File text box. (This last step is something that you did not explicitly have
to do in VC 6.0).

The project and the required files have now been created, and is now ready for you to
start writing code. If you explore the directory in which you created the project, you will
see the following files listed:

GetTime.cpp A C++ source file. This will contain our C or C++ source code.
(Even if you only intend to write in C, using a .cpp file extension
allows you to use some of the simple C++ extensions such as the
bool data type.)

GetTime.def (If used). A definition file. This text file will contain a reference to
the function(s) we wish to make accessible to users of the DLL
(Excel and VBA in this case).

You will also see a number of project files of the form NETGetTime. *.

4.10.2 Adding code to the project

The process of adding code is essentially the same in VC as in VC.NET. Section 4.9.2
on page 100 goes through this for VC, adding two functions to GetTime.cpp and an
exported function name to the DEF file. These functions are used in later parts of this
book to run relative performance tests. If you are following these steps with VC.NET,
you should go to section 4.9.2 and then come back to the following section to see how
to compile and debug.

4.10.3 Compiling and debugging the DLL

In the set up of the DLL project, the IDE will have created two configurations: debug and
release. By default, the debug configuration will be the active one. When you compile
this project, VC.NET will create output files in a debug sub-folder of the project folder
called, not surprisingly, Debug. Changing the active configuration to release causes build
output files to be written to the Release sub-folder. As the name suggests, the debug
configuration enables code execution to be halted at breakpoints, the contents of variables
to be inspected and the step-by-step execution of code, etc.

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 107

Without getting into the details of the user interface, the Build menu contains the com-
mands for compiling and linking the DLL and changing the active configuration. The
Project menu provides access to a number of project related dialogs and commands. The
only one worth mentioning here is the Project/NETGetTime Properties. . ., which displays the
following dialog (with the Debug settings selected in this case):

NETGetTime Property Pages il

Configuration: IA.ctwe(De!Jug) 'l Blatform: |ActwetWh32) vl Configuration Manager... |

(23 Configuration Propertie. |5 Action

General Cormmand C:\Program Files\Microsoft Office\Office\EXCEL. EXE| _:J
% Debugging Command Arguments
Qci++ Working Directory
33 Linker Attach Na
(2 Browse Informatior Symbol Path
I:“_l Build Events B pDebuggers
(2 Custom Build Step Debugger Type Autn
(£ web Deployment B Remote Setth
Connection Local

Remote Machine
Rernote Command
HTTP URL

Command
The debug command when using the Local Connection,

oK | Cancel Arply Help

As you can see, these are the settings for the debug configuration. The full path and file-
name for Excel has been entered as the debug executable. Now, if you select Debug/Start,
or press {F5}, VC.NET will run Excel. If your project needs rebuilding because of
changes you’ve made to source code, VC.NET will ask you if you want to rebuild
first.

So far all we’ve done is created a DLL project, written and exported a function and
set up the debugger to run Excel. Now we need to create something that accesses the
function. Later chapters describe how to use Excel’s add-in manager and Paste Function
wizard, but for now we’ll just create a simple spreadsheet which calls our function from
a VB module.

To follow the steps in the next section, you need to run Excel from VC.NET by
debugging the DLL. (Select Build/Start Debug. . ./Go or press {F5}.) This enables you to
experiment by setting breakpoints in the DLL code.

You can also specify a spreadsheet that Excel is to load whenever you start a debug
session. This example shows the name and location of a test spreadsheet called Get-
TimeTest.x1ls entered into the Command Arguments field. (Excel interprets a command
line argument as an autoload spreadsheet.)

108 Excel Add-in Development in C/C++

NETGetTime Property Pages] x|
Configuration: |Actwe(DehugJ "l Elatform: |Actrre(b\u'h132) VI Configuration Manager... |

23 Configuration Propertic B Action

General Command C\Program Files\Microsoft Office\Office\EX(CEL.EXE| ;l
% Debugging Command Arguments
@ C/C++ Working Directory
& Linker Attach No
(@ Browse Informatior Symbol Path
L'_.I Build Events 8 pebuggers
I:] Custom Build Step Debugger Type Auto
(23 Web Deployment B Remote Settings
Connection Local

Remote Machine
Remots Command
HTTP URL

Command
The debug command when using the Local Connection.

oK I Cancel [ATy I Help |

Next time Debug/Start is selected, or {F5} is pressed, VC.NET will run Excel and load this
test spreadsheet automatically. This is a great time-saver and helps anyone who might
take over this project to see how the DLL was supposed to work.

4.11 ACCESSING DLL FUNCTIONS FROM VB

VB provides a way of making DLL exports available in a VB module using the Declare
statement. (See section 3.6 Using VBA as an interface to external DLL add-ins on page
62 for a detailed description.) In the case of the example in our add-in the declaration in
our VB module would be:

Declare Function get_system_time_C Lib "GetTime.d11" _
(ByVal trigger As Long) As Double

(Note the use of the line continuation character ‘_’.)

As described in Chapter 3 Using VBA on page 55, if you open a new VBA module
in GetTimeTest.x1ls and add the following code to it, you will have added two
user-defined functions to Excel, Get_C_System_Time() and Get_VB_Time().

Declare Function get_system_time_C Lib "GetTime.d11" _
(Byval trigger As Long) As Double

Function Get_C_System_Time(trigger As Double) As Double
Get_C_System_Time = get_system_time_C(0)
End Function

Creating a 32-bit Windows (Win32) DLL Using Visual C++ 6.0 or Visual Studio .NET 109

Function Get_VB_Time(trigger As Double) As Double
Get_VB_Time = Now
End Function

(Note that the full path of the DLL is, in general, required in the VB Declare statements.)
Back in Excel, the following simple spreadsheet has been created:

£3 Microsoft Excel - GetTimeTestxls = |D|£]
| Ele Edt View Insert Format Tools Data Window Hep _l=|x]
Dz @8R -z & 8| w00% v& »R 2|0 +2
Al3 ~| =| C run-time function
A I B [¢ [T b [F

1 |GetTime.dll Test Spreadsheet

2

3 1

4 |Excel NOW function 15:07:00.93|

5 |VB Now function 15:07:00 00

6 |C run-time function 15:07:00.00

;

g

g 1 1

10 -
[«[» [»i}\sheet1 / [«] Lll_|

Cell Formula

B4 =NOW()
B5 Get_VB_Time(B4)
B6 Get C_System Time(B4)

Here, cell B4 will recalculate whenever you force a recalculation by pressing {F9}, or
when Excel would normally recalculate, say, if some other cell’s value changes. (The
Now() function is volatile and is re-evaluated whenever Excel recalculates despite not
depending on anything on the sheet.) The fact that B4 is a precedent for BS and B6
triggers Excel to then re-evaluate these cells too. (See section 2.12.2 Triggering functions
to be called by Excel — the trigger argument on page 34.)

Pressing {F9} will therefore force all three cells to recalculate and you will see that the
C run-time functions and the VB Now function are in synch. You should also see that
the NOW() function is also in synch but goes one better by showing 100 ths of a second
increments. (This is discussed more in Chapter 9 where the relative execution speeds of
VB and C/C++ are timed and compared.)

110 Excel Add-in Development in C/C++
4.12 ACCESSING DLL FUNCTIONS FROM EXCEL

In order to access DLL functions directly from Excel, as either worksheet functions or
commands, without the need for a VBA wrapper to the functions, you need to provide an
interface — a set of functions — that Excel looks for when using the Add-in Manager to
load the DLL. This is covered in detail in Chapter 5 Turning DLLs into XLLs: The Add-in
Manager Interface as well as subsequent sections. The interface functions are intended
to be used to provide Excel with information it needs about the DLL functions you are
exporting so that it can integrate them — a process known as registration, covered in detail
in section 8.6 Registering and un-registering DLL (XLL) functions on page 244.

5

Turning DLLs into XLLs: The Add-in
Manager Interface

5.1 THE XLCALL32 LIBRARY AND THE C API FUNCTIONS

An XLL is simply a DLL that supports an interface through which Excel and the DLL can
communicate effectively and safely. This communication is 2-way: the DLL must export
a number of functions for Excel to call; the DLL needs access to functions through which
it can call Excel. For the latter, the DLL requires access to an Excel import library,
x1call32.1ib orits DLL counterpart x1call32.d11. These call-back functions are
Exceld (), Exceldv (), Excell2 (), Excell2v () and XLCallVer (). They are
described in detail in Chapter 8. Excell2 () and Excell2v () are only supported in
Excel 2007+ (12+).

Your DLL project also needs a header file containing the data structures, constant defi-
nitions and enumerations used by Excel, and definitions of the C API interface functions
through which the DLL can call back into Excel. The header file, x1call .h, is included
in the example file on the CD ROM and also from Microsoft, and x1call32.d11, a
version-specific file, is part of every Excel installation.

The standard way of linking to the x1call32 library, i.e., the method used in the
Excel ’97 SDK and Framework project and the method described in the first edition of
this book, has been to include a reference in the project to the x1call32.1ib import
library. For projects built in this way, the library is linked at compile time and its exports
are prototyped in the usual way, for example:

int _cdecl Excel4d (int x1fn, LPXLOPER operRes, int count,...);

At run time, when the XLL is loaded by Excel, it is implicitly linked to x1call32.d11.
Where you are creating DLLs to run with Excel 2007 and earlier versions, you must
link with Excel 2007’s version of the import library. The resulting XLL will still load
under even though Excell2 () is not supported in as it links these to safe stub
functions.

Note that the structure of the SDK files for the 2007 release is different to the previous
SDK versions: The old SDK comprises a header file, x1call.h, and the import library,
x1call32.1ib. The 2007 SDK comprises updated versions of these two files and a C++
source file x1call . cpp. This new source file contains the source code for the functions
Excell2 () and Excell2v (). Note that these are not exported by the import library
x1call32.1ib or by the DLL x1call32.d11. When your XLL is running within
Excel 2007, the source for these functions dynamically links to an Excel 12 callback.
When running older versions both functions return x1retFailed when called.

An alternative approach is to link explicitly to x1call32.d11 in code at run-time to
get the addresses of the functions Exceld (), Exceldv () and XLCallVer () using
LoadLibrary () and GetProcAddress (). The import library does not then need to

112 Excel Add-in Development in C/C++

be included in the project, but the above-style function prototypes for Excel4 (), etc.,
must be replaced with the following typedefs and extern declarations:

typedef int (_cdecl * pfnEXCEL4) (int, xloper *, int,...);
typedef int (pascal * pfnEXCEL4v) (int, xloper *, int, const xloper *[]);
typedef int (pascal * pfnXLCALLVER) (void) ;

extern pfnEXCEL4 Excel4;
extern pfnEXCEL4v Exceldv;
extern pfnXLCALLVER XLCallVer;

Note that you cannot dynamically link to the Excel 2007 API callcaks functions Excel12 ()
and Excell2v (), in this way. The typedefs are not strictly necessary but make the
code far more readable and make the acquisition of the procedure addresses far simpler,
as is shown in the next code example. Note the inclusion of the const specifier in the
definitions of Excel4v and Excell2v which is consistent with their function and assists
the writing of wrappers that also reflect const status. The const specifier is not included
in the Microsoft SDK versions of these prototypes as, in the case of calling x1Free only,
the passed argument is modified. (The contained pointer is set to NULL). Ignoring this one
case is not serious and enables good-practice use of const in your project code.
The steps in this approach are therefore:

1. Define global function pointer variables, one for each of the C API functions and
initialise them to NULL.

2. From xl1AutoOpen (see section 5.5.1 on page 117) call a function that loads
x1call32.d11 and initialises the function pointers.

3. From xlAutoClose (see section 5.5.2 on page 118) release the reference to
x1call32.d11 and set the function pointers to NULL.

Care must be taken not to call the C API before step 2, of course. Objects declared outside
function code, whose constructors might call the C API, might make this rather obvious
advice hard to follow: the point at which such objects are constructed is undefined but will
almost certainly be before Excel calls x1AutoOpen. In such cases, the C API function
pointer (or the global version variable) should be checked before invocation. Care must
also be taken to perform step 3 after any objects’ destructors are called that might, directly
or indirectly, attempt to call the C API functions. This may may necessitate the explicit
calling of some destructors.
The following code demonstrates an implementation of step 2:

// Declare function pointers that will be assigned at run-time
pfnEXCEL4 Exceld = NULL;

pPEfnEXCEL4v Exceldv = NULL;

pEnXLCALLVER XLCallVer = NULL;

int gExcelVersion = 0; // version not known

bool gExcelVersionl2plus = false;

bool gExcelVersionllminus = true;

HMODULE hXLCall32dll = 0;

bool link_Excel_API (void)
{

Turning DLLs into XLLs: The Add-in Manager Interface 113

// First, check if the C API interface functions are defined. If project
// was linked with an import library they should be, but if linking with
// x1lcall32.dll at run-time, need to get the proc addresses for Excel4,
// Exceldv and XLCallVer.

static bool already failed = false;

if (already_failed)
return false;

if (Exceld == NULL)
{
// Load the DLL and get the procedure addresses for Exceld and Exceldv
// Module’s handle is stored so can free the library in xlAutoClose
hXL.Call32dll = LoadLibrary("xlcall32.dll");
if(!'hXLCall32dl1l)
{
MessageBox (NULL, "Could not load xlcall32.dll",
"Linking Excel API", MB_OK | MB_SETFOREGROUND) ;
already_failed = true;
return false;

}

Exceld = (pfnEXCEL4)GetProcAddress (hXLCall32dll, "Excel4d");

Exceldv = (pfnEXCEL4v)GetProcAddress (hXLCall32dll, "Exceldv");
XLCallVer = (pfnXLCALLVER)GetProcAddress (hXLCall32dll, "XLCallVer");
if (!Exceld | | !Exceldv | | !XLCallVer)

{
MessageBox (NULL,
"Could not get addresses for Exceld, Exceldv and XLCallVer",
"Linking Excel API", MB_OK | MB_SETFOREGROUND) ;
already_failed = true;
return false;
}
}

return true;

The first action of x1AutoOpen () should be to call 1ink_ Excel_ API().

int _ stdcall xlAutoOpen (void)

{
if(x11l_initialised)
return 1;

// Link to the C API and set the globally-accessible Excel version.
if (!link_Excel_API())
return 1;

// Do other initialisation things...

}

The last lines of x1AutoClose () should undo the linking:

int _ stdcall xlAutoClose(void)

{

if (!x11_initialised)

114 Excel Add-in Development in C/C++

return 1;
// Do other clean-up things...

// Unlink the C API and reset the C API function pointers to NULL
unlink_Excel_ API();
x11_initialised = false;
return 1;

void unlink_ Excel_API (void)
{
if (hXLCall32d1ll)
{
FreeLibrary (hXLCall32d1ll) ;
hXLCall32dll = 0;
Exceld = NULL;
Exceldv NULL;
Excell2 NULL;
Excell2v = NULL;
XLCallVer = NULL;

5.2 WHAT DOES THE ADD-IN MANAGER DO?
5.2.1 Loading and unloading installed add-ins

The Add-in Manager is responsible for loading, unloading and remembering which add-
ins this installation of Excel has available to it. When an XLL (see below for more
explanation of the term XLL) is loaded, either through the File/Open. .. command menu
or via Tools/Add-ins. . ., the Add-in Manager adds it to its list of known add-ins.

Warning: In some versions of Excel, and in certain circumstances, the Add-in Manager
will also offer to make a copy of the XLL in a dedicated add-in directory. This is not
necessary. In some versions, a bug prevents the updating of the XLL without physically
finding and deleting this copy, so you should, in general, not let Excel do this.

5.2.2 Active and inactive add-ins

When an add-in is loaded for the first time it is active, in the sense that all the exposed
functions, once registered properly, are available to the worksheet. The Add-in Manager
allows the user to deactivate an add-in without unloading it by un-checking the checkbox
by the add-in name, making its functions unavailable. (This is a useful feature when
you have add-ins with conflicting function names, perhaps different versions of the same
add-in.)

5.2.3 Deleted add-ins and loading of inactivate add-ins

On termination of an Excel session, the Add-in Manager makes a record of the all active
add-ins in the registry so that when Excel subsequently loads, it knows where to find them.
If a remembered DLL has been deleted from the disk, Excel will mark it as inactive and

Turning DLLs into XLLs: The Add-in Manager Interface 115

will not complain until the user attempts to activate it in the Add-in Manager dialog. At
this point Excel will offer to delete it from its list.

If the Excel session in which the add-in is first loaded is terminated with the add-in
inactive, Excel will not record the fact that the add-in was ever loaded and, in the next
session, the add-in will need to be loaded from scratch to be accessible.

If the Excel session was terminated with the add-in active then a record is made in the
registry. Even if subsequent sessions are terminated with the add-in inactive Excel will
remember the add-in and its inactive state at the next session. The inactive add-in is still
loaded into memory at start up of such a subsequent session. Excel will even interrogate
it for information under certain circumstances, but will not give the DLL the opportunity
to register its functions.

5.3 CREATING AN XLL: THE x1Auto INTERFACE
FUNCTIONS

An XLL is a type of DLL that can be loaded into Excel either via the File/Open...
command' menu or via Tools/Add-ins... or a command or macro that does the same
thing. To be an XLL, that is to be able to take advantage of Excel’s add-in management
functionality, the DLL must export at least one of a number of functions that Excel looks
for. Through these the DLL can add its functionality to Excel’s. This includes enabling
Excel and the user to find functions via the Paste Function wizard, with its very useful
argument-specific help text. (See section 2.14 Paste Function dialog.)

These functions, when called by Excel, give the add-in a chance to do things like
allocate and initialise memory and data structures and register functions (i.e., tell Excel
all about them), as well as the reverse of all these things at the appropriate time. They
can also display messages to the user providing version or copyright information, for
example. The DLL also needs to provide a function that enables the DLL and Excel to
cooperate to manage memory, i.e., to clean up memory dynamically allocated in the DLL
for data returned to Excel.

The functions that do all these things are:

int__stdcall x1AutoOpen (void) (required)

int__stdcall x1AutoClose (void)

int_ stdcall xlAutoAdd (void)

int_ stdcall xlAutoRemove (void)

int_ stdcall xl1AddInManagerInfo (xloper *)

int__ stdcall xlAddInManagerInfol2 (xloperl2 *)

e xloper *_ stdcall xlAutoRegister (xloper *)
xloperl2 * _ stdcall xlAutoRegisterl2 (xloperl2 *)

e void__ stdcall xlAutoFree (xloper *)

void___stdcall xlAutoFreel2 (xloperl2 *)

Note that the last three functions either accept or return xlopers and so in Excel 2007
are supported in both x1oper and xloper12 variants. The following sections describe
these functions, which can be omitted in most cases, in more detail. (Note: These functions

! Excel 2000 and earlier versions only.

116 Excel Add-in Development in C/C++

need to be exported, say, by inclusion in the DLL’s .DEF file, in order to be accessible
by Excel.)

The only truly required function is x1AutoOpen, without which the XLL will not
be recognised as a valid add-in. x1AutoClose and x1Free (x1Freel?2) are required
in those circumstances where cleaning up of the XLLs resources needs to happen. The
others can all be omitted.

5.4 WHEN AND IN WHAT ORDER DOES EXCEL CALL
THE XLL INTERFACE FUNCTIONS?

Table 5.1 XLL interface function calling

Action Functions called

User invokes Add-in Manager dialog for the x1AddInManagerInfo
first time in this Excel session. The add-in was
loaded in previous session.

In the Add-in Manager dialog, the user x1AutoRemove
deactivates (deselects) the add-in and then x1AutoClose
closes the dialog.

In the Add-in Manager dialog, the user x1Autoadd

activates the add-in and then closes the dialog. x1AutoOpen

User loads the add-in for the first time. x1AddInManagerInfo
x1AutoAdd
x1AutoOpen

User starts Excel with the add-in already x1AutoOpen

installed in previous session.

User closes Excel with the add-in installed but No calls made.
deactivated.

User closes Excel with the add-in installed and x1AutoClose
activated. x1AddInManagerInfo

User starts to close Excel but cancels when x1AutoClose
prompted to save their work. (See note below.)

Note: If the user starts to close Excel, causing a call to x1AutoClose, but then cancels
when prompted to save their work, Excel does not then call any of the x1Auto functions
to reinitialise the add-in. Even if x1AutoClose attempts to unregister the worksheet
functions, a bug in the C API prevents this from being successful. Therefore Excel con-
tinues to run and the worksheet functions continue to work. The problems arise where, for
example, memory or other resources are released in the call to x1AutoClose or where
custom menus are removed. These disappear until reinstated with a call to x1AutoOpen.
Excel 2007 fixes this slightly inconvenient behaviour.

Turning DLLs into XLLs: The Add-in Manager Interface 117

Note: If the user deactivates an add-in in the Add-in Manager dialog, but reloads the
same add-in (as if for the first time) before closing the dialog, Excel will call x1AutoAdd
and x1AutoOpen without calling x1AutoRemove or x1AutoClose. This means the
add-in re-initialises without first undoing the first initialisation, creating a risk that custom
menus might be added twice, for example. To avoid adding menus twice it is necessary
to check if the menu is already there.

Warning: Given the order of calling of these functions, care is required to ensure that
no activities are attempted that require some set-up that has not yet taken place. For this
reason it is advisable to place your initialisation code into a single function and check
in all the required places that this initialisation has occurred, using a global variable. A
satisfactory approach is to check in both x1AddInManagerInfo and x1AutoAdd, and
to call x1AutoOpen explicitly if the add-in has not been initialised. As well as being
the place where all the initialisation is managed from, x1AutoOpen should also detect
if it has already been called so that things are not initialised multiple times.

5.5 XLL FUNCTIONS CALLED BY THE ADD-IN MANAGER
AND EXCEL

5.5.1 =xlAutoOpen

e int _ stdcall xlAutoOpen (void) ;

Excel calls this function whenever Excel starts up or the add-in is loaded. Your DLL can
do whatever initialisation you want it to do at this point. The most obvious task is the
registration of worksheet functions, but other tasks (such as setting up of custom menus,
initialisation of data structures, initialisation of background threads) are also best done
here. (See Chapter 8 for details.)

The function should return 1 to indicate success.

Here is a simple example which calls register_function () to register a function
described in one element of an array called WsFuncExports. Section 8.6 Registering
and un-registering DLL (XLL) functions on page 244, contains details and more discussion
on this topic.

bool x11_initialised = false;

int _ stdcall xlAutoOpen (void) // Register the functions

{
if(x11l_initialised)
return 1;

// Link to the C API and set the globally-accessible Excel version.
if (!link_Excel_API())
return 1;

for(int 1 = 0 ; 1 < NUM_FUNCS; i++)
register_function (WsFuncExports + 1i);

x11_initialised = true;
return 1;

118 Excel Add-in Development in C/C++

5.5.2 =xlAutoClose

e int _ stdcall xlAutoClose(void) ;

Excel calls this function whenever Excel closes down or the add-in is unloaded. Your
DLL can do whatever cleaning up you need to do at this point, but should un-register
your worksheet functions and free memory at the very least. (See section 8.6 Registering
and un-registering DLL (XLL) functions on page 244 for more detail.)

The function should return 1 to indicate success.

This example calls unregister_function () to un-register a previously-registered
function exposed by the DLL according to an index number.

int _ stdcall xlAutoClose(void)

{
if(!x11_initialised)
return 1;

for(int 1 = 0 ; i < NUM_FUNCS; i++)
unregister_function(i)

// Unlink the C API and reset the C API function pointers to NULL
unlink_Excel_API();
x11_initialised = false;
return 1;

5.5.3 =xlAutoAdd

e int_ stdcall xlAutoAdd(void) ;

Excel calls this function when the add-in is either opened (as a document using File/Open. . .)
or loaded via the Add-in Manager (Tools/Add ins. . .) or whenever any equivalent operation
is carried out by a macro or other command. In both of these cases, Excel also calls
x1AutoOpen () so this function does not need to register the DLL’s exposed functions
if that has been taken care of in x1AutoOpen (). Omitting this function has no adverse
consequences provided that any necessary housekeeping is done by x1AutoOpen ().

The function should return 1 to indicate success.

Here is a simple example which uses a DLL function new_x1lstring() to create a
byte-counted string which needs to be freed by the caller when no longer required.

int _ stdcall xlAutoAdd(void)
{
if(!'x11_initialised)
x1AutoOpen() ;

if(!x11_initialised)
return 1;

xloper xStr, xInt;

xStr.xltype = xltypeStr;

xStr.val.str = new_xlstring("Version 1.0 has been loaded");
xInt.xltype = xltypelnt;

Turning DLLs into XLLs: The Add-in Manager Interface 119

xInt.val.w = 2; // Dialog box type.

Exceld (xlcAlert, NULL, 2, &xStr, &xInt);
// Free memory allocated by new_xlstring()

free(xStr.val.str);

return 1;

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int __stdcall xlAutoAdd(void)
{

if(!x11_initialised)
x1AutoOpen() ;

if (!x11_initialised)
return 1;

cpp_xloper xStr("Version 1.0 has been loaded");
xStr.Alert () ;
return 1;

5.54 =xlAutoRemove

e int_ stdcall xlAutoRemove (void) ;

Excel calls this function when the add-in is deselected via the Add-in Manager dialog
(Tools/Add-Ins. . .), or whenever any equivalent operation is carried out by a macro or
other command. In this case, Excel also calls x1AutoClose () so this function does
not need to un-register the DLL’s exposed functions if that has been taken care of in
x1AutoClose (). Omitting this function has no adverse consequences provided that
any necessary housekeeping is done by x1AutoClose ().

The function should return 1 for success.

The following example displays a message and uses a DLL function new_xlstring ()
to create a byte-counted string which needs to be freed by the caller when no longer
required.

int _ stdcall xlAutoRemove (void)
{
if(!'x11l_initialised)
return 1;

xloper xStr, xInt;
xStr.xltype = xltypeStr;
xStr.val.str = new_xlstring("Version 1.0 has been removed") ;
xInt.xltype = xltypelnt;
xInt.val.w = 2; // Dialog box type.
Exceld (x1lcAlert, NULL, 2, &xStr, &xInt);
// Free memory allocated by new_xlstring()
free(xStr.val.str) ;

120 Excel Add-in Development in C/C++

return 1;

Using the C++ xloper class cpp_xloper, introduced in section 6.4, the above code
can be rewritten as follows:

int __stdcall xlAutoRemove (void)

{
if(!'x11l_initialised)
return 1;

cpp_xloper xStr("Version 1.0 has been removed") ;
xStr.Alert () ;
return 1;

5.5.5 =xlAaddInManagerInfo (xlAddInManagerInfol2)

e xloper *_ stdcall xlAddInManagerInfo (xloper *);
e xloperl2 *_ stdcall xl1AddInManagerInfol2 (xloperl2 *);

Excel calls this function the first time the Add-in Manager is invoked. If passed a numeric
value of 1, it should return an xloper/xloperl? string with the full name of the add-in
which is then displayed in the Add-in Manager dialog (Tools/Add-Ins...). If it is passed
anything else, it should return #VALUE!. (See example below). If this function is omitted,
the Add-in Manager dialog simply displays the DOS 8.3 filename of the add-in without
the path or extension.

Here is a simple example which uses a DLL function new_x1lstring () to create a
byte-counted string that is marked for freeing once Excel has copied the value out.

char *AddInName = "My Add-in";

xloper * __stdcall xlAddInManagerInfo (xloper *p_arg)
{
if(!'x11_initialised)
x1AutoOpen () ;

if(!'x11_initialised)
return NULL;

static xloper ret_oper;
ret_oper.xltype = xltypeErr;
ret_oper.val.err = xlerrValue;

if (p_arg == NULL)
return &ret_oper;

if((p_arg->xltype == xltypeNum && p_arg->val.num == 1.0)
| | (p_arg->xltype == xltypelInt && p_arg->val.w == 1))
{
// Return a dynamically allocated byte-counted string and tell Excel
// to call back into the DLL to free it once Excel has finished.
ret_oper.xltype = xltypeStr | xlbitDLLFree;

Turning DLLs into XLLs: The Add-in Manager Interface 121

ret_oper.val.str = new_xlstring (AddInName) ;

}

return &ret_oper;

The Excel 2007 version follows. Note that since strings in x1loper12s are unicode wide
character strings, a different DLL function new_x112string () is used to create a
counted wide-char string, albeit from the same null-terminated ASCII byte-string.

xloperl2 * _ stdcall xlAddInManagerInfol2 (xloper *p_arg)
{
if(!'x11_initialised)
x1AutoOpen() ;

if(!'x11_initialised)
return NULL;

static xloperl2 ret_oper;
ret_oper.xltype = xltypeErr;
ret_oper.val.err = xlerrValue;

if (p_arg == NULL)
return &ret_oper;

if ((p_arg->xltype == xltypeNum && p_arg->val.num == 1.0)
| | (p_arg->x1ltype == xltypeInt && p_arg->val.w == 1))
{
// Return a dynamically allocated byte-counted string and tell Excel
// to call back into the DLL to free it once Excel has finished.
ret_oper.xltype = xltypeStr | xlbitDLLFree;
ret_oper.val.str = new_x112string (AddInName) ;

}

return &ret_oper;

Using the C++ x1loper class cpp_xloper (see section 6.4) and a pointer to a statically-
defined error x1oper (see section 6.3) the above code can be rewritten as follows:

xloper * __stdcall xlAddInManagerInfo(xloper *p_arg)

{
if (!x11_initialised)
x1AutoOpen() ;

if(!'x11_initialised)
return NULL;

cpp_xloper Arg(p_arg);

if(Arg != 1)
return p_xlErrValue;

cpp_xloper RetVal (AddinName) ;
return RetVal.ExtractXloper () ;

}

xloperl2 * __stdcall xlAddInManagerInfol2 (xloperl2 *p_arg)

122 Excel Add-in Development in C/C++

if(!x11_initialised)
x1AutoOpen () ;

if(!x11_initialised)
return NULL;

cpp_xloper Arg(p_arg);

if (Arg != 1)
return p_xl12ErrValue;

cpp_xloper RetVal (AddinName) ;
return RetVal.ExtractXloperl2();

Invoking the Add-in Manager calls this function resulting in the following being displayed:

Add-Ins available:

[Internet Assistant VBA a | oK I

[Lookup Wizard &

[MS Query Add-in

c—— |

" ODBC Add-in

[T Recalc_Tests J Browse... I
|

" Report Manager

[Solver add-in

™ Template Utilities

[Template Wizard with Data Tracking
™ Update Add-in Links

My Add-in

5.5.6 xlAutoRegister (xlAutoRegisterl2)

e xloper *_ stdcall xlAutoRegister (xloper *);
e xloperl2 *_ stdcall xlAutoRegisterl2 (xloperl2 *);

This function is called from Excel 4 macro sheets when an executing macro encounters an
instance of the REGISTER() macro sheet function called with information about the types
of arguments and return value missing. x1AutoRegister () is passed the name of the
function in question and should search for the function’s arguments and then register the
function properly, with all arguments specified.

This function is also called when x1fRegister has been called without the type
information, leading to the danger that the XLL will overload the stack if this infor-
mation is simply missing from the XLL’s information tables: x1fRegister leads to
x1AutoRegister being called which leads to x1 fRegister being called again, which
leads to x1AutoRegister, and so on. (See section 8.5 on page 238.) As macro sheets
are deprecated, and outside the scope of this book, this function is not discussed any

Turning DLLs into XLLs: The Add-in Manager Interface 123

further. The function can safely either be omitted or can be a stub function returning a
NULL pointer.

5.5.7 =xlAutoFree (xlAutoFreel2)

e void__ stdcall xlAutoFree(xloper *);
e void__ stdcall xlAutoFreel2 (xloperl2 *);

Whenever Excel has been returned a pointer to an xloper/xloperl2 by the DLL with
the x1bitDLLFree bit of the x1type field set, it calls this function passing back the
same pointer. This enables the DLL to release any dynamically allocated memory that
was associated with the x1oper. Clearly the DLL can’t free memory before the return
statement, as Excel would not safely be able to copy out its contents. The x1AutoFree ()
function and the x1bitDLLFree bit are the solution to this problem. (See also Chapter 7
Memory Management on page 203 for more about when and how to set this bit.)
Returning pointers to xloper/xloperl2s with the x1bitDLLFree bit set is the
only way to return DLL-allocated memory without springing a memory leak. The next-
best solution is to allocate memory, assign it to a persistent pointer, and free it the next
time the function gets called.
Typically, your DLL will need to contain this function when
e returning DLL-allocated x1oper/xloperl?2 strings;
e returning DLL-allocated range references of the type x1typeRef;
e returning DLL-allocated arrays of x1lopers. If the array contains string x1opers that
refer to memory that needs to be freed then x1AutoFree () should do this too. (See
example below.)

There are a few points to bear in mind when dealing with arrays:

e The array memory pointed to by an array xloper can be static or dynamically allo-
cated. The x1bitDLLFree bit should only be set for arrays where the memory was
dynamically allocated by the DLL.

e Array elements that are strings may be static, or may have had memory allocated for
them by either the DLL or Excel.

e Excel will only call x1AutoFree () for an array that has the x1bitDLLFree bit
set, which should be one that was dynamically allocated in the DLL.

e A static array containing dynamic memory strings will leak memory.

e A DLL-created dynamic array containing Excel-allocated strings requires that the
x1bitXLFree bit be set for each string, and x1AutoFree () needs to detect this.

e You should not pass arrays of arrays, or arrays containing references, back to Excel:
your implementation of x1AutoFree () does not need to check for this.

The following code provides an example implementation that checks for arrays, range
references and strings — the three types that can be returned to Excel with memory still
needing to be freed. The function checks for array elements that are strings and frees them
according to which memory bit is set. The fact that it checks for the x1bitXLFree bit
set permits the return of Excel-created strings in DLL-created arrays.

If XI,_AUTO_FREE_XLOPER is defined as non-zero the function will also free the
xloper itself, which is necessary where the XLL project dynamically allocates
xlopers for return to Excel. Section 7.6 Making add-in functions thread safe on

124 Excel Add-in Development in C/C++

page 212 discusses this further in the context of writing thread-safe worksheet functions.
(Note that you must decide whether your project will always or never use this strategy).

void _ stdcall xlAutoFree(xloper *p_oper)
{
if (p_oper->xltype & xltypeMulti)
{
// Check if the elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;
xloper *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if ((p->xltype & ~(x1lbitDLLFree | x1lbitXLFree)) == xltypeStr)
{
if (p->x1type & x1lbitDLLFree)
free(p->val.str);
else if (p->x1ltype & x1bitXLFree)
Exceld (x1Free, 0, 1, p);
}

free(p_oper->val.array.lparray) ;

}
else if (p_oper->xltype == (xltypeStr | xlbitDLLFree))
{
free(p_oper->val.str);
}
else if (p_oper->xltype == (xltypeRef | xlbitDLLFree))

{

}

#1f XL_AUTO_FREE_XLOPER
free (p_oper) ;

#endif

}

free(p_oper->val.mref.lpmref) ;

void _ stdcall xlAutoFreel2 (xloperl2 *p_oper)
{
if (p_oper->xltype & xltypeMulti)
{
// Check if the elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;
xloperl2 *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if ((p->x1type & ~(x1bitDLLFree | x1bitXLFree)) == xltypeStr)
{
if (p->x1type & x1lbitDLLFree)
free(p->val.str);
else if (p->xltype & x1bitXLFree)
Excell2 (x1Free, 0, 1, p);
1
free(p_oper->val.array.lparray) ;
}
else if (p_oper->xltype == (xltypeStr | xlbitDLLFree))

{
}

else if (p_oper->xltype == (xltypeRef | x1lbitDLLFree))

{

free(p_oper->val.str);

free(p_oper->val.mref.lpmref) ;

Turning DLLs into XLLs: The Add-in Manager Interface 125

}

#if XL_AUTO_FREE_XLOPER
free(p_oper) ;

#endif

}

You can avoid implementing xlAutoFree()/xlAutoFreel2 () completely by
returning a pointer to a persistent xloper/xloperl2 provided that prior to each re-
use the memory is cleared. There is not really much advantage in doing this — broadly
speaking, the same code needs to be executed — except that the DLL does not have to
set the flags to tell Excel to call back. (The flag to tell Excel to free Excel-allocated
xloper/xloperl2 memory, x1bitXLFree, still needs to be set, but setting this does
not result in x1AutoFree being called).

6
| Passing Data Between Excel and the DLL J

Where DLL functions are being accessed directly by Excel, you need to understand how
to pass and return values. You need to think about the data types of both the arguments
and return value(s). You need to know whether arguments are passed by reference, (by
pointer, as the interface is C), or by value. You need to decide whether to pass results
back to the caller via the function’s return value or by modifying arguments passed in
by reference. Where the data you want to pass or return are not one of the simple data
types, you need to know about the data structures that Excel supports and when their use
is most appropriate.

Finally, you need to know how to tell Excel about your exported functions and tell
it all the above things about the arguments and return values. This point is covered in
detail in section 8.6 Registering and un-registering DLL (XLL) functions on page 244.
This chapter concentrates on the structures themselves.

Note: Excel versions 4 to 11 all use the same data structures which are still supported
in Excel 2007. However, the increased grid size in Excel 2007 necessitated that some
of these structures were upgraded. This book describes all of these data structures, old
and new, but you must be careful in your code to ensure that the version of Excel your
application or add-in is running under supports the data types you are trying to use.

6.1 HANDLING EXCEL’S INTERNAL DATA STRUCTURES:
C OR C++?

The most flexible and important data structure used by Excel in the C API is defined as the
10-byte x1oper structure in the SDK header file. The version of SDK released with Excel
2007 also describes a variation of this, the 20-byte x1oper12, which accommodates the
larger grids and strings introduced in this version. The x1loper and xloperl2 C struc-
tures, the unions they contain and the sub-structures in those unions, are all described in
detail in this chapter. An understanding of xlopers and, critically, how to handle the
memory that can be pointed to by them is required to enable fast and direct communica-
tion between the worksheet and the C/C++ DLL: all exported commands and worksheet
functions need to be registered, something that involves calling a function in the C API
using xlopers or xloperl?2s.

The handling of xlopers and xloperl2s is something well suited to an object-
oriented (OO) approach. Whilst this book intentionally sticks with C-style coding in most
places, the value of the OO features of C++ are important enough that an example of just
such a class is valuable. The cpp_x1loper class is described in section 6.4. Many of the
code examples in subsequent sections and chapters use this class rather than xlopers
or xloperl2s. In some cases, examples using both approaches have been provided to
show the contrast in the resulting code.

Where xlopers or x1operl2s have been used rather than this class, it is either to
show the detailed workings of the x1oper as clearly as possible, or because use of the
class, with its overhead of constructor and destructor calls, would be overkill.

128 Excel Add-in Development in C/C++

6.2 HOW EXCEL EXCHANGES WORKSHEET DATA
WITH DLL ADD-IN FUNCTIONS

Where DLL functions take native C data type arguments such as ints, doubles and
char * null-terminated strings, Excel will attempt to convert worksheet arguments as
described in section 2.6 Data type conversion on page 16. Return values that are native
data types are similarly converted to the types of data that worksheet cells can contain.
Excel can also pass arguments and accept return values via one of three pre-defined
structures. In summary, this gives the DLL and Excel four ways to communicate:

1. Via native C/C++ data types, converted automatically by Excel.

2. Via a structure that contains a 2-dimensional array of 8-byte doubles, which this book
refers to as an x14_array. Excel 2007 also supports a big-grid version x112_array.

3. Via a structure that can represent the contents of any cell or block of cells, and also
ranges and a few other things, named the x1oper in the SDK header file. This structure
is covered in depth in the next few sections. Excel 2007 also supports a big-grid and
long string version xloperl?2.

Not all of the data types that the xloper/xloperl2 can contain will be passed or
returned in calls from a worksheet function. Some are only used internally, for example,
when calling back into Excel from the DLL through the C APIL.

6.2.1 Native C/C++ data types

Excel will pass arguments and accept return values for all of the following native C/C++
data types, performing the necessary conversions either side of the call to the DLL.

[signed] char * (null-terminated ASCII byte string);
unsigned char * (length-prepended ASCII byte string).

e [signed] short [int] (16-bit);

e [signed] short [int] * (16-bit);

e unsigned short [int] (16-bit = DWORD = wchar_t);
e [signed] [long] int (32-bit);

e [signed] [long] int * (32-bit);

o double;

e double *;

[]

[)

[Vv12+]:

e unsigned short * (null-terminated wide-char Unicode string);
e unsigned short * (length-prepended wide-char Unicode string);

Other types, e.g., bool, char and float, are not directly supported and declaring
functions with types other than the above may have unpredictable consequences. Casting
to one of the supported data types is, of course, a trivial solution, so in practice this
should not be a limitation. If Excel cannot convert an input value to the type specified
then it will not call the function, and will instead return a #VALUE! error to the calling
cell(s).

Passing Data Between Excel and the DLL 129

Excel permits DLL functions to return values by modifying an argument passed by a
pointer reference. The function must be registered in a way that tells Excel that this is
how it works and, in most cases, must be declared as returning void. (See section 8.6
Registering and un-registering DLL (XLL) functions on page 244 for details.)

Note: Returning values by changing an argument does not alter the value of a cell from
which that value originally came. The returned value will be deposited in the calling cell
just as if it were returned with a return statement.

6.2.2 Excel floating-point array structures: x14_ array, x112 array

Excel supports a simple floating-point array structure which can be defined as follows
and is passed to or returned from the DLL by pointer reference:

typedef struct

{
WORD rows;
WORD columns;
double arrayl[l]l; // Start of arrayl[rows * columns]

x14_array;

In some texts this structure is called FP or _FP, but since the name is private to the DLL
(and the structure is not defined in pre-Excel 2007 versions of the SDK header file) it
is up to you. The above name is more descriptive, and this is how the rest of the book
refers to this structure.!

Warning: Excel expects this structure to be packed such that array [0] is eight bytes
after the start of the structure. This is consistent with the default packing of Visual Studio
(6.0 and .NET), so there’s no need to include #pragma pack () statements around its
definition. You need to be careful when allocating memory, however, that you allocate
8 bytes plus the space for array[rows * columns]. Allocating 4 bytes plus the
space for the array will lead to a block that is too small by 4 bytes. Too-small a block
will be overwritten when the last array element is assigned, leading to heap damage and
destabilisation of Excel. (See the code for x1_array_examplel () below).

Excel 2007, with its much larger grid, supports an expanded version of this structure,
also passed to or returned from the DLL by pointer reference:

typedef INT32 RW;
typedef INT32 COL;

typedef struct

{

RW rows;
COL columns;
double arrayl[l]l; // Start of arrayl[rows * columns]

x112_array;

' The first edition of this book referred to this structure as simply x1_array, but it has been renamed in this
edition to draw the distinction between it and Excel 2007’s new version of this structure.

130 Excel Add-in Development in C/C++

Given that RW and COL are each 4 bytes, the potential byte alignment and packing problem
of the x14_array does not arise.

Note: These arrays store their elements row-by-row so should be read and written to
accordingly. The element (r, c), where r and c count from zero, can be accessed by
the expression array[r*rows + c]. The expression array[r] [c] will produce a
compiler error. A more efficient way of accessing the elements of such an array is to
maintain a list of pointers to the beginning of each row and then access the elements by
off-setting each start-of-row pointer. (Numerical Recipes in C, Chapter 1, contains very
clear examples of this kind of thing.)

Later sections provide details of a data structure capable of passing mixed-type arrays,
the xloper (and the Excel 2007 version, the xloper12). The x14_array/x112_
array structures have some advantages and some disadvantages relative to these.

Advantages:

e Memory management is easy, especially when returning an array via an argument
modified in place. (See note below.)
e Accessing the data is simple.

Disadvantages:

x14_array/x112_arrays can only contain numbers.

e If an input range contains something that Excel cannot convert to a number, Excel will
not call the function, and will fail with a #VALUE! error. Excel will interpret empty
cells as zero, and convert text that can be easily converted to a number. Excel will not
convert Boolean or error values.

e Returning arrays via this type (other than via arguments modified in place) presents
difficulties with the freeing of dynamically allocated memory. (See notes below.)

e This data type cannot be used for optional arguments. If an argument of this type is

missing, Excel will not call the function, and will fail with a #VALUE! error.

Note: It is possible to declare and register a DLL function so that it returns an array of
this type as an argument modified-in-place. The size of the array cannot be increased,
however. The shape of the array can be changed as long as the overall size is not
increased — see x1_array_example3 () below. The size can also be reduced — see
x1_array_exampled () below. Returning values in this way will not alter the value
of the cells in the input range. The returned values will be deposited in the calling cells
as if the array had been returned via a return statement. (See section 8.6 Registering
and un-registering DLL (XLL) functions on page 244 for details of how to tell Excel that
your DLL function uses this data structure.)

Note: Freeing dynamic memory allocated by the DLL can be a problem when returning
arrays using this type. You can declare a persistent pointer, initialise it to NULL and check
it every time the function is called — see x1_array_examplel () below. If it is not
null, you can free the memory allocated during the last call before reallocating and re-
executing. This ensures that the DLL doesn’t suffer from leakage, just a little retention.
Note that the use of static variables declared within function blocks for return values
is not thread-safe. Therefore, when creating thread-safe functions for use in Excel 2007, a
different approach is required (see below). The problem of post-return memory release is

Passing Data Between Excel and the DLL 131

solved with the use of x1oper/xloperl2s. (See section 6.2.3 below and also Chapter 7
Memory Management on page 203 for more details.)

Examples

The following examples provide code for four exportable functions, one of which creates
and returns an array of this type, the others returning an array via a passed-in array
argument. Note the differences in memory management.

The function x1_array_examplel () allocates memory for an array of the specified
size, assigns some simple values to it, and returns a pointer to it to Excel. Note that two
versions of this are listed here, the first of which is not thread-safe, the second of which
is. (See 7.6.3 Allocating thread-local memory on page 214 for details of what the function
get_thread_local_x1l4_array () is doing.

Thread-unsafe version:

x14_array * __stdcall xl_array_examplel (int rows, int columns)

{

static x14_array *p_array = NULL; // Not thread-safe to use static

if (p_array) // free memory allocated on last call

{
free(p_array) ;
p_array = NULL;

}

int size = rows * columns;

if(size <= 0)
return NULL;

size_t mem_size = sizeof(x1l4_array) + (size - 1) * sizeof (double);

if ((p_array = (x14_array *)malloc (mem_size)))
{
p_array->rows = rows;
p_array->columns = columns;
for(int 1 = 0; 1 < size; 1i++)
p_array->array[i] = 1 / 100.0;

}

return p_array;

Thread-safe version:

x14_array * __stdcall xl_array_examplel (int rows, int columns)
{
// Get a pointer to thread-local static storage. Memory allocation is
// taken care of within get_thread_local_x1l4_array()
size_t size = rows * columns;
x14_array *p_array = get_thread_local_xl4_array(size);

if(!p_array) // Could not get a thread-local copy
return NULL;

p_array->rows = rOows;
p_array->columns = columns;

132 Excel Add-in Development in C/C++

for(size_t 1 = 0; 1 < size; i++)
p_array->array[i] = 1 / 10.0;
return p_array;

Note: The function get_thread_local_xl4_array(size_t size) allocates
memory for the array structure using the following statements:

size_t mem_size = sizeof(xl4_array) + (size - 1) * sizeof (double);
return pTLS->x14_array_ shared _ptr = (x14_array *)malloc (mem_size) ;

If memory were allocated with the following line of code, instead of as above, the memory
block would be too small, and would be overrun when the last element of the array was
assigned. Also, Excel would misread all the elements of the array, leading to unpredictable
return values, invalid floating point numbers, and all kinds of mischief.

// Incorrect allocation statement!!!
p_array = (x14_array *)malloc(2*sizeof (WORD) + size*sizeof (double));

Note that with the x112_array this allocation statement will work. . .

p_array = (x112_array *)malloc(2*sizeof (INT32) + size*sizeof (double));

... but this is far better:

p_array = (x112_array *)malloc(sizeof (x112_array) +
(size-1) *sizeof (double)) ;

A related point is that it is not necessary to check both that a pointer to an x14_array/
x112_array and the address of the first data element are both valid or not NULL. If the
pointer to the x14_array/x112_array is valid then the address of the first element,
which is contained in the structure, is also valid.

Warning: There is no way that a function that receives a pointer to an x14_array/
x112_array can check for itself that the size of the allocated memory is sufficient
for all the elements implied by its rows and columns values. An incorrect allocation
outside the DLL could cause Excel to crash.

The next example modifies the passed-in array’s values but not its shape or size.

void _ stdcall x1_array_ example2 (x14_array *p_array)

{

if(!p_array | | !p_array->rows
| | 'p_array->columns | | p_array->columns > MAX_XL11_COLS)
return;

int size = p_array->rows * p_array->columns;

Passing Data Between Excel and the DLL 133

// Change the values in the array
for(int i = 0; i < size; i++)
p_array->arrayl[i] /= 10.0;

The next example modifies the passed-in array’s values and shape, but not its size.

void _ stdcall x1_array example3 (x14_array *p_array)

{

if(!p_array | | !p_array->rows

| | 'p_array->columns | | p_array->columns > MAX_XL11_COLS)
return;

int size = p_array->rows * p_array->columns;

// Change the shape of the array but not the size
int temp = p_array->rows;
p_array->rows = p_array->columns;
p_array->columns = temp;

// Change the values in the array
for(int 1 = 0; i < size; 1i++)
p_array->arrayl[i] /= 10.0;

The next example modifies the passed-in array’s values and reduces its size.

void _ stdcall x1_array_ exampled (x14_array *p_array)

{

if(!p_array | | !p_array->rows
| | 'p_array->columns | | p_array->columns > MAX XL11_COLS)
return;

// Reduce the size of the array
if (p_array->rows > 1)
p_array->rows--;

if (p_array->columns > 1)
p_array->columns--;

int size = p_array->rows * p_array->columns;
// Change the values in the array

for(int i = 0; i < size; i++)
p_array->arrayl[i] /= 10.0;

In memory the x14_array structure is as follows, with the first double aligned to an
8-byte boundary:

1-2 3-4 4-8 9-16 17-24

WORD WORD double [double...]

134 Excel Add-in Development in C/C++

Provided that the values of the first two WORDs are initialised in a way that is consistent
with the number of doubles, any structure that obeys this format can be passed to and
from Excel as this data type. For example:

typedef struct
{
WORD rows; // set to 2
WORD columns; // set to 2
DWORD unused; // explicit padding - not required
double top_left;
double top_right;
double bottom_left;
double bottom_right;

two_by_ two_array; // looks like an x14_array

If rows and columns are initialised to 2, this structure can be passed or received as
if it were an x14_array. This could simplify and improve the readability of code that
populates an array, in some cases.

Warning: The following structure definition and function are (perhaps obviously) incor-
rect. The code will compile without a problem, but Excel will not be able to read the
returned values as it expects the structure to contain the first element of the array, not a
pointer to it. A similar function that tried to interpret an x14_array passed from Excel
as if it were an instance of this example, would encounter even worse problems as it
attempted to read from invalid memory addresses.

typedef struct
{
WORD rows;
WORD columns;
double *array; // Should be arrayl[l];

x14_array; // OH NO IT ISN'T!!!

x14_array * _ stdcall bad_xl_array example(int rows, int columns)

{

static x14_array rtn_array = {0,0, NULL}; // Not thread-safe

if (rtn_array.array) // free memory allocated on last call
{

free(rtn_array.array) ;

rtn_array.array = NULL;

}

int size = rows * columns;

if (size <= 0)
return NULL;
// Proper definition of x14_array removes the need for this allocation
if (! (rtn_array.array = (double *)malloc(size*sizeof (double))))
{
rtn_array.rows = Xows;
rtn_array.columns = columns;
for(int i = 0; i < size; i++)
rtn_array.array[i] = 1 / 10.0;

Passing Data Between Excel and the DLL 135

return &rtn_array;

There is an issue to be considered with the x112_array given the much larger grid
sizes supported in Excel 2007. In the above examples that use x14_array, the number
of elements can always be contained within a 32-bit signed integer, so the statement int
size = rows * columns is always safe since the maximum number of cells in Excel
versions 7 to 11 is 22*. With Excel 2007, the total number of cells is 23* which means that
int size could conceivably overflow. However, there is also a memory consideration:
An x14_array that referenced an entire Excel 2003 worksheet would be approximately
128 Gbytes in size. The maximum theoretical number of 8-byte array elements that can be
stored in a 32-bit address space is 2%%, though the practical limit will be much lower. There-
fore, the memory-imposed limits on the size of an x14_array/x112_array in Excel
2007 are reached long before those imposed by the ability of even a signed 32-bit integer
to count its elements. So the statement int size = rows * columns; is also safe,
from a computational point of view, when used in Excel 2007 with x112_arrays.

6.2.3 The xloper/xloperl2 structures

Internally, the Excel C API uses a C structure, the x1oper, for the highest (most general)
representation of one or more cell’s contents. Excel 2007 supports the x1oper but intro-
duces a new version that copes with the much larger grids, the xloper12. In addition
to being able to represent cell values and arrays, these can also represent references to
single cells, single blocks of cells and multiple blocks of cells on a worksheet. There
are also some C API-specific data types that are not found on worksheets: an integer
(x1typelInt), an XLM macro control structure (xltypeFlow), and the binary data
block type (x1typeBigData).
The 10-byte x1oper contains two parts:

e An 8-byte C union interpreted according to the type of xloper.
e A 2-byte WORD, x1type, indicating the data type of the xloper.

The 20-byte x1operl2 similarly contains two parts:

e A 16-byte C union interpreted according to the type of xloperl?2.
e A 4-byte DWORD, x1type, indicating the data type of the x1loperl2.

The structures can be defined as follows and are passed to or returned from the DLL by
reference, i.e., using pointers. The definition given here is functionally equivalent to the
definition as it appears in the SDK header file, except for the removal of the XLM flow-
control structure which is not within the scope of this book. The same member variable
and structure names are also used. The detailed interpretation of all the elements and the
definitions of the x1ref and x1lmref structures are contained in the following sections.

Note: The definition of the x1loper’s Boolean data member in Microsoft’s original C
header file is WORD bool; which, given the subsequent introduction of the bool data
type in C++, is changed throughout this book to xbool. This is also consistent with the
Microsoft name for this element in the xloperl?2.

136 Excel Add-in Development in C/C++

Optimisation note: Declaring your XLL functions as taking x1oper/xloperl12 argu-
ments makes them faster to call than if they had been declared with native C data types.
This is because it avoids Excel making implicit conversions of the supplied arguments.
You may need to convert from one type to another within your function, giving some of
this saving back, but where performance is key, you can force your caller to supply the
correct data type in the first place.

struct xloper

{

union

{
double num; // xltypeNum
char *str; // xltypeStr
WORD xbool; // xltypeBool
WORD err; // xltypeErr

short int w; // xltypelnt

struct
{
xloper *lparray;
WORD rows, columns;
} array; // xltypeMulti

struct

{
WORD count; // Ignored, but set to 1 for safety
xlref ref;

} sref; // xltypeSRef

struct

{
x1lmref *lpmref;
DWORD idSheet;
} mref; // xltypeRef

// XLM flow control structure omitted.

struct

{

union

{
BYTE far *1lpbData; // data passed to XL
HANDLE hdata; // data returned from XL

} h;
long cbData;
} bigdata; // xltypeBigData

} val;
WORD xltype;
}i

Excel 2007 introduces a larger grid (2'# columns x 2%° rows) than previous versions (2%
columns X 2'® rows). This would bust the limits of the x1ref structure for both rows and
columns. To accommodate the larger grid, the Excel 2007 C API introduces x1loperl12:

typedef INT32 BOOL; // Boolean
typedef WCHAR XCHAR; // Wide Character = wchar_t = unsigned short int

Passing Data Between Excel and the DLL 137

typedef INT32 RW; // XL 12 Row
typedef INT32 COL; // XL 12 Column

struct xloperl?2

{

union
{
double num; // xltypeNum
XCHAR *str; // xltypeStr
BOOL xbool; // x1ltypeBool
int err; // xltypeErr
int w;
struct
{
xloperl2 *lparray;
RW rows;
COL columns;
} array; // xltypeMulti
struct
{
WORD count; // Ignored, but set to 1 for safety
XLREF12 ref;
} sref; // xltypeSRef
struct
{
XLMREF12 *lpmref;
DWORD idSheet;
} mref; // xltypeRef

// XLM flow control structure omitted.

struct
{
union
{
BYTE *lpbData; // data passed to XL
HANDLE hdata; // data returned from XL
} h;
long cbData;
}
bigdata; // xltypeBigData
} val;
DWORD xltype;

Note that the following things have changed:

.x1type changes from a WORD to a DWORD;

All row and column integer types change to RW and COL respectively;

.val.w (xltypeInt) changes from a short (16-bit) to an int (32-bit);
.val.err (xltypeErr) changes from a WORD to an int;

.val.str (xltypeStr) changes from char * to XCHAR * (= wchar_t *);

The following table shows the values that the x1type field can take, as well as whether
you can expect that Excel might pass one to your DLL function. The table refers to

138 Excel Add-in Development in C/C++

the types that can be passed in both the case where an argument is registered as an
reference-and-value xloper/xloperl2 or as a value-only xloper/xloperl2. (See
section 8.6 Registering and un-registering DLL (XLL) functions on page 244 for details.)

Table 6.1 xloper types passed from worksheet to add-in

Constant as defined Hexadecimal Passed from Excel Passed from Excel
in xlcall.h value worksheet to add-in as worksheet to add-in as
xloper/xloperl?2 xloper/xloperl?2
registered as type R/U: registered as type P/Q:
x1typeNum 0x0001 Yes Yes
xltypeStr 0x0002 Yes Yes
xltypeBool 0x0004 Yes Yes
xltypeRef 0x0008 Yes No
xltypeErr 0x0010 Yes Yes
xltypeMulti 0x0040 Yes Yes
xltypeMissing 0x0080 Yes Yes
x1typeNil 0x0100 Yes? Yes
xltypeSRef 0x0400 Yes No
xltypelnt 0x0800 No No
xltypeBigData 0x0802 N/A (see below)

The following exportable example function returns information about all the x1oper
types that might be encountered in a call from a worksheet cell:

// Header contains definition of xloper and the constants for xltype
#include <xlcall.h>

char * __ stdcall xloper_type_str (xloper *p_xlop)
{
if(p_xlop == NULL) // Should never happen
return NULL;

switch (p_xlop->xltype)

{
case xltypeNum: return "0x0001 xltypeNum";
case xltypeStr: return "0x0002 xltypeStr";
case xltypeBool: return "0x0004 xltypeBool";
case xltypeRef: return "0x0008 xltypeRef";
case xltypeSRef: return "0x0400 xltypeSRef";
case xltypeErr: return "0x0010 xltypeErr";
case xltypeMulti: return "0x0040 xltypeMulti";
case xltypeMissing: return "0x0080 xltypeMissing";
case xltypeNil: return "0x0100 xltypeNil";

2 Only as part of a literal array where a value is omitted, e.g., {1,, 3}.

Passing Data Between Excel and the DLL 139

default: return "Unexpected type";

The declaration of an argument as an xloper * or xloperl2 * tells Excel that the
argument should be passed in without any of the conversions described in section 2.6.11
Worksheet function argument type conversion, page 20. This enables the function’s code
to deal directly with whatever was supplied in the worksheet. Excel will never pass a null
pointer even if the argument was not supplied by the caller. An x1loper is still passed
but of type x1typeMissing. The check for a NULL argument in the above code is
super-safe.

The above function simply checks for the type of the xloper, represented in the
x1ltype data member of the xloper structure, and returns a descriptive string con-
taining the hexadecimal value and the corresponding defined constant. This function
can only be called from a worksheet once it has been registered with Excel, a topic
covered in detail in section 8.6 Registering and un-registering DLL (XLL) functions on
page 244. The name with which the function is registered in the example project add-in
is XloperTypeStr.

Table 6.2 shows some examples of calls to this function and returned values:

Table 6.2 xloper types as passed by Excel to the XLL

Worksheet cell formula Returned value Comment
=XloperTypeStr(2) 0x0001 xltypeNum Same for integers
=XloperTypeStr(2.1) and doubles.
=XloperTypeStr("2") 0x0002 xltypeStr

=XloperTypeStr(")

=XloperTypeStr(TRUE) 0x0004 xltypeBool

=XloperTypeStr(Sheet2!A1) 0x0008 xltypeRef Call is not made
=XloperTypeStr(Sheet2!A1:A2) from Sheet2
=XloperTypeStr(A1) 0x0400 xltypeSRef

=XloperTypeStr(A1:A2)
=XloperTypeStr(INDIRECT("A1:A2"))

=XloperTypeStr(NA()) 0x0010 xltypeErr
=XloperTypeStr(1/0)

=XloperTypeStr(#REF!)

=XloperTypeStr(LOG(0))

=XloperTypeStr({1,2,"3"}) 0x0040 xltypeMulti
=XloperTypeStr() 0x0080 xItypeMissing

In addition to the above values for data types, the following bits can be set in the type
field to signal to Excel that memory needs to be freed after the DLL passes control back

140 Excel Add-in Development in C/C++

to Excel. How and when these are used is covered in Chapter 7 Memory Management on
page 203.

x1bitXLFree 0x1000

x1bitDLLFree 0x4000

Warning: An xloper should not have either of these bits set if it might be passed as
an argument in a call to Excel4 () or Exceldv (). (The same applies to x1loperl2s
with Excell2 () and Excell2v ()). This can confuse Excel as to the true type of the
xloper and cause the function to fail with an x1retFailed error (=32).

Note: Setting x1bitXLFree on an xloper that is to be used for the return value for
a call to Excel4 (), prior to that call, will have no effect. The correct time to set this
bit is:

e after the call that sets its value;
e after it might be passed as an argument in other calls to Excel4 ();
e before a pointer to it is returned to the worksheet.

For example, the following code will fail to ensure that the string allocated in the call
to Exceld () gets freed properly, as the x1type field of ret_oper will be reset in a
successful call. (See also Chapter 7 Memory Management on page 203.)

xloper * _ stdcall bad_example (void)
{
static xloper ret_oper;
ret_oper.type | = x1bitXLFree; // WRONG: will get reset
Exceld (x1GetName, &ret_oper, 0);
return &ret_oper;

Warning: When testing the type of the x1oper there are a few potential snares, as shown
by the following code example:

int __stdcall xloper_type(const xloper *p_op)
{
// Unsafe. Might be xltypeBigData
if (p_op->x1ltype & xltypeStr)
return xltypeStr;

// Unsafe. Might be xltypeBigData
if (p_op->xltype & xltypelnt)
return xltypelnt;

// Unsafe. Might be xltypeStr or xltypelnt
if (p_op->xltype & xltypeBigData)
return xltypeBigData;

// Unsafe. Might have x1bitXLFree or xlbitDLLFree set
if (p_op->xltype == xltypeStr)
return xltypeStr;

Passing Data Between Excel and the DLL 141

// Unsafe. Might have xlbitXLFree or xlbitDLLFree set
if (p_op->x1ltype == xltypeMulti)
return xltypeMulti;

// Unsafe. Might have x1bitXLFree or xlbitDLLFree set
if (p_op->xltype == xltypeRef)
return xltypeRef;

// Safe.
if((p_op->xltype & xltypeBigData) == xltypeStr)
return xltypeStr;

// Safe.
if ((p_op->xltype & ~(x1bitXLFree | x1bitDLLFree)) == xltypeRef)
return xltypeRef;

return 0; // not a valid xltype

Some of the above unsafe tests might be perfectly fine, of course, if you know that the type
cannot be x1typeBigData, or can only be, say, x1typeBigData or x1typeErr, or
that neither of the bits x1bitXLFree or x1bitDLLFree can be set. But you should
be careful.

Here is an example of a super-safe type test function:

bool xloper_is_type(xloper *p_op, WORD type)
{

}

return type == (p_op->xltype & ~ (x1bitXLFree | x1bitDLLFree)) ;

Warning: The CD ROM contains code modules xloper.cpp and xloperl?2.cpp
which contain functions that manipulate x1opers and xloper12s. The code in these
modules assumes that x1lopers and xloperl12s DO NOT have either x1bitXLFree
or x1bitDLLFree set, so will sometimes perform type tests that would not be safe
if passed operands with these bits set. The functions in that module are intended to be
called, primarily, from the cpp_xloper wrapper class, which maintains its own flags
that tell how memory was allocated. These flags are used at destruction, or when the
value is being over-written, rather than the x1bits. They are also used to set the correct
x1bit where the xloper/xloperl? is being extracted for return to Excel.

6.2.4 The xlref/xlrefl2 structures

The x1ref structure is a simple structure defined in the SDK header file x1call.h as
follows:

typedef struct xlref
{
WORD rwFirst;
WORD rwLast;
BYTE colFirst;

142 Excel Add-in Development in C/C++

BYTE colLast;
}i

This structure is used by Excel to denote a rectangular block of cells somewhere on a
worksheet. (Which worksheet is determined by the x1oper that either contains or points
to this structure.) Rows and columns are counted from zero, so that, for example, an
x1lref that described the range A1:C2 would have the following values set:

rwFirst = 0
rwLast = 1
colFirst = 0
colLast = 2

The xlopers that describe ranges on worksheets either contain an xlref
(x1ltypeSRef) or point to a table of x1lrefs (xltypeRef).

Warning: A range that covers an entire column on a worksheet (e.g. A:A in a cell
formula, equivalent to A1:A65536) is, in theory, represented in this data type but, whether
by design or flaw, will be given the rwLast value of 0x3fff instead of Oxf£fff. This
limitation could cause serious bugs in your DLL if you are not aware of it. One possible
reason for this seemingly strange behaviour is the fact that the array xloper type, the
x1ltypeMulti, can only support 65,535 rows rather than 65,536. You might consider a
work-around such as detecting rwLast being 0x3fff when rwFirst is 1, and then,
perhaps, checking the calling cell’s formula to see what was intended. This strategy will
only work in very limited cases, however, as the incoming range might well be disguised
by the use of a named range or might have been returned by a nested function. The safe
behaviour is for your function to fail, i.e., to reject both possibilities where there is this
ambiguity.

The larger grids of Excel 2007 necessitate the definition of the x1refl12 structure
which is used by the x1loperl?2 in place of the x1ref.

typedef INT32 RW; /* XL 12 Row */
typedef INT32 COL; /* XL 12 Column */

typedef struct xlrefl2
{

RW rwFirst;

RW rwLast;

COL colFirst;

COL colLast;

This structure does not suffer from the whole-column problem of the x1ref, described
above.

6.2.5 The x1lmref/x1lmrefl2 structures

The x1mref structure is simply an array of x1refs (see above). The only place this is
used is in an x1oper of type x1typeRef which contains a pointer to an x1lmref. It is
defined in the SDK header file x1call .h as follows:

Passing Data Between Excel and the DLL 143

typedef struct xmlref
{

WORD count;

xlref reftbl[1l]; /* actually reftbl[count] */
}i

Excel uses the x1mref in an x1ltypeRef xloper to encapsulate a single reference
to multiple rectangular ranges of cells on a specified worksheet. A single rectangular
block on a sheet may also be represented by an x1typeRef xloper, in which case
the xlmref count is set to 1.

To allocate space for an x1mref representing, say, 10 rectangular blocks of cells (each
described by an x1ref), you would allocate space for one xlmref and nine xlrefs
as the space for the first x1ref is contained in the x1mref. In practice you would only
rarely need to do this. A single x1mref, with its count set to 1, is all you need to describe
a specific range of cells, and that is almost always sufficient.

If you are writing functions that you want to be able to handle such multiple block
references, you will need to iterate through each x1ref, to collect and analyse all the
data.

The larger grids of Excel 2007 necessitated the definition of the x1mref12 structure
which is used by the x1loper12 in place of the x1lmref.

typedef struct xlmrefl2
{

WORD count;

XLREF12 reftbl[1l]; */ actually reftbl[count] */
}i

6.2.6 The oper/operl2 structures

Microsoft documentation for older versions of the SDK talked about a simplified xloper
structure, referred to as an oper. In effect this was just an xloper which could only
support one of the following types, i.e. values:

x1typeNum,;

xltypeStr;

xltypeBool;

x1typeErr;

xltypeMulti;

x1ltypeNil (as an xltypeMulti element, or a converted reference to an empty
cell);

e xltypeMissing.

In particular, the types x1typeRef and x1typeSRef are not represented. The concept
of an oper was intended to clarify that it was possible to say to Excel “convert any range
references to x1loper value types for the inputs to this function”. To tell Excel that this is
how you want your argument(s) to be supplied to your function, you need to register the
x1loper as type P instead of type R. The same behaviour is supported in Excel 2007+
with the xloperl2, where arguments registered as type Q will be one of the value

144 Excel Add-in Development in C/C++

types only, whereas if registered as U they can also be one of the reference types. (See
section 8.6.3 Specifying argument and return types on page 249 for more detail).

Within the DLL code, the argument is still an x1oper but it is safe to assume that it
will not be a reference type. This can greatly simplify DLL code that does not need to
know anything about ranges, only the values within them.

Note: Functions that are registered as macro sheet functions that take xloper or
xloperl2 arguments (type R or U) are treated as volatile by default, something to be
avoided unless absolutely necessary. See section 8.6.5 Specifying functions as volatile
on page 253 for details. Therefore you should avoid registering xloper/xloperl?2
arguments as R/U, and choose P/Q instead wherever possible.

The following example shows a simple function that is a good candidate for being
registered as taking a type P argument rather than an R.

char * __stdcall what_is_it (xloper *p_oper)
{
switch (p_oper->xltype)
{
case xltypeStr: return "It's a string";
case xltypeNum: return "It's a number";
default: return "It's something I can't handle";

There’s no need to coerce a reference to either a string or a number — Excel will have
already done this if required. The function just needs to see what type of value it was
passed.

6.3 DEFINING CONSTANT xlopers/xloperl2s

Two of the x1loper types do not take values, x1typeMissing and x1typeNil. Two
others take just a limited number of values: x1typeBool takes just two; x1typeErr,
seven. It is convenient and computationally efficient to define a few constant values, and
in particular pointers to these, that can be passed as arguments to Excel4 () or can be
returned by functions that return x1oper pointers. The following code sample shows a
definition of a structure that looks like an x1oper in memory, but that can be initialised
statically. It also contains some xloper pointer definitions that perform a cast on the
address of instances of this structure so that they look like x1opers.

Many of the code examples later in this book use these definitions.

typedef struct
{
WORD wordl;
WORD word2;
WORD word3;
WORD word4;
WORD xltype;

const_xloper;

const_xloper xloperBooleanTrue = {1, 0, 0, 0, xltypeBool};

Passing Data Between Excel and the DLL

145

xloper *p_xl1lTrue = ((
xloper *p_xlFalse = (
xloper *p_x1Missing =
xloper *p_xINil
xloper *p_xlErrNull

const_xloper xloperBooleanFalse = {0, 0, 0, O,
const_xloper xloperMissing = {0, 0, 0, 0, xltypeMissing};
const_xloper xloperNil = {0, 0, 0, O,
const_xloper xloperErrNull = {0, 0, 0, 0, xltypeErr};

const_xloper xloperErrDiv0 = {7, 0, 0, 0, xltypeErr};

const_xloper xloperErrValue = {15, 0, 0, 0, xltypeErr};
const_xloper xloperErrRef = {23, 0, 0, O,
const_xloper xloperErrName = {29, 0, 0, 0, xltypeErr};
const_xloper xloperErrNum = {36, 0, 0, 0, xltypeErr};
const_xloper xloperErrNa = {42, 0, 0, 0, xltypeErr};

= ((xloper *)&xloperNil);

x1ltypeBool};

x1typeNil};

x1ltypeErr};

xloper *)&xloperBooleanTrue) ;
(xloper *)&xloperBooleanFalse);
((xloper *)&xloperMissing) ;

((xloper *)é&xloperErrNull);

xloper *p_x1ErrDiv0 = ((xloper *)&xloperErrDivO0) ;
xloper *p_xlErrValue = ((xloper *)&xloperErrValue) ;
xloper *p_xlErrRef = ((xloper *)&xloperErrRef);
xloper *p_xlErrName = ((xloper *)é&xloperErrName) ;
xloper *p_xlErrNum = ((xloper *)&xloperErrNum) ;
xloper *p_xl1lErrNa = ((xloper *)&xloperErrNa) ;

Note that for the following x1oper types, you could also simply define the following:

xloper xloperBooleanFalse = {0.0, xltypeBool};
xloper xloperMissing = {0.0, xltypeMissing};
xloper xloperNil = {0.0, xltypeNil};

xloper *p_xlFalse = &xloperBooleanFalse;
xloper *p_x1Missing = &xloperMissing;
xloper *p_x1INil

= &xloperNil;

Similarly, constant x1oper12s can be defined as follows:

typedef struct
{
INT32 intl;
INT32 int2;
INT32 int3;
INT32 int4;

const_xloperl2
const_xloperl?2
const_xloperl2
const_xloperl2
const_xloperl2
const_xloperl2
const_xloperl2
const_xloperl2
const_xloperl?2
const_xloperl2
const_xloperl2

DWORD xltype;

const_xloperl2;

xloperl2BooleanTrue = {1, 0, O,
xloperl2BooleanFalse = {0

0, xltypeBool};

0, 0, 0, xltypeBool};

xloperl2Missing = {0, 0, 0, 0, xltypeMissing};
xloperl2Nil = {0, 0, 0, 0, xltypeNil};
xloperl2ErrNull = {0, 0, 0, 0, xltypeErr};
xloperl2ErrDiv0 = {7, 0, 0, 0, xltypeErr};
xloperl2Errvalue = {15, 0, 0, 0, xltypeErr};
xloperl2ErrRef = {23, 0, 0, 0, xltypeErr};
xloperl2ErrName = {29, 0, 0, 0, xltypeErr};
xloperl2ErrNum = {36, 0, 0, 0, xltypeErr};

xloperl2ErrNa = {42, 0, 0, 0, xltypeErr};

146 Excel Add-in Development in C/C++

xloperl2 *p_x112True = ((xloperl2 *)&xloperl2BooleanTrue) ;
xloperl2 *p_xll2False = ((xloperl2 *)&xloperl2BooleanFalse);
xloperl2 *p_x112Missing = ((xloperl2 *)&xloperl2Missing) ;
xloperl2 *p_x112Nil = ((xloperl2 *)&xloperl2Nil) ;

xloperl2 *p_x112ErrNull = ((xloperl2 *)&xloperl2ErrNull);
xloperl2 *p_x112ErrDiv0 = ((xloperl2 *)&xloperl2ErrDivO0) ;
xloperl2 *p_x112ErrValue = ((xloperl2 *)&xloperl2ErrValue) ;
xloperl2 *p_x112ErrRef = ((xloperl2 *)&xloperl2ErrRef);
xloperl2 *p_x112ErrName = ((xloperl2 *)&xloperl2ErrName) ;
xloperl2 *p_x112ErrNum = ((xloperl2 *)&xloperl2ErrNum) ;
xloperl2 *p_x112ErrNa = ((xloperl2 *)&xloperl2ErrNa) ;

6.4 A C++ CLASS WRAPPER FOR THE
xloper/xloperl2 - cpp_ xloper

This book deliberately avoids being about object-oriented (OO) programming so that it
is accessible to those with C skills only, or those with C resources they wish to use with
Excel. However, wrapping xlopers up in a simple C++ class greatly simplifies their
handling and XLL code as the following sections aim to demonstrate.

This is made all the more important with the release of Excel 2007 which complicates
matters with the introduction of the xloper12 data type, Unicode strings and the new
C API functions Excell2 () and Excell2v () (see Chapter 8).

The creation of a simple class to handle these structures is, in itself, a helpful exercise
in understanding their use, in particular the management of memory. The class code that
follows is as simple as possible. It is meant to serve as an example of the simplifications
possible using a simple class rather than to be held up as the ideal class for all purposes.
Many alternative designs, though inevitably similar, would work just as well, perhaps
better.

When designing a new class, it is helpful to make some notes about the purpose of
the class — a kind of class manifesto (apolitically speaking). Here are some brief notes
summarising in what circumstances xlopers are encountered and describing what the
class cpp_xloper should do:

A DLL needs to handle xlopers or xloperl2s when:

o they are supplied to the DLL as arguments to worksheet functions and XLL interface
functions and need to be converted before being used within the DLL;

e they need to be created to be passed as arguments in calls to Exceld (), Exceldv (),
Excell2 (), Excell2v () (see section 8.2 The Excel4(),Excell2() C API
functions on page 226);

e they are returned from calls to Excel4 () or Excell2 () and need to be converted
before being used within the DLL;

e they need to be created for return to the worksheet.

The class cpp_xloper should therefore do the following:

1. Make the most of C++ class constructors to make the creation and initialisation of
xlopers and xloperl2s as simple and intuitive as possible.

2. Make use of the class destructor so that all the logic for freeing memory in the
appropriate way is in one place.

Passing Data Between Excel and the DLL 147

. Make good use of C++ operator overloading to make assignment and extraction of
values to and from existing cpp_xlopers easy and intuitive.
a. It should use ‘=’ to assign values (where possible) and deal with related memory
issues.
c. It should use the int, bool, double, double * and char *, etc., conversion
operators so that C-style casts work intuitively.
d. It should overload the == operator to make type and value comparison easy.

4. Change the x1oper or xloper12 type and deal with any memory consequences of

an assignment of a value to an existing cpp_xloper.
. Provide a clean way to convert between x1opers and supported OLE/COM variants.
Provide a method for obtaining a pointer to a thread-local static x1oper that can be
returned to Excel. It should, at the same time, clean up the resources associated with
the cpp_xloper, and handle any signalling to Excel about memory that still needs
to be freed.
. Make the handling of x1typeMulti arrays and their elements as easy as possible.
. Internally use xlopers or xloperl2s depending on the running version, to avoid
Excel 2007+ casting x1opers up to and down from xloperl?2s.
. Internally use byte strings in Excel 2003 — and Unicode strings in Excel 2007+.
Provide wrappers to the C API access functions Exceld (), Exceldv(),
Excell2 () and Excell2v () to simplify their calling and memory management.
(See sections 8.2, 8.3 and 8.5 for more details).

The cpp_xloper class (included in the CD ROM) exposes the following types of
member functions:

e At least one constructor for each type of xloper/xloperl2.
e Type conversion operator functions and casts that simplify the copying of an x1oper/

xloperl?2’s value to a simple C/C++ variable type.

Accessor functions that simplify the getting and setting of values within an
xltypeMulti array.

Overloaded assignment and boolean operators and C-style casts.

Additional functions that change the type or value of an xloper/xloperl?2.

A number of information functions that, for example, test the type or value.

A number of overloaded member functions, Excel (), that wrap the functions
Exceld (),Exceldv(),Excell2 () and Excell2v (). (These are covered in more
detail in section 8.5 on page 238).

The class contains some private data members:

e An xloper (m_Op), and an xloperl2 (m_Opl2).
e A Boolean, m_DLLtoFree, that determines if any memory pointed to by the x1loper

was dynamically allocated by the DLL, and m_DLLtoFreel?2 that does the same for
the x1loper12. (These are set during construction or assignment and referred to during
destruction or reassignment.)

A Boolean, m_XLtoFree, that determines if any memory pointed to by the xloper
was dynamically allocated by Excel, and m_XLtoFreel?2 that does the same for the
xloperl2. This is set by the class when the cpp_xloper is used for the return

3 The example class in the first edition of this book did not contain these wrappers.

148 Excel Add-in Development in C/C++

value of Exceld () or Excell2 () respectively. It is referred to during destruction
or reassignment.

Here is a listing of the header file cpp_xloper.h:

#include "xlcall.h"
#include "xloper.h"

extern int gExcelVersion;
extern bool gExcelVersionl2plus;
extern bool gExcelVersionllminus;

#include "xlcall.h"
#include "xloper.h"
#include "xloperl2.h"

// Row and column arguments to cpp_xloper functions dealing
// with array and ranges are declared as RW and COL (INT32).
// cpp_xloper class performs version-specific check on the
// limits of the provided values and fails if limits are

// exceeded.

class cpp_xloper

{
public:

cpp_xloper(); // created as xltypeNil

cpp_xloper (const xloper *p_oper, bool deep_copy = false);
cpp_xloper (const xloperl2 *p_oper, bool deep_copy = false);
cpp_xloper (const char *text);// xltypeStr: xloper ASCII byte-string

cpp_xloper (const wchar_t *text);// xltypeStr: xloperl2 unicode string

cpp_xloper (int w) ; // xltypelnt
cpp_xloper (DWORD dw) ; // xltypeNum
cpp_xloper (double 4d); // x1ltypeNum
cpp_xloper (bool b); // xltypeBool
cpp_xloper (WORD e) ; // xltypeErr

cpp_xloper (RW, RW, COL, COL);// xltypeSRef

cpp_xloper (const char *, RW, RW, COL, COL); // xltypeRef from sheet name

cpp_xloper (DWORD, RW, RW, COL, COL); // xltypeRef from sheet ID

cpp_xloper (const VARIANT *pv) ; // Takes its type from the VARTYPE
// xltypeBigData: No deep copying or memory management for this type

cpp_xloper (const void *data, long len);

(
(
(
(
(
(
(
cpp_xloper (int w, int min, int max); // xltypeInt (or xltypeNil)
(
(
(
(
(
(

// xltypeMulti constructors

cpp_xloper (RW rows, COL cols); // array of undetermined type
cpp_xloper (RW rows, COL cols, const double *d_array); // array of
x1typeNum

// Arrays of strings cast up or down depending on the running Excel version
Ccpp_ xloper(RW rows, COL cols, char **str_array); // xltypeStr byte strs
cpp_xloper (RW rows, COL cols, wchar_t **str_array); // (Unicode strings)
cpp_xloper (RW &rows, COL &cols, const xloper *input_oper); // from types
cpp_xloper (RW &rows, COL &cols, const xloperl2 *input_oper); // Sref/Ref
cpp_xloper (RW rows, COL cols, const cpp_xloper *init_array) ;

Passing Data Between Excel and the DLL

149

//

cpp_xloper (const x14_array *array) ;
cpp_xloper (const x112_array *array) ;
cpp_xloper (const cpp_xloper &source); // Copy constructor

Overloaded operators

cpp_xloper &operator=(const cpp_xloper &source) ;

int operator=(int); // xltypeInt

bool operator=(bool b); // xltypeBool

double operator=(double) ; // xltypeNum

WORD operator=(WORD e) ; // xltypeErr

const char *operator=(const char *); // xltypeStr

const wchar_t *operator=(const wchar_t *); // xltypeStr

const xloper *operator=(const xloper *); // same type as arg
const xloperl2 *operator=(const xloperl2 *); // same type as arg

const VARIANT *operator=(const VARIANT *); // same type as arg
const x14_array *operator=(const x14_array *array);
const x112_array *operator=(const x112_array *array);

bool operator==(int w) ;

bool operator==(bool b);

bool operator==(double 4d);

bool operator==(WORD e) ;

bool operator==(const char *text);

bool operator==(const wchar_t *text);

bool operator==(const xloper *);

bool operator==(const xloperl2 *);

bool operator==(const cpp_xloper &cpp_op2);

bool operator!=(int w) {return !operator==(w);}
bool operator!=(bool b) {return !operator==(b);}
bool operator!=(double d) {return !operator==(d);}

bool operator!=(WORD e) {return !operator==(e);}

bool operator!=(const char *text) {return !operator==(text);}
bool operator!=(const wchar_t *text) {return !operator==(text);}
bool operator!=(const xloper *p_op) {return !operator==(p_op);}
bool operator!=(
bool operator!=(

const xloperl2 *p_op) {return !operator==(p_op);}

operator int(void) const;

operator bool (void) const;

operator double(void) const;

operator xloper (void); // get a shallow copy
operator xloperl2(void); // get a shallow copy

void operator+=(double); // coersion to double and addition
void operator+=(int w) {operator+=((double)w) ;}

void operator-=(double d) {operator+=(-4d);}

void operator-=(int w) {operator+=((double)-w) ;}

void operator++ (void) {operator+=(1.0);}

void operator--(void) {operator+=(-1.0);}

If this type is numeric, coerces Op to double and adds. If this

const cpp_xloper &cpp_op2) {return !operator==(cpp_op2);}

150 Excel Add-in Development in C/C++

// type is a string, coerces Op to string and concatenates. Else
// does nothing.
void operator+=(const cpp_xloper &Op) ;

double operator*=(double); // Coerce to double and multiply

xloper *OpAddr (void) ; // return xloper address

xloperl2 *OpAddrl2(void); // return xloperl2 address
e
// string oper functions
et

bool Concat (const cpp_xloper &op); // coerce to strs and concatenate

size_t Len(void) const; // returns 0 if not a string

wchar_t First(void) const; // get the first char or 0 if not a string

wchar_t Mid(int posn) const; // Nth char: 1lst=1. Rtn 0 if !string

operator char *(void) const; // deep copy as byte string, 0 if not str

operator wchar_t *(void) const; // deep copy as Unicode, 0 if not str

void operator+=(const char *); // coerce to string and concatenate

void operator+=(const wchar_t *);
/e e e e e o
// property get and set functions
/e oo

int GetType(void) const ;

bool GetErrVal (WORD &e) const;

void SetType (int new_type) ;

void SetToError (int err_code) ;

bool SetToCallerValue (void) ;

bool SetTypeMulti (RW array_rows, COL array_cols);

bool SetCell (RW rwFirst, RW rwLast, COL colFirst, COL colLast) ;

bool IsType(int) const;

bool IsStr(void) const {return IsType (xltypeStr) ;}

bool IsNum(void) const {return IsType (x1typeNum) ;}

bool IsBool(void) const {return IsType (x1typeBool) ;}

bool IsTrue(void) const; // Explicit check for TRUE

bool IsFalse(void) const; // Explicit check for FALSE

bool IsInt(void) const {return IsType (xltypelnt) ;}

bool IsErr (WORD err = 0) const;

bool IsMulti (void) const {return IsType (xltypeMulti) ;}

bool IsNil(void) const {return IsType (x1typeNil) ;}

bool IsMissing(void) const {return IsType (xltypeMissing);}

bool IsNotGiven(void) const{return IsType (xltypeNil | xltypeMissing) ;}

bool IsRef (void) const {return IsType (x1ltypeRef | xltypeSRef) ;}

bool IsBigData(void) const;

bool IsNullErr (void) const {return IsErr (xlerrNull) ;}

bool IsDivOErr (void) const {return IsErr (xlerrDivO0) ;}

bool IsValueErr(void) const {return IsErr(xlerrValue);}

bool IsRefErr(void) const {return IsErr (xlerrRef) ;}

bool IsNameErr (void) const {return IsErr (xlerrName) ;}

bool IsNumErr (void) const {return IsErr (xlerrNum) ;}

bool IsNaErr (void) const {return IsErr (xlerrNA);}
e

bool GetRangeSize(RW &rows, COL &cols) const; // Use with SRef/Ref
bool IsActiveRef (void) const; // Is a reference on the active sheet?

Passing Data Between Excel and the DLL 151

bool ConvertRefToMulti (void) ;

bool ConvertRefToValues (void) ;

bool ConvertRefToSingleValue (void) ;

bool ConvertSRefToRef (void) ;

RW GetTopRow(void) const; // counts from 1

RW GetBottomRow (void) const; // counts from 1
COL GetLeftColumn(void) const; // counts from 1
COL GetRightColumn (void) const; // counts from 1
bool SetTopRow (RW row); // counts from 1

bool SetBottomRow (RW row); // counts from 1
bool SetLeftColumn(COL col); // counts from 1
bool SetRightColumn (COL col); // counts from 1
wchar_t *GetSheetName (void) const;

DWORD GetSheetID(void) const;

bool SetSheetName (wchar_t *sheet_name) const;
bool SetSheetID(DWORD id) const;

void InitialiseArray (RW rows, COL cols, const double *init_data);
void InitialiseArray (RW rows, COL cols, const cpp_xloper *init_array) ;
int GetArrayEltType (RW row, COL column) const;

int GetArrayEltType (DWORD offset) const;

bool SetArrayEltType (RW row, COL column, int new_type) ;

bool SetArrayEltType (DWORD offset, int new_type) ;

bool GetArraySize (DWORD &size) const;

bool GetArraySize (RW &rows, COL &cols) const;

bool GetArrayElt (DWORD offset, int &w) const;

bool GetArrayElt (DWORD offset, bool &b) const;

bool GetArrayElt (DWORD offset, double &d) const;

bool GetArrayElt (DWORD offset, WORD &e) const;

bool GetArrayElt (DWORD offset, char *&text) const; // makes new string
bool GetArrayElt (DWORD offset, wchar_t *&text) const; // new string
bool GetArrayElt (DWORD offset, xloper *&p_op) const; // get ptr only
bool GetArrayElt (DWORD offset, xloperl2 *&p_op) const; // get ptr only
bool GetArrayElt (DWORD offset, VARIANT &vt) const; // get deep copy
bool GetArrayElt (DWORD offset, cpp_xloper &Elt) const; // deep copy

bool GetArrayElt
bool GetArrayElt
bool GetArrayElt

(RW row, COL column, int &w) const;

(RW row, COL column, bool &b) const;

(RW row, COL column, double &d) const;

bool GetArrayElt (RW row, COL column, WORD &e) const;

bool GetArrayElt (RW row, COL column, char *&text) const; // new string
bool GetArrayElt (RW row, COL column, wchar_t *&text) const; // new str
bool GetArrayElt (RW row, COL column, xloper *&p_op) const; // get ptr
bool GetArrayElt (RW row, COL column, xloperl2 *&p_op) const; // get ptr
bool GetArrayElt (RW row, COL column, VARIANT &vt) const; // deep copy
bool GetArrayElt (RW row, COL column, cpp_xloper &Elt) const; // deep cpy

bool SetArrayElt (DWORD offset, int w);

bool SetArrayElt (DWORD offset, bool b);

bool SetArrayElt (DWORD offset, double d);

bool SetArrayElt (DWORD offset, WORD e);

bool SetArrayElt (DWORD offset, const char *text);

bool SetArrayElt (DWORD offset, const wchar_t *text);
bool SetArrayElt (DWORD offset, const xloper *p_source);

152 Excel Add-in Development in C/C++

bool SetArrayElt (DWORD offset, const xloperl2 *p_source) ;
bool SetArrayElt (DWORD offset, const VARIANT &vt) ;
bool SetArrayElt (DWORD offset, const cpp_xloper &Source) ;

bool SetArrayElt (RW row, COL column, int w);

bool SetArrayElt (RW row, COL column, bool b);

bool SetArrayElt (RW row, COL column, double 4d);

bool SetArrayElt (RW row, COL column, WORD e);

bool SetArrayElt (RW row, COL column, const char *text);

bool SetArrayElt (RW row, COL column, const wchar_t *text);

bool SetArrayElt (RW row, COL column, const xloper *p_source);
bool SetArrayElt (RW row, COL column, const xloperl2 *p_source) ;
bool SetArrayElt (RW row, COL column, const VARIANT &vt) ;

bool SetArrayElt (RW row, COL column, const cpp_xloper &Source);

bool Transpose(void) ;

double *ConvertMultiToDouble (void) ;
bool SameShapeAs (const cpp_xloper &0Op) const;

bool ArrayEltEg(RW row, COL col, const char *) const;

bool ArrayEltEqQ(RW row, COL col, const wchar_t *) const;
bool ArrayEltEg(RW row, COL col, const xloper *) const;
bool ArrayEltEg(RW row, COL col, const xloperl2 *) const;
bool ArrayEltEg(RW row, COL col, const cpp_xloper &) const;
bool ArrayEltEqg(DWORD offset, const char *) const;

bool ArrayEltEqg(DWORD offset, const wchar_t *) const;

bool ArrayEltEqg(DWORD offset, const xloper *) const;

bool ArrayEltEqg(DWORD offset, const xloperl2 *) const;

bool ArrayEltEqg(DWORD offset, const cpp_xloper &) const;

/e o oo
// other public functions
[e e
void Clear (void) ; // Clears the xlopers without freeing memory
xloper *ExtractXloper(void); // extract xloper, clear cpp_xloper
xloperl2 *ExtractXloperl2(void); // extract xloperl2, clear cpp_xloper
VARIANT ExtractVariant (void); // extract VARIANT, clear cpp_xloper
void Free(void); // free memory
bool ConvertToString (void) ;
bool AsVariant (VARIANT &var) const; // Return an equivalent Variant
x14_array *AsDblArray(void) const; // Return an x14_array
bool Alert(int dialog_type = 2); // Display as string in alert dialog
F e ittt
// Wrapper functions for Exceld () and Excell2 (). Sets cpp_xloper to
// result of call and returns Exceld () /Excell2() return code.
e e
int Excel (int x1fn);
int Excel (int x1fn, int count, const xloper *p_opl, ...);
int Excel (int x1fn, int count, const xloperl2 *p_opl, ...);
int Excel (int x1fn, int count, const cpp_xloper *p_opl, ...);
int Excel (int x1fn, int count, const xloper *p_arrayl[]);
int Excel (int x1fn, int count, const xloperl2 *p_arrayl]);
int Excel (int x1fn, int count, const cpp_xloper *p_arrayl]);
private:

inline void cpp_xloper: :FreeOp(void); // free xloper and initialise
inline void cpp_xloper: :FreeOpl2 (void); // free xloperl2 and init.

Passing Data Between Excel and the DLL 153

inline void cpp_xloper: :ClearOp (void) ;

inline void cpp_xloper::ClearOpl2 (void) ;

inline bool RowValid(RW rw) const

{return rw >= 0 && rw < (gExcelVersionl2plus ? MAX_XL12_ROWS
MAX_XL11_ROWS) ;}

inline bool Colvalid(COL col) const
{return col >= 0 && col < (gExcelVersionl2plus?MAX_XL12_COLS
MAX_XL11_COLS) ;}

inline bool RowColValid(RW rw, COL col) const
{return RowvValid(rw) && Colvalid(col);}

bool MultiRCtoOffset (RW row, COL col, DWORD &offset) const;
bool MultiOffsetOK (DWORD offset) const;

// Either or both these can be initialised: only one will be initialised
// unless OpAddr/ExtractXloper is called in version 12+ or

// OpAddrl2/ExtractXloperl2 is called in version 11-. The version

// normally initialised is the one corresponding to the running version
// to remove unnecessary conversions.

xloper m_Op;
bool m_DLLtoFree;
bool m_XLtoFree;

xloperl2 m_Opl2;
bool m_DLLtoFreel2;
bool m_XLtoFreel2;

A full listing of the class code is included on the CD ROM in the example project source
file cpp_xloper . cpp. Sections of it are also reproduced below as examples of the low
level handling of xloper/xloperl2s and conversion to and from C/C++ types.

Here is a demonstration of the ways in which the cpp_xloper class can be used to
create numeric xlopers:

double x, vy, z;
// initialise x, y, z, values

cpp_xloper Operl(x); // creates an xltypeNum, value = X
cpp_xloper Oper2 = y; // creates an xltypeNum, value =y
cpp_xloper Oper3; // initialised to xltypeNil

// Change the type of Oper3 to xltypeNum, value = z, using the
// member function double operator=(double)

Oper3 = z;

// Create xltypeNum=z using copy constructor

cpp_xloper Operd = Oper3;

154 Excel Add-in Development in C/C++

6.5 CONVERTING BETWEEN xloper/xloperl2s
AND C/C++ DATA TYPES

The need to convert arguments and return values can, in many cases, be avoided by declar-
ing functions as taking C-type arguments and returning C-type values. (How you inform
Excel what type of arguments your DLL function expects and what type of return value
it outputs is covered in section 8.6 Registering and un-registering DLL (XLL) functions
on page 244.)

However, conversion from C/C++ types to xlopers is necessary when accessing
Excel’s functionality from within the DLL using the C API. This includes when you
want to register your add-in functions. Excel demands that inputs to the interface functions
Excel4 () and Excell2 () are given as pointers to xlopers and xloperl2s respec-
tively. Also, values are returned from calls to the C API via xlopers or xloperl?2s.
Fortunately, this conversion is very straightforward in most cases.

If you want to accept input from Excel in the most general form, it is necessary to
declare DLL functions as taking xloper * or xloperl2 * arguments. Unless they are
to be passed directly back into Excel via the C API interface, you would then need to
convert them. Excel will never pass in a null xloper * pointer even if the argument is
missing: the x1oper will have the type x1typeMissing instead.

Conversion is also necessary when you want to declare a DLL function as being capable
of returning different data types, for example, a string or a number. In this case the function
needs to return a pointer to an x1oper that is not on the stack, i.e., one that will survive
the return statement.

The following sections provide a more detailed discussion of the xloper types and
give examples of how to convert them to C/C++ types or to create them from C/C++
types. Some of the examples are function methods from the cpp_xloper class.

6.6 CONVERTING BETWEEN xloper/xloperli2 TYPES

The cpp_xloper relies on a set of routines for converting from one x1loper/xloperl?2
type to another, as well as to and from native C/C++ types. Many of these routines are
reproduced in the examples in section 6.9 below. Of particular importance is the Excel
C API function x1Coerce. This function, accessed via the C API interface function
Exceld () or Excell2 (), attempts to return an x1loper or xloperl?2 of a requested
type from the type of the passed-in xloper. It is covered in detail in section 8.8.3
Converting one x1oper type to another: x1Coerce on page 276. In the examples that
follow, this function is itself wrapped in a function whose prototype is:

bool coerce_xloper (xloper *p_op, xloper &ret_val, int target_type);

This attempts to convert any x1loper to an x1loper of target_type. It returns false
if unsuccessful and true if successful, with the converted value returned via the pass-by-
ref argument, ret_val. The code for this function is listed in section 8.8.3 on page 276.

This function is overloaded for xloperl2 conversion, and works in exactly the
same way:

bool coerce_xloper (xloperl2 *p_op, xloperl2 &ret_val, int target_type);

Passing Data Between Excel and the DLL 155

The code for these functions is in the example projects on the CD rom in files
xloper.cpp and xloperl?2 . cpp respectively.

6.7 CONVERTING BETWEEN xlopers AND VARIANTS

Chapter 3 Using VBA discusses the OLE Variant structure and the various types supported
by VBA, as well as the more limited subset that Excel passes to VBA functions declared
as taking Variant arguments. It is also useful to have a number of conversion routines in
an XLL that you also wish to use as interface to VBA, or that you might want to use to
access COM. The cpp_xloper class has a number of these:

cpp_xloper (const VARIANT *); // Takes its type from the VARTYPE

const VARIANT *operator=(const VARIANT *); // Same type as passed-in VT
bool SetArrayElt (DWORD offset, const VARIANT &vt) ;

bool SetArrayElt (RW row, COL column, const VARIANT &vt) ;

bool GetArrayElt (DWORD offset, VARIANT &vt) const; // get deep copy

bool GetArrayElt (RW row, COL column, VARIANT &vt) const; // get deep copy
VARIANT ExtractVariant (void); // extract VARIANT, clear cpp_xloper

bool AsVariant (VARIANT &var) const; // Return an equivalent Variant

The first four methods, a constructor and three assignment operators, rely on the following
routine. (The code for the function array_vt_to_xloper () is a variation on this
function. All the following code is listed in x1oper . cpp in the example project on the
CD ROM.)

#include <ole2.h>
#define VT_XIL_ERR_OFFSET 2148141008ul

bool vt_to_xloper (xloper &op, const VARIANT *pv, bool convert_array)

{
if (pv->vt & (VT_VECTOR | VT_BYREF))
return false;

if (pv->vt & VT_ARRAY)
{
if (!convert_array)
return false;

return array_vt_to_xloper (op, pv);

}

switch (pv->vt)

{

case VT _RS8:
op.xltype = xltypeNum;
op.val.num = pv->dblval;
break;

case VT _I2:
op.xltype = xltypelnt;
op.val.w = pv->iVval;
break;

case VT_BOOL:

156

Excel Add-in Development in C/C++

op.xltype = xltypeBool;
op.val.xbool = pv->boolVval;
break;

case VT_ERROR:
op.xltype = xltypeErr;
op.val.err = (unsigned short) (pv->ulvVal - VT_XL_ERR_OFFSET) ;
break;

case VT_BSTR:
op.xltype = xltypeStr;
op.val.str = vt_bstr_to_xlstring(pv->bstrval) ;
break;

case VT_CY:
op.xltype = xltypeNum;
op.val.num = (double) (pv->cyVal.inté64 / led);
break;

default: // type not converted
return false;

}

return true;

The last four all convert in the other direction and rely on the following routine:

{

bool xloper_to_vt(const xloper *p_op, VARIANT &var, bool convert_array)

VariantInit(&var); // type is set to VT_EMPTY

switch (p_op->xltype)

{

case xltypeNum:
var.vt = VT_RS;
var.dblval = p_op->val.num;
break;

case xltypelnt:
var.vt = VT_I2;
var.ival = p_op->val.w;
break;

case xltypeBool:
var.vt = VT_BOOL;
var.boolval = p_op->val.xbool;
break;

case xltypeStr:
var.vt = VT_BSTR;
var.bstrvVal = xlstring_to_vt_bstr(p_op->val.str);
break;

case xltypeErr:
var.vt = VT_ERROR;
var.ulvVal = VT_XL_ERR_OFFSET + p_op->val.err;
break;

case xltypeMulti:

Passing Data Between Excel and the DLL 157

if (convert_array)

{
VARIANT temp_vt;
SAFEARRAYBOUND bound[2];
long elt_index[2];

bound[0] .1lLbound = bound[1l].1lLbound = 0;
bound[0] .cElements = p_op->val.array.rows;
bound[1l] .cElements = p_op->val.array.columns;

var.vt = VT_ARRAY | VT_VARIANT; // array of Variants
var.parray = SafeArrayCreate (VT_VARIANT, 2, bound) ;

if (!var.parray)
return false;

xloper *p_op_temp = p_op->val.array.lparray;

for(WORD r = 0; r < p_op->val.array.rows; r++)

{
for (WORD ¢ = 0; ¢ < p_op->val.array.columns;)
{

// Call with last arg false, so not to convert array within array
xloper_to_vt(p_op_temp++, temp_vt, false);
elt_index[0] = r;
elt_index[1l] = c++;

SafeArrayPutElement (var.parray, elt_index, &temp_vt);
}
}
break;

}
// else, fall through to default option

default: // type not converted
return false;

}

return true;

It is important to note that Variant strings are wide-character OLE BSTRs, in contrast to
the byte-string BSTRs that Excel VBA uses for its String type when exchanging data
with Excel and with a DLL declared as taking a String (in VBA)/BSTR (in C/C++)
argument. The following code shows both conversions:

// Converts a VT_BSTR wide-char string to a newly allocated
// byte-counted string. Memory returned must be freed by caller.
char *vt_bstr_to_xlstring(const BSTR bstr)

{
if (!'bstr)
return NULL;
size_t len = SysStringLen (bstr);

if (len > MAX_ XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);

158 Excel Add-in Development in C/C++

// VT_BSTR is a wchar_t string, so need to convert to a byte-string
if(!p | | westombs(p + 1, bstr, len + 1) < 0)
{
free(p);
return false;
}
p[0] = (BYTE)len;
return p;

// Converts a byte-counted string to a VT_BSTR wide-char Unicode string
// Does not rely on (or assume) that input string is null-terminated.
BSTR xlstring_to_vt_bstr(const char *str)
{
if(!str)
return NULL;

wchar_t *p = (wchar_t *)malloc(str[0] * sizeof(wchar_t));
if(!p | | mbstowcs(p, str + 1, str[0]) < 0)
free(p):

return NULL;

}

BSTR bstr = SysAllocStringLen(p, str[0]);
free(p);
return bstr;

Note that in Excel 2007, the x1operl12 string is a Unicode string, so converting from
Variant strings to length-counted x1oper12 strings is more straightforward, as there is
no need to convert from Unicode to bytes:

wchar_t *vt_bstr_to_xll2string(const BSTR bstr)

{
if (!bstr)
return NULL;

size_t len = SysStringLen (bstr);

if (len > MAX_ XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2)* sizeof (wchar_t));
memcpy (p, bstr, (len + 2) * sizeof (wchar_t));
pl[0] = (wchar_t)len;

return p;

Similarly, conversion from x1loper12 to Variant Unicode string is simpler too:

BSTR xlstring_to_vt_bstr (wchar_t *str)

{

Passing Data Between Excel and the DLL 159

if(!str)
return NULL;

BSTR bstr = SysAllocStringLen(str + 1, str[0]);
return bstr;

6.8 CONVERTING BETWEEN xlopers and xloperl2s

Note: xloperl2s are only supported in Excel 2007 and later versions.

Excel 2007 uses x1loperl2s internally but still supports xlopers and the Exceld C
API functions. This means that XLLs that only use x1opers and Excel4 () should run
as expected. However, calls to Excel4 () will be slower than calls to Excell2 () as
Excel 2007 needs to convert xlopers up to xloperl2s, call the requested function,
and then finally convert the x1oper12 result back down to an x1oper. This conversion
overhead could be significant so the advice, where frequent calls to the C API are being
made, is only to use xloperl2s and Excell2 () when running Excel 2007+.

However, you might not want to duplicate interface functions in all cases: You might
want to keep the xloper versions of your exported functions. In these circumstances,
you should consider converting from the supplied xlopers up to xloperl2s before
repeatedly calling the C API, and then convert your final x1oper12 result down to an
xloper. To do this, your project needs to contain conversion functions, and example
code is listed below.

Note that converting up to x1loper12s from x1lopers loses no information, but string
conversion (from byte strings to Unicode strings) is, in general, locale dependent. Note
also that converting down to x1opers can lose information and may, in some cases, not
even be possible: Unicode strings are mapped down to byte strings, possibly losing data;
Ranges and arrays may need to be truncated, and ranges might be completely outside the
grid supported by x1opers. How you deal with ranges and arrays that are too big should
be defined by your requirements, and the following code demonstrates two approaches:
truncation and complete failure.

The following code relies on these constant definitions:

#define MAX_XL4_STR_LEN 255u
#define MAX_XL11_ROWS 65536
#define MAX_XL11_COLS 256
#define MAX_ XL12_STR_LEN 32767u
#define MAX_XL12_ROWS 1048576
#define MAX_XL12_COLS 16384

Note that these routines ignore the source memory bits and DO NOT set these in the
converted xloper/xloperl?2. The caller must set these bits, or other flags, depending
on the type of the returned xloper/xloperl?2.

bool xloper_to_xloperl2(xloperl2 *p_target, const xloper *p_source)

{

p_target->xltype = p_source->xltype & ~ (x1bitXLFree | xlbitDLLFree) ;

160

Excel Add-in Development in C/C++

/7

switch(p_target->xltype)

{

case
case
case
case
case

x1ltypeNum: p_target->val.num = p_source->val.num; break;
xltypeBool: p_target->val.xbool = p_source->val.xbool; break;
xltypelnt: p_target->val.w = p_source->val.w; break;
x1ltypeErr: p_target->val.err = p_source->val.err; break;
xltypeSRef:
{

p_target->val.sref.count = 1;

const xlref *p_ref = &(p_source->val.sref.ref);

xlrefl2 *p_refl2 = &(p_target->val.sref.ref);

p_refl2->rwFirst = p_ref->rwFirst;

p_refl2->rwLast = p_ref->rwlLast;

p_refl2->colFirst = p_ref->colFirst;

p_refl2->collLast = p_ref->collast;
}
break;

These types have memory associated with them, so need to allocate
new memory and then copy the contents from source.
case xltypeStr:
p_target->val.str = deep_copy_xll2string(p_source->val.str);
break;

case xltypeRef:

{

}

xlmref *p_s_mref = p_source->val.mref.lpmref;

int count = p_s_mref->count;

xlmrefl2 *p_t_mref = (xlmrefl2 *)malloc(sizeof (x1lmrefl2)
+ (count - 1) * sizeof(xlrefl2));

if(!'p_t_mref)
return false;

p_target->val.mref.lpmref = p_t_mref;

p_t_mref->count = count;

xlrefl2 *p_refl2 = p_t_mref->reftbl;

xlref *p_ref = p_s_mref->reftbl;

for (;count--; p_refl2++, p_ref++)

{
p_refl2->colFirst = p_ref->colFirst;
p_refl2->collLast = p_ref->collast;
p_refl2->rwFirst = p_ref->rwFirst;
p_refl2->rwLast = p_ref->rwLast;

}

p_target->val.mref.idSheet = p_source->val.mref.idSheet;

break;

case xltypeMulti:

{

p_target->val.array.columns = p_source->val.array.columns;
p_target->val.array.rows = p_source->val.array.rows;
int 1limit = p_source->val.array.rows

* p_source->val.array.columns;

xloperl2 *p_t = (xloperl2 *)malloc(limit * sizeof (xloperl2));

if(!p_t)

return false;
p_target->val.array.lparray = p_t;
xloper *p_s = p_source->val.array.lparray;

Passing Data Between Excel and the DLL 161

for(;limit--;)
xloper_to_xloperl2 (p_t++, p_s++);
}
break;
}

return true;

// Conversion can fail in which case returns bool false
bool xloperl2_to_xloper (xloper *p_target, const xloperl2 *p_source)
{
p_target->xltype = (WORD)p_source->xltype
& ~(x1lbitXLFree | xlbitDLLFree) ;

switch(p_target->xltype)

{

case xltypeNum: p_target->val.num = p_source->val.num; break;
case xltypeBool: p_target->val.xbool = p_source->val.xbool; break;
case xltypelnt: p_target->val.w = p_source->val.w; break;
case xltypeErr: p_target->val.err = p_source->val.err; break;

// This type can reference larger ranges or arrays than xloper
// so need to check that the xloper limits are not exceeded
case xltypeSRef:
{
p_target->val.sref.count = 1;
const xlrefl2 *p_refl2 = &(p_source->val.sref.ref);
xlref *p_ref = &(p_target->val.sref.ref);

#if 0 // Very safe: fail if ranges start or end outside xloper scope
if(p_refl2->collLast >= MAX_XL11l_COLS // count from 0
| | p_refl2->rwLast >= MAX_XL11l_ROWS
| | p_refl2->colFirst >= MAX_XL11l_COLS
| | p_refl2->rwFirst >= MAX_XL11l_ROWS)
{
}
p_ref->colFirst = p_refl2->colFirst;
p_ref->rwFirst = p_refl2->rwFirst;
p_ref->collLast = p_refl2->collast;
p_ref->rwLast = p_refl2->rwLast;

return false;

#else // Truncate ranges that extend beyond xloper scope
if(p_refl2->colFirst >= MAX XL11_COLS // count from 0
| | p_refl2->rwFirst >= MAX_XL11l_ ROWS)

{
// Range is completely outside xloper's scope so fail
return false;
}
p_ref->colFirst = p_refl2->colFirst;
p_ref->rwFirst = p_refl2->rwFirst;
p_ref->collLast = p_refl2->collLast >= MAX XL11_COLS ?
MAX_XL11_COLS - 1 : p_refl2->collLast;
p_ref->rwLast = p_refl2->rwLast >= MAX_XL11l_ROWS ?
MAX_XL11 _ROWS - 1 : p_refl2->rwlLast;
#endif
}
break;

// These types have memory associated with them, so need to allocate

162 Excel Add-in Development in C/C++

// new memory and then copy the contents from source.
case xltypeStr:
// String truncated if longer than 255 bytes and cast down to bytes

p_target->val.str = deep_copy_xlstring(p_source->val.str);
break;

// These last 2 types can reference larger ranges or arrays than

// xloper types so need to check that the xloper limits are not exceeded
case xltypeRef:

{
p_target->val.mref.idSheet = p_source->val.mref.idSheet;
int count = p_source->val.mref.lpmref->count;
xlmref *p_t_mref = (xlmref *)malloc(sizeof (xlmref)

+ (count - 1) * sizeof(xlref));

p_target->val.mref.lpmref->count = count;
xlref *p_ref = p_target->val.mref.lpmref->reftbl;
xlrefl2 *p_refl2 = p_source->val.mref.lpmref->reftbl;

for (;count--; p_refl2++, p_ref++)
{
#i1if 0 // Very safe: fail if ranges start or end outside xloper scope
if (p_refl2->collLast >= MAX_XL11_COLS // count from 0
| | p_refl2->rwLast >= MAX_XL11_ROWS
| | p_refl2->colFirst >= MAX_XL11_COLS
| | p_refl2->rwFirst >= MAX_XL11l_ROWS)
{
free(p_t_mref) ;
p_target->val.mref.lpmref = NULL;
return false;
}

p_ref->colFirst = p_refl2->colFirst;
p_ref->rwFirst = p_refl2->rwFirst;
p_ref->collLast = p_refl2->collast;
p_ref->rwLast = p_refl2->rwLast;

#else // Truncate ranges that extend beyond xloper scope
if (p_refl2->colFirst >= MAX_XL11_COLS // count from 0
| | p_refl2->rwFirst >= MAX_XL11_ROWS)
{
// Range is completely outside xloper's scope so fail
free(p_t_mref);
p_target->val .mref.lpmref = NULL;
return false;
}
p_ref->colFirst = p_refl2->colFirst;
p_ref->rwFirst = p_refl2->rwFirst;
p_ref->collLast = p_refl2->collLast >= MAX_XL11_COLS ?
MAX_XL11_COLS - 1 : p_refl2->collast;
p_ref->rwLast = p_refl2->rwLast >= MAX_XL11_ROWS ?
MAX _XL11_ROWS - 1 : p_refl2->rwlLast;
#endif
}
}

break;

case xltypeMulti:
{

RW r, rows, sr = p_source->val.array.rows; // counts from 1
COL ¢, cols, sc = p_source->val.array.columns; // counts from

// xloper can't access whole column so max r value is MAX XL11_ROWS - 1

Passing Data Between Excel and the DLL 163

rows = sr > MAX XL11 _ROWS - 1 ? MAX_ XL11_ROWS - 1 : sr;
cols = sc > MAX_XL11l _COLS ? MAX XL11_COLS : sc;

p_target->val.array.rows = Yows;

p_target->val.array.columns = cols;

xloper *p_t = (xloper *)malloc(rows * cols * sizeof (xloper)):;
p_target->val.array.lparray = p_t;

xloperl2 *p_s = p_source->val.array.lparray;

// Might need to truncate columns and rows, so need to work row-by-row
// xlytpeMulti types are row-major
for(r = 0; r < rows; r++)
{
p_s = p_source->val.array.lparray + r * sc;
for(c = 0; c < cols; c++)
xloperl2_to_xloper (p_t++, p_s++);
}
}
break;
}

return true;

6.9 DETAILED DISCUSSION OF xloper TYPES

This section describes in more detail the things you need to know about each xloper/
xloperl?2 type to be able to work with it, specifically:

When you will encounter it.

When you need to create it.

How you create an instance of it.

How you convert it to a C/C++ data type.
What the memory considerations are.
How you can avoid using it.

Bear in mind that you can in many cases declare functions as taking and returning
simple C/C++ data types, avoiding the need to use these structures. You only need to
use xloper/xloperl2s in the following circumstances:*

e When implementing the XLL Add-in Manager interface functions (x1Auto...) that
take xloper * or xloperl2 * arguments.

e When receiving arguments of types that are only supported in x1opers (cell or range
references).

e When receiving arguments that might take different types.

e When receiving range arguments that you do not want Excel to convert to values before
passing them to the DLL.

4You can, of course, avoid using xloper/xloperl2s by using a VBA interface and Variants in many of
these cases.

164 Excel Add-in Development in C/C++

e Where a function’s return type requires the use of xlopers (for example, errors or
arrays that contain more than just numbers), or where it might take on more than one
data type (a string, a number or an error value).

e When calling into the C API via calls to Excel4 () or Exceldv () in the case of
xlopers, and Excell2 () or Excell2v () in the case of xloperl2s.

The code examples that follow use the C x1loper structure directly in some cases, and
the C++ class cpp_xloper, described on page 146, in others. Those that use the latter
are those where the use of C++ constructors, destructors and operator overloading makes
the code far more straightforward: the handling of the elements of the xloper and
memory are hidden in the class implementation. The majority of the examples that deal
with x1typeMulti, x1typeSRef and x1ltypeRef types only use cpp_xlopers.

The Excel 2007 x1oper12 structure is only explicitly referred to where what is said
does not equally apply to both x1oper12s and xlopers. Many of the code examples
that are listed for x1lopers only are also included on the CD ROM in an xloperl?2
form, with functions that are sometimes overloaded and sometimes differently named (see
xloperl?2.cpp and xloperl2.h). The cpp_xloper class is version-independent, in
that it uses x1lopers when running in Excel 2003 (version 11) and earlier versions, and
xloperl2s in Excel 2007 (version 12) and later. The subject of the creation of multi-
version XLLs is covered in section 8.6.12 Registering functions with dual interfaces for
Excel 2007 and earlier versions on page 263.

6.9.1 Freeing xloper memory

Some of the code samples below call one or both of the functions free_xloper () and
cpp_xloper: :Free() before assigning values to a passed-in xloper or
cpp_xloper. These functions clear any memory that might be associated with the
xloper according to its type and how the memory was allocated in the first place. The
function free_xloper (), which deals with xlopers and has no knowledge of the
cpp_xloper class, needs one of two bits in the x1 type field to be set in order to know
how to free memory: x1bitDLLFree or x1bitXLFree. This must be done in the
DLL with some knowledge of how they were originally created. (See Chapter 7 Memory
Management on page 203 for more details.)
Here is the code for both of these functions:

// Frees dll-allocated xloper memory using free() and assumes that all
// types that have memory were allocated in a way that is compatible
// with freeing by a call to free(), including all strings within arrays.
void _ stdcall xlAutoFree (xloper *p_oper)
{
if (p_oper->xltype & xltypeMulti)
{
// First check if string elements need to be freed then free the array
int size = p_oper->val.array.rows * p_oper->val.array.columns;
xloper *p = p_oper->val.array.lparray;

for(; size-- > 0; p++) // check elements for strings
if ((p->xltype & ~(x1lbitDLLFree | x1bitXLFree)) == xltypeStr)
{

Passing Data Between Excel and the DLL 165

if (p->x1ltype & x1bitDLLFree)
free(p->val.str);
else if(p->x1ltype & xlbitXLFree)
Exceld (x1Free, 0, 1, p);
}
free(p_oper->val.array.lparray) ;

}

else if (p_oper->xltype & xltypeStr)

{

}
else if (p_oper->xltype & xltypeRef)

{

}
#if XL_AUTO_FREE_XLOPER

free (p_oper) ;
#endif
}

free (p_oper->val.str) ;

free(p_oper->val.mref.lpmref) ;

void cpp_xloper: :Free(void) // free memory and initialise
{
// Class can have both the xloper and the xloperl2 defined, so need to
// check and free both. (This can happen where the class has been
// asked to return an xloper of the other type than the running version
// default) .
FreeOp () ;
FreeOpl2 () ;
}

inline void cpp_xloper: :FreeOp(void) // free memory and initialise
{
1f((m_Op.xltype & (xltypeRef | xltypeMulti | xltypeStr)) != 0)
{
if (m_XLtoFree)
Exceld (x1Free, 0, 1, &m_Op);
else if (m_DLLtoFree)
free_xloper (&m_Op) ;
}
ClearOp () ;
}

inline void cpp_xloper: :FreeOpl2 (void) // free memory and initialise
{
1f((m_Opl2.xltype & (x1ltypeRef | xltypeMulti | xltypeStr)) != 0)
{
if (m_XLtoFreel2)
Excell2 (x1Free, 0, 1, &m_Opl2);
else if (m_DLLtoFreel2)
free_xloper (&m_Opl2) ;
1
ClearOpl2 () ;

Note that the class code calls the following function to free memory which assumes
that all types that have memory were allocated in a way that is compatible with freeing
by a call to free (), including all strings within arrays. Note that it also assumes that
x1bitDLLFree is not set and that x1typeBigData types will not be passed to it.

166 Excel Add-in Development in C/C++

void free_xloper (xloper *p_op)

{
if (p_op->xltype & xltypeMulti)

{
// First check i1f string elements need to be freed then free the array.
// WARNING: Assumes all strings are allocated with calls to malloc().
int limit = p_op->val.array.rows * p_op->val.array.columns;
xloper *p = p_op->val.array.lparray;

for(int i = limit; i--; p++)
if(p->x1ltype & xltypeStr)
free(p->val.str);

free(p_op->val.array.lparray) ;

}
else if(p_op->xltype & xltypeStr)

{
}
else if(p_op->xltype & xltypeRef)
{

}

free(p_op->val.str);

free(p_op->val.mref.lpmref) ;

6.9.2 Worksheet (floating point) number: x1typeNum

When you will encounter it

This x1oper type is used by Excel for all numbers passed from worksheets to a DLL,
whether floating point or integer. It is also returned by a number of the C API func-
tions.

When you need to create it

A number of Excel’s own functions take floating point numbers as arguments, for example,
Excel’s mathematical worksheet functions. When calling them from within the DLL this
data type should be used. Where you are passing an integer argument, you can use the
x1ltypelInt type, although there is no advantage in doing this.

Using this kind of x1oper is the most sensible way to pass numbers back to Excel in
those cases where you may also wish to return, say, an Excel error.

How vou create an instance of it

The code to populate an x1oper of this type is:

void set_to_double(xloper *p_op, double d)
{
if (!p_op) return;
p_op->x1ltype = xltypeNum;
p_op->val.num = d;

Passing Data Between Excel and the DLL

167

This can be overloaded for xloperl2s:

void set_to_double(xloperl2 *p_op, double d)
{

if (!p_op) return;

p_op->xltype = xltypeNum;

p_op->val.num = d;

Using the cpp_xloper class, creation can look like any of these:

double x, v, z;

/..

cpp_xloper Operl(x); // creates an xltypeNum xloper, value = X
cpp_xloper Oper2 = y; // creates an xltypeNum xloper, value =y
cpp_xloper Oper3; // creates an xloper of undefined type

// Change the type of Oper3 to xltypeNum, value = z, using the
// overloaded operator=

Oper3 = z;

// Create xltypeNum=z using copy constructor

cpp_xloper Operd = Oper3;

The code for the x1typeNum constructor is:

cpp_xloper: :cpp_xloper (double d)
{
Clear () ;
if (gExcelVersionl2plus)
set_to_double (&m_Opl2, d);
else
set_to_double (&m_Op, d);

The code for the overloaded conversion operator ‘=’ is:

void cpp_xloper: :operator=(double d)
{
Free();
if (gExcelVersionl2plus)
set_to_double (&m_Opl2, d);
else
set_to_double (&m_Op, 4d);

How you convert it to a C/C++ data type

The following code example shows how to access (or convert, if not an x1typeNum)

the value of the x1oper:

bool coerce_to_double(xloper *p_op, double &d)

{

168 Excel Add-in Development in C/C++

if(!p_op)
return false;

if (p_op->xltype == xltypeNum)

d = p_op->val.num;
return true;
}
// xloper is not a floating point number type, so try to convert it.
xloper ret_val;
if (!coerce_xloper (p_op, ret_val, xltypeNum))
return false;

d = ret_val.val.num;
return true;

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;
// Some code that sets Oper's value...
double result = (double)Oper; // use the overloaded cast

The code for the overloaded cast operator (double) is shown here, where the overloaded
xloperl?2 equivalent of the above function is called when running Excel 2007+:

cpp_xloper: :operator double(void)
{
double d;
if (gExcelVersionl2plus)
return coerce_to_double(&m_Opl2, d) 2 d : 0.0;
else
return coerce_to_double(&m_Op, d) ?2 d : 0.0;

What the memory considerations are

None unless the x1oper or xloperl2 are dynamically allocated.

How you can avoid using it

Declare functions as taking double arguments and/or returning doubles: Excel will do
the necessary conversion.

6.9.3 Length-counted string: x1typeStr

When you will encounter it

This type is used by Excel for all text passed from worksheets to a DLL. It is also returned
by a number of the C API functions. Note that the xloper xltypeStr is a byte string

Passing Data Between Excel and the DLL 169

of maximum length 255, whereas the x1oper12 string is a Unicode string of maximum
length 32,767.

When you need to create it

A number of Excel functions take text arguments. Perhaps most importantly, from the
point of view of making DLL functions accessible directly from the worksheet, is the
function that registers DLL functions. (See section 8.6 Registering and un-registering
DLL (XLL) functions on page 244.) When calling them from the DLL, this data type
should be used. It is also the most sensible way to pass strings back to Excel where you
may also sometimes want to return, say, an Excel error.

How you create an instance of it

The code to populate an x1oper of this type is:

void set_to_text(xloper *p_op, const char *text)

{

if (!p_op) return;

if (! (p_op->val.str = new_xlstring(text)))
p_op->x1type = xltypeNil;

else
p_op->x1ltype = xltypeStr;

The code for new_xlstring() is:

// Create counted ASCII byte string from null-terminated ASCII input
char *new_xlstring(const char *text)

{

size_t len;

if(!'text | | !'(len = strlen(text)))
return NULL;

if(len > MAX_ XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);
if (!p) return NULL;

memcpy(p + 1, text, len + 1);

pl0] = (BYTE)len;

return p;

The equivalent code for initialising an x1loperl?2 is:

void set_to_text(xloperl2 *p_op, const wchar_t *text)

{

if (!p_op) return;

170 Excel Add-in Development in C/C++

if (! (p_op->val.str = new_xll2string(text)))
p_op->x1ltype = xltypeNil;

else
p_op->xX1ltype = xltypeStr;

// Create counted Unicode wchar string from null-terminated Unicode input
wchar_t *new_x112string(const wchar_ t *text)

{

size_t len;

if(!text | | !'(len = wcslen(text)))
return NULL;

if (len > MAX_XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2) * sizeof (wchar_t));
if (!p) return NULL;

memcpy (p + 1, text, (len + 1) * sizeof (wchar_t));

pl0] = len;

return p;

When creating add-ins that need to work with both Unicode strings and byte strings,
you might need to initialise xlopers using Unicode strings or xloperl2s using byte
strings, in which case the following routines, or something equivalent, are needed.

void set_to_text(xloper *p_op, const wchar_t *text)

{

if (!p_op) return;

if (! (p_op->val.str = new_xlstring(text)))
p_op->xltype = xltypeNil;
else
p_op->xX1ltype = xltypeStr;
}

void set_to_text(xloperl2 *p_op, const char *text)

{

if (!p_op) return;

if (! (p_op->val.str = new_x112string(text)))
p_op->xltype = xltypeNil;

else
p_op->x1ltype = xltypeStr;

// Create counted ASCII byte string from null-terminated Unicode input
char *new_xlstring(const wchar_t *text)

{

size_t len;

if(!'text || !(len = wcslen(text)))
return NULL;

Passing Data Between Excel and the DLL 171

if(len > MAX_ XL4_STR_LEN)
len = MAX_XL4_STR_LEN; // truncate

char *p = (char *)malloc(len + 2);
if(!p | | westombs (p + 1, text, len) < 0)
{

free(p);

return NULL;

}

p[0] = (BYTE)len;
pllen + 1] = 0;
return p;

// Create counted Unicode wchar string from null-terminated ASCII input
wchar_t *new_x112string(const char *text)

{

size_t len;

if(!'text | | !(len = strlen(text)))
return NULL;

if (len > MAX XL12_STR_LEN)
len = MAX_XL12_STR_LEN; // truncate

wchar_t *p = (wchar_t *)malloc((len + 2) * sizeof (wchar_t));
if (!p) return NULL;

mbstowcs (p + 1, text, len);

pl0] = len; // string pl[l] is NOT null terminated

pllen + 1] = 0; // now it is

return p;

The code for the cpp_xloper xltypeStr constructors makes use of all four over-
loaded set_to_text () functions:

cpp_xloper: :cpp_xloper (const char *text)
{
Clear () ;
if (gExcelVersionl2plus)
{
set_to_text (&m_Opl2, text);
m_DLLtoFreel2 = true;
}
else
{
set_to_text (&m_Op, text);
m_DLLtoFree = true;
}
}
cpp_xloper: :cpp_xloper (const wchar_t *text)
{
Clear () ;
if (gExcelVersionl2plus)
{
set_to_text (&m_Opl2, text);
m_DLLtoFreel2 = true;

172 Excel Add-in Development in C/C++

}

else

{
set_to_text (&m_Op, text);
m_DLLtoFree = true;

Note that in this example it is necessary to set m_DLLtoFree or m_DLLtoFreel2 to
true to ensure that, at destruction or assignment of a different value, the memory will
be freed in the right way.

How vyou convert it to a C/C++ data type

The following code example shows how convert an x1loper to a null-terminated string.
Note that, when making a copy, the code does not assume the byte-counted string (which
might have been created by Excel) is null terminated. This would be a very unsafe
assumption.

bool coerce_to_string(const xloper *p_op, char *&text)
{
char *str;
xloper ret_val;
text = NULL; // can test this or the return value for failure
if(!p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) != 0)
return false;

if (p_op->xltype != xltypeStr)
{
// xloper is not a string type, so try to convert it.
if (!coerce_xloper (p_op, ret_val, xltypeStr))
return false;
str = ret_val.val.str;

else if(!(str = p_op->val.str)) // make a working copy of the ptr
return false;

size_t len = (BYTE)str[0];
if((text = (char *)malloc(len + 1)) == NULL) // caller must free this
{

if (p_op->x1ltype != xltypeStr)

Exceld (x1Free, 0, 1, &ret_val);
return false;

}

if(len)
memcpy (text, str + 1, len);
text[len] = 0; // xloper string may not me null terminated

// If the string from which the copy was made was created in a call
// to coerce_xloper above, then need to free it with a call to xlFree
if (p_op->xltype != xltypeStr)
Exceld (x1Free, 0, 1, &ret_val);
return true;

Passing Data Between Excel and the DLL 173

Three more overloaded functions that convert an xloper to a null-terminated Unicode
string, or an xloperl?2 into a null-terminated byte or Unicode string are also provided
in the example project on the CD ROM. Their prototypes are:

bool coerce_to_string(const xloperl2 *p_op, char *&text);
bool coerce_to_string(const xloperl2 *p_op, wchar_t *&text);
bool coerce_to_string(const xloper *p_op, wchar_t *&text);

The code for the overloaded conversion operators (char *) and (wchar_t *) is:

cpp_xloper: :operator char *(void) const
{
char *p;
if (gExcelVersionl2plus)
return coerce_to_string (&m_Opl2, p) ? p : NULL;
else
return coerce_to_string(&m Op, p) ? p : NULL;
}
cpp_xloper: :operator wchar_t *(void) const
{
wchar_t *p;
if (gExcelVersionl2plus)
return coerce_to_string(&m_Opl2, p) ? p : NULL;
else
return coerce_to_string(&m_Op, p) ? p : NULL;

What the memory considerations are

When Excel passes you an x1typeStr it is best to do nothing other than read it. If you
need to modify it, make a copy. The exception to this is where you are declaring a string
argument as a modify-in-place return value. In this case Excel will allocate a buffer that
is big enough for the maximum length string type (byte or Unicode) supported by Excel.
(See section 8.6.7 Returning values by modifying arguments in place on page 253).

When you have allocated memory for a string to be returned to Excel, Excel will not
free the memory for you: it does not know how you allocated it or if it is static. Obviously,
associated memory cannot be freed by the DLL before returning from the function. This
makes returning dynamically allocated strings to Excel as char * or wchar_t * a bad
idea in general. Returning an x1typeStr xloper gives you the ability to instruct Excel
to call back into your DLL once it has finished. Then you can release the memory. (This
topic is covered in section 7.4 Getting Excel to call back the DLL to free DLL-allocated
memory on page 208.)

The following example code would leak memory every time it was called with a valid
value of i. This function would be registered as returning a ‘C’ type value.

char * _ stdcall bad_string_example (short i)
{

if(i < 1]] i > 26) return NULL;

char *rtn_string = (char *)malloc(i + 1);

for(char *p = rtn_string; i; *p++ = '"A' + --1);

174 Excel Add-in Development in C/C++

*p = 0; // null-terminate the string
return rtn_string;

Where an x1oper points to a static byte-counted string, there is nothing to worry about.

How you can avoid using it

Declare functions as taking null-terminated char * arguments and/or returning char *.
Excel will do the necessary conversions, but, beware: returning dynamically allocated
strings in this way will result in memory leaks. As discussed in section 8.6.7, returning
strings by modifying arguments in place is one way around this.

6.9.4 Excel Boolean: x1typeBool

Note: The definition of the xloper’s Boolean data member in Microsoft’s original C
header file is WORD bool; which, given the subsequent introduction of the bool data
type in C++, is changed throughout this book to xbool to be consistent with Microsoft’s
name for this data member in the xloperl?2.

When you will encounter it

This x1oper type is used by Excel for all Boolean (true or false) values passed from
worksheets to a DLL. It is also returned by a number of the C API functions.

When you need to create it

A number of Excel’s own functions take Boolean arguments, often to trigger non-default
behaviour. When calling them from within the DLL using the C API this data type should
be used. (Excel will attempt to convert numeric x1typeNum or x1typeInt arguments
to true or false values.) If you want your worksheet function to evaluate to TRUE or FALSE
then you have no choice but to use this type.

How vyou create an instance of it

The code to populate an x1oper of this type is:

void set_to_bool (xloper *p_op, bool b)
{
if (!p_op) return;
p_op->xltype = xltypeBool;
p_op->val.xbool = (b ? 1 : 0);

The cpp_xloper class also contains explicit true and explicit false tests, IsTrue ()
and IsFalse (), which test that the xloper or xloperl2 is both Boolean and true
or false, respectively.

Passing Data Between Excel and the DLL 175

bool cpp_xloper: :IsTrue(void) const
{

if (gExcelVersionl2plus)
return m_Opl2.xltype == xltypeBool && m_Opl2.val.xbool;

return m_Op.xltype == xltypeBool && m_Op.val.xbool;

This simplifies argument checking on exported functions as shown here, where the default

behaviour is to use ‘method one’ unless the (optional) supplied argument is explicitly
FALSE:

double _ stdcall example_export (double argl, xloper *pUseMethodOne)
{
cpp_xloper UseMethodOne (pUseMethodOne); // Makes shallow copy
if (UseMethodOne.IsFalse()) // default is to use method 1
return method_two_fn(argl) ;

return method_one_fn(argl) ;

The code for the x1typeBool constructor calls the above set_to_bool () or an
overloaded x1operl2 version:

cpp_xloper: :cpp_xloper (bool b)
{
Clear () ;
if (gExcelVersionl2plus)
set_to_bool (&m_Opl2, b);
else
set_to_bool (&m_Op, b);

How you convert it to a C/C++ data type

The x1oper and xloperl?2, being C structures, do not know about the C++ bool type.
Its value is represented within the xloper/xloperl?2 as integer 1 (true) or O (false).
(Note that the VBA Boolean data type encodes true as —1 and false as 0).

The following code example shows how to access (or convert, if not an x1typeBool)
the value of the x1oper:

bool coerce_to_bool (const xloper *p_op, bool &b)

{

if(!'p_op | | (p_op->x1type & (xltypeMissing | xltypeNil)) != 0)
return false;

if (p_op->xltype == xltypeBool)

{
b = (p_op->val.xbool != 0);

return true;

176 Excel Add-in Development in C/C++

// xloper is not a Boolean number type, so try to convert it.
xloper ret_val;
if (!coerce_xloper (p_op, ret_val, xltypeBool))
return false;

b = (ret_val.val.xbool != 0);
return true;

A similar overloaded function for x1loper12s is provided on the CD ROM and proto-
typed as

bool coerce_to_bool (const xloperl2 *p_op, bool &b)

Using the cpp_xloper class the conversion would look like this:

cpp_xloper Oper;

bool is_true = (bool)Oper; // default to false if can't convert to Boolean
or

bool is_true = Oper.IsTrue(); // default to false if not Boolean
or

bool is_true = !Oper.IsFalse();// default to true if not Boolean

The code for the overloaded conversion operator (bool) is:

cpp_xloper: :operator bool (void)

{

bool b;
if (coerce_to_bool (&m_Op, b))
return b;

return false;

What the memory considerations are

None unless the x1oper or xloperl? is itself dynamically allocated.

How you can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversion.

Passing Data Between Excel and the DLL 177

6.9.5 Worksheet error value: x1typeErr

When you will encounter it

This x1oper type is used by Excel for all error values passed from worksheets to a DLL.
When you want your DLL code to be called even if one of the inputs evaluates to an
error (such as range with invalid references — #REF!), you need to declare arguments as
xlopers or xloperl2s. Otherwise Excel will intercept the error and fail the function
call before the DLL code is even reached.

This type is returned by many of the C API functions when they fail to complete
successfully. DLL functions accessed via VBA that accept Variant arguments, or arrays
of Variants, may need to convert between the Variant representation of Excel errors and
the C API error codes. This is discussed in section 3.6.11 Variant types that Excel can
pass to VB functions on page 74.

When you need to create it

Excel’s error codes provide a very well understood way of communicating problems to
the worksheet, and are therefore very useful. They have the added benefit of propagating
through to dependent cells. It’s a good idea to declare fallible worksheet functions as
returning xlopers or xloperl2s so that errors can be returned, as well as the normal
output type(s).

You might even want to pass an error code in a C API function, although this is
unlikely.

How you create an instance of it

An example of code to populate an x1oper of this type is:

void set_to_err(xloper *p_op, WORD e)

{

if (!p_op) return;

switch(e)
{
case xlerrNull:
case xlerrDiv0:
case xlerrValue:
case xlerrRef:
case xlerrName:
case xlerrNum:
case xlerrNA:
p_op->xX1ltype = xltypeErr;
p_op->val.err = e;
break;

default:
p_op->xltype = xltypeNil; // not a valid error code

178 Excel Add-in Development in C/C++

The code for the x1typeErr constructor is:

cpp_xloper: :cpp_xloper (WORD e)
{
Clear () ;
if (gExcelVersionl2plus)
set_to_err (&m_Opl2, e);
else
set_to_err (&m_Op, e);

How vyou convert it to a C/C++ data type

It is unlikely that you will need to convert an error type to another data type. If you do
need the numeric error value, it is obtained from the err element of the xloper’s val
union.

What the memory considerations are

None unless the x1oper or xloperl? is itself dynamically allocated.

How you can avoid using it

If you want to write worksheet functions that can trap or generate errors, you can’t.

6.9.6 Excel internal integer: x1typeInt

When you will encounter it

This x1loper type is NEVER passed by Excel from worksheets to a DLL. Some of the
C API functions might return this type.

When you need to create it

A number of Excel’s own functions take integer arguments and when calling them from
within the DLL this data type can be used, although Excel will convert the x1typeNum
type if that is supplied instead. It can be used to pass integers back to Excel, but, again,
the x1typeNum type can also be used for this and using x1typeInt does not deliver
any advantage.

How vou create an instance of it

The code to populate an x1oper of this type is:

void set_to_int(xloper *p_op, int w)
{

if (!p_op) return;

p_op->xltype = xltypelnt;

Passing Data Between Excel and the DLL 179

p_op->val.w = w;

The cpp_xloper code for the xltypeInt constructor calls the above
set_to_bool () or an overloaded x1oper12 version:

cpp_xloper: :cpp_xloper (int w)
{
Clear () ;
if (gExcelVersionl2plus)
set_to_int (&m_Opl2, w);
else
set_to_int (&m_Op, w);

The cpp_xloper class also provides a constructor that can check the initialiser against
supplied limits, which can be quite useful.

cpp_xloper: :cpp_xloper (int w, int min, int max)
{
Clear () ;
if(w >= min && w <= max)
{
if (gExcelVersionl2plus)
set_to_int (&m_Opl2, w);
else
set_to_int (&m_Op, w);

How vyou convert it into a C/C++ data type

The following code example shows how to access (or convert, if not an x1ltypeInt)
the x1loper:

bool coerce_to_int (const xloper *p_op, int &w)
{
if(!p_op | | (p_op->x1ltype & (xltypeMissing | xltypeNil)) != 0)
return false;

if (p_op->xltype == xltypelnt)
{

w = p_op->val.w;

return true;

}

if (p_op->xltype == xltypeErr)
{
w = p_op->val.err;
return true;

180 Excel Add-in Development in C/C++

// xloper is not an integer type, so try to convert it.
xloper ret_val;

if (!coerce_xloper (p_op, ret_val, xltypelnt))
return false;

w = ret_val.val.w;
return true;

What the memory considerations are

None unless the x1oper or xloperl? is itself dynamically allocated.

How vou can avoid using it

Declare functions as taking int arguments and/or returning ints: Excel will do the
necessary conversion.

6.9.7 Array (mixed type): xltypeMulti

This x1oper type is used to refer to arrays whose elements may be any one of a number
of mixed x1loper types. The x1oper12 version of this contains an array of xloperl2s.
The elements of such an array are stored (and read) row-by-row in a continuous block of
memory.>

There are important distinctions between such an array and an xloper that refers to
a range of cells on a worksheet:

e The array is not associated with a block of cells on a worksheet.

e The memory for the array elements is pointed to in the x1typeMulti. (In range
xlopers this is not the case. The data contained in the range of cells can only be
accessed indirectly, for example, using x1Coerce.)

e Some Excel functions accept either range references or arrays as arguments, whereas
others will only accept ranges.

An xltypeMulti is far more straightforward to work with than the range xloper
types. Accessing blocks of data passed to the DLL in an x1typeMulti is quite easy.
Their use is necessary if you want to pass arrays to C API functions where the data is
not in any spreadsheet.

When you will encounter it

If a DLL function takes an x1oper argument and registers it with Excel as type R (or an
xloperl?2 as type U), an x1typeMulti is only passed to the DLL when the supplied
argument is a literal array within the formula, for example, =SUM({1,2,3}). If the same

3 Variant arrays passed from VB to a C/C++ DLL store their elements column-by-column. See section 3.7 Excel
ranges, VB arrays, SafeArrays, array Variants on page 80 for details.

Passing Data Between Excel and the DLL 181

function is registered as taking a type P argument, (or type Q if an x1loper12), then an
x1ltypeMulti is passed whenever the function is called with either a multi-cell range
or a literal array. In the first case, Excel handles the conversion from range xloper to
an array before calling the DLL. (See section 8.6.3 Specifying argument and return types
on page 249 for more detail).

Many of the C API functions return x1typeMulti xlopers, especially those return-
ing variable length lists, such as a list of sheets in a workbook. (See section 8.10.10
Information about a workbook: x1fGetWorkbook on page 301 for details of this par-
ticular example.)

When you need to create it

A number of Excel’s own functions take both array and range arguments. When calling
them from within the DLL, an xltypeMulti must be used unless the data are on a
worksheet. In that case, it is better to use a range x1loper/xloperl2. (Note that not all
C API functions that take ranges will accept arrays: those returning information about a
supposedly real collection of cells on a real worksheet will not.)

This xloper/xloperl2 type provides the best way to return arrays of data that
can be of mixed type back to a worksheet. (Note that to return a block of data to a
worksheet function, the formula must be entered into the worksheet as an array formula.)
It also provides a middle step when reading the contents of a worksheet range, being
much easier to work with than the xlopers that describe ranges: x1typeSRef and
xltypeRef. One of the cpp_xloper constructors below shows the conversion of
these range reference types to x1typeMulti using the x1Coerce function.

Warning: A range that covers an entire column on a worksheet (e.g., A)A in a cell
formula, equivalent to A1:A65536) can, in theory, be passed into a DLL in an xloper
of type x1typeSRef or xltypeRef. However, there is a bug: The xloper will be
given the rwLast value of 0x3£ff instead of Oxffff. Even if this were not the case,
coercing a reference that represented an entire column to an x1typeMulti would fail.
The rows field in the x1typeMulti, being a WORD that counts from 1, would roll back
over to zero. In other words, the x1typeMulti is limited to arrays from ranges with
rows from 1 to 65,535 inclusive OR 2 to 65,536 inclusive. You should bear this limitation
in mind when coding and documenting your DLL functions. This problem is solved in
Excel 2007+ with the introduction of the x1oper12 which handles entire columns, which
can be 1,048,576 rows, without a problem.

How you create an instance of it

The cpp_xloper class makes use of a function set_to_xltypeMulti () that pop-
ulates an xloper as this type. The code for the function set_to_xltypeMulti ()
is:

bool set_to_xltypeMulti (xloper *p_op, RW rows, COL cols)

{

DWORD size = rows * cols;

if(!p_op | | !size | | rows >= MAX_XL11l_ROWS-1 | | cols > MAX XL11_COLS-1)
return false;

182 Excel Add-in Development in C/C++

p_op->x1ltype = xltypeMulti;

p_op->val.array.lparray = (xloper *)malloc(sizeof (xloper) * size);
p_op->val.array.rows = rows; // counts from 1
p_op->val.array.columns = cols; // counts from 1

return true;

For the x1oper12 the code is almost, but not quite, the same.

bool set_to_xltypeMulti (xloperl2 *p_op, RW rows, COL cols)

{

DWORD size = rows * cols;

if(!p_op | | !'size | | rows > MAX_XL12_ROWS-1 | | cols > MAX XL12_COLS-1)
return false;

p_op->x1ltype = xltypeMulti;

p_op->val.array.lparray = (xloperl2 *)malloc(sizeof (xloperl2) * size);
p_op->val.array.rows = rows; // counts from 1

p_op->val.array.columns = cols; // counts from 1

return true;

Note that, apart from the obvious difference in the limits, the test for rows is >= for the
xloper (because of the whole column bug) and > for the x1operl2.

The class cpp_xloper contains a number of constructors for this x1oper/xloperl?2
type some of which are listed below. The first constructor creates an x1typeNil-
initialised array of the specified size.

cpp_xloper: :cpp_xloper (RW rows, COL cols)

{

Clear () ;
if (!RowColValid(rows, cols))
return;

DWORD i = rows * cols;

if (gExcelVersionl2plus)

{

xloperl2 *p_oper;

if (!set_to_xltypeMulti (&m_Opl2, rows, cols)
| | '(p_oper = m_Opl2.val.array.lparray))
return;

while(i--)
(p_oper++) ->x1type = x1ltypeNil; // a safe default
m_DLLtoFreel2 = true;

}

else

{

xloper *p_oper;

if (!set_to_xltypeMulti (&m_Op, rows, cols)

Passing Data Between Excel and the DLL 183

| | '(p_oper = m_Op.val.array.lparray))
return;

while(i--)
(p_oper++) ->x1type = xltypeNil; // a safe default
m_DLLtoFree = true;

The second constructor creates an array of x1typeNum xlopers which is initialised
using the array of doubles provided.

cpp_xloper: :cpp_xloper (WORD rows, WORD cols, const double *init_data)

{
Clear () ;

InitialiseArray(rows, cols, d_array):;

The third constructor creates an xltypeMulti array from an x14_array structure.
This is useful if you need an argument delivered as this type to be passed to an Excel
function via the C API. (If this is happening a lot, you should consider having the argument
delivered as an xloper or xloperl2 to avoid this second conversion).

cpp_xloper: :cpp_xloper (const x14_array *array)

{
Clear () ;
InitialiseArray (array->rows, array->columns, array->array);

The two constructors above call on the following function to do the work. This function
is also used by one of the overloaded assignment operators, and so takes the precaution
of freeing any memory before initialising.

void cpp_xloper::InitialiseArray (RW rows, COL cols, const double *init_data)

{
Free();
if (!RowColvalid(rows, cols) | | !init_data)
return;

DWORD i = rows * cols;
if (gExcelVersionl2plus)

{
xloperl2 *p_oper;

if(!init_data | | !set_to_xltypeMulti (&m_Opl2, rows, cols)
| | '(p_oper = m_Opl2.val.array.lparray))

return;
while(i--)

{

p_oper->xltype = xltypeNum;

184 Excel Add-in Development in C/C++

(p_oper++) ->val.num = *init_data++;

}

m_DLLtoFreel2 = true;

}

else

{

xloper *p_oper;

if(!init_data | | !set_to_xltypeMulti (&m_Op, rows, cols)
| | '(p_oper = m_Op.val.array.lparray))

return;
while(i--)

{
p_oper->x1ltype = xltypeNum;
(p_oper++) ->val.num = *init_data++;
}

m_DLLtoFree = true;

The fourth constructor creates an array of x1typeStr xloper/xloperl2s containing
deep copies of the null-terminated byte string array provided. (The cpp_xloper class
always creates deep copies of strings so that there is no ambiguity about whether the
strings in dynamically allocated arrays should themselves be freed — they will always need
to be. See section 5.5.7 x1AutoFree (xl1AutoFreel2) on page 123, and Chapter 7
Memory Management on page 203 for more details.) Note that when running Excel 2007+,
the class populates the x1operl2 and calls whar_t *new_x112string(char *)
which converts the byte strings to Unicode strings. The example code on the CD ROM
contains an equivalent constructor that takes an array of Unicode strings.

cpp_xloper: :cpp_xloper (RW rows, COL cols, char **str_array)

{

Clear () ;
if (!RowColvalid(rows, cols) | | !str_array)
return;

DWORD i = rows * cols;

if (gExcelVersionl2plus) // cast strings up to Unicode wide strings
{

xloperl2 *p_oper;

wchar_t *p;

if (!set_to_xltypeMulti (&m_Opl2, rows, cols)
| | '(p_oper = m_Opl2.val.array.lparray))
return;

while(i--)
{

p = new _x1ll2string(*str_array++); // byte-to-Unicode, deep copy
if (p)
{

p_oper->xltype = xltypeStr;
p_oper->val.str = p;

Passing Data Between Excel and the DLL 185

else

{
}

p_oper++;

p_oper->xltype = xltypeNil;

}

m_DLLtoFreel2 = true; // Class will free the strings too

}
else // strings are ASCII byte strings like the inputs
{

xloper *p_oper;

char *p;

if (!set_to_xltypeMulti (&m_Op, rows, cols)
| | '(p_oper = m_Op.val.array.lparray))
return;

while(i--)
{

p = new_xlstring(*str_array++); // make deep copies
if (p)
{

p_oper->x1ltype = xltypeStr;
p_oper->val.str = p;

}

else

{
}

p_oper++;

p_oper->xltype = xltypeNil;

}

m_DLLtoFree = true; // Class will free the strings too

The fifth constructor creates an array of xloper/xloperl2s from any of the the work-
sheet types including ranges, x1typeSRef and x1typeRef. The hard work is done by
Excel in the call to x1Coerce which, if explicitly asked to return an x1typeMulti,
will convert even a single value or single-cell reference to a 1x1 array. Where ranges
are passed, the element types of the resulting array reflect those of the worksheet range
originally referred to. The resulting array must only be freed by Excel, either in the DLL
with a call to x1Free, or by being returned to Excel with the x1bitXLFree bit set
in x1type. (See the destructor code for how the class takes care of this, and Chapter 7
Memory Management on page 203). If running Excel 2007+, the x1oper is converted
to an x1loperl?2 array (with x1operl12 elements). The example code on the CD ROM
contains an equivalent constructor that takes an xloperl2.

cpp_xloper: :cpp_xloper (RW &rows, COL &cols, const xloper *p_input_oper)

{
Clear () ;

if (gExcelVersionl2plus)
{
// Cast up to an xloperl2
xloperl2 temp;
xloper_to_xloperl2 (&temp, p_input_oper) ;

186 Excel Add-in Development in C/C++

if (!coerce_xloper (&temp, m_Opl2, xltypeMulti))

{
}

else

{

rows = cols = 0;

rows = m_Opl2.val.array.rows;
cols = m_Opl2.val.array.columns;
// Ensure destructor will tell Excel to free memory
m_XLtoFreel2 = true;
}
free_xloper (&temp) ;
}
else
{
// Ask Excel to convert the reference to an array (xltypeMulti)
if (!coerce_xloper (p_input_oper, m_Op, xltypeMulti))

{
}

else

{

rows = cols = 0;

rows = m_Op.val.array.rows;
cols = m_Op.val.array.columns;

// Ensure destructor will tell Excel to free memory
m_XLtoFree = true;

}

The sixth constructor creates an x1typeMulti array from an array of cpp_xlopers
of mixed types. This is most useful when you want to create a statically-initialised array,
something you cannot do directly. Each element in the array of cpp_xlopers can be
initialised statically to any type, with the right constructor being called for each element.
Passing such an array to this constructor then populates the x1typeMulti.

cpp_xloper: :cpp_xloper (RW rows, COL cols, const cpp_xloper *init_array)

{
Clear () ;
InitialiseArray(rows, cols, init_array);

}

void cpp_xloper::InitialiseArray (RW rows, COL cols,
const cpp_xloper *init_array)
{
Free();
if (!RowColvValid(rows, cols) | | !init_array)
return;

const cpp_xloper *p_cpp_oper = init_array;
DWORD type, i = rows * cols;

if (gExcelVersionl2plus)
{

xloperl2 *p_oper;

if(!set_to_xltypeMulti (&m_Opl2, rows, cols)

Passing Data Between Excel and the DLL 187

| | '(p_oper = m_Opl2.val.array.lparray))
return;

while(i--)

{
type = p_cpp_oper->m_Opl2.xltype;

// Check to see if the first xloperl2 has been initialised. If not,
// check the first xloper has been initialised, (not to an array) .
if (type == xltypeNil
&& (p_cpp_oper->m_Op.xltype & (x1ltypeNil | xltypeMulti)) == 0)

// Special case: Converts arrays of cpp_xlopers instantiated outside
// function code up to xloperl2s. This is necessary when running under
// v12+ where instantiation could happen before a global version variable
// can be set, resulting in the xloper(s) being initialised instead of
// the xloperl2s.
xloper_to_xloperl2 (p_oper, &(p_cpp_oper->m_Op)) ;
}
else if(type != xltypeMulti) // don't permit arrays of arrays
{
// Make deep copies of strings and xltypeRef memory
clone_xloper (p_oper, &(p_cpp_oper->m_Opl2));
}
p_oper++;
D_CPp_oper++;
}
m_DLLtoFreel2 = true;
}
else // gExcelVersion < 12

{

xloper *p_oper;

if (!set_to_xltypeMulti (&m_Op, rows, cols)
| | '(p_oper = m_Op.val.array.lparray))
return;

while(i--)
{
type = p_cpp_oper->m_Op.xltype;

if(type != xltypeMulti) // don't permit arrays of arrays

{
// Make deep copies of strings and xltypeRef memory
clone_xloper (p_oper, & (p_cpp_oper->m_Op));

}
p_oper++;
P_Cpp_oper++;

m_DLLtoFree = true;

The class also contains a number of methods to set elements of an existing array, for
example:

bool cpp_xloper::SetArrayElt (DWORD offset, const char *text)

{

if (gExcelVersionl2plus)

188 Excel Add-in Development in C/C++

if (!m_DLLtoFreel2)
return false; // Should not assign to an Excel-allocated array

xloperl2 *p_op;

if (GetArrayElt (offset, p_op))

{
free_xloper (p_op) ;
set_to_text (p_op, text);
return true;

else

if (!m_DLLtoFree)
return false; // Should not assign to an Excel-allocated array

xloper *p_op;

if (GetArrayElt (offset, p_op))

{
free_xloper (p_op) ;
set_to_text (p_op, text);
return true;

}

}

return false;

Creating and initialising static arrays of xloper/xloperl2s is covered in section
6.10 Initialising xloper/xloperl2s on page 198. The easiest way to initialise
xltypeMulti arrays is to create and initialise arrays of cpp_xlopers and use this
array to initialise a cpp_xloper of xltypeMulti using either one of the constructor
methods or one of the initialisation methods.

How vou convert it to a C/C++ data type

The following cpp_xloper method converts an xltypeMulti into an array of
doubles. In doing this, it allocates a block of memory, coerces the elements one-by-one
into the array and then returns a pointer to the allocated block. The memory allocated then
needs to be freed by the caller once it is no longer required. The class contains similar
methods for converting elements of the array to text, integers, Boolean and Excel error
values (as integers). There are also methods that use a single offset parameter rather than a
(row, column) pair — more efficient if accessing all the elements in the array one-by-one.

double *cpp_xloper: :ConvertMultiToDouble (void)
{

double *ret_array;

DWORD size;

if (gExcelVersionl2plus)
{
if(m_Opl2.xltype != xltypeMulti)
return NULL;

Passing Data Between Excel and the DLL 189

// Allocate the space for the array of doubles
size = m_Opl2.val.array.rows * m_Opl2.val.array.columns;
ret_array = (double *)malloc(size * sizeof (double));
if (!ret_array)
return NULL;

// Get the cell values one-by-one as doubles and place in the array.
// Store the array row-by-row in memory.
xloperl2 *p_op = m_Opl2.val.array.lparray;

if (!p_op)

free(ret_array) ;
return NULL;

}

for (double *p = ret_array; size--; p++)
if (!coerce_to_double (p_op++, *p))
*p = 0.0;
}
else
{
if (m_Op.xltype != xltypeMulti)

return NULL;

// Allocate the space for the array of doubles
size = m_Op.val.array.rows * m_Op.val.array.columns;
ret_array = (double *)malloc(size * sizeof (double)) ;
if (!ret_array)
return NULL;

// Get the cell values one-by-one as doubles and place in the array.
// Store the array row-by-row in memory.
xloper *p_op = m_Op.val.array.lparray;

if (!p_op)

free(ret_array) ;
return NULL;

}

for (double *p = ret_array; size--; p++)
if (!coerce_to_double (p_op++, *p))
*p = 0.0;

}

return ret_array; // caller must free the memory!

The class also contains a number of methods that retrieve elements of an array as a
particular data type (converted if required and if possible), for example:

bool cpp_xloper::GetArrayElt (DWORD offset, double &d) const
{
if (gExcelVersionl2plus)
{
xloperl2 *p_op;
if (GetArrayElt (offset, p_op))
return coerce_to_double(p_op, 4d);

190 Excel Add-in Development in C/C++

else
{
xloper *p_op;
if (GetArrayElt (offset, p_op))
return coerce_to_double(p_op, 4d);

}

return false;

What the memory considerations are

This type contains a pointer to a block of memory: the array of xloper/xloperl2s.
As well as this, each array element could be a string pointing to its own piece of memory.
Generally speaking, memory will fall into one of three possible categories:

1. Dynamically allocated by the DLL
2. Dynamically allocated by Excel
3. Statically allocated at DLL-start up

There are therefore 9 possible combinations of memory in an x1typeMulti array: Excel-
allocated array with Excel-allocated elements; DLL-allocated array with Excel-allocated
elements; DLL-allocated array with static elements; etc. In practice, an Excel-allocated
array created, say, with a call to x1Coerce, will only ever have Excel-allocated elements
and should only be freed with a call to x1Free or by being returned to Excel with
x1bitXLFree setin the type field. You do not need to, and should not, call x1Free on
the elements of an Excel-allocated array. (See section 7.3.2 Freeing Excel-allocated
x1oper memory returned by the DLL function on page 206.)

Where you are dealing with DLL-allocated or static arrays, you need to decide how you
will manage your memory: whether the code that frees the memory assumes that arrays are
always dynamically-allocated with dynamically-allocated elements; or, more flexibly, the
code allows dynamically-allocated arrays to contain Excel-allocated and static elements.

If choosing the latter more flexible approach, the code that creates the array must set
x1bitXLFree or x1bitDLLFree, where appropriate, for each of the elements in an
array, and these bits must be detected in the the code that frees the array, for example
in your implementation of x1AutoFree. If choosing the former approach, the code that
creates the array must always make deep copies of, say, strings, so that the code that frees
it can safely assume that any string elements are to be freed along with the array itself.

The approach taken in example project on the CD ROM is to implement
x1AutoFree to be flexible. (See section 5.5.7 xIAutoFree (xlAutoFreel2) on
page 123). The cpp_xloper class contains two methods ExtractXloper () and
ExtractXloperl?2 () which empty the cpp_xloper into an xloper or xloperl?2
to be used as a return value for worksheet function exports. These methods set the
appropriate bits on arrays and their elements to be consistent with the implementation
of x1AutoFree and x1AutoFreel2. However, the cpp_xloper always makes deep
copies of input strings and makes use of functions to free array memory that assume array
strings are always DLL-allocated.

Above all, the important thing is that you are consistent in your chosen method of
dealing with array memory, otherwise your code will leak memory or cause exceptions.

Passing Data Between Excel and the DLL 191

Chapter 7 Memory Management on page 203 describes in more detail how to deal with
memory returned to Excel.

How you can avoid using it

If you only want to work with arrays of doubles, you have the option of using the
structures discussed in section 6.2.2 Excel floating-point array structures: x14_array,
x112_array on page 129. If you want to receive/return mixed-value or string arrays
from/to a worksheet, or you want to work with C API functions that take or return arrays,
then you can’t avoid using this type.

6.9.8 Worksheet cell/range reference: x1typeRef and x1typeSRef

When you will encounter them

These two types are used by Excel for references to single cells and ranges on any sheet
in any open workbook. Each type contains references to one or one or more rectangular
blocks of cells. The x1typeSRef is only capable of referencing a single block of cells
on the current sheet. The x1typeRef type can reference one or more blocks of cells
on a specified sheet, which may or may not be the current sheet. For this reason, an
xltypeRef xloper is also known as an external reference as it refers to an external
sheet, i.e., not the current sheet.

Where a range is passed to a DLL function and is only used as a source of data,
it is advisable to convert to an xltypeMulti —a much easier type to work with.
Arrays of type x1typeMulti resulting from conversion from one of these types have
their elements stored row-by-row. Where DLL functions are registered as taking P-type
xloper arguments or Q-type xloperl12 arguments, Excel will convert range references
to x1ltypeMulti or one of the single cell value types (or x1typeNil in some cases).
(See section 8.6 Registering and un-registering DLL (XLL) functions on page 244.)

The C API function x1fSheetId returns the internal ID of a worksheet within an
xltypeRef xloper/xloperl?2.

When you need to create them

A number of Excel functions take range or array arguments. A few take just ranges. When
calling them from within the DLL you need to create one of these types depending on
whether you want to access a range on the current sheet or not. (Note that you can use
x1typeRef to refer explicitly to the current sheet if you prefer not to have to think
about whether it is current or not.)

If you want to pass a range reference back to Excel (for use as input to some other
worksheet function) you will need to use one of these types depending on the whether
the reference is in the context of the current sheet (use x1typeSRef) or some other (use
x1ltypeRef).

How you create an instance of either of them

The first example shows how to populate an xloper of type xltypeSRef. Note
that there is no need to specify a worksheet, either by name or by internal ID. Also

192 Excel Add-in Development in C/C++

there’s no need to allocate any memory, as all the data members are contained within the
xloper/xloperl2.

bool set_to_xltypeSRef (xloper *p_op, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)
{

if(!'p_op | | rwFirst > rwLast | | colFirst > colLast)
return false;

// Create a simple single-cell reference to a cell on the current sheet
p_op->xltype = xltypeSRef;
p_op->val.sref.count = 1;

xlref &ref = p_op->val.sref.ref; // to simplify code
ref.rwFirst = rwFirst;

ref.rwlLast = rwLast;

ref.colFirst = colFirst;

ref.colLast = colLast;

return true;

The second example shows how to populate an xloper of type xltypeRef. This
requires that an internal ID for the sheet be provided as a DWORD idSheet. (One of
the cpp_xloper constructors listed below shows how to obtain this from a given sheet
name using the x1SheetId C API function.) Note that not all of the information carried
by an x1typeRef is contained within the x1oper and, in this example, a small amount
of memory is allocated in setting it up.

bool set_to_xltypeRef (xloper *p_op, DWORD idSheet, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)
{

if(!p_op | | rwFirst > rwLast | | colFirst > colLast)
return false;

// Allocate memory for the xlmref and set pointer within the xloper
xlmref *p = (xlmref *)malloc(sizeof (xlmref));

if(!p)

{
p_op->xltype = xltypeNil;
return false;

}

p_op->xltype = xltypeRef;
p_op->val.mref.lpmref = p;
p_op->val.mref.idSheet = idSheet;
p_op->val.mref.lpmref->count = 1;

xlref &ref = p->reftbl[0]; // to simplify code
ref.rwFirst = rwFirst;

ref.rwlLast = rwlLast;

ref.colFirst = colFirst;

ref.collast = collast;

return true;

Passing Data Between Excel and the DLL 193

Converting an array of doubles, strings or any other data type fo an x1ltypeRef or an
x1ltypeSRef is never a necessary thing to do. If you need to return an array of doubles,
integers or strings (mixed or all one type) to Excel via the return value of your DLL
function, you should use x1typeMulti. If you want to set the value of a particular cell
that is not the calling cell, then you can use the x1Set function, although this can only
be called from a command, not from a worksheet function.

The cpp_xloper class constructor for the x1typeSRef is:

cpp_xloper: :cpp_xloper (RW rwFirst, RW rwLast, COL colFirst, COL colLast)
{
Clear () ;
if (!RowColvalid(rwFirst, colFirst) | | !RowColvValid(rwLast, colLast))
return;

if (gExcelVersionl2plus)
set_to_xltypeSRef (&m_Opl2, rwFirst, rwLast, colFirst, colLast);
else
set_to_xltypeSRef (&m_Op, (WORD)rwFirst, (WORD)rwLast,
(BYTE) colFirst, (BYTE)colLast) ;

The two cpp_xloper class constructors for the x1typeRef are as follows. The first
creates a reference on a named sheet. The second creates a reference on a sheet that is
specified using its internal sheet ID.

cpp_xloper: :cpp_xloper (const char *sheet_name, RW rwFirst, RW rwLast, COL
colFirst, COL collLast)

{
Clear () ;

// Check the inputs. No need to check sheet_name, as creation of
// cpp_xloper Name will set to xltypeNil if sheet_name not valid.

if (rwFirst > rwlLast | | colFirst > colLast
| | 'RowColvValid(rwFirst, colFirst) | | !'RowColvalid(rwLast, colLast))
return;

// Get the sheetID corresponding to the sheet name provided. If
// sheet_name was NULL, a reference on the active sheet is created.
cpp_xloper Name (sheet_name) ;

if (gExcelVersionl2plus)
{
xloperl2 ret_oper;
if (Excell2 (x1SheetId, &ret_oper, 1, Name.OpAddrl2())==xlretSuccess)
{
if (set_to_xltypeRef (&m_Opl2, ret_oper.val.mref.idSheet,
rwFirst, rwLast, colFirst, colLast))
m_DLLtoFreel2 = true; // created successfully

}

else

{
xloper ret_oper;
if (Exceld (x1SheetId, &ret_oper, 1, Name.OpAddr()) == xlretSuccess)
{

if (set_to_xltypeRef (&m_Op, ret_oper.val.mref.idSheet,

194 Excel Add-in Development in C/C++

rwFirst, rwlLast, colFirst, colLast))
m_DLLtoFree = true; // created successfully

Here is the code for the second constructor. It is much simpler than the above, as the
constructor does not need to convert the sheet name to an internal ID.

cpp_xloper: :cpp_xloper (DWORD SheetID, RW rwFirst, RW rwLast,
COL colFirst, COL colLast)
{

Clear () ;
if (!RowColvalid(rwFirst, colFirst) | | RowColvalid(rwLast, colLast))
return;

if (gExcelVersionl2plus)
{
if (set_to_xltypeRef (&m_Opl2, SheetID, rwFirst, rwLast,
colFirst, colLast))
m_DLLtoFreel2 = true;
}
else
{
if (set_to_xltypeRef (&m_Op, SheetID, (WORD)rwFirst, (WORD)rwLast,
(BYTE) colFirst, (BYTE)colLast))
m_DLLtoFree = true;

How you convert them to a C/C++ data type

Converting a range reference really means looking up the values from that range. The
most straightforward and efficient way to do this is to coerce the reference to values
using x1Coerce without specifying a coerce-to type. If the reference was to a sin-
gle cell x1Coerce will return a single worksheet value. If it was to multiple cells,
x1Coerce will return an x1typeMulti. The result can then easily be converted to,
say, an array of doubles. (See above discussion of x1typeMulti.) The following
example code shows how to do this in a function that sums all the numeric values in a
given range, as well as those non-numeric values that can be converted. It uses one of the
x1ltypeMulti constructors to convert the input range (if it can) to an array type. The
function cpp_xloper::ConvertMultiToDouble () attempts to convert the array to
an array of doubles, coercing the individual elements if required.

double __ stdcall coerce_and_sum(xloper *input)
{
RW rows;
COL cols;
cpp_xloper Array(rows, cols, input); // coerces input to xltypeMulti
if (!Array.IsType (xltypeMulti))
return 0.0;

Passing Data Between Excel and the DLL 195

// Get an array of doubles
double *d_array = Array.ConvertMultiToDouble () ;
if (!d_array)
return 0.0;
double sum = 0.0, *p = d_array;
for (DWORD i = rows * cols; i--;)
sum += *p++;

// Free the double array
free(d_array) ;
return sum;

What the memory considerations are

As can be seen from the above code examples, x1typeRef xloper/xloperl2s point
to a block of memory. If dynamically allocated within the DLL, this needs to be freed
when no longer required. (See Chapter 7 Memory Management on page 203 for details.)
For x1typeSRefs there are no memory considerations, as all the data are stored within
the xloper/xloperl?2.

How you can avoid using them

If you only want to access values from ranges of cells in a spreadsheet then declaring
DLL functions as taking xloper/xloperl?2 arguments but registering them type P/Q
forces Excel to convert x1typeSRefs and x1typeRefs to one of the value types (or
x1typeNil in some cases). (See section 8.5 Registering and un-registering DLL (XLL)
functions on page 244).

If you only want to access numbers from ranges of cells, then you have the option of
using the x14_array/x112_array data types described in section 6.2.2 on page 129.

If you want to access information about ranges of cells in a spreadsheet, or you want
complete flexibility with arguments passed in from Excel, then you cannot avoid their use.

Examples

The first example, count_used_cells (), creates a simple reference (xltypeS-
Ref) to a range on the sheet from which the function is called. (Note that this will
always be the current sheet, but may not be the active sheet). It then calls the C API
function Excel4 (x1fCount, ...), equivalent to the worksheet function COUNT(), to
get the number of cells containing numbers. (The pointer p_x1ErrValue points to
a static xloper initialised to #VALUE!. See section 6.3 Defining constant
xlopers/xloperl2s on page 144 for more detail.)

xloper * _ stdcall count_used_cells(int first_row, int last_row,
int first_col, int last_col)
{
if(first_row > last_row || first_col > last_col)
return p_xlErrValue;

196 Excel Add-in Development in C/C++

// Adjust inputs to be zero-counted and cast to RWs and COLs. (Casts
// are not strictly necessary as RW and COL are defined as 32-bit ints)
RW fr = (RW) (first_row - 1);
RW 1lr = (RW) (last_row - 1);
COL fc = (COL) (first_col - 1);
COL 1lc = (COL) (last_col - 1);

cpp_xloper Op(fr, 1lr, fc, 1lc);
Op.Excel (x1fCount, 1, &0Op); // re-use Op
return Op.ExtractXloper() ;

The second example count_used_cells2 () does the same as the first except that it
creates an external reference (x1typeRef) to a range on a specified sheet before calling
the C API function. Note that this sheet may not be the one from which the function is
called. Note also that a different constructor is used.

xloper * __ stdcall count_used_cells2 (char *sheetname, int first_row, int
last_row, int first_col, int last_col)
{

if(first_row > last_row || first_col > last_col)
return p_xlErrValue;

// Adjust inputs to be zero-counted and cast to RWs and COLs. (Casts
// are not strictly necessary as RW and COL are defined as 32-bit ints)
RW fr = (RW) (first_row - 1);
RW 1lr = (RW) (last_row - 1);
COL fc = (COL) (first_col - 1);
COL 1lc = (COL) (last_col - 1);

cpp_xloper Op (sheetname, fr, lr, fc, lc);
Op.Excel (x1fCount, 1, &0Op); // re-use Op
return Op.ExtractXloper() ;

6.9.9 Empty worksheet cell: x1typeNil

When you will encounter it

The x1typeNil xloper/xloperl2 will typically turn up in an x1typeMulti array
that has been created from a range reference where one or more of the cells in the range
is completely empty. Many functions ignore nil cells. For example, the worksheet func-
tion =AVERAGE() returns the sum of all non-empty numeric cells in the range divided
by the number of such cells. If a DLL function takes an xloper or xloperl2 argu-
ment registered with Excel as type P or Q respectively, and the function is entered on
the worksheet with a single-cell reference to an empty cell, then Excel will also pass
x1ltypeNil. However, if registered as taking a type R or U, then the passed-in type will
be x1ltypeSRef or x1ltypeRef. (See section 8.5 Registering and un-registering DLL
(XLL) functions on page 244.)

When you need to create it

There’s an obvious contradiction if a worksheet function tries to return an x1typeNil
to a single cell: the cell has a formula in it and therefore cannot be empty. Even if the
cell is part of an array formula, it’s still not empty. If you return a x1typeNil or an

Passing Data Between Excel and the DLL 197

x1ltypeMulti array containing x1typeNil elements, they will be converted by Excel
to numeric zero values. If you want to clear the contents of a cell completely, something
that you can only do from a command, you can use the C API function x1Set — see
section 8.8.4 on page 278 — and pass x1typeNils.

How you create an instance of it

The following example shows how to do this in straight C code:

xloper op;
op.xltype = xltypeNil;

or...

xloper op = {0.0, xltypeNil};

The default constructor for the cpp_x1loper class initialises its x1oper to x1typeNil.
The class has a few methods for setting the x1oper/xloperl?2 type after construction,
which can also be used to create a type x1typeNil. For example:

cpp_xloper op; // initialised to xltypeNil
op.SetType (x1ltypeNil) ;

cpp_xloper ArrayOp((RW)rows, (COL)columns) ;

// Array elements are all initialised to xltypeNil, but can do it
// explicitly:

ArrayOp.SetArrayElementType ((RW) row, (COL)col, xltypeNil);
ArrayOp.SetArrayElementType ((DWORD)offset, xltypeNil) ;

You can also create a pointer to a static structure that looks like an x1oper or xloperl?2
and is initialised to xltypeNil. (See section 6.3 Defining constant xlopers/
xloperl2s on page 144 for more details.)

How you convert it to a C/C++ data type

How you interpret an empty cell is entirely up to your function, whether it is looking
for numeric arguments or strings, and so on. If it matters to your function whether an
argument is missing (x1typeMissing) or is a reference to an empty cell (x1typeNilor
a reference type, depending on how the function was registered), you should check your
function inputs and interpret them accordingly. Excel will coerce this type to zero if asked
to convert to a number, or the empty string if asked to convert to a string. If this is not
what you want to happen, you should not convert x1typeNil using x1Coerce, but
write your own conversion instead.

What the memory considerations are

None unless the x1oper or xloperl? is itself dynamically allocated.

198 Excel Add-in Development in C/C++

How you can avoid using it

If you are accepting arrays from worksheet ranges and it matters how you interpret empty
cells, or you want to fail your function if the input includes empty cells, then you need
to detect this type. If you want to completely clear the contents of cells from a command
using x1Set, then you cannot avoid using this type.

6.9.10 Worksheet binary name: xltypeBigData

A binary storage name is a named block of unstructured memory associated with a
worksheet that an XLL is able to create, read from and write to, and that gets saved with
the workbook.

A typical use for such a space would be the creation of a large table of data that you
want to store and access in your workbook, which might be too large, too cumbersome or
perhaps too public, if stored in worksheet cells. Another use might be to store configuration
data for a command that always and only acts on the active sheet.

The x1typeBigData type is used to define and access these blocks of binary data.
Section 8.9 Working with binary names on page 285 covers binary names in detail.

6.10 INITIALISING xloper/xloperl2s

C only allows initialisation of the first member of a union when initialising a static or
automatic structure. This pretty much limits x1oper/xloper12s to being initialised as
x1typeNum, given that double num is the first declared element of the val union of
the xloper/xloperl?2, or to a type without a value or with a zero value. For example,
the following declarations are all valid:

xloper op_pi = {3.14159265358979, xltypeNum};
xloper op_nil = {0.0, xltypeNil};

xloper op_false = {0.0, xltypeBool};

xloper op_missing = {0.0, xltypeMissing};

These will compile but will not result in the intended values:

xloper op_three = {3, xltypelnt};
xloper op_true = {1, xltypeBool};

This will not compile:

xloper op_hello = {"\5Hello", xltypeStr};

This is very limiting. Ideally, you would like to be able to initialise an x1loper/xloperl2
to any of the types and values that it can represent. In particular, creating static arrays
of xloper/xloperl2s and initialising them becomes awkward: it is only possible to
initialise the type. Initialising the value as well as the type is something you might like
to do when:

Passing Data Between Excel and the DLL 199

e creating a definition range for a custom dialog box;

e creating a array of fixed values to be placed in a spreadsheet under control of a command
or function;

e setting up the values to be passed to Excel when registering new commands or new
worksheet functions. (See section 8.5 Registering and un-registering DLL (XLL) func-
tions on page 244.)

There are a couple of ways round this limitation. The first is the definition of an x1oper-
like structure that is identical in memory but allows itself to be declared statically and
then cast to an xloper. This is achieved simply by changing the order of declaration
in the union. This approach still has the limitation of only allowing initialisation to one
fundamental data type. The following code fragment illustrates this approach:

typedef struct

{

union {char *str; double num;} val; // don't need other types
WORD xltype;

str_xloper;

str_xloper op_hello = {"\5Hello", xltypeStr};
xloper *pop_hello = (xloper *)&op_hello;

The second approach is to create a completely new structure that can be initialised stat-
ically to a range of types, but that requires some code to convert it to an xloper. One
example of this approach would be to redefine the xloper structure to include a few
simple constructors. Provided the image of the structure in memory was not altered by
any amendments, all of the code that used x1opers would still work fine. If you change
what the xloper is, by adding data members to assist with memory management for
example, you are inviting Excel to crash. The compiler might also require that you make
changes elsewhere in your code, say, if you have used a construction such as xloper op
= {0.0, xltypeNil}. Some examples of the types of constructor that can be added
harmlessly are:

xloper () {xltype = xltypeNil;} // need a default constructor
xloper (double d) {val.num = d; xltype = xltypeNum;}

xloper (bool b) {val.xbool = b; xltype = xltypeBool;]

xloper (int w) {val.w = w; xltype = xltypelnt;}

xloper (char *s) {val.val.str = s; xltype = xltypeStr;}

Note that you would also need to move the definitions of the type constants, x1typeNum
and so on, so that they precede the structure definition in the header file x1call.h. Note
also that the last constructor only makes a shallow copy of the input string, and expects
a byte-counted string.

The C++ class cpp_xloper is an example of another approach, but one that really
harnesses the power of C++. It can be initialised in a far more intuitive way than an
xloper/xloperl?2 to any of the supported data types. Arrays of cpp_xlopers can
be initialised with bracketed arrays of initialisers of different types: the compiler calls the
correct constructor for each type. Once an array of cpp_xlopers has been initialised

200 Excel Add-in Development in C/C++

it can be converted into a cpp_xloper of type x1typeMulti very easily. (The class
contains a member function to do just this. See sections 6.4 A C++ Class wrapper for
the xloper/xloperl2 — cpp_xloper on page 146, and 6.9.7 Array (mixed type):
x1ltypeMulti on page 180 for more details.)

The following code initialises a 1-dimensional array of cpp_xlopers with values of
various types needed to define a simple custom dialog definition table. (Note that the
empty string initialises the cpp_xloper to type x1typeNil.) The dialog displayed by
the command get_username () requests a username and password. (See section 8.14
Working with custom dialog boxes on page 351 for details of how to construct such a
table, and the use of the x1fDialogBox function). The cpp_xloper array is then
converted into an x1ltypeMulti xloper (wrapped in another cpp_xloper) using
the appropriate constructor.

#define CAPI_DLG_COLUMNS 7

#define NUM_USERNAME_DIALOG_ROWS 10

cpp_xloper UsernameDlg[NUM_USERNAME_DIALOG_ROWS * CAPI_DLG_COLUMNS] =
{

we, mww, mv, 372, 200, "Logon", "", // Dialog box size

1, 100, 170, 90, "", "OK", "", // Default OK button

2, 200, 170, 90, "", "Cancel", "", // Cancel button

5, 40, 10, ", "", "Please enter your username and password.","",

14, 40, 35, 290, 100, ", "', // Group box

5, 50, 53, "', "", "Username", "", // Text

6, 150, 50, ", "™, "", "MyName", // Text edit box

5, 50, 73, ", "", "Password", "", // Text

6, 150, 70, ", "M, v, wAxkAxkAxkn /) Text edit box

13, 50, 110, ™", "", "Remember username and password", true,
}i
int __stdcall get_username (void)

{
cpp_xloper RetVal, DialogDef ((RW)NUM_USERNAME_DIALOG_ROWS,
(COL) CAPI_DLG_COLUMNS, UsernameDlg) ;

for (;RetVal.Excel (x1fDialogBox, 1, &DialogDef) == xlretSuccess
&& RetVal.IsTrue() ;)

{
// Process the input from the dialog by reading
// the 7th column of the returned array.

// ... code omitted

}

return 1;

The cpp_xloper: : Excel () wrapper, see section 8.5 on page 238, simplifies memory
management by ensuring that any memory allocated by Excel for the returned array
RetVal is correctly freed at destruction or before being overwritten. The above approach
doubles up the amount of memory used for the strings, as the cpp_x1loper makes deep
copies of initialisation strings. This should not be a huge concern, but a more memory-
efficient approach would be to use a simple class as follows that only makes shallow
copies:

// This class is a very simple wrapper for an xloper. The class is

Passing Data Between Excel and the DLL 201

// specifically designed for initialising arrays of static strings
// in a more memory efficient way than with cpp_xlopers. It contains
// NO memory management capabilities and can only represent the same
// simple types supported by worksheet cells. Member functions are
// limited to a set of very simple constructors and an overloaded
// address-of operator.
class init_xloper
{
public:
init_xloper () {op.xltype = xltypeNil;}
init_xloper (int w) {op.xltype = xltypelnt; op.val.w = w;}
init_xloper (double d) {op.xltype = xltypeNum; op.val.num = d;}
init_xloper (bool b)
{
op.xltype = xltypeBool;
op.val._xbool = b ? 1 : 0;
}i

init_xloper (WORD err) {op.xltype = xltypeErr; op.val.err = err;}

init_xloper (char *text)
{
// Expects null-terminated strings.
// Leading byte is overwritten with length of string
if(*text == 0 | | (*text = (BYTE)strlen(text + 1)) == 0)
op.xltype = xltypeNil;
else
{
op.xltype = xltypeStr;
op.val.str = text;
}
)i
xloper *operator& () {return &op;} // return xloper address
private:
xloper op;

}i

6.11 MISSING ARGUMENTS

XLL functions must be called with all arguments provided, except those arguments that
have been declared as xloper/xloperl2s. Excel will not call the DLL code until all
required arguments have been provided.

Where DLL functions have been registered as taking xloper/xloperl2 arguments
(P or R if x1oper, Q or U if x1loperl12), Excel will pass type x1typeMissing if no
argument was provided. If the argument is a single cell reference to an empty cell, this is
passed as type x1ltypeRef or x1ltypeSRef if the argument was registered as type R
or U, NOT of type x1typeMissing. However, if the argument was registered as type
P or Q, a reference to an empty cell is passed as type x1typeNil. You will probably
want your DLL to treat this as a missing argument in which case the following code is
helpful. (Some of the later code examples in this book use this function.)

inline bool is_input_missing(xloper *p_op)

{
}

return !p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) ;

202 Excel Add-in Development in C/C++

And here’s its x1operl12 equivalent:

inline bool is_input_missing (xloperl2 *p_op)

{
}

return !p_op | | (p_op->xltype & (xltypeMissing | xltypeNil)) ;

7
Memory Management

7.1 EXCEL STACK SPACE LIMITATIONS

With Excel 97 there were about 44 Kbytes normally available on the stack that Excel
shares with the DLL. Later versions have made significantly more stack space available.
Stack space is used when calling functions (to store the arguments and return values)
and to create the automatic variables that the called function needs. No stack space is
used by function variables declared as static or declared outside function code at the
module level or by structures whose memory has been allocated dynamically. Although
you should not ordinarily need to worry about stack space, it’s good advice to follow
these simple guidelines:

e Don’t pass very large structures as arguments to functions. Use pointers or references
instead.

e Don’t return large structures. Return pointers to static or dynamically-allocated memory.

e Don’t declare very large automatic variable structures in the function code. If you need
them, declare them as static.

e Don’t call functions recursively unless you’'re sure the depth of recursion will always
be shallow. Try using a loop instead.

When calling back into Excel using Excel4 () or Excell2 (), Excel checks to see if
there is enough space on the stack for the worst case usage call that could be made. If
it thinks there’s not enough room it will fail the function call, even though there might
have been enough space for that call. Following the above guidelines and being aware
of the limited space should mean that you never have to worry about stack space. If you
are concerned (or just curious) you can find out how much stack space there is with a
call to Excel’s x1Stack function as the following example shows:

double _ stdcall get_stack(void)
{
if (gExcelVersionl2plus)
{
xloperl2 retval;
if (xlretSuccess != Excell2 (xlStack, &retval, 0))
return -1.0;

if (retval.xltype == xltypelnt)
return (double)retval.val.w; // = min(64Kb, actual stack space)
// MS state that this is not the returned type, but was returned in an
// Excel 12 beta release, so is left here.
else if(retval.xltype == xltypeNum)
return retval.val.num;
}
else
{
xloper retval;
if (xlretSuccess != Exceld(xlStack, &retval, 0))
return -1.0;

204 Excel Add-in Development in C/C++

if (retval.xltype == xltypelnt)
return (double) (unsigned short)retval.val.w;

}

return -1.0;

Note that the x1oper12 integer is a 32-bit signed int, whereas the x1oper’sis a 16-bit
signed short int. As a result, in the case of the x1oper there is a need to cast the
returned value to an unsigned integer before casting to a double. This is a hangover from
the days when Excel provided even less stack space and the maximum positive value of
the x1oper’s signed 16-bit integer (32,767) was sufficient. Once more stack was made
available, the need emerged for the cast to avoid a negative result. The x1loper12’s int
removes the need for this cast.

7.2 STATIC ADD-IN MEMORY AND MULTIPLE EXCEL
INSTANCES

When multiple instances of Excel run, they share a single copy of the DLL executable
code. In Win32 there are no adverse memory consequences of this as each instance of the
program using the DLL gets its own memory space allocated for all the static memory
defined in the DLL. This means that in a function such as the following the returned
value will be the number of times this instance of the program has called this function
in the DLL.

int _ stdcall count_calls(void)

{
static int num_calls = 0; // Not thread-safe
return ++num_calls;

(This was not the case in 16-bit Windows environments and meant a fair amount of fussing
around with instance handles, blocks of memory allocated for a given instance, etc).

You should note that the use of a static automatic variable is not thread-safe. This only
becomes an issue with Excel 2007 where multi-threaded recalculation is possible. (See
section 7.6 on page 212).

You may want to share data between multiple instances of Excel running on the same
machine, sharing the same DLL or XLL. The simplest approach when using Microsoft
Visual Studio, is the use of a named data segment as demonstrated in this code sample,
although you have to assume that this memory will get accessed on different threads and
should be protected by critical sections. (Also see section 7.6 on page 212).

#pragma data_seg("MyXllSharedData")
int shared_counter = 0;
#pragma data_seg() // End of MyXllSharedData data segment definitions

Another perfectly valid approach for sharing data is the use of memory-mapped files.

Memory Management 205

7.3 GETTING EXCEL TO FREE MEMORY ALLOCATED
BY EXCEL

When calling Exceld (), Exceldv (), Excell2 () or Excell2v () functions (see
section 8.2 on page 226), Excel will sometimes allocate memory for the returned value
(an xloper/xloperl?2). It will always do this if the returned value is a string, for
example. In such cases it is the responsibility of the DLL to make sure the memory
gets freed. Freeing memory allocated by Excel in this way is done in one of two ways
depending on when the memory is no longer needed:

1. Before the DLL returns control to Excel.
2. After the DLL returns control to Excel.

These cases are covered in the next two sub-sections.
Table 7.1 summarises which x1loper/xloperl?2 types have memory that needs to be
freed if returned by Excel4 ()/Excell?2 ().

Table 7.1 Returned xlopers for which Excel allo-
cates memory

Type of xloper Memory allocated if returned
/xloperl2 by Excel4 () /Excell2 ()
x1typeNum No

xltypeStr Yes

xltypeBool No

xltypeRef Yes!

xltypeErr No

xltypeMulti Yes

xltypeMissing No

xltypeNil No
xltypeSRef No
xltypelnt No

xltypeBigData No

7.3.1 Freeing xloper memory within the DLL call

Excel provides a C API function specifically to allow the DLL to tell Excel to free
the memory that it itself allocated and returned in an xloper during a call to either
Exceld () or Exceldv (). This function is itself is called using Excel4 () and is
defined as x1Free (0x4000). Similarly this function is used where x1oper12s returned
by Excell2 () or Excell2v () need to be freed, using Excell2 (x1Free,...).

' The C API function x1fSheetId returns this type of xloper but does not allocate memory.

206 Excel Add-in Development in C/C++

This function does not return a value and takes the address(es) of the xloper(s)
associated with the memory that needs to be freed. The function happily accepts x1oper/
xloperl2s that have no allocated memory associated with them, but be warned, NEVER
pass an xloper/xloperl2 with memory that your DLL has allocated: this will cause
all sorts of unwanted side effects.

The following code fragment shows an example of Excel4 () returning a string for
which it allocated memory. In general, the second argument in the Excel4 () is normally
a pointer to an xloper that would contain the return value of the called function, but
since x1Free doesn’t return a value a null pointer is all that’s required in the second
call to Exceld ().

xloper dll_name;
// Get the full path and name of the DLL.
Exceld (x1GetName, &dll_name, O0);

// Do something with the name here, for example...
int len = dll_name.val.str[0];

// Get Excel to free the memory that it allocated for the DLL name
Exceld (x1Free, 0, 1, &dl1l_name) ;

If you know for sure that the call to Excel4 () you are making NEVER returns a type
that has memory allocated to it, then you can get away with not calling x1Free on the
returned xloper. If you’'re not sure, calling x1Free won’t do any harm.

Warning: Where the type is x1ltypeMulti it is not necessary to call x1Free for
each of the elements, whatever their types. In fact, doing this will confuse and destabilise
Excel. Similarly, converting elements of an Excel-generated array to or from an xloper
type that has memory associated with it may cause memory problems.

The cpp_xloper class contains member functions that wrap calls to Excel4 () and
Excell2 () and set flags that tell the class to use x1Free to free memory when the
destructor is eventually called, or before a new value is assigned. (See section 8.5 on
page 238). This makes the code much more manageable and leaks much less likely.
The following code fragment shows an example of its use. Note that the class will use
xloperl2s if running Excel 2007+, otherwise it will use x1opers.

cpp_xloper Dl1lName;
// Get the full path and name of the DLL. Destructor takes care of memory.
D1l1Name.Excel (x1GetName) ;

// Do something with the name here, for example...
int len = DllName.Len() ;

7.3.2 Freeing Excel-allocated x1oper memory returned by the DLL function

This case arises when the DLL needs to return an Excel-allocated x1oper or x1loperl2
(i.e. a pointer to it) to Excel. Excel has no way of knowing that the associated memory
was allocated (by itself) during a callback from the DLL. The DLL has to tell Excel this
explicitly so that Excel can clean up afterwards. This is done by setting the x1bitXLFree
bit in the x1type field of the x1oper/xloperl?2 as shown in the following code, which
returns the full path and name of the DLL.

Memory Management 207

xloper * _ stdcall xloper_memory_example (int trigger)
{

static xloper dll_name; // Not thread-safe

Exceld (x1GetName, &dll_name, 0);
// Excel has allocated memory for the DLL name string which cannot be
// freed until after being returned, so need to set this bit to tell
// Excel to free it once it has finished with it.

dll_name.xltype |= xlbitXLFree;

return &dll_name;

The cpp_xloper class contains a method for returning a thread-safe copy of the con-
tained x1loper or xloperl?2 :

xloper * cpp_xloper::ExtractXloper (void) ;
xloperl2 * cpp_xloper::ExtractXloperl2 (void) ;

These methods set the x1bitXLFree bit if the contained x1oper/xloperl2 was pop-
ulated in a call to the C API via one of the overloaded wrapper functions cpp_xloper: :
Excel (). (See next section for a listing of the code for ExtractXloper().)

Note: Setting x1bitXLFree on an x1oper that is to be used for the return value for
a call to Exceld4 (), prior to the call to Excel4 () that allocates it, will have no effect.
The correct time to set this bit is:

e after the call that sets its value;
e after it might be passed as an argument to other Excel4 () calls;
e before a pointer to it is returned to the worksheet.

The following code will fail to ensure that the string allocated in the call to Excel4 ()
gets freed properly, as the type field of ret_oper is overwritten in the call:

xloper * __ stdcall bad_examplel (void)
{
static xloper ret_oper; // Not thread-safe
ret_oper.type |= xlbitXLFree;
Exceld (x1GetName, &ret_oper, 0);
return &ret_oper; // Memory leak: xlbitXLFree no longer set

The following code will confuse the call to x1 fLen, which will not be able to determine
the type of ret_oper correctly.

xloper * __stdcall bad_example2 (void)

{
static xloper ret_oper; // Not thread-safe
Exceld (x1GetName, &ret_oper, 0);
ret_oper.type |= x1lbitXLFree;
xloper length;
Exceld (x1fLen, &length, 1, &ret_oper);

// do something with the string's length...
return &ret_oper;

208 Excel Add-in Development in C/C++

The following code will work properly.

xloper * __ stdcall good_example (void)

{
static xloper ret_oper; // Not thread-safe
Exceld (x1GetName, &ret_oper, 0);
xloper length;
Exceld (x1fLen, &length, 1, &ret_oper);

// do something with the string's length...
ret_oper.type |= xlbitXLFree;
return &ret_oper;

7.3.3 Hiding xloper memory management within a C++ class

As touched on above, the overloaded class member functions cpp_xloper: :Excel ()
assign the return value of a call to a specified C API function to the x1loper/xloperl?2
contained within that instance of the cpp_x1loper. Not only does the class take care of
setting x1bitXLFree during the call to ExtractXloper ()/ExtractXloperl?2 (),
it makes sure that any resources allocated in a previous call to the C API are released
using x1Free if the instance is reused. In fact, in ensures that existing resources are
released however they were allocated before reuse.
For example:

xloper ret_val;
Exceld (x1GetName, &ret_val, 0);
// do something with the name, then free the resource
Exceld (x1Free, &ret_val, 0);
// get a reference to the calling cell
Exceld (x1fCaller, &ret_val, 0);
// do something with the caller's information, then free the resource
Exceld (x1Free, &ret_val, 0);

is equivalent to. ..

cpp_xloper RetVal;
RetVal.Excel (x1GetName) ;
// do something with the name
RetVal.Excel (x1fCaller) ;
// do something with the caller's information

The subject of wrapping the interface to Excel’s callbacks is discussed in more detail in
section 8.5 on page 238.

7.4 GETTING EXCEL TO CALL BACK THE DLL TO FREE
DLL-ALLOCATED MEMORY

If the DLL returns a pointer to an x1oper/xloper12, Excel copies the values associated
with it into the worksheet cell(s) from which it was called and then discards the pointer. It
does not automatically free any memory that the DLL might have allocated in constructing

Memory Management 209

the xloper/xloperl2. If it was one of the types for which memory needs to be allo-
cated, then the DLL will leak memory every time the function is called. To prevent this,
the C API provides a way to tell Excel to call back into the DLL once it has finished with
the return value, so that the DLL can clean up. The call-back function for x1opers is one
of the XLL interface functions, x1AutoFree, and for xloperl2sis x1AutoFreel2.
(See section 5.5.7 x1AutoFree (xlAutoFreel2) on page 123 for details.)

It is the responsibility of the DLL programmer to make sure that their implementation of
x1AutoFree/xlAutoFreel2 understands the data types that will be passed back to it
in this call, and that it knows how the DLL allocated the memory so that it can free it in a
compatible way. For x1typeMulti arrays, this may mean freeing the memory associated
with each element, and then freeing the array memory itself. Care should also be taken
to ensure that memory is freed in a way that is consistent with the way it was allocated.

The DLL code instructs Excel to call x1AutoFree by setting x1bitDLLFree in the
x1type field of the returned x1oper/xloperl2. The following code shows the creation
of an array of doubles with random values (set with calls to Excel4 (x1fRand,...)),
in an x1typeMulti xloper, and its return to Excel.

xloper * __ stdcall random_array(int rows, int columns)
{
// Get a thread-local static xloper
xloper *p_ret_val = get_thread_local_xloper(); // (see section 7.6)

if (!p_ret_val) // Could not get a thread-local copy
return NULL;

int array_size = rows * columns;
xloper *array;

if (array_size <= 0)
return NULL;

array = (xloper *)malloc(array_size * sizeof (xloper));
if (array == NULL)
return NULL;

for(int i = array_size; --i >= 0;)
Exceld (x1fRand, array + i, 0);

// Instruct Excel to call back into DLL to free the memory
p_ret_val->xltype = xltypeMulti | x1bitDLLFree;
p_ret_val->val.array.lparray = array;
p_ret_val->val.array.rows = rows;
p_ret_val->val.array.columns = columns;
return p_ret_val;

Optimisation note: Calling the C API is a fairly expensive operation. Where you call Excel
functions, such as the example Excel4d (x1fRand, ...) above, frequently in code that
needs to execute quickly, you should consider finding or writing alternative equivalent
code. Section 10.2.1 Pseudo-random number generation on page 464 provides code for
a pseudo-random number generator equivalent to Excel 2003’s which is not only faster
to call than via the C API, but also more statistically robust than the algorithm used in
earlier versions.

210 Excel Add-in Development in C/C++

After returning from this function, the DLL will receive a call to its implementation of
x1AutoFree, since it has returned an xloper. x1AutoFree will receive the address
of p_ret_val in this case. The code for that function should detect that the type is
x1ltypeMulti and should check that each of the elements themselves do not need to be
freed (which they don’t in this example). Then it should free the x1oper array memory.

The following code does the same thing, but using the cpp_x1oper class introduced in
section 6.4 on page 146. The code is simplified, but the same things are happening — just
hidden within the class.

xloper * __ stdcall random_array(int rows, int columns)

{

cpp_xloper array((RW)rows, (COL)columns) ;

if (larray.IsType (xltypeMulti))
return NULL;

DWORD array_size;
array.GetArraySize (array_size);
cpp_xloper ArrayElt;

for (DWORD 1 = 0; 1 < array_size; i++)
{
if (array.GetArrayElt (i, ArrayElt))
{
ArrayElt.Excel (x1fRand) ;
array.SetArrayElt (i, ArrayElt);
}
}

return array.ExtractXloper() ;

Note again that the line ArrayElt .Excel (x1fRand) ; could be replaced with a faster-
to-call internal function. (See optimisation note above).

The cpp_xloper class contains a method for returning a thread-safe copy of the
contained xloper, ExtractXloper (). This method sets the x1bitDLLFree bit for
types where the DLL has allocated memory. Here is a listing of the code for
ExtractXloper ().

// Return the xloper as a pointer to a thread-local static xloper.
// This method should be called when returning an xloper * to
// an Excel worksheet function, and is thread-safe.
xloper *cpp_xloper::ExtractXloper (void)
{
// Get a thread-local persistent xloper

xloper *p_ret_val = get_thread_local_xloper();

if(!p_ret_val) // Could not get a thread-local copy

return NULL;

if (gExcelVersionl2plus) // cast down to an xloper
{
FreeOp () ;
xloperl2_to_xloper (&m_Op, &m_Opl2);
m_DLLtoFree = true; // ensure bits get set later in this fn
FreeOpl2();

Memory Management 211

*p_ret_val = m_Op; // Make a shallow copy of data and pointers

1f((m_Op.xltype & (xltypeRef | xltypeMulti | xltypeStr)) == 0)
{
// No need to set a flag to tell Excel to call back to free memory
Clear () ;
return p_ret_val;

}

if (m_XLtoFree)

{
}

else

{

p_ret_val->xltype |= xlbitXLFree;

if (!m_DLLtoFree) // was a read-only passed-in argument
{
// Make a deep copy since we don't know where or how this was created
if (!clone_xloper (p_ret_val, &m_Op))
{
Clear () ;
return NULL;
}
}
p_ret_val->xltype |= xlbitDLLFree;
if (m_Op.xltype & xltypeMulti)
{
DWORD limit = m_Op.val.array.rows * m_Op.val.array.columns;
xloper *p = m_Op.val.array.lparray;

for(;limit--; p++)
if (p->xltype & xltypeStr)
p->x1ltype |= x1bitDLLFree;
}
}

// Prevent the destructor from freeing memory by resetting properties
Clear () ;
return p_ret_val;

The class also contains a similar function for returning a thread-safe copy of the contained
xloperl2, ExtractXloperl2 ().

7.5 RETURNING DATA BY MODIFYING
ARGUMENTS IN PLACE

Where you need to return data that would ordinarily need to be stored in dynamically
allocated memory, you need to use the techniques described above. However, in some
cases you can avoid allocating memory, and the worry of how to free it. This is done by
modifying an argument that was passed to your DLL function as a pointer reference — a
technique known as modifying-in-place. Excel accommodates this for a number of argu-
ment types, provided that the function is declared and registered in the right way. (See
section 8.6.7 Returning values by modifying arguments in place on page 253 for details
of how to do this.)

212 Excel Add-in Development in C/C++

There are some limitations: Where the argument is a byte string (signed or unsigned
char * or xloper xltypeStr) Excel allocates enough space for a 255-character
string only — not 256! Similarly, in Excel 2007, Unicode string buffers are 32,767 wide-
characters in size, whether passed in as wchar_t * or xloperl2 *. Where the data
is an array of doubles of type x14_array or x112_array (see section 6.2.3 The
xloper/xloperl?2 structures on page 135) the returned data can be no bigger than the
passed-in array. Arrays of strings cannot be returned in this way.

7.6 MAKING ADD-IN FUNCTIONS THREAD SAFE
7.6.1 Multi-threaded recalculations (MTR) in Excel 2007 (version 12)

Unlike all previous versions, the Excel 2007’s calculation engine can perform simultane-
ous calculations on multiple execution channels or threads. This enables Excel to schedule
more than one instance of a function to be evaluated simultaneously. This ability exists
regardless of the number of processors on a machine, but gives most benefit, relative to
earlier versions, where there is more than one or where there is a multi-core processor.
There are some advantages to using this ability on single-processor machines too where
a UDF makes a call to a remote server or cluster of servers, enabling the single processor
machine to request another remote call before the first may have finished. The number of
execution channels in Excel 2007 can be explicitly configured, and MTR can be disabled
altogether, a useful safety feature where supposedly thread-safe functions are causing
problems.

The version of the C API that is updated for Excel 2007 also provides the XLL add-in
developer with the means to declare exported worksheet functions as thread-safe when
running under the new version, so that they can take advantage of this new feature. (See
section 8.6.6 Specifying functions as thread-safe (Excel 2007 only) on page 253.)

Excel versions 11 and earlier use a single thread for all calculations, and all calls to XLL
add-ins also take place on that thread. Excel version 12 still uses a primary thread for:

e its interactions with XLL add-ins via the x1Auto- functions (except x1AutoFree —
see section 7.6.4 Excel’s sequencing of calls to x1AutoFree in a multi-threaded sys-
tem on page 218 below);

running built-in and imported commands;

calling VBA;

responding to calls from COM applications, including VBA;

the evaluation of all worksheet functions considered thread-unsafe.

In order to be safely considered as thread-safe, an add-in function must obey several rules:
It must

e make no calls to thread-unsafe functions (Excel’s, the DLL’s, etc.);
e declare persistent memory used by the function as thread-local;
e protect memory that could be shared by more than one thread using critical sections.

Even if you are not developing for use with Excel 2007, or are not intending to use
multi-threading, you might want to consider structuring your add-in code such that you
can easily take advantage of this ability in the future.

Memory Management 213

The following sub-sections discuss in detail all of these constraints, and describe one
approach to creating thread-safe XLL functions.

7.6.2 Which of Excel’s built-in functions are thread-safe

VBA and COM add-in functions are not considered thread-safe. As well as C API com-
mands, for example x1cDefineName, which no worksheet function is allowed to call,
thread-safe functions cannot access XLLM information functions. XLL functions registered
as macro-sheet equivalents, by having ‘#" appended to the type string, are not considered
thread-safe by Excel 2007. The consequences are that a thread-safe function cannot:

e read the value of an uncalculated cell (including the calling cell);

e call functions such as x1fGetCell, x1fGetWindow, xlfGetWorkbook,
x1fGetWorkspace, etc.;

e define or delete XLL-internal names using x1fSetName.

The one XLLM exception is x1fCaller which is thread-safe. However, you cannot safely
coerce the resulting reference, assuming the caller was a worksheet cell or range, to a
value using x1Coerce in a thread-safe function as this would return x1retUncalced.
Registering the function with # gets round this problem, but the function will then not
be considered as thread-safe, being a macro-sheet equivalent. This prevents functions
that return the previous value, such as when a certain error condition exists, from being
registered as thread-safe.
Note that the C API-only functions are all thread-safe:

x1Coerce (although coercion of references to uncalculated cells fails)
x1Free

x1lStack

x1SheetId

x1SheetNm

x1Abort (except that it cannot be used to clear a break condition)
x1GetInst

x1GetHwnd

x1GetBinaryName

x1DefineBinaryName

There are two exceptions: x1Set which is, in any case, a command-equivalent and so
cannot be called from any worksheet function; x 1UDF which is only thread-safe when
calling a thread-safe function.

All of Excel 2007’s built-in worksheet functions, and their C API equivalents, are
thread-safe except for the following:

PHONETIC

CELL when either of the “format” or “address” arguments is used
INDIRECT

GETPIVOTDATA

CUBEMEMBER

214 Excel Add-in Development in C/C++

CUBEVALUE

CUBEMEMBERPROPERTY

CUBESET

CUBERANKEDMEMBER

CUBEKPIMEMBER

CUBESETCOUNT

ADDRESS where the fifth parameter (sheet name) is given

Any database function (DSUM, DAVERAGE, etc.) that refers to a pivot table.

7.6.3 Allocating thread-local memory

Consider a function that returns a pointer to an xloper, for example:

xloper * __stdcall mtr_unsafe_example (xloper *arg)
{

static xloper ret_val; // Not safe: memory shared by all threads!!!
// code sets ret_val to a function of arg ...

return &ret_val;

}

This function is not thread-safe since it would be possible for one thread to return the
static xloper while another was over-writing it. The likelihood of this happening
is greater still if the xloper needs to be passed to x1AutoFree. One solution is to
allocate a return xloper and implement x1AutoFree so that the xloper memory
itself is freed.

xloper * __ stdcall mtr_safe_example_1 (xloper *arg)

{
xloper *p_ret_val = new xloper; // Must be freed by xlAutoFree

// code sets ret_val to a function of arg ...
p_ret_val.xltype |= xlbitDLLFree; // Always needed regardless of type
return p_ret_val; // xlAutoFree must free p_ret_val

This approach is simpler than the approach outlined below which relies on the TLS API,
but has the following disadvantages:

e Excel has to call x1AutoFree whatever the type of the returned x1loper

o If the newly-allocated x1oper is a string populated in a call to Excel4 there is no
easy way to tell x1AutoFree to free the string using x1Free before using delete
to free p_ret_val, requiring that the function make a DLL-allocated copy.

An approach that avoids these limitations is to populate and return a thread-local x1oper.
This necessitates that x1AutoFree does not free the x1oper pointer itself.

xloper *get_thread_local_xloper (void) ;

xloper * __ stdcall mtr_safe_example_2 (xloper *arg)

{

Memory Management 215

xloper *p_ret_val = get_thread_local_xloper();
// code sets ret_val to a function of arg setting xlbitDLLFree or
// x1bitXLFree if required

return p_ret_val; // xlAutoFree must NOT free this pointer!

The next question is how to set up and retrieve the thread-local memory, in other words,
how to implement get_thread_local_xloper () and similar functions. There are a
couple of fairly straight-forward approaches:

1. Use the system call GetCurrentThreadId () to obtain the executing thread’s
unique ID, and create a container that associates some persistent memory with that
thread ID. (Bear in mind that any data structure that can be accessed by more than
one thread needs to be protected by a critical section).

2. Use the Windows TLS (thread-local storage) API to do all this work for you.

Given the simplicity of implementation of the TLS API, this is the approach demonstrated
here. The TLS API enables you to allocate a block of memory for each thread, and to
obtain a pointer to the correct block for that thread at any point in your code. The first
step is to obtain a TLS index using T1sAlloc () which must ultimately be released
using T1lsFree (), both best done from D11Main () :

// This implementation just calls a function to set up thread-local storage
BOOL TLS_Action (DWORD Reason) ;

_ declspec(dllexport) BOOL __ stdcall Dl11Main (HINSTANCE hDl11l, DWORD Reason,
void *Reserved)
{

}

return TLS_Action (Reason) ;

DWORD TlsIndex; // only needs module scope if all TLS access in this module

BOOL TLS_Action (DWORD DllMainCallReason)

{

switch (DllMainCallReason)

{
case DLL_PROCESS_ATTACH: // The DLL is being loaded

1f((TlsIndex = TlsAlloc()) == TLS_OUT_OF_INDEXES)
return FALSE;
break;

case DLL_PROCESS_DETACH: // The DLL is being unloaded
TlsFree(TlsIndex); // Release the TLS index.
break;

}

return TRUE;

Once the index is obtained the next step is to allocate a block of memory for each
thread. One MSDN article recommends doing this every time D11Main is called with a
DLL_THREAD_ATTACH event, and freeing the memory on every DLL,_ THREAD_DETACH.

216 Excel Add-in Development in C/C++

However, this will cause your DLL to do a great deal of unnecessary allocation for threads
that Excel does not use for recalculation. Instead it is better to use an allocate-on-first-use
strategy. First, you need to define a structure that you want to allocate for each thread.
Suppose that you only needed a persistent x1oper to be used to return data to worksheet
functions, as in our simple example above, then the following definition of TLS_data
would suffice:

struct TLS_data

{
xloper xloper_shared_ret_val;
// Add other required static data here...

}i

The following function gets a pointer to the thread-local instance of this data structure,
or allocates one if this is the first call:

TLS_data *get_TLS_data(void)

{

// Get a pointer to this thread's static memory
void *pTLS = TlsGetValue(TlsIndex); // TLS API call
if (!pTLS) // No TLS memory for this thread yet

if ((pPTLS = calloc(l, sizeof (TLS_data))) == NULL)
// Display some error message (omitted)
return NULL;
TlsSetValue (TlsIndex, pTLS); // Associate with this thread

}

return (TLS_data *)pTLS;

Now we can see how the thread-local x1oper memory is obtained: first we get a pointer
to the thread’s instance of TLS_data and then return a pointer to the x1oper contained
within it:

xloper *get_thread_local_xloper (void)
{
TLS_data *pTLS = get_TLS_datal();
1f (pTLS)
return & (pTLS->xloper_shared_ret_val);
return NULL;

As should be clear, mtr_safe_example_1 and mtr_safe_example_2 are thread-
safe functions that can be registered as “RP$” when running Excel 2007 but “RP” when
running Excel 2003. An xloper12 version can be registered as “UQ$” in Excel 2007
but cannot be registered at all in Excel 2003.

The structure TLS_data above can be extended to contain pointers to an x14_array
and an x112_array for those functions returning these data types. Memory for these
types cannot be flagged for release by Excel calling back into the DLL, unlike x1oper/
xloperl2 memory, so you must keep track of memory from one use to another. Also,
the x14_array/x112_array structures do not contain pointers to memory: they are

Memory Management 217

entire blocks of variable-sized memory. Maintaining a thread-local pointer, set to the
address of the block that still needs to be freed, provides the best way of releasing any
allocated memory before re-allocation.

struct TLS_data
{
// Used to return thread-local persistent xloper to worksheet function
// calls that do not require the value to persist from call to call, i.e.,
// that are reusable by other functions called by this thread.
xloper xloper_shared_ret_val;
xloperl2 xloperl2_shared_ret_val;

// Used to return thread-local static xl4_array and x112_array
// pointers, to which dynamic memory is assigned that persists
// from one call to the next. This enables memory allocated in
// the previous call to be freed on entry before pointer re-use.
x14_array *x14_array_shared_ptr;
x112_array *x112_array_shared_ptr;

// Add other required thread-local static data here...

In this case the retrieval, freeing and re-allocation of the array memory is done in the
same function. This means the size of the array must be known before the thread-safe
array is acquired, and so is passed as an argument to the following functions.

x14_array * get_thread_local_x1l4_array(size_t size)
{
if(size < = 0)
return NULL;

TLS_data *pTLS = get_TLS_datal() ;
if (!pTLS)
return NULL;

if (pTLS->x14_array_shared_ptr)
free (pTLS->x14_array_shared_ptr) ;

size_t mem_size = sizeof(xl4_array) + (size - 1) * sizeof (double);
return pTLS->x14_array_ shared_ptr = (x14_array *)malloc (mem_size);

Here’s an example of a thread-safe function that populates and returns an x14_array:

x14_array * __stdcall x1_array_examplel (int rows, int columns)
{
// Get a pointer to thread-local static storage

size_t size = rows * columns;

x14_array *p_array = get_thread_local_xl4_array(size);

if (p_array) // Could not get a thread-local copy
return NULL;

p_array->rows = rows;

p_array->columns = columns;

218 Excel Add-in Development in C/C++

i++)
i/ 10.0;

for(int 1 = 0; i < size;
p_array->array[i] =
return p_array;

7.6.4 Excel’s sequencing of calls to x1AutoFree in a multi-threaded system

The above strategy of returning a pointer to a persistent thread-local x1oper is used by
the cpp_xloper class’ ExtractXloper () /ExtractXloperl2 () member func-
tions. As explained in 7.3.2 Freeing Excel-allocated xloper memory returned by
the DLL function on page 206, any such pointer that itself points to dynamic memory
needs to have that memory freed after being returned to Excel. This is achieved by set-
ting the appropriate flag in the x1type field prompting Excel to call back into your
implementation of x1AutoFree ().

In all versions of Excel, calls to x1AutoFree () occur before the next work-
sheet function is evaluated on that thread, making the above strategy of using a sin-
gle instance safe for x1opers. Were this not the case, it would be possible for the XLL
to be reusing the static xloper before it had been freed. In Excel 2007, this strict
sequencing order is preserved on a thread-by-thread basis. This means that calls to
x1AutoFree () /x1AutoFreel2 () are made immediately after the call that returned
the xloper/xloperl2, by the same thread, and before the next function to be evaluated
is called on that thread.

Table 7.2 shows graphically an example of this sequencing with multiple instances on
two threads of two example thread-safe worksheet functions being recalculated simulta-
neously (from the top of the table downwards). Fnl () returns a double and Fn2 ()
returns an xloper that needs to be freed by x1AutoFree (). (Time is represented
discretely to ease the illustration).

Table 7.2 Worksheet calculation multi-
threading illustration

Time Thread 1 Thread 2
™ Fnl Fn2

T2 Fnl x1AutoFree
T3 Fn2 Fn2

T4 x1AutoFree x1AutoFree
T5 Fnl Fn2

T6 x1AutoFree

Note that the simultaneous calls to Fn2 () at T3 must return pointers to 2 different
thread-local x1opers to be thread-safe. The simultaneous calls to x1AutoFree () at
T4 will then be acting on their own thread’s x1loper. Note also that in Thread 2 the
xloper’s resources are always freed before being used again in the next call to Fn2 ().

Memory Management 219

Where x1operl2s, flagged as having dynamic memory, are being used, Excel will
call back into x1AutoFreel2 (). The sequencing of calls to x1AutoFreel2 () is the
same as that described above for x1AutoFree().

7.6.5 Using critical sections with memory shared between threads

Where you have blocks of read/write memory that can be accessed by more than one
thread, you need to protect against simultaneous reading and writing of data using critical
sections. A critical section is a one-thread-at-a-time constriction. Windows coordinates
threads entering and leaving these constricted sections of code by the developer calling the
API functions EnterCriticalSection () and LeaveCriticalSection () before
and after, respectively, code that accesses the memory. These functions take a single
argument: a pointer to a persistent CRITICAL_SECTION object that has been initialised
with a call to InitializeCriticalSection().
The steps you should follow to implement Critical Sections properly are:

1. Declare a persistent CRITICAL_SECTION object for each data structure instance you
wish to protect;

2. Initialise the object and register its existence with the operating system by a call to
InitializeCriticalSection();

3. Call EnterCriticalSection () immediately before accessing the protected struc-
ture;

4. Call LeaveCriticalSection () immediately after accessing the protected struc-
ture;

5. When you no longer need the critical section, unregister it with a call to
DeleteCriticalSection().

Clearly, the finer the granularity of the data structures that have their own critical section,
the less chance of one thread having to wait while another thread reads or writes to it.
However, too many critical sections will have an impact on the performance of the code
and the operating system. Having a critical section for each element of an array would not
be a good idea therefore. Creating objects with their own critical sections, that might also
be used in arrays, is therefore to be avoided. At the other extreme, having only a single
critical section for all of your project’s thread-shared data would be equally unwise.

The right balance is to have a named critical section for each block of memory to
be protected. These can be initialised during the call to x1AutoOpen and released and
set to null during the call to x1AutoClose. Here’s an example of the initialisation,
uninitialisation and use of a section called g_csSharedTable :

CRITICAL_SECTION g_csSharedTable; // global scope (if required)
bool x1l_initialised = false; // module scope

int _ stdcall xlAutoOpen (void)
{
if(x11l_initialised)
return 1;
// Other initialisation omitted
InitializeCriticalSection (&g_csSharedTable) ;
x11_initialised = true;

220 Excel Add-in Development in C/C++

return 1;

}

int _ stdcall xlAutoClose(void)

{
if(!'x11_initialised)

return 1;

// Other cleaning up omitted
DeleteCriticalSection (&g_csSharedTable) ;
x11_initialised = false;
return 1;

bool read_shared_table_element (unsigned int index, double &d)
{
if (index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection (&g_csSharedTable) ;
d = shared_table[index];
LeaveCriticalSection (&g_csSharedTable) ;
return true;
}
bool set_shared_table_element (unsigned int index, double d)
{
if (index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection (&g_csSharedTable) ;
shared_table[index] = d;
LeaveCriticalSection (&g_csSharedTable) ;
return true;

Another, and perhaps safer, way of protecting a block of memory is to create a class that
contains its own CRITICAL_SECTION and whose constructor, destructor and accessor
methods take care of its use. This approach has the added advantage of protecting objects
that might be initialised before x1AutoOpen is run, or survive after x1AutoClose is
called. As already stated above, you should avoid creating too many critical sections, so
should not do this for objects that might be used in arrays or similarly multiple structures.
Here is an example of simple thread-safe FILO stack for storing doubles, which is used
in one of the examples in section 10.2.2 on page 467.

struct simple_stack
{
simple_stack(int max_size)
{
InitializeCriticalSection(&cs_stack) ;
// Need to enter the CS here in case the constructor is explicitly invoked
EnterCriticalSection (&cs_stack) ;
if (stack)
{
delete[] stack;
stack = NULL;
size = index = 0;

}

if (max_size)

{

Memory Management 221

stack = new double[max_size];
size = max_size;
}
LeaveCriticalSection (&cs_stack) ;
}
~simple_stack(void)
{

// Need to enter the CS here in case the destructor is explicitly invoked
EnterCriticalSection (&cs_stack) ;
if (stack)

{
delete[] stack;
stack = NULL;
size = index = 0;
}
LeaveCriticalSection (&cs_stack) ;
DeleteCriticalSection (&cs_stack) ;
}
bool push(double d)
{
EnterCriticalSection(&cs_stack) ;
if (index < size)
{
stack[index++] = d;
LeaveCriticalSection (&cs_stack) ;
return true;
}
LeaveCriticalSection (&cs_stack) ;
return false;
}
bool pop (double &d)
{
EnterCriticalSection (&cs_stack) ;
if(index > 0)
{
d = stack[--index];
LeaveCriticalSection (&cs_stack) ;
return true;
}
LeaveCriticalSection (&cs_stack) ;
return false;
}
private:
CRITICAL_SECTION cs_stack;
double *stack;
int index;
int size;

Where you have code that needs access to more than one block of protected memory at
the same time you need to be very careful about the order in which the critical sections
are entered and exited. For example the following two functions could create a deadlock:

bool copy_shared_table_element_A_to_B(unsigned int index)
{
if (index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection (&g_csSharedTablead) ;
EnterCriticalSection (&g_csSharedTableB) ;

222 Excel Add-in Development in C/C++

shared_table_B[index] = shared_table_A[index];
LeaveCriticalSection (&g_csSharedTable’d) ;
LeaveCriticalSection (&g_csSharedTableB) ;
return true;

}

bool copy_shared_ table_element_B_to_A(unsigned int index)

{
if (index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection (&g_csSharedTableB) ;
EnterCriticalSection (&g_csSharedTable’) ;
shared_table_A[index] = shared_table_B[index];
LeaveCriticalSection (&g_csSharedTable’d) ;
LeaveCriticalSection (&g_csSharedTableB) ;
return true;

If the first function on one thread enters g_csSharedTableA as the second function
on another thread enters g_csSharedTableB, then both threads will hang. The correct
approach is to enter in a consistent order and exit in the reverse order, as follows:

EnterCriticalSection (&g_csSharedTable’) ;
EnterCriticalSection (&g_csSharedTableB) ;
// code that accesses both blocks

LeaveCriticalSection (&g_csSharedTableB) ;
LeaveCriticalSection (&g_csSharedTable’d) ;

Moreover, where possible, it is better from a thread co-operation point of view to isolate
access to distinct blocks as shown here:

bool copy_shared_table_element_A_to_B(unsigned int index)
{
if (index >= SHARED_TABLE_SIZE) return false;
EnterCriticalSection (&g_csSharedTable’d) ;
double d = shared_table_A[index];
LeaveCriticalSection (&g_csSharedTable’d) ;
EnterCriticalSection (&g_csSharedTableB) ;
shared_table_B[index] = d;
LeaveCriticalSection (&g_csSharedTableB) ;
return true;

Where there is a lot of contention for a shared resource, i.e., frequent short-duration access
requests, you should consider using the critical section’s ability to spin. This is a technique
that makes waiting for the resource less processor-intensive. In this case, you should
use either InitializeCriticalSectionAndSpinCount () when initialising the
section, or SetCriticalSectionSpinCount () once initialised, to set the number of
times the thread loops before waiting for resource to become available. (The wait operation
is expensive, so spinning avoids this if the resource has become free in the meantime). On
a single processor system, the spin count is effectively ignored, but still can be specified
without doing any harm. According to Microsoft’s Platform SDK documentation, the
memory heap manager uses a spin count of 4000. For more information on the use of
critical sections, you should refer to Microsoft’s Platform SDK documentation.

8

Accessing Excel Functionality
Using the C API

This chapter sets out how to use the C API, the API’s relationship to Excel’s built-in
worksheet functions and commands, and the Excel 4 macro language. Many of the XLM
functions, and their C API counterparts, take multiple arguments and can return a great
variety of information, in particular the workspace information functions. It is not the
intention of this book to be a reference manual for the XLM language. (The Microsoft
XLM help file Macrofun.hlp is still freely downloadable from Microsoft at the time of
writing.) Instead this chapter aims to provide a description of those aspects of the C API
that are most relevant to writing worksheet functions and simple commands. Therefore
many of the possible arguments of some of the C API functions are omitted. Also, this
chapter is focused on using the C API rather than XLLM functions on a macro sheet.

8.1 THE EXCEL 4 MACRO LANGUAGE (XLM)

Excel 4 introduced a macro language, XLLM, which was eventually mapped to the C API
in Excel 5. Support for XLM and the functionality of the C API remained unchanged
up to Excel 2003, albeit that Excel 2007 updates some aspects of the C API. The fact
that it remains unchanged is clearly a weakness of the C API relative to VBA: VBA has
better access to Excel objects and events than the C API. When writing commands life
is much easier in VBA. The real benefits of using C/C++ DLLs and the C API are with
user-defined worksheet functions. You can have the best of both worlds, of course. VBA
commands and DLL functions that use the C API are easily interfaced, as described in
section 3.6 Using VBA as an interface to external DLL add-ins on page 62.

This book is not about writing worksheets or Excel 4 macro sheets, but knowing the
syntax of the worksheet and XLM functions and commands is important when using the
C API: the C API mirrors their syntax. At a minimum, registering DLL functions requires
knowledge of the XLM function REGISTER(). The arguments are identical to those of the
C API function x1 fRegister, one of the enumerated function constants used in calls
to Exceld (), Exceldv (), Excell2 () and Excell2v (). (These last two are only
available in Excel 2007). If you’re relying heavily on the C API, then sooner or later
you’ll need to know what parameters to pass and in what order for one or more of the
XLM functions. This chapter covers the aspects of the XLM most relevant to the subject
of this book. A Windows help file, Macrofun.hlp, downloadable from Microsoft’s
website, provides a great deal more information than given in this chapter. However it
only relates to XLLM as used in a macro sheet, and therefore, from a C API point of view,
has a few holes that this chapter aims to fill.

As described below, the Excel4 () and Exceldv () API functions provide access to
the Excel 4 macro language and Excel’s built-in worksheet functions via enumerated func-
tion constants. These are defined in the SDK header file as either x1fFunctionName
in the case of functions, or x1cCommandName in the case of commands. Typically, an
Excel function that appears in uppercase on a sheet appears in proper case in the header
file. For example, the worksheet function INDEX() is enumerated as x1fIndex, and the

224 Excel Add-in Development in C/C++

macro sheet function GET.CELL() becomes x1fGetCell. There are also a small number
of functions available only to the C API that have no equivalents in the macro language
or on the worksheet. These are listed in Table 8.1 and described in detail in section 8.8
Functions defined for the C API only on page 274.

Table 8.1 C API-only functions

Enumerated constant Value
x1Free 16384
x1lStack 16385
x1Coerce 16386
x1lSet 16387
x1SheetId 16388
x1SheetNm 16389
x1Abort 16390
x1GetInst 16391
x1GetHwnd 16392
x1GetName 16393
x1EnableXLMsgs 16394
x1DisableXLMsgs 16395
x1DefineBinaryName 16396
x1GetBinaryName 16397
x1UDF 255

Note: C API commands (starting x1c-) cannot be called from DLL functions that are
called (directly or indirectly) from worksheet cells. However some functions that perform
seemingly command-like operations surprisingly can be called in this way, for example
x1fWindowTitle and x1 fAppTitle which are described below.

8.1.1 Commands, worksheet functions and macro sheet functions

Excel recognises three different categories of function:

1. Commands
2. Macro sheet functions
3. Worksheet functions

Sections 2.9 Commands versus functions in Excel on page 28, 3.8 Commands versus
Sfunctions in VBA on page 86 and 8.6.4 Giving functions macro sheet function permissions
on page 252 discuss the differences in the way Excel treats these functions and what
functions in each category can and cannot do.

Accessing Excel Functionality Using the C API 225

8.1.2 Commands that optionally display dialogs — the x1Prompt bit

Many Excel commands can optionally invoke dialogs that allow the user to modify inputs
or cancel the command. These dialogs will all be familiar to frequent Excel users, so a
list of those commands that permit this and those that don’t is not given here. The only
important points to address here are (1) how to call the command using Excel4 (), etc.,
to display the dialog, (2) what are the differences in setting up the arguments for the call
to the command with and without the dialog being displayed, and (3) what return value
to expect if the user cancels the command.

The first point is very straightforward. The enumerated function constant, for example
x1cDefineName, should be bit-wise or’d with the value 0x1000, defined as x1 Prompt
in the SDK header file.

On the second point, the arguments supplied pre-populate the fields in the dialog box.
Any that are not supplied will result in either blank fields or fields that contain Excel
defaults.

On the third point, any command function that can be called in this way will return
true if successful and false if cancelled or unsuccessful.

For example, the following command calls the x1cDefineName function with the
dialog displayed.

int __stdcall define_new_name (void)

// Get the name to be defined from the active cell. First get a
// reference to the active cell. No need to evaluate it, as call
// to xlcDefineName will try to convert contents of cell to a

// string and use that.

cpp_xloper ActiveCell, RetVal;

if (ActiveCell.Excel (x1fActiveCell) == xlretSuccess)
RetVal.Excel (xlcDefineName | x1Prompt, 1, &ActiveCell);
return 1;

8.1.3 Accessing XLM functions from the worksheet using defined names

It is possible to define worksheet names as formula strings that Excel will evaluate when-
ever it is required to make a substitution in a worksheet cell. For example, you can define
ROOT_2PI as “=SQRT(2*PI())”, so that a worksheet cell with the formula =ROOT_2PI would
display 2.506628275. ... (In this case, it would, in fact, be better to precompute the num-
ber and define the name as “=2.506628275...” instead, so that Excel does not re-evaluate
it every time). Excel is far more permissive about what it permits to be used in name
definitions than in worksheet cells, insofar as it permits the use of XLM functions. So
you could define the name EXCEL_VERSION as “=GET.WORKSPACE(2)”, for example. You
can also use user-defined functions, whether in a VBA module or an XLL add-in. Note
that if volatile functions are used, cells that rely on this name, and all their dependents,
are volatile too.

Warning: XLL functions registered with #, i.e., as macro-sheet function equivalents,
(see section 8.6.4 Giving functions macro sheet function permissions on page 252), have
been reported as sometimes causing Excel to crash when used in conditional format
expressions.

226 Excel Add-in Development in C/C++

8.2 THE Excel4 () ,Excell2() C API FUNCTIONS
8.2.1 Introduction

Once inside the DLL you will sometimes need or want to call back into Excel to access
its functionality. This might be because you want to call one of Excel’s worksheet func-
tions, or take advantage of Excel’s ability to convert from one data type to another, or
because you need to register or un-register a DLL function or free some memory that
Excel has allocated. Excel provides two functions that enable you to do all these things,
Exceld () and Exceldv (). In Excel 2007 there are two additional and analogous func-
tions, Excell2 () and Excell2v () that work with Excel 2007’s new data types. Each
pair of functions is essentially the same function: the first takes a variable-length argu-
ment list; the second takes a fixed-length list, the last of which is a variable-sized array
of arguments that you wish to pass.

Note that the functions Excel4 () and Exceldv () are exported by the Excel DLL,
x1lcall32.d1l, and its import library equivalent, xlcall32.lib. However
Excell2 () and Excell2v () are defined in code in the Excel 2007 SDK source file
x1lcall.cpp. This is so that an XLL project built with the Excel 2007 version of the
import library x1call32.1ib will still run with earlier versions of Excel. The functions
are defined in such a way that they return a fail-safe return value, xlretFailed, when
called in earlier versions. (See next sub-section for more about Excel call back return
values.)

The prototype for Exceld () is:

int _ cdecl Excel4d (int x1fn, xloper *pRetVal, int count, ...);

The prototype for Excell2 () is:

int _ cdecl Excell2(int x1fn, xloperl2 *pRetVal, int count, ...);

Note that the calling convention is __cdecl in order to support the variable argument
list. (This ensures that the caller, who knows how many arguments were passed, has
responsibility for cleaning up the stack).

As Excell2 () is simply an updated version of Excel4 () that takes xloperl2
arguments instead of xlopers, and what is said below about Excel4 () also applies
equally to x1loper12 unless explicitly stated.

Here is a brief overview of the arguments:

The x1 £n function being executed will always be one of the following:

e an Excel worksheet function;

e a C API-only function;

e an Excel macro sheet function;
e an Excel macro sheet command.

These function enumerations are defined in the SDK header file x1call.h as either

x1f- or x1c-prefixed depending on whether they are functions or commands. There are

also a number of non-XLM functions available only to the C API, such as x1Free.
The following sections provide more detail.

Accessing Excel Functionality Using the C API 227

Table 8.2 Excel4 () arguments

Argument

Meaning

Comments

int x1fn

A number corresponding to a
function or command
recognised by Excel as part
of the C APL

Must be one of the predefined
constants defined in the SDK
header file x1call.h

xloper *pRetVal
xloperl2 *pRetVal

A pointer to an xloper or
x1operl2 that will contain
the return value of the
function x1£n if

Excel4 () /Excell2()
was able to call it.

If a return value is not
required, NULL (zero) can be
passed.

If x1£fn is a command, then
TRUE or FALSE is returned.

If Exceld ()/Excell2 () was
unable to call the function, the
contents of this are unchanged.

Excel allocates memory for
certain return types. It is the
responsibility of the caller to
know when and how to tell
Excel to free this memory. (See
x1Free and x1bitXLFree.)

If a function does not return an
argument, for example, x1Free,
Exceld () /Excell2 () will
ignore pRetval.

int count

xloper *argl
xloperl2 *argl

The number of arguments to
x1fn being passed in this
call to

Exceld () /Excell2 ().

A pointer to an xloper or
xloperl2 containing the
arguments for x1fn.

[vll—]: Maximum is 30.
[v12+]: Maximum is 255.

Missing arguments can be
passed as xlopers of type
xltypeMissing or
x1ltypeNil.

xloper *arg30

Last argument used in Excel 11—

xloperl2 *arg255

Last argument used in Excel 12+

8.2.2 Excel4 (), Excell2() return values

The value that Exceld () /Excell2 () returns reflects whether the supplied function
(designated by the x1fn argument) was able to be executed or not. If successful it
returns zero (defined as xlretSuccess), BUT this does not always mean that the
x1fn function executed without error. To determine this you also need to check the
return value of the x1fn function passed back via the xloper *pRetVal. Where
Exceld () /Excell2 () returns a non-zero error value (see below for more details) you
do know that the x1fn function was either not called at all or did not complete.

The return value is always one of the values given in Table 8.3. (Constants in paren-
theses are defined in the SDK header file x1call.h.)

228 Excel Add-in Development in C/C++

Table 8.3 Excel4 () return values

Returned value

Meaning

0 (xlretSuccess)

The x1£fn function was called successfully, but you
need also to check the type and/or value of the return
xloper in case the function could not perform the
intended task.

1 (xlretAbort)

The function was called as part of a call to a macro that
has been halted by the user or the system.

2 (xlretInvXlfn)

The x1£n function is not recognised or not supported or
cannot be called in the given context.

4 (xlretInvCount)

The number of arguments supplied is not valid for the
specified x1fn function.

8 (xlretInvXloper)

One or more of the passed-in xlopers is not valid.

16 (xlretStackOvfl)

Excel’s pre-call stack check indicates a possibility that
the stack might overflow. (See section 7.1 Excel stack
space limitations on page 203.)

32 (xlretFailed)

The x1£fn command (not a function) that was being
executed failed. One possible cause of this is Excel
being unable to allocate enough memory for the
requested operation, for example, if asked to coerce a
reference to a huge range to an x1typeMulti
xloper. This can happen in any version of Excel but is
perhaps more likely in Excel 2007 where the grid sizes
are dramatically increased.

Excell2 () and Excell2v () return this value if
called from versions prior to Excel 2007.

64 (xlretUncalced)

A worksheet function has tried to access data from a cell
or range of cells that have not yet been recalculated as
part of this workbook recalculation. Macro
sheet-equivalent functions and commands are not subject
to this restriction and can read uncalculated cell values.
(See section 8.1.1 Commands, worksheet functions and
macro sheet functions, page 224, for details.)

128 (xlretNotThreadSafe)

Excel 2007+ only: Excel 2007 supports multi-threaded
worksheet recalculation and permits XLLs to register
their functions as thread-safe. There are a number of C
API callbacks that are not themselves thread-safe and so
not permitted from thread-safe functions. If the XLL
attempts such a C API call from a function registered as
thread-safe this error is returned, regardless of whether
the call was made using Excel4d () or Excell2 ().
This error will also be returned if x1UDF is called to
invoke a thread-unsafe function.

Accessing Excel Functionality Using the C API 229

8.2.3 Calling Excel worksheet functions in the DLL using
Exceld4 (), Excell2()

Excel exposes all of the built-in worksheet functions through Excel4 () /Excell2 ().
Calling a worksheet function via the C API is simply a matter of understanding how to set
up the call to Exceld () /Excell2 () and the number and types of arguments that the
worksheet function takes. Arguments are all passed as pointers to x1oper/xloperl2s
so successfully converting from C/C++ types to x1oper/xloperl2s is a necessary part
of making a call. (See section 6.5 Converting between x1opers and C/C++ data types
on page 154.)

The following code examples show how to set up and call Excel4 () using xlopers
directly, as well as with the cpp_xloper class defined in section 6.4 on page 146. The
example function is a fairly useful one: the =MATCH() function, invoked from the DLL by
calling Excel4 () with x1fMatch.

Worksheet function syntax: =MATCH(lookup_value, lookup_array, match_type)
The following code accepts inputs of exactly the same type as the worksheet function

and then sets up the call to the worksheet function via the C APIL. Of course, there is no
value in this other than demonstrating how to use Excel4 ().

xloper * __stdcall Exceld_match(xloper *p_lookup_value,
xloper *p_lookup_array, int match_type)
{
// Get a thread-local static xloper
xloper *p_ret_val = get_thread_local_xloper();
if(!p_ret_wval) // Could not get a thread-local copy
return NULL;

// Convert the integer argument into an xloper so that a pointer
// to this can be passed to Excel4 ()
xloper match_type_oper = {0.0, xltypelnt};
match_type_oper.val.w = match_type;

int x14 = Excel4(
x1fMatch, // 1lst arg: the function to be called
p_ret_val, // 2nd arg: ptr to return value

3, // 3rd arg: number of subsequent args
p_lookup_value, // fn argl
p_lookup_array, // fn arg2

&match_type_oper);// fn arg3

// Test the return value of Excel4 ()
if(x14 != xlretSuccess)
{
p_ret_val->xltype = xltypeErr;
p_ret_val->val.err = xlerrValue;
}
else
{
// Tell Excel to free up memory that it might have allocated for
// the return value.
p_ret_val->xltype |= xlbitXLFree;
}

return p_ret_val;

230 Excel Add-in Development in C/C++

Breaking this down, the above example takes the following steps:

1. Get a pointer to a thread-local x1oper which will be returned to Excel. The use of
a thread-local x1oper makes the function thread-safe and enables the function to be
registered as eligible for multi-threaded recalculation in Excel 2007.

2. Convert any non-xloper arguments to the Excel4 () function into x1opers. (Here
the integer match_type is converted to an internal integer xloper. It could also
have been converted to a floating point xloper.)

3. Pass the constant for the function to be called to Excel4 (), in this case x1fMatch
= 64.

4. Pass a pointer to an xloper that will hold the return value of the function. (If the
function does not return a value, passing NULL or O is permitted.)

5. Pass a number telling Excel4 () how many subsequent arguments (the arguments for
the called function) are being supplied. x1fMatch can take 2 or 3 arguments, but in
this case we pass 3.

6. Pass pointers to the arguments.

7. Store and test the return value of Excel4 ().

In some cases, you might also want to test the type of the returned x1oper to check that
the called function completed successfully. In most cases a test of the x1type to see if
it is x1typeErr is sufficient. In the above example we return the x1oper directly, so
can allow the spreadsheet to deal with any error in the same way that it would after a
call to the MATCH() function itself.

Note: If Excel was unable to call the function, say, if the function number was not
valid, the return value xloper would be untouched. In some cases it may be safe to
assume that Excel4 () will not fail and simply test whether the x1fn function that
Excel4 () was evaluating was successful by testing the x1type of the return value
xloper. (You should ensure that you have initialised the x1loper to something safe,
such as x1typeNil, first).

Some simplifications to the above code example are possible. The function
Exceld4_match() need not be declared to take an integer 3rd argument. Instead, it
could take another x1oper pointer. Also, we can be confident in the setting up of the
call to Exceld () that we have chosen the right function constant, that the number of
the arguments is good and that we are calling the function at a time and with arguments
that are not going to cause a problem. So, there’s no need to store and test the return
value of Excel4 (), and so the x1 fMatch return value can be returned straight away. If
x1fMatch returned an error, this will propagate back to the caller in an acceptable way.

The function could therefore be simplified to the following (with comments removed):

xloper * __stdcall Exceld_match(xloper *p_lkp_value,
xloper *p_lkp_array, xloper *p_match_type)
{
xloper *p_ret_val = get_thread_local_xloper();
if (!p_ret_val) // Could not get a thread-local copy
return NULL;
Exceld (x1fMatch, p_ret_val, 3, p_lkp_value, p_lkp_array, p_match_type);
p_ret_val->xltype |= xlbitXLFree;
return p_ret_val;

Accessing Excel Functionality Using the C API 231

Using the cpp_x1loper class to call Excel, hiding the memory management, the original
code can be simplified to this:

xloper * _ stdcall Exceld_match(xloper *p_lookup_value,
xloper *p_lookup_array, int match_type)
{
cpp_xloper RetVal;
xloper match_oper = {(double)match_type, xltypeNum};
// Excel is called here with xloper * arguments only - must not mix
RetVal.Excel (x1fMatch, 3, p_lookup_value, p_lookup_array, &match_oper);
return RetVal.ExtractXloper (true); // returns a thread-local xloper ptr

Note that the cpp_xloper: :Excel is called here with xloper * arguments only,
ensuring that the compiler calls the correct overloaded member function. The fact that
the compiler cannot check the types of variable argument lists places the onus on the
programmer to be careful not to mix types.

As already mentioned, there is not much point in writing a function like this that
does exactly what the function in the worksheet does, other than to demonstrate how to
call worksheet functions from the DLL. However, if you want to customise a worksheet
function, a cloned function like this is a sensible starting point.

8.2.4 Calling macro sheet functions from the DLL using Excel4 (), Excell2()

Excel’s built-in macro sheet functions typically return some information about the Excel
environment or the property of some workbook or cell. These can be extremely useful
in an XLL. Two examples are the functions =CALLER() and =GET.CELL() and their C API
equivalents x1fCaller and x1fGetCell. The first takes no arguments and returns
some information about the cell(s) or object from which the function (or command)
was called. The second takes a cell reference and an integer value and returns some
information: What information depends on the value of the integer argument. Both of the
C API functions are covered in more detail later on in this chapter. In combination they
permit the function to get information about the calling cell(s) including its value.

The following code fragment shows an example of both functions in action. This func-
tion toggles the calling cell between two states, 0 and 1, every time Excel recalculates. (To
work as described, the function needs to be declared a volatile function — see section 8.6.5
Specifying functions as volatile on page 253.)

xloper * __ stdcall toggle_caller (void)
{
// Use of static here is not thread-safe, but function cannot be
// exported as thread-safe in any case since it must be registered
// as type # in order to be able to call xlfGetCell

static xloper ret_val;

xloper caller, GetCell_param;

GetCell_param.xltype = xltypelnt;

GetCell_param.val.w = 5; // contents of cell as number
Exceld (x1fCaller, &caller, 0);

Exceld (x1fGetCell, &ret_val, 2, &GetCell_param, &caller);
if (ret_val.xltype == xltypeNum)

232 Excel Add-in Development in C/C++

ret_val.val.num = (ret_val.val.num == 0 ? 1.0 : 0.0);
Exceld (x1Free, 0, 1, &caller);
return &ret_val;

Note that the function returns a pointer to a static xloper. This is not thread-safe and
so this function cannot be registered in Excel 2007 as such. Not only this, but to work as
intended the function must be registered with Excel as a macro-sheet equivalent function
(type ‘#’). Such functions are not considered thread-safe in Excel 2007 and so the call
to Exceld (x1fGetCell, ...) would in any case return xlretNotThreadSafe.
Since this function calls an XLLM function and so cannot be declared as thread-safe, there
is no need to use the TLS API here.

An alternative to using x1£fGetCell to get the calling cell’s value from the reference
is to use the C API x1Coerce function to convert the cell reference to the desired
data type, in this case a number. (This function is covered in more detail below). The
equivalent code written using the cpp_xloper class and x1Coerce would be:

xloper * __ stdcall toggle_caller (void)
{
cpp_xloper Caller;
Caller.Excel (x1fCaller) ;
if (!Caller.IsRef())
return NULL;
cpp_xloper TypeNum(xltypeNum) ;
Caller.Excel (x1Coerce, 2, &Caller, &TypeNum) ;
Caller = ((double)Caller == 0.0) 2 1.0 : 0.0;
return Caller.ExtractXloper() ;

Circular reference note: In the above example, the function gets information about the
calling cell, its value, and then returns a function of it to that same cell. This gives
Excel an obvious dilemma: the function depends on itself so there is a circular refer-
ence. How Excel deals with this depends on how toggle_caller () was registered.
If registered as a worksheet function, the call to x1fGetCell will return the error code
2 (xlretInvX1lfn). Excel considers functions like x1fGetCell to be off-limits for
normal worksheet functions, getting round this and other problems that can arise. This
is the same rejection as you would see if you entered the formula =GET.CELL(5,A1) in a
worksheet cell — Excel would display an error dialog saying “That function is not valid”.
(Such functions were introduced only to be used in Excel macro sheets.) The equivalent
code that calls x1Coerce would also fail, this time with an error code of 64 (x1retUn-
calced). In this case Excel is complaining that the source cell has not been recalculated.
If toggle_caller () had been registered as a macro sheet function, Excel is more
permissive; the function behaves as you would expect. Section 8.6.4 Giving functions
macro sheet function permissions on page 252 describes how to do this. Note that func-
tions registered as macro-sheet equivalents are not considered thread-safe in Excel 2007.
As with the preceding function, it still cannot be registered as thread-safe and must be
registered as a macro-sheet equivalent.

Accessing Excel Functionality Using the C API 233

Being able to give your XLL worksheet functions macro sheet function capabilities
opens up the possibility of writing some really absurd and useless functions. Some
potentially useful ones are also possible, such as the above example, and the following
very similar one that simply counts the number of times it is called. In this case, the
example uses a trigger argument, and effectively counts the number of times that argu-
ment changes or a forced calculation occurs. Note that it uses the cpp_xloper class’
overloaded (double) cast that coerces the reference obtained from x1fCaller to a
number, and then the overloaded assignment operator which changes Caller’s type to
a number before returning it.

xloper * __stdcall increment_caller (int trigger)
{
cpp_xloper Caller;
Caller.Excel (x1fCaller); // Get a reference to the calling cell
if(!Caller.IsRef())
return NULL;
Caller += 1.0; // Coerce to xltypeNum and increment
return Caller.ExtractXloper () ;

8.2.5 Calling macro sheet commands from the DLL using Exceld4 () /Excell2()

XLM macro sheet commands are entered into macro sheet cells in the same way as work-
sheet or macro sheet functions. The difference is that they execute command-equivalent
actions, for example, closing or opening a workbook. Calling these commands using
Exceld () or Excell2 () is programmatically the same as calling functions, although
they only execute successfully if called during the execution of a command. In other
words, they are off-limits to worksheet and macro-sheet functions. The sections from
here on to the end of the chapter contain a number of examples of such calls.

8.3 THE Exceldv () /Excell2v() C API FUNCTIONS

The prototype for Exceldv () is:

int _ stdcall Exceldv(int x1fn, xloper *pRetVal, int count, xloper
*opers[]);

The prototype for Excell2v () is:

int _ stdcall Excell2v(int x1fn, xloperl2 *pRetVal, int count, xloperl2
*opers []);

These return the same values as Excel4 () and Excell2 () respectively.

Where these functions are wrapped in a C++ class, and you want to conform to a strict
standard for class member functions with regard to use of the const specifier, you will
also need to add const to the prototypes as shown here to ensure your compiler doesn’t
complain:

234

Excel Add-in Development in C/C++

int _ stdcall Exceld4v(int, xloper *, int, const xloper *[]);

int _ stdcall Excell2v(int, xloper *, int, const xloperl2 *[]);
Table 8.4 Exceldv () arguments

Argument Meaning Comments

int x1fn

A number corresponding to a
function or command recognised
by Excel as part of the C APL

Must be one of the predefined
constants defined in the SDK
header file x1call.h.

xloper *pRetval
xloperl2 *pRetval

A pointer to an xloper or
xloper12 that will contain the
return value of the function x1fn
if Exceld () /Excell2 () was
able to call it.

If a return value is not required,
NULL (zero) can be passed.

If x1£fn is a command, then TRUE
or FALSE is returned.

If Exceldv () /Excell2v ()
was unable to call the function,
the contents of this are
unchanged.

Excel allocates memory for
certain return types. It is the
responsibility of the caller to
know when and how to tell
Excel to free this memory. (See
x1Free and x1bitXLFree.)

If a function does not return an
argument, for example,
x1Free,
Exceld () /Excell2 () will
ignore pRetval.

int count

The number of arguments to x1fn
being passed in this call to
Exceldv () /Excell2v ().

[vll—]: Maximum is 30.

v12+41]: Maximum is 255.

xloper *opers]|]
xloperl2 *opers|]

An array, of at least count
elements, of pointers to
xloper/xloperl2s containing
the arguments for x1fn.

The following example simply provides a worksheet interface to Exceldv () allowing
the function number and the arguments that are appropriate for that function to be passed
in directly from the sheet. This can be an extremely useful tool but also one to be used
with great care. This section outlines some of the things this enables you to do, but first
here’s the code with comments that explain what is going on.

xloper * __ stdcall XLM4 (int x1fn, xloper *arg0, xloper *argl,
xloper *arg2, xloper *arg3, xloper *arg4,
xloper *arg5, xloper *arg6, xloper *arg7,
xloper *arg8, xloper *arg9, xloper *arglO,
xloper *argll, xloper *argl2, xloper *argl3,
xloper *argl4d, xloper *argl5, xloper *arglé6,
xloper *argl7, xloper *argl8)

xloper *arg_array([19];

Accessing Excel Functionality Using the C API

235

static xloper ret_xloper;

// Fill in array of pointers to the xloper arguments ready for the call

// to Exceldv()

arg_array[0] arg0;
arg_arrayl[l] argl;
arg_arrayl[2] = argl;
arg_array[3] = arg3;
arg_arrayl[4] argd;
arg_arrayl[5] argb;
arg_arrayl[6] argb6;
arg_arrayl[7] arg7;
arg_array|[8] arg8;
arg_arrayl[9] arg9;
arg_array[10] argloO;

arg_array[11] argll;
arg_arrayl[1l2] argl2;
arg_array[13] = argl3;
arg_arrayl[1l4] = argld;
arg_arrayl[15] argl5s;
arg_array|[16] arglé6;
arg_array[17] argl7;
arg_array[18] argl8;

// Find the last non-missing argument

for(int 1 = 19; --i >= 0;)
if((arg_arrayl[i]->xltype & (xltypeMissing | xltypeNil)) == 0)
break;

// Call the function

int retval = Exceldv(xlfn, &ret_xloper, i + 1, arg_array);

if (retval != xlretSuccess)
{
// If the call to Exceldv() failed, return a string explaining why
// and tell Excel to call back into the DLL to free the memory about
// to be allocated for the return string.
ret_xloper.xltype = xltypeStr | xlbitDLLFree;
ret_xloper.val.str = new_xlstring(Exceld_err_msg(retval));
}
else
{
// Tell Excel Excel to free up memory that it might have allocated for
// the return value.
if (p_ret_val->xltype & (xltypeStr | xltypeMulti | xltypeRef))
p_ret_val->xltype |= xlbitXLFree;
}

return &ret_xloper;

The function Excel4d_err_msg () simply returns a string with an appropriate error mess-
age should the callto Excel4v () fail, andis listed below. The functionnew_x1lstring()

creates a byte-counted string from this.

char *Exceld4_err_msg(int err_num)

{

switch (err_num)

{

case xlretAbort: return "XL4: macro halted";

236 Excel Add-in Development in C/C++

case xlretInvXlfn: return "XL4: invalid function number";
case xlretInvCount: return "XL4: invalid number of arguments";
case xlretInvXloper: return "XL4: invalid oper structure";

case xlretStackOvfl: return "XL4: stack overflow";

case xlretUncalced: return "XL4: uncalced cell";

case xlretFailed: return "XL4: command failed";

default:
return NULL;

}

The function XLM4 () above takes 20 arguments (one for the C API function code, and
19 function arguments). Up to and including Excel 2003 the limit for worksheet function
arguments is 30, but the means by which functions are registered (see section 8.6 below)
requires that an additional 10 pieces of data are provided so that you can only include
descriptive strings for the first 20 arguments. However you can still register functions that
go up to the 30 limit. In Excel 2007, this limit is raised to 255, effectively eliminating
this problem.

8.4 WHAT C API FUNCTIONS CAN THE DLL
CALL AND WHEN?

The C API was designed to be called from DLL functions that have themselves been
called by Excel while executing commands, during worksheet recalculations or during
one of the Add-in Manager’s calls to one of the x1Auto-functions. DLL routines can
be called in other ways too: the D11Main () function is called by the operating system;
VBA can call exported DLL functions that have been declared within the VBA module;
the DLL can set up operating system call-backs, for example, at regular timed intervals;
the DLL can create background threads.

Excel is not always ready to receive calls to the Excel4 () /Excell2 () functions.
The following table summarises when you can and cannot call these functions safely.

Table 8.5 When it is safe to call the C API

When called Safe to call? Additional comments
During a call to the DLL from: Yes In all these cases Excel is running a
e an Excel command, command, i.e., these are all effectively
e a user-defined command in a called as a result of a user action, e.g.,
macro sheet, starting Excel, loading a workbook,
e a user-defined command subroutine choosing a menu option, etc.
in a VBA code module,
e the Add-in Manager to one of the All x1£-, x1c- and the C API-only
x1Auto-functions, functions are available.
e an XLL command run using the
x1cOnTime CAPI function.

Accessing Excel Functionality Using the C API

237

Table 8.5 (continued)

When called

Safe to call?

Additional comments

During a call to the DLL from a
user-defined VBA worksheet
function.

Yes

DLL functions called from VBA in this
way cannot call macro sheet C API
functions such as the workspace
information function x1fGetWorkbook.

During a direct call to a macro sheet

equivalent function, called as a result
of recalculation of a worksheet cell or
cells.

Yes

Most of the x1 £-functions and the C
API-only functions are available. (A few
of the x1 f-functions are, in fact,
command-equivalents and can only be
called from commands.)

Note: Functions within VBA modules
that are called as a result of a worksheet
recalculation are worksheet function
equivalents not macro-sheet equivalents.

During a direct call to a worksheet
equivalent function, called as a result
of recalculation of a worksheet cell or
cells.

Yes

Only worksheet equivalent x1 £-functions
and the C API-only functions are
available. A large number of the
x1f-functions are only accessible to
macro sheet equivalent functions. Calling
these will either result in Excel4 () /
Excell2 () returning xlretFailed.

Note that some otherwise-permitted
x1f-functions that attempt to obtain the
values of unrecalculated cells will fail,
returning xlretUncalced, unless
called from macro sheet equivalent
functions.

Functions within VB modules that are
called as a result of a worksheet
recalculation are subject to the above
restrictions.

During a call to a DLL function by
the operating system.

During an execution of a background
thread created by the DLL.

In both of these cases, calling Excel4 ()
or Exceldv () /Excell2v () will have
unpredictable results and may crash or
destabilise Excel.

See section 9.5 Accessing Excel
functionality using COM/OLE for
information about how to call Excel in
such cases, including how to get Excel to
call into the DLL again in such a way
that the C API is available.

238 Excel Add-in Development in C/C++
8.5 WRAPPING THE C API

The Exceld () /Excell?2 () and Exceldv () /Excell2v () functions can be wrapped
up in a number of ways that make their use easier. This book intentionally presents a
unwrapped view of the C API, so that its workings are exposed as clearly as possible.
However, given the simplification to code and improved memory management possible,
especially when creating add-ins that will run in Excel 2007 (version 12) as well as ear-
lier versions, this becomes an important topic. The reasons for wanting to do this are the
following:

e Shorten development and testing time

e Reduce (or remove) the likelihood of run-time errors, especially those associated with
memory, that could destabilise Excel

e Make code easier to read, maintain, document and modify at a later date

e In conjunction with the wrapping of both x1lopers and x1loperl12s, make the calling
of the C API version-independent.

To define what exactly such a wrapper should look like is not the intention of this book,
but this section aims to provide a couple of examples of what can be achieved, to help
you decide what will work best for you.

The cpp_xloper class introduced in section 6.4 on page 146 is intended primarily
to demonstrate the benefits of wrapping the xloper and xloperl2 data structures in
order to simplify reading and writing values and memory management. The fact that
it wraps both types also makes sure that the cpp_xloper a version-independent data
type. Including the C API functions within this class allows it to be used to set the value
of a cpp_xloper in a call to the C API without needing to specify which version of
structure, xloper or xloperl?2, or which API function, Exce4 () or Excell2 () is
being used: the class makes this choice based on the running version.

Other C++ wrappers could easily be envisaged to make the handling of strings and
x14_array/x112_arrays more consistent with the sensible OO paradigms, such as
hiding memory management from the point of use and protecting the developer from their
most likely blunders.

There are a number of schools of thought on the more general subject of wrapping
the C API in an object-oriented interface that hides all of the messy details that this
book attempts to deal with. There are a number of approaches used in shareware and
commercial applications, from classes that wrap the data structures to classes that wrap the
Excel application, emulating in many ways the object model exposed by Excel via COM.
C++ wrappers can be envisaged, and are freely available, that make implementation of
XLLs more straightforward, rapid and the resulting code more easily maintained. Another
advantage of a fully wrapped approach is that the developer can develop reusable code that
can plug into Excel in a number of ways: C API, COM or .NET. Again, this discussion
is beyond the scope of this book, suffice to say that there are good commercial packages
that might suit your tastes if this is what you are looking to achieve.'

This section simply discusses the wrapped C API functions in the cpp_xloper class
introduced in section 6.4 on page 146, designed to simplify access to the C API via
the Exceld (), Exceldv (), Excell2 () and Excell2v () functions. This is most

! For example, Planatech XLL++ and ManagedXLL.

Accessing Excel Functionality Using the C API 239

useful when setting the value of a cpp_xloper to be the result of a call to the C API.
Handing responsibility for this to the class ensures that any memory allocated for the
returned xloper/xloperl2 by Excel is freed at the right time in the right way. (See
also section 7.3 on page 205).

For example, suppose we want to write some code to get the value of the cell imme-
diately above the calling cell. The steps are:

e Get a reference to the calling cell using x1fCaller
e Inspect and modify the reference to refer to the cell above
e Coerce the modified reference to a value

With no use of wrappers or the cpp_x1loper class described in section 6.4 on page 146,
the verbose code to do this would look something like this:

bool get_cell_above_caller_ vl (xloper &ret_val)

{

xloper caller;

// Try to get a reference to the calling cell(s)
if (Exceld (x1fCaller, &caller, 0) != xlretSuccess)
return false;

// Exceld executed OK, but still need to check returned xloper type
if((caller.xltype & (xltypeSRef | xltypeRef)) == 0)
{
// Was not called from a worksheet cell or range.
// Need to free any memory associated with caller. (In this
// case, if called from a menu bar or toolbar, a small array
// will have been allocated).
Exceld (x1Free, 0, 1, &caller);
return false;

}

// Now need to check that cell is not in the top row
if (caller.xltype == xltypeSRef)
{
if (caller.val.sref.ref.rwFirst == 0)
return false;
}
else // caller.xltype == xltypeRef
{
if (caller.val.mref.lpmref->reftbl[0].rwFirst == 0)
{
// Need to get Excel to free the lpmref pointer.
Exceld (x1Free, 0, 1, &caller);
return false;

}

if (caller.xltype == xltypeSRef)
{
// modify the reference
caller.val.sref.ref.rwFirst--;
// now reduce the size to a single cell
caller.val.sref.count = 1;
caller.val.sref.ref.rwLast = caller.val.sref.ref.rwFirst;
caller.val.sref.ref.colLast = caller.val.sref.ref.colFirst;

240 Excel Add-in Development in C/C++

}
else // == xltypeRef
{
// modify the reference
caller.val.mref.lpmref->reftbl[0].rwFirst--;
// now reduce the size to a single cell
caller.val.mref.lpmref->count = 1;
caller.val.mref.lpmref->reftbl[0].rwLast =
caller.val.mref.lpmref->reftbl[0].rwFirst;
caller.val.mref.lpmref->reftbl[0].colLast =
caller.val.mref.lpmref->reftbl[0].colFirst;

}

// Now coerce the reference to a worksheet value type
xloper target_type;
target_type.xltype = xltypelnt;
target_type.val.w = xltypeErr | xltypeNum | xltypeStr | xltypeBool;

if (Exceld (x1Coerce, &ret_val, 2, &caller, &target_type) != xlretSuccess)
{
// Need to free all memory allocated so far. Since it has failed,
// x1lCoerce has not allocated any memory at this point
Exceld (x1Free, 0, 1, &caller);
return false;
}
// Done. ret_val contains the value of the cell above the caller.
return true;

int _ stdcall above_cell_caller_vl (void)
{
xloper above_cell;
// Get the value of the cell above the top-left calling cell
if (!get_cell_above_caller_ vl (above_cell))
return 0;

// Do something with it

// Now free the memory that might have been allocated by Excel
// during the call to get_cell_above_caller_vil()

Exceld (x1Free, 0, 1, &above_cell);

return 1;

This is a lot of code to do something fairly simple. Not only that, but there are two places
where memory is, or could be, allocated by Excel. The risk of not freeing one of these
on one of the control paths is significant. The above code can be simplified, of course. In
particular, the handling of both x1typeSRef and x1typeRef types can be avoided by
coercing x1typeSRef to x1typeRef. Also, there is no need to specify explicitly the
target types when coercing the reference to a value, as x1Coerce will do this implicitly
if the target type is omitted. On the other hand, x1Coerce will return the coerced value
of the top left cell in a range if explicitly asked to convert to a worksheet value type,
removing the need to explicitly change the reference to single-cell. With these, and a few
other, simplifications, the code becomes:

Accessing Excel Functionality Using the C API

241

bool get_cell_above_caller_v2 (xloper &ret_val)

{

xloper caller;

// Try to get a reference to the calling cell(s)
if (Exceld (x1fCaller, &caller, 0) != xlretSuccess)
return false;

// Exceld executed OK, but still need to check returned xloper
if((caller.xltype & (xltypeSRef | xltypeRef)) == 0)
{
// Need to free any memory associated with caller. (In this
// case, if called from a menu bar or toolbar, a small array
// will have been allocated).
Exceld (x1Free, 0, 1, &caller);
return false;
}
// If xltypeSRef, coerce caller to xltypeRef
xloper target_type;
target_type.xltype = xltypelnt;
target_type.val.w = xltypeRef;

if (caller.xltype == xltypeSRef
return false;

xlref *p_ref = caller.val.mref.lpmref->reftbl;
// Now need to check that cell is not in the top row
if (p_ref->rwFirst == 0)
{
// Need to get Excel to free the lpmref pointer.
Exceld (x1Free, 0, 1, &caller);
return false;

}

// modify the reference
p_ref->rwFirst--;

target_type.val.w = xltypeErr | xltypeNum | xltypeStr | xltypeBool;
// Now coerce the top-left cell in the range to a single value

{
// Need to free all memory allocated so far. Since it has failed,
// x1Coerce has not allocated any memory at this point
Exceld (x1Free, 0, 1, &caller);
return false;
}
// Done. ret_val contains the value of the cell above the caller.
return true;

&& Exceld (x1Coerce, &caller, 2, &caller, &target_type) != xlretSuccess)

if (Exceld (x1Coerce, &ret_val, 2, &caller, &target_type) != xlretSuccess)

It’s still a lot of code. Not only this, but when running under Excel 2007, it will work
fine but will not be as efficient as if it were using xloperl2s and Excell2 (). This
is because when calling Excel4 () /Exceldv () in Excel 2007, the x1lopers are cast
up to xloperl2s implicitly and the resulting return value then cast back down to an
xloper. Using the cpp_xloper class, or something similar, not only can the code be
simplified and the specifics of the x1oper/xloperl?2 structures be tamed, but the most
appropriate internal structure and C API function can be called. Here is what the above
code reduces to using the cpp_xloper as provided on the example project CD ROM.

242 Excel Add-in Development in C/C++

bool get_cell_above_caller_v3 (cpp_xloper &RetVval)
{
// Try to get a reference to the calling cell(s)
// ConvertSRefToRef () returns true if type is already xltypeRef.
if (RetVal.Excel (x1fCaller) != xlretSuccess
| | RetVal.ConvertSRefToRef () != xlretSuccess)
return false;

RW top_row = RetVal.GetTopRow(); // counts from 1
// Now need to check that cell is not in the top row
if (top_row <= 1) // 1 if top row, 0 if not a reference type
return false;

// Modify the reference
RetVal.SetTopRow (top_row - 1);
RetVal.ConvertRefToSingleValue() ;

// Done. RetVal contains the value of the cell above the caller.
return true;

int __stdcall above_cell_caller_v3(void)
{
cpp_xloper AboveCell;
if (!get_cell_above_caller_v3 (AboveCell))
return 0;
// Do something with it
// ... no need to free the memory explicitly any more.
return 1;

}

Of course, the code has not completely disappeared; it now resides, more sensibly, in
the cpp_xloper class. The explicit calls to Excel4 () have all gone, replaced by
calls to one of the overloaded wrapper function cpp_xloper: :Excel () which place
the return value directly into the invoking instance of the class. These functions assume
responsibility for making sure that any memory will be freed in the right way eventually.
Many of the code examples in the remainder of this book use the Excel () member
functions to simplify the code.

In order to provide flexibility over whether this function can be called with x1oper,
xloperl?2 or cpp_xloper arguments, it is necessary to create a number of overloaded
member functions:

int Excel (int x1lfn); // not strictly necessary, but simplifies the others
int Excel (int x1fn, int count, const xloper *p_opl, ...);
int Excel (int x1fn, int count, const xloperl2 *p_opl, ...);
int Excel (int x1fn, int count, const cpp_xloper *p_opl, ...):;
int Excel (int x1fn, int count, const xloper *p_arrayl[]);
int Excel (int x1fn, int count, const xloperl2 *p_arrayl[]);
(

int Excel (int x1fn, int count, const cpp_xloper *p_arrayl]);

Note that it is assumed that the caller of the variable argument versions of these functions
will not mix argument types. Note also that the use of const here necessitates that const
declarations be used in the definitions or prototypes of Exceldv () and Excell2v ().

Once a wrapper is implemented, you need not, and arguably should not, call the C
API functions directly. Some additional checks can also be built into these wrappers, for

Accessing Excel Functionality Using the C API 243

example, to check that count is not less than zero or greater than the version-specific
limit. To reflect cases where such a test fails you might want to define and return an
additional error:

#define xlretNotCalled -1 // C API function not called

’

Here is an example implementation of one of these functions. Variables prefixed ‘m_" are
class member variables: the flags m_XLtoFreel2 and m_XLtoFree are used to tell the
class to call x1Free to release memory, and m_Op and m_Op12 are the class’ xloper
and xloperl?2 instances respectively:

int cpp_xloper::Excel (int x1fn, int count, const cpp_xloper *p_opl, ...)
{
if(x1lfn < 0 | | count < O
| | count > (gExcelVersionl2plus ? MAX_XL12_UDF_ARGS
MAX_XL11l_UDF_ARGS))
return xlretNotCalled;

if (count == 0 | | !p_opl)
return Excel (x1fn) ;

int ret_val;
va_list arg_ptr;
va_start (arg_ptr, p_opl); // Initialize

if (gExcelVersionl2plus)

{
const xloperl2 *xloperl2_ptr_array[MAX XL12_UDF_ARGS];
xloperl2_ptr_array[0] = &(p_opl->m_Opl2);
cpp_xloper *p_cpp_op;

for(int i = 1; i1 < count; i++) // get args as cpp_xlopers ptrs
{
p_cpp_op = va_arg(arg_ptr, cpp_xloper *);
xloperl2_ptr_array[i] = &(p_cpp_op->m_Opl2) ;
}

va_end (arg_ptr); // Reset

xloperl2 temp;
ret_val = Excell2v(xlfn, &temp, count, xloperl2_ptr_array) ;
Free();

if (ret_val == xlretSuccess)
{
m_Opl2 = temp; // shallow copy
m_XLtoFreel2 = true;
}
}
else // gExcelVersion < 12
{
const xloper *xloper_ptr_array[MAX XL1l1l_ UDF_ARGS];
xloper_ptr_array[0] = &(p_opl->m_Op) ;
cpp_xloper *p_cpp_op;

for(int i = 1; i1 < count; i++) // get args as cpp_xlopers ptrs
{
p_cpp_op = va_arg(arg_ptr, cpp_xloper *);
xloper_ptr_array([i] = &(p_cpp_op->m_O0p) ;

244 Excel Add-in Development in C/C++

}

va_end (arg_ptr); // Reset

xloper temp;
ret_val = Exceldv(xlfn, &temp, count, xloper_ptr_array);
Free();

if (ret_val == xlretSuccess)
{
m_Op = temp; // shallow copy
m_XLtoFree = true;
}
}

return ret_val;

Note that in order to be safe, the above code needs to assume that the address of this
instance of the cpp_xloper is also being passed as one (or more) of the arguments.
It copes with this by assigning the value of the call to Exceldv () /Excell2v () to
a temporary x1oper which is shallow-copied to this instance’s x1oper after resources
have been freed. If it didn’t do this it would leak memory when assigning to an xloper
that was a string, array or external reference. The functions still depend on the developer
setting count to the right value, otherwise Excel will run into the stack, treating random
values as valid x1oper pointers with a high risk of crashing.

Clearly, additional code could be added to, say, check that the number or types of
arguments were consistent with the function to be called. You could even go as far to
implement a member function for every C API function, taking standard data types instead
of xlopers, so that it was not even necessary to remember the function enumerations.

The above approach shows the use of a function that sets the value of this instance
of the xloper to the return value of some C API function. Another approach is to
invoke a member function that takes the current value of this xloper as the argument
to a C API function. The cpp_xloper class contains a useful example of this: bool
cpp_xloper::Alert (int dialog_type) which displays the contents of the con-
tained x1oper converted to a string. The function takes care of the tasks of (1) coercing
the xloper to a temporary string, (2) creating the dialog, (3) processing and returning
the dialog return value, and (4) freeing the temporary string memory.

There are many different but, by necessity, similar approaches to wrapping Excel’s func-
tionality. The Generic Framework project released by Microsoft with the Excel’97 Frame-
work SDK contains a stand-alone function Excel () that wraps calls to Exceld (). It
also contains a number of other functions that initialise and make throw-away copies of
x1opers to be passed as arguments.?

8.6 REGISTERING AND UN-REGISTERING
DLL (XLL) FUNCTIONS

Registering functions is an essential step in making your DLL functions accessible on
the worksheet (short of using the Declare statement in modules containing VBA UDFs).

2 At the time of writing, Microsoft are planning to release an updated Framework project for Excel 2007 which
will also be backwards compatible with previous Excel versions.

Accessing Excel Functionality Using the C API 245

It is also the means by which you specify what a user sees when they invoke the Paste
Function or Add-in Manager dialogs. Functions can be registered from any command at
any time, the most sensible place being the x1AutoOpen XLL interface function. (See
section 5.5 XLL functions called by the Add-in Manager and Excel on page 117 for details
of when this function is called.)

When your DLL is unloaded, registered functions should, in theory, be un-registered so
that Excel knows they are inaccessible — something best done in the x1AutoClose XLL
interface function. However, a bug in Excel prevents functions from being unregistered
properly. This is not a great concern, as it does nothing to destabilise Excel.

Registering functions is equivalent in many ways to declaring DLL functions in VBA.
The required minimum information is very similar: the DLL path and file name, the
function name as exported, the argument types and the return type. However, Excel
allows the DLL to tell it many more things about the function at the same time, such as
the calling equivalence of the function (worksheet or macro sheet equivalent), whether or
not the function is volatile, whether it is thread-safe, as well as providing information for
the Add-in Manager and Paste Function dialogs.

8.6.1 The x1fRegister function

Overview: Registers and un-registers DLL and XLL commands and
functions.

Enumeration value: 149 (x95)

Callable from: Commands only.
Return type: x1typeNum
Arguments: See table below.

Registering and un-registering commands and functions is accomplished with calls to
the same function, x1fRegister. All arguments can be passed in as length-counted
x1typeStr strings, although numeric values can be passed in some cases. Their meaning
is given in the following table. To register a worksheet function, at least the first 5 are
required. To register a command, at least 6 are needed. (See section 8.7 Registering and
un-registering DLL (XLL) commands on page 271 for more about commands.)

Excel 2003 and earlier versions limited all functions, including macro sheet functions
such as x1fRegister, to 30 arguments. Given that there are 10 arguments to pass to
x1fRegister, this limits you to providing help for only 20 arguments for any DLL
function that you wish to export and make available on the worksheet. (It is still possible
to export functions that take up to 30 arguments, you just can’t provide help for them.) In
practice this is not too much of a limitation. If you really need to pass more information
than this, combining data into a single array or range argument is the most obvious
solution. Excel 2007 increases the limit for all functions to 255, effectively removing this
problem altogether.

Note: A curious Excel bug sometimes causes the truncation of the last 2 characters of
the last argument help text in the Paste Function dialog. This can be avoided by padding
with a couple of spaces or by passing an extra blank text argument.

246

Excel Add-in Development in C/C++

Table 8.6 x1fRegister arguments for registering functions

Argument Required or Description
number optional

1 Required The full drive, path and filename of the DLL containing the
function.

2 Required The function name as it is exported. Note: This is
case-sensitive.

3 Required The return type, argument type and calling permission
string. (See sections 8.5.3, 8.5.4 and 8.5.5 for details.)

4 Required The function name as you wish it to appear in the
worksheet.

Note: This is case-sensitive.

5 Required The argument names as a comma-delimited concatenated
string, e.g., "Argl,Arg2,Arg3". Excel uses this string to
work out the number of arguments and to determine the
text to show to the left of each of the corresponding
text-boxes in the Paste Function dialog.

6 Optional The function type: 1 or omitted = Function; 2 = Command.

7 Optional The Paste Function category in which the function is to be
listed. If omitted the function is listed under User Defined.
(See section 8.5.2 for details.)

8 Optional (Not used. Pass x1typeNil or x1typeMissing).

9 Optional The help topic.

10 Optional A brief description of the function, e.g., "This
function returns the factorial of positive
integers less than 20". This text is displayed in
the Paste Function dialog.

11 Optional Help for the 1st argument, e.g., "A positive integer
less than 20". This text is displayed in the Paste
Function dialog when the text box relating to this argument
is selected.

12 Optional Help for the 2nd argument.

30 Optional Help for the 20th argument — the last when running v11— .

255 Optional Help for the 245th argument — the last when running v12+-.

Accessing Excel Functionality Using the C API 247

Here is an example of code that registers a function using the cpp_xloper class
to ease creation of the arguments. Note that, in practice, registering functions one by
one like this, each with its own registration function, would be extremely cumbersome.
Section 8.6.11 Managing the data needed to register exported functions on page 256
describes a much more efficient and organised approach.

bool register_example(void)
{
cpp_xloper Dll1lName;
cpp_xloper FunctionName ("exponent_function") ;
cpp_xloper TypeText ("BB"); // = return a double, take a double
cpp_xloper WorksheetFunctionName ("MY_ EXP") ;
cpp_xloper Arguments ("Exponent") ;
cpp_xloper FunctionType (1) ;
cpp_xloper Category("My functions");
cpp_xloper Description("Returns e to the power of Exponent");
cpp_xloper ArglHelp ("Any number such that |n| <= 709");
cpp_xloper RetVal;

// Get the full path and name of the DLL.
if (Dl1lName.Excel (x1GetName) != xlretSuccess)
return false;
// Note: All arguments are passed as pointers to xlopers
int x1_ret_val = RetVal.Excel (x1fRegister,
11, // number of subsequent arguments
&D11Name,
&FunctionName,
&TypeText,
&WorksheetFunctionName,
&Arguments,
&FunctionType,
&Category,
p_x1Missing, // no short-cut
p_x1lMissing, // no help topic
&Description,
&ArglHelp) ;

if(x1_ret_val != xlretSuccess)

{
cpp_xloper Message("Could not register MY_EXP");
Message.Alert () ;
return false;

}

return true;

double _ stdcall exponent_function(double argl)
{
if (fabs(argl) > 709) // limit of e”argl in IEEE double
return 0.0;
return exp (argl);

Warning: It is possible to register the same DLL function twice, giving it a different
worksheet name, the 4th argument, in both cases. You might want to do this so that, for
example, in one case it is volatile and in the other it is not. Or you might want to register
it as taking an all-types x1loper argument in one case, type R, and values-only, type P, in

248 Excel Add-in Development in C/C++

the other. (The following sections discuss these things in detail.) Excel will not complain
if you do this, but it may be unable to distinguish between the two functions, and the
desired differentiation might not occur. The simple work-around is to create a wrapper to
the function and export both the function and the wrapper.

8.6.2 Specifying which category the function should be listed under

Argument 7 to x1fRegister tells Excel which function category to list worksheet
functions under in the Paste Function dialog. This can be a number or text corresponding
to one of the hard-coded standard categories, or the text of a new category specified by
the DLL. If the text given does not exist already, Excel will create a new category with
that name. Creating a new category for a given DLL is a good idea, especially where they
are to be distributed. It makes it clear which DLL and software provider the functions
are associated with.

The standard categories that are visible when viewing the Paste Function dialog from
within a worksheet are:

Table 8.7 Standard worksheet
function categories

Number Text
1 Financial
2 Date & Time
3 Math & Trig
4 Text
5 Logical
6 Lookup &

Reference

7 Database
8 Statistical
9 Information
14 User Defined
? Engineering
? Cube

There are also a number of categories that are only visible when viewing the Paste
Function dialog from within a macro sheet. As this book is not about XLM or macro
sheets, these are mentioned only for completeness:

Accessing Excel Functionality Using the C API 249

Table 8.8 Macro sheet function

categories
Number Text
10 Commands
11 DDE/External
12 Customising
13 Macro Control

8.6.3 Specifying argument and return types

The string supplied as argument 4 to x1fRegister encodes the return type of the
function in its first letter and the types of the arguments in its subsequent letters. (In fact
it is used to specify more than just this — see sections 8.6.3 through to 8.6.6 below.) Excel
uses these letters to ensure it does the necessary conversions of inputs and return values.
Note that Excel has no way to check that the letters used correspond to the function as
defined in the DLL code. The x1fRegister function will be successful even if they
don’t match. However, Excel will have problems calling the function, so you need to be
sure you’ve specified these correctly.
The following table shows how the various data types are encoded:

Table 8.9 Registered function argument and return types

Data type Pass by Pass by ref Comments
value (pointer)
Boolean A L short (0 = false or 1 = true)
double B E
char * C,F Null-terminated ASCII byte
string
unsigned char * D, G Counted ASCII byte string
[vl124] unsigned short * C%, F% Null-terminated Unicode

wide-char string

[vI2+] unsigned short * D%, G% Counted Unicode wide
character string

unsigned short [int] H DWORD, size t, wchar t
[signed] short [int] 1 M 16-bit
[signed long] int J N 32-bit
FP (x14 array) K Floating point array structure

(continued overleaf’)

250 Excel Add-in Development in C/C++

Table 8.9 (continued)

Data type Pass by Pass by ref Comments
value (pointer)
[v12+] FP12 (x112_array) K% Large grid floating point array
structure
xloper P Variable-type worksheet values
and arrays
R Values, arrays and range
references
[v12+] x1loperl2 Q Variable-type worksheet values
and arrays
U Values, arrays and range
references

The types C%, F%, D%, G%, K%, Q and U are all new in Excel 2007 and not supported
in earlier versions. These new data types are discussed later. The string types F, F%, G
and G% are used for arguments that are modified-in-place. When x1oper or xloperl?2
UDF function arguments are registered as types P or Q respectively, Excel will convert
single-cell references to simple values and multi-cell references to arrays when preparing
these arguments. In other words, P and Q types will always arrive in your function as one
of these types: x1typeNum, x1typeStr, x1ltypeBool, xltypeErr, xltypeMulti,
xltypeMissing or x1typeNil, but not x1typeRef or xltypeSRef as these are
always dereferenced.

If a function uses a pass-by-reference (pointer) type for its return value, you can pass
a null pointer as the return value. Microsoft Excel will translate this to the #NUM! error.

Argument 3 to x1fRegister, a string of the above codes, can also be suffixed by
“# and/or ‘!” indicating, respectively, that the function is a macro-sheet equivalent and/or
that it is to be treated as volatile. Declaring functions as macro-sheet equivalents enables
them to get the value of unrecalculated cells (including the current value of the calling
cell or cells) and to call XLM information functions. (It should be noted that functions
registered as # and as taking R or U type arguments are volatile by default). (See also
sections 8.6.4 and 8.6.5 below).

Excel 2007 also allows a ‘$’ to be appended to indicate that the function is thread-safe.
(Much more on this below). However, macro-sheet functions are considered as thread-
unsafe so that ‘#’ and ‘$’ cannot both be provided. If an XLL attempts to register a
function with both # and $ it will fail. The subject of writing thread-safe functions is
dealt with in detail in section 7.6 Making add-in functions thread safe on page 212, and
their registration is also mentioned below in section 8.6.6.

Examples

Full explanations of # (indicating a macro sheet equivalent function), ! (indicating a
volatile function), $ (indicating a thread-safe function), and the leading numeral (indicating
the position of an argument to be modified in place as the return value) are given in the
next few sections.

Accessing Excel Functionality Using the C API 251

Table 8.10 Example argument strings for registered functions

Calling specifier Description

(3rd argument to

x1fRegister)

BB Take a double. Return a double.

BJJ Take two signed long integers. Return a double.

CB Take a double. Return a null-terminated C string.

1F Take a null-terminated C string and modify it in-place.

1G Take a byte-counted string and modify it in-place.

2BF Take a double and a null-terminated C string and modify the string
(the 2nd argument) in-place. Function must return void.

FBF As above example, except function can return anything: Excel will
ignore it.

CD Take a byte-counted string and return a null-terminated C string.

2EEE Take three pointers to double and modify the 2nd argument in-place.

1K Take and return a floating-point array structure (see section 6.2.2) by
modifying in-place the first and only argument.

KJJ Take two signed long integers. Return a floating-point array structure.
(See section 6.2.2.)

RR Take a pointer to x1oper. Return a pointer to xloper.

J! Take no arguments. Return a signed long integer. Function is volatile.

RJIJJIT# Take four signed long integers. Return a pointer to xloper.
Function has macro sheet equivalence and is able to reference
uncalculated cells and macro sheet information functions.

1IRR#! Take two pointers to xloper. Return an xloper via the first argument
by modifying in place. Function is volatile and has macro sheet
equivalence.

RPP Take two pointers to value-only (dereferenced) xlopers. Return a
pointer to xloper.

The following functions can only be registered when running Excel
2007 or later versions:

UQo Take two pointers to value-only (dereferenced) x1operl2s. Return a
pointer to xloperl2.
BBS Take a double and return a double. Function is declared as

thread-safe and so must not make any thread-unsafe calls.

(continued overleaf’)

252 Excel Add-in Development in C/C++

Table 8.10 (continued)

Calling specifier Description

(3rd argument to

x1fRegister)

1K%S$! Function takes a pointer to an x112_array (FP12) and modifies it in

place. Function must be declared as returning void. Function is volatile
and thread-safe.

F$C3F%S Function takes two null-terminated Unicode strings and modifies the
second argument in place. Excel ignores the function’s return value.
Function is thread-safe.

uQ# Take a pointer to value-only (dereferenced) x1loper12. Return a pointer
to xloperl2. Function has macro-sheet equivalence.

The following function type is illegal:

UQ#$ ERROR: Macro-sheet functions are not considered as thread-safe.

8.6.4 Giving functions macro sheet function permissions

Excel allows macro sheet functions to do a number of things that ordinary worksheet
functions cannot. For example, they are able to access the current value of any cell,
whether or not that cell is in need of recalculation. They are also permitted to call a number
of workspace information functions that are off-limits to worksheet functions. Effectively,
macro sheet functions have a higher permission level than worksheet functions.

When registering DLL functions, (not commands), you can tell Excel whether your
function should have macro sheet function permissions. By default it will not, but is
given them by appending a ‘#’ character to the end of the type string, argument 3. For
example a function declared as “BB#” (a function that takes a double and returns a
double) will be able to access the value of all uncalculated cells.

Excel forbids the use of built-in macro sheet functions in worksheets. Try entering the
formula =Get.Note(A1) in a worksheet — Excel will complain that the function “is not valid”.
Fortunately, it does allow add-in functions declared as macro sheet functions to be called
from a worksheet. This opens up the possibility for worksheet functions to access a much
wider range of information and functionality.

Note: If a function that is only defined as a worksheet function attempts to reference
an uncalculated cell in a call to Excel4d () /Excell2 (), the call will fail, returning the
value x1lretUncalced. There are also a number of workspace information functions
that cannot be called from worksheet functions. Attempts to do this will fail with a
nxlretInvX1lfn error. (See section 8.10.18 Information about the calling function type
on page 315).

Default volatile note: Macro sheet functions that take xloper or xloperl2 argu-
ments registered as type R or U respectively, are treated as volatile by default. (See also
next section).

Excel 2007 note: Excel 2007 supports multi-threaded workbook recalculation and per-
mits XLLs to register worksheet functions as thread-safe. It does not, however, permit
functions registered as macro-sheet equivalents to be thread-safe.

Accessing Excel Functionality Using the C API 253

8.6.5 Specifying functions as volatile

The concept of volatile functions is explained in section 2.12.3 Volatile functions on
page 35.

By default, DLL worksheet functions are not volatile: They only recalculate when their
precedents change. (There is an exception — see next paragraph). To make a DLL function
volatile it is only necessary to place an exclamation mark ‘!’ at the end of the type string
in argument 3. For example a function declared as “BB!” (a function that takes a double
and returns a double) will be recalculated every time Excel performs a recalculation.
Be careful about registering functions in this way. Excel not only recalculates volatile
functions with every recalculation, but also all their dependents too.

Functions registered as macro-sheet equivalents, type #, and as taking xloper or
xloperl?2 arguments, type R and U, rather than the value-only types P and Q, are by
default volatile. This echoes the behaviour of XILM macro sheets when the ARGUMENT()
function was used with the parameter 8 to specify that a given argument should be left
as a reference. The logic behind Excel treating these functions as volatile is that if you
want to calculate something based on the reference, i.e. the location of a cell, then you
must recalculate every time in case the location has changed but the value has stayed the
same.

It is possible to alter the volatile status of an XLL function with a call to the C
API function x1fvolatile, passing a Boolean false xloper/xloperl2 argument.
However, there are reports that this can confuse Excel’s order-of-recalculation logic, so
the advice would be to decide at the outset whether your functions need to be volatile or
not, and stick with that.

8.6.6 Specifying functions as thread-safe (Excel 2007 only)

Excel 2007 introduces multi-threaded calculation. Developers of XLLs are given the
ability to tell Excel when their functions are thread-safe so that Excel will, where possible,
schedule these as safe to call simultaneously. Note that Excel expects the developer to take
responsibility for making functions thread-safe. (See section 7.6 Making add-in functions
thread safe on page 212). To register a DLL function as thread-safe it is necessary to
place an dollar sign ‘S’ at the end of the type string in argument 3, for example “BBS$”.
Note that macro-sheet equivalent functions are not considered thread-safe and so you
cannot combine $ and # — the call to x1fRegister will fail.

8.6.7 Returning values by modifying arguments in place

Where an argument is passed to a DLL function via a pointer, it is possible for the DLL to
return its value via this argument — a technique known as modifying in place. This leaves
the burden of memory management to Excel. Excel will both allocate the memory for the
argument and clean up once it has copied out the returned data. Care must be taken not to
expect too much of Excel, however. Byte-strings in Excel are maximum 255 characters
in length (the amount of space Excel allocates for these). In Excel 2007 Unicode strings
are supported in the C API and can be up to 32,767 wide characters in lengt