
Interfacing with C++

Jayantha Katupitiya Kim Bentley

Interfacing with C++
Programming Real-World Applications

ABC

Library of Congress Control Number: 2005937895

ISBN-10 3-540-25378-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25378-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on mi-
crofilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright
Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer LATEX macro package

Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 11015543 89/TechBooks 5 4 3 2 1 0

Dr. Jayantha Katupitiya
Senior Lecturer
School of Mechanical and
Manufacturing Engineering
The University of New South Wales
Sydney NSW 2052, Australia
Email: J.Katupitiya@unsw.edu.au

Mr. Kim Bentley

Table of Contents

1 GETTING STARTED ..1

1.1 INTRODUCTION..2
1.2 PROGRAM DEVELOPMENT SOFTWARE..2
1.3 A C++ PROGRAM..6
1.4 USE OF FUNCTIONS ...10
1.5 FUNDAMENTAL DATA TYPES..15
1.6 FUNCTIONS WITH PARAMETERS AND RETURN VALUES18
1.7 SUMMARY ...21
1.8 BIBLIOGRAPHY..22

2 PARALLEL PORT BASICS AND INTERFACING23

2.1 INTRODUCTION..24
2.2 WHAT IS THE PARALLEL PORT? ..24
2.3 DATA REPRESENTATION ...30
2.4 PROGRAM DEMONSTRATING HEXADECIMAL TO DECIMAL32
2.5 SUMMARY ...33
2.6 BIBLIOGRAPHY..33

3 TESTING THE PARALLEL PORT...35

3.1 INTRODUCTION..36
3.2 INTERFACE BOARD POWER SUPPLY..36
3.3 PARALLEL PORT INTERFACE...39
3.4 BASIC OUTPUT USING THE PARALLEL PORT ..43
3.5 BASIC INPUT USING THE PARALLEL PORT..46
3.6 COMPENSATING FOR INTERNAL INVERSIONS..50
3.7 SUMMARY ...55
3.8 BIBLIOGRAPHY..56

4 THE OBJECT-ORIENTED APPROACH...57

4.1 INTRODUCTION..58
4.2 CONCEPTUAL AND PHYSICALLY REALISABLE OBJECTS...............................58
4.3 REAL OBJECTS ..59
4.4 OBJECT CLASSES...61
4.5 ENCAPSULATION ...63
4.6 ABSTRACT CLASSES..64
4.7 CLASS HIERARCHIES ...64
4.8 INHERITANCE ..65
4.9 MULTIPLE INHERITANCE...66
4.10 POLYMORPHISM ..66
4.11 AN EXAMPLE OBJECT HIERARCHY ...67
4.12 ADVANTAGES OF OBJECT-ORIENTED PROGRAMMING72
4.13 DISADVANTAGES OF OBJECT-ORIENTED PROGRAMMING72
4.14 SUMMARY ...73

4.15 BIBLIOGRAPHY..73

5 OBJECT-ORIENTED PROGRAMMING...75

5.1 INTRODUCTION..76
5.2 NAMING CONVENTION..76
5.3 DEVELOPING AN OBJECT CLASS ...77
5.4 PARALLEL PORT CLASS – STAGE I..82
5.5 USING CLASS OBJECTS IN PROGRAMS ..87
5.6 PARALLEL PORT CLASS – STAGE II ..94
5.7 PARALLEL PORT CLASS – STAGE III ...99
5.8 SUMMARY ...103
5.9 BIBLIOGRAPHY..103

6 DIGITAL-TO-ANALOG CONVERSION ...105

6.1 INTRODUCTION..106
6.2 DIGITAL-TO-ANALOG CONVERSION ...106
6.3 PROGRAMMING THE DIGITAL-TO-ANALOG CONVERTER117
6.4 DERIVATION OF OBJECT CLASSES ..121
6.5 ADDING MEMBERS TO DERIVED CLASSES..129
6.6 SUMMARY ...145
6.7 BIBLIOGRAPHY..146

7 DRIVING LEDS ...147

7.1 INTRODUCTION..148
7.2 ITERATIVE LOOPS..148
7.3 BRANCHING...152
7.4 ARRAYS...157
7.5 POINTERS...160
7.6 USING POINTERS ...175
7.7 MACROS ..184
7.8 DYNAMIC MEMORY ALLOCATION..185
7.9 EXCEPTION HANDLING ...189
7.10 SUMMARY ...194
7.11 BIBLIOGRAPHY..195

8 DRIVING MOTORS - DC & STEPPER..197

8.1 INTRODUCTION..198
8.2 DC MOTORS..198
8.3 STEPPER MOTORS ...202
8.4 A CLASS HIERARCHY FOR MOTORS ...211
8.5 VIRTUAL FUNCTIONS – AN INTRODUCTION ...212
8.6 VIRTUAL FUNCTIONS - APPLICATION ...233
8.7 KEYBOARD CONTROLS ...256
8.8 SUMMARY ...270
8.9 BIBLIOGRAPHY..271

VI TABLE OF CONTENTS

9.1 INTRODUCTION..274
9.2 EFFICIENT CODING TECHNIQUES ..274
9.3 MODULAR PROGRAMS ..282
9.4 CASE STUDY - MOTOR DRIVER PROGRAM ...289
9.5 SUMMARY ...302
9.6 BIBLIOGRAPHY..302

10303

10.1 INTRODUCTION..304
10.2 CONVERTING A VOLTAGE TO A DIGITAL PULSE-TRAIN...........................304
10.3 TEMPERATURE MEASUREMENT ..305
10.4 THE OBJECT CLASS VCO ...306
10.5 MEASURING VOLTAGES USING THE VCO ..311
10.6 GRAPHICS PROGRAMMING – SQUARE WAVE DISPLAY318
10.7 TEMPERATURE MEASUREMENT ..324
10.8 SUMMARY ...328
10.9 BIBLIOGRAPHY..329

11 ...331

11.1 INTRODUCTION..332
11.2 ANALOG-TO-DIGITAL CONVERSION ...332
11.3 CONVERSION TECHNIQUES ...334
11.4 MEASURING VOLTAGES WITH AN ADC..341
11.5 AN OBJECT CLASS FOR THE ADC...347
11.6 MEASURING VOLTAGE USING THE ADC ..356
11.7 MEASURING TEMPERATURE USING THE ADC..359
11.8 SUMMARY ...362
11.9 BIBLIOGRAPHY..362

12363

12.1 INTRODUCTION..364
12.2 OPERATOR OVERLOADING..364
12.3 DATA ACQUISITION...393
12.4 SUMMARY ...397
12.5 BIBLIOGRAPHY..397

13 ...399

13.1 INTRODUCTION..400
13.2 PC TIMER SYSTEM ..400
13.3 PROGRAMMING THE TIMER...408
13.4 THE OBJECT CLASS PCTIMER ...409
13.5 MEASUREMENT OF TIME...415
13.6 REFLEX MEASUREMENT ...417
13.7 GENERATING A TIME-BASE ..419
13.8 DATA ACQUISITION WITH TIMESTAMP ...423
13.9 SUMMARY ...430
13.10 BIBLIOGRAPHY..430

VII TABLE OF CONTENTS

9 PROGRAM DEVELOPMENT TECHNIQUES......................................273

VOLTAGE AND TEMPERATURE MEASUREMENT....

ANALOG-TO-DIGITAL CONVERSION.....

DATA ACQUISITION WITH OPERATOR OVERLOADING....

THE PC TIMER.....

APPENDIX A - HARDWARE...431

CIRCUIT CONSTRUCTION ..432
INTERFACE BOARD BILL OF MATERIALS..476

APPENDIX B - SOFTWARE ..479

C++ KEYWORDS ...480
OPERATOR PRECEDENCE ..481
ASCII CHARACTER SET..482
INDEX ..483

TABLE OF CONTENTS VIII

This Book is Written For…
C++ is considered by many to be among the most widely used and powerful
object-oriented programming language in industry today. This book is for people
who are interested in learning and exploring C++ programming in a fresh and
enjoyable environment where programs are developed to interface with real world
devices. Other people may leave learning C++ for a later time, instead choosing to
interact with various hardware devices by simply running the fully developed
programs supplied with this book.

Many readers may already have acquired some knowledge of C++ programming
but know little about how to interface a computer to physical devices and want to
know more. You might be an engineer, scientist, programmer, technical personnel,
hobbyist, student in a technically related field or someone who is simply interested
in programming and interfacing a computer to perform real activities.

Inside This Book…
C++ programming is approached in a straightforward, practical and simplified
manner using mostly short programs that are clearly explained. You will explore
areas of electronics integral to a wide range of modern technologies using an
interface board specially developed to support all projects described in this book.

The intertwining of C++ programming and electronics knowledge takes place as
we work through interesting and enjoyable real-world projects. These projects
encompass the following topics:

Digital Input and Output.
Analog-to-Digital Conversion and Digital-to-Analog Conversion.
DC Motor and Stepper Motor Control.
Measuring Voltage, Temperature, and Time.

Important concepts are reinforced during the learning and exploration process as
we gradually progress from simple straightforward projects to those that are more
advanced. Projects on the interface board have been developed as independent
modules. This allows readers with C++ programming knowledge to build and play
with whichever projects they wish, in any order.

For those readers who want to know how to manage the development of larger
programs, a chapter has been specially written to cover the process of program
development, demonstrated with the use of a program from an earlier chapter. In
this chapter we cover topics such as coding techniques, generating header files and
building libraries.

What is C++?
C++ is a language used to program computers to perform specific tasks. There
exist many other popular programming languages including C, Pascal, FORTRAN,
BASIC, Cobol and Modula II. Computers operate using instructions based on
binary format, i.e. on and off states (or ones and zeros). Programming languages
allow the programmer to use a language similar to that normally written and then
generate computer-based instructions for program execution. Specialised software
is used to manage the task of developing programs; in particular converting the
program written in its programming language to binary form needed by the
computer.

In the recent past the language known as C became very popular and was the most
significant commercially used programming language. The C language was
developed in response to the need for a good programming language to develop the
UNIX operating system. While it is considered a high-level language, it also has
many low-level features. This is of great benefit when programs need to work with
hardware. On the other hand it was also well suited to performing numerical
operations. It can match the capabilities of FORTRAN and Pascal (a language able
to handle complex logic). These are some of the reasons for the popularity of the C
language.

As the size of programs increased, the benefits of being able to reuse millions of
instructions written and assembled by programmers around the world, became
apparent. Soon afterwards the concept of object-oriented programming (OOP) was
born and the C++ language came into being, evolved from C. C++ can be
considered an expanded and better C. In other words, C became a subset of C++.
The programmer could now combine associated data and functions to avoid
inadvertent misuse. The so-called virtual functions in C++ added extra flexibility
allowing decision-making at run time, rather than at compile time. While C++ has
gained all this extra power, it has retained other good features of C such as low-
level bit and byte operations, easy input and output to ports, etc. In today's world,
C++ is the most widely used programming language for sophisticated tasks.

X

Compiler and Operating System Compatibility

Most programs in this book have been written to carry out some form of interfacing
 task. An essential feature of such programs is

operating systems such as DOS, Windows 3.1,
 Windows 95/98 allow programs to directly access ports. Other operating systems
such as Windows NT/2000/XP and Linux do not allow direct port access. These

 operating systems will only allow programs to access ports via a piece of software
 known as a device driver that has the necessary privileges to access ports. The

 application programs access the ports via the device drivers.

Borland C++ for DOS
Apart from the programs using exception handling (See Chapter 7), all programs in
the textbook can be compiled and linked using Borland C++ without any changes
to generate executable files. All program listings that are to be compiled using
Borland C++ are located in the directory ‘BC++’ on the companion CD.

GNU C++ for Linux
The programs in the textbook have been modified to request the required privileges
to enable them to run under Linux with port access. The modified versions of
programs can be found in the directory ‘GNUC++’ of the companion CD. If a
make file is necessary, it is also included in the appropriate chapter subdirectories
of the directory GNUC++. Graphics programs, keyboard control programs and PC
timer related programs are not available to run under Linux.

Microsoft Visual C++ for Windows
The modified versions of the programs that can be used with Microsoft® Visual
C++ can be found in the directory ‘VC++’ on the companion CD. The programs in
the ‘Win98’ subdirectory can be run under Windows98 without the need of a
device driver. The programs in the ‘Windows’ subdirectory can be run under
Windows NT/2000/XP with the use of WinIO, which will act as the driver. These
programs have been modified to enable them to access the ports through the use of
WinIO. WinIO has not been included in the accompanying CD. Its latest version
can be downloaded from http://www.internals.com/. You must first install WinIO
in order to be able to run the programs in the ‘Windows’ subdirectory. The readers
of this book who use WinIO are bound by the WinIO licensing agreement
published on the web. Graphics programs, keyboard control programs and PC
timer related programs are not available to run under Microsoft® Windows.

the ability to read from and write
to the hardware ports. Some

1

Getting Started

Inside this Chapter

Developing programs – what is involved?

Writing and running your first C++ program.

Program syntax.

Functions.

Fundamental data types.

1.1 Introduction
The aim of this chapter is to get you started in writing C++ programs. We will
develop a number of simple C++ programs and learn the syntax and typography
associated with writing a program. One of the basic building blocks of any C++
program is the so-called function. This chapter will explain the basic concepts
behind C++ functions and their use. The C++ language has built-in fundamental
data types that can be used to develop complex user-written data types. Some of
the fundamental data types will be explained in this chapter.

Towards the end of the chapter we will step through the complete program
development process; starting from planning a small program down to using the
elements of program development software needed to generate a program that can
be run on your computer. We will commence with the use of non-object-oriented
programming methods because these programs are simpler to understand at this
early stage. Object-oriented programming concepts will be explained in Chapter 4
and then used extensively through the remainder of the text.

1.2 Program Development Software
The process of program development includes a number of subtasks. To be able to
develop a program you must have an editor, a compiler and a linker. In modern
program development platforms, these subtasks are seamlessly integrated and the
entire process is very transparent. Such platforms are known as Integrated
Development Environments (IDEs). Most modern C++ packages (the software that
you will use to develop C++ programs) provide some sort of an IDE. Some of the
commercially available packages include Turbo C++, Borland C++, C++ Builder
and Visual C++. There are also packages referred to as command line versions. The
command line versions require you to type a command (say at the DOS prompt) to
invoke the editor. Then you must use another command line to invoke the compiler
and so forth.

Along with the editor, compiler and linker, these packages also provide extensive
library support. Sometimes these libraries are referred to as run-time libraries
(RTLs). They contain a wide variety of routines or functions we can use within our
programs. Regardless of what package we use, it is worthwhile to understand what
happens during each subtask. The following sections will describe editing, pre-
processing, compiling, and linking.

1.2.1 Editing
The first step in preparing your program is to use some kind of editor to type your
program. Not every editor is suitable for this purpose. The edit program of DOS
and the Notepad editor of Windows are two suitable editors. Integrated
Development Environments (IDE) that are part of C++ packages provide built-in
editors known as text editors. At the end of the editing session you must store the

1 GETTING STARTED

contents of the editor into a file. The two editors mentioned above will only store
what you type. They will not add extra characters to your file (unlike some editors).
What we normally type includes digits, letters, punctuation marks, the space, tab,
carriage return and line-feed characters. The line-feed character is used by the
editor to position the cursor on a new line. The carriage return character is used by
the editor to position the cursor at the start of the next line. A program file must not
contain characters apart from those listed above. The file that contains all
programming instructions, is known as the source file. The source file is said to
contain the source code, which is nothing more than the programming instructions
you typed.

1.2.2 Compiling
The second step is to compile the source file. For this purpose, a special program
known as a compiler is used. As part of the compiler, a program named the
preprocessor is invoked. This takes place before the actual compilation of your
source code. The preprocessor attends to your source code statements that start
with the '#' sign. (See the program listings ahead for the lines starting with a ‘#’
sign). These statements are referred to as compiler directives. The preprocessor
takes action as directed by these statements and will modify your original source
file. At the end of preprocessing, all lines starting with the '#' sign will have been
processed and eliminated. This process is shown in Figure 1-1. The preprocessor
and the compiler are gradually becoming merged - most modern compilers have
the preprocessor as a built-in part of the compiler itself.

Figure 1-1 Preprocessor attends to all lines starting with '#' symbol.

The compiler in-turn processes the file produced by the preprocessor and produces
a file known as an object file. The object file contains what is known as object
code, which the Central Processing Unit (CPU) of your computer understands, also
known as machine code. However, the PC cannot execute the object code since it

#include <iostream.h>

void main()
{
 cout << "...
}

.

.

.

void main()
{
 cout << " ...
}PREPROCESSOR

3

still has a few parts missing. At this stage your program is in a similar state to an
unfinished highway with some stretches complete and others not. As a result, the
compiled program cannot yet be executed (i.e. run on your computer).

At this incomplete stage, the object code is said to contain undefined references.
The undefined references refer to pieces of object code that need to be retrieved
from elsewhere to complete the entire program. Just like the highway, the object
file does not have a continuous execution path. The compiling process is shown in
Figure 1-2.

Figure 1-2 The compiler converts the source code to object code.

The syntax used as part of the program statements is extremely important. As
mentioned earlier, syntax refers to the use of punctuation marks within the source
file. Most of the time these punctuation marks act as delimiters. A delimiter
identifies the end of variables, keywords, numbers, statements etc. The space, the
comma, the semicolon, the colon, the brace etc., act as delimiters for different
contexts of usage. Compilers have limited in-built intelligence. If you miss a
semicolon the compiler will detect it and report an error, but it cannot correct the
error for you.

As mentioned earlier, the object code is incomplete with many unresolved areas
and it cannot be executed. For example, the object code may contain calls to
various routines. The object file includes function calls to be made. The actual
instructions to be executed during the call are not yet in place. These instructions
may be available elsewhere in the object file, or they may need to come from a
library file or another object file. Note that finding the missing bits is not part of
the compiler’s duties – the compiler can be viewed in basic terms as a translator
that checks grammatical content!

Source Code

.

.

.

void main()
{
 cout << "
}

01000101001001010010100
01010101011111001001001
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
???undefined references
???????????????????????
11100000101001001010100
00100101001010010100101
0010001001001001001010?
??undefined references
??????????????????????0

Object Code

COMPILING

1 GETTING STARTED 4

1.2.3 Linking
The program that bridges all the gaps and completes assembly of the program is
known as the linker. It will search all the object files and the libraries to find the
missing sets of instructions. Sometimes the linker must be told to search certain
libraries and object files. These are either third party libraries you may have
purchased or the libraries and object files you developed. The linker automatically
searches the libraries and object files that come with the C++ software, one being
the so-called Run-Time Library (RTL). The linker will insert the missing sets of
instructions into appropriate places to form a file that has a ‘gaps free’ execution
path. This process is known as linking. At the end of the linking process, we have a
file the PC can execute, known as an executable file.

The program must be loaded into the computer's memory before execution can
begin. This action is carried out by a piece of executable code known as a loader.
Most linkers append a loader to the start of the executable file. Therefore, when we
try to run the program, first the loader will run, loading the program into memory
and then actual program execution will begin. Figure 1-3 shows the linking
process.

Figure 1-3 Linking forms a gaps-free executable code.

01000101001001010010100
01010101011111001001001
01010100100100100100100
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
???undefined references
???????????????????????
1110000010100100101010
00010010100101001010010
10010001001001001001010
???undefined references

01000101001001010010100
01010101011111001001001
01010100100100100100100
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
01010101000100101010100
01001010010010010100101
01110000010100100101010
00010010100101001010010
10010001001001001001010

Library Routines

Object code Executable Code

LINKING

1110001
1011010
0011010
1000100
1010110

1110001
1011010
0011010
1000100
1010110

1100101
1000101
1011010
1110100
1010001

1010001
1010111
0010001
1100110
1011110

1010011
0011011
0010011
1000101
0010111

0100001
1000010
1111010
0111000
0000101 Library Routines

10111001001001011010001
01001001100001010110010??????????????????????0

1 GETTING STARTED 5

1.3 A C++ Program
A computer sees a program as a set of instructions to be executed. The programmer
arranges these instructions in a certain order depending on the tasks the computer is
expected to perform. To give you a simple example; if you want to write a program
to add two numbers, the numbers must be entered first and then the addition must
be carried out. Therefore, the instructions to read the numbers must come before
the instructions to add the numbers.

Each programming language has its own unique syntax. Syntax is the typography
and the use of punctuation marks. Here, we will learn the syntax that applies to the
C++ programming language.

As mentioned earlier, the basic building block of a C++ program can be viewed as
the function – a procedure that produces an end result. Therefore, every C++
program that contains a set of executable instructions must have a function. One of
these functions is special, and is named main. To uniquely identify functions
separately from other entities in our text, we use a pair of parentheses () after the
function name. Simple programs can be written just with a main() function.
When programs become more elaborate and complex, other functions may have to
be written in addition to the main() function.

The aim of our first C++ program is to print a text message on the screen of your
computer. The lines of this program are given in Listing 1-1.

Listing 1-1 Program to print a text message on the screen.

/* This program prints a text message on your screen.
 The program consists of just one function named
 main.*/

#include <iostream.h>

// The main function.
void main()
{
 cout << “Getting Started “ << endl;
}

If you run this program, you will see the message:
Getting Started

printed on your screen. The following sections explain the composition of this
program.

1 GETTING STARTED 6

1.3.1 Comments in Programs
Comments are descriptions included in a program that are used so programmers
can document their work. They often describe a program or specific parts of a
program and do not form any part of the actual program’s instructions that will run
on the computer. If you include comments, you must indicate to the compiler that
they are not to be considered as actual code when the compiler prepares the final
program prior to execution. There are two different ways to include comments:

(i) To include single line or multi-line comments you can use ‘/*’ at the
start of the comment and ‘*/’ at the end of the comment.

(ii) If the comment is a single line comment you may use ‘//’ at the start of
the comment.

In Listing 1-1, we have a multi-line comment and a single line comment. The
multi-line comment is:
/* This program prints a text message on your screen
 The program consists of just one function named
 main().*/

The single line comment is:
// The main function.

The text contained within ‘/*’ and ‘*/’ will be ignored by the compiler. Likewise
for the text after ‘//’ on that line.

1.3.2 Header Files
The first line after the multi-line comment of Listing 1-1 is an include statement:
#include <iostream.h>

It instructs the preprocessor to replace that statement with the entire contents of the
file iostream.h. In our program this takes place just before the start of the
main() function. The files with the file extension ‘.h’ are known as header files
or as include files. A header file can already exist within the C++ development
software, or it may be a file created by the programmer. If it is a file provided with
the C++ development software, then it resides in a special sub-directory known as
the Include Directory, as is the case for the iostream.h file. Programs can have
more than one include statement, resulting in the inclusion of a number of header
files.

The header files are text files that contain C++ programming statements, most of
which do not form executable program statements. Not all statements in your
program are executable. However, the statements in header files play a major role
in the preparation of your program. The majority of the statements in a header file
assist the compiler to carry out a thorough check of the program statements you
write in your program. Once the header files are written and tested, we do not

1 GETTING STARTED 7

change them. If the compiler issues error or mismatch messages, then we must
change our program – not the header file.

Library routines are ready-made pieces of software we can make use of. The
programmers who write the library routines must also prepare the header files
belonging to the library routines. By programming in strict conformance with the
header files, we are conforming with the library routines we have used that are
associated with those same header files.

In the program shown in Listing 1-1 we have used cout, double left arrows
‘<<’, and endl within our program. They do not form part of the C++ language
in the context we have used them. Unless we instruct the compiler as to the usage
of these elements, the compiler cannot interpret their proper use. The header file
iostream.h contains all the necessary programming statements to inform the
compiler how the elements should be used. This information must appear before
using cout, << and endl. Hence, the include statement appears before the
first use of cout, << and endl in our program.

The compiler does not need the entire contents of the file iostream.h to be able
to translate the program shown in Listing 1-1 into code that the computer
understands. In our example, it would be sufficient to show the part of
iostream.h that describes cout, endl, and the behaviour of the operator <<.
However, it is very difficult to determine exactly which parts of a header file are
necessary for a particular program. Therefore, compilers run through the entire
header file. The size of the header files will not have any affect on the size of the
executable files, although the time to prepare the program will increase slightly. If
necessary, we may need to include more than one header file. In addition, there
may be other header files used in each of the ones we include.

In conclusion, the appropriate header file must be included first to provide various
definitions of constants and data types, and also to declare various functions before
using those constants, data types and functions in a program.

1.3.3 Program Syntax
Syntax refers to the use of punctuation marks in the program. In our program, we
have used the # symbol, angle brackets (< >), the pair of parentheses, braces ({}),
semi-colon and <<. These punctuation marks must be correctly inserted at the
appropriate places before the compiler can recognise your program as being error-
free. The program in Listing 1-1 shows only basic syntax. As programs become
more complex, their syntax also becomes more involved.

All lines starting with a hash symbol (#) are instructions to a special part of
program development software named the preprocessor, discussed previously.

Our program has just one function – the main() function. The start of the body
of the main() function is signified by the open brace ({). The end of the main()
function is signified by the close brace (}). Between the two braces are the
statements to be executed by the program. Program execution always starts at the

1 GETTING STARTED 8

line that contains main(). It ends at the closing brace of the main() function’s
body.

The syntax of the main() function can be expressed in a compact form as shown:

void main(){statement1; statement2; statement3;}

The function has the name main. The pair of parentheses that follow the name
main may or may not be empty - in our simple program they are empty. As can be
seen, semi-colons are used to separate the statements of the program. Although it
may appear redundant, the semi-colon after the last statement is essential.

1.3.4 Keywords
Keywords are words reserved by the language. They must not be used for purposes
other than those specified for them by the C++ language. For example, a keyword
cannot be used as an identifier. Identifiers are variable names we create to identify
various entities such as functions, user created data types and data. So far, the only
keyword we have seen is void. A list of keywords is given in Appendix B.

1.3.5 The Return Value Type
The word void right at the start of our main function describes the return value
type of the main() function. Every function, let it be the main() function or
some other function, must specify a return value type. The return value can be
viewed as the end-product or the output produced by the function. If a function is
programmed to return a value, the programmer must specify the data type of the
value to be returned (to be issued out). It is also possible to program a function to
not return a value. Such functions generally carry out some task but do not produce
a value to be issued out. For these functions the return value type is void. This is
the case in our program. Note that when no values are returned by a function the
keyword void must be used to specify the return value type.

NOTE

If a return value type is not specified for the main() function, the return value
type will default to that of an integer. This means the function must produce an
integer output.

1.3.6 The Body of main()
The body of the main() function contains just one statement. This line is
enclosed within the open brace ({) and the close brace (}). If there is to be more
than one statement forming the body of the main() function, they all need to be
included within the two braces. The solitary statement in our program reads as:

1 GETTING STARTED 9

cout << “Getting Started “ << endl;

The use of cout will instruct the computer to stream whatever follows to the
standard output device, in this case your screen. Streaming has a definition in the
C++ language. For now, it’s sufficient to understand streaming as directing one
entity (such as a group of characters, an integer, etc.) after another to a certain
destination. First, Getting Started will appear on the screen. Next, endl
will be streamed to the screen. The effect of this is to position the cursor at the start
of a new line on the screen. Execution of the program is now complete.

You can experiment by replacing the previous statement by:
cout << “Getting Started”;

This will only stream Getting Started to the screen. It will not stream endl
to the screen. You will see the cursor blinking at the end of the words ‘Getting
Started’.

1.4 Use of Functions
As mentioned earlier, functions form an integral, important part of C++
programming. In this section we will learn how to use a function. As explained
earlier, a function can be thought of as a procedure that produces some sort of an
end result based on the inputs it receives. Some of the inputs the function will
receive are known as parameters or formal arguments. The formal arguments are
used at the time of programming a function to indicate the type of arguments it can
receive. At the time of executing the function in your computer, the formal
arguments must be replaced by actual arguments. For example, at the time of
programming, we may use a formal argument named a. At the time of executing
the function, the formal argument a must be replaced by an actual argument such
as the number 3. The same function can be called (executed) again replacing the
formal argument with a different actual argument, producing a different return
value. It is worth mentioning here that, although the formal way of receiving the
output of a function is via the return value, there are other ways of receiving the
outputs from functions.

Figure 1-4 General schematic of a function.

The function outputs a return value.
Only ONE value can be returned.

Parameters are the
inputs to the function

Function

1 GETTING STARTED 10

What we have described so far is the most general case for a function. This is
shown schematically in Figure 1-4. There are a number of special cases. These
special cases depend on whether or not the function receives parameters and
whether or not it returns a value. The number of parameters received by a function
can vary from function to function.

The number of values returned by a function is always one and it must be a scalar
quantity. A scalar quantity can be loosely defined as a single entity. In other words,
functions cannot return arrays (groups of entities). For example, a function can
produce a result through the return value, which is just one integer. It cannot
produce a result that has more than one integer. Figure 1-5 and Figure 1-6 show
some typical forms of functions.

Figure 1-5 A function that takes two arguments and returns NO value.

For the case shown in Figure 1-5 the function will perform a task such as calculate
a value and print a message on the screen. If that is all the function needs to do,
then there is no need for the function to return a value.

Figure 1-6 A function that takes no parameters but returns a value.

In the case of Figure 1-6, the function may be receiving some data from an external
source such as the printer port and returning an integer number. For example, the
integer number may indicate the status of paper in the printer; 0 indicating no paper
and 1 indicating paper is still present.

The two integers a and b
are the two inputs to the
function

a

Because the return
value type is void,
NO value is returned

b
void func1(int a, int b)

An integer value is returned
by the function

No parameters are
taken by the function

int func2(void)

1 GETTING STARTED 11

1.4.1 A Program with a Function Call
The program shown in Listing 1-2 produces the same output as the program in
Listing 1-1. The only difference is that it uses a function to produce the output on
the screen. Moreover, the function does not receive any parameters and does not
produce any return value. The main emphasis in this section is to explain the
concept of procedure abstraction. Procedure abstraction means hiding the details
of a certain procedure behind a function and then calling the function to have the
procedure carried out.

Listing 1-2 A program with a function call.

/* This program prints a text message on your screen.
 The program consists of two functions named
 PrintMessage and main.*/

#include <iostream.h>

// The PrintMessage() function
void PrintMessage()
{
 cout << “Getting Started” << endl;
}

// The main function.
void main()
{
 PrintMessage(); // calling the function
}

A new function named PrintMessage has been added to this program. The
name PrintMessage is our own creation. We have also added the pair of
parentheses at the end of the name PrintMessage to signify it as being a
function. The pair of parentheses are empty (which is equivalent to placing void
there) because the function does not have any parameters. The return value type of
the PrintMessage() function is void because the function does not return any
value. The definition of the PrintMessage() function is as follows:

void PrintMessage()
{
 cout << “Getting Started” << endl;
}

A function definition must specify four things, being:

1. The return value type

1 GETTING STARTED 12

2. The function name
3. Number of parameters and their types
4. The body of the function

The syntax of a function is depicted in Figure 1-7:

Figure 1-7 The syntax of a function definition.

The function definition contains the complete function, informing the compiler
what instructions need to be executed. In other words, the body of the
PrintMessage() function is provided, starting with the open brace and ending
with the close brace. Note: a semicolon is not placed after the function name
PrintMessage(). This allows the following lines containing the function body
to be associated with the function name.

The return value type is void for the PrintMessage() function. The function
name is PrintMessage. The list of parameters is empty and the body of the
function contains the cout statement.

A function declaration is slightly different (as shown in Figure 1-8). It is sufficient
for the compiler to just see the function declaration for it to be able to compile calls
to the function. The entire function definition is not needed at this stage. However,
in order to execute the function, a compiled version of the function definition is
needed. The function declaration has to specify only three things:

1. The return value type.
2. The function name.
3. Number of parameters and their types.

Figure 1-8 Function declaration, also known as the function prototype.

void PrintMessage()
{
 cout << “Getting Started” << endl;
}

Return value type
Function name Number of parameters and their types

The body of the function

void PrintMessage();

Return value type
Function name Number of parameters and their types

1 GETTING STARTED 13

The body of the function is not necessary. However, it must be provided sometime
before execution of your program. If the body of the function is obtained from a
library, then it will be brought in at linking time. If it is not obtained from a library
or another object file, then you must type the code for the function somewhere in
your program. In our example, the function declaration would be:
void PrintMessage();

Note that the line ends with a semi-colon.

In C++, the function prototype is exactly the same as the function declaration.
However, in a C program the function declaration and function prototype are two
different things. See the note in Section 1.6 for an example.

In the main() function the body has been changed. The only statement in the
body is:
PrintMessage();

Note that the line ends with a semi-colon and the return value type does not appear.
Such a line is termed a function call. In a function call, two things must be
specified. They are:

1. The function name.
2. The list of actual arguments.

Figure 1-9 An example showing the syntax of a function call.

The actual arguments replace the parameters (or the formal arguments) when it
comes to the time of execution. Note the syntax and that the line ends with a semi-
colon. An example of a function call that uses a parameter list can be found in
Section 1.6.

When the program is executed, as always its execution will begin at the main()
function. Then the body of the main() function will be executed. At this time the
computer will encounter the instruction:
PrintMessage();

This is a function call that results in the execution of the body of the
PrintMessage() function. Therefore, the message Getting Started
will be printed on your screen. As mentioned at the start of this section, using the
PrintMessage() function in the main() function enables the details of what
it does to be hidden - known as procedure abstraction (explained in Section 1.6).

 PrintMessage();

Return value type is not mentioned
Function name

Formal arguments must be replaced
by actual arguments

1 GETTING STARTED 14

1.5 Fundamental Data Types
Most of the time programming instructions manipulate data. As such, data plays an
important role in programs. Data comes in a variety of data types that is sometimes
mixed in with other types. It is important to be able to identify data of different
types. There are a small number of data types built into the C++ language known
as fundamental data types. Data types are described by three attributes:

1. The name of the data type.
2. The size of the data type in bytes (see Chapter 2).
3. The range of values the data type can handle.

For C++ data types, the size (and therefore the range) differs depending on whether
we write 16-bit programs or 32-bit programs. Bits and bytes are explained in the
next chapter. For now, it is sufficient to know that 32-bit data types occupy more
memory and cover values over a larger range than 16-bit data types.

Data types can be broadly categorised into three types:

1. Integral data types.
2. Floating point data types.
3. Pointer data types.

Integral data types are used to store integral type data (whole numbers) whereas
floating-point data types store numbers with a fractional part. Pointer data types are
used to store memory addresses. Memory addresses are described in Chapter 2 and
pointer data types are discussed in Chapter 7.

The integral data types are further sub-divided into signed types and unsigned
types. The signed types can carry both positive and negative numbers whereas
unsigned types carry only positive numbers. Floating point numbers can carry both
positive and negative numbers. The pointer data types are always positive since
there are no negative memory locations.

A programmer can use these fundamental data types to develop custom data types
that can be very complex. To start with we will be looking at the following three
fundamental data types:

char
int
float

The first two are integral types and the third is a floating-point type. Table 1-1
shows the three data types mentioned above along with their sizes in bytes and the
range of values they can take.

1 GETTING STARTED 15

Table 1-1 A few of the fundamental data types.

Data type
Number of

bytes Range of values
char 1 -128 to 127
unsigned char 1 0 to 255
int 2 -32768 to 32767
unsigned int 2 0 to 65535
float 4 3.4 10-38 to 3.4 1038

double 8 1.7 10-308 to 1.7 10308

Data Type char
This is the data type that is primarily used to store characters. One char type data
will occupy one byte in memory. The signed version is simply referred to as char
and the unsigned version as unsigned char. This data type can also be used to
store small integer numbers that fit into one byte of memory.

Data Type int
This is the data type that is used to store integer numbers. One int type data will
occupy 2 bytes of memory in 16-bit programs. The signed version is simply
referred to as int and the unsigned version as unsigned int. A synonym for
int in 16-bit representation is short int.

Data Type float
This is the data type that is used to store fractional numbers. One float type data
occupies 4 bytes in memory. The data type float can handle both positive and
negative numbers and so there is no separate data type named unsigned float!

Identifiers

Identifiers are the symbols or variable names we will be using in our programs to
identify various entities such as integers, floating point numbers, characters,
memory addresses, functions, objects, classes and many more. Identifiers are case
sensitive and can be of any length.

NOTE

Identifiers must start with a letter (upper case or lower case) or the underscore “_”
character. They may contain digits (0 to 9), but not as the first character of the
identifier.

An identifier must be declared before using it in a program. When declaring an
identifier you must specify two things (as shown in Figure 1-10):

1 GETTING STARTED 16

Semi-colon is a must! int a=0;

Data type

Identifier

Equal sign is used to assign the initial value

Assigned value

1. The data type
2. The identifier name

Figure 1-10 An example showing the syntax of a single identifier declaration.

An example of an identifier declaration is:
int a;

The data type is int and the identifier name is a. If needed, more than one
identifier can be declared in one statement as shown in Figure 1-11:

Figure 1-11 An example showing the syntax of a multiple identifier declaration.

Such a declaration must be provided before being able to use an identifier in your
program.

An identifier can also be declared and initialised simultaneously. In such a case, in
addition to declaring the variable, we also set the identifier to take up an initial
value. An example of such a situation that applies to a single identifier is:
int a=0;

The data type is int, variable name is a and it is initialised to have a value of 0 as
shown in Figure 1-12.

Figure 1-12 An example - syntax of a single identifier declaration and definition.

Semi-colon is a must! int a,b,c;

Data type

Identifiers, all of type int

Commas used to separate identifiers

Semi-colon is a must! int a;

Data type

Identifier Name

1 GETTING STARTED 17

Semi-colon is a must! int a=0,b,c;

Data type

Identifiers, all of type int

Commas used to separate identifiers

This identifier is initialised to 0

The identifier declarations we have seen so far can be combined in any manner.
Such a declaration is shown in Figure 1-13:

Figure 1-13 An example showing the syntax of a general identifier declaration.

1.6 Functions with Parameters and Return
Values

In Section 1.4.1 we learned how to make a function call with a view to understand
the concept of procedure abstraction. In this section we will look at a function that
can be called repeatedly to carry out the addition of two numbers. We will program
the function to receive the two numbers as parameters and to return their sum as
the end result produced by the function. This will help us understand the role of
function parameters and their return value.

Listing 1-3 Functions with parameters and return values.

/* This program calls a function (twice) to add two numbers
together from within the main function and outputs the result
to the screen. */

#include <iostream.h>

float Add (float a, float b) // The Add() function
{
 float sum;

 sum = a + b;
 return sum;
}

void main() // The main function.
{
 float p=1, q=2.3, r=3, s=4.5;

1 GETTING STARTED 18

 float Sum1, Sum2;

 Sum1 = Add(p,q); // First call to ‘Add’ function
 cout << “First Sum “ << Sum1 << endl;
 Sum2 = Add(r,s); // Second call to ‘Add’ function
 cout << “Second Sum “ << Sum2 << endl;
}

In the program shown in Listing 1-3 we have defined a new function named Add.
As mentioned earlier, the definition of a function provides the return value type,
the function name, the list of parameters and their types, and the body of the
function. Unlike the function we have seen so far in this book, the Add()
function’s pair of parentheses are not empty, meaning the function receives some
parameters. In this case the Add() function receives two parameters of type
float. Furthermore, the return value type of the Add() function is float. This
means the function must produce a return value of type float. The value to be
returned must also be specified within the body of the function in a return
statement. The Add() function is reproduced below to explain its operation:

float Add (float a, float b)
{
 float sum;

 sum = a + b;
 return sum;
}

NOTE

According to the C language, the declaration of the Add() function is:
 float Add();

Therefore, a declaration in C does not provide information about the parameters.
The prototype of the Add() function is:
 float Add(float, float);

This does provide information about the parameters. In C++, the declaration and
the prototype of a function are exactly the same. Therefore, the prototype (and
declaration) of the function Add() is:
 float Add(float, float);

1 GETTING STARTED 19

Within the body of this function we have declared a float type identifier named
sum. Then sum is assigned the result of adding a to b. Finally, the return
statement sends the value of sum out of the function. Note that the type of the
returned value, i.e. the type of sum (which is float), is the same as the return
value type of the Add() function (specified on the first line).

The main() function of our program is shown ahead, with its function calls
highlighted in bold typeface. In the first call to the Add() function, its parameters
or formal arguments a and b are replaced by copies of the actual arguments p and
q, which carry real values. The parameters a and b can be viewed as placeholders.
In the second call to the Add() function, its parameters are replaced by copies of
r and s.

void main()
{
 float p=1, q=2.3, r=3, s=4.5;
 float Sum1, Sum2;

Sum1 = Add(p,q); // First call to ‘Add’ function
 cout << “First Sum “ << Sum1 << endl;

Sum2 = Add(r,s); // Second call to ‘Add’ function
 cout << “Second Sum “ << Sum2 << endl;
}

The value returned by the first call to the Add() function is assigned to Sum1.
Therefore, Sum1 becomes the summation of p and q. In our case, Sum1 will have
the value of 3.3. Similarly, Sum2 will have the value of 7.5. Since the main()
function is making the calls to the Add() function, the main() function
becomes the caller and at the same time the recipient of any return values. In this
case, the main() function’s body is also known as the calling environment. The
other lines in the main function are identifier declarations and/or definitions, and
the statement used to print the values of Sum1 and Sum2 on the screen.

Figure 1-14 shows an example of the sequences a program goes through. This
complete program consists of a main() function and a number of other functions
and data. The program starts from within the main() function where various
other functions are called throughout its operation.

The main() function and all the other functions are stored in the so-called code
area of program memory, and are generally not expected to change during the life
of the program. The data is stored in the data area where its contents are expected
to change. Apart from the data in fixed data areas, there may be other data that is
created in a temporary area known as the stack, and also in a semi-permanent area
known as the heap (or free store).

1 GETTING STARTED 20

Figure 1-14 Program with main()function, other functions and data.

1.7 Summary
Program development software is typically used to write C++ programs. This
software provides an integrated environment for editing, compiling and linking
programs. Built-in libraries known as Run-Time Libraries are part of the
development environment and contain useful functions. To use these functions,
header files are included at the start of the program to provide the respective
function declarations.

A C++ program comprises the code written using correct syntax, comments,
keywords, identifiers, fundamental data types, user-written data types and header
files. Keywords are the reserved words that are part of the C++ language.
Fundamental data types are built-in data types +and can be used to develop more
complex user-written data types. Identifier names are chosen by the programmer
and must not be C++ keywords. Both identifiers and functions must be declared
ahead of their use in a program.

C++ programs carry out procedures by using functions that operate on specific
data. This simplifies programming since the programmer only calls the function to
perform a task and does not need to know how the function implements the call
(this is procedure abstraction). A special type of function named main starts and
ends program execution. Functions can return a value from within their body after
carrying out their assigned operations. The type of this data must be specified at the
time of defining the function, therefore, the function has what is known as a return

Data A

Data B

3
1

2

5

4

7

6

10

9

8

main() Function C
(reads then

 writes Data B)

Function A
(reads Data A)

Function B
(writes Data B)

1 GETTING STARTED 21

value type. In addition to this, functions often require input data in order to carry
out their dedicated operations. This input data is passed into functions with the use
of their function parameters.

Early in this chapter we explained a basic C++ program comprising just the
main() function. An additional function was then added to this program to carry
out the same task and demonstrate procedure abstraction. Finally, a program was
presented and discussed that added two numbers using a function that had
parameters and a return value.

1.8 Bibliography
Kelley, A. and I. Pohl, A Book on C – programming in C, Benjamin Cummins,
1995.

House, R., Beginning with C – An Introduction to Professional Programming,
International Thompson Publishing, 1994.

Deitel H.M. and P.J. Deitel C: How to Program, Prentice Hall, 1994.

1 GETTING STARTED 22

2

Parallel Port
Basics and
Interfacing

Inside this Chapter

Parallel port configuration & functionality.

Digital logic fundamentals.

Number systems: decimal, hexadecimal and
binary.

Electronics: port, byte, synchronous,
asynchronous, addresses.

2.1 Introduction
A basic understanding of digital logic principles and converting data between
number systems is needed before the parallel port can be used effectively. This
chapter covers these topics and also describes the configuration of the parallel port
itself. Concepts such as binary logic, logic levels, input/output address space and
the physical connection to the port will be explained.

Working through this chapter will prime you for programming and connecting to
the parallel port. You will use this knowledge in future chapters when developing
programs to control and monitor hardware through the port. An understanding of
basic electronic logic principles is also beneficial when constructing and testing
many circuits on the interface board.

2.2 What is the Parallel Port?
Generally speaking, a port is a portion of electronic hardware that is used as an
interface to connect with another electronic device for the purpose of information
exchange. This connection allows information in the form of data to flow into, out
of, or both into and out of the port.

The parallel port has the facility to transfer data both in and out, between the PC
and the outside world. It is normally used for sending information to a printer and
also known as the printer port. With older computers, the printer port is made up of
circuitry residing on a separate printed circuit board (referred to as a pcb) which
plugs into the PC motherboard. Newer computers, however, tend to have the
parallel port circuitry integrated along with the rest of the PC motherboard.

Having a basic familiarisation with concepts such as logic families, logic levels and
noise margins helps to be able to gain an understanding how electronic devices
communicate digitally. This understanding will also prove useful should electrical
problems arise when using digital circuitry on the interface board.

2.2.1 Digital Logic
As mentioned earlier, computer programs are executed by hardware which operates
using binary logic, also known as digital logic. Binary logic has two possible
states, ON and OFF. Typically these binary logic states are represented using
binary logic notation, where 1’s denote the ON state and 0’s denote the OFF state.

The ON and OFF states used by the parallel port circuitry and many other digital
logic circuits are implemented using voltage levels known as logic levels which
commonly lie between 0V and +5V. Note that not all types of logic circuits use the
same logic voltage levels. These logic circuits are also known as integrated circuits
(IC’s), containing groups of circuit elements housed on a single piece of
semiconductor material known as a “chip”. The chip is packaged inside either

2 PARALLEL PORT BASICS AND INTERFACING

plastic or ceramic material with metal leads that are bonded internally with wire to
the chip to allow external connection.

The two most popular types of logic circuit or logic families are TTL (transistor
transistor logic) and CMOS (complementary metal oxide semiconductor). Each
logic family is fabricated in a unique way, resulting in distinctive electrical
operating characteristics. Some basic electrical differences between TTL and
CMOS logic families are shown in Figure 2-1. There are several different versions
for each family, with characteristic variations in electrical specification.

Note that some CMOS logic families can operate at voltages outside the 0V to +5V
range shown. Also, the output voltage level for these circuits does depend on the
level of current drawn through each output.

TTL (transistor transistor logic) CMOS (complementary metal oxide
semiconductor)

a) b)

Output Level (sending)
Logic-HIGH or One

Input Level (receiving)
Logic-HIGH or One

Output Level (sending)
Logic-HIGH or One

Input Level (receiving)
Logic-HIGH or One

c) d)

Output Level (sending)
Logic-LOW or Zero

Input Level (receiving)
Logic-LOW or Zero

Output Level (sending)
Logic-LOW or Zero

Input Level (receiving)
Logic-LOW or Zero

Figure 2-1 Typical CMOS and TTL logic voltage levels (5V supply).

These differences in logic levels from one family to the other are very significant
when connecting between them. For example, referring to Figure 2-1 quadrants a)

+5V

+2.0V

0V

+2.4V

+5V

0V

Noise
Margin

0V

+5V
4.7V

0V

+3.2V

+5V

Noise
Margin

0V

+0.4V

+5V

0V

+0.8V

+5V

Noise
Margin

+0.2V
0V

+5V

0V

+1.5V

+5V

Noise
Margin

25

and b); consider the case where a TTL integrated circuit sends a HIGH logic level
(+5V to +2.4V) to a CMOS integrated circuit. In this case, the TTL circuit could, at
worst, send (output) a logic-HIGH having +2.4V, the lowest output voltage level
when operating normally (not damaged or being over-driven). If the CMOS circuit
is to correctly recognise a received (input) logic-HIGH level, this received voltage
must be at least +3.2V and no more than +5V. The problem with this situation is
that the TTL integrated circuit can output a signal down to +2.4V, too low a
voltage level for the CMOS integrated circuit to accept as a valid logic-HIGH. The
result could be that the CMOS circuit incorrectly mistakes the TTL HIGH level as
a LOW level.

Figure 2-1 also shows the voltage noise margin when a data signal is sent from one
logic circuit to another of the same family. Let us look at the case in which a
CMOS circuit outputs a logic-LOW to another CMOS circuit, as shown in
quadrant d) of the figure. The sending device will output a signal between 0V and
0.2V during normal operation and the receiving device will accept a signal level
between 0V and 1.5V as a valid logic-LOW. If we use an output signal of 0.2V, the
worst case for normal operation, then we can have voltage noise of up to 1.3V
(1.5V – 0.2V) on this logic signal, and the receiving circuit will still recognise a
valid logic-LOW. From this example we can see we have a noise margin of 1.3V.

If you examine the same case shown in quadrant c) for a TTL circuit transmitting a
logic-LOW to another TTL circuit, you will find that there is a noise margin of
only 0.4V. CMOS circuits typically have better noise margin characteristics than
TTL circuits. Other differences between TTL and CMOS circuits include their
power consumption, their input current requirements, and their output current drive
capacity and speed when switching states. For additional information concerning
digital logic families, consult the references at the end of this chapter.

2.2.2 Parallel Port Architecture
The parallel port allows print data to be sent from the PC to the printer and data
indicating printer status to be received by the PC. This data, sent by the PC, uses
eight wires, to transmit a byte of information to the printer. A byte is simply a
group of eight bits used together to make a unit of data. Each wire is used to
transmit one bit of data at a time. Each bit of data can have one of two possible
logic values, 1 or 0. Another nine wires are used to allow the PC to determine the
state of the printer and control the flow of data. These nine lines are broken into a
set of five input lines and four input/output lines as shown in Figure 2-2.

The physical connection to this port is through a 25-pin connector known as a
‘D25F’ connector (where the ‘D’ refers to the shape of the connector body). The 25
contacts making up this connector are all sockets (female type, hence the ‘F’ in
‘D25F’) which mate with the printer cable connector having 25 pins (male type).

2 PARALLEL PORT BASICS AND INTERFACING 26

Figure 2-2 Parallel Port Configuration.

The three sets of wires shown in Figure 2-2 show the connection between a PC’s
parallel port and an external device, in this case a printer. Each group of wires are
controlled, or read, by accessing three sequential locations in the PC’s Input/Output
address space, abbreviated to I/O address space. This address space is made up of a
number of data storage locations used to allow intercommunication with
input/output devices. It is different from the memory generally used by the
computer. The PC writes data to particular I/O addresses, where the data is stored
and can be accessed by external devices. Other I/O addresses are used to allow
external devices to write data into storage for the PC to read, and still other I/O
addresses allow bi-directional data transfer.

 BASE + 2

 BASE + 1

 BASE

0 1st Address

Figure 2-3 I/O Addressing.

The first of the three I/O addresses is referred to as the BASE address as shown in
Figure 2-3. It is the lowest address and is used as a reference from which to
increment to the other two I/O addresses belonging to the parallel port. Writing to
the BASE address will output eight bits of data (a byte) from the parallel port (see
Figure 2-2), where each bit uses an individual wire.

Increasing
order

I/O Addresses

Output 8 wires

Input 5 wires

Input/Output 4 wires

PC (Parallel Port) Printer

BASE Address

BASE+1 Address

BASE+2 Address

2 PARALLEL PORT BASICS AND INTERFACING 27

The next address in this block has a numerical value one more than the BASE
address, so we label it the BASE+1 address. The BASE+1 address has access to the
five input data bits to the PC. This address can only be used to read the state of
these five signals.

The third address of this set is labelled the BASE+2 address, being two addresses
past the BASE address. This address location is used to control the four bi-
directional data bits of the port. Using this address, we can read and write to these
four bits.

NOTE

Beware: the four BASE+2 lines used for input and output are NOT ‘strict’ logic
outputs. The parallel port interface often has resistors and capacitors connected to
these lines to reduce the influence of electrical noise. This causes their states to
change much slower than a strict logic output, meaning that erroneous recognition
of data can occur when connecting with certain types of logic families.
In addition, due to variation in the individual capacitor values, these signals do not
switch at ‘exactly’ the same time (synchronously). This non-synchronous
(asynchronous) switching of BASE+2 outputs can cause data transfer problems
with data interfaces designed to work synchronously.

Table 2-1 provides a summary of the data bits and D25 connector pins that the
parallel port connector uses for each of the three port addresses. Each wire in the
cable linking the port to the external device (usually a printer), carries the signal of
a particular data bit for that port address. The BASE and BASE+2 addresses have
their data bits commencing from D0 upwards. The BASE+1 address, however,
starts at data bit D3.

Some data bits used by BASE+1 and BASE+2 addresses are inverted by the
parallel port circuitry. These inverted bits are marked by a “ / ” character preceding
the letter “D” of that bit. This signal convention is also used on the interface board
schematic diagrams which show detailed electrical interconnections. When using
these data bits, the program must compensate for this inversion in order that signals
are output from the port or read in through the port as intended.

If a program needs to send a data bit out as a signal through one of the port’s
inverted bits, it needs to invert that data bit in software beforehand. This double
inversion (once in hardware and again in software) has the effect of correcting the
signal back to the intended state. Likewise, when a signal is read through an
inverted bit of the port, the now inverted signal must be inverted once more by the
program to correct it. The program implements this inversion using one simple line
of code, explained in Section 3.6 of the next chapter.

2 PARALLEL PORT BASICS AND INTERFACING 28

Table 2-1 Parallel Port D25 Connector Pin Assignment.

BASE Address
(8-bit output data)

BASE +1 Address
(5-bit input data)

BASE+2 Address
(4-bit input/output data)

D0 - pin 2 /D0 - pin 1
D1 - pin 3 /D1 - pin 14
D2 - pin 4 D2 - pin 16
D3 - pin 5 D3 - pin 15 /D3 - pin 17
D4 - pin 6 D4 - pin 13
D5 - pin 7 D5 - pin 12
D6 - pin 8 D6 - pin 10
D7 - pin 9 /D7 - pin 11

Note: “/ ” denotes the signal bit is inverted internally by the parallel port circuitry.

D25 pin numbers 18 to 25 are not shown in Table 2-1. They are all connected to
the PC electrical ‘ground’ which is connected to the interface board through the
interface cable (Figure 2-4). This cable has a D25 male connector at both ends,
connected by individual wires in a “one-to-one” arrangement (D25 pin 1 of one
connector to the D25 pin 1 of the other connector; likewise for all remaining pins).

Figure 2-4 D25M to D25M Cable.

NOTE

Data bits D0 to D2 of BASE+1 address are not connected to the parallel port
circuitry inside the PC. The same holds true for D4 to D7 of the BASE+2 address.
Reading these particular bits will produce invalid data.

2 metres

D25 Male D25 Male

2 PARALLEL PORT BASICS AND INTERFACING 29

2.3 Data Representation
As mentioned previously, computers use ‘ON’ and ‘OFF’ states (high and low
voltages) to store data, termed binary data since we have only two states. This
leads to the representation of numbers using the binary (on/off) number system.
The binary system is based on raising the number two to increasing integer powers
to form higher and higher digit values. We can see how such a system works by
comparing it with our familiar decimal number system. Decimal numbers are based
on raising the number ten to higher and higher integer powers.

For example, the decimal number 25 is broken down as follows:

25 = 2x101 + 5x100

 = 2x10 + 5x1

Decimal 25 is equivalent to the binary number of 11001 as follows:

 11001 = 1x24 + 1x23 + 0x22 + 0x21 + 1x20

 = 1x16 + 1x8 + 0x4 + 0x2 + 1x1

 = 25 (decimal)

NOTE

The binary digit to the far right has the lowest weighting and is known as the least
significant bit (LSB). Conversely, the left-most binary digit has the highest
weighting and is termed the most significant bit (MSB).

Binary numbers with many digits are not easy to read. To solve this problem we
use a more convenient number representation named hexadecimal. This system is
based on sixteen number states.

The decimal number system uses ten unique Arabic numerals being 0, 1, 2, …, to
9. In hexadecimal representation we need sixteen unique numerals. The first ten
hexadecimal digits use Arabic numerals 0, 1, 2, ..., to 9, however, we must use
unique digit representation for the remaining numbers ten to fifteen. This is done
by using capital letters A, B, C, D, E and F to represent ten, eleven, twelve, …, to
fifteen.

Table 2-2 illustrates numerical conversion between decimal, binary and
hexadecimal numbers.

2 PARALLEL PORT BASICS AND INTERFACING 30

Table 2-2 Number System Conversions.

Decimal Binary Hexadecimal
0 = 0x100 0 = 0x20 0 = 0x160

1 = 1x100 1 = 1x20 1 = 1x160

2 = 2x100 10 = 1x21 + 0x20 2 = 2x160

3 = 3x100 11 = 1x21 + 1x20 3 = 3x160

4 = 4x100 100 = 1x22 + 0x21 + 0x20 4 = 4x160

5 = 5x100 101 = 1x22 + 0x21 + 1x20 5 = 5x160

6 = 6x100 110 = 1x22 + 1x21 + 0x20 6 = 6x160

7 = 7x100 111 = 1x22 + 1x21 + 1x20 7 = 7x160

8 = 8x100 1000 = 1x23 + 0x22 + 0x21 + 0x20 8 = 8x160

9 = 9x100 1001 = 1x23 + 0x22 + 0x21 + 1x20 9 = 9x160

10 = 1x101 + 0x100 1010 = 1x23 + 0x22 + 1x21 + 0x20 A = 10x160

11 = 1x101 + 1x100 1011 = 1x23 + 0x22 + 1x21 + 1x20 B = 11x160

12 = 1x101 + 2x100 1100 = 1x23 + 1x22 + 0x21 + 0x20 C = 12x160

13 = 1x101 + 3x100 1101 = 1x23 + 1x22 + 0x21 + 1x20 D = 13x160

14 = 1x101 + 4x100 1110 = 1x23 + 1x22 + 1x21 + 0x20 E = 14x160

15 = 1x101 + 5x100 1111 = 1x23 + 1x22 + 1x21 + 1x20 F = 15x160

16 = 1x101 + 6x100 10000 = 1x24 + 0x23 + 0x22 + 0x21 + 0x20 10 = 1x161 + 0x160

17 = 1x101 + 7x100 10001 = 1x24 + 0x23 + 0x22 + 0x21 + 1x20 11 = 1x161 + 1x160

When developing programs, it is sometimes necessary to output digital signals
through a port as one or more bytes of data. The signals to be output form binary
bit patterns, which are more conveniently represented within program code as
hexadecimal numbers. At other times you will need to represent incoming binary
data sent from external devices as hexadecimal numbers. The following examples
demonstrate the conversion of a binary number into hexadecimal.

We can obtain the hexadecimal representation for a binary number if we divide the
binary number into groups of four digits starting from the least significant digit or
bit (LSB, right-most digit of the number). Note that when we break a byte into two
groups of four bits, we have what is termed two nibbles of data.

10001 =

=

1 0001

1 1 hex
(hexadecimal numbers are often
written using a 0x prefix , i.e. 0x11)

1010001101 =

=

10 1000 1101

 2 8 D hex (0x28D)

Alternately, hexadecimal is denoted by using the $ or H symbols, i.e. $11 or 11H.

2 PARALLEL PORT BASICS AND INTERFACING 31

From the preceding example, if we want our program to store data at the binary
address 1010001101, we would manually convert this number into hexadecimal
format as 0x28D and use this hexadecimal number as the storage address in our
program. Had we converted the binary number into decimal format as 653, we
would need to carry out a more involved conversion.

Now we are familiar with hexadecimal representation, we can use this notation for
our parallel port address. The BASE address of the parallel port is 0x378 for most
PC’s, however, in some instances the parallel port uses a BASE address of 0x278,
0x3BC, or 0x300. Working with the more common BASE address of 0x378, we
have the BASE+1 address of 0x379 and BASE+2 address as 0x37A.

2.4 Program Demonstrating Hexadecimal
 to Decimal
The program shown in Listing 2-1 can be used to convert numbers from decimal to
hexadecimal and vice-versa. It is often more convenient to use hexadecimal
notation in program code when outputting bit patterns through the port than
decimal notation. Conversely, it is at times most convenient to display on-screen,
the decimal number representation for the bit patterns read in through the port. Use
this program to improve your familiarity between decimal and hexadecimal
number systems.

Listing 2-1 Program to display numbers in decimal and hexadecimal format.

/***
This program prints a number you would enter in
decimal format in hexadecimal format.
***/
#include <iostream.h>

void main()
{
 int Number;

 cout << "Enter an integer number -> ";
 cin >> Number;
 cout << "The number is:" << endl;
 cout << dec << Number << " in decimal" << endl;
 cout << hex << Number << " in hexadecimal" << endl;
}

In Listing 2-1, the include file iostream.h facilitates the use of cout and the
number conversion argument hex. The variable, Number ,will receive the integer

2 PARALLEL PORT BASICS AND INTERFACING 32

you will pass to the program in response to the prompt “Enter an integer
number -> ”. The same number is then printed on two successive lines, first in
decimal format, which is the default number representation, and then in
hexadecimal format. The hexadecimal format is activated by the format specifier
hex.

2.5 Summary
This chapter explained the configuration of the parallel port and the digital logic
concepts involved when using the port with external circuitry. These concepts
include binary notation, digital logic levels, noise margins and different types of
logic families such as CMOS and TTL.

The PC parallel port uses three I/O addresses to transfer data through the port’s
interface. Each address controls one byte of data, however, for two I/O addresses,
several data bits are unused and a few other bits are inverted internally by the port
circuitry. The first I/O address is used to output data only, the second address is
used to input data through the port and the last address can be used to both input
and output data. Furthermore, representation of data using decimal, hexadecimal
and binary number systems has been explained. This knowledge will be used when
developing programs in the chapters ahead.

2.6 Bibliography
Bergsman, P. , Controlling The World With Your PC, HighText Publications, San
Diego, 1994.

IBM, Technical Reference – Personal Computer AT, IBM Corporation, 1985.

NS CMOS, CMOS Logic Databook, National Semiconductor Corporation, 1988.

Wakerly, J. F., Digital Design Principles and Practices, Second Edition, Prentice
Hall, 1994.

2 PARALLEL PORT BASICS AND INTERFACING 33

3

Testing the
Parallel Port

Inside this Chapter

Simple testing of the port.

Power supply, port interface, logic buffers
and driving LEDs.

C-style programming to use the entire
parallel port.

3.1 Introduction
The aim of this chapter is to develop software that will enable us to see the basic
input/output operations when using the parallel port of your PC. Program operation
is verified using a simple test circuit with LEDs as indicators. Operation of the on-
board power supply, parallel port interface and LED Driver circuits is explained
before directing the reader to build these circuits. Once these circuits are built (in
the order presented), programs can be written and tested.

We will start our program development by writing simple non-object-oriented
programs to input and output data through the parallel port. Later on, in Chapter 5,
you will be introduced to object-oriented programming (OOP). When you reach the
end of this chapter, you will have seen operation of the parallel port for data
transfer and you will have gained an understanding of how a simple C++ program
is written.

3.2 Interface Board Power Supply
All circuitry on the interface board requires electrical power at a steady voltage in
order to function properly. A power supply as part of the interface board generates
the individual voltages needed by its different circuits. This section of the board
should be assembled and tested first before assembling any other circuitry. You
should proceed to assemble the next segment of circuitry only when the power
supply is generating correct voltages.

Figure 3-1 Power Supply Block Diagram.

A block diagram of the power supply is shown in Figure 3-1. Most of the power
used by the interface board is supplied from the high voltage power point (known
as mains supply) via the transformer (power-pack). The power supply +5V and
+9V outputs can operate at their fixed voltages when supplying currents up to
approximately 1A. This maximum current rating applies when the correctly rated

Vcc

+9V

Power Supply

Mains
Supply

(power point)

9V
 Battery

Transformer
(Power -Pack)

-8V
-8V at < 20mA

GND

+5V at < 1A

+9V at < 1A

3 TESTING THE PARALLEL PORT

heatsink is fitted to each of the voltage regulators. The –8V output does not use
mains supply; instead a 9V battery is used to meet its voltage and low current
requirements. The –8V output powers analog circuitry which has a wide operating
margin for its supply voltage, and hence there is no need for voltage regulation.

Figure 3-2 Power supply sub-circuits.

Figure 3-2 shows a more detailed functional diagram of the entire power supply.
The 9V battery passes electrical energy through a diode that allows current to flow
only if the battery is connected with correct polarity. When current is drawn
through this circuit, the diode drops approximately 1V, producing a –8V low
current power source.

The portion of the power supply using mains voltage is made up of four sub-
circuits: a transformer, a rectifier/filter and two voltage regulators (+5V and +9V).
The combined effect of these sub-circuits is to take the alternating mains voltage
and convert it into stable +5V and +9V DC voltages, free of oscillation.

The alternating mains voltage needs to be reduced in amplitude and then rectified
before it can be of use to our ‘low voltage’ circuits. The transformer inside the
Power-Pack carries out this function. It has two diodes fitted inside to allow current
to flow in one direction only, rectifying the sinusoidal waveform from the
transformer as shown in Figure 3-3.

The voltage regulators will not function properly unless the voltage fed to their
input voltage terminals is at least several volts greater than the regulator output
voltage. A large value capacitor is added to the output from the power-pack to
prevent its output from repeatedly dipping to zero, and instead dipping within
acceptable levels as shown in Figure 3-4.

Power-Pack

To Power Point
 (AC Volts)

Voltage Regulators

RectifierTransformer
Vcc

+9V

 9V
Battery

-8V

GND

+5V

+9V
Filter

37

Figure 3-3 Power-Pack Power Supply (without capacitor).

Figure 3-4 Power-Pack Output with Capacitor added.

The voltage regulators accept a rippling input voltage as can be seen in Figure 3-5,
and use their internal circuitry to steady their output voltage to within a few percent
of their rated voltage. For example, the +5V regulator will produce an output
voltage that lies between +4.75V and +5.25V. The voltage regulators on the
interface board have several capacitors connected between their input pins and
ground, and between their output pins and ground. These capacitors prevent the
output of each regulator from oscillating at “high frequencies” and improve the
ability of the regulator to respond to fast transient loads.

Power-Pack

To Power Point
(AC Volts)

Transformer Diodes

_

+

0

~ +12V

0V

To Voltage
Regulator

Power-Pack

To Power Point
(AC Volts)

 (reduced ripple)

_

+

0
Capacitor

0V

~ +12V

To Voltage
Regulator

3 TESTING THE PARALLEL PORT 38

Figure 3-5 Voltage Regulator (without capacitors).

The hardware for the power supply should now be assembled and tested. Appendix
A contains guidance for hardware assembly, soldering, schematic diagram
conventions, testing and debugging, printed circuit board preparation and checking.
This material should be read before commencing with the assembly and testing of
the power supply. The power supply schematic diagram, bill of materials and test
instructions are also to be found in Appendix A.

3.3 Parallel Port Interface
We will often need to check the correct operation of our programs during their
software development cycle. The interface board has circuitry that allows us to test
the functionality of the entire parallel port and thus provide feedback on program
execution. A block diagram of this circuit is shown in Figure 3-6.

The signals from the parallel port are connected through the interface cable to the
interface board D25 connector. From here, eight of the signals connect with a
Buffer integrated circuit. These signals are generated by writing data to the BASE
address. A second Buffer IC on the interface board is used to send five signals to
the PC’s BASE+1 Address, via pcb tracks connected to the D25 connector. A
further four signals controlled by the BASE+2 address, pass through the D25
connector to individual resistors. This part of the port can both output data or input
data.

Permanent damage often occurs when output pins of IC’s are accidentally
connected together without any means of limiting the resulting currents. Resistors
are connected in series with BASE+2 signal lines to limit the currents and
minimise damage should any of these lines from the PC be improperly connected
to other outputs on the interface board.

Note that the two 8 way Buffer ICs shown in Figure 3-6 also have pull-up resistors
fitted to their input pins (resistors not shown). Their function is explained in the
Parallel Port Interface section of Appendix A.

Ground

Output
Voltage

Input
Voltage

Voltage Regulator
(Stabiliser)

0V

~ +12V

0V

+5V

3 TESTING THE PARALLEL PORT 39

Figure 3-6 Parallel Port Interface & LED Driver Block Diagram.

The circuitry shown in Figure 3-6 has small pins with dots at their ends. These dot
symbols represent printed circuit board pins that allow interconnection between
other circuits on the board. This is made possible by using an interconnecting lead
(shown in Figure 3-7) to connect between pins. You can fabricate these leads as
required by following the instructions given in Appendix A.

Each connection made with an interconnecting lead connects an output pin of a
circuit to an input pin of another circuit. DO NOT at any time connect outputs pins
to other outputs pins. Doing so will most likely damage the components involved.

Figure 3-7 Interconnecting Lead.

25 cm

INTERFACE Board

8 wires (pcb tracks)

8 way Buffer IC

8 interconnect
leads

8 way Driver IC
8 Resistors/LEDs

5
w

ire
s (

pc
b

tra
ck

s)

8 way Buffer IC

Pcb Interconnect PinsB
A

SE
+2

(I
n/

O
ut

)

To
 B

A
SE

+1

(I
n p

ut
 to

 P
C

)
Fr

om
 B

A
SE

(O

ut
pu

t f
ro

m
 P

C
)

Vcc

LED Driver Circuit
Parallel Port Interface

D25 Connector
(Female)

3 TESTING THE PARALLEL PORT 40

Also shown on the diagram of Figure 3-6, is a resistor and light emitting diode
(LED), representative of a group of eight such devices. This circuit is used to
indicate the state of data coming from the PC or the interface board itself. Check
the data generated within the interface board by connecting the relevant output pins
of the circuit to individual resistor and LED pairs.

To test programs that read data into the PC through the parallel port, the interface
board has a number of pcb pins permanently connected to either +5V or GND. This
arrangement allows us to test any of the four or five input bits of the PC parallel
port that use BASE+1 and BASE+2 addresses respectively.

Proceed to assemble the parallel port hardware and test for correct operation.
Appendix A contains the schematic diagram, hardware assembly and test
instructions for this circuitry. Several interconnect leads will need to be made for
test purposes.

3.3.1 LED Driver Circuit
Figure 3-6 shows eight logic outputs (that originate from the parallel port)
connected to a Buffer via pcb tracks. Unfortunately, like most digital logic circuits,
a single logic output from the parallel port circuit does not have the capacity to
pass sufficient current through a LED; hence the need for the Driver IC. Each
output pin from the Buffer is connected to an individual pcb pin. The interconnect
lead wires connect the Buffer output pins to the input pins of the LED Driver IC.

The Driver used on this board has the part number ULN2803A. It houses a bank of
internal transistors, each one well suited to accept the limited current from a logic
output pin and then to drive a LED. Most LEDs require between 5mA and 20mA
of current through them to glow with adequate brightness. The ULN2803A Driver
switches current flow independently through each of the eight LEDs and resistors,
and operates as follows:

1. When a Driver input pin (on the left side of the Driver) is taken to a high
voltage level, the corresponding output pin is switched internally to ground
voltage. This allows current to flow from Vcc (equal to +5V), through the
LED, and resistor, and through the Driver output pin to ground, causing the
LED to glow.

2. When the Driver input is driven to a low voltage level, the corresponding
output pin connection path to GND will become highly resistive. This reduces
current flow through the LED and resistor to extremely low levels and
extinguishes the glow of the LED.

3.3.2 LED Operation
A minimum amount of current needs to flow through a light emitting diode (LED)
for it to light. LEDs, like most diodes, conduct significant levels of current in one
direction only during normal operation. The current flows from the anode (denoted
by a triangle) to the cathode (denoted by a bar) as shown in Figure 3-8.

3 TESTING THE PARALLEL PORT 41

Figure 3-8 Conventional Current through a LED.

For current to flow in this direction, the anode must have a more positive voltage
applied than the voltage at the cathode (known as forward voltage, VF). This
difference in applied voltage (VF) typically needs to be approximately 2V for most
LEDs and approximately 0.7V for ordinary diodes, if they are to conduct.

Figure 3-9 Typical LED characteristic curve (without a series resistor).

A characteristic curve for a LED is shown in Figure 3-9. This curve shows the
current through the LED and voltage across the LED for its normal range of
operation, indicated by the bold portion of the curve at the right side of the current
axis. When using the LED in its normal operating range, an increase in current
through the LED will increase its light output. When the current exceeds the
maximum limit for the LED (indicated by the value IF), the device will be
destroyed. A current limiting resistor, shown in Figure 3-10, is used to control the
current and prevent failure due to excessive current.

Note that if we reverse the voltage applied across the LED, we will reach the LEDs
reverse breakdown voltage (VBR, shown as –5V in Figure 3-9). Once the reverse
breakdown voltage has been exceeded, reverse current will increase to the point at
which the device is destroyed (IR).

anode cathode

i

VBR
-5V

VF (LED)
2V

IF

IR

Current
(I)

Voltage
(V)

Normal Operating
Range of LEDs

3 TESTING THE PARALLEL PORT 42

When we generate sufficient forward voltage to make the LED conduct, we say we
have biased the device to operate. As mentioned previously, the LED will be
destroyed if we do not use a resistor to limit the current flowing through it. The
amount of current flowing through a resistor depends on the voltage across it. Since
the LED and resistor are connected as shown in Figure 3-10, they share the same
current. This circuit arrangement is known as a series circuit. Current through this
circuit is analysed as follows.

If we know the voltage across the resistor we can work out the current flowing
through it (and the LED) since Current = Voltage/Resistance.

Figure 3-10 Current flow through the Series Circuit.

We know that the voltage across a conducting LED is approximately 2V and we
also know that the total voltage across the series circuit from VCC to Ground is
5V. Therefore, the voltage across the resistor is:

5V – 2V = 3V

The current (I) through a resistor is given by voltage across the resistor, divided by
its resistance in Ohms ():

i.e. I = 3V / 330 = 0.009 A (amperes are denoted by the symbol A.)

The currents flowing in electronic circuits are often small fractions of an ampere
and so the units of milliamps (mA) which is 1/1000th of an amp are commonly
used. Thus we have 0.009 amps which is 9 milliamps flowing through the LED and
resistor.

Proceed to assemble and then test the hardware for the LED Driver circuit along
with at least eight interconnecting leads, as explained in Appendix A.

3.4 Basic Output Using the Parallel Port
As described in Chapter 2, there are three addresses associated with the parallel
port (typically being 0x378, 0x379 and 0x37A). Although we use the term parallel
port, this ‘port’ is really three ports combined together. The simplest of the three
ports is the one at address 0x378. In general, this port is only used for output,
however, more recent computers have the capability to input data using this port

Ground
(0V)

i

2V3V

330RDriver
VCC (+5V)

3 TESTING THE PARALLEL PORT 43

address. Nevertheless, to maintain compatibility, the software we have developed
only uses data output to port 0x378. We will write a program that outputs a byte of
data via port 0x378 to light up the respective LEDs on the interface board.

To verify the proper operation of our program, we need to connect the interface
board to the parallel port of the PC. This is done using the interface board cable
described in Chapter 2. The remainder of the connections to be carried out on the
interface board must be made according to Table 3-1 below. Note that pin 1 of an
IC on the interface board can be recognised by its rectangular shaped pcb pad.
Make these connections using the interconnecting leads assembled earlier. When
the connections are complete, the signal lines of the port at BASE address (0x378)
will be connected to the Driver circuit that lights the eight LEDs via the Buffer IC
on the interface board.

Table 3-1 Connections for basic output.

BASE Address
(Buffer IC, U13)

ULN2803A Pin No.
(Driver IC, U3)

D0 1
D1 2
D2 3
D3 4
 D4 5
 D5 6
 D6 7
 D7 8

The program shown in Listing 3-1 has several lines of program statements
followed by comments. It uses a library function outportb() to output a byte of
data to the port at BASE address. The port address and the data can be specified as
actual arguments to outportb() at the time of calling. Since outportb() is a
library function, we do not have to provide the body of the function. It comes from
the library and will be searched for when linking takes place.

Listing 3-1 Writing to the port at Base address.

/***
WRITING TO A PORT (output operation)

This program outputs a certain bit pattern to the port at
BASE address to light the respective LEDs on the interface
board.
***/

3 TESTING THE PARALLEL PORT 44

#include <dos.h>

#define BASE 0x378

void main()
{
 outportb(BASE,255); // in binary, 255 = 1111 1111

// The number 255 can be changed to any value betwen 0
// and 255, causing the eight output signals to
// correspond to the binary value represented by the
// number. For example 65 = 0100 0001.
}

As mentioned in Section 1.2.2, the two lines starting with the hash sign (#) are
compiler directives. The first compiler directive will include the header file dos.h
(which is a source file). This file contains the prototype of the outportb()
function. The header file dos.h also contains information about many other
functions. However, as far as this program is concerned, only the information
regarding the outportb()function is needed. The compiler would not be able to
process the outportb() function, and the program could not use it if we did not
include this header file. Note that the prototype does not specify how the function
is to be executed. In other words, until linking takes place, the program will not
have access to the actual instructions contained in the function.

The second compiler directive is a define statement. It simply instructs the
preprocessor to replace any occurrences of BASE in the program by the
hexadecimal number 0x378. Using the word BASE instead of 0x378 makes the
code more readable since it is easier to relate to the word BASE than a number. In
addition, if we ever wanted to change the base address, we only need to modify the
define statement and the preprocessor will automatically implement that change
in address throughout the program. The define statement can be used when
writing larger programs to simplify the task of coding and improve readability.

Next we encounter the main() function (the only function in this particular
program) where all C++ programs start their operation. Usually a typical C++
program will have many functions coded (defined). The keyword void indicates
that the main() function will not return any value. The body of the main()
function starts with the open brace ({) just after the line void main() followed
by its instructions. The only executable statement in this program is
outportb(BASE,255). This statement is used to output a byte of data from the
PC. After a few comments, the body of the main function ends with a close brace
(}).

The function outportb() takes in two parameters; a port address and the data to
be written to that address. In this program the port address is BASE, which will be
replaced with 0x378 by the preprocessor. Therefore, the address of the port

3 TESTING THE PARALLEL PORT 45

where the data is to be sent is 0x378. The value of the data is 255 (decimal). It
must be noted that the size of the data passed to a port is, most of the time, a byte.
A byte can take 256 different values. When the value is 0, all eight bits of the byte
will have their values as 0. When the value is 255, all eight bits of the byte will
have their values set to 1. Other values between 0 and 255 will correspond to
different bit patterns. After the interfacing connections given in Table 3-1 are made
and the parallel port cable is connected to the interface board, this program can be
compiled and executed. It will set all eight bits equal to 1 and as a result you should
see all eight LEDs light up. If, for example, you change the outportb() line to
outportb(BASE,65), then only the LEDs corresponding to bits 0 and 6 will be
lit and all other LEDs will be off.

If the program fails to work and light the LEDs, make sure your base address is
correct by using the program titled ‘base_adr.exe’ included with the accompanying
CD-ROM.

Edit the program a number of times replacing the value of 255 with different
numbers (less than 255) and observe how the LEDs light up on the board. This
exercise will also help you understand how bit patterns relate to decimal data. as
explained in Chapter 2. Alternatively, you may replace the number 255 with
hexadecimal numbers; for example:
outportb(BASE, 0xF0);

3.5 Basic Input Using the Parallel Port
In this section we will learn how to write a program to read the port associated with
the BASE+1 address (0x379). This is the only port address of the three port
addresses comprising the parallel port that is dedicated to input operations. We will
be reading this port and displaying the number on-screen that corresponds to the
input data received.

Table 3-2 Connections for basic input.

BASE+1 Address*

(Buffer ID, U6)
Power Supply

+5V and GND pins
D3 +5V
D4 GND
D5 GND
D6 +5V
/D7 +5V

* The signal preceded by a slash (/) is internally inverted by the parallel port hardware.

Once again, program operation can be verified by connecting the PC to the
interface board using the interface cable. The remaining connections to be made

3 TESTING THE PARALLEL PORT 46

are on the interface board and shown in Table 3-2. The incoming data can easily be
changed by swapping the wiring for the second column of Table 3-2 between +5V
and GND.

Use the interconnect leads to make the connections shown in Table 3-2. When the
connections are complete, the signals on the interface board are connected to the
port at address BASE+1 (0x379). Note that this port has only five signal lines out
of eight that can be used. Three of the signal lines, namely the ones corresponding
to Data Bits 0 to 2 are unavailable, as they are not dedicated to the port at BASE+1
in the PC parallel port.

The essential steps required in this program are:

1. Read the port.
2. Display the result on the screen.

Both these actions require very simple statements and do not justify coding extra
functions. Therefore, just a main function will suffice. To read a port carrying 8
bits of data, we can use the library function inportb(). To display the result on
the screen, we can use the library function printf(). It may be convenient to
stop the program immediately after displaying the result so we can read the screen.
This is especially useful when an Integrated Development Environment (IDE) is
used to develop the program. When IDEs are used, the screen will automatically
revert to the IDE’s editor once program execution terminates. This will prevent the
user from observing what happened on the screen at the time the program ran.
However, we will be able to see the onscreen results if we make the program wait
for a key press just before it ends. We can do this using the library function
getch(). Therefore, the program must use the function sequence inportb(),
printf() and getch() in that order. In order for us to be able to use these
functions we must provide their prototypes, contained in the header files dos.h,
stdio.h, and conio.h, respectively. This program is shown in Listing 3-2.

Listing 3-2 Reading the port at address BASE+1.

/***
 READING THE PORT AT ADDRESS BASE+1

This program will read the port at address BASE+1 and
print the number read on the screen. The number is
formed by combining the five signal lines read in
through the port. Bits 0, 1 and 2 have no valid data as
they are not dedicated to BASE+1 internally in the PC.
Bits 3, 4, 5 and 6 will be read as normal. Bit 7 is
permanently inverted by the parallel port hardware.
***/
#include <dos.h>
#include <conio.h>

3 TESTING THE PARALLEL PORT 47

#include <stdio.h>

#define BASE 0x378

void main()
{
 unsigned char InputData; // Declare data type for
 // various InputData.

 InputData = inportb(BASE+1); // Read port at BASE+1.

 printf("%2X\n",InputData); // Print result to screen
 // as a hexadecimal number.

 getch(); // Wait for key press.
}

NOTE

Detailed descriptions of the library functions can be found in the documentation
that comes with the C++ development software. More recently, the descriptions
are available on-line in help files. The documentation will also provide the names
of the header files associated with each library function. This will enable you to
determine the name of the header file that must be included in order to be able to
use a particular function.

This program has compiler directives; three are include statements and the one
is a define statement. The three include statements will include the header
files dos.h, stdio.h and conio.h. The define statement will allow us to
use the identifier BASE whenever we need to refer to the actual address 0x378.

The main() function begins with the line void main() whose meaning has
been explained previously. The main() function like all functions can take in
parameters. In this case it does not take any parameters, and so an empty pair of
parenthesis are used to follow the word main. This signifies to the compiler that it
does not take any parameters and ensures it is recognised as a function.

An example of a function that does take in parameters is the outportb()
function used in Listing 3-1. It takes in two parameters - the address the data is to
be written to and the data itself. Therefore, its parentheses are not empty.

The next statement (after the brace) in the program is:
unsigned char InputData;

3 TESTING THE PARALLEL PORT 48

As mentioned earlier, this is an identifier declaration. It simply informs the
compiler the identifier’s name (in this case, InputData) and the type of data the
identifier is allowed to represent (in this case, unsigned char).

This variable is declared so it can be used to store the value returned by the
inportb() function. This is an ideal place to understand the concept of return
value of a function. The prototype of the inportb() function, as provided by the
header file dos.h states that its return value is of type unsigned char.
Therefore, the variable InputData must also be declared as unsigned char
in order to receive the value returned by inportb().

The next statement in the program is:
InputData = inportb(BASE+1);

This statement makes a call to the function inportb() and takes in one
parameter, which is an address. The placeholder BASE is defined as 0x378.
Therefore, BASE+1 will evaluate to be 0x379. This value specifies the location
of the port to be read. Therefore, this statement will read the second port associated
with the parallel port of your PC. The value read by the inportb() function is
then placed into the variable InputData.

The statement used to display the result on the screen is:
printf(“%2X\n”,InputData);

The printf() function is a C function – not C++. However, since C is a subset
of C++ it can be used in C++ programs. When it comes to printing data on the
screen, printf() offers good flexibility and ease of use. In our programs we use
the good features of C with C++ to develop better applications. The function
printf() is a relatively unusual and very useful function in that you can pass a
variable number of parameters to it. Most of the functions you will be writing will
have a fixed number of parameters. In the current example, the number of
parameters passed to the printf() function is two. The first argument is the
string of characters “%2X\n” and the second argument is the value of the variable
InputData. These two arguments are separated by a comma.

C Examples of frequently used format specifiers

%10.3f Floating point format with a field width of 10 and 3 decimal places.
%5d Integer format with a field width of 5.
%c Character format.
%s String format (used for a sequence of characters such as a sentence).
%X or %x Hexadecimal format. X will print upper case hexadecimal letters and x

will print lower case hexadecimal letters.

3 TESTING THE PARALLEL PORT 49

The first argument “%2X\n” is a format specifier that is used when printing the
value of InputData on your screen. The characters %2X specify that a
hexadecimal format of field width 2 is to be used. A carriage return and a line feed
are specified by the two characters \n, the character ‘n’ known as the new line
character.

To represent a byte of incoming data, two hexadecimal digits are needed since each
hexadecimal digit represents 4 bits. Therefore, a field width of 2 is appropriate.
After printing the number, the cursor on your screen will be positioned at the start
of the next line.

The line:
getch();

is used to make the program wait for a key press and give us time to read what has
been printed on the screen. The getch() function waits to receive a character
from the keyboard and so the program will not proceed until a key is pressed.
When this happens the program will terminate since there are no more statements
to execute.

The operation of the program can be verified by interpreting the bit pattern of the
hexadecimal value printed on-screen and then checking that this bit pattern
corresponds to the actual signals generated on the interface board. You can change
the connections on the interface board by changing the connections shown in the
right-most column of Table 3-2. That is, you can re-arrange the connection of
signals to ground and to +5V. If you run the program again, you should see a
different result on the screen.

3.6 Compensating for Internal Inversions
Consider the program shown in Listing 3-2. When we read the port at address
BASE+1 (0x379), one of the signals (bit D7) we read from the interface board was
inverted by the parallel port hardware. Similarly, some of the signals at port
address BASE+2 (0x37A) will be inverted by the hardware when output through
this port (bits D0, D1, and D3). In this section we will learn how to modify our
software to compensate for such inversions. This compensation can be done in
software by simply inverting the affected bits to counteract the inversions that are
made by the hardware.

3.6.1 Output Operation
The program shown in Listing 3-3 will write data to the port at address BASE+2.
Note that this port only controls bits 0, 1, 2 and 3; bits 4, 5, 6 and 7 are not
dedicated for internal use by the port at address BASE+2. Some of these bits that
can be controlled are inverted internally by the parallel port electronics when
output; bits 0, 1, and 3. Therefore, to nullify this inversion by hardware we must

3 TESTING THE PARALLEL PORT 50

invert bits 0, 1 and 3 in software. Bit 2 is not inverted internally by the parallel port
hardware, and so we do not not need to invert it in software.

The that need to be made on the interface board are shown in Table 3-3.

Table 3-3 Connections to the LED Circuit.

BASE+2 Address†
ULN2803A

(Driver IC, U3)

/D0 D0 (1)
/D1 D1 (2)
D2 D2 (3)
/D3 D3 (4)

† The signals preceded with a slash (/) are internally inverted by the parallel port hardware.

Listing 3-3 Writing to the port at BASE+2 with compensation for internal inversions.

/***
WRITING TO PORT @ BASE+2, INTERNAL INVERSIONS COMPENSATED

This program outputs 4 bits of data to the port at address
BASE+2, compensating for the inverted bits 0, 1 and 3.
You can change the value of the actual bit pattern you
want to see output to the interface board.
***/
#include <dos.h>
#define BASE 0x378

void main()
{
// BASE+2 bits 0,1 and 3 are internally inverted by
// the parallel port hardware before being output. This
// can be compensated in software by carrying out an
// exclusive OR operation with the output data and 0x0B
// (0000 1011). Bits 4-7 do not matter as they are not
// connected.

 outportb(BASE+2,0x0B ^ 0x0F);

// NOTE: In binary 0x0F = 0000 1111
// The number being output (0x0F) can be changed to any
// value between 0x00 and 0x0F. The four output signals
// will correspond to the binary bit pattern represented by
// the number.

3 TESTING THE PARALLEL PORT 51

// Examples:
// Bit No: 7 6 5 4 3 2 1 0
// 0x0F 0 0 0 0 1 1 1 1
// 0x05 0 0 0 0 0 1 0 1
}

In this program, the only line that requires explanation is:
outportb(BASE+2,0x0B ^ 0x0F);

The outportb()function writes data to the port in a manner similar to its use
before. In this case, the address of the port is BASE+2. The define statement
defines BASE to be a placeholder for 0x378. Therefore, the value of the first
parameter is 0x378+2, which is 0x37A. The value of the second parameter is the
data we want to send out the port. This data is obtained, by evaluating:
0x0B ^ 0x0F

The operator ‘^’ used in the above expression is known as the Exclusive-OR
(XOR) operator. It is one of the many bit-wise operators available in C and C++
that is used to operate at bit level. You will have a better understanding of how bit-
wise operators work once the operation shown in Table 3-5 has been explained.
The operation of the exclusive OR operator will be described with the aid of Table
3-4. This operator requires two operands when used.

Table 3-4 Exclusive OR operation.

Operand A 0 0 1 1
Operand B 0 1 0 1
Result 0 1 1 0

NOTE

In the simple arithmetic operation:
 3 + 5
the operator is ‘+’ and the two operands are 3 and 5.

For a bit-wise operator, the operands must be bits. In Table 3-4 the two operands
are given the names Operand A and Operand B. The results produced by the XOR
operation for all four possible combinations of the two operands are listed in the
‘Result’ row. As can be seen, the result is 1, only when just one of the two
operands in a column is 1. When both operands in a column are identical, the result

3 TESTING THE PARALLEL PORT 52

is zero. So when the operands differ, the result is 1. As shown by columns 2 and 4
of Table 3-4, if we hold the Operand B at 1, the result will be the inversion of
operand A. Operand B acts as a ‘filter’ for inverting specific bits of Operand A.

We use this operation to perform software inversions to counteract the internal
inversions generated by the parallel port hardware. Table 3-5 explains the result of
evaluating:
0x0B ^ 0x0F

Here Operand A contains the data to be sent out and Operand B is the “filter” used
to invert the bits already inverted by the parallel port.

Table 3-5 Evaluation of 0x0B ^ 0x0F.

Bit No. 7 6 5 4 3 2 1 0

Operand A (0x0F) 0 0 0 0 1 1 1 1

Operation XOR

Operand B (0x0B) 0 0 0 0 1 0 1 1

Result 0 0 0 0 0 1 0 0

As explained earlier, bit-wise operators operate on a bit-by-bit basis. In other
words, bit 0 of Operand A and bit 0 of Operand B are put through an exclusive OR
operation. Likewise, another exclusive OR operation takes place between bit 1 of
Operand A and bit 1 of Operand B, and so forth.

The filter comprises data bits that we want inverted set to 1, and bits to be left as is
set to 0. Thus, to invert bits 0, 1 and 3 of data to be sent out, the bits 0, 1 and 3 of
the filter are set to 1. As can be seen, in the ‘Result’ row of Table 3-5, bits 0, 1 and
3 are the opposite values of bits 0, 1 and 3 of Operand A. Therefore, when we write
the exact bit pattern we want as Operand A, the affected bits will be inverted by
software to become the ‘Result’. When those affected bits of the ‘Result’ are then
sent to the parallel port hardware and internally inverted, the data arriving at the
interface board will correspond to Operand A that we originally want to send out.

To verify operation of the program, you can change the data (i.e. 0x0F) to any
value between 0x00 and 0x0F. The LEDs that light up will correspond to the
binary bit pattern of the data specified in the program. Note that the filter value
0x0B must not be changed – otherwise not all those specific bits we want to invert
(0, 1, and 3) will actually be inverted in software.

3.6.2 Input Operation
In program Listing 3-2, one of the signals being read in through the port at address
BASE+1 was internally inverted by the parallel port hardware. Note that the port
BASE+1 can only input the bits numbered 3, 4, 5, 6 and 7. Of these bits, bit 7 is

3 TESTING THE PARALLEL PORT 53

internally inverted. Similar to the operation performed in the previous section, this
internal inversion can also be compensated in software. This is done by performing
an Exclusive OR operation using a ‘filter’ bit to toggle bit 7 as soon as the port is
read. The value of the filter to be used is:
0x80 = 1 0 0 0 0 0 0 0

The required operation is shown in Table 3-6. Note that the unused and therefore
invalid data bits D0, D1 and D2 are shown as ‘x’ in the example. These bits can be
in either logic state and therefore the Exclusive OR result will also be
indeterminate for these bits.

Table 3-6 Inversion of bit 7.

Bit no. 7 6 5 4 3 2 1 0

Operand A (data received) 1 0 1 1 1 x x x
Operation XOR
Operand B (the filter, 0x80) 1 0 0 0 0 0 0 0
Result (corrected data) 0 0 1 1 1 x x x

Listing 3-4 Reading the port BASE+1 with internal inversions compensated.

/***
READING THE PORT @ BASE+1, INTERNAL INVERSIONS COMPENSATED

This program reads the port at address BASE+1 (0x379). It
compensates for the hardware inversion of bit 7 after
reading the data. The net result is as if the hardware
inversions had not taken place.
***/
#include <dos.h>
#include <conio.h>
#include <stdio.h>

#define BASE 0x378

void main()
{
 unsigned char InputPort1;

 InputPort1 = inportb(BASE+1);
 InputPort1 ^= 0x80;

3 TESTING THE PARALLEL PORT 54

 printf("%2X\n",InputPort1);
 getch();
}

The only line that needs explanation in the program given in Listing 3-4 is:
InputPort1 ^= 0x80;

This statement is equivalent to the following statement:
InputPort1 = InputPort1 ^ 0x80;

And is of the form:
Result = Operand A ^ Filter;

Operand A stands for the raw data read from the port. Result stands for the
compensated value. Consider the statement:
InputPort1 = InputPort1 ^ 0x80;

InputPort1 on the right-hand side contains the raw data affected by the internal
inversion of the parallel port hardware. The InputPort1 shown on the left-hand
side is the result obtained by carrying out an Exclusive OR operation between the
raw data and the filter value 0x80. In other words, the value of InputPort1 is
Exclusive-ORed with the filter value and then this result is stored back into the
InputPort1 variable. The printf() statement then prints the compensated
value on the screen. As a result, the number appearing on the screen should
represent the actual signal levels connected on the interface board.

3.7 Summary
In this chapter we have explained the operation of the interface board power
supply, port interface, and LED Driver circuits. These circuits allow the parallel
port of the PC to interface with the interface board and test operation of programs.

We learned how to develop C++ programs for sending and receiving bytes of data
through the three addresses associated with the parallel port of the PC. These
programs printed their results to the screen using either the cout object (as we did
in Chapter 1), or using the functions of the printf() family. We also explained
a small subset of the format specifiers that the printf() function uses.

The Exclusive OR bitwise operator was used to toggle some of the data bits we
transmitted through the parallel port. Bitwise operators are a very useful part of the
C and C++ languages and allow us to manipulate specific bits within a byte.

3 TESTING THE PARALLEL PORT 55

3.8 Bibliography
Bergsman, P. , Controlling The World With Your PC, HighText Publications, San
Diego, 1994.

IBM, Technical Reference – Personal Computer AT, IBM Corporation, 1985.

NS LINEAR Databook, National Semiconductor Corporation, 1987.

Savant, C.J., et al., Electronic Design Circuits and Systems, Second Edition,
Benjamin-Cummings, Redwood City, 1987.

Kelley, A. and I. Pohl, A Book on C – programming in C, Benjamin Cummins,
1995.

House, R., Beginning with C – An Introduction to Professional Programming,
International Thompson Publishing, 1994.

Deitel H.M. and P.J. Deitel C: How to Program, Prentice Hall, 1994.

C programming Language – an applied perspective by L Miller and A Quilici,
John Wiley Publishing, 1987.

Hanly, J.R., E.B. Koffman and J.C. Horvath, C Program Design for Engineers,
Addison Wesley, 1995.

Rudd, A., Mastering C, John Wiley, 1994.

3 TESTING THE PARALLEL PORT 56

4

The Object-
Oriented
Approach

Inside this Chapter

What exactly is object-oriented programming
(OOP)?

Encapsulation.

Member data and member functions of an
object.

Inheritance and Polymorphism.

Constructors and the Destructor.

Abstract classes.

Class Hierarchies.

4.1 Introduction
In this chapter we will explain object-oriented programming concepts that apply to
C++ programming. Object-oriented programming is the newer way of developing
software. The superseded style of developing software is known as procedural
programming.

In procedural programming, data and functions can be thought of as being ‘out in
the open’. In this case data may be used and/or altered by any function, and
inadvertent misuse is common, often causing detrimental side-effects to a
program’s operation. Also, any changes or modifications to the existing software
can cause problems that are very difficult to debug.

In this chapter we use examples from everyday life to gain a qualitative
understanding of the concepts that apply to object-oriented programming. We then
take a detailed look at the terminology associated with object-oriented
programming and define these concepts. By the end of this chapter, we expect you
to have developed a good understanding of the object-oriented concepts and
terminology you will need when we commence with object-oriented programming
in the next chapter.

4.2 Conceptual and Physically Realisable
Objects

Objects in object-oriented programming resemble the objects we encounter in real-
life. An object can be viewed as a self-contained entity, which has some sort of a
description and some uses associated with it. The description may list all the
features of the object. The uses associated with the object may be a set of functions
the object carries out for us, or a set of functions we carry out on the object, or a
combination of both types of functions. A software representation of such an object
type in object-oriented programming terms is referred to as an object class. The
C++ language provides mechanisms to list all the features or properties of an object
class and all the functions associated with the object class.

In real-life, we have descriptions of real objects that physically exist and also
descriptions of abstract objects that are either imaginary or conceptual. Real objects
are tangible whereas conceptual objects are not. While tangible objects can be
duplicated, conceptual objects cannot be duplicated for the simple reason that there
is no such thing as “two identical concepts”. However, it is possible to have “two
identical objects”. The conceptual objects (abstract objects) can be developed into
physically realisable objects by including exact definitions of every detail of the
object, at which stage a real object may be produced. Then the object definition has
passed through the transition from abstract to real.

To better understand this concept, consider a vehicle as an object. The most likely
description of a vehicle that comes to mind is an object that is used to transport
people or goods, perhaps rolling on wheels, with some form of energy to drive it

4 THE OBJECT-ORIENTED APPROACH

along (as shown in Figure 4-1 a). A manufacturer cannot proceed to build a vehicle
unless they have determined its specific details. Is the vehicle a train, a bus, a car or
something else? If it is a car, is it a small car, a medium car or a large car? What is
its engine type and capacity? How many doors should it have? This refinement
must continue until every detail of the “vehicle to be built” has been defined. At
this stage the object is no longer an abstract object. Once completely defined, any
number of “cars” can be manufactured as real objects.

Figure 4-1 The concept of abstract objects and real objects.

4.3 Real Objects
Although the cars of this class are identical, when built, they are individual items.
Each of these cars will have its own engine, fuel system, braking system, etc. If
someone is asked to “Start the engine!”, they cannot start an engine without
knowing which car is to be started. Accordingly, the word “engine” does not
uniquely identify “an engine”. To be able to do so, the engine must be tagged with
a particular car. For example, suppose three cars have been built and they are
labelled A, B, and C. Then “Engine of Car A” will uniquely identify an engine.
Thus, while “Car” is an object type, “Car A” is an actual object. It is important to
understand the difference between the object type and the actual object. The
existence of an object type does not necessarily mean that actual objects of that
type exist. However, an actual object cannot exist without having its object type in
existence.

The terms such as engine, fuel system, braking system, etc. can be used to
generally describe those systems. For example, to describe features of the engine of
a particular car type, we do not have to say the engine of the ‘blue’ car has such

Direction
Control Go

Power

Stop

Speed
Passengers

ABSTRACT OBJECT – VEHICLE

(a)

REAL OBJECT – A CAR

(b)

59

and such features. We would simply say engines of this particular car type have
these features. On the other hand, if an engine of a car is faulty, we must
specifically refer to that car by saying ‘the engine of that blue car’ is faulty and
needs to be repaired. Therefore, when an object type is described, we can use its
terms without having to tag them to a physical object.

4.3.1 Public Interface of an Object
A motorcar was a sophisticated object even in early times. There are certain parts
of a motorcar that the user is not expected to access; for example, the fuel injection
system. The fuel injection system is not directly accessible to the user;
nevertheless, it carries out its functions behind the scenes. On the other hand, the
driver of the motorcar has direct access to the steering wheel, the brake pedal, the
indicator stalk, etc. These can be referred to as the public interface of the object
“Car”. Similarly, in object-oriented programming, every object must have a public
interface for it to be useful. An object without a public interface is like a perfectly
built car, which is completely encased and sealed off so that no one can ever get
into it to drive it.

Figure 4-2 The public interface of an object.

The software objects will also have private functions with some designated purpose
that are not directly accessed by the users of the object (like the fuel injection
system of a motor car). Therefore, in the most general case, an object is an
encapsulated entity with a public interface that has restricted access to its hidden
details. How objects can be realised in software will be understood as we proceed
through the development of object classes in the coming chapters.

4.3.2 Construction and Destruction of Objects
All cars come to life through some kind of a manufacturing process, which we may
refer to as the “construction process”. If needed there can be slight variations to the
cars built according to the ‘same’ plan – for example, cars that have different
colour. Furthermore, manufacturing processes themselves could be slightly
different. In one factory, cars may be built starting from sub-assemblies. In another

Public Space

Private or
Protected Space

4 THE OBJECT-ORIENTED APPROACH 60

factory, cars may be built from scratch. In either case, the same type of car will be
produced.

After the car has been brought to physical reality, it can then be driven. At the end
of the car’s life it will undergo some sort of destruction process which could take
place in a car disposal yard. Destruction is an important process, which carries out
the disposal of unwanted items to maintain environmental cleanliness and to allow
the efficient management of resources. In the case of computer programs, object
destruction is necessary for the efficient management of memory.

The techniques available in object-oriented software development provide
mechanisms to realise all these aspects. Although we can draw analologies between
the objects in our day-to-day life and the software objects, the real power of object-
oriented programming in C++ comes from the combination of object-oriented
programming techniques and C++ programming techniques.

4.4 Object Classes
An object class describes a particular type of object. The object class does not refer
to a real object but the type of those real objects yet to be created. If we take an
analogy from everyday life; a building plan is analogous to an object class – not the
building itself. The same building plan can be used to create any number of
buildings. Likewise, the same object class can be used to create any number of
objects. Each object that will be created according to an object class will reside in
the memory of your computer. If more objects of the same type are created, more
memory will be used.

Figure 4-3 Components of an object class.

Member Data

Member Functions

Constructors &
Destructors

4 THE OBJECT-ORIENTED APPROACH 61

Interface to Outside
Program Code

Private:

Member Data
Member Functions

Protected:

Member Data
Member Functions

Public:

Member Data
Member Functions

Each object class will have its own name, also known as the object type name. The
word class is a keyword in C++. It is used to identify a detailed plan with a
name. Programmers are free to choose class names when developing new classes.

Each object class must have a class definition. Similar to the case for real-life
objects, the properties or features of the object and the functions associated with
the object are listed in its class definition. The properties or features are given the
name member data of the class and the functions associated with the object are
referred to as member functions.

Among the member functions are two special types of functions. The first type can
have more than one function per class and are known as constructors. Constructors
are used by the program to create each individual object (that resides in memory).
The second type has only one function per class and is known as a destructor.
Destructors are used by the program to free the memory that a variable used once
the variable is no longer needed. If a constructor is not provided, the C++ compiler
will provide a default constructor (invisible to the programmer). Similarly, if a
destructor is not provided, the C++ compiler will add a default destructor (also
invisible to the programmer).

Figure 4-4 Public interface of an object class .

Some of the class members (both data and functions) can be publicly accessed;
other members will have restricted access. The publicly accessible members
provide the public interface of the object as shown in Figure 4-4. These include the
public member data and public member functions. Members with more restricted
access are known to have either private or protected access attributes.

4 THE OBJECT-ORIENTED APPROACH 62

4.5 Encapsulation
Grouping the member data and member functions together is known as
encapsulation. There are some great benefits associated with encapsulation. First of
all, encapsulation limits access to the internal details of the object. Access to the
data is always through controlled and supervised means. In general, access will be
restricted to most data members where data should not be freely accessible or
changeable. Some of the functions may also have restricted access.

Access to the object is allowed only through the public interface. This ‘restricted
visibility’ to member data and member functions is also known as information
hiding. Sometimes it is not necessary to know the internal details of an object. In
this case it is often sufficient to just be able to know how to use it. A good example
is a scroll bar. It is sufficient for the programmer to know how to place a scroll bar
in an application to make the screen scroll. The scroll bar’s internal workings are
hidden and normally are of no concernt to the programmer.

While all these restrictions are imposed to functions outside of the class, internally,
any function of the class can manipulate or access any other member of the same
class. This provides efficient operation of object-oriented programs for the
following reasons. It eliminates the need to declare member data within the
functions and also the need to pass member data as parameters to member
functions. While an ordinary non-member function can only return one value, the
member functions can return ‘more than one value’ by being able to change any
number of the data members of the class.

4.5.1 Object Instantiation
The process of creating an actual object is known as object instantiation.
Therefore, to instantiate an object of a particular class, one of the constructors of
that class must be called. The constructor resembles “the manufacturing process” in
our ‘car’ analogy. The constructor, like any other function is a function written in
C++. It must be called to create a physical object of the object class. While the
object class is of type ‘Car’, the actual objects created, which we refer to as class
objects, could be named A, B, C, etc. They are all equivalent, perhaps with minor
differences like their colour. In object-oriented programming, a class definition
does not occupy memory. However, a class object does occupy memory. Likewise
a building plan does not occupy any land, whereas the actual building occupies
finite space.

In object-oriented programming, the constructor must be called to create an actual
object. At the time of calling the constructor, you can pass parameters to it in a
likeness to selecting the colour of a car to be built. In a class definition, there may
be more than one constructor. In our car analogy, a car may be constructed from
scratch or may be constructed from subassemblies.

4 THE OBJECT-ORIENTED APPROACH 63

4.6 Abstract Classes
Abstract classes can be viewed as initial conceptual class definitions which are
insufficiently complete to carry out instantiation. Many good hierarchies of class
objects will often start with an abstract class. The real power of abstract classes
cannot be properly demonstrated until some advanced concepts of the C++
language are explained in the coming chapters.

An abstract class needs to be developed to become a real class that has working
functions if it is to be able to instantiate real objects and use them. There is no such
thing as ‘an abstract object’ for the simple reason that anything abstract does not
physically exist. In our ‘vehicle’ example, there will definitely be a characteristic
such as speed. However, we cannot discuss how to increase or decrease speed until
we know more details of the actual vehicle. We can also include ‘functions’ to
increase and decrease the value of the speed. However, we cannot define the exact
steps these ‘functions’ should take to increase or decrease the speed without
knowing whether the vehicle is a car, or a train, or something else. In an analogous
class definition, these types of functions are known as pure virtual functions. They
are pure because their actions (bodies) cannot be defined yet, and virtual because
their actions (bodies) need to be defined in future derived classes to carry out their
required tasks.

4.7 Class Hierarchies
A class hierarchy is a set of classes that are developed starting from one or more
classes known as base classes (located at the root of the hierarchy). The new
classes developed from the base classes are known as derived classes. The derived
classes are more detailed and complete than their base classes. One of the most
important benefits of object-oriented programming is code reuse. Developing class
object hierarchies greatly facilitates the ability to reuse code by not having to
rewrite code that new code is based on. Object-oriented programming allows us to
re-use already written code as often as we like.

The base class can be an abstract class, although this is not an essential
requirement. As mentioned earlier, no real object can be instantiated from an
abstract class. However, it is useful to form a general abstract base class by
including the essential member data and member functions that will be common to
all objects of the derived classes of the hierarchy.

As an example, if you consider a graphics program which works with geometric
shapes such as lines, circles, triangles, squares, etc; a base class definition can be
formed to move, scale, hide, show, stretch any of these objects. Let us call this
class the Shape class. The class that we form, without referring to a specific
object, can be an abstract class. As mentioned above, base classes do not need to be
abstract classes. The abstract class will define the functionality of all objects of the
hierarchy without specifying a particular object type.

4 THE OBJECT-ORIENTED APPROACH 64

The derived classes must be more specific than the abstract class. For example,
there can be a derived class, which specifically works with a circle. Let us name
this the Circles class. Then, all functions within the Circles class such as
Move, Scale, Hide, Show, and Stretch can be coded specifically to operate
on circle objects. As you can imagine, it is very difficult to transfer the
functionality of the Circles class over to a new class named Squares to work
with squares! You will need to make so many changes to be able to operate with
squares in place of circles. It is easier to directly derive the Squares class from
the abstract class Shape, and then define the functions the Squares class needs.
Although the abstract classes cannot be used to instantiate new objects, they have a
very powerful use associated with virtual functions and late binding. We will
discuss these two concepts in Chapter 8.

4.8 Inheritance
Inheritance is closely associated with class hierarchies. When a new object class is
derived from a base class, the new class is said to inherit all the member data and
member functions of the base class. This is the mechanism that underlies code
reuse. The functions and data of the base class automatically exist in the derived
class. They do not need to be written again. To provide the new class with
functionality beyond that of the base class, we only need to add whatever
additional data and functions are necessary. It is also possible to modify the
inherited functions to suit their more specific tasks. However, there may need to be
restrictions for access to some inherited data and functions.

Figure 4-5 Inheriting from an abstract class.

As an example, consider the graphics program we mentioned earlier. We discussed
an abstract class named Shape. In that class we had graphics functions such as
Move, Scale, Show, Hide, Stretch, etc. If we need a new class to specifically
work with circles, then we can use the abstract class Shape as the base class and

Shape
(Abstract Base Class)

Show
Hide
etc

Circles

Show
Hide
etc

Squares

Show
Hide
etc

Triangles

Show
Hide
etc

4 THE OBJECT-ORIENTED APPROACH 65

derive the new Circles class from it. The derived class Circles is said to be a
sub-class of the abstract class Shape and will inherit all its functions (and data if it
had any). The Shape class does not have properties specific to a circle object such
as centre and radius. These properties will be added as new member data to the
derived class.

4.9 Multiple Inheritance
It is also possible for a derived class to have more than one base class. In this case
the derived class will inherit all the member data and member functions of all the
base classes. For example, we can have a base class named Colours, which
allows us to set foreground and background colours, choose fill patterns, and carry
out filling. We can use the Shape class and the Colours class to derive our new
object class Circles (as shown in Figure 4-6). Now the Circles class can be
made to show colourful circles on the screen!

Figure 4-6 Multiple inheritance.

4.10 Polymorphism
In principle, object-oriented concepts are profoundly based on the mechanisms of
encapsulation, inheritance, and polymorphism. Polymorphism is a more complex
concept than the concepts of encapsulation and inheritance which have already
been briefly explained.

As applied to object-oriented programming, polymorphism means the existence of
a function with the same name, same return value type, same number of parameters
and the same type of parameters in a number of classes of the same hierarchy. The
bodies of the functions will differ to suit the requirements for each class. It is not
essential for every object in the hierarchy to have this function. Furthermore, there
can be any number of polymorph functions in a given hierarchy. Polymorphism
allows a common interface for related actions. The most powerful feature of
object-oriented programming is associated with polymorphism of virtual functions
(discussed in Chapter 8).

Shape
(Abstract Base Class)

Circles

Colours
(Base Class)

4 THE OBJECT-ORIENTED APPROACH 66

Let us consider an example of polymorph functions. Since a polymorph function is
the ‘same’ function throughout the hierarchy, one would imagine that it carries out
the same task in each class. Going back to our graphics example, we can consider
Show to be a polymorph function. The function Show is in the Shape class, in the
Circles class, in the Squares class, and so forth. Another polymorph function
is Hide. Suppose the Show function makes the object visible on the screen. If we
are using the Show function with a circle object, it will show a circle. If it is
used with a square object, it will show a square. Therefore, although the function
name is the same, it operates in a context-sensitive manner according to the type of
object it is working with.

Polymorphism is the key to harnessing the great benefits of virtual functions. It is
possible for a programmer to use a virtual function in a program without knowing
which object it will be used with at run-time (when the program is executing). The
program will be written generically to suit all classes of the hierarchy. The
programmer does not need to write the complex logic for selecting the correct
function to suit the object chosen by the user at run-time. This task is passed on to
the compiler and linker, simplifying the programming task immensely. This is of
most benefit for programs with large numbers of classes and complex hierarchies.

As an example, a programmer can write a generic program in which the virtual
function Show is used to show any object in the hierarchy. The user of the program
decides at run time, the actual object the function Show will operate on. The
programmer has not needed to develop the full range of complex logic needed to
handle whatever type of object from the shape class the user will choose at a
particular time. Nonetheless, the correct Show function for that object type will
automatically be selected during program operation. This concept will be
demonstrated in detail in Chapter 8.

4.11 An Example Object Hierarchy
To enable you to relate some of the concepts described previously, we will develop
an object hierarchy without using C++ language syntax or its keywords. The class
definitions shown below cannot be compiled in an actual C++ program, however,
they demonstrate the principles associated with an object hierarchy. We start with
the abstract class Vehicle discussed earlier:

Abstract Class Vehicle

Member data:
Speed
Power

Member Functions:
Stop
Go

4 THE OBJECT-ORIENTED APPROACH 67

This class is the most fundamental of all classes of this example. It has
encapsulated the bare minimum that is essential for a vehicle. It must possess
Power for it to be able to move, and also will have a Speed characteristic to
describe its motion. The member function Go will start the vehicle moving, and the
other member function Stop will bring it to a stand-still.

New classes with more specific details added to them can then be derived from the
Vehicle class. We have done this by forming two new class definitions named
Passenger Transport, and Goods Transport. This class hierarchy is
shown in Figure 4-7 where there are two branches coming from its root (base
class). The class definitions are shown below:

Derived Class Passenger Transport: derived from Vehicle class

Additional member data:
 Number of Passengers

Derived Class Goods Transport: derived from Vehicle class

Additional member data:
 Load carrying capacity in Kg.

Note that these two classes inherit all the member data and member functions of
the base class Vehicle. For example, if we list everything in the Passenger
Transport class we will form the class definition show below:

Derived Class Passenger Transport

Member data:
 Speed

 Power
Number of Passengers

Member Functions:
 Stop
 Go

Figure 4-7 Deriving classes from a base class.

Passenger
Transport

Goods
Transport

Vehicle
(Base Class)

4 THE OBJECT-ORIENTED APPROACH 68

Although we did not specifically mention Speed, Power, Stop and Go, they are
present in the new derived class as a result of inheritance. Furthermore, the Goods
Transport class is a direct descendant of just the abstract class Vehicle and
therefore does not inherit anything from the Passenger Transport class.

Therefore, there are two branches, right at the root of this object hierarchy as
shown in Figure 4-7.Also, the Passenger Transport class and the Goods
Transport class may or may not be abstract classes. Any of these classes can
be used to further derive new classes with additional refinements.

In the next class definition, a new class named Passenger Train is derived
from the Passenger Transport base class:

Derived Class Passenger Train: derived from Passenger
Transport class

 Additional member data:
 Number of passenger cars

 Additional member functions:
 Doors Open
 Doors Close
 Air Conditioning

In this class definition, the members of the Passenger Transport class are in
effect added to the already existing members of the Passenger Transport
class that have been inherited (and are invisible). If we managed to see the
equivalent complete class definition for the Passenger Train class, it would
appear as follows - the inherited members are shown in bold italic typeface:

Derived Class Passenger Train

Member data:
Speed
Power
Number of Passengers

 Number of passenger cars

Member Functions:
Stop
Go

 Doors Open
 Doors Close
 Air Conditioning

Just as we used Passenger Transport as a base class, the Goods
Transport class can be used to derive further classes. An example of a new
Goods Train class derived from the Goods Transport class is now given:

4 THE OBJECT-ORIENTED APPROACH 69

Derived Class Goods Train: derived from Goods Transport class

 Additional member data:
 Number of boxcars
 Number of tank cars
 Number of open cars

Motorcars are primarily meant for transporting passengers. Therefore, if we wish to
form a new class to represent motorcars, the best place to start is the Passenger
Transport class. An example class definition for the new Motorcar class is
now given:

Derived Class Motorcar: derived from Passenger Transport
class

 Additional member data:
 Engine Capacity
 Body Colour
 Trim Colour
 Number of Cylinders
 Wheel Size
 Number of Doors

 Additional member functions:
 Steer
 Brake

If we then need a class definition to represent luxury cars, the best starting point is
the Motorcar class. The Motorcar class is chosen instead of the Passenger
Transport class because Motorcar objects form a more complete sub-object
of a Luxury Car class. If we use the Passenger Transport class as the
base class of the Luxury Car class, we will have to re-introduce members such
as Engine Capacity, Body Colour, Trim Colour, etc. This involves a
lot of unnecessary work, is error prone, and does not take advantage of code reuse.

Derived Class Luxury Car: derived from Motor Car class

 Additional member data:
 Inside Air temperature
 Global Position

 Additional member functions:
 Air Conditioning Control
 Power Mirror Control
 Power Window control
 Cruise Control
 Antenna Control
 CD Control

4 THE OBJECT-ORIENTED APPROACH 70

In a class hierarchy, future changes that need to be carried out can be done with
minimum reprogramming. If the necessary changes are very specific, then the
changes are more likely to be made in the most recently derived classes. If the
required changes are more general in nature, it is most likely that the changes will
be carried out closer to the root of the hierarchy. For example, if all luxury cars are
to have automatic navigation in the future, we will add a new member function
named Navigate to the Luxury Car class. On the other hand, if all vehicles
are to be fitted with automatic navigation facilities in the future, we will add the
Navigate member function to the abstract class Vehicle.

Figure 4-8 The example class hierarchy.

A set of object classes that fit into a class hierarchy always has an expansive nature
rather than a multiplicity nature. In an expansive situation, additional member data
and member functions will be added to the new derived class. In a multiplicity
situation more members of the same object type are added to the new class.

For example, an object class representing a house and another object class
representing a better house fit nicely into a class hierarchy. On the contrary, the
class representing a house and another class representing many houses of the same
type as the other class do not fit into a class hierarchy. New, completely different
member objects need to exist in the new class.

Although you may have understood how classes are formed, their use may still be
unclear. In the coming chapters, we will develop classes and begin to use them. For
now, it is important to gain an understanding of what a class hierarchy is and how
it is formed.

Vehicle
(Base Class)

Passenger
Transport

Goods
Transport

Passenger
Train

Motor
Car

Luxury
Car

Goods
Train

4 THE OBJECT-ORIENTED APPROACH 71

4.12 Advantages of Object-Oriented
Programming

A large part of the programming community has already embraced object-oriented
programming as a better way to program. One of the main advantages is the
robustness of the programs, a direct result of encapsulation. The changes carried
out within an object class have no side effects on other parts of the program, and
the internal details of an object class are well insulated from the outside world.
This significantly simplifies the maintenance of programs. If in the future, the
functionality of a class needs to be enhanced, the additional coding needed will be
localised to the class itself and will not affect the functionality of unrelated classes.
The changes may not even affect the public interface of the object itself. If we take
a real-life example, drivers operate motorcars exactly the same way they did in the
past. However, the fuel system has changed from carburisation to fuel injection.
While the performance of the object is enhanced, the motorcar is driven exactly the
same way through the public interface (the accelerator pedal).

Inheritance permits us to reuse the code over and over again. This reduces re-
programming time and the associated debugging time. It allows us to reduce our
time-to-market and lower the cost of software development. The natural
relationship between real-life objects and software objects makes it easier to
understand the class structures. This is the strategy we used in this chapter to give
you a good insight into object classes.

The most powerful and the most useful feature of object-oriented programming is
associated with virtual functions and object hierarchies. Using virtual functions
enables the program to select the correct function to operate on the objects that are
specified at run time. This relieves the programmer from having to write lengthy
code to cater for individual objects that may be specified at run time by the user of
the program.

4.13 Disadvantages of Object-Oriented
Programming

In general there is reluctance among programmers who are familiar with
procedural programming to embrace object-oriented programming. Object-oriented
concepts are quite foreign and require some adjustment in thinking, especially so
for novices.

Object-oriented programming is often not usually justified when programs are very
small. Also, object-oriented programming may not be the best choice for programs
requiring time-critical program execution. However, with the increasing speed of
computers this is becoming a less significant issue. Operating systems that burden
the computer are typically more of a concern than the object-oriented programs
themselves.

4 THE OBJECT-ORIENTED APPROACH 72

4.14 Summary
In this chapter we used real-life examples to promote understanding of object-
oriented concepts. We started by differentiating the two programming methods;
procedural programming and object-oriented programming. Procedural
programming exposes data and functions for inadvertent misuse and it can lead to
unexpected side-effects and difficult debugging. Object-oriented programming
imposes data hiding and protects data from inadvertent misuse by encapsulating
data and functions together to form object classes. The public interface of an
encapsulated object class has been explained using real-life examples.

A qualitative explanation was given to explain the abstract object classes and actual
object classes. This has then been consolidated using object-oriented terminology
to explain abstract classes and real classes. Also, inheritance has been exploited in
an example object hierarchy to show how a class hierarchy can be developed.

The use of constructors and destructors has been briefly introduced and will be
explained in greater detail in the coming chapters. Instantiation has a close
association with constructors, and a given class may have any number of
constructors.

The important concepts of polymorphism and virtual functions have been discussed
in limited detail due to their relative complexity. They will be further explained and
used extensively in Chapter 8. Finally, advantages and disadvantages of object-
oriented programming have been discussed.

4.15 Bibliography
Meyer, B., Object Oriented Software Construction, Prentice Hall, 1988.

Firesmith, D.G., Object Oriented Requirements, Analysis and Logical Design,
John Wiley, 1993.

Staugaard A. C. (Jr), Structured and Object Oriented Techniques, Prentice
Hall, 1997.

Gray, N.A.B, Programming with Classes, John Wiley, 1994.

4 THE OBJECT-ORIENTED APPROACH 73

5

Object-Oriented
Programming

Inside this Chapter

Creating an object class.

Developing objects for ports.

Access attributes.

Developing the ParallelPort object class.

5.1 Introduction
Our aim in this chapter is to teach you how to develop object classes for use in C++
programs. The object-oriented concepts introduced in the previous chapter will be
expanded upon and C++ syntax will be added to the class definitions. The object
classes developed in this chapter will be used in the development of future
programs that interact with various devices on the interface board through the
parallel port of your PC.

We will start the chapter by developing a fundamental parallel port object type
named ParallelPort that will be developed in three separate stages. Each
stage of developement will give the ParallelPort object additional
functionality, with the final class capable of data transfer to and from the computer
using most features of the parallel port.

5.2 Naming Convention
In order to improve the readability of our programs, we will establish a naming
convention to be used when assigning names to functions and other identifiers. As
explained in Chapters 2 and 3, the parallel port of the PC occupies three
consecutive addresses. In most cases, the hexadecimal values of these consecutive
addresses are 0x378, 0x379 and 0x37A. The term BASE will be used to refer to the
first of the three addresses which we call the base address (0x378 in this case).
Table 5-1 summarises the naming convention.

Table 5-1 Naming convention for identifiers in programs.

Suffix for Identifiers
Offset with respect to
Base Address (BASE)

Physical Address
(most widely used)

Port0 0 0x378
Port1 1 0x379
Port2 2 0x37A

NOTE

The port addresses you will be using may not necessarily be 0x378, 0x379 and
0x37A. However, they will be three consecutive addresses. The object classes
we develop will have the flexibility to specify the BASE address that applies to
your particular case.

5 OBJECT-ORIENTED PROGRAMMING

According to the naming convention shown in Table 5-1, all member data and
member functions ending with Port0 will use address BASE. For example, a
function with the name WritePort0() writes data to the port at address BASE.
Similarly, WritePort2() writes data to the port at address BASE+2.

5.3 Developing an Object Class
By the end of this chapter we will have developed a complete ParallelPort
class that encompasses most functional aspects of the port. This will take place in
three stages; in the first stage we will develop a class using the BASE address. This
class will be expanded in two following stages to include the functionality of the
BASE+1 address, and lastly the BASE+2 address.

Figure 5-1 Developing the ParallelPort Class.

The port at BASE address is the easiest to use and can send one byte of data at a
time. Note that newer computers can both send and receive data through this port.
We will only use the BASE address as an output port to maintain compatibility
with older computers.

Designing an object class:

1. Select an appropriate name for the object class. It should be concise, yet
descriptive enough to suit the purpose and content of the class.

2. Determine class member data (features or properties associated with the
object).

3. Determine class member functions (uses of the object).
4. Use the appropriate access attributes to encapsulate the data and functions.
5. Establish constructor(s) and the destructor for the class.

class ParallelPort

{
 .
 .
 .
 .

.
 .
 .
}

class ParallelPort

{
 .
 .
 .
 .

.
 .
 .
 .
 .
 .
 .
}

class ParallelPort

{
 .

.
 .
 .
}

ParallelPort class
(BASE Address)

ParallelPort class
(BASE and BASE+1 Addresses)

ParallelPort class
(BASE, BASE+1 and
BASE+2 Addresses)

Stage 2

Stage 3

Stage 1

77

In the previous chapter, member data were identified as features or properties
associated with the object. Member functions were identified as the uses of the
object. If we use everyday language to describe a port at address BASE as an object
class, it will read something like this:

“The port is at a certain address and can output one byte of data”

According to this description, the port is identified by an address. The object is
used to output a byte of data to an external device using this port. Now that we
have established the features and the uses, we can try to define the object class.
We will encapsulate this member data and member function to form our
fundamental object class ParallelPort.

5.3.1 Member Data
The ParallelPort object class we are developing must know the base address
of the port in order to operate. This data needs to be stored in a data member that
we have appropriately named BaseAddress. Most parallel port addresses will
fall in the range of 0 to 0x3FF. An 8-bit number (0 to 0xFF) will be too small to
store these values, and so a 16-bit number (0 to 0xFFFF) must be used. Therefore,
we need to declare a data type of unsigned int to the data member
BaseAddress so it can store the required range of possible port addresses:

unsigned int BaseAddress;

5.3.2 Member Functions
Since the ParallelPort class needs to be able to write a byte of data to the port
at BASE address, a function named WritePort0() will be created for this
purpose. One byte is represented by the data type unsigned char. The function
only outputs data, so it does not need to return a value. This means its return value
type should be void. The resulting function is:
void WritePort0(unsigned char data)
{
 outportb(BaseAddress, data);
}

The function WritePort0()takes in one parameter, namely data of type
unsigned char. The body of the function contains just one statement; it
outputs the value of the parameter passed as data to the port at the address
specified by the value of BaseAddress.

WritePort0() has a return value specified as void. In functions that do not
return any value, the return value type must be specified as void. If the functions
are to return a value, then there must be a return statement within the body of
the function.

5 OBJECT-ORIENTED PROGRAMMING 78

5.3.3 Access Attributes
The access attributes control accessibility to the members of the class by functions
anywhere else in the program. There are three different types of access attributes;
private, protected, and public, described as follows.
private
Functions and data listed under the private access attribute can only be accessed
by member functions of the same class. Other functions from elsewhere cannot
modify or even see any of the private member data, nor can they call any private
member functions. Importantly, if an access attribute is not specified for any of the
members in a class definition, the access attribute defaults to be private.

protected
Functions and data listed under the protected access attribute can be accessed
by the member functions of the class itself and member functions of all other
classes derived using this class as the base class. Classes, which have no
relationship to this class, cannot access the protected member data or protected
member functions. Class derivation is further explained in Chapter 6.
public
Functions and data listed under the public access attribute can be accessed by
any function regardless of its relationship to the class.

5.3.4 Defining a Class
The more attractive way to develop object classes that offers greater protection is
to use class definitions. A class definition starts with the keyword class followed
by the name given to the object type (in this case ParallelPort). It is entirely
up to you to choose this identifier for the object type. It is also possible in C++ to
define an object using aggregates of related data known as structures.

As shown in Figure 5-2, the body of the class definition starts at the first open
brace ({) and it ends when the last close brace (}) is encountered. Remember to
place a semicolon (;) after the close brace to complete the class definition.

There are two segments within the body of the class definition. The first segment
relates to member data, and the second segment relates to member functions.
Although the member data and member functions can be intermingled, it is good
practice to keep them separate.

As mentioned earlier, if an access attribute is not specified, then it defaults to
private. Therefore, the keyword private in the class definition is not
essential. If it was dropped, the variable BaseAddress would still be private.
However, it is good practice to include the keyword private to make the code
more explicit.

5 OBJECT-ORIENTED PROGRAMMING 79

class ParallelPort
{
 private:
 unsigned int BaseAddress;

 public:
 void WritePort0(unsigned char data)
 {
 outportb(BaseAddress, data);
 }
};

Figure 5-2 Class definition.

The class has a default constructor and a default destructor provided by the
compiler that are not visible. The constructor creates objects for use in a program
and the destructor relinquishes objects from memory once the program no longer
needs them.

Figure 5-3 Schematic of the ParallelPort Class.

Must not forget semicolon!

Start of the body of
the class definition

Class definition ends
with last close brace

Member Data

Member Function(s)

Interface to outside program
code (main function)

Public Member Functions:

 WritePort0()

Private Member Data:

 BaseAddress

ParallelPort Class

Constructors & Destructors:

 Defaults provided by compiler
 (invisible)

5 OBJECT-ORIENTED PROGRAMMING 80

In the case of the object class ParallelPort, BaseAddress is a private data
member. Therefore, it can only be accessed by the function WritePort0()
belonging to this class. This function is declared to be public and as such can be
called by any other function in your program. This provides an interface between
the object and the outside world. If the function WritePort0() was declared
private, it could not be called by any function outside the class (including the
main() function). As a result the object of type ParallelPort could not be
used (recall the sealed off car that no one can get in to drive!).

5.3.5 The Constructor
The purpose of a constructor is to create objects for use in a program. Simply
because there is an object type definition, it does not mean that there is an actual
object that resides in memory. For an object to hold data and execute functions,
both data and functions must reside in memory. This occurs when the constructor is
called. It creates an object and allocates memory to all its data members in a
process known as instantiation. At the time of instantiating an object all statements
in a constructor’s body will be executed. The programmer may code the
constructor to suit the needs of the objects at the time of their creation.

Constructors always have the same name as the object type – in this case,
ParallelPort. A constructor, although a function, never has a return value.
This is a unique feature of constructors. They are one of only two types of
functions in C++ which have no return value type, not even void. The second
type of function with no return value is the destructor.

5.3.6 Default Constructor
The strict definition of the default constructor is a constructor that does not take
any parameters (i.e. the pair of parentheses are empty). In the absence of a
constructor provided by a programmer, the compiler will provide a constructor and
that constructor is always a default constructor. The default constructor provided
by the compiler has one main job, to allocate memory for all data members of the
object. It will also call the default constructor of its base class if it has one – this
occurs before the derived class constructor calls allocates memory for its own data
members.

It is also possible for a programmer to provide a default constructor. The default
constructor written by the programmer also takes no parameters, but can have
some statements in its body. If the programmer provides a constructor, be it default
or otherwise, the compiler will not provide a constructor. The programmer-supplied
default constructor will also call the default constructor of its base class before
executing its own duties.

The compiler also provides a special constructor named the copy constructor, and
an overloaded assignment operator (the = sign). We will defer the discussion of
copy constructors and overloaded assignment operators until Chapter 12.

5 OBJECT-ORIENTED PROGRAMMING 81

5.3.7 Overloading of Constructors
The term overloading is used to describe the situation when many functions exist
under the same name but carry out different tasks. For the case of overloaded
constructors, there is more than one constructor in a class definition, all having the
same name (the name of the class), and as for all constructors, not having return
value types. Any number of overloaded constructors are allowed in a class.
Therefore, the only difference between the constructors should be in the number
and types of parameters passed to each of them and the statements included in each
of their bodies.

5.3.8 Destructors
The destructor serves the opposite purpose of the constructor. A constructor brings
an object into life by creating it in memory. A destructor removes the object from
memory, freeing the space. The name of the destructor must always be the name of
the object class and preceeded by the tilde symbol (~). For example, the destructor
for the ParallelPort class would be named ~ParallelPort(). The
program developer can choose to include a destructor in the class definition. If the
developer does not include a destructor, the compiler will generate a default
destructor.

Unlike constructors, destructors are not explicitly called. They will be called
automatically when a locally defined object ceases to exist or when the delete
operator is used to delete the object from memory. For class hierarchies, the
destructor of the derived class is executed before the destructor of its base class.

While there are no virtual constructors, destructors can be virtual functions. Virtual
destructors will be described in detail in Section 8.5. We will now begin the
development of the ParallelPort class in the three stages we mentioned at the
start of Section 5.3 and as shown in Figure 5-1.

5.4 Parallel Port Class – Stage I
This first stage in the development of the ParallelPort class will produce a
class having the simplest features of the three stages. This stage will only use the
capabilities of the BASE address component of the port, being the ability to write a
byte of data (8 bits, D0-D7 inclusive) to external devices.

Initially a default constructor will be used as part of the class (generated by the
compiler). This design has some deficiencies discussed ahead. The class will be
developed further to overcome these shortcomings.

5.4.1 Class Definition
As described earlier, WritePort0() is a public member function. Therefore,
any function in the program can call this function. The WritePort0() function

5 OBJECT-ORIENTED PROGRAMMING 82

in-turn calls the familiar outportb() function to send data to the port at address
given by BaseAddress.

We can have a default constructor generated automatically by the compiler if we
do not write a constructor in the class definition.

C++ Syntax of member functions

There are two ways the compiler can be informed of member functions:
(i) Member function definition placed outside the class.

In this case the syntax used is the same as that for normal functions, except
the object class name followed by two colons (::) is placed before the
function name as shown in Listing 5-1.

(ii) Member function definition placed within the class.
In this case the syntax used in (i) is not necessary as shown in Listing 5-2.

The member function definition shown in Listing 5-1 for the WritePort0()
function is defined outside the class.

Listing 5-1 Definition of the member function(s) for the ParallelPort class.

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

When the WritePort0() member function is defined within the class definition
itself, the class definition will be as shown in Listing 5-2. Any member functions
that are defined within the class definition and are small, will be treated as in-line
functions (discussed ahead). When functions are declared outside the class
definition, they will be treated as normal functions.

Listing 5-2 Defining member functions within the class definition.

#include <dos.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;

 public:
 void WritePort0(unsigned char data)

5 OBJECT-ORIENTED PROGRAMMING 83

 {
 outportb(BaseAddress,data);
 }
};

C++ In-line member functions

The compiler allows small member functions defined in the class definition to be
in-line functions. Whenever an in-line function is called in a source file, the
compiler may replace that call with the actual instructions within the body of the
in-line function.This will happen if the in-line function is small in size and does
not involve complicated (lengthy) parameter passing.

This means every time an in-line function is called in the code, the compiler will
add a new instance of the function to the executable code which increases the
size of the program. However, there is a benefit that program execution flows
directly into the in-line function, avoiding the overheads associated with a
function call and therefore promotes greater speed.

Normal functions use only one instance of the function stored in memory. In this
case, a function call results in the current program status being temporarily saved
before the program jumps to the memory area containing the function. The code
for the function is executed followed by a return jump and recovery of prior
program status. These extra steps of saving, jumping and recovering add
execution time, and slow performance compared with using in-line functions
(although the executable programs are smaller in size).

NOTE Listing 5-1 and Listing 5-2 both have a deficiency. Examining the
parameters of the WritePort0() function, we see that we can pass an actual
argument (such as 0x7F) in place of the parameter data, however, there is no
way for us to specify the BaseAddress.

If we do not have a mechanism to specify a numerical value for BaseAddress,
the outportb() function will not work. One poor solution is to fix the address at
a predetermined value. For example:
void WritePort0(unsigned char data)
{
 outportb(0x378,data);
}

The above approach will only work for those users having 0x378 as the BASE
address of their parallel port. Other users would need to edit and re-code the
member function to suit whatever BASE address their PC’s parallel port uses.
Additionally, this solution does not use the data member BaseAddress.

5 OBJECT-ORIENTED PROGRAMMING 84

Class Definition – Improvement I

We need to provide the user with the ability to specify the base address according
to hardware requirements. This is best done at the time of creating the
ParallelPort object – ie at the time of calling the constructor. Our default
constructor will need to be replaced with a constructor that allows us to set the
member data BaseAddress to a desired value at the time of creating the object.

New constructor: We pass the parameter baseaddress to the constructor, which
then assigns this value to the member data BaseAddress. Now the original
outportb function will work as intended. You will have noticed in Listing 5-4
that the member function is defined separately from the class definition. The reason
for this is explained in the box presented previously titled “In-line member
functions”.

Listing 5-3 The class definition for ParallelPort - with a constructor.

class ParallelPort
{
 private:
 unsigned int BaseAddress;

 public:
ParallelPort(int baseaddress); // constructor

 void WritePort0(unsigned char data);
};

Listing 5-4 Definitions of member functions for the improved ParallelPort class.

ParallelPort::ParallelPort(int baseaddress) // constructor
{
 BaseAddress = baseaddress;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

5 OBJECT-ORIENTED PROGRAMMING 85

NOTE

The member data BaseAddress is different to baseaddress. The
parameter baseaddress is a placeholder for the actual argument one would
pass at the time of calling the constructor and plays a role only at the time of
calling the constructor. On the contrary, the member data BaseAddress will
reside in memory storing data for the entire life of the object; in most cases, for the
whole life of the program.

Class Definition – Improvement II

Because most users will operate their parallel port at address 0x378, ideally we
would like to have a constructor that by default sets the BASE address to 0x378.
We still need the option of being able to set the port to other address values as was
implemented in the previous class definition.

We achieve this by adding a second constructor (overloaded constructors) that sets
the member data BaseAddress to 0x378 by default. This programmer-defined
default constructor takes no parameters (ie. a default constructor) but assigns the
member data BaseAddress to 0x378 inside its body. The class definition and
member function definitions are given in Listing 5-5 and Listing 5-6.

Listing 5-5 Class definition for ParallelPort with a default constructor.

class ParallelPort
{
 private:
 unsigned int BaseAddress;

 public:
ParallelPort(); // default constructor

 ParallelPort(int baseaddress); // constructor
 void WritePort0(unsigned char data);
};

5 OBJECT-ORIENTED PROGRAMMING 86

Listing 5-6 Member function definitions for the class definition in Listing 5-5.

ParallelPort::ParallelPort() // default constructor
{
 BaseAddress = 0x378;
}

ParallelPort::ParallelPort(int baseaddress) // constructor
{
 BaseAddress = baseaddress;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

If in our program we do not pass a value to the constructor, the default constructor
will be called and the BASE address will default to 0x378. Alternatively we can
set the BASE address to say 0x3BC by passing this value when creating a
ParallelPort object as shown:

ParallelPort(0x3BC);

In this case the second constructor (takes a parameter) will be called to create the
ParallelPort object. Although constructors commonly initialise some or all of
the member data, a constructor can be programmed to carry out any actions a
regular function may perform.

An important point to note is that the member function WritePort0() has not
been specifically informed of the member variable BaseAddress – that is,
BaseAddress has not been declared within this function. This is not necessary
since BaseAddress and WritePort0() are both members of the same class,
hence WritePort0() has unrestricted access to BaseAddress as explained in
Section 5.3.3.

5.5 Using Class Objects in Programs
We will now use the ParallelPort object type developed in the previous
section to output a byte of data to the port at BASE address. The object-oriented
program that performs this task seems lengthy, however, the advantages of object-
oriented programming will be realised as we progress through later chapters.

5 OBJECT-ORIENTED PROGRAMMING 87

Listing 5-7 Writing to port at address BASE using object-oriented approach.

/***
WRITING TO A PORT (object-oriented approach)

The program uses the fundamental ParallelPort object
class to output a byte of data to the interface board.
***/
#include <dos.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
};

ParallelPort::ParallelPort() // default constructor
{
 BaseAddress = 0x378;
}

ParallelPort::ParallelPort(int baseaddress) // constructor
{
 BaseAddress = baseaddress;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void main()
{
 ParallelPort OurPort; // object instantiation

 OurPort.WritePort0(255); // calling a member function
}

The class definition and function definitions are the same as developed earlier and
have already been explained. What has not been explained is the body of the

5 OBJECT-ORIENTED PROGRAMMING 88

main() function. This is where a programmer uses the object classes to develop
an application. The first of the two lines in main() creates an object named
OurPort of type ParallelPort. The second line calls OurPort’s member
function WritePort0()and outputs the value 255 to the port. The actual port
address used by WritePort0() is assigned when we create the OurPort object
by calling one of the two constructors. This process will now be explained in more
detail.

Object Creation (instantiation)
The first line in main() is:

ParallelPort OurPort;

This is a declaration line and is similar to:
int a; // Data type is int, variable name is a.

Similarly; ParallelPort is the data type, which is an object type. OurPort is
the name of the variable. The only difference is that int is a fundamental built-in
data type whereas ParallelPort is a data type we developed.

In C++, the declaration lines not only inform the compiler the name (such as
OurPort) and type of the object (such as ParallelPort), but also call the
constructor of that object class to create the object. The creation of the object
OurPort is what we mentioned earlier as instantiation – it brings into life a real
usable object that will reside in memory. It is important to know the difference
between ‘an object’ (also known as a class object) and ‘an object type’ (also known
as the object class). The object is OurPort and the object type is
ParallelPort. Thus, we have created an object named OurPort of object
type ParallelPort.

Referring to the class definition given in Listing 5-5, we see that there are two
constructor functions available. They are:
ParallelPort();
ParallelPort(int baseaddress);

Which of these two constructors were used by the declaration line to instantiate the
OurPort object? The compiler will automatically select the correct constructor
based on the parameters passed (or the absence of them). Since we did not specify
a value for the parameter baseaddress at the time of instantiating the
OurPort object, the compiler will call the first of the above two constructors,
being the default constructor.

On the other hand, the declaration line in the main() function could have been:

ParallelPort OurPort(0x3BC);

In this case, the compiler will not call the default constructor, since a value for a
parameter has been specified. Instead, the other constructor (which accepts a
parameter) will be called to instantiate the object OurPort:

5 OBJECT-ORIENTED PROGRAMMING 89

ParallelPort(int baseaddress);

In the example above, when creating a ParallelPort object, the parameter
baseaddress is replaced by the actual argument 0x3BC. The value 0x3BC will
then be assigned to the data member BaseAddress (see the body of the
constructor in Listing 5-6).

Returning to the program in Listing 5-7, the created object named OurPort will
have all the features given in the class definition. It has its own private data
member named BaseAddress and three public member functions. Two of the
functions are constructors with the name ParallelPort and the other function
is named WritePort0.

Sending data to the Port
The object we created named OurPort, makes use of its member function
WritePort0() to send the value 255 out the port. The syntax for accessing this
member function uses a period placed after the object name followed by the
member name:
OurPort.WritePort0(255);

The other members of the object are accessed in exactly the same manner, although
their access attributes may restrict access. For example, despite the correct syntax,
any function outside the class trying to execute the following instruction will fail:
OurPort.BaseAddress = 0; // Will not work!

This is because BaseAddress is a private data member of the class and functions
outside of the class cannot change it (the main() function is not part of the class).
This illegal attempt to access the member data BaseAddress will be detected
during compilation and a compilation error will be reported. The next section will
present additional examples of access attributes used in our program.

Note that the WritePort0() function takes in one parameter. This parameter
has been replaced by the actual argument 255. In binary, the decimal value of 255
will be represented with all eight bits set to 1.

The operation of the program can be checked by connecting the PC to the interface
board as shown in Table 3-1. Passing the parameter 255 to the
WritePort0()function should generate eight lit LEDs. You can change this
number to any value between 0 and 255 inclusive. If you re-run the program you
should see the LEDs light up accordingly.

5.5.1 Examples using Access Attributes
In the preceding section, an illegal attempt was made to assign the value 0 to data
member BaseAddress, as now shown again:

OurPort.BaseAddress = 0; // Will not work!

5 OBJECT-ORIENTED PROGRAMMING 90

In that program, BaseAddress was declared as a private data member, which
prevented the main() function from gaining access to change its value.

Instead of declaring BaseAddress as a private member, it can be declared as a
public member. This being the case, it can be accessed by any function in the
program and the compilation error will no longer appear. Listing 5-8 shows how
this is done. Note that if you do not have a second parallel port (LPT2:) in your
computer, the address 0x3BC does not exist, and the program will not function.
However, it will compile error-free. Also, ensure the data cable that connects with
the parallel port is plugged into the D25 connector of the correct port.

Listing 5-8 Declaring BaseAddress as a public data member.

/***
Note that the member variable BaseAddress is now
declared under the public access attribute. Therefore
it can be changed from within the main function and
there will be NO compilation errors.

If your computer DOES NOT have a second parallel port,
attempting to use the port address 0x3BC will FAIL!
***/
#include <dos.h>

class ParallelPort
{

public: // Private access attribute has been
 // changed to public.
 unsigned int BaseAddress;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
}

5 OBJECT-ORIENTED PROGRAMMING 91

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void main()
{
 ParallelPort OurPort;

OurPort.BaseAddress = 0x3BC; // Will NOT cause a
 // compilation error
 OurPort.WritePort0(255);
}

Declaring member data as public is considered poor programming practice. The
main purpose of using object-oriented programming is to form encapsulated
objects, that are to some extent protected against misuse. This will not be the case
if member data are declared to be public.

If a member variable needs to be changed, then it can be changed through a
member function specifically designed for that purpose. This concept is
demonstrated by the ChangeAddress() function shown in Listing 5-9.

Listing 5-9 The acceptable way to change a data member of an object.

/***
WRITING TO A PORT (Adding a member function to change
the private member data).

Note: attempting to use the port address 0x3BC will fail
if your computer doesn’t have a second parallel port.
***/

#include <dos.h>

class ParallelPort
{

private: // Access attribute has been changed
 // back to private.
 unsigned int BaseAddress;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);

5 OBJECT-ORIENTED PROGRAMMING 92

 void WritePort0(unsigned char data);

 // New public member function added.
 void ChangeAddress(unsigned int newaddress);
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

// New public member function defined.
void ParallelPort::ChangeAddress(unsigned int newaddress)
{
 BaseAddress = newaddress;
}

void main()
{
 ParallelPort OurPort;

// The correct way to manipulate a private data member
 OurPort.ChangeAddress(0x3BC);
 OurPort.WritePort0(255);
}

The program statement shown below from the previous listing will legally change
the value of the private data member BaseAddress to 0x3BC:

OurPort.ChangeAddress(0x3BC);

In this illustrative example we have shown how a private data member can be
changed using a public member function. The public member function
ChangeAddress() has complete access to the private data member
BaseAddress since it is a member function of that same object class. We will
not use the ChangeAddress() function in our proper ParallelPort class.

5 OBJECT-ORIENTED PROGRAMMING 93

Instead, the user can pass the desired value for the base address to the constructor
so the BaseAddress can be set to a different value than its default value of
0x378 (set by the default constructor).

5.6 Parallel Port Class – Stage II
In the first stage we created an object class named ParallelPort which
provided the required functionality to use the port associated with address BASE.
We now need this object to also use the port at address BASE+1. Note that the port
at address BASE is used as an output port and the port at address BASE+1 is an
input port. The new object’s intended functionality is:

Ability to specify the base address of the parallel port.
Send data through port at address BASE.
Receive data through port at address BASE+1.

Adding further functionality to an existing object is an ideal situation for using
class derivation. However, there is no justification to develop a hierarchy of classes
for each part of the parallel port, since there is no great use of parts of the parallel
port. It is most appropriate to develop the entire parallel port as one object.
Therefore, in this second stage we will add the extra functionality to the
ParallelPort class so it can also use the port at address BASE+1.

The class definition for the new ParallelPort class is given in Listing 5-10,
with additions shown in bold text. It contains the declarations for the member data
and the member functions. All data members of the class ParallelPort are
declared as private. All the member functions are declared as public. As
before, BaseAddress is one of the data members and the function
WritePort0()is included so that data can be sent out to port at address BASE.

Listing 5-10 New class definition for the object ParallelPort.

class ParallelPort
{
 private:
 unsigned int BaseAddress;

unsigned char InDataPort1;
 public:
 ParallelPort(); // default constructor
 ParallelPort(int baseaddress); // constructor
 void WritePort0(unsigned char data);

unsigned char ReadPort1();
};

5 OBJECT-ORIENTED PROGRAMMING 94

The port at address BASE+1 is an input port (data into the PC). The function
ReadPort1() has been introduced to the ParallelPort class to read data
through this port. The private data member InDataPort1 is declared to store the
data read from this port. The number assignments used for all the members of the
class represent the offsets from the base address. For example, WritePort0()
function will be writing to an address with offset 0 with respect to the base address
– in this case BASE+0, being the BASE address. Similarly, the ReadPort1()
function will read from an address with offset 1. Therefore, it will read the port at
address BASE+1.

The definitions of all the functions belonging to this expanded class are contained
in Listing 5-11.

Listing 5-11 Function definitions of the ParallelPort object.

ParallelPort::ParallelPort() // default constructor
{
 BaseAddress = 0x378;

InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress) // constructor
{
 BaseAddress = baseaddress;

InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate for
// internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

The only change to the constructors is the extra statement that initialises the data
member of the BASE+1 address, InDataPort1 to 0. If InDataPort1 is not

5 OBJECT-ORIENTED PROGRAMMING 95

initialised it will store some unknown value. However, initialising this variable to 0
is not essential. It may be initialised to any other value or left un-initialised
provided precautions are taken to prevent its use until InDataPort1 holds an
actual value read from the port.

The function ReadPort1(), reads the port at address BASE+1 and returns a
value of type unsigned char. This requires the body of this function to have a
return statement, which is return InDataPort1. Therefore, while this
function stores the results of input operations in the data member InDataPort1,
at the same time it provides an interface to other functions outside of the class to
receive the value of this data member. This will enhance the flexibility of the
object. In the coming chapters the ParallelPort object will be used when
writing many programs. It is advantageous to have full flexibility in the
ParallelPort object so that it can be used to write good and efficient
programs.

The function inportb() is called within ReadPort1() and carries out the task
of reading the data from the port at the specified address, in this case BASE+1.
Note that only bits 3 to 7 are free to be read through this port. Also, bit 7 is
internally inverted by the parallel port hardware. The ReadPort1() function is
coded to compensate for the inversion (explained in Section 3.6) and also clear the
unused bits D0-D2 to zero by using the logical AND operator (&). The
hexadecimal number F8 represents a bit pattern of 1111 1000 and will clear bits
D0-D2 of any number it is ANDed with. The value produced from this correcting
operation will be stored in the data member InDataPort1. The last line of the
ReadPort1() function contains the return statement which returns the value
of InDataPort1.

The complete program is shown in Listing 5-12. Check operation of the program
by connecting your interface board to the PC according to Table 3-1 and Table 3-2.

Listing 5-12 Write data to port at BASE and read data from port at BASE+1.

/***
The fundamental object class ParallelPort is expanded to
include the input port at address BASE+1. The combined
object is still named ParallelPort and is used to write
to the port at address BASE and to read data from the port
at address BASE+1.
***/
#include <stdio.h>
#include <dos.h>

class ParallelPort
{
 private:

5 OBJECT-ORIENTED PROGRAMMING 96

 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

void main()
{
 unsigned char BASE1Data;
 ParallelPort OurPort;

 OurPort.WritePort0(255);
 BASE1Data = OurPort.ReadPort1();

5 OBJECT-ORIENTED PROGRAMMING 97

 printf("\nData Read from Port at BASE+1
 %2X\n",BASE1Data);
}

Listing 5-10 and Listing 5-11 (explained earlier) are incorporated unchanged in
Listing 5-12 which has a main() function added.

The first line in the main() function is:

unsigned char BASE1Data;

This line declares a variable named BASE1Data to store data of type unsigned
char. In strict C++ terms, this line has instantiated an object of type unsigned
char and given it the name BASE1Data. As such, BASE1Data will now reside
in memory. The purpose of BASE1Data is to store the value read from the port at
address BASE+1. How this is done will become clear as we work through the rest
of the statements of the main() function.

The next line in the main() function is:

ParallelPort OurPort;

This line instantiates the OurPort object, which is of type ParallelPort.
Therefore, Ourport will have two data members, namely BaseAddress and
InDataPort1. When the above line is executed, the default constructor will be
called (no argument used for the base address). As a result the variable
BaseAddress will be set to 0x378 and the variable InDataPort1 will be set
to 0.

The two member functions are called in the next two lines:
OurPort.WritePort0(255);
BASE1Data = OurPort.ReadPort1();

The first line writes a byte of data (255 in this case) to the port at address BASE.
This will cause all eight LEDs to light. The second line will read the port at address
BASE+1 and compensate for inverted bit D7. ReadPort1() stores this result for
later retrieval in the data member InDataPort1 and returns the value of
InDataPort1 to the main() function. This value received by the main()
function is stored into its variable BASE1Data.

The last line of the main() function displays the value of BASE1Data on the
screen in hexadecimal format with a field width of 2. A carriage return and line
feed is inserted before the value is displayed by using the new line character
combination \n. In this example main() function, its variable BASE1Data was
assigned the value returned from the ReadPort1() function. Our future
programs will not always be programmed to do operate this way. For these cases
where the main() function

Also note we need to have the data member InDataPort1 so the value read
from the port can be stored in our object. Without having such a storage variable,

5 OBJECT-ORIENTED PROGRAMMING 98

the program must rely on the main() function’s variable BASE1Data to be
assigned the value returned from the ReadPort1() function. It will not always
be desirable for our future programs to be programmed to use a main() function
variable in this way. In these cases, if the ParallelPort object did not have the
data member InDataPort1 to store the value returned from ReadPort1(),
then this value would be lost once ReadPort1() completes its execution.

5.7 Parallel Port Class – Stage III
In this final stage we will further develop the object class ParallelPort to
encompass all input/output functionality of the parallel port of the PC - with one
exception. This being the absence of input through BASE+2 as it can be unreliable
on some computers. This class will output data through the port at address BASE,
input data through the port at address BASE+1, and output data through the port at
address BASE+2. It will also compensate for internal inversions that occur within
the parallel port hardware.

5.7.1 Full function Object Class ParallelPort
The functionality required for the final object class ParallelPort is:

Ability to specify the BASE address of the parallel port.
Output data through the port at address BASE.
Input data through the port at address BASE+1.
Output data to the port at address BASE+2.

The definition for the final ParallelPort class is shown in Listing 5-13.

Listing 5-13 The definition for the ParallelPort class.

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);

void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

5 OBJECT-ORIENTED PROGRAMMING 99

In the class definition, a function is included for each of the requirements in the
list. The definitions of the member functions are given in Listing 5-14. Additions
made to the earlier ParallelPort object class are shown in bold font in Listing
5-13 and Listing 5-14.

Listing 5-14 Definitions of member functions of the class ParallelPort.

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
// Invert bits 0, 1 and 3 to compensate for
// internal inversions by printer port hardware.
 outportb(BaseAddress+2, data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate for
// internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

5 OBJECT-ORIENTED PROGRAMMING 100

The ParallelPort object class is used in the program shown in Listing 5-15 to
carry out data transfer operations using all three ports of the parallel port of your
PC. The operation of the program can be checked with the interface board. The
connections to be made on the interface board are those given in Table 3-1 and
Table 3-2. Note that before stepping through the program to test the operation of
the port at address BASE+2, remove connections from the BASE address outputs to
the LED Driver IC and reconnect the LED Driver IC to the BASE+2 address
outputs as per Table 3-3.

Listing 5-15 Input and Output operations using ParallelPort class.

/***
The object class created to use ports at addresses
BASE and BASE+1 has been expanded to include output
through the port at address BASE+2. The combined object
class is still named ParallelPort.
***/
#include <dos.h>
#include <conio.h>
#include <stdio.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;

5 OBJECT-ORIENTED PROGRAMMING 101

 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Inverting Most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

void main()
{
 unsigned char BASE1Data;
 ParallelPort OurPort;

 OurPort.WritePort0(0x55);
 printf("\n\nData sent to Port at BASE\n");
 getch();

 BASE1Data = OurPort.ReadPort1();
 printf("\nData read from Port at BASE+1: %2X\n",
 BASE1Data);
 getch();

 OurPort.WritePort2(0x00);
 printf("\nData sent to Port at BASE+2\n");
 getch();
}

The first line of the main() function’s body instantiates one object of type
unsigned char named BASE1Data used to store data read from the port at

5 OBJECT-ORIENTED PROGRAMMING 102

address BASE+1. The next line calls the default constructor of the object class
ParallelPort to instantiate the object named OurPort. This object has
member data and member functions to write or read data to and from all three ports
of the parallel port.

The remaining statements of the main() function carry out a number of output
and input operations. The getch() functions are used to make the program wait
for a key press to allow the user to read the screen. If the getch() statements
were omitted, the screen would scroll up or revert back to the IDE before the user
could see the results. The getch() function is not a member function of the
object OurPort. Therefore, it is not attached to this object and as such is called as
a normal function.

5.8 Summary
At the start of this chapter we developed an object class with the name
ParallelPort. This class contained only sufficient data members and member
functions to give us basic use of the port. We applied particular access attributes to
the class members and explained the importance of making proper use of these
access attributes.

Several programs were used to explain the relationship between multiple
constructors and the default constructor. The ParallelPort class was then
expanded to include use of the BASE+1 and BASE+2 addresses. The operation of
objects instantiated from this expanded class was demonstrated using a program
which transferred data to and from the interface board. Now that we have a fully
functioning ParallelPort class, we will be able to use it extensively in future
chapters.

5.9 Bibliography
Borland, Borland C++ Getting Started, Borland International, 1991.

Winston, P.H., On to C++, Addison Wesley, 1994.

Lipman, S.B., C++ Primer, Addison Wesley, 1991.

Dench, D. and B. Prior, Introduction to C++, Chapman and Hall, 1994.

Etter, D.M., Introduction to C++ - For Engineers and Scientists, Prentice Hall,
1997.

5 OBJECT-ORIENTED PROGRAMMING 103

6

Digital-to-Analog
Conversion

Inside this Chapter

Digital-to-analog conversion explained.

Generate voltages using a Digital-to-Analog
Converter (DAC).

Operational amplifier basics.

Inheritance and derived classes.

Object class for the DAC.

Access specifiers.

6.1 Introduction
Digital-to-Analog Converters (DAC) form an integral part of many automated
control systems. This chapter describes the principle of operation of a DAC and its
typical use to produce an analog voltage or current.

You will learn how new classes are derived from existing classes during the
development of software to drive a DAC. The new classes will inherit the existing
functionality, have extra functionality added, and the inherited functions will be
modified. In the course of this process, access attributes and access specifiers will
be further explained.

6.2 Digital-to-Analog Conversion
Digital-to-analog conversion is the generation of an analog voltage or current by
using a group or sequence of digital logic levels to set the state of an analog output
as shown in Figure 6-1. Some types of digital-to-analog converters (DACs) use
digital data presented to the DAC in a serial format, and others use digital data
presented in a parallel format.

Figure 6-1 Digital-to-Analog Conversion.

There are several types of digital-to-analog converter in use. Some take in a
digital pulse-train and use integration to give an analog voltage (for example,
frequency to voltage converters). Other DACs use the popular method of digital-
to-analog conversion discussed in this text like the DAC in this chapter’s project.
In order to appreciate how the DAC operates, we need to understand a little
about its main building block, the operational amplifier.

6.2.1 Operational Amplifier Basics
The operational amplifier is a fundamental building block for many analog
electronic systems. The schematic symbol for an operational amplifier (op-amp) is
shown in Figure 6-2.

Digital–to-Analog Converter

(DAC)
Analog Output

(Voltage or Current)
Digital Logic Levels

6 DIGITAL-TO-ANALOG CONVERSION

Figure 6-2 Operational amplifier (op-amp) schematic representation.

The operational amplifier component is a very high internal gain amplifier that
only needs a minute amount of current to flow through its input pins (marked with
a + and – sign), in order to function. The –ve input is referred to as the inverting
input and the +ve input is referred to as the non-inverting input. The device also
has power supply rails (normally hidden) that connect to the upper and lower
power supply voltages to power the device. When the polarity of the input voltage
differential V is positive, with the +ve input voltage higher than the –ve input
voltage, the op-amp output voltage (Vout) will be positive. Likewise the reverse
holds true when the polarity of V is negative.

Since the op-amp internal gain is very high, say 1 million, then if a 10V output
signal was to be generated, only 10/millionth of a volt is required between the two
input pins (V = 10 V, represents micro, which is 10-6). The current entering the
op-amp is extremely low, and might be say 200nA (n represents nano, 10-9).

The op-amp is a building block for various amplifier designs. The two rules
concerning its very high gain and practically zero input current allow us to evaluate
many op-amp circuits. The op-amp shown previously in Figure 6-2 has no external
components connected to it. In this state it is of no practical use, so we must
connect external components from the output to the input and take advantage of
what is known as a feedback configuration. The term feedback is used because we
are feeding the output signal back into the input of the op-amp. Now let us look at a
current-to-voltage circuit as shown in Figure 6-3, since its function is fundamental
to the operation of the DAC on the interface board.

Figure 6-3 Current-to-voltage op-amp circuit.

Vin
(1V) Ra 1K

Rf 2K

Vout

i

i

V Vout

Lower power
supply voltage

Upper power
supply voltage

107

The input voltage Vin, generates a current i which flows through the resistors Ra
and Rf as shown, generating voltage Vout. We calculate the output voltage Vout by
knowing the value of the current i and also the value of the voltage at the –ve input
pin (and of course knowing the values of the two resistors Ra and Rf).

Vout cannot fall outside the op-amp’s power supply voltage range, since the op-
amp doesn’t have any special internal circuitry to generate output voltages
exceeding that of the power supply. Most op-amps are powered from upper supply
voltages of +15V or less and lower power supply voltages of –15V or higher.
Bearing this in mind, along with the fact that the op-amp has huge internal gain,
then no matter what the output voltage of the op-amp might work out to be, the
difference in voltage between the +ve and –ve input pins (V) must be less than
say fifteen microvolts.

Vout (max) = V x Internal Gain
+/- 15V = 15 V x 106

In the above example, the output voltage, Vout, cannot exceed either supply
voltage at +/-15V, therefore V will always be less than ~15 V, assuming the op-
amp internal gain is one million.

The voltage at the –ve input pin is equal to the voltage at the +ve input pin plus
V. Since the voltage at the +ve input pin is equal to analog ground (0V, shown by

the hollow triangle symbol), and we know that the difference in voltage (V)
between the +ve and –ve input pins will always be less than 15 V, the voltage at
the –ve input pin will be less than 0V + 15 V = 15 V. This –ve input pin voltage
is so close to zero volts that we might as well call it zero volts or virtual ground.
Now that we know the –ve input pin voltage, we can calculate the current flow i
and determine the output voltage Vout.

Figure 6-4 Calculating input current i.

Current flows from higher voltages to lower voltages, therefore, the current i will
flow as shown in Figure 6-4 since Vin is at a greater voltage than the –ve input pin
of the op-amp at virtual ground (0V). With 1V at one end of resistor Ra and
‘zero’ volts at the other end, the current i is as follows:

Ra 1K

Rf 2K

Vout

i

i

‘0V’
Vin
(1V)

6 DIGITAL-TO-ANALOG CONVERSION 108

Current i = Volts / Resistance
 = (1V – 0V) / 1K
 = 1mA

Note that the symbol ‘K’ represents one thousand ohms.

Since effectively zero current flows into the op-amp input pins, all of current i must
flow through Rf, into the output pin and to the op-amp load (not shown).

Vout is equal to the voltage at the –ve input pin plus whatever the voltage is across
resistor Rf. Using V = I x R, the voltage across resistor Rf is equal to current i
multiplied by the resistance of Rf.

VRf = 1mA x 2K
 = 2V

As mentioned previously, current flows from higher voltages to lower voltages,
therefore the voltage at the left end of Rf is at a higher voltage than the voltage at
the right end of Rf. Since the left end of Rf is at 0V, the voltage difference VRf is
2V, the right end of Rf must be at –2V. Knowing that the right end of Rf is
connected to Vout, Vout must be equal to –2V.

The current i flowing through the feedback circuit must enter the junction at the op-
amp output and split, part-of this current flowing into the op-amp load (not shown,
towards Vout) and the remainder flowing into the op-amp output. How the op-amp
draws the right amount of current into its output will be understood once the
operation of negative feedback is explained.

In principle, the op-amp will draw (sink) or supply (source) sufficient current to
ensure that current i remains at a level to force the –ve input pin to ‘0V’. This
process happens automatically when a negative feedback configuration is used, as
shown in Figure 6-3 and Figure 6-4. To configure negative feedback, connect the
output voltage Vout back to the –ve input, either directly or through the use of
external components, usually resistors. Negative feedback works as follows.

If say, the input voltage Vin increases, the voltage at the –ve input will increase
slightly, increasing the small negative voltage difference between the op-amp’s +ve
and –ve inputs (V). This increased negative voltage (V) will generate an
increasingly more negative output voltage Vout, which will in-turn have the
negative effect of reducing the voltage at the –ve input pin. This generates a
decrease in V that will eventually settle to equilibrium. This process takes place
automatically and quite rapidly in the op-amp when using negative feedback.

Positive feedback, on the other hand is altogether different and does not produce a
self-correcting output voltage. Instead, the output voltage swings to the appropriate
voltage supply. Later when the polarity between the +ve and –ve inputs is reversed,
the output will swing to the opposite voltage supply. This type of feedback is used
inside voltage comparators.

Armed with an understanding of how a current-to-voltage converter circuit works,
we can move on to analyse and understand how practical DAC circuitry works.

6 DIGITAL-TO-ANALOG CONVERSION 109

6.2.2 DAC Circuit Principles
Two DAC methods will be discussed that use a group of parallel digital inputs to
generate an analog output voltage. Both methods use current-to-voltage conversion
as discussed in the preceding section. The two methods differ in the configuration
of their logic input resistor arrays. The first method discussed is the summing
amplifier DAC.

6.2.2.1 Summing Amplifier DAC
This circuit (shown in Figure 6-5) operates under the same principle as the current-
to-voltage amplifier circuit shown in Figure 6-3 and Figure 6-4 earlier. Previously
one input resistor was used to generate the current iT, whereas in this case the
summing amplifier uses four input resistors, each resistor generating its own input
current. For the summing amplifier, the individual currents flowing out of each
input resistor add together to form iT.

Figure 6-5 Summing amplifier DAC.

If all four input resistors were the same resistance value, each would be able to
contribute either zero current (logic zero input) or ¼ of the total current iT (logic-
HIGH input). Therefore, the DAC output could have the following states:

DAC Output 0V (all logic inputs at 0V)
 -1V (one logic input +5V, others 0V)
 -2V (two logic inputs +5V, others 0V)
 -3V (three logic inputs +5V, other 0V)
 -4V (all logic inputs +5V)

Having all four resistors with identical resistance will only give us five output
states with 1V steps. Knowing that four unequally weighted logic bits can form
sixteen unique numbers, we change the resistance values accordingly to achieve
sixteen unique current levels of iT. Input resistors R0, R1, R2 and R3 are chosen
such that their input resistance values differ by a power of two from one resistor to
the next.

Resistor R0 contributes the equivalent of the binary number 20, R1 is equivalent to
21 etc., as shown in Figure 6-5. The current derived from the 20 logic input will be
1/8 th that of the 23 logic input, the current from the 21 logic input will be ¼ that of

Logic Inputs
(0V or +5V)

Rf 1K

Vout

iT

R2 4K

R1 8K

R0 16K

R3 2K

20

21

22

23

6 DIGITAL-TO-ANALOG CONVERSION 110

the 23 logic input and the current from the 22 logic input will be ½ that of the 23

logic input. By using the various combinations of logic input states, sixteen
different combined current levels can be generated, resulting in sixteen different
output voltages.

This DAC method has a drawback; to implement a DAC with finer voltage
resolution (a larger number of logic input bits), requires more accurate resistor
values. For example, an 8-bit DAC (having 256 states) would need to have
resistance tolerances of much less than 1/256 in order to avoid over-stepping
between states within the whole DAC output range. Also, the actual values of these
resistors will be non-standard – more difficult to achieve. The following circuit
known as a R-2R ladder avoids these problems.

6.2.2.2 R-2R Ladder DAC
This circuit also uses current-to-voltage conversion like the Summing Amplifier
DAC. The difference between these two methods is the configuration of the input
resistor arrays.

The input voltage to the resistor array is a very stable and precise voltage reference,
marked as VREF in Figure 6-6. This is needed to allow the generation of accurate
current levels to flow through the circuit. If you examine the R-2R circuit, you will
see four switches (actually semiconductor switches), each switch individually
controlled by one of the four logic inputs. The switches connect with either the
analog ground (shown by the symbol) at 0V, or they connect with the op-amp
–ve input pin at virtual ground. The term virtual ground is used because this pin is
nearly at 0V (as described previously in Section 6.2.1). Realising that the switches
will connect with 0V in either switch position, the R-2R resistor array can be
analysed as follows.

Figure 6-6 R-2R ladder DAC.

The current flowing through the switch controlled by the least significant bit, 20 is
1/8th of the current flowing through the switch of the most significant bit, 23.
Similarly, the current through the switch controlled by the 21 bit is ¼ of the current

Logic Inputs control the ‘switches’

Rf

Vout

iT

20212223

R

2R

R

2R

R

2R

2R

2R

VREF

10 10 10 10

VREF

2
VREF

4
VREF

8

6 DIGITAL-TO-ANALOG CONVERSION 111

through the most significant bit switch, and the current through the switch
controlled by the 22 bit is ½ of the current through the switch controlled by the
most significant bit. When the switch is in the position marked ‘0’, the current
through the 2R resistor passes to analog ground and not towards the –ve input pin
of the op-amp. In the other position marked ‘1’, the current through the 2R resistor
flows towards the op-amp –ve input pin, adding to the other currents from any
other switches also in the ‘1’ position. These currents combine to become iT and
generate the output voltage in the same way that any current-to-voltage amplifier
circuit does. As mentioned previously, the positive current flowing through Rf
produces a negative voltage output. DACs will often need to have a positive output
voltage, and to achieve this, we add an inverting amplifier to reverse the polarity of
the DAC output signal. A circuit performing such a function is found on the
interface board and will be discussed shortly.

Figure 6-7 Reference voltage (VREF) loading.

There is one last point to be made concerning the R-2R ladder circuit. This circuit
has a very nice feature in that the resistance the voltage reference ‘sees’ is always
equal to a resistance value of R, no matter which position the switches are in. This
excludes the short time when the switch is in ‘mid air’ and not connected to either

R

2R

R

2R

R

2R

2R

2R

VREF

VREF

2
VREF

4
VREF

8

2R 2R R

R

2R

R

2R

R

2R R

VREF

VREF

2
VREF

4
VREF

8

R

2R

R

2R R

VREF

VREF

2
VREF

4

2R 2R R

And so on until ...

R

2R R

VREF

VREF

2

R

VREF

6 DIGITAL-TO-ANALOG CONVERSION 112

8-bit Logic
(8 lines)

DAC0800

Voltage Buffer
& Inverter

i
R

Vout

Current to
Voltage

Converter

8
D

ig
ita

l I
np

ut
s

C
ur

re
nt

 O
ut

pu
t

(s
in

ki
n g

)

contact. Voltage references or regulators have slight changes in their output voltage
as their load varies. Because the R-2R ladder circuit presents a uniform load to the
voltage reference, the output voltage of the voltage reference will remain quite
steady. Figure 6-7 demonstrates the constant resistance, R, loading on the voltage
reference – remembering that the switch ends of the 2R resistors always see zero
volts, no matter which position the switches are in.

To summarise, the R-2R ladder array has the advantage of using a simple ratio of
resistance for the entire array, the ratio of two. Also, the resistor array places a
relatively constant load on the voltage reference, resulting in superior accuracy.

6.2.3 Operation of the DAC0800
The DAC used in the interface board is the DAC0800, an 8-bit device providing a
programmable output current. We use this programmable output current with a
current-to-voltage circuit to generate a voltage output. Figure 6-8 shows a block
diagram of the DAC0800 circuit used on the interface board.

The DAC0800 produces an output current, where the current flowing through its
output pin actually flows into the DAC (sink current). To generate an analog
voltage, we need to use a current-to-voltage converter, in this case a single resistor,
R, one end connected to the DAC output pin and the other end to a reference
voltage, 0V, as shown in Figure 6-8. When current i flows through the resistor, a
voltage V (V = i x R) is generated across the resistor. Knowing that current
flows from a more positive voltage to a less positive voltage, the voltage at the end
of the resistor, R, which connects to the DAC output, will be equal to 0V + - V = -

V. With a current i equal to zero, the output voltage generated across resistor R
will be 0V.

Figure 6-8 Block diagram - Interface board DAC0800 circuit.

So we have a programmable output voltage ranging from 0V to - V, where the
actual value of V for a given digital input will be dependent on the resistance
value of resistor R. A DAC output range that always remains on the same side of

6 DIGITAL-TO-ANALOG CONVERSION 113

zero volts (the negative side in this particular case) is termed a unipolar output.
The other type of DAC output is one that which crosses between the positive and
negative sides of zero volts, and is termed a bipolar output. Figure 6-9 shows the
resistor configuration needed by the current-to-voltage converter for it to operate in
a bipolar mode.

Figure 6-9 Bipolar current-to-voltage conversion.

The output voltage (VDAC) of the bipolar current-to-voltage converter is evaluted
from the relationship:

VDAC = +5V – Voltage drop across R
 = +5V – i x R

The minus sign in the preceding equation comes from the fact that the current i
flows into the DAC0800, and that current flows from a more positive voltage to a
less positive voltage – therefore the voltage at the current-to-voltage converter will
be equal to +5V minus the voltage drop across resistor R.

As current draw i into the DAC output increases, the voltage at the DAC output
drops from +5V (all 8 logic inputs zero) to lower voltages, passing through zero
volts and into the negative voltage region, eventually reaching –5V (all logic inputs
high, and using the appropriate value for resistor R). The current-to-voltage
converter on the interface board can be configured in unipolar or bipolar mode by
fitting a link in either of two positions respectively.

Table 6-1 Current-to-Voltage Converter Output.

DAC Logic Input Unipolar mode Bipolar mode
255 -5V -5V

0 0V +5V

Table 6-1 summarises the output voltage of the current-to-voltage converter for
both unipolar and bipolar configurations of the resistor R (chosen to have the
appropriate value).

8-bit Logic
(8 lines)

DAC0800

Voltage Buffer
& Inverter

i
R

Vout

Current to
Voltage

Converter

8
D

ig
ita

l I
np

ut
s

C
ur

re
nt

 O
ut

pu
t

(s
in

ki
n g

)

+5V

VDAC

6 DIGITAL-TO-ANALOG CONVERSION 114

Usually, we expect the output voltage from a DAC to be lowest when all logic
input bits are zero and highest when all logic input bits are high (255 for an 8-bit
DAC). To meet this convention, the current-to-voltage converter output needs to be
inverted to produce +5V for all logic input bits high and 0V for all logic input bits
low when in unipolar mode. Bipolar mode should produce +5V when all logic
input bits are high and –5V for all logic input bits at zero. The Buffer and Inverter
circuit block shown ahead in Figure 6-11 and Figure 6-12 perform this voltage
inversion.

A typical inverter circuit will need to draw some current i through its input as
shown in Figure 6-10. If this current draw is significant, it will adversely affect the
voltage generated across R. This occurs because we now have two currents i and i
flowing through R with i generating an error voltage VERROR = i x R. The total
voltage across resistor R is V = (i + i) x R, equal to the correct voltage (i x R),
plus VERROR.

Figure 6-10 Inverter circuit affecting voltage V.

To ensure that we do not draw a significant current into the inverter circuit, we
precede it with a Voltage Buffer circuit. The Voltage Buffer draws a minute
amount of current (~200 nA), not enough to interfere with the accuracy of the DAC
current-to-voltage converter.

6.2.3.1 The Voltage Buffer Circuit
This circuit performs the function of buffering the output voltage of the DAC
current-to-voltage converter as mentioned previously. The Buffer uses a special op-
amp configuration that draws almost zero current. This circuit is shown in Figure
6-11.

8-bit Logic
(8 lines)

DAC0800

Inverter Only

i
R

Vout

Current to
Voltage

Converter

8
D

ig
ita

l I
np

ut
s

C
ur

re
nt

 O
ut

pu
t

(s
in

ki
n g

) i

i

6 DIGITAL-TO-ANALOG CONVERSION 115

Figure 6-11 Voltage Buffer circuit.

Remember that the current flowing into an op-amp input pin is effectively zero,
therefore the current flowing from the DAC0800 current-to-voltage converter
circuit and into the op-amp +ve input pin is zero. This op-amp is configured using
negative feedback. The output of the op-amp (VBUFFER) will be driven to ensure
there is effectively zero voltage between its –ve and +ve input pins. Therefore, the
output voltage of the op-amp will follow or buffer the input voltage (from the
DAC) present at its +ve input.

6.2.3.2 The Voltage Inverter Circuit
The DAC output circuitry produces a falling voltage as the input bit number value
increases (see Table 6-1). The Voltage Inverter circuit inverts the voltage signal
generated by the DAC current-to-voltage converter circuit, to give an increasing
output voltage as the DAC input increases in value. We have already examined a
circuit that produces an output voltage with opposite polarity to that presented to its
input: the current-to-voltage op-amp circuit. That circuit performs voltage
inversion and also amplification, where the amplification or gain is equal to the
ratio of the resistor Rf to Ra. If we make Rf equal to Ra then we will have a gain of
unity – now we have an inverter as shown in Figure 6-12. The circuit analysis of
the inverter is identical to that carried out in Section 6.2.1.

Figure 6-12 Op-amp Voltage Inverter circuit.

DAC0800 Output Voltage
(from current-to-voltage converter)

VBUFFERi = 0

i = 0

Vin
(- 1V) Ra 10K

Rf 10K

Vout
(+1V)

i

i

6 DIGITAL-TO-ANALOG CONVERSION 116

DAC
Output

(V or A)

Digital Input

Ideal Input/Output Relationship
Offset Error
Gain Error

6.2.4 DAC Characteristics and Specifications
The DAC has some basic characteristics that specify its performance. These
include settling time, non-linearity and full-scale error. The settling time is a
measure of how fast the output of the DAC can change and settle to within half of a
least significant bit (LSB - the smallest change in output voltage, caused by the 20

logic input). The DAC0800 has a typical settling time of 100 ns.

The linearity refers to the maximum deviation from the converter’s ideal
input/output relationship – being the relationship between the DAC output value
and the DAC input value, over the whole input range of the converter. Ideally, this
relationship should be a straight line, the output increasing in value as the input
increases. Figure 6-13 shows an ideal input/output relationship along with two
independent errors, the offset error and the gain error.

The offset error is the voltage (or current) present at the output of the DAC when
the digital input is zero. Ideally the offset error should be zero. Gain error occurs
when the output of the DAC doesn’t increase by the correct amount for an increase
in the digital input.

Figure 6-13 DAC Input/Output Relationship.

The DAC0800 used in the interface board has the following relevant specifications.
Its non-linearity is 0.1% over its rated temperature range (meaning that it has a
linearity of 99.9%) and its full-scale error is 1 LSB (least significant bit), meaning
that its maximum output value will be within 1 LSB of the true value
corresponding to the ideal transfer function (input/output relationship).

6.3 Programming the Digital-to-Analog
Converter
At the end of the previous chapter, we developed an object class named
ParallelPort. This object has the capability to input and output data using all
three addresses of the PC’s parallel port. It can easily be used to drive an 8-bit
Digital-to-Analog Converter. Only partial functionality of the ParallelPort

6 DIGITAL-TO-ANALOG CONVERSION 117

class is needed to drive the DAC on the interface board. The DAC just needs to
receive an 8-bit number from the PC. This can be done by sending an 8-bit number
from the PC to the interface board using the port at address BASE. This is an output
port with eight parallel signals we can connect to the interface board. Since we
already have ParallelPort as a completely packaged object class, we can use
it to drive the DAC.

The rest of the chapter will progress as follows. First, we will develop a program
using the ParallelPort object to drive the DAC. When this program is
executed, the DAC system will generate an analog voltage proportional to the 8-bit
number sent to it. We will then proceed to learn about inheritance using an exercise
in which a new class is derived to represent the DAC. This new object may require
extra functionality that is specific to the DAC. We will then turn our attention to
restrictions imposed by various access attributes. The proper use of access
attributes will be described in detail. We will proceed through several different
versions of the same program, each time strengthening code reuse. The final
program presented will then be used in future chapters as the most appropriate
object-oriented program to drive the DAC.

The first program to drive the DAC is given in Listing 6-1. The class definition and
the member function definitions of the ParallelPort object class are exactly
the same as given in the previous chapter. In the main() function, an object is
instantiated using the ParallelPort class and it is given the name D_to_A.
Then the WritePort0() function of the object is used repeatedly to send
different data to the parallel port each time. Following each WritePort0()
function is a getch() function. These getch() functions force the program to
wait for a key press before executing the next statement. This will allow you time
to carry out measurements on the interface board to verify whether or not the
correct analog voltage has been generated by the DAC system.

Table 6-2 Connections for the DAC.

BASE Address
(Buffer IC, U13)

DAC0800
(U8)

D0 D0 (12)
D1 D1 (11)
D2 D2 (10)
D3 D3 (9)
D4 D4 (8)
D5 D5 (7)
D6 D6 (6)
D7 D7 (5)

Before running your DAC programs, configure the interface board as follows.
Ensure that an operational 9V battery is connected to the terminal block (J14). Fit

6 DIGITAL-TO-ANALOG CONVERSION 118

the jumper on the interface board across the two-pin header position marked
LINK1, to select unipolar mode (0V to +5V). When the connections are completed
according to Table 6-2, the 8 bits of the port at address BASE of the parallel port
will be connected to the 8-bit input of the DAC.

Listing 6-1 Digital-to-Analog Conversion using the ParallelPort object class.

/***
This program uses the ParallelPort object developed in the
previous chapter to write a byte of data to the Digital to
Analog Convertor (DAC). The DAC generates an analog voltage
proportional to the value of the data byte it receives.
***/
#include <iostream.h>
#include <conio.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;
 public:
 ParallelPort(); // default constructor
 ParallelPort(int baseaddress); // constructor
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);

6 DIGITAL-TO-ANALOG CONVERSION 119

}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;

 return InDataPort1;
}

void main()
{
 ParallelPort D_to_A;

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(0);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(32);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(64);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(128);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(255);
}

6 DIGITAL-TO-ANALOG CONVERSION 120

The analog output voltage can be measured at the pin on the interface board
labelled VDAC, which is connected to pin 7 of the operational amplifier LM358
(U10B). Each time you press a key, the program will output a slightly higher 8-bit
value and the DAC will produce a corresponding higher analog voltage. Read the
analog voltage by connecting a voltmeter between the pin marked VDAC on the
interface board and a ground pin.

As described earlier, additional circuitry has been provided on the interface board
to facilitate both unipolar and bipolar output from the DAC. Move the jumper to
the position marked LINK2 on the interface board and re-execute the program to
check the bipolar operation of the DAC system.

6.4 Derivation of Object Classes
In the last example, we used the ParallelPort object class to operate the DAC.
This object is designed for general-purpose use of the parallel port. The
ParallelPort object class is more than capable of handling the simple
requirements of the DAC. However, using the ParallelPort object class for
digital-to-analog conversion is not particularly appropriate. Instead, it is desirable
to create an object class, which at least has a name that suits digital-to-analog
conversion. This is an ideal situation to derive a class. We are for now merely
applying a change in name which will reduce the complexity associated with the
derivation of the new class. As we progress through the book we will confront
more involved class derivations.

One of the main strengths of object-oriented programming is the re-useability of
the program segments developed in the past. The C++ language has excellent
mechanisms in place to expand the capabilities of an existing class and thereby to
form a new super class. As described in Chapter 4, these super classes are known
as derived classes. To be able to derive a class, a base class must exist. The derived
classes are meant for more specific purposes than the base class. In our case, the
general-purpose object class ParallelPort can be considered as the base class.
The new class to be created needs to be more specific to suit the Digital-to-Analog
Converter. Listing 6-2 shows the simplest way to create the new class.

Listing 6-2 Derivation of DAC class.

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();

6 DIGITAL-TO-ANALOG CONVERSION 121

 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

class DAC : public ParallelPort
{
};

The class derivation is kept simple so that we can direct our attention to the
principles of derivation of classes rather than the actual functionality of the DAC
object class. The class definition for the ParallelPort object class is identical
to that given in Chapter 5. The only new part in the above listing is the class
definition for the object type DAC shown in bold typeface. The first line of the new
object class definition is:
class DAC : public ParallelPort

Here, we derive a new class named DAC, using the existing class ParallelPort
as the base class. The keyword public before ParallelPort, is referred to as
an access specifier. We will return to access specifiers after considering the
member data and member functions we inherited from the base class.

Inherited members of the DAC class
Here, the word inheritance is used to describe the fact that the derived class inherits
all the member data and member functions of the base class. If you now take a
closer look at the DAC object class, you will see that the body of the DAC class
definition is empty. It was explained in Chapter 5 that if we do not provide our own
constructor and destructor for the object class, the compiler will provide them.
Therefore, although not visible, the DAC class has a default constructor and a
default destructor provided by the compiler. Also, because the DAC class has been
derived from the ParallelPort class, it has inherited all the members (both
data and functions including constructors) of the ParallelPort class.

If we list the data members of the DAC class, they are as follows:

unsigned int BaseAddress;
unsigned char InDataPort1;

The member functions of the DAC class are as follows:

 DAC(); // Compiler-generated constructor (hidden).
ParallelPort();
ParallelPort(int baseaddress);

 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();

6 DIGITAL-TO-ANALOG CONVERSION 122

 ~ParallelPort(); // Inherited compiler-generated
 // destructor (hidden).

 ~DAC(); // Compiler-generated destructor (hidden).

NOTE

Note that we did not include destructors in the class definition for the
ParallelPort class and also in the class definition for the DAC class.
Therefore,the compiler will generate a hidden default destructor for each of these
classes as listed above. All compiler-generated constructors and destructors are
described as hidden to the programmer because they are invisible in the source
code. See Chapter 8 for a more detailed description of destructors.

The DAC class is equivalent to the ParallelPort class except that it has a
default constructor and destructor provided by the compiler. It is clear that this
particular class derivation is just a name changing exercise since we did not expand
the capability of the DAC class. It can only do as much as the ParallelPort
class and no more. However, if we need to enhance the power of the DAC class, it
is an easy matter to add member data and member functions to the new DAC class
in its class definition and then provide the definitions of the added functions.

Instantiating DAC objects (calling constructors)
The question to consider is “Can we use this class?” To instantiate an object of
type DAC, we must call the constructor of the DAC class. It would be called in the
declaration statement for the new object named D_to_A as shown below:

DAC D_to_A;

When the constructor of a derived class is first called, it will call the constructor of
its inherited base class that takes whatever parameters it is being passed from the
derived class constructor (this will be further explained ahead). The base class
constructor instantiates its members and completes whatever tasks it has been
coded to do. When it is finished it returns program execution back to the start of
the body of the derived class constructor. The derived class constructor then
instantiates its members and completes whatever tasks it has been coded to do.

In the case of this particular program, the DAC class does not have a programmer-
generated constructor, so the compiler adds its own default constructor (takes no
parameters). This is the constructor that is called when the above statement is
executed. Before it performs its own tasks, it will call its inherited base class
constructor. Because the derived class constructor is not passing an argument to the
constructor of the base class, the constructor ParallelPort() and not the
constructor ParallelPort(int baseaddress) will be called to allocate
memory for the inherited base class members. If you look at the body of this
constructor in Listing 6-1 you will see that it also initialises BaseAddress to the

6 DIGITAL-TO-ANALOG CONVERSION 123

value 0x378, (and InDataPort1 to zero). Then the DAC class’s default
constructor instantiates memory for whatever members are added to it (none) and
executes its empty body.

The public function WritePort0() has been inherited from the
ParallelPort class. Therefore, it can be used to send the data (in this case,
255) to the parallel port at the initialised base address value (0x378) using the
following statement:
D_to_A.WritePort0(255);

There is a problem with this program – the DAC class does not allow the user to
specify a value for the BASE address of the parallel port. This is inadequate for
those users that have their parallel ports at a different BASE address than 0x378.
Therefore, we need some mechanism to provide the option to initialise the data
member variable BaseAddress to a suitable value. Normally the best way to do
this is to use the constructor. Similar to the early stages when developing the
ParallelPort object, the compiler-generated constructor for the DAC class is
not adequate for our application. We must provide our own constructors and code
them in a manner that allows us to specify the value of BaseAddress. An
improved DAC class is given in Listing 6-3.

Listing 6-3 An improved DAC class.

class ParallelPort
{
 private:

 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

class DAC : public ParallelPort
{
 public:
 DAC(); // default constructor.
 DAC(int baseaddress); // constructor.
};

6 DIGITAL-TO-ANALOG CONVERSION 124

This time we have used a similar approach as for the ParallelPort class and
declared two constructors for the DAC class. Note that the compiler will not
provide a default constructor because we have provided the constructor DAC(int
baseaddress) shown in Listing 6-3. Therefore, we must provide our own
default constructor DAC().

We can now define these constructors by providing their statements which will set
the parallel port’s BASE address by initialising inherited private data member
BaseAddress. The first attempt to define the constructors is given in Listing 6-4.

Listing 6-4 A failed attempt to define the constructor.

DAC::DAC() // Does work.
{
}

DAC::DAC(int baseaddress)
{
 BaseAddress = baseaddress; // Fails to work!
}

The following statement will use the DAC class’s programmer-generated default
constructor DAC() to instantiate an object of type DAC named D_to_A:

DAC D_to_A;

This default constructor of the DAC class will operate in the same way that its
compiler-generated default compiler did. It will first call the inherited base class
constructor that also takes no arguments - the base class’s default constructor
ParallelPort(). This constructor will instantiate the inherited base class
members, initialise the private data member InDataPort1 to 0, and initialise the
private data member BaseAddress to the value 0x378. Then the DAC class’s
default constructor will be executed to instantiate whatever members have been
added to it (none), followed by executing its body – in this case with nothing in it.

The derived class DAC inherits the members of its base class ParallelPort but
does not have access to the private members of its inherited base class (regardless
of the acess specifier used – public in this case). This means that the constructor
DAC(int baseaddress) shown in Listing 6-4 will not be able to access the
inherited base class data member BaseAddress (declared as private). Therefore,
it cannot be compiled and so cannot work!

The solution in this situation is as follows. Instead of a member function from the
derived DAC class trying to make an illegal attempt to directly access a private data
member inherited from its base class ParallelPort, a call can be made to a
public function inherited from the base class that can change the private data

6 DIGITAL-TO-ANALOG CONVERSION 125

member BaseAddress of its class as shown in Figure 6-14. A proper constructor
definition for the DAC class is given in Listing 6-5.

Figure 6-14 Accessing the inherited private data member BaseAddress.

Listing 6-5 Corrected definition of the constructor of the DAC class.

DAC::DAC()
{
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
}

The part-line of bold font code shown in Listing 6-5 is new and is the mechanism
that allows the value of private data member BaseAddress to be set to the value
of the argument passed at the time of instantiating the DAC object named D_to_A:

DAC D_to_A(0x3BC);

When the program encounters this statement, it calls the appropriate constructor
from the DAC class. Because the parallel port’s BASE address is given as an
argument when instantiating the D_to_A object, the constructor DAC(int

Parallel Port
 private
 BaseAddress
 InDataPort1
 public
 ParallelPort ()
 ParallelPort (baseaddress)
 .
 .

DAC
 public
 DAC ()
 DAC (baseaddress)

Derived Class Members

Case (a)

Inherited Base Class Members

Derived Class

DAC
 public
 DAC ()
 DAC (baseaddress)

Derived Class Members

Case (b)

Parallel Port
 private
 BaseAddress
 InDataPort1
 public
 ParallelPort ()
 ParallelPort (baseaddress)
 .
 .

Inherited Base Class’s Members

Derived Class

6 DIGITAL-TO-ANALOG CONVERSION 126

baseaddress) will be called, and not the default constructor DAC(). When
first called, the constructor calls the appropriate constructor of the inherited base
class that takes the same arguments being passed to it. The bolded part-line:
DAC::DAC(int baseaddress) : ParallelPort(baseaddress)

informs the compiler that the derived class constructor DAC(int
baseaddress) is to pass the parameter baseaddress to the inherited base
class constructor ParallelPort(baseaddress). This base class constructor
will instantiate its members and then initialise its private data member
BaseAddress to be equal to the argument passed to the parameter
baseaddress (and initialise InDataPort1 to zero). Immediately following
this action, the constructor DAC(int baseadress) will be executed to
instantiate its added members (none) and then complete its tasks contained within
its empty body.

This is how to initialise the inaccessible private data member BaseAddress
inherited from the ParallelPort class - with minimum code thanks to
inheritance.

Now we can turn our attention to using this object class in a program to carry out
digital-to-analog conversion. The complete program is shown in Listing 6-6.
Instead of instantiating an object of type ParallelPort, this program
instantiates an object of type DAC. The operation of the program is identical to the
one shown in Listing 6-1.

Listing 6-6 The use of the DAC class for Digital-to-Analog Conversion.

/***
The new class DAC is used in the main() function to
sequentially write several bytes of data to the Digital
to Analog convertor.
***/
#include <iostream.h>
#include <conio.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);

6 DIGITAL-TO-ANALOG CONVERSION 127

 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class DAC : public ParallelPort
{
 public:
 DAC();
 DAC(int baseaddress);
};

DAC::DAC()
{

6 DIGITAL-TO-ANALOG CONVERSION 128

}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
}

void main()
{

DAC D_to_A;

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(0);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(32);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(64);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(128);

 cout << "Press a key ... " << endl;
 getch();
 D_to_A.WritePort0(255);
}

6.5 Adding Members to Derived Classes
Having considered a simple class definition to understand the principles of
inheritance and the derivation of new classes, we can now proceed to add extra
functionality to the derived class. In the next example program, the DAC class has
had a data member and a member function of its own added. The data member will
remember the data last output to the DAC. The member function provides an
interface to the outside world, allowing any function to query the last value output
to the DAC. The DAC class will have a modified version of the inherited function
WritePort0() to enable it to store the last output value. We will now see how
to carry out the following:

1. Add new members to a derived class.

6 DIGITAL-TO-ANALOG CONVERSION 129

2. Modify an inherited function.

The new DAC class definition and its member function definitions are given in
Listing 6-7. Note that in this listing we have re-declared the function
WritePort0() as a member function of the DAC class. The C++ language
requires us to do this so the body of the inherited function WritePort0() can be
changed to suit our requirements. See Section 6.5.2 for additional details.

Listing 6-7 The DAC class with new members added.

class DAC : public ParallelPort
{
 private:

unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);
 void WritePort0(unsigned char data);
 unsigned char GetLastOutput();
};

DAC::DAC()
{

LastOutput = 0;
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{

LastOutput = 0;
}

void DAC::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data); // Will not work!
 LastOutput = data;
}

unsigned char DAC::GetLastOutput()
{
 return LastOutput;
}

The private data member LastOutput is added to the derived class DAC for the
purpose of storing the value output by the WritePort0() function. A member

6 DIGITAL-TO-ANALOG CONVERSION 130

function named GetLastOutput() is also added to the derived class. It returns
the value stored in LastOutput. Therefore, the only statement within the body of
the GetLastOutput() function is:

return LastOutput;

Any function in the program that requires the value of the last data number output
to the DAC (from the port at address BASE) must call the DAC class’s public
function GetLastOutput(). This is the only way to access the value stored in
the private data member LastOutput and ensures that functions outside the DAC
class have no direct access to it. Once again, this demonstrates the controlled
access to private data of a class by an object-oriented program.

Both constructors have been modified to initialise LastOutput to 0 by including
the statement:
LastOutput = 0;

Therefore, at the time of instantiating a DAC object, the constructor will initialise
the new data member LastOutput to 0.

We have modified the WritePort0() function in order to store the latest value
output to the DAC by adding the line:
LastOutput = data;

However, the definition of the WritePort0() function given in Listing 6-7 will
fail to compile. This is because the WritePort0() function of the derived class
DAC is trying to use the inherited data member BaseAddress which is private to
the base class. Although the private data of the base class is inherited, the derived
classes cannot access this private data as shown in Figure 6-15.

One means to allow access to BaseAddress is by relaxing its access attributes.
This can be done by declaring BaseAddress in the base class with protected
access. Then BaseAddress can be accessed by all functions of all derived
classes provided the classes are derived using a public or protected base
class access specifier. Access specifiers are described in more detail ahead in
section 6.5.1. The modified class definition of the base class is given in Listing 6-8.

NOTE

Declare variables as private unless you plan to derive other classes using the
current class as a base class. When you want to use the current class as a base
class to derive new classes, carefully determine the variables of the current class
you would want the derived class to have access to. Declare only these variables
as protected in the current class.

6 DIGITAL-TO-ANALOG CONVERSION 131

Figure 6-15 Private and protected access specifiers.

Listing 6-8 Base class ParallelPort - BaseAddress as protected data member.

class ParallelPort
{
 protected:
 unsigned int BaseAddress;

 private:
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

Parallel Port
 private
 BaseAddress
 InDataPort1
 public
 ParallelPort ()
 .
 .
 .

DAC
 private
 LastOutput
 public
 DAC ()
 DAC (baseaddress)
 WritePort0 ()
 GetLastOutput ()

Derived Class Members

Inherited Base Class Members

Derived Class

DAC
 private
 LastOutput
 public
 DAC ()
 DAC (baseaddress)
 WritePort0 ()
 GetLastOutput ()

Derived Class Members

Case (a) Case (b)

Parallel Port
protected

 BaseAddress
 private
 InDataPort1
 public
 ParallelPort ()
 .
 .

Inherited Base Class’s Members

Derived Class

6 DIGITAL-TO-ANALOG CONVERSION 132

class DAC : public ParallelPort
{
 private:
 unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);
 void WritePort0(unsigned char data);
 unsigned char GetLastOutput();
};

A program that uses the class definition shown above is given in Listing 6-9.

6.5.1 Access specifiers
Consider the line:
class DAC : public ParallelPort

The keyword public in this line is an access specifier. Access specifiers change
the access attributes as follows. The protected variables of the ParallelPort
class can be accessed by the member functions of the DAC class, if and only if, the
DAC class is derived from ParallelPort using a public or protected
base class access specifier. Access specifiers can also be private. Figure 6-16
shows how the access specifiers determine access attributes of inherited members.

Access Specifier public
When deriving a class using a public base class access specifier, all inherited
public members of the base class will become public members of the derived
class, all inherited protected members of the base class will become
protected members of the derived class. All inherited private members will
remain private to the base class, and so the derived class cannot access them.

Access Specifier protected
When deriving a class using a protected base class access specifier, all
inherited public and protected members of the base class will become
protected members of the derived class. All inherited private members will
remain private to the base class, and so the derived class cannot access them.

Access Specifier private
When deriving a class using a private base class access specifier, all inherited
public and protected members of the base class will become private
members of the derived class. All inherited private members will remain
private to the base class, and so the derived class cannot access them.

6 DIGITAL-TO-ANALOG CONVERSION 133

Pr
iv

at
e

ac
ce

ss

sp
ec

ifi
er

Private

Private

Private

Protected

Public

Pr
ot

ec
te

d
ac

ce
ss

 sp
ec

ifi
er

Protected

Protected

Private

Protected

Public

Pu
bl

ic
 a

cc
es

s
sp

ec
ifi

er
No access

Protected

Public

Private

Protected

Public

BASE CLASS DERIVED CLASS

No access

No access

Figure 6-16 Access specifiers determine access attributes of derived class members.

6.5.2 Polymorph Functions
The attempt to redefine the member function WritePort0() in Listing 6-9 is
quite legitimate. However, WritePort0() is a function the DAC class inherited
from the base class ParallelPort. To allow derived classes to redefine
inherited functions, the inherited functions must be explicitly included in the
derived class definition as done in Listing 6-9 (and Listing 6-7). In this example,
there are two WritePort0() functions: one of them belonging to the
ParallelPort class; and the other belonging to the DAC class. The existence of
functions of the same name throughout a class hierarchy is termed polymorphism.
These functions not only have the same name, but also the same number of
parameters, same types of parameters, and the same sequence of parameters.

The declaration of the DAC class is given in Listing 6-8. Despite the DAC class
inheriting the function WritePort0() from the base class ParallelPort, it
is explicitly coded again in the DAC class. This allows us to redefine the body of
the WritePort0() function to suit the needs of the DAC class.

6 DIGITAL-TO-ANALOG CONVERSION 134

NOTE

There is a clear difference between the term polymorphism and overloading.
Overloaded functions also have the same function name. They differ in the
number or type of parameters passed to the functions. In addition, overloaded
functions do not need to be member functions.

The complete program, including the class hierarchy that can be compiled without
errors is given in Listing 6-9.

Listing 6-9 Digital-to-analog conversion with the expanded DAC object.

/***
In this program, the compilation error has been
eliminated by changing the access attribute of
BaseAddress in the base class (ParallelPort) from
private to protected. Now the functions of the publicly
derived class can access the inherited BaseAddress.
This accessibility is only available to the derived
classes of the base class and to the base class
itself. The function WritePort0(), which is re-declared
in the derived class, can now be modified without any
compilation errors.
***/
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

class ParallelPort
{
 protected:
 unsigned int BaseAddress;

 private:
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);

6 DIGITAL-TO-ANALOG CONVERSION 135

 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class DAC : public ParallelPort
{
 private:
 unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);
 void WritePort0(unsigned char data);

6 DIGITAL-TO-ANALOG CONVERSION 136

 unsigned char GetLastOutput();
};

DAC::DAC()
{
 LastOutput = 0;
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
 LastOutput = 0;
}

void DAC::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
 LastOutput = data;
}

unsigned char DAC::GetLastOutput()
{
 return LastOutput;
}

void main()
{
 DAC D_to_A;

 D_to_A.WritePort0(0);
// printf("\nDAC byte:%3d ", D_to_A.LastOutput); // Does
 // not work, why?
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(32);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage & then press a key" << endl;
 getch();

 D_to_A.WritePort0(64);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

6 DIGITAL-TO-ANALOG CONVERSION 137

 D_to_A.WritePort0(128);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(255);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();
}

In the above program, the constructor DAC() is called at the time of instantiating
the DAC class object D_to_A. Referring to the function definition of the default
DAC() constructor; it makes a call to the default constructor of the class
ParallelPort before entering the body of the DAC() constructor. The default
constructor of the ParallelPort class will initialise BaseAddress to 0x378
(and set InDataPort1 to 0). Then execution of the body of the constructor
DAC() begins. It will initialise the value of the DAC class’s private data member
LastOutput to 0.

Note that the member function GetLastOutput() is called when the value of
LastOutput needs to be printed onscreen. This needs to be done because the
printf() function does not have direct access to the private data member
LastOutput.

The definition of the WritePort0() function can be modified slightly to revert
the access attribute of BaseAddress back to private for the following
reasons. Consider the function WritePort0() from Listing 6-9 reproduced in
Listing 6-10.

Listing 6-10 WritePort0() function of the DAC class.

void DAC::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
 LastOutput = data;
}

The only time BaseAddress is accessed is when the data is sent out the port.
The polymorphic function WritePort0() of the ParallelPort class can do
this. It has no problem in accessing BaseAddress since the function and the data
are in the same class. It is possible to call the polymorphic function
WritePort0() of the ParallelPort class from inside the polymorphic
function WritePort0() of the DAC class by using the scope resolution operator;

6 DIGITAL-TO-ANALOG CONVERSION 138

the double colon (::). This process is shown in Figure 6-17 and is implemented by
modifying the fragment of code from Listing 6-10 to become that given in Listing
6-11.

Figure 6-17 Use of inherited polymorphic functions (BaseAddress private again).

Listing 6-11 Calling a polymorphic function of a base class.

void DAC::WritePort0(unsigned char data)
{

ParallelPort::WritePort0(data);
 LastOutput = data;
}

In the ParallelPort class definition, the access attribute of the data member
BaseAddress can now be set back to private as shown in Figure 6-17. The
new and preferred program is given in Listing 6-12.

Parallel Port
 private
 BaseAddress
 InDataPort1
 public
 ParallelPort ()
 WritePort0 (data)
 .
 .
 .

DAC
 private
 LastOutput
 public
 DAC ()
 DAC (baseaddress)
 WritePort0 ()
 GetLastOutput ()

Derived Class Members

Inherited Base Class Members

Derived Class

DAC
 private
 LastOutput
 public
 DAC ()
 DAC (baseaddress)
 WritePort0 ()
 GetLastOutput ()

Derived Class Members

Case (a) Case (b)

Parallel Port
 private
 BaseAddress
 InDataPort1
 public
 ParallelPort ()
 WritePort0 ()
 .
 .
 .

Inherited Base Class’s Members

Derived Class

6 DIGITAL-TO-ANALOG CONVERSION 139

Listing 6-12 Use of polymorphic functions.

/***
In this program, the access attribute of the data
member BaseAddress has been changed back to private.
BaseAddress is accessed via the polymorphic WritePort0()
function of the base class, which can access BaseAddress.
***/
#include <iostream.h>
#include <stdio.h>
#include <conio.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{

6 DIGITAL-TO-ANALOG CONVERSION 140

 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class DAC : public ParallelPort
{
 private:
 unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);
 void WritePort0(unsigned char data);
 unsigned char GetLastOutput();
};

DAC::DAC()
{
 LastOutput = 0;
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
 LastOutput = 0;
}

void DAC::WritePort0(unsigned char data)
{

ParallelPort::WritePort0(data);
 LastOutput = data;
}

unsigned char DAC::GetLastOutput()
{
 return LastOutput;

6 DIGITAL-TO-ANALOG CONVERSION 141

}

void main()
{
 DAC D_to_A;

 D_to_A.WritePort0(0);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(32);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(64);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(128);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

 D_to_A.WritePort0(255);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();
}

Having learnt this elegant means of manipulating private data of a base class from
inside a derived class, we can complete our improvements to the DAC class by
changing the name of the WritePort0() function of the DAC class to something
more appropriate. Let us choose the name SendData() as a replacement name
for the function WritePort0() of the DAC class.

The class definition and the complete program to carry out the exact same tasks as
the program in Listing 6-12, is given in Listing 6-13. We will be using this final
version of the DAC class when we need to use the DAC system on the interface
board in future chapters.

6 DIGITAL-TO-ANALOG CONVERSION 142

Listing 6-13 Replacing WritePort0() of DAC class by SendData().

/***
In this program, the Function WritePort0() of the DAC
class is given the new name SendData() which is more
appropriate for the DAC class.
***/
#include <iostream.h>
#include <stdio.h>
#include <conio.h>
#include <dos.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{

6 DIGITAL-TO-ANALOG CONVERSION 143

 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class DAC : public ParallelPort
{
 private:
 unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);

void SendData(unsigned char data);
 unsigned char GetLastOutput();
};

DAC::DAC()
{
 LastOutput = 0;
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
 LastOutput = 0;
}

void DAC::SendData(unsigned char data)
{
 ParallelPort::WritePort0(data);
 LastOutput = data;
}

unsigned char DAC::GetLastOutput()
{
 return LastOutput;

6 DIGITAL-TO-ANALOG CONVERSION 144

}

void main()
{
 DAC D_to_A;

 clrscr(); // clear screen

D_to_A.SendData(0);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

D_to_A.SendData(32);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

D_to_A.SendData(64);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

D_to_A.SendData(128);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();

D_to_A.SendData(255);
 printf("\nDAC byte:%3d ", D_to_A.GetLastOutput());
 cout << " Measure voltage and press a key" << endl;
 getch();
}

6.6 Summary
The operational amplifier, discussed in this chapter, is the building block for many
analog electronic systems. This device is used in conjunction with the interface
board DAC0800 IC to form a complete digital-to-analog voltage converter system.
Basic principles of two types of DAC circuits have been discussed including DAC
characteristics and specifications.

In this chapter the important concepts of inheritance and polymorphism have been
explained. How various access attributes interact with each other, and how various

6 DIGITAL-TO-ANALOG CONVERSION 145

access specifiers affect the access attributes has also been described. We also
learned how to use the scope resolution operator to call a polymorphic function
from a base class. The DAC object created at the end of the chapter has all the
functionality to drive the Digital-to-Analog Converter, and protects the member
data of both the base class and the derived class at private level.

6.7 Bibliography
NS DATA CONVERSION/ACQUISITION Databook, National Semiconductor
Corporation, 1984.

Bentley, J., Principles of Measurement Systems, Second edition, Longman
Scientific & Technical, Essex, 1988.

Horowitz, P. and Hill, W., The Art of Electronics, Cambridge University Press,
Cambridge, 1989.

Loveday, G., Microprocessor Sourcebook, Pitman Publishing Limited, London,
1986.

Savant, C.J., et al., Electronic Design Circuits and Systems, Second Edition,
Benjamin-Cummings, Redwood City, 1987.

Webb, R.E., Electronics for Scientists, Ellis Horwood, New York, 1990.

Wobschall, D., Circuit Design for Electronic Instrumentation, McGraw-Hill, 1987.

Lafore, R. Object Oriented Programming in MICROSOFT C++, Waite Group
Press, 1992.

Wang, P.S., C++ with Object Oriented Programming, PWS Publishing, 1994.

Pohl, I., Object Oriented Programming Using C++, Benjamin Cummins, 1993.

Johnsonbaugh, R. and M. Kalin, Object Oriented Programming in C++, Prentice
Hall, 1995.

Barton, J.J. and L.R. Nackman, Scientific and Engineering C++ - An Introduction
with Advanced Techniques and Examples, Addison Wesley, 1994.

6 DIGITAL-TO-ANALOG CONVERSION 146

7

Driving LEDs

Inside this Chapter

Iterative loops.

Conditional Branching.

Object classes for Driving LEDs.

Arrays.

Default actual arguments to functions.

Pointers.

Dynamic memory allocation.

7.1 Introduction
In this chapter we will first explain how to apply the widely used C/C++
constructs such as iterative loops and conditional branching. We will then discuss
the use of pointers that are employed extensively in many C++ programs.
Knowledge of pointers is essential when using dynamic memory allocation and
virtual functions as discussed in the next chapter. You will gain a familiarity with
pointers when they are used to scan an array of numbers. These numbers will then
be used to light LEDs on the interface board to visualise the array scanning
operation.

7.2 Iterative Loops

7.2.1 The for Loop
The for loop is an iterative loop. It executes one or more statements repeatedly.
In general, a for statement takes the form shown in Figure 7-1. The braces in the
for statement are essential only if the body has a compound statement. If the body
is a single statement, the braces may be used but are not essential.

C++ Compound statement

A Compound statement or block is a number of single statements grouped
together between matching braces ({}).

Figure 7-1 An example of a for loop.

Three expressions are enclosed within the pair of parentheses belonging to the for
loop. The first of these statements is:

for(i = 0; i < 10000; i++)
{

†statements
}

The body of the for loop
(braces are necessary if
the body has more than
one statement).

Initialising expression Test expression Incremental Expression

† statements must be replaced by proper C++ statements.

7 DRIVING LEDS

i = 0;

This expression is executed only once at the start of the for statement and is
known as the initialising expression. The initialising expression can be quite
complex. It may be used to initialise a number of variables. In general, these
variables are known as loop counters. In the preceding example, the value of i is
used to keep a count of the number of times the for loop is executed; hence the
name loop counter. In C++, the initialising expression may even include variable
declarations (e.g. int i = 0;). Note that if the initialising expression is omitted
the semicolon must still be used.

The second expression:
i < 10000;

is known as the test expression. This expression is evaluated just before the body of
the for loop is executed. The result of evaluating this expression is considered in a
logical sense. That is, it will be tested to determine whether the expression
evaluates to true (one) or false (zero).

C++ true or false

A program that is given any values that are zero are considered to be false; non-
zero values are considered to be true.
When a program evaluates a logical expression, if the condition is true the result
will be 1. If the condition is false the result will be zero.

In this particular case, the test expression tests whether the value of i is less than
10000. If the value of i is less than 10000 the expression evaluates to true,
otherwise false. The body of the for statement will be executed immediately after
the test expression, if and only if the test expression evaluates to true. If the test
expression evaluates to false, the for statement terminates without executing the
statements in its body.

The left angle bracket (<) is known as the less than operator. These operators
belong to a class of operators named relational operators. Due to the presence of
the relational operator, the expression (i<10000) is known as a relational
expression.

C++ Relational Operators

< less than
> greater than
<= less than or equal to
>= greater than or equal to

149

In addition to relational expressions, we can also use equality expressions. These
expressions contain equality operators.

C++ Equality Operators

== equal to
!= not equal to

The third expression in the for statement is:

i++;

This statement is known as the incremental expression. It will be evaluated
immediately after executing the body of the for statement. Usually, it increments
one or more loop counters. In this particular case it increments the value of i by 1.

The ++ operator can be used in two different ways. Using it before the identifier
will cause a pre-increment, e.g. ++i. Using it after the identifier will cause a post-
increment, e.g. i++. In the case of ‘pre’ operations, the operation (operation
meaning increment or decrement) is carried out before using the identifier in the
test expression. In the case of ‘post’ operations, the operation is carried out after
using the identifier in the test expression. The -- operator is used exactly the same
way; the only difference being that it will cause a decrement. These operators fall
into a category known as unary operators. They are referred to as unary operators
because they operate on just one argument.

C++ Unary Operators

+ unary plus
- unary minus
++ pre-increment (prefix) or post-increment (postfix)
-- pre-decrement (prefix) or post-decrement (postfix)
~ bitwise complement. Toggles bit by bit.
! logical negation. Change true to false and vice-versa.

The code fragment shown below demonstrates the operation of the for loop. It
also shows how a for loop operates inside another (nested for loops):

int i, j;

for (i = 0; i < 5; i++)
{
 for(j = 0; j < i; j++)
 cout << ‘*’;

7 DRIVING LEDS 150

 cout << endl;
}

Implementing this code in a program will produce the output shown in Figure 7-2:

*
**

Figure 7-2 The output of the nested for loop operation.

The body of the outer for loop starts at the open brace and ends at the close brace.
Between these two braces is the inner for loop. The inner for loop has no braces
because it only has the one statement as its body:
cout << ‘*’;

The second statement of the outer for loop is:

cout << endl;

and will be executed after the inner for loop has completed all its iterations. Each
iteration of the inner for loop prints the character ‘*’ on the screen and
increments the loop counter j. Printing for that line ceases when the value of j
reaches that of the outer loop counter i. Therefore, each iteration of the outer for
loop consists of j iterations of the inner for loop.

7.2.2 The while Loop and the do–while Loop
Repetitive iterations as performed with the for loop can be carried out using the
while loop. The while loop is similar to the for loop without initialising and
incremental expressions. It simply has a test expression enclosed within a pair of
parentheses that is evaluated at the start of the loop. This expression must evaluate
to true for the body of the while loop to be executed. If it evaluates to false (zero)
the loop will be terminated. It is possible that the body of the while loop is not
executed at all - if in the first entry of the loop, the test expression evaluates to false
or zero.

Because initialising and incremental expressions are omitted, while loops do not
generally deploy a loop counter. However, the while loop can be used to
implement the behaviour of a for loop and vice-versa. In general, while loops
are implemented when the exact number of iterations are not known.

7 DRIVING LEDS 151

Figure 7-3 The while and do-while loops.

The do-while statement is very similar to the while statement. The difference
being that the test expression is evaluated at the end of the loop resulting in at least
one execution of the body of the loop. The statements in the body of the loop are
between the keyword do and the keyword while. Braces must be used if the body
is a compound statement. Figure 7-3 shows the anatomy of the two types of loop.

7.3 Branching

7.3.1 The if Statement
The if statement has a conditional expression enclosed within a pair of
parentheses placed immediately after the keyword if. The most general form of
the if statement has a true clause and a false clause separated by the keyword
else. The true clause consists of the statements before else and the false clause
consists of the statements after else. The conditional expression will evaluate to
true or false. If it evaluates to true, the true clause will be executed and the false
clause will be ignored, otherwise the false clause will be executed and the true
clause will be ignored.

If there are multiple statements in any of the clauses, they must be placed within
braces ({ and }) to form compound statements. Within these compound statements
there may be other if statements. If this is the case they are known as nested if
statements. In nested if statements, the else keyword will bind to the last opened
if statement without an else.

while(i < 10000)
{
 i++;
}

do
{
 i++;
}
while(i < 10000)

Test expression is evaluated last.

Statements in the body

Test expression is evaluated first.

Statements in the body

7 DRIVING LEDS 152

Figure 7-4 The if statement - the most general case.

It is also possible to have if statements with only one clause as shown in Figure
7-5. This clause must be the true clause.

Figure 7-5 The if statement with only a true clause.

The if statements can be nested as shown in Figure 7-6. In the two examples
shown, the else keyword binds to two different if statements. Use of proper
indentation helps the programmer to see the correct association for each clause in
nested if statements as shown in Figure 7-7.

if(i < 10000)
{
 statements
}

else
{
 statements
}

The keyword if
conditional expression

The true clause. This section will be executed
if the conditional expression evaluates to true.
The braces are necessary if there is more than
one statement in the true clause. The keyword else

separates the true
 and false clauses

The false clause. This section will be executed
if the conditional expression evaluates to false.
The braces are necessary if there is more than
one statement in the true clause.

if(i < 10000)
{
 statements
}

The keyword if
conditional expression

Statements for the true clause.

No else keyword and no false clause. If the conditional
expression evaluates to false, no action will be taken.

7 DRIVING LEDS 153

Figure 7-6 Nested if statements without indentation.

Figure 7-7 Indented if statements.

if (<cond. exp. 1>)
{
if (<cond. exp. 2>)
{
 <true clause>
}
else
{
 <false clause>
}
}

if (<cond. exp. 1>)
{
if (<cond. exp. 2>)
{
 <true clause>
}
}
else
{
 <false clause>
}

The else binds to the second if statement. The
first if statement only has a true clause which
contains the second if statement. The second if
statement has a true clause and also a false
clause.

The else binds to the first if statement. The
first if statement has a true clause and a false
clause. The second if statement has only a true
clause and is within the true clause of the first if
statement.

if (<cond. exp. 1>)
{
 if (<cond. exp. 2>)
 {
 <true clause>
 }
 else
 {
 <false clause>
 }
}

if (<cond. exp. 1>)
{
 if (<cond. exp. 2>)
 {
 <true clause>
 }
}
else
{
 <false clause>
}

7 DRIVING LEDS 154

The use of an if statement is shown in the following fragment of code:

int Number;
cout << “Enter an integer Number “;
cin >> Number;

if(Number > 50)
 cout << “Number is greater than 50” << endl;
else
 cout << “Number is less than or equal to 50” << endl;

The number entered by the user will be tested by the if statement and a message
will be printed on the screen displaying the result of the test.

A compact version of the if statement can be implemented using the so-called
conditional operator (?:). For example, by checking a variable named Switch,
ON/OFF status of the switch can be printed on the screen using:
Switch == 1 ? cout << “on” : cout “off”;

This statement is equivalent to:
if(Switch == 1)

cout << “on”;
else

cout << “off”;

7.3.2 The break and continue Statements
The break and continue statements are two important statements that can be
used efficiently to enhance the functionality of our programs. Of the two
statements, the break statement is more widely used. Their syntax is very simple
and always used as follows:
break;
continue;

The break statement is used to terminate the execution of a loop (such as while,
do-while, or for) or a switch statement. The continue statement is used to
skip and continue the execution of loops. Figure 7-8 shows the two cases.

As mentioned previously, iterative loops can be nested; i.e. one loop within
another. Similarly, a switch statement can be placed within a loop. In such
situations, the break statement will be associated with the nearest loop or
switch statement. The continue statement will be associated with the nearest
loop and cannot be used with the switch statement.

The C++ language also supports the use of goto to jump to a label. Use of goto
can severely damage the structure of a program. Its use is discouraged and is not
explained in this text - see references listed in Section 7.11.

7 DRIVING LEDS 155

Figure 7-8 The break and continue statements.

7.3.3 The switch – case Statement
A switch-case statement is used to select and then execute one of several
cases. Selection is carried out by a switch expression located after the keyword
switch and enclosed between parenthesis.

Figure 7-9 The switch statement.

int i = 0, Sum = 0;
int n = 50;

while(1)
{
 i++;
 Sum += i;
 if(i==n)
 break;
}

int Sum = 0;
int n = 20, m = 30;

for(i=0; i<100; i++)
{
 if((i>=n) && (i<=m))
 continue;
 Sum += i;
}
For all values of i between n and m, continue will
be executed, forcing all remaining statements within
the body of the for loop to be skipped. The next
statement to be executed is the incremental expression
i++.

Always true Infinite while
loop

When i is equal to
n, the if statement
will execute break,
terminating the
infinite while loop.

switch(switch expression)
{
 case n1 : statements
 break;
 case n2 : statements
 break;
 .
 .
 .
 default : statements
}

The switch expression must produce an integer result.

These two must be constant
integer expressions such as
3, or 0x0C, etc.

If the switch expression
evaluates to n1, these
statements will be executed.
If the switch expression
evaluates to n2, these
statements will be executed.

If the switch expression
evaluates to none of the cases
listed, the default case will be
executed. The default case may
be omitted.

The body of the switch
statement starts here.

The body of the switch
statement ends here.

7 DRIVING LEDS 156

The switch expression must be of integral type such as char, unsigned char,
int, unsigned int, etc. Program control will be transferred to a case statement
that matches the value of the switch expression.

The cases are listed within the body of the switch statement. Immediately after
the keyword case, there must be a constant integer expression, which must have a
unique value. Each case may have any statement including an empty statement.
All statements under a case will be executed sequentially.

The break statement must be used to exit a switch statement at the end of a
particular case. If break is not used, program execution will flow on to the next
case. Optionally, a special case named default may be used to take necessary
action if no matching case is found.

C++ Constant Integer Expression

A constant integer expression must produce an integer result and cannot contain
any variables.
#define TWIN 2

Here the symbolic constant TWIN is defined to be a substitute for the number 2.
Then TWIN+1 is a constant integer expression. Note that TWIN is not a
variable.

However, if int a=0;

Then a+1 is not a constant integer expression, because a is a variable.

7.4 Arrays
An array is a collection of objects of the same type. The objects could be
fundamental data types or user-defined data types. Each individual object of the
collection is referred to as an element. Towards the end of the chapter, we will be
using arrays to store LED lighting patterns for the program.

Arrays can be represented in different configurations or number of dimensions as
shown in Figure 7-10. Each cell can store one object of the designated type. There
is practically no limit to the number of dimensions an array can have.

The size of the array is given by the number of elements (cells) for each dimension.
Using Figure 7-10 as an example, the sizes of the arrays are:

1-dimensional array: 5 elements.

2-dimensional array: 3 rows, 5 elements/row. Size = 15 elements.

3-dimensional array: 3 rows, 4 elements/row, 2 elements/row. Size = 24
elements.

7 DRIVING LEDS 157

Figure 7-10 Diagramatic representation of arrays.

Although the arrays can be represented as shown in Figure 7-10, in your computers
memory the elements of the array are stored sequentially row after row, termed
row-major fashion. In storing a 3-D array, the first layer is stored first in a row-
major fashion and then the second layer in row-major fashion and so on.

One-Dimensional Arrays
When declaring one-dimensional arrays, the size of the array is specified within a
pair of square brackets immediately after the array identifier. The array subscripts
always start with 0 and range to the array size minus one. An example of a
declaration is:
int a[10];

This declares an array of 10 int type objects. They are stored in adjacent memory
locations starting from the element a[0] ranging up to a[9], making available a
set of 10 elements as shown in Figure 7-11. Note that there is no element named
a[10]. Attempting to access such an element will be illegal, since this memory
location is not part of the array a.

Figure 7-11 Schematic of a one-dimensional array.

If a variable subscript is used to access array elements, as in a[i], then i must be
an integer expression and as just mentioned must not evaluate to a value outside the
permitted range of array subscript values, in this case 0 to 9.

The array elements can be initialised individually during program execution by
assigning each element a value. For example, the following code fragment sets the
value of all elements to zero:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

0 1 2 3 4

1 Dimensional
Array

0 1 2 3 4

1

0

2

2 Dimensional
Array

0
1

1

0

2

0 1 2 3

3 Dimensional
Array

7 DRIVING LEDS 158

for(int i = 0; i < 10; i++)
a[i] = 0;

Alternatively, the array elements can be initialised when the array is declared. The
values for each element to be initialised need to be listed within braces and
separated by commas as shown in the following line:
int a[8] = {2,3,7,4}; // 8 elements

In this example the array a is partially filled with the values listed between the
braces; element a[0]=2, a[1]=3, a[2]=7, and a[3]=4. The remaining
elements (a[4] to a[7]) that have not been explicitly initialised are initialised by
default with values of zero. Therefore, to declare and initialise an array with all
zero values can be done as follows:
int a[8] = {};

Accessing array elements
Individual elements of the array can be accessed by using a subscript. In the
following example the array subscripts range from 0 to 7 (8 elements).
int a[8]; // declare a to be 8 elements
int Result; // declare a variable named Result

a[0] = 2; // access and set a[0] to 2
a[1] = 3; // access and set a[1] to 3

Result = a[0]*a[1]; // 2*3 = 6

Two-Dimensional Arrays
A two dimensional array can be viewed as an array of one-dimensional arrays.
Two-dimensional arrays have two sizes specified. The total number of elements is
the product of the two sizes. For example, a two-dimensional array can be declared
as follows:

Figure 7-12 Declaring a 2-D array.

Two subscripts are used to access each element of the array. In array b, one of the
array dimensions ranges from 0 to 1 and the other dimension from 0 to 4. The array
can be thought of as the arrangement shown in Figure 7-13. Note that elements are
stored in consecutive memory locations in row-major fashion. That is, the first row

number of elements per row

number of rows

int b[2][5];

7 DRIVING LEDS 159

is stored first, immediately followed by the second row, and so forth. Thus, the
element b[0][4] is immediately followed by the element b[1][0].

Figure 7-13 2-D array schematic representation.

The array elements can be individually initialised during program execution by
assigning each element a value. For example, the following code fragment sets the
values of all elements to zero.
int i, j;

for(i = 0; i < 2; i++)
for(j = 0; j < 5; j++)

b[i][j] = 0;

Alternatively the array elements can be initialised when the array is declared. This
is shown in the following line.
int b[2][5] = {{0,0,0,0,0};{0,0,0,0,0}};

Each row of initialised elements is enclosed by inner braces, and separated from
adjacent rows by a semicolon.

7.5 Pointers
A pointer is an address of an entity that resides in memory. Examples of entities
that reside in memory are; class objects, fundamental data type objects such as
int, float, char, long, etc., arrays of objects (a group of objects of the same
type), and functions. A pointer in C++ will hold where the object is and most of the
time the pointer will know the type of object. For example, a pointer to an integer
knows that the data type is integer and it will also know where the integer is, but it
does not know the value of the integer.

Pointers play an important role in helping to make C++ programs very efficient.
There are three major uses for pointers that offer distinct advantages: passing large
objects to functions, dynamic memory allocation, and using virtual functions. In
the most common case when passing a parameter to a function, we replace the
parameter by a copy of the actual argument. If the actual argument is very large,
the program will need to consume a large amount of memory when it creates a
copy of the argument. It is more efficient to make a copy of where the large object

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

b[0][1] b[0][2] b[0][3] b[0][4]b[0][0]

7 DRIVING LEDS 160

is than copy the entire object. This is done by using a pointer which occupies a
small amount of memory in order to store the address of the object.

Dynamic memory allocation involves the provision of storage space at run-time.
Normally, dynamic memory allocation is a need-based process – i.e. if during
program operation there is a need for more memory it can be requested and will be
granted depending on availability. The dynamic memory allocation process returns
a pointer indicating the location in memory where the allocation has been made.
This pointer can then be used to manipulate the data in the allocated memory area.

Perhaps the most obscure use of pointers is in association with virtual functions
which will be described in detail in Chapter 8. The following sections describe
general use of pointers in the C++ language.

Two unary operators are used closely with pointers. As mentioned before, a unary
operator takes only one argument. These operators are given in Table 7-1.

Table 7-1 Unary operators used with pointers.

Operator Name
& address of operator
* indirection operator

The address of operator can be used to find the address of an object in memory.

The indirection operator can be used to obtain the contents of a location given its
memory address. This is also known as de-referencing.

7.5.1 Declaration of Pointer Variables
As you know, there is a dedicated data type named int to represent integers and
many other fundamental data types. Programmers can also create their own data
types such as DAC created in Chapter 6. However, there is no unique data type
named pointer. Since all memory addresses are integers, all pointer data types carry
integer values. The locations pointed to by these addresses can contain all types of
data or functions.

Figure 7-14 Syntax of a pointer declaration.

data type *identifier;

The asterisk identifies the identifier as a pointer variable

To be replaced by a data type such as int, char
or an object class type such as DAC

7 DRIVING LEDS 161

When declaring a pointer variable, the C++ language requires us to specify the type
of data or function pointed to by the pointer variable. We will see the significance
of knowing the data type pointed to by the pointer variables when pointer
arithmetic is explained in section 7.5.6. In the simplest of cases, the syntax for
declaring pointer variables takes the form shown in Figure 7-14. Pointers to
different entities are each declared differently as described ahead.

7.5.2 Pointers to Scalar Quantities
A single item is referred to as a scalar quantity. If a pointer variable is declared to
point to one solitary integer, then that pointer is said to point to a scalar quantity.
This is in contrast to pointers that point to arrays. Examples of declarations of
ordinary variables and declaration of pointers to scalar quantities are shown in
Table 7-2.

Table 7-2 Declaration of scalar identifiers and pointers to scalar identifiers.

Declaration – scalar identifiers Declaration – pointers to scalar identifiers
int a; int a;

int *IntPtr = &a;

int b = 0; int b = 0;

*IntPtr = b;

float p = 0.0; float p = 0.0;

float *FltPtr = &p

The following line is a combined declaration and initialisation of a pointer variable
to an int:

int *IntPtr = &a;

The same effect can be achieved with the following two lines:
int *IntPtr;
IntPtr = &a;

Initialisation part

int *IntPtr = &a;

Declaration part

7 DRIVING LEDS 162

The first statement declares a pointer to an int. The second statement uses the
‘address of’ operator ‘&’ to obtain the address of the integer variable a which is
assigned to the pointer variable IntPtr. Note that the int type variable a must
be declared before assigning its address to IntPtr.

The statement:
*IntPtr = b;

carries out a de-referencing and an assignment operation. The expression
*IntPtr reads as ‘the contents of the location pointed to by IntPtr’. This is
known as de-referencing. Therefore, the entire expression reads as ‘the contents of
the location pointed to by IntPtr is assigned the value of b’. Since IntPtr
already points to the location of a, the effect is same as:

a = b;

An example of declaring a pointer to a float type variable and assigning it a value is
given in Table 7-2.

NOTE

Given the following two declarations;
int a=0;
float* FltPtr;

An assignment of the form;
FltPtr = &a; // Illegal!

is illegal. The pointer FltPtr is expected to carry an address of a float type
object. However, &a is an address of an integer object. These two do not match
and therefore it is an illegal assignment.

7.5.3 Pointers to Class Objects
Pointers to class objects are declared in a similar manner to pointers to scalar
quantities. An example is given below:
ParallelPort *PortPtr;

Here the data type is ParallelPort and the pointer variable is PortPtr. A
pointer to an object of the DAC class can be declared as follows:

DAC *DACPtr;

An object of type DAC can be declared as follows:

DAC Dac;

7 DRIVING LEDS 163

Then the following assignment is valid:
DACPtr = &Dac;

Membership Access Operators
If we use the object Dac, we can call the SendData() function as follows using
the dot operator (.), also known as the membership access operator:

Dac.SendData(255);

We can also use a pointer variable such as DACPtr to call the SendData()
function, although the syntax is different. In this case the membership pointer
operator is used (->), formed by combining the minus sign (-) and the right angle
bracket (>):

DACPtr->SendData(255);

Pointers to Base Class Objects can point to Objects of Derived Classes
This is one of the most useful and important concepts in object-oriented
programming. In earlier sections it was explained that a pointer pointing to a
float type variable cannot point to a location containing an int. This rule does
not apply to base classes and derived classes. Although the two objects are
different, a pointer to a base class object can point to an object of a derived class:
ParallelPort *PortPtr;
DAC Dac;
PortPtr = &Dac; // is allowed!

We are yet to discuss the advantages of using this type of pointer assignment. Its
major use is associated with virtual functions and will be explained in Sections 8.5
and 8.6.

7.5.4 Pointers to Arrays

Pointers to One-Dimensional Arrays
When an array is declared to be equivalent to that shown in Figure 7-15, the
address of the array will be a (no subscripts) which points to the first element of
the array. Therefore, a and &a[0] are equivalent and both point to the first
element. The important thing to note is that a is a pointer constant. It cannot be
incremented, decremented or assigned any other values. Since the array has been
stored in a specific memory space, the address value is fixed.

Figure 7-15 Schematic of a one-dimensional array.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

7 DRIVING LEDS 164

The following statements are all valid:

int a[10];
int *ElementPtr;
int b = 0;
ElementPtr = a; // same as ElementPtr = &a[0];
*a = b; // the value of b is deposited
 // in a[0]

Some of the statements shown below are illegal:

int a[10];
float *FltPtr;
int b = 0;
FltPtr = a; // illegal – type mismatch
a = &b; // illegal – a is constant

Pointers to Two-Dimensional Arrays
As mentioned earlier, a two-dimensional array can be viewed as an array of one-
dimensional arrays. An example two-dimensional array can be declared as:

 int a[5][5];

Recall that elements are stored in consecutive memory locations. For example, the
element a[1][0] is stored next to a[0][4].

Unlike the case for one-dimensional arrays, the array name a is a pointer to the
entire row starting at a[0][0] and ending at a[0][4]. The pointer a is still a
constant.

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

 .

 .

 .

a[4][0] a[4][1] a[4][2] a[4][3] a[4][4]

Figure 7-16 Schematic of a two-dimensional array.

number of elements per row

number of rows

7 DRIVING LEDS 165

A pointer to a row of five elements can be declared as follows:
int (*RowPtr)[5];

Note the subtle difference between the presence and absence of the parentheses in
the above declaration. Compare this declaration to the declaration of an array of
pointers discussed earlier.

If a is de-referenced, the result will be a pointer to the first element of the first row,
i.e. &a[0][0]. This resulting pointer is still a constant. To access the value of
a[0][0], the pointer a must be de-referenced twice. The following statements
illustrate this:
int *ElementPtr;
int b;
int a[5][5];
int (*RowPtr)[5];
RowPtr = a; // pointer to the first row
ElementPtr = *a; // pointer to the first element
 // of the first row
b = **a; // same as b = *ElementPtr;
ElementPtr = a; // Illegal – type mismatch
RowPtr = *a; // Illegal – type mismatch
*a = &b; // Illegal - *a is constant

An important observation is that when an array name is de-referenced, it points to
the next lower level entity. For example, if the name of a two-dimensional array is
de-referenced, it will point to a one-dimensional array. If the name of a one-
dimensional array is de-referenced it will evaluate to be the contents of the first
element of the array. Any further de-referencing is illegal.

7.5.5 Arrays of Pointers

It is also possible to declare arrays of pointers. In such an array, each element itself
is also a pointer. An example of a pointer array declaration is given as follows:
int *IntPointers[20];

In this declaration, IntPointers is a constant pointer. It points to the first
element of the array of pointers. If we use the de-referencing operator as shown
below we will obtain the contents of the first element, which itself is a pointer to an
int. Therefore it must be assigned to a compatible pointer variable. Consider the
following declaration:
int a;
int *IntPtr;
int *IntPointers[20];

IntPointers is the start address of the array of pointers to int. In other words,
it holds a memory address. This location contains a pointer to an int. Thus, the

7 DRIVING LEDS 166

contents of any element of the array can be assigned to a pointer to an int, such as
IntPtr. To obtain the contents of the first element of the IntPointers array,
we can de-reference IntPointers. Once de-referenced, it can be assigned to
IntPtr as shown in the line below:

IntPtr = *IntPointers; // contents of 1st element

A pointer to an int is stored at the address obtained by de-referencing
IntPointers (i.e. *IntPointers). If we need the contents of the location
pointed to by this pointer to int, we must de-reference *IntPointers once
more to obtain the integer value. Such an integer value can be assigned to an int
type variable such as a. Thus:

a = **IntPointers; // Same as a = *IntPtr;

7.5.6 Pointer Arithmetic
As already seen, a pointer variable can be incremented or decremented. Likewise
an integer value can be added or subtracted. However, the results produced by
pointer arithmetic are different to the results produced by normal arithmetic. Before
explaining this further, we should understand where pointer arithmetic is useful.

One-dimensional Arrays
Pointer arithmetic is especially useful for accessing array elements. Consider the
example:
int a[5];

Here we have declared an array of 5 integers. The array name a is a constant
pointer and it points to the first element of the array. Figure 7-17 shows an example
of such an array in memory.

Memory
Address

Array Element
and its value

600000 a[0] is 4

600002 a[1] is 9

600004 a[2] is 8

600006 a[3] is 3

600008 a[4] is 5

Figure 7-17 An example of 5 integers in memory.

7 DRIVING LEDS 167

In the example shown in Figure 7-17, the memory address values change by 2
when we move from one address to the next address. This is because we have
assumed each integer occupies two bytes. Thus, the element a[0] occupies the
addresses 600000 and 600001. The next element a[1] begins at 600002 and so
on.

The value of a is 600000. The pointer a is not a variable, it is a constant. It points
to the first element of the array and therefore cannot be assigned another value. It
can be de-referenced like other pointers as follows:

*a a[0] which is 4

Although a cannot be changed, we can add an integer value to a to obtain a new
value. Thus:

a+1 is a valid expression.

If we interpret this result using normal arithmetic, it evaluates to 600001. However,
in pointer arithmetic it evaluates to 600002. Since a is a pointer to an integer, ‘+1’
really means plus one int type data, which is two bytes in our example. The
compiler takes into account the size of the data type pointed to by the pointer when
evaluating pointer arithmetic expressions. The result a+1 still remains a pointer
and points to the next element of the array:

a+1 600002

a+2 600004

a+3 600006

Just like the pointer a, the following three pointers can also be de-referenced:

*(a+1) a[1] which is 9
*(a+2) a[2] which is 8
*(a+3) a[3] which is 3

Use of parentheses is very important in the cases shown above. If the parentheses
had not been used, the results would be as follows:

*a+1 a[0]+1 which is 5
*a+2 a[0]+2 which is 6
*a+3 a[0]+3 which is 7

As can be seen from this discussion, pointer arithmetic can be used to access an
array element of a one-dimensional array. For the array a, the ith element can be
accessed by:
*(a+i)

7 DRIVING LEDS 168

Two-dimensional arrays
Pointer arithmetic is applied slightly differently to two-dimensional arrays.
Consider the example:
int a[3][2];

This declares an array of 6 elements stored in sequential memory as shown in
Figure 7-18.

Memory
Address

Array Element
and its value

600000 a[0][0] is 6

600002 a[0][1] is 7

600004 a[1][0] is 55

600006 a[1][1] is 9

600008 a[2][0] is 3

600010 a[2][1] is 33

Figure 7-18 Two-dimensional array in memory.

As for the case of one-dimensional arrays, the array name a is still a pointer. Its
value is 600000. It is a constant and cannot be changed. The difference for two-
dimensional arrays is that a points to the first row of elements, not the first element
of the array. Therefore, it represents a data size of 2 integers as specified by the
second subscript of the array declaration. As a result the pointer a represents 2
integers, i.e. points to 4 bytes of memory. With this in mind, pointer arithmetic
works as follows.

a+1 600004 points to the second row
a+2 600008 points to the third row

Using this notation, a pointer to the ith row can be obtained by adding i to a:

a+i points to the ith row

Like any other pointer, these pointers can also be de-referenced. When these
pointers are de-referenced, the result is still a pointer:

0 1

1

0

2

Array a[3][2]

55

6

3

9

7

33

7 DRIVING LEDS 169

*(a+1) 600004 points to the first element of the second row
*(a+2) 600008 points to the first element of the third row
*(a+i) points to the first element of the (i+1)th row

The size of data pointed to by these de-referenced pointers is no longer an entire
row. They now point to elements, which are single integers. Now pointer
arithmetic will be based on single integers or two bytes. Thus:

*(a+1) + 1 600006 points to a[1][1]
*(a+2) + 1 600010 points to a[2][1]

Therefore, the pointer that points to the jth element of the ith row is:

*(a+i) + j points to a[i][j]

By de-referencing the above pointers, the values of the elements can be accessed:

((a+1) + 1) a[1][1] which is 9
 ((a+i) + j) a[i][j]

The same arguments we presented for two-dimensional arrays can be extended in
the same logical manner to higher-dimensional arrays.

7.5.7 Pointers to Functions
Pointers can be declared to point to functions. Just like all the pointers discussed
previously, function pointers will also have an address in memory. These addresses
point to the first instruction to be executed.

An example of a function pointer declaration is:
int (*CalcFunctionPtr)(int,int);

In the above example, the name of the function pointer is CalcFunctionPtr.
This pointer can only point to a particular category of function as specified by the
pointer declaration. The declaration specifies that the function to be pointed to by
CalcFunctionPtr must receive two integer parameters and must return an
integer value. An example of a function that can be pointed to by
CalcFunctionPtr is:

int Add(int a, int b)
{

return (a + b);
}

Another function that can be pointed to by the CalcFunctionPtr is:

int Sub(int a, int b)
{

7 DRIVING LEDS 170

return (a – b);
}

In a similar manner to arrays, where the array name is a constant pointer, function
names are also constant pointers for the simple reason that when a program is
running the location of a function in memory is fixed.

In the above two functions, Add and Sub are two constant function pointers. Each
of them point to the first instruction to be executed in their respective functions.
These constant pointer values can be assigned to a declared pointer variable. An
example program is given in Listing 7-1.

Listing 7-1 Use of pointers to functions.

#include <iostream.h>
#include <conio.h>

int Add(int a, int b)
{
 return (a + b);
}

int Sub(int a, int b)
{
 return (a - b);
}

void main()
{
 int a, b, Result;
 char key;
 int (*CalcFunctionPtr)(int,int);

 cout << "Enter two integer values " << endl;
 cin >> a >> b;
 cout << "Press '+' or '-' key" << endl;

 key = getch(); // getch() reads the key pressed

 switch(key)
 {
 case '+' : CalcFunctionPtr = Add;
 break;
 case '-' : CalcFunctionPtr = Sub;
 }

7 DRIVING LEDS 171

 Result = CalcFunctionPtr(a,b);
 cout << "The result is " << Result << endl;
}

If the ‘+’ key is pressed, the switch statement will set the CalcFunctionPtr
to point to the Add() function. If the ‘-‘ key is pressed, CalcFunctionPtr will
be set to point to the Sub() function. The second-last line of the code fragment
will execute either the Add() function or the Sub() function depending on the
key pressed. This is an example where a function pointer is used to carry out
different tasks using the same statement for different cases (Result =
CalcFunctionPtr(a,b)).

In a more complex program you may have a large portion of the program written
using the function pointer variable. If we need to change the cases, we do not need
to change the part of the program that calculates the result. The program in Listing
7-2 shows how we can add another case for multiplication and yet the result will be
calculated using the same statement as for Listing 7-1; ‘Result =
CalcFunctionPtr(a,b);’.

Listing 7-2 Adding more functionality to the program in Listing 7-1.

#include <iostream.h>
#include <conio.h>

int Add(int a, int b)
{
 return (a + b);
}

int Sub(int a, int b)
{
 return (a - b);
}

int Mult(int a, int b)
{
 return (a * b);
}

void main()
{
 int a, b, Result;
 char key;
 int (*CalcFunctionPtr)(int,int);

7 DRIVING LEDS 172

 cout << "Enter two integer values " << endl;
 cin >> a >> b;
 cout << "Press '+', '-' or '*' key" << endl;

 key = getch(); // getch() reads the key pressed

 switch(key)
 {
 case '+' : CalcFunctionPtr = Add;
 break;
 case '-' : CalcFunctionPtr = Sub;

 break;
 case '*' : CalcFunctionPtr = Mult;
 }

 Result = CalcFunctionPtr(a,b);
 cout << "The result is " << Result << endl;
}

Functions Returning Pointers
Functions returning pointers are discussed here since their declarations are similar.
A function with the name AnyFunction that receives two int type parameters
and returns a pointer to an int is declared as follows:

int *AnyFunction(int,int);

Compare this declaration with the declaration of FunctionPtr, which is a
pointer to a function taking two int type parameters and returning an int type
value:
int (*FunctionPtr)(int,int);

In one case a pair of parentheses is present and in the other case the parentheses are
omitted. Although only slightly different, these two declarations are completely
different. AnyFunction is a function name and therefore is a constant pointer.
FunctionPtr is a pointer variable.

7.5.8 Pointers to void
Pointers can also be declared to be of type ‘pointer to void’. These pointers do not
have any restrictions as to the type of data or functions they can point to. The
following example outlines their use.

int a; // declaration of an int
float b; // declaration of a float
void *VoidPtr; // declaration of a void pointer
int Add(int,int); // declaration of a function

7 DRIVING LEDS 173

.

.

.
VoidPtr = &a; // int address assigned to void
 // pointer
VoidPtr = &b; // float address assigned to void
 // pointer
VoidPtr = Add; // function address assigned to
 // void pointer

The advantage when using pointers to void is that the same pointer can be used to
point to many different types of entities without needing to create specific pointers
to specific objects.

7.5.9 The Pointer this
In object-oriented programming, each object maintains an invisible pointer named
this which points to itself. Although invisible, if need be, the this pointer can
be used exactly like any other pointer. The member functions of a particular class
can determine exactly which object the function should operate on by using the
this pointer. To understand how the pointer this operates, consider the function
GetLastOutput() of the DAC class described in Chapter 6:

unsigned char DAC::GetLastOut()
{

return LastOutput;
}

If we make the this pointer visible, the function would appear as follows:

unsigned char DAC::GetLastOut()
{

return this->LastOutput;
}

Now suppose we had created two DAC objects:

DAC Dac1, Dac2;

We will call the GetLastOutput() function once each for each of the two
objects as shown below:
Dac1.GetLastOutput();
Dac2.GetLastOutput();

When the first of these functions is executed, the this pointer will point to the
address of the object Dac1 and thus this->LastOutput will select the
LastOutput member of the Dac1 object. When the second
GetLastOutput() function prefixed with Dac2 is called, the this pointer

7 DRIVING LEDS 174

will point to the address of the object Dac2, and this->LastOutput will
select the LastOutput member of the object Dac2.

To demonstrate situations where the this pointer is used explicitly, consider the
constructor of the ParallelPort class:

ParallelPort::parallelPort(int baseaddress)
{

BaseAddress = baseaddress;
}

We have deliberately named the parameter baseaddress. However, if instead
we named it BaseAddress, the constructor would be:

ParallelPort::ParallelPort(int BaseAddress)
{

BaseAddress = BaseAddress; // confusion!
}

As can be seen, the parameter cannot be differentiated from the member data. The
solution to this is to modify the function as follows:
ParallelPort::parallelPort(int BaseAddress)
{

this->BaseAddress = BaseAddress;
}

Within the body, the part-statement this->BaseAddress definitely refers to
the member data.

7.6 Using Pointers
To demonstrate the use of pointers, we will create an array of numbers that can be
sent out to the interface board to light up the LEDs in a specific pattern. This array
will then be scanned using a pointer to fetch consecutive values from the array. The
port at address BASE will be used to output the numbers to the interface board.

7.6.1 Number arrays for the LEDs

Firstly we will develop a program which ‘walks a LED’ along the bank of eight
LEDs. This program uses a fixed pattern.

Walking LEDs – Fixed Array Defined Within the Class
We will be using an array and scanning it cyclically to light up the LEDs using the
port at address BASE. The effect of cyclic scanning will be the appearance of a
“walking LED” across the bank of 8 LEDs. The array will contain eight elements,
each element used to light just one LED of the group. When we move from one

7 DRIVING LEDS 175

element to the next element in the array, the LED that is currently lit will turn off
and the adjacent LED in the direction of the ‘walk’ will light up.

Table 7-3 shows each hexadecimal number and corresponding binary bit pattern
for each array element that in-turn must be output to the port.

Table 7-3 LED pattern values stored in Pattern array.

Binary Number Array
Element D7 D6 D5 D4 D3 D2 D1 D0

Hex
value

Pattern[0] 0 0 0 0 0 0 0 1 0x01
Pattern[1] 0 0 0 0 0 0 1 0 0x02
Pattern[2] 0 0 0 0 0 1 0 0 0x04
Pattern[3] 0 0 0 0 1 0 0 0 0x08
Pattern[4] 0 0 0 1 0 0 0 0 0x10
Pattern[5] 0 0 1 0 0 0 0 0 0x20
Pattern[6] 0 1 0 0 0 0 0 0 0x40
Pattern[7] 1 0 0 0 0 0 0 0 0x80

A new object class named LEDs will be created which will have Pattern as a
data member and also have the functionality to initialise the Pattern array to the
desired values. The contents of the array Pattern will be fixed for the class and
cannot be changed by the user within the main() function. The class must also
have a function to sequentially output the appropriate values in Pattern to the
port at address BASE. The LEDs class can be derived from the ParallelPort
class to inherit the required interface functionality. Listing 7-3 shows the class
definition.

Listing 7-3 LEDs class definition.

class LEDs : public ParallelPort
{
 private:
 unsigned char Pattern[8];
 int PatternIndex;

 public:
 LEDs();
 LEDs(int baseaddress);
 void LightLEDs();
};

7 DRIVING LEDS 176

The private data member PatternIndex is required to store the number of the
LED that was previously lit so cycling can be controlled as we move through the
array to produce the ‘LED walk’. Note that Pattern is an array of eight
unsigned char elements. The elements need to be unsigned char to
provide just 8 bits in each element, and to avoid the added complications that
would be involved if signed numbers were used instead.

The member functions for the class can now be defined as shown in Listing 7-4.

Listing 7-4 Member functions for the LEDs class.

LEDs::LEDs()
{
 // Fill in the Pattern array
 for(int i = 0; i < 8; i++)
 *(Pattern + i) = 1 << i;

 PatternIndex = 0; // initialise to 0
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress)
{
 // Fill in the Pattern array
 for(int i = 0; i < 8; i++)
 *(Pattern +i) = 1 << i;

 PatternIndex = 0; // initialise to 0
}

void LEDs::LightLEDs()
{
 while(!kbhit()) // key press terminates function
 {
 WritePort0(*(Pattern + PatternIndex++));

 // Reset PatternIndex when it gets to 8
 if(PatternIndex == 8) PatternIndex = 0;

 delay(500);
 }
}

The array name Pattern (without the subscripts) is a pointer and points to the
first element of the array. Therefore:

7 DRIVING LEDS 177

Pattern + i

points to the ith element of the array. To refer to the value pointed to by Pattern
+ i, we must de-reference it as follows:

*(Pattern + i)

The constructors of the LEDs class initialise the array by left-shifting the number 1
by i bit places using:

1 << i

The constructors will initialise the Pattern array with the values shown in Table
7-3 as their respective for loops complete each iteration of the statement:

*(Pattern + i) = 1 << i;

The while loop in the LightLEDs() function is conditioned on !kbhit()
and will continue to execute provided a key is not hit. Inside the while loop the
inherited WritePort0() function is used to write the array Pattern to the
port at address BASE – one element at a time. Each element is accessed using
PatternIndex as an offset with respect to the starting memory address of the
array Pattern. The constant integer pointer Pattern is added the value of
PatternIndex each time. This allows the Pattern array to be scanned from
beginning to end. When the end is reached, PatternIndex is reset to 0 to allow
a new cycle of scanning the Pattern array to repeat. Note that PatternIndex
is post-incremented within the expression:
*(Pattern + PatternIndex++)

In this expression, the current value of PatternIndex is used to evaluate the
current address of the element to access. Following this activity, the value of
PatternIndex is incremented. A delay of 500 ms is included to provide
sufficient time to see the LED walk. Connect the BASE address signals on the
interface board (U13) to the LED Driver IC (U3) to test the complete program
shown below.

Listing 7-5 Complete program to 'Walk a LED'.

// Complete Program to 'walk' a LED
#include <iostream.h>
#include <conio.h>
#include <dos.h>

class ParallelPort
{
 private:
 unsigned int BaseAddress;

7 DRIVING LEDS 178

 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class LEDs : public ParallelPort
{

7 DRIVING LEDS 179

 private:
 unsigned char Pattern[8];
 int PatternIndex;

 public:
 LEDs();
 LEDs(int baseaddress);
 void LightLEDs();
};

LEDs::LEDs()
{
 // Fill in the Pattern array
 for(int i = 0; i < 8; i++)
 *(Pattern + i) = 1 << i;

 PatternIndex = 0; // initialise to 0
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress)
{
 // Fill in the Pattern array
 for(int i = 0; i < 8; i++)
 *(Pattern + i) = 1 << i; // Shift '1' left 'i' places
 // and fill Pattern array.
 PatternIndex = 0; // initialise to 0
}

void LEDs::LightLEDs()
{
 while(!kbhit()) // keypress terminates function
 {
 WritePort0(*(Pattern + PatternIndex++));

 // Reset PatternIndex when it reaches 8
 if(PatternIndex == 8) PatternIndex = 0;

 delay(500);
 }
}

void main()
{
 LEDs Leds;

7 DRIVING LEDS 180

 Leds.LightLEDs(); // Displays a 'walking' LED.
 getch();

 cout << endl << "Halted !” << endl;
 cout << “Press a key to continue" << endl;
 getch();

 Leds.LightLEDs(); // 'Walking' restarts with the LED
 // alight in the next position.
}

Walking LEDs – User Definable Contents with Fixed Array Size
The program shown in Listing 7-5 is rather inflexible. The contents of the array
Pattern are fixed within the class. It is more appropriate to give the user the
ability to define the contents of the array, therefore, the LEDs class must be
modified.

The user will define the contents of the array used to light the LEDs. Therefore, the
constructors of the LEDs class are not needed to initialise this array. Instead, the
class can maintain a pointer that points to the array the user will define. The user-
defined array can be scanned by the LightLEDs() function if the starting
address of the array and its size are known. Therefore, the LEDs class only needs
to have a data member to store the address of the array and another data member to
store its size.

To facilitate these changes we will replace the member data Pattern
(unsigned char array) with PatternPtr, a pointer type (pointer to
unsigned char). A member function must also be included to extract the
address of the array and to assign it to the pointer maintained within the class.
Since the size of the array can now be arbritrarily set, a new data member must be
included to store the maximum number of elements in the array. This new member
is used to determine when the final element of the array has been scanned,
whereupon PatternIndex can then be reset to 0. The modifications to the
LEDs class are shown in Listing 7-6.

Listing 7-6 Modified LEDs class.

class LEDs : public ParallelPort
{
 private:

unsigned char* PatternPtr;
 int PatternIndex;
 int MaxIndex;

 public:

7 DRIVING LEDS 181

 LEDs();
 LEDs(int baseaddress);

void SetPatternAddress(unsigned char* pattern,
 int maxidx);
 void LightLEDs();
};

The definitions of the member functions of this class are given in Listing 7-7.

Listing 7-7 Member function definitions for the modified class.

LEDs::LEDs()
{

MaxIndex = 0;
 PatternIndex = 0;
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress)
{

MaxIndex = 0;
 PatternIndex = 0;
}

void LEDs::SetPatternAddress(unsigned char* pattern, int maxidx)
{
 PatternPtr = pattern; // Pointer PatternPtr assigned
 // address of pattern.
 MaxIndex = maxidx;
}

void LEDs::LightLEDs()
{
 if(MaxIndex <= 0)
 {
 cout << "No Patterns to display " << endl;
 return;
 }

 while(!kbhit())
 {
 WritePort0(*(PatternPtr + PatternIndex++));

 // Reset PatternIndex when it gets to MaxIndex.
if(PatternIndex == MaxIndex) PatternIndex = 0;

7 DRIVING LEDS 182

 delay(500);
 }
}

Listing 7-8 showns a main() function which asks a user to enter patterns into the
LED pattern array during program execution.

Listing 7-8 Main function – user fills in the array (LED pattern).

void main()
{
 unsigned char LightPattern[8];
 int UserPattern;

 LEDs Leds;
 int i;

 cout << "Enter 8 user patterns in the range 0x00-0xFF ";
 cout << endl;
 for(i = 0; i < 8; i++) // fill 8 element Array
 {
 cin >> UserPattern;
 *(LightPattern + i) = UserPattern;
 }

 Leds.SetPatternAddress(LightPattern, 8);
 Leds.LightLEDs();
 getch();
 Leds.LightLEDs();
}

Note that in the main()function shown in Listing 7-8, the programmer is required
to code the array name (LightPattern[8]) with the number of elements of the
array (each element will store one of the patterns sent out to the LEDs). The user
enters the actual values for each sequential pattern at run-time. The local variable
UserPattern, of type int, is used to read integer data. The data is then
assigned to the array LightPattern of type unsigned char through the use
of the array name LightPattern as a pointer.

The statement in Listing 7-8:
Leds.SetPatternAddress(LightPattern,8);

can be replaced by:

7 DRIVING LEDS 183

Leds.SetPatternAddress(LightPattern,
 sizeof(LightPattern));

Programming with functions can often be made more efficient by defining macros
and then calling the functions through the macro. As can be seen in the above
statement, the word LightPattern occurs twice in the function call. In order to
minimise the possibility of coding an error, a macro can be written that requires the
parameter LightPattern be specified only once. The following section
describes the process of defining a macro.

7.7 Macros
Macros can be viewed as placeholders that the preprocessor replaces with an
expression. For example, consider when the compiler encounters the following
statement:
y = x*x*x;

We can define a macro to facilitate programming as follows:
#define CUBE(x) ((x)*(x)*(x))

The preprocessor will replace all occurrences of CUBE(x) with
((x)*(x)*(x)). Thus, CUBE(x) can be used freely in the program. The extra
pair of parenthesis is necessary to adhere strictly with the intended precedence of
operations. For example, if CUBE(x) was defined as:

#define CUBE(x) x*x*x; then,

y = CUBE(3); will be replaced by, y = 3*3*3 evaluating to 27.

On the other hand, the line:

y = CUBE(2+1); will be expanded to, y = 2+1*2+1*2+1 incorrectly
evaluating to 7.

If we now use the definition with every x placed in a pair of parentheses;
(x)*(x)*(x), the expression will be expanded to:

y = (2+1)*(2+1)*(2+1) which correctly evaluates to 27.

If the preceding definition for CUBE was used for the following expression, an
incorrect result will be generated.
y = 81/CUBE(3);

This will expand to:
y = 81/(3)*(3)*(3);

which evaluates to 243 instead of the intended result 3. Using an additional outer
pair of parenthesis ensures a correct result.

7 DRIVING LEDS 184

To improve the program given in Listing 7-8, we can include a macro as follows:
#define SetArray(x) SetPatternAddress((x), sizeof(x))

The main() function is shown in Listing 7-9.

Listing 7-9 The main() function – user fills in the LED pattern.

#define SetArray(x) SetPatternAddress((x), sizeof((x)))

void main()
{
 unsigned char UserPattern, LightPattern[4];
 LEDs Leds;
 int i;

 cout << "Enter “ << sizeof(LightPattern);
 cout << “ user patterns in the range 0x00-0xFF ";
 cout << endl;
 for(i = 0; i < sizeof(LightPattern); i++)
 {
 cin >> UserPattern;
 *(LightPattern + i) = UserPattern;
 }

Leds.SetArray(LightPattern);
 Leds.LightLEDs();
 getch();
 Leds.LightLEDs();
}

7.8 Dynamic Memory Allocation
It often happens that a C++ program will use dynamic memory allocation to
request and have memory allocated at run-time. Dynamic memory allocation is
used very widely in C++ programs and can greatly reduce the size of the
executable program. It is especially useful when the actual storage requirements of
the program are not known at the time of programming. For example, a program
written to process the marks of a class of students will operate on various sized
classes, their size unknown at the time of programming.

Memory allocation can be static or dynamic. In the static case, the compiler
allocates the required memory at compile time. Programs with statically allocated
memory tend to be bigger than programs with dynamically allocated memory.
Furthermore, the statically allocated memory is obtained from the data area - an
area specially set aside to store data. The memory region used to store program

7 DRIVING LEDS 185

instructions is known as the code area and is a different region to the data area. In
general, the program instructions or code do not change during the life of the
program. However, data will change as the executing program operates on it.

Temporary data is created and destroyed during program execution in another area
named the stack. The stack is a last-in-first-out (LIFO) type queue using a specially
allocated region of computer memory. Some examples of temporary data are;
parameters passed to a function, local variables declared within a function, and
values returned by functions.

In the case of dynamic memory allocation, the requested memory is granted from
yet another area named the heap (also known as the free store). Note: memory that
has been allocated is not automatically returned back to the heap by the system. It
is the programmer’s responsibility to include instructions to return the dynamically
allocated memory for other use.

The two operators that manage dynamic memory allocation are shown in Table
7-4. The operator new allocates the requested memory and returns a pointer that
points to the beginning of the allocated area. The simplest use of the new operator
is shown in the following example:
int *IntPtr;
IntPtr = new int;

The same effect can be achieved in one statement as follows:
int *IntPtr = new int;

Table 7-4 Operators used with dynamic memory allocation.

Operator Function
new To request memory

delete To free up memory

In this example, we have requested the dynamic allocation of space from the heap
for one int type data. We do not have a name for the allocated space, however,
the pointer IntPtr knows where it is. Since we know how to manipulate data
using pointers, we can use the allocated space as we need. At the end of its use, the
memory space must be returned using the delete operator as follows:

delete IntPtr;

This operation does not remove the pointer variable IntPtr. Instead it releases or
returns the portion of memory pointed to by IntPtr, thereby making the
dynamically allocated integer no longer available. Now the memory previously
occupied by that integer is available for any future dynamic memory allocation
operations. If the memory was not released using the delete operator, then that
memory will not be able to be used during remaining program operation. In this

7 DRIVING LEDS 186

situation we have created what is known as a memory leak and the computer will
have a reduced amount of memory it can use.

A slightly more complex example is now given that requests space for an array of
ten integers:
int *IntPtr;
IntPtr = new int[10];

When the allocated memory space is no longer needed, it must be relinquished
using the delete operator as follows:

delete IntPtr;

The following example requests space for a two-dimensional array of 100 int
type data:
int(*RowPtr[10]);
RowPtr = new int[10][10];

RowPtr is a pointer to a row of 10 elements. The new operator asks for memory
to store 10 sets of 10 element arrays of type int. The allocated storage can be
freed by using:
delete RowPtr;

Space can be dynamically allocated to class objects as well. To dynamically create
a DAC type object, we can use the following statements:

DAC *DACPtr;
DACPtr = new DAC;

We do not have a name for the DAC object that has been dynamically created on
the heap. However, the pointer DACPtr knows where the object is. The pointer
can be used just as efficiently as an object name to manipulate the object.

The allocated space must be deleted by:
delete DACPtr;

In all these memory allocation operations the new operator calls the constructor of
the object. Although we did not create a constructor for int type objects, the data
type int has its own constructor. For example, to create space for one int type
data which is initialised to 0, the following statements can be used:
int *IntPtr;
IntPtr = new int(0);

or they can be combined into one line as follows:
int *IntPtr = new int(0);

7 DRIVING LEDS 187

Similarly, if we want to create a new DAC type object that communicates with the
PC using the BASE address 0x3BC instead of 0x378, we use the following
statement:
DAC* DACPtr = new DAC(0x3BC);

When the new operator calls the constructor of the DAC class, the BASE address
that is specified (in this case 0x3BC) will be passed.

When the object belongs to a class hierarchy, the pointer does not necessarily need
to be of the same type – it can be a pointer to one of its base classes. In the case of
the DAC class, the following is still valid:

ParallelPort *Ptr;
Ptr = new DAC;

The same pointer can even be made to point to a new, yet different object of the
same hierarchy. Suppose we had an object type named DAC16Bit further down in
the hierarchy. Then, the following statement is allowed:
Ptr = new DAC16Bit;

In Section 8.6 we will be using this concept together with virtual functions to
improve our programming.

It is also possible for the dynamic memory allocation operation to fail. This can
occur if there is insufficient memory available to allocate. If memory allocation
fails, then the pointer returned by the new operator will be set to NULL, a
predefined constant. A simple test such as that shown below can be carried out to
check if memory allocation has been unsuccessful:
if(Ptr == NULL)
{

cout << “Memory allocation failed “;
exit(1);

}

The function exit() is a library routine that can be called to terminate the
program (if you decide insufficient memory on the heap justifies termination).
Another approach is to write the program to cause an exception as described in
Section 7.9. Any pointer returned by the new operator can be tested this way
before proceeding. The usual practice is to pass an actual argument of 1 to the
exit() function. This indicates to the system that runs your application that the
program has terminated prematurely.

Typecasting
Wherever permitted, typecasting can be used to convert an existing type to match
another type. The application of typecasting to fundamental data types is
demonstrated by the following example:
int a;

7 DRIVING LEDS 188

float b = 8.73;
a = (int) b; // a will be 8.

The float type variable b is typecast to match that of a (data type int) and hence
its value rounds down to 8. Similarly, pointers can also be typecast as shown in the
following example:
int *IntPtr;
IntPtr = (*int) new int[10][10];

The pointer returned by the new operator is type casted to match the pointer type
of IntPtr by using (*int), which can be interpreted as ‘pointer to int’. Note
that the new operator returns a pointer to an array of 10 elements (because the row
size of the array being created is 10). However, the pointer IntPtr is a pointer to
just one int type data.

7.9 Exception Handling
Exception handling allows a program to take appropriate actions in the event of
exceptional conditions ocurring. These situations usually happen when a program
cannot continue exececution as expected due to events that occur outside the scope
of normal program control. For example, the program may not be able to continue
its normal operation if there is insufficient memory to fulfil a memory allocation
request.

There are many situations that can cause a program to terminate abnormally, such
as not having enough disk space to write to a file, attempting to write to a file that
is already opened for reading, etc. Such situations often arise due to the
circumstances under which the program is running and not necessarily due to
programming errors. To manage such situations, C++ uses exception handling.
Exception handling can only manage routine events that arise when executing a
program. It is not used to handle events such as user-driven abortion of program
execution by pressing ‘Control-C’.

The three keywords associated with exception handling are try, throw and catch.
The keyword try is used to form a try block. A try block consists of the
keyword try followed by the try block contained within a pair of matching
braces:
try
{

. . .
}

All statements that are likely to cause exceptional situations are executed within the
try block. Each situation that may lead to an exception must be identified and a
throw statement must then be executed. In the example shown in Listing 7-10 we
are attempting to allocate memory from the free store; being n unsigned char

7 DRIVING LEDS 189

locations. This attempt may fail; (a) if the value of n is less than 1, (b) there is no
space available in the free store.

Listing 7-10 An example try block for dynamic memory allocation.

 unsigned char* LightPattern;
 try
 {
 if(n < 1)
 throw(n);
 LightPattern = new unsigned char[n];
 if(LightPattern == NULL)
 throw("Memory error");
 }

The most significant observation to be made here is the signature of the throw
statements. The first throw, throws just one integer, being n. The second throw
throws a string. Immediately after the try block, there must be matching catches.
In our case there must be a catch that matches the throw of one integer and
another catch that matches the throw of one string. When these two catches are
included, Listing 7-10 will become the code shown in Listing 7-11.

Listing 7-11 Try block with the catches.

 unsigned char* LightPattern;

 try
 {
 if((n < 1) || (n > 4)) // Note: || is logical OR
 throw(n);

 LightPattern = new unsigned char[n];
 if(LightPattern == NULL)
 throw("Memory error");
 }

 catch(int n) // catches the throw of integer
 {
 cout << "Illegal number of elements requested" << endl;
 cout << "Array size defaults to 4" << endl;
 n = 4;
 LightPattern = new unsigned char[n];
 }

7 DRIVING LEDS 190

 catch(char* memerror)
 {
 cout << "Memory allocation failed " << endl;
 cout << "Terminating program " << endl;
 exit(1);
 }

Walking LEDs – User Definable Array Size and Contents
We can improve the program presented in Listing 7-9 so the user has the flexibility
to define the size as well as the contents of the LED pattern array. Each number
entered into the array by the user will be output to the bank of LEDs in sequence,
followed by a short delay. Therefore, the main() function shown in Listing 7-9
can be re-written using dynamic memory allocation and exception handling as
shown in Listing 7-12.

Listing 7-12 Dynamic memory allocation and exception handling for the LED walk .

#include <iostream.h>
#include <conio.h>
#include <stdlib.h>
#include <dos.h>

#define SetArray(x) SetPatternAddress((x), sizeof((x)))

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

7 DRIVING LEDS 191

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Invert most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

class LEDs : public ParallelPort
{
 private:
 unsigned char* PatternPtr;
 int PatternIndex;
 int MaxIndex;

 public:
 LEDs();
 LEDs(int baseaddress);
 void SetPatternAddress(unsigned char* pattern,
 int maxidx);
 void LightLEDs();
};

LEDs::LEDs()
{

7 DRIVING LEDS 192

 MaxIndex = 0;
 PatternIndex = 0;
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress)
{
 MaxIndex = 0;
 PatternIndex = 0;
}

void LEDs::SetPatternAddress(unsigned char* pattern, int maxidx)
{
 PatternPtr = pattern; // pointer Pattern assigned address
 // of pattern
 MaxIndex = maxidx;
}

void LEDs::LightLEDs()
{
 if(MaxIndex == 0)
 {
 cout << "No Patterns to display " << endl;
 return;
 }

 while(!kbhit())
 {
 WritePort0(*(PatternPtr + PatternIndex++));

 // Reset PatternIndex when it gets to MaxIndex.
 if(PatternIndex == MaxIndex) PatternIndex = 0;
 delay(500);
 }
 getch(); // absorb the key that was hit
}

void main()
{
 LEDs Leds;
 unsigned char* LightPattern;
 int TempPattern;
 int n, i;

 cout << "Pass in the desired size of LightPattern => ";

7 DRIVING LEDS 193

 cin >> n;

 try
 {
 if(n < 1)
 throw(n);
 LightPattern = new unsigned char[n];
 if(LightPattern == NULL)
 throw("Memory error");
 }

 catch(int n) // catches the throw of integer
 {
 cout << "Illegal number of elements requested" << endl;
 cout << "Array size defaults to 4" << endl;
 n = 4;
 LightPattern = new unsigned char[n];
 }

 catch(char*) // catches the throw of the string
 {
 cout << "Memory allocation failed " << endl;
 cout << "Terminating program " << endl;
 return;
 }

 cout << "Enter " << n ;
 cout << " numbers in the range (0x00 - 0xFF)" << endl;

 for(i = 0; i < n; i++)
 {
 cin >> TempPattern;
 *(LightPattern + i) = TempPattern;
 }

 Leds.SetPatternAddress(LightPattern,n);
 Leds.LightLEDs();
}

7.10 Summary
This chapter explained the operation and use of various types of iterative loops
such as for, while and do-while. The for loop is used primarily when the

7 DRIVING LEDS 194

number of iterations is known at programming time. When this is not the case,
either a while loop or a do-while loop can be used. In some situations the
body of a while loop may not execute at all, whereas the body of do-while
loops will execute at least once. Various control mechanisms such as if,
switch-case, break, and continue can be used in conjunction with loops to
enhance program flow. The switch statement can be used when one of several
cases needs to be selected for execution.

Pointers are an important and powerful feature of the C++ language and have been
explained in this chapter. They contain the memory addresses that “point” to
locations in memory storing various objects or functions. Arithmetic used with
pointers automatically takes into account the size of the object the pointer is
pointing to. Pointers can be used very efficiently to scan arrays as demonstrated by
the programs developed in this chapter. Most importantly, a pointer pointing to a
base class object can also point to a derived class object.

We have used dynamic memory allocation to allow memory to be made available
for new objects and arrays of objects during program execution. When memory is
dynamically allocated, the new operator returns a pointer to the allocated memory.
To free the allocated memory, the delete operator must be used.

Exception handling was introduced in this chapter to contain predictable run-time
errors. Programming statements, which have the potential to cause run-time errors
can be contained within a try block. Depending on what is thrown from within a
try block, a catch statement can be executed to indicate the cause of the run-
time error. We used exception handling to manage any erroneous situations
occurring from out-of-range array sizing or insufficient memory when attempting
to allocate memory.

7.11 Bibliography
Kelley, A. and I. Pohl, A Book on C – programming in C, Benjamin Cummins,
1995.

House, R., Beginning with C – An Introduction to Professional Programming,
International Thompson Publishing, 1994.

Deitel H.M. and P.J. Deitel C: How to Program, Prentice Hall, 1994.

L Miller and A Quilici, C programming Language – an applied perspective, John
Wiley Publishing, 1987.

Hanly, J.R., E.B. Koffman and J.C Horvath, C Program Design for Engineers,
Addison Wesley, 1995.

Rudd, A., Mastering C, John Wiley, 1994.

Lafore, R, Object Oriented Programming in C++, Waite Group Press, 1995.

7 DRIVING LEDS 195

8

Driving Motors -
DC & Stepper

Inside this Chapter

DC motors – types, performance and control.

Stepper motors and stepper motor drive
techniques.

Object classes for DC and stepper motors.

Virtual functions and class hierarchies.

Using Pointers and Dynamic Memory
Allocation.

Motor control using the keyboard.

8.1 Introduction
Almost every industry and household has motors used in their equipment or
appliances. Motors that are often controlled by computers have also become an
essential part of many motion control systems. This chapter describes the basic
construction of DC motors, their performance, control techniques, and the effect
of applying loads to them. The technique known as Pulse Width Modulation
(PWM) is explained and implemented to control DC motors. This is followed by
descriptions of stepper motor types, their construction, their different modes of
operation, and control methods.

The software segment of the chapter begins with the development of an abstract
class to represent motors in general. Using this abstract class and the
ParallelPort class as base classes, a new Motor class is derived using
multiple inheritance. This new class has the capability to communicate with the
PC via the parallel port. With this new class as a base class, further classes are
derived for DC motors and various forms of stepper motors, demonstrating the
development of object class hierarchies.

Dynamic memory allocation is used in the programs that drive the various types
of motors. Towards the end of the chapter, the power of virtual functions and the
concept of late binding will be demonstrated by a motor control program using
keyboard control.

8.2 DC Motors
Most motors employed for control purposes are DC permanent magnet types.
They are characterised by having a linear torque-speed curve and come in
several popular configurations.

8.2.1 DC Motor Construction, Performance
The basic construction of a DC motor is shown in Figure 8-1. Current flows
from the power source (shown as a battery) and through the armature coil
winding via the brushes in contact with the commutator. This current flow
induces a magnetic field around the armature coil that opposes the magnetic
field produced by the magnets, and generates a motor torque that is capable of
doing work. To produce a smoother output torque, many groups of coil windings
are used in a typical motor armature. Each group of windings connects to
opposing contacts on the commutator with each commutator contact being
insulated from its neighbouring contacts.

Today, permanent magnets are widely used in motors. These magnets are made
from Alnico, with high-performance motors using high-strength rare-earth
magnets (samarium cobalt).

8 DRIVING MOTORS - DC & STEPPER

Figure 8-1 Basic DC motor construction.

A different type of DC motor, known as the brushless motor, does not have
commutator brushes; instead current is switched through the coil windings by
electronic means. These motors use permanent magnets for the rotor and have
the field windings on the stator. This arrangement gives a greatly improved path
for heat flow out of the motor and results in high reliability, low noise, high
speed, and high peak torque characteristics.

Motor performance depends upon the load connected to the motor and the
applied voltage driving the motor. Friction in the motor bearings, brush losses,
iron losses, and short-cut circuit losses (from each brush contact overlapping an
adjacent contact) limit the upper speed during no-load situations, and the torque
load at the motor shaft determines the lower speed limit. As the load applied to
the motor increases, motor speed drops in a linear manner, proportional to the
load applied. The steady power produced by the motor can be increased if air-
cooling is used or if the motor is used for short periods of operation. When
selecting a suitable motor for a given task, the load inertia, load torque, and load
power should all be considered.

8.2.2 DC Motor Control
To control DC motors, a variable voltage must be generated and applied to
power the motor. There are two main sources of voltage supply for a motor: the
linear power supply, and the switching power supply. The linear power supply
technique uses power transistors acting in their linear mode to provide a smooth
and continuously adjustable output voltage depending upon load drive
requirements. In this mode, the transistors are used as variable resistors,
conducting according to the level of the input signal applied. This method of

SN

MagnetMagnet

Brush

Insulator

One conductor

DC Power Supply

Armature

199

W

T

t

T

Pulse-Frequency Modulation (PFM)

Pulse width t is fixed, period T
changes to provide an adjustable
‘average’ output voltage.

Pulse-Width Modulation (PWM)

Period T is fixed, pulse-width w
changes to provide an adjustable
‘average’ output voltage.

0V

+V

0V

+V

time

control wastes power when the transistors are used to drop voltage and in doing
so dissipate power.

Switching power supply techniques use transistors to switch the voltage through
to the motor in a series of pulses that applies an ‘average’ voltage to the motor.
Two switching methods are commonly used, pulse-width modulation (PWM) ,
and pulse-frequency modulation (PFM) as shown in Figure 8-2.

Figure 8-2 Voltage-control using switching methods.

Pulse-width modulation is the more common method used for motor control. This
method uses a constant period (T) between sequential pulses, while the width (w)
of the pulses is altered (duty cycle) to change the effective or average voltage
applied to the motor.

Pulse-frequency modulation varies the frequency of pulses having a constant
pulse width (t) to control the average voltage applied to the motor.

Figure 8-3 Motor control using a H-bridge.

The most common means of controlling the voltage applied to DC motors is
through the use of a H-bridge circuit as shown in Figure 8-3. Two switches are

Motor

+V

+

_
II

I

SW1 SW2

SW3 SW4

8 DRIVING MOTORS - DC & STEPPER 200

closed at a time to switch the DC voltage through to the motor. When switches
designated as SW1 and SW4 are closed and switches SW2 and SW3 are open, as
shown in the diagram, the motor will rotate in one direction. Swapping the
positions of the open and close switches to make SW2 and SW3 closed and SW1
and SW4 open will reverse the flow of current through the bridge and reverse the
direction of motor rotation.

The average voltage delivered to the motor can be controlled using pulse-width
modulation applied to the switches. In practice, the switch function is performed
using power transistors in place of each switch. As the switch is opened, a large
voltage is generated across the motor winding, known as back-emf. This voltage
must be limited to avoid damage to the active switching transistors. Damage is
prevented by fitting diodes across the transistors that clamp the voltage to much
lower levels that will not cause damage.

Motors can be controlled using both open- and closed-loop control techniques.
Open-loop control does not use any form of feedback from the output of the motor
shaft to indicate motor speed or motor shaft rotation. This mode of operation relies
upon estimating motor speed or rotation by knowing the motor load and motor
operating characteristics. If accurate motor control is needed and motor load is not
known or is not constant, closed-loop control is typically used. When controlling
motor speed, the feedback taken from the motor output will be motor shaft speed.
This is usually measured using a tachometer that generates an output voltage
proportional to the motor speed. Alternatively, the tachometer can output a digital
pulse-train.

Figure 8-4 Motor encoder output – quadrature.

When position control is needed, resolvers or digital encoders are connected to the
motor output to provide position feedback. Resolvers generate two out-of-phase
sinusoidal waves whose amplitudes provide position information. Optical encoders
output two digital waveforms that are separated in phase by approximately 90
degrees to provide directional information in quadrature format as shown in Figure
8-4. It is possible to determine the direction of motor rotation by knowing the order
in which the rising or falling edges of each waveform occur.

Output A

Output B

time

Output A

Output B

Clockwise Rotation Anticlockwise Rotation

8 DRIVING MOTORS - DC & STEPPER 201

8.3 Stepper Motors
Stepper motors are often used for motor control applications requiring positive
positioning and good levels of torque at low speed. Provided they are not
overloaded, their output shaft speed and rotational position are inherently known
and controlled through simple digital switching of their winding currents – often
without the need for expensive shaft encoders.

8.3.1 Stepper Motor Construction
Three main types of stepper motor construction are in use; these being permanent
magnet, variable reluctance, and hybrid construction.

The permanent magnet type has a permanent magnet rotor with many poles. This
motor has a residual holding torque when the windings are not energised and
requires less power to operate than other types. It is low in cost, produces low
torque and runs at low speed. However, it suffers from resonance effects, relatively
long settling times and rough performance at low speed. It is mainly used in non-
industrial applications.

Variable reluctance motors use a soft iron core rotor with a different number of
teeth than the number of poles on the stator. As the stator poles are energised in-
turn, the rotor aligns itself with the magnetic field of the energised stator pole, to
create a rotor position having minimum magnetic reluctance. This type of motor
has a good ratio of torque to inertia but lacks a residual torque when the stator field
windings are de-energised. Variable reluctance motors are seldom used in
industrial applications and require a different driving arrangement from the other
stepper motor types.

Hybrid motors use a combination of permanent magnet and variable reluctance
features in their construction. This is the most widely used type of stepper motor
for industrial applications due to its high torque and residual holding torque.

8.3.2 Stepper Motor Configuration
To understand how a stepper motor works, consider the simplified motor shown in
Figure 8-5. This motor has a permanent magnet rotor with one north-south pole
pair and uses a stator with four teeth. The motor drive sequence shown uses what is
known as full-stepping – in this case each full-step corresponds to a 90 rotation.
There are two independent coil windings used on the stator, meaning this is a two-
phase motor.

The motor rotates in a clockwise direction as shown in Figure 8-5 when using the
coil energising sequence in Table 8-1. Both of the motor coils are energised for
every step position during each drive sequence.

8 DRIVING MOTORS - DC & STEPPER 202

Figure 8-5 Simplified 2-phase stepper motor – full-stepping sequence.

Table 8-1 Full-stepping sequence for a 2-phase motor.

Coil Contact Voltage
Step Position A1 A2 B1 B2

1 + +
2 + +
3 + +
4 + +

Smaller step angles can be achieved when a half-stepping drive sequence is used.
This involves energising only one of the coil windings for every second step angle
as shown in Figure 8-6 and Table 8-2.

Stepping
Sequence

+ Volts

N

S

N

S

A1

A2

B2

B1

+ Volts

NS

N

S

+ Volts
B1B2

A1

A2

+ Volts

N

S

NS

N

S

+ Volts

+ Volts B1B2

A1

A2

N

S

SN

S

N

+ Volts B1B2

A1

A2

S

N

SN

+ Volts

8 DRIVING MOTORS - DC & STEPPER 203

Figure 8-6 Half-stepping sequence for a 2-phase motor.

Table 8-2 Half-stepping sequence for 2-phase motor.

Coil Contact Voltage
Step Position A1 A2 B1 B2

1 + +
2 +
3 + +
4 +
5 + +
6 +
7 + +
8 +

Stepper motors are categorised depending upon the way current is driven through
their windings as will now be explained.

1

N

S
B1

A1

A2

S

N

NB2 S

2

N S B1

A1

A2

NB2 S

3

N

S
B1

A1

A2

N

S

NB2 S

4

N

S
B1

A1

A2

N

S

B2

5

N

S
B1

A1

A2

N

S

SB2 NS N B1

A1

A2

SB2 N

67

S

N
B1

A1

A2

S

N

SB2 N

8

S

N
B1

A1

A2

S

N

B2

8 DRIVING MOTORS - DC & STEPPER 204

Wound
Clockwise

Wound
Anticlockwise

Bifilar Coil

N

S

S

B2

A2

A1

+ Volts

NS
+ Volts

N

B1

Bipolar Motor
This type of motor uses coil currents that reverse in direction throughout the
stepping sequence, as shown in the preceding text. To achieve this reversal of
current, bipolar voltages are applied to the coil windings. A bipolar power source
with +ve, –ve and ground potentials can be used with four switching transistors to
drive this type of motor. However, the usual means of implementing this form of
drive is to use a single polarity power supply with eight switching transistors,
configured using two separate H-bridge circuits as shown in Figure 8-7. Bipolar
type motors are easily recognized since they have only four connection leads.

Figure 8-7 Bipolar drive using two H-bridge circuits.

Unipolar Motor
This type of motor uses coil winding currents which flow in one direction only. In
order to obtain a reversal of magnetic field at each stator tooth, the coil is wound in
two halves as shown in Figure 8-8. One half of the coil is wound clockwise around
the stator tooth and the other half of the coil is wound anticlockwise around the
stator tooth – known as a bifilar winding.

Figure 8-8 Unipolar motor – bifilar coil.

+V

+

_
II

I

SW1 SW2

SW3 SW4

+V

+

_
II

I

SW1 SW2

SW3 SW4

Coil 1 Coil 2A1 A2 B1 B2

8 DRIVING MOTORS - DC & STEPPER 205

+V

+ _

I
SW1 SW2

Coil 1

A1 A2

+V

+ _

I
SW3 SW4

Coil 2

B1 B2

The wire connection halfway through the coil is connected to the positive power
supply. Only one half of the coil is energised at a time. A north pole is produced
when one half of the coil is energised by connecting its end to ground potential; a
south pole is produced by energising just the other half of the coil by grounding its
end. This is shown in Figure 8-9, Figure 8-10 and Table 8-3. Note that a north pole
is produced when coil winding A1 or B1 are grounded; conversely grounding A2 or
B2 results in a south pole.

Figure 8-9 Unipolar coil drive.

Figure 8-10 Full-stepping sequence – unipolar motor.

Table 8-3 Full-stepping sequence for unipolar motor.

Coil Contact Voltage
Step Position A1 A2 B1 B2

1
2
3
4

1

N

S

B2 B1

S

N

NS
A1

A2

2

N

S

N

S

NS
A1

A2

B2 B1

4

S

N

S

N

SN

B2 B1

A1

A2

3

N

S

N

S

SN

B2 B1

A1

A2

8 DRIVING MOTORS - DC & STEPPER 206

Half-stepping is achieved by energising two half coils together followed by
energising only one coil in a repetitive sequence, generating a similar sequence of
magnetic fields when half-stepping a bipolar motor. Figure 8-11 and Table 8-4
show the half-stepping sequence for a unipolar motor.

Figure 8-11 Half-stepping sequence – unipolar motor.

Table 8-4 Half-stepping sequence for unipolar motor.

Coil Contact Voltage
Step Position A1 A2 B1 B2

1
2
3
4
5
6
7
8

For a unipolar motor to have the same number of turns per winding as a bipolar
motor, the wire diameter must be decreased due to its bifilar winding scheme. This

1

N

S

B2 B1

S

N

NS

2

N S NS

3

N

S

N

S

NS

4

N

S

N

S

A1

A2

A1

A2

B2 B1

A1

A2

B2 B1 B2 B1

A1

A2

5

N

S

N

S

SNS N SN

67

S

N

S

N

SN

8

S

N

S

N

B2 B1

A1

A2

B2 B1

A1

A2

A1

A2

B2 B1

A1

A2

B2 B1

8 DRIVING MOTORS - DC & STEPPER 207

reduction in wire diameter leads to an increase in coil resistance and lowers the
motor torque by approximately 30% at low step rates. At higher step rates, unipolar
motor performance exceeds that of bipolar wound motors.

Stepper motors come in a variety of wire configurations as shown in Table 8-5.
The five-wire unipolar motor is identical to the six-wire unipolar motor except the
two power supply wires are connected together internally and only one wire is
brought outside the motor case.

Table 8-5 Stepper motor wire configuration.

Wire
Arrangement Motor Type

4-wire Bipolar – 2 phase
4-wire Variable Reluctance – 3 phase
5-wire Unipolar – 2 phase
6-wire Unipolar – 2 phase
8-wire Bipolar – 4 phase

The eight-wire bipolar motor has two pairs of two phases (independently wound
coils). This arrangement allows a pair of phases to be connected in series or in
parallel. A series-connected configuration effectively doubles the amp-turns
producing twice the torque at lower speeds. The inductance of the effective coil is
proportional to the number of turns squared, meaning that the inductance is now
raised four-fold. Winding resistance is now double, which lowers the maximum
value of current through the winding in order to not exceed the motor power rating.

Connecting the eight-wire motor in a parallel configuration does not change the
effective number of turns and therefore does not increase the winding inductance.
The effective winding resistance is now halved, meaning that the motor can be
driven at higher levels of winding current for the same power dissipation. This will
give improved torque at this higher current.

A series-connected configuration of phases leads to a rapid drop in torque as speed
increases. This occurs because the time constant of the winding, being equal to
inductance divided by resistance, is now twice that of a single connected phase.
The parallel-connected windings perform much better at high speed than the series
configuration since their winding time constant is half that of a single winding and
therefore ¼ that of the series configuration. Additionally, the torque curve is flatter
for a motor connected in parallel, producing greater shaft power.

8.3.3 Stepper Motor Control
Stepper motor performance is compromised when driven by a simple H-bridge
circuit as shown previously in this chapter. The coil current requires finite time to
increase in level once the controlling switch (transistor) is ‘closed’. Since the

8 DRIVING MOTORS - DC & STEPPER 208

winding has inductance (L) and resistance (R), the current (I) will increase
exponentially with increasing time according to the value of the winding time
constant () as shown in Figure 8-12.

Figure 8-12 Regular drive and Series resistance drive.

One means of reducing this winding time constant is by using series resistance
drive. In this scheme, an external resistor is added in series to the winding circuit.
If this resistor was say equal in value to the resistance of the wound coil and the
applied voltage doubled, the peak current (I) through the winding would remain the
same, but the winding time constant is now halved. Although this form of motor
control increases the high-speed torque, it is inefficient due to the loss of power
generated by the current flowing through the added external resistor.

Figure 8-13 Coil winding current under chopper drive.

A better approach to stepper motor control is known as chopper drive. The voltage
applied to the winding is raised similar to that for the series resistance drive scheme
but an added resistor is not used. This improves the rise-time of the current through
the winding. Without using an added resistor, the current would eventually increase
and exceed the motor’s rated winding current if some form of voltage control was
not used. To prevent this excessive current build-up, a current sense resistor (with

+V

L

R

V

I

 L/R

63%w
in

di
ng

2V

I

 L/2R

63%

+2V

L

R

w
in

di
ng

R

I

Time

Current

8 DRIVING MOTORS - DC & STEPPER 209

small resistance) is used to measure the winding current. When the level of rising
current reaches the rated value of the winding, the applied voltage to the motor
control circuit is turned off, preventing any further current rise. Naturally, the
winding current will now decay while the winding is not being powered. The sense
resistor is used to monitor this decay so that voltage can be re-applied to the motor
control circuit when the level of current has dropped a small amount below the
rated value. This cycle of current build-up and decay continues until it is time to
turn off the winding current for the next step sequence as shown in Figure 8-13.

There is a more refined technique used to drive stepper motors known as
microstepping. This drive scheme proportions the level of individual coil winding
current to produce intermediate stepping positions within a normal full-step.
Accurate control of coil current is needed and high-resolution microstepping in
excess of several thousand steps per revolution is possible.

Motor controllers that use integrated circuits are available to simplify the task of
stepper motor control. These circuits contain waveform-generating logic, power
transistor switches, and associated protection diodes to control the damaging effect
of back-emf (electromagnetic force) produced when coil currents are switched off.

8.3.4 Stepper Motor Specification
Several terms such as holding torque, dynamic torque, pull-in torque, pull-out
torque, and ramped step rate are used to specify stepper motor performance. These
terms are briefly explained in Table 8-6.

Table 8-6 Stepper motor terminology.

Holding torque That torque which the motor generates when stationary.
Dynamic torque The torque generated by the motor when rotating. This torque

drops as motor speed increases due to the effect of the motor’s
time constant and the reduced time to build-up current.

Pull-in torque
(start without
error torque)

The pull-in torque is the maximum torque available to be
applied to the motor load when starting from rest for a
particular step rate (or when coming to a stop without losing
steps). It does not include that portion of motor torque needed
to accelerate the inertia of the motor itself.

Pull-out torque
(running torque)

The maximum torque that can be applied to the motor load
during steady speed without losing steps. This torque is higher
than the pull-in torque because the motor is not being
accelerated and therefore no torque is consumed for this
purpose.

Ramped step rate This is the step rate which avoids any loss of steps during
periods of acceleration or deceleration.

8 DRIVING MOTORS - DC & STEPPER 210

So far in this chapter we have discussed the principles of operation of DC motors
and stepper motors. Let us now turn our attention to writing object-oriented
programs to drive these motors using the motor drive circuits of the interface
board. In the coming sections we will encounter the most powerful feature of
object-oriented programming – virtual functions.

The approach taken in the following sections is to first develop a class hierarchy to
represent DC motors and all forms of stepper motors discussed earlier in this
chapter. Then we will use the classes in this hierarchy to develop a generic
program that will drive any type of motor in the hierarchy.

8.4 A Class Hierarchy for Motors
All the motors to be included in our class hierarchy will be driven using the
interface board. Therefore, while the class hierarchy is in principle for motors,
interfacing also plays an important role. We can identify two major categories for
all motors described in this chapter. They are; i) DC motors and ii) Stepper Motors.
Stepper motors fall into two types; Unipolar Stepper Motors and Bipolar Stepper
Motors. These two types of stepper motors can be controlled in two different ways;
full-step control and half-step control. DC motors have not been further
subdivided.

To start with, we can think of motors ‘in general’ as abstract objects. A ‘motor’
will remain an abstract concept until we can describe all its relevant details.
Therefore, a good starting point for our class hierarchy is an abstract motor class
that encompasses the most common features of all motors in the hierarchy.
Interfacing these motors to the interface board is also a very basic requirement for
all the motors. In our case, all motors will be controlled via the parallel port and so
the ParallelPort object we developed earlier can be used for this purpose.
Since interfacing is necessary for all motors of the hierarchy, the ParallelPort
class must join the hierarchy at a very early stage. The proposed class hierarchy is
shown in Figure 8-14.

At the root of the class hierarchy is the abstract class AbstractMotor that
represents all motors. The ParallelPort class is also at the same level as the
AbstractMotor class. However, the ParallelPort class developed earlier
is not an abstract class. It is a real class since objects can be instantiated from it.

The Motor class is derived by multiple inheritance from the two base classes
AbstractMotor and ParallelPort. The Motor class is also an abstract
class since it is not yet a fully described object class of the motor hierarchy. This
means the class lacks the finer details of the specific motor types needed to
complete the member function definitions. However, the objects of the Motor
class have more capabilities than the objects of the AbstractMotor class,
namely they can communicate with devices via the parallel port.

8 DRIVING MOTORS - DC & STEPPER 211

Figure 8-14 Motor class hierarchy.

The Motor class is then used to derive the two classes DCMotor and
StepperMotor. At this level DCMotor and StepperMotor are completely
described and must be real classes. The class hierarchy ends here.

The question arises; why not derive further classes to represent, for example, dual-
phase bipolar stepper motors in half-step control? The answer is as follows. The
functional characteristics of a dual-phase bipolar stepper motor in half-step control
are different from a dual-phase unipolar stepper motor in full-step control.
However, from a software point of view, this is analogous to two cars having
different colour. The different motor drive schemes are certainly not analogous to a
normal car and a luxury car. When two different coloured cars are needed, the
choice of colour can be handled by changing the value of a parameter. A new class
is not necessary for each colour. Our approach in treating different kinds of stepper
motors will be along similar lines.

8.5 Virtual Functions – An Introduction
A virtual function is a function that has the same function signature throughout a
class hierarchy although behaves according to its definition in each class. Virtual
functions are polymorphic in nature but with a subtle difference. As discussed in
Chapter 4, polymorphic functions are functions throughout a class hierarchy with
the same name, the same number of parameters, same sequence of parameters and
same types of parameters. However, their bodies are programmed differently to
suit the requirements of each class. Virtual functions have all the features of
polymorphic functions, except the keyword virtual is added right at the front of

AbstractMotor
(Abstract class)

ParallelPort
(Real class)

Motor with
Interface

(Abstract class)

StepperMotor
(Real class)

DCMotor
(Real class)

8 DRIVING MOTORS - DC & STEPPER 212

function declarations within their classes. Although virtual and non-virtual
functions appear to be quite similar, there are significant advantages when using
virtual functions. They allow the implementation of a very powerful feature known
as late binding which will be explained in more detail later in this chapter.

The benefits of late binding are strictly linked to virtual functions within a class
hierarchy. Virtual functions are added at first to a base class and then later
implemented throughout the derived classes of the hierarchy. This arrangement
provides the primary link needed between a virtual function of the base class and a
virtual function of a derived class somewhere down the class hierarchy. Any virtual
functions of any derived class can be called using a pointer to the base class.
Despite using a base-class pointer, rather than a pointer to the derived class itself,
at run-time the base-class pointer will select the correct function from the derived
class, thanks to the mechanism that links virtual function within a class hierarchy.

If virtual functions are not used to select the correct function to match the object
chosen by the user at run-time, the developer needs to provide additional code to
carry out these tasks. This extra code will include all the necessary program
statements placed within a framework of “if-then-else“ logic or switch
statements. When class hierarchies are large and complex, this extra programming
can be an immense burden and produce programs that are difficult to debug and
maintain. If a new class is added to the hierarchy, the entire program needs to be
modified. As can be imagined, this is not a very efficient approach to
programming.

Virtual functions and associated late binding alleviates the program developer from
needing to generate this extra code. The developer writes a generic program using
virtual functions. The compiler and linker are now managing this task. As a result,
programming and debugging times are markedly reduced. Furthermore, minimal
change to code is required to incorporate a new addition to the class hierarchy.
These advantages will become evident as we work through the example programs
ahead.

AbstractMotor Class
As mentioned previously, the principal motive underlying the development of the
AbstractMotor class as a base class is to form a foundation for the network of
virtual functions. All classes derived from the AbstractMotor class will inherit
all its functions. Only some of the functions can be completely defined at this early
stage, while the remaining functions will be skeletal due to a lack of exact details
for the ‘motors’ involved. A thoughtful selection of data and functions to be
included in a base class for motors is as follows:

1. A data member to store the set speed of the motor.
2. A mechanism for functions outside the class to obtain the set speed.
3. A function to drive ‘a motor’ forward.
4. A function to drive ‘a motor’ in reverse.
5. A function to brake ‘a motor’.
6. A function to turn ‘a motor’ off (no applied power).

8 DRIVING MOTORS - DC & STEPPER 213

A class definition for the AbstractMotor class is given in Listing 8-1.

Listing 8-1 AbstractMotor class.

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();

virtual void Off()=0;
virtual void Forward()=0;
virtual void Reverse()=0;
virtual void Brake()=0;

};

We haven’t seen the bold font code shown in Listing 8-1. It will be discussed in the
sections ahead.

The AbstractMotor class has Speed as a private data member, which is of
type int. The member function SetSpeed() receives speed as a parameter
and then sets the value of data member Speed to equal speed. The public
member function GetSpeed() can be called by any function in the program to
obtain the value of private data member Speed. The Off() function turns off all
power to the motor. The function Forward() is used to drive the motor forward
at the speed specified in Speed. Similarly, the function Reverse() is used to
drive the motor in reverse direction at the speed specified by Speed. The
Brake() function can be used to short-circuit the motor windings to stop the
motor rotation, in the minimum time.

We will now provide the definitions for all member functions of the
AbstractMotor class. The AbstractMotor class does not drive specific
types of motors. Rather it provides general functions that will be overridden in its
derived classes to suit specific types of motor. Without knowing the exact details of
the motor, we cannot define the functions Off(), Forward(), Reverse() and
Brake(). If we cannot define the functions, why did we include them as member
functions? One reason is that it is good to specify the form of the objects of the
hierarchy at its start to maintain a high level of conformity throughout the
hierarchy. This helps us write code that maintains the relationships with objects of
the entire hierarchy. For example, all classes of the hierarchy will have a function
named Forward(). The subsequent derived classes will then redefine the
inherited Forward() function to apply specifically to their respective class. The
other reason is associated with virtual functions and late binding.

8 DRIVING MOTORS - DC & STEPPER 214

The motor driving part of the program can be very complex. It may contain
sophisticated operations to change the speed, change direction of rotation and to
brake the motor. Using virtual functions, the motor control program in the main
function can be written completely, without knowing exact specifics of the
particular motor to be driven. When the user selects a particular control action for
the chosen motor, the correct function from that class will be deployed
automatically to operate on the associated object type (without the programmer
needing to provide explicit code). When we use virtual functions, the compiler
generates the actual code that allows this virtual function mechanism to operate in
this way. This behaviour will be shown in the sections ahead. This part of the
program will even work for objects that will be added to the class hierarchy in the
future. This gives us the flexibility to expand the class hierarchy as desired without
needing to rewrite the motor control portion.

When the program is running, the user will select an object type (DCMotor or
StepperMotor) to be used from a choice of motor types. For example, the user
may select a motor of type DCMotor to be driven forward. Then the program will
automatically bind the DCMotor object to the Forward() function of the
DCMotor class. This deferred decision-making is known as late binding. In other
words, the program selects the correct function to drive the motor forward based on
the object type selected by the user at run-time. Late binding is also known as
dynamic binding. The word dynamic is used because the binding takes place while
the program is running. Note that polymorph functions cannot be used in late
binding - only virtual functions can use this feature.

If virtual functions were not used in the program, the programmer would need to
provide the extra logic to select the correct function. In this case the end of each
logic branch will be hard-coded to bind a specific object to its associated member
function. Binding is no longer deferred to a later time. In such a situation the
compiler can identify the correct function and bind it at programming time. This is
known as early binding or static binding. The word static is used to signify that
binding takes place before the program runs - the program is already coded for
each possible combination of object/function the user might select.

At first glance, virtual functions and late binding appear to be overkill! However,
without them it is very difficult to write sound generic programs that work with a
variety of situations that are decided by the user at run time. Using virtual functions
can significantly reduce the amount of programming required. The programmer no
longer needs to write a number of code segments to control each object type.
Instead, one code segment will be written to control all object types of a given
hierarchy. Also, the user (or the program itself) has complete flexibility to choose
the object type at run time.

8.5.1 Pure Virtual Functions
It was mentioned previously that without knowing the physical construction and
interfacing of the motor, it is impossible to define the bodies of the functions
Off(), Forward(), Reverse(), and Brake(). In order to inform the

8 DRIVING MOTORS - DC & STEPPER 215

compiler of our inability to provide the bodies of these functions we must declare
them as pure functions. Note that only virtual functions can be declared pure. A
function is declared pure by appending ‘=0’ at the end of the declaration.

A normal function is declared as:
void Forward();

A virtual function is declared as:
virtual void Forward();

A pure virtual function is declared as:
virtual void Forward()=0;

Pure Virtual Functions and Abstract Classes
An effect of declaring at least one pure virtual function (which has no executable
code) in a class definition is that the class becomes an abstract class. Some abstract
classes have useful functions. If the class has a function whose body cannot be
defined, then the class cannot be used to instantiate completely usable objects. The
reason for this is that a program may attempt to call a pure virtual function (with no
executable code). Therefore, a rule is in place that prevents objects from abstract
classes being instantiated. We will revisit virtual functions when we make use of
them for controlling the DC and Stepper motors in the class hierarchy (shown in
Figure 8-14).

Returning to the class definition given previously in Listing 8-1, only three of the
member functions can be defined: AbstractMotor(), SetSpeed() and
GetSpeed(). As explained previously, the other four functions; Off(),
Forward(), Reverse(), and Brake() cannot be defined at this stage, which
is why they are declared as pure virtual functions. The member function definitions
are given in Listing 8-2.

Listing 8-2 AbstractMotor class member function definitions.

AbstractMotor::AbstractMotor()
{
 Speed =0;
}

void AbstractMotor::SetSpeed(int speed)
{
 Speed = speed;
 if(Speed > 255) Speed = 255; // Limit upper value
 if(Speed < 0) Speed = 0; // Limit lower value
}

int AbstractMotor::GetSpeed()

8 DRIVING MOTORS - DC & STEPPER 216

{
 return Speed;
}

The constructor of the AbstractMotor class initialises the data member Speed
to 0.

The public function Setspeed() can be called by any function to change the
speed of any of the motors in the hierarchy. This function assigns the actual
argument passed in speed to the member data Speed. The two if statements in
the SetSpeed() function ensure the actual argument passed in place of speed
is restricted to within the acceptable range 0 – 255 we have decided to use. If for
example, a value such as 300 is passed, then the first if statement will limit and
override that value to become 255. Therefore, the data member Speed will be set
to 255. In other words, any value above 255 will be forced to be 255. The second
if statement will force any value below 0 to be 0. Any value inside the acceptable
range will be left as is.

The GetSpeed() function returns the current value of Speed to any function.
This is the only mechanism provided for a function outside the class to obtain the
value of Speed.

Motor Class
Next in the class hierarchy is the Motor class. This class inherits functions and
data from the two classes AbstractMotor and ParallelPort. Its class
definition is given in Listing 8-3.

Listing 8-3 Motor class.

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress=0x378);
 void Off();
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
};

Note the program line:
class Motor : public AbstractMotor, public ParallelPort

The new class name is Motor and it is derived using the public access specifier
with the two base classes AbstractMotor and ParallelPort. A comma
separates the base classes. No new data members are added. The two functions that

8 DRIVING MOTORS - DC & STEPPER 217

must be defined are the constructor of the Motor class and the Off() function.
The other three functions remain as pure virtual functions. It was mentioned earlier
that if at least one of the member functions is a pure virtual function, the class
becomes an abstract class. Therefore the Motor class is an abstract class and so
cannot be used to instantiate objects. The difference between the classes
AbstractMotor and Motor is that the latter has the ability to communicate
with devices via the parallel port. As such, any objects derived from the Motor
class can communicate via the parallel port.

The definition of the Motor class constructor and the Off() function is given in
Listing 8-4.

Listing 8-4 Member function definitions for the Motor class.

Motor::Motor(int baseaddress):ParallelPort(baseaddress)
{
 Off();
}

void Motor::Off()
{
 WritePort0(0x00);
}

All motors can be controlled using either one or both H-bridge circuits on the
interface board. Each H-bridge circuit uses four ‘switches’ with a corresponding
logic control signal for each switch. Therefore, to control both H-bridges requires
eight control signals, and so our programs will use the port at address BASE for
this purpose.

A motor can be turned off by opening switches in the H-bridge. For DC motors,
open all four switches, and for bipolar stepper motors, open all eight switches of
the two H-bridges. In general, we can turn off any type of motor by opening all
eight switches of the two H-bridges if we set all eight bits of the port at address
BASE to zero. The Off() function does just this. It is not a virtual function since
none of the derived classes require further specialisation of this function.

Note that the constructor calls the Off() function. This turns all transistors off in
both H-bridges to eliminate any risk of a short-circuit path being generated
between the power supply positive output and its ground return. This means that
the user must allow the program to execute before connecting power to the
interface board and motor.

Default Parameter Values for Functions
The constructor for the Motor class is an improvement on the coding of the
constructors for the classes in previous chapters. These earlier chapters used a
default constructor that took no parameters, and a constructor that took an

8 DRIVING MOTORS - DC & STEPPER 218

argument of type integer for the baseaddress parameter. The constructor
Motor(int baseaddress=0x378) takes a parameter to be passed to the
base class constructor ParallelPort(int baseaddress) and it initialises
the value of this parameter to 0x378 if no argument is provided when instantiating
the Motor object. This allows this single constructor to perform the role of the two
different constructors used in earlier chapters.

 The default parameter value for baseaddress is shown in bold typeface in
Listing 8-3. As implied by the word ‘default’, if no actual argument is passed when
declaring an instance of an object, the actual argument will be taken as 0x378. Note
that the default argument value is mentioned within the pair of parentheses of the
constructor in the class definition (Listing 8-3). This is one way to specify default
actual argument values. Another method for specifying default arguments is to
include them in the function definition as shown in Figure 8-15. In this case we do
not specify the default actual argument values in the class definition as is shown in
Listing 8-5. Note that we must not specify default values in both places!

Figure 8-15 An alternative way of specifying default actual argument values.

Listing 8-5 Motor class definition with no default arguments specified inside.

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress);
 void Off();
 virtual void Forward(int speed)=0;
 virtual void Reverse(int speed)=0;
 virtual void Brake()=0;
};

The Motor class constructor can be called in one of the two following forms as
shown in Figure 8-16 and Figure 8-17:

Motor::Motor(int baseaddress=0x378):AbstractMotor(),
 ParallelPort(baseaddress)
{
 Off();
}

Default actual argument for the
parameter baseaddress

8 DRIVING MOTORS - DC & STEPPER 219

Figure 8-16 Calling the Motor class constructor without arguments.

Figure 8-17 Calling the Motor class constructor with an actual argument.

The function Motor() being a constructor, can also be called in the manner
shown in Figure 8-18.

Figure 8-18 Calling a constructor with default actual arguments.

These examples show how one parameter can be given a default actual argument.
If the function has more than one parameter, any of them can be assigned default
actual arguments subject to the following condition. All parameters to the right of
the parameter being considered must also have default actual argument values
assigned. The two examples in Figure 8-19 show the valid and invalid declarations.

Figure 8-19 Assigning multiple default actual arguments.

Motor();

No actual argument is passed, therefore the default argument is used. As a
result the inherited data member BaseAddress will become 0x378.

Motor(0x3BC);

An actual argument is passed. As a result the inherited data member
BaseAddress will become 0x3BC.

 Motor;

For a constructor, the pair of parentheses can be dropped. The
result is identical to that for Figure 8-16.

void AnyFunction(int x, int y=0, int z=1); // correct

void AnyFunction(int x, int y=0, int z); // illegal

This situation is acceptable. Parameter y can be assigned a default actual argument
value because parameter z is already assigned a default actual argument value.

This situation is illegal. Parameter y cannot be assigned a default actual argument
value because parameter z has not been assigned a default actual argument value.

8 DRIVING MOTORS - DC & STEPPER 220

Motor

+Vm

+

_
II

I

SW1
(A)

SW2
(B)

SW3
(C)

SW4
(D)

DCMotor class

The DCMotor class is at the bottom end of the class hierarchy shown in Figure
8-14. This class is developed to represent real DC motors. As such, the class is no
longer an abstract class. The class definition for the DCMotor class is given in
Listing 8-6.

Listing 8-6 DCMotor class.

class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

The DCMotor class is derived from the Motor class. Although the DCMotor
class looks small, it has inherited all member data and member functions from the
Motor, AbstractMotor, and ParallelPort classes in the hierarchy. Note
that there are no pure virtual functions in the class definition for the DCMotor
class. Therefore, the class is not an abstract class, but a real class that can be used
to instantiate objects once complete function definitions are provided.

To be able to define the member functions of the class, we must know how to drive
the DC motor and connect it to the interface board. Figure 8-20 shows how a DC
motor is connected using a H-bridge. We can use the data bits D0 to D3 of the port
at BASE address to control the switches SW1 to SW4 as shown in Table 8-7.

Figure 8-20 H-bridge connections to a DC Motor.

8 DRIVING MOTORS - DC & STEPPER 221

Table 8-7 DC Motor H-bridge to Parallel Port connections (Figure 8-20).

Switch No
H-bridge label on
Interface Board

BASE Address
 Data Bit

SW1 A D0
SW2 B D1
SW3 C D2
SW4 D D3

A data-bit set to 1 closes the switch, whereas a 0 opens the switch. To drive the
motor forward, the data bits D0 and D3 must be set to 1 and bits D1 and D2 must
be set to 0. To drive the motor in reverse, we must do the opposite, i.e. data bits D1
and D2 must be set to 1 and data bits D0 and D3 must be set to 0.

To brake the motor, short-circuit the ends of the armature together. This can be
done by either setting bits D0 and D1 to 1 (D2, D3 set to 0), or by setting bits D2
and D3 to 1 (D0, D1 set to 0). We will choose to short-circuit the armature to
ground. For this, bits D2 and D3 will be set to 1 and bits D0 and D1 will be set to
zero. Table 8-8 summarises the values to be written to the port to achieve forward
motion, reverse motion and braking.

Table 8-8 Data to be written to the port to control the DC motor.

Operation Data Bits†

D7 D6 D5 D4 D3 D2 D1 D0
Output to port at

address BASE

Forward x x x x 1 0 0 1 0000 1001 = 0x09
Reverse x x x x 0 1 1 0 0000 0110 = 0x06
Brake x x x x 1 1 0 0 0000 1100 = 0x0C

† data bits represented as ‘x’ can take either 0 or 1. They are not connected to the H-bridge to drive
a DC motor, and so do not have any effect. They have been taken to be 0 for bits D4 to D7.

WARNING

Do NOT at any time allow SW1 and SW3 to be turned on together at anytime.
Likewise, do NOT at any time allow SW2 and SW4 to be turned on together. If
these events were allowed to happen, the transistors and possibly the power
supply will be damaged.

The DC motor is connected to the interface board as shown in Table 8-9 and Figure
8-21. The interface board is designed to drive +12V DC motors that require less
than 1A of current. However, DC motors can be driven from external DC power
supplies (up to a maximum 30V) as explained in the following note. Leave the

8 DRIVING MOTORS - DC & STEPPER 222

interface board unpowered until the program is being executed since some bits of
the port to be used may have previously been left in an on state.

NOTE

The two contacts on the 4-way terminal block labelled VM1 and VM1 GND are
used to connect power to the H-bridge (VM2 and VM2 GND for the other H-
bridge).
The interface board is capable of providing +12V at up to 1A to drive motors. To
use this power supply, connect Vm1 (or Vm2 as appropriate) via an insulated wire
to the +12V of the power supply’s 2-way terminal block (where the power-pack
connects). A second insulated wire is used to connect the ground of the respective
H-bridge Vm1 GND (or Vm2 GND) to the ground of the power supply. Most
importantly, a wire needs to be connected across the two contacts of each 2-way
terminal block. These 2-way terminal blocks have been provided to allow resistive
drive schemes to be trialed by fitting resistors of suitable value inplace of the
wires.
Motors may need to be driven with voltage or current supply requirements differing
from those of the power supply on the interface board (+12V, 1A). In this case, an
external power supply up to a maximum of 30 V DC can be used to power the
motors. DO NOT at any time attempt to connect mains power to the board.
When using an external power supply, connect the positive contact of its output to
the 4-way terminal block contact Vm1 (or Vm2 as appropriate). Also, connect the
negative contact of the external power supply to the 4-way terminal block contact
Vm1 GND (or Vm2 GND). The external power supply MUST NOT be connected to
the 2-way terminal block of the interface board power supply.

Figure 8-21 Connecting a DC power supply to power a DC motor.

J7

V
m

1
M

1
M

2

V
m

1
G

N
D

J8J6

+12V (1A) power supply’s
2-way terminal block

OR

External
DC Power Supply

(Max 30V)

- VE

+ VE

Wire Link

8 DRIVING MOTORS - DC & STEPPER 223

Table 8-9 H-bridge to DC motor connections.

H Bridge 1 Connections

Vm1 Motor Power Supply +ve*

M1 Motor + terminal
M2 Motor - terminal

Vm1 GND Motor Power Supply –ve*

Having determined all the connections, we can now proceed to implement a
method to drive the motor, in particular to control its torque/speed. The most
appropriate means to do this is by using Pulse Width Modulated (PWM) signals.

8.5.2 Generating Pulse Width Modulated Signals
As described earlier in Section 8.2.2, using pulse width modulation with wider
pulse widths generates higher levels of motor speed/torque. In other words, the
higher the duty cycle, the higher the motor speed. In our application the duty cycle
is the proportion of time in a repetitive cycle that the motor will have power
applied to it. This ratio is usually represented as a percentage. To control the speed
we must control the duty cycle. Therefore, the design of the program should allow
the duty cycle to be changed as desired. In general, exact timing is normally used
to control duty cycle. In this chapter, we will not use exact time delays. Instead,
duty cycle will be controlled by executing software loops. Different computers will
have different execution speeds and therefore produce different PWM cycle times
(frequencies), although the shape/duty cycle of the PWM signal will be the same.

Figure 8-22 Generation of a PWM signal.

The PWM signal can be generated as follows. Suppose one cycle consists of 256
uninterrupted writes to the port. The cycle time is then equal to the time the

Single PWM cycle, comprising 256
writes to the port at BASE address.
The actual cycle time is determined
by the speed of your computer.

Next PWM cycle. These
cycles repeat continuously to
generate a PWM signal.

N writes of 0x09 to the port
thereby applying full voltage to
the armature of the DC motor.

(256-N) writes of 0x00 to
the port thereby removing
the voltage to the armature.

Voltage

Time

8 DRIVING MOTORS - DC & STEPPER 224

computer would take to complete 256 writes to the port. Depending on the desired
duty cycle, a portion of the 256 writes to the port can be used to send 0x09 to the
port (see Table 8-8) to turn the motor on in the forward direction. The remainder of
the writes can send 0x00 to the port to turn the motor off. For example, if we want
50% duty cycle, we will output 0x09 to the port for the first 128 writes and output
0x00 to the port for the remaining 128 writes. This is a means to control the speed
of the motor. A number between 0 and 255 (forming 256 different speed settings)
can be used to specify the speed. Figure 8-22 illustrates the PWM process.

The control of speed in the reverse direction can be achieved by using the same
procedure, except the data written to the port during the ON portion of the PWM
cycle is 0x06 instead of 0x09. In strict terms, the speed control our software uses is
known as open-loop speed control. When using open-loop speed control we do not
measure the speed of the motor nor apply corrective action for variations in speed.
In other words, we do not have a form of feedback to measure and correct actual
motor speed.

The member function definitions of the DCMotor class are shown in Listing 8-7.
Referring to the earlier Listing 8-6, it can be seen that a default actual argument is
specified for baseaddress. This is not evident in the function definitions in
Listing 8-7.

Listing 8-7 Member functions of the DCMotor class.

DCMotor::DCMotor(int baseaddress):Motor(baseaddress)
{
}

void DCMotor::Forward()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x09);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Reverse()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x06);
 for(;j < 256; j++)
 WritePort0(0x00);
}

8 DRIVING MOTORS - DC & STEPPER 225

void DCMotor::Brake()
{
 WritePort0(0x0C);
}

The Forward() function and the Reverse() functions are very similar. They
differ in the actual argument passed to the WritePort0() function within the
first for loop of each function. Therefore, we will only explain operation of the
Forward() function.

The Forward() function operates using the functions shown in bold typeface
below:

void DCMotor::Forward()
{

for(int j = 0; j < GetSpeed(); j++)
WritePort0(0x09);

for(;j < 256; j++)
WritePort0(0x00);

}

The highlighted functions are all member functions of various classes of the
hierarchy. The function GetSpeed() is inherited from the abstract class
AbstractMotor and the function WritePort0() is inherited from the
ParallelPort class.

As described previously, the speed of the motor is determined by the duty cycle of
the PWM signal. The duty cycle is controlled by the number of writes to the port at
BASE address that allows the H-bridge to apply the power supply voltage to the
motor. One cycle of the PWM signal comprises 256 writes to the port at address
BASE. Counting from 0 to 255 (inclusive) will give us 256 numbers. Therefore,
255 specifies 100% duty cycle (full speed) and 0 specifies 0% duty cycle (zero
speed).

When the program enters the first for loop, the inherited data member Speed
must have a valid value, i.e. a value between 0 and 255. The first for loop
initialises its loop count variable j to 0. It then uses the inherited WritePort0()
function to write 0x09 to the port at BASE. This action will apply full voltage to the
motor. The loop count variable j is then incremented using j++. Next, the test
expression j < GetSpeed() is evaluated. The Forward() function of the
DCMotor class has no direct access to the inherited data member Speed as it is a
private member of the AbstractMotor class. Therefore, to obtain the value of
Speed, the public function GetSpeed() of the AbstractMotor class must be
used. Provided the test condition evaluates to true, the body of the first for loop
will execute again. For example, if the value of Speed is 5, the function
WritePort0() will be executed for j equal to 0, 1, 2, 3 and 4. When j is

8 DRIVING MOTORS - DC & STEPPER 226

incremented to become 5, the test expression will evaluate to false and the first
for loop will terminate. Control will then be transferred to the second for loop.

Note that the second for loop is unusual in that it does not have an initialising
expression. The value of j is passed on to the next loop to complete the rest of the
PWM cycle - which is why the loop count must not be re-initialised.

Using the values given in the example above, the value of j will be 5 upon
entering the second for loop. The second for loop will run until the value of j
exceeds 255. Each time the for loop executes 0x00 will be output to the BASE
address part of the port, preventing voltage being supplied to the motor. When j
becomes 256, the for loop will terminate, having completed one PWM cycle. This
would produce a duty cycle of 5 ON writes out of 256 total writes in the cycle; i.e.
2% duty cycle.

Consecutive PWM cycles must be made to generate a continuous PWM signal.
Therefore, the Forward() function must be called repeatedly until the user
ceases to issue a forward command. This can be accomplished, for example, by
implementing a while loop conditioned on !kbhit(). The while loop will
continue provided the keyboard is not hit. The function kbhit() will return a non
zero value when a key is pressed. When the logical negation operator (!) is placed
in front, !kbhit() will return a non-zero value as long as a key is not pressed.
Now the while loop will continue execution until a key is pressed. Each iteration
of the while loop generates one PWM cycle and so the PWM signal will continue
until a key is pressed. The while loop can be implemented outside the member
functions, in say the main() function.

The Reverse() function operates in a similar manner to the Forward()
function. The difference being that the first for loop writes a different value to the
H-bridge to apply a voltage with reversed polarity to drive the motor in the
opposite direction. The PWM signal is generated in the same manner as for the
Forward() function.

The Brake() function calls the WritePort0() function once to close the
switches of the H-bridge and short-circuit the DC motor armature to brake the
motor.

In Section 8.6 we explain how the user can use this class to drive a DC motor.

StepperMotor class
The StepperMotor class must cater for several types of stepper motors and their
two modes of operation. These modes and their acronyms are shown in Table 8-10.
The class definition for the StepperMotor class is given in Listing 8-8.

8 DRIVING MOTORS - DC & STEPPER 227

Table 8-10 Acronyms for Stepper Motors.

Stepper Motor Mode Acronym

Unipolar Full-Step UPFS
Unipolar Half-Step UPHS
Bipolar Full-Step BPFS
Bipolar Half-Step BPHS

Listing 8-8 New data type MOTORTYPE and StepperMotor class.

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS};

class StepperMotor : public Motor
{
 private:
 MOTORTYPE MotorType;
 unsigned char Switching[8];
 int CycleIndex;
 int MaxIndex;

 public:
 StepperMotor(MOTORTYPE motortype = UPFS,
 int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

A new programmer-defined data type named MOTORTYPE has been created at the
top of this listing. This data type is termed an enumerated data type because all
possible values the data type can be given are listed in the type declaration. These
values are named enumeration constants and are always of type int. Use
mnemonic identifiers that are meaningful to improve readability of the program.

Figure 8-23 Enumerated data types.

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS};

new data type name

keyword enum Mnemonic identifiers

0 1 2 3

These enumerated constants (integer values) are
automatically assigned to the above identifiers.

8 DRIVING MOTORS - DC & STEPPER 228

In the declaration shown in Figure 8-23, the new data type has the name
MOTORTYPE. The enumerated constants 0, 1, 2, and 3 are automatically assigned
to the mnemonic identifiers UPFS, UPHS, BPFS, and BPHS, respectively. We can
declare a variable of this type as follows:
MOTORTYPE NewMotor;

Note that if you use a C compiler (Not a C++ compiler) then the equivalent
declaration must be:
enum MOTORTYPE NewMotor;

NewMotor can take any value enumerated; i.e. the values listed between the two
braces. Had we specified that the mnemonic UPFS was equal to say 2 as shown
below, then UPHS, BPFS and BPHS would become 3, 4 and 5 respectively.

enum MOTORTYPE {UPFS = 2, UPHS, BPFS, BPHS};

Since all enumerated values are represented by integers, it is possible to carry out
integer arithmetic on the data type. For example:
MOTORTYPE NewBreed;
NewBreed = UPFS + BPFS; //valid but meaningless!

While this is possible, it has no meaning whatsoever for our purposes. However,
under certain circumstances integer arithmetic with enumerated types can be of
benefit when used with care.

Referring to Table 8-10, the enumerated data type shown in Listing 8-8 can
represent any of the stepper motor types we aim to control using our interface
board. We can now return to study the StepperMotor class definition in Listing
8-8. It has four private data members described as follows.

MOTORTYPE MotorType

The first member data is MotorType. Once initialised this data member will store
the type of stepper motor to be controlled.

unsigned char Switching[8]

This statement declares an array named Switching that has eight unsigned
char elements. The program will load this array with the unique switching
patterns for the type of stepper motor the user selects. These switching patterns are
specified ahead when the functions for the class are defined.

int CycleIndex

The member data CycleIndex will be used as a subscript to scan through the
array Switching and select the values of each of its single byte elements in the
proper sequence to step-wise drive a stepper motor. To drive a stepping motor
forward using full-steps, CycleIndex will have values 0, 1, 2, 3, 0, etc. To drive
the same motor in reverse direction CycleIndex will have values 0, 3, 2, 1, 0,
etc. Similarly, to drive a stepping motor forward using half-steps, CycleIndex

8 DRIVING MOTORS - DC & STEPPER 229

will have values 0, 1, 2, 3, 4, 5, 6, 7, 0, etc. When driving a stepping motor in
reverse using half-steps, CycleIndex will have the values 0, 7, 6, 5, 4, 3, 2, 1, 0,
etc.

int MaxIndex

This data member will be used to detect the position in the array Switching
when a new cycle must recommence. As such MaxIndex stores the maximum
value CycleIndex takes. For full-step control, only four elements of the
Switching array are used, so the value of MaxIndex will be 4. However, all
eight elements of the array Switching must be used for half-step control. In this
case the value of MaxIndex will be 8.

The member function definitions of the StepperMotor class are given in Listing
8-9.

Listing 8-9 Member functions of the StepperMotor class.

StepperMotor::StepperMotor(MOTORTYPE motortype,
 int baseaddress): Motor(baseaddress)
{
 MotorType = motortype;
 CycleIndex = 0;

 switch(MotorType)
 {
 case UPFS: MaxIndex = 4;
 Switching[0] = 0x11;
 Switching[1] = 0x12;
 Switching[2] = 0x22;
 Switching[3] = 0x21;
 break;
 case UPHS: MaxIndex = 8;
 Switching[0] = 0x01;
 Switching[1] = 0x11;
 Switching[2] = 0x10;
 Switching[3] = 0x12;
 Switching[4] = 0x02;
 Switching[5] = 0x22;
 Switching[6] = 0x20;
 Switching[7] = 0x21;
 break;
 case BPFS: MaxIndex = 4;
 Switching[0] = 0x99;
 Switching[1] = 0x69;
 Switching[2] = 0x66;

8 DRIVING MOTORS - DC & STEPPER 230

 Switching[3] = 0x96;
 break;
 case BPHS: MaxIndex = 8;
 Switching[0] = 0x99;
 Switching[1] = 0x09;
 Switching[2] = 0x69;
 Switching[3] = 0x60;
 Switching[4] = 0x66;
 Switching[5] = 0x06;
 Switching[6] = 0x96;
 Switching[7] = 0x90;
 }
}

void StepperMotor::Forward()
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Reverse()
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Brake()
{
 switch(MotorType)
 {
 case UPFS: case UPHS:
 WritePort0(0x11);
 break;
 case BPFS: case BPHS:
 WritePort0(0x99);
 }
}

As usual, the constructor initialises the private data members of the class. If a
motor type is specified in the actual argument for the parameter motortype, it
will be assigned to the private data member MotorType. The CycleIndex is
always initialised to 0. The MaxIndex is either set to 4 or to 8 depending on full-

8 DRIVING MOTORS - DC & STEPPER 231

step control or half-step control. The array Switching is initialised depending on
the motor type and the operating mode, explained as follows.

The MotorType is tested in a switch statement which is used to fill the array
Switching with appropriate values for that combination of stepper motor and
drive mode depending on the case value. The values that are written into the array
Switching control the sequential switching of the H-bridges to drive a given
stepper motor through its sequence of steps. Note that the stepper motors will use
both H-bridges and have almost full supply voltage applied to their respective
windings during each step. Their speed/position is controlled by the rate/number of
steps. As such they do not use pulse width modulation for speed or torque control.

The Forward() function of the StepperMotor class operates in a similar
manner as the Reverse() function, and so only the Forward() function is
explained (see Figure 8-24).

Figure 8-24 Operation of the Forward() function.

The Brake() function implements a switch statement to apply braking
appropriate to the motor type; a unipolar stepper motor or a bipolar stepper motor.
Dynamic braking is applied uniquely for two of the four cases by closing and
opening the required switches of the H-bridge. Note that in the configuration we
have used for unipolar stepper motors, the armature cannot be short-circuited.
Instead, voltage is not applied to the armature windings.

The H-bridge connections for Bipolar and Unipolar Stepper Motors are shown in
Figure 8-25 and Figure 8-26 respectively. All the classes have been defined and the
definitions of all member functions have been provided. The implementation of the
class hierarchy is now complete. We now need to develop a main() function to
make use of these classes.

void StepperMotor::Forward()
{
 if(++CycleIndex == MaxIndex)
 CycleIndex = 0;
 WritePort0(Switching[CycleIndex]);
 delay(257-GetSpeed());
}

CycleIndex is incremented
and tested for exceeding its limit.
If exceeded it will be reset.

Contents of the array Switching
are written to the port, one element
per step delay.

Speed is controlled by inserting a
controlled delay between
consecutive writes to the port.

8 DRIVING MOTORS - DC & STEPPER 232

Vm1

+ _

I
C

(D0)
D

(D1)

Coil (Phase) 1

M1 M2

Vm2

+ _

I
C

(D4)
D

(D5)

Coil (Phase) 2

M1 M2

Lower half of
H-bridge 1

Lower half of
H-bridge 2

Figure 8-25 H-bridge connections for a Bipolar Stepper Motor.

Figure 8-26 H-bridge connections for a Unipolar Stepper Motor.

8.6 Virtual Functions - Application
We are now ready to develop an application that makes use of virtual functions.
This application will enable any of the types of motor accommodated in our class
hierarchy developed earlier to be driven:

1. DC motors.
2. Unipolar stepper motors with dual-phase full-step control.
3. Unipolar stepper motors with half-step control.
4. Bipolar stepper motors with dual-phase full-step control.
5. Bipolar stepper motors with half-step control.

We will initially develop that part of the application that controls a ‘motor’ using
the mechanism of virtual functions. Then we will add code to the program that
allows a user to select a motor type to be driven.

The principal advantage of using virtual functions is the ability to write programs
that can automatically bind a function to its associated object type at run-time. This
allows us to write a very generic program. We start writing such a program by
selecting a variable that can represent any of the objects in the hierarchy. The ideal

Vm1

+

_

A
(D0)

B
(D1)

C
(D2)

D
(D3)

Vm2

+

_

A
(D4)

B
(D5)

C
(D6)

D
(D7)

Coil (Phase) 1

M1 M2 M1 M2

Coil (Phase) 2

H-bridge 2 H-bridge 1

II

I

II

I

8 DRIVING MOTORS - DC & STEPPER 233

variable will be associated with the Motor class; the base class for all the real
motor classes in the hierarchy. A pointer (which is a variable) to this class can
point to any of the objects of its derived classes as explained below.

C++ Base Class Pointers

A base class pointer can point to objects of its class or it can point to any objects
of its derived classes. When we use a base class pointer to point to an object
from a derived class and a virtual function is called through this pointer, the
corresponding member function of that derived class will be selected and called.

Therefore, we can create a pointer to the Motor class as shown below and use it to
point to any of the real motor classes derived from it:
Motor *MotorPtr;

Our particular program will carry out the following steps:

1. Drive the motor forward at a speed of 150 until a key is pressed.
2. Drive the motor forward at a speed of 255 until a key is pressed.
3. Reverse the motor at a speed of 150 until a key is pressed.
4. Reverse the motor at a speed of 255 until a key is pressed.
5. Stop the motor (braking).
6. Turn off power to the motor.

The code that implements these requirements is shown in Listing 8-10. Here we
use the function kbhit() to detect a key press and the function getch() to
clear the keyboard buffer after the key press.

Listing 8-10 Generic code to control 'a Motor'.

 Motor *MotorPtr;

 // Insert statements to choose a specific motor here

 //..... Motor control part starts here
 MotorPtr->SetSpeed(150);
 while(!kbhit()) MotorPtr->Forward();
 getch(); // clear keyboard buffer

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Forward();
 getch();

 MotorPtr->SetSpeed(150);

8 DRIVING MOTORS - DC & STEPPER 234

 while(!kbhit()) MotorPtr->Reverse();
 getch();

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 cout << endl << " Braking Applied!" << endl;
 while(!kbhit()) MotorPtr->Brake();
 getch();

 MotorPtr->Off();
 //..... Motor control part ends here

The user must be given a list of motor types to be able to choose a motor to
operate. The code to implement this task is given in Listing 8-11.

Listing 8-11 Statements to display a menu of Motors on the screen.

 int Selection;

 clrscr();

 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;
 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;

Having selected the motor, we need to use dynamic memory allocation to create
the object type that corresponds to the motor selected. Listing 8-12 shows the
dynamic memory allocation segment of the program.

Listing 8-12 Dynamic memory allocation for the selected Motor.

 switch(Selection)
 {

8 DRIVING MOTORS - DC & STEPPER 235

 case 1: MotorPtr = new DCMotor;
 break;
 case 2: MotorPtr = new StepperMotor(UPFS);
 break;
 case 3: MotorPtr = new StepperMotor(UPHS);
 break;
 case 4: MotorPtr = new StepperMotor(BPFS);
 break;
 case 5: MotorPtr = new StepperMotor(BPHS);
 break;
 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }

 if(MotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 getch();
 exit(1);
 }

At the end of this program segment, the pointer MotorPtr should be initialised to
point to a valid object in memory. If not, the program will exit because a matching
motor type could not be found, or memory allocation has failed. Once the pointer is
initialised, the program segment given in Listing 8-10 can be executed. The
complete main() function is given in Listing 8-13.

Listing 8-13 The main() function to control 'a Motor'.

void main()
{
 Motor *MotorPtr;
 int Selection;

 clrscr();

 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;

8 DRIVING MOTORS - DC & STEPPER 236

 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;

 switch(Selection)
 {
 case 1: MotorPtr = new DCMotor;
 break;
 case 2: MotorPtr = new StepperMotor(UPFS);
 break;
 case 3: MotorPtr = new StepperMotor(UPHS);
 break;
 case 4: MotorPtr = new StepperMotor(BPFS);
 break;
 case 5: MotorPtr = new StepperMotor(BPHS);
 break;
 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }

 if(MotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 getch();
 exit(1);
 }
 cout << "**********************************" << endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl;
 cout << "**********************************" << endl;
 cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();

8 DRIVING MOTORS - DC & STEPPER 237

 cout << " Keypress changes Speed/Rotation (&
Braking)." << endl;

 //..... Motor control part starts here
 MotorPtr->SetSpeed(150);
 while(!kbhit()) MotorPtr->Forward();
 getch(); // clear keyboard buffer

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Forward();
 getch();

 MotorPtr->SetSpeed(150);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 cout << endl << " Braking Applied!" << endl;
 while(!kbhit()) MotorPtr->Brake();
 getch();

 MotorPtr->Off();
 //..... Motor control part ends here
 // Free the memory occupied by the 'Motor' object
 delete MotorPtr;
}

The compiler should have seen the definition of the entire class hierarchy and the
definition of all member functions when it comes time to compile the main()
function in Listing 8-13. We will defer explaining the complete program until
virtual destructors have been discussed.

8.6.1 Virtual Destructors
The destructor of the class is called indirectly whenever the delete operator is
used on an object of the class as discussed in Section 5.3.8. Since we have not
declared any destructors in our motor class hierarchy, the only destructors available
to our classes are the default destructors generated by the compiler for each class in
the hierarchy. The selected motor has a corresponding ‘motor’ object instantiated
in the body of the program’s switch statement (Listing 8-13). When the program
is finished using the ‘motor’ object, it frees the memory occupied by the ‘motor’
object using the following statement:

8 DRIVING MOTORS - DC & STEPPER 238

delete MotorPtr;

Since MotorPtr is a pointer to the abstract base class Motor, the previous
statement will call the default destructor of the Motor class and will only de-
allocate the space occupied by a Motor class object. The delete statement will
not free the memory space occupied by the actual object in use (such as
DCMotor), thereby generating a memory leak. We can demonstrate this event
using an example program that has a simple class structure and a simple main()
function as shown in Listing 8-14. Note: to further simplify the example, the Base
and Derived classes do not have data members. We have also included cout
statements within the body of the two destructors to show when each destructor is
called. If the destructors did not have these cout statements, they would be
identical to the default destructors generated by the compiler.

Listing 8-14 Use of non-virtual destructors.

#include <conio.h>
#include <iostream.h>

class Base
{
 public:
 Base(){}
 ~Base()
 {
 cout << "Base type object deleted" << endl;
 }
};

class Derived : public Base
{
 public:
 Derived(){};
 ~Derived()
 {
 cout << "Derived type object deleted " << endl;
 }
};

void main()
{
 Base *BasePtr;

 BasePtr = new Derived; // BasePtr points to an object
 // of type Derived.

8 DRIVING MOTORS - DC & STEPPER 239

 delete BasePtr; // Deletes object
}

The pointer identifier BasePtr is declared to be of type Base. However, it is
used to point to a dynamically allocated class object that is of type Derived. We
use the following statement with the intention of deleting the dynamically allocated
object of class Derived:

delete BasePtr;

We would expect this statement to call the destructor of the derived class.
However, the following message is displayed when this program is executed:
Base type object deleted

This indicates that the destructor of the Derived class has not been called as
intended to destroy the dynamically allocated Derived type object. We change
the program to operate correctly by making the destructor ~Base() virtual. The
modified program listing is shown in Listing 8-15.

Listing 8-15 Use of virtual destructors.

#include <conio.h>
#include <iostream.h>

class Base
{
 public:
 Base(){}
 virtual ~Base()
 {
 cout << "Base type object deleted" << endl;
 }
};

class Derived : public Base
{
 public:
 Derived(){};
 ~Derived()
 {
 cout << "Derived type object deleted " << endl;
 }
};

void main()

8 DRIVING MOTORS - DC & STEPPER 240

{
 Base *BasePtr;

 BasePtr = new Derived; // BasePtr points to an object
 // of type Derived.
 delete BasePtr; // Deletes object
}

Note that in Listing 8-15 the keyword virtual is added in front of the destructor
name ~Base(). This provides the link to all virtual destructors down to the next
level of the class hierarchy so the correct destructors will be called. If you run this
program you will see the following printed on the screen:
Derived type object deleted
Base type object deleted

This demonstrates that the delete statement has called the Derived class
destructor and the Base class destructor, properly relinquishing the memory
allocated for the Derived and Base class objects. Note: when an object of a
derived class is instantiated, the constructor function of the base class is called first
followed by a call to the constructor of the derived class. The derived class inherits
the members of the base class that are instantiated in this manner. Therefore, it is
important to include virtual destructors so that any memory allocation from within
the derived class and its base class is properly relinquished.

Now we can return our attention to the motor control program. To allow the
delete statements to properly de-allocate the dynamically allocated objects, we
must provide a set of destructors; one destructor for each class of the motor class
hierarchy, and we must make them virtual destructors. The bodies of these
destructors can be empty. We simply need to establish a network of virtual
destructors throughout the class hierarchy so that proper late binding will take
place for the destructors. The modified class definitions are given in Listing 8-16
through to Listing 8-18.

C++ Virtual Destructor Names

In a class hierarchy all virtual functions must have the same function signature;
i.e. they must have the same function name, same number of formal arguments
and the same types of formal arguments in each virtual function. However,
virtual destructors have different names throughout the hierarchy. Despite
having different destructor function signatures, late binding will enable the
correct set of destructors to be deployed in response to a delete statement.

8 DRIVING MOTORS - DC & STEPPER 241

Listing 8-16 AbstractMotor class with virtual destructor.

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;

virtual ~AbstractMotor(){}
};

Listing 8-17 ParallelPort class with virtual destructor.

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();

virtual ~ParallelPort(){}
};

Listing 8-18 Motor class with virtual destructor.

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress=0x378);
 void Off();
 virtual void Forward()=0;

8 DRIVING MOTORS - DC & STEPPER 242

 virtual void Reverse()=0;
 virtual void Brake()=0;

virtual ~Motor(){}
};

Now that we have proper destructors in our classes, we can write a complete
program using virtual functions to control a motor and free memory as intended.
Such a program is shown in Listing 8-19. Note that virtual destructors are not
added to the DCMotor class or the StepperMotor class since these two classes
are the terminal classes of the hierarchy. However, the program would still function
properly if virtual destructors had been added to these two classes.

NOTE

Ensure the interface board is unpowered before connecting any type of motor.
This needs to be done for the following reason.
Before first running the program, the port controlling the motor will not be under
control of the program and may be in an unknown state. This unknown state can
be such that the port’s logic states would drive the transistors to short-circuit the
motor’s power supply (damaging the transistors and possibly the power supply).
The program instructs the user to apply power to the board once it has set these
bits to a safe state. When the program ends, it sets the used bits of the port to a
safe state to prevent any damage to the transistors or the power supply.
Connect a DC motor to the interface board as given in Table 8-7 and Table 8-9.
Stepper motors are connected to the interface board as shown in Figure 8-25 and
Figure 8-26.
If the motor does not drive as expected, first check for incorrect connections.

Listing 8-19 Complete program to control 'a Motor' using Virtual Functions.

// **
// Program to operate a Motor using Virtual Functions.
// **
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

class ParallelPort
{
 private:

8 DRIVING MOTORS - DC & STEPPER 243

 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
 virtual ~ParallelPort(){}
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Inverting Most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

8 DRIVING MOTORS - DC & STEPPER 244

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~AbstractMotor(){}
};

AbstractMotor::AbstractMotor()
{
 Speed =0;
}

void AbstractMotor::SetSpeed(int speed)
{
 Speed = speed;
 if(Speed > 255) Speed = 255; // Limit upper value
 if(Speed < 0) Speed = 0; // Limit lower value
}

int AbstractMotor::GetSpeed()
{
 return Speed;
}

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress=0x378);
 void Off();
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~Motor(){}
};

Motor::Motor(int baseaddress): ParallelPort(baseaddress)

8 DRIVING MOTORS - DC & STEPPER 245

{
 Off();
}

void Motor::Off()
{
 WritePort0(0x00);
}

class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

DCMotor::DCMotor(int baseaddress):Motor(baseaddress)
{
}

void DCMotor::Forward()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x09);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Reverse()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x06);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Brake()
{
 WritePort0(0x0C);
}

8 DRIVING MOTORS - DC & STEPPER 246

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS};

class StepperMotor : public Motor
{
 private:
 MOTORTYPE MotorType;
 unsigned char Switching[8];
 int CycleIndex;
 int MaxIndex;

 public:
 StepperMotor(MOTORTYPE motortype = UPFS,
 int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

StepperMotor::StepperMotor(MOTORTYPE motortype,
 int baseaddress): Motor(baseaddress)
{
 MotorType = motortype;
 CycleIndex = 0;

 switch(MotorType)
 {
 case UPFS: MaxIndex = 4;
 Switching[0] = 0x11;
 Switching[1] = 0x12;
 Switching[2] = 0x22;
 Switching[3] = 0x21;
 break;
 case UPHS: MaxIndex = 8;
 Switching[0] = 0x01;
 Switching[1] = 0x11;
 Switching[2] = 0x10;
 Switching[3] = 0x12;
 Switching[4] = 0x02;
 Switching[5] = 0x22;
 Switching[6] = 0x20;
 Switching[7] = 0x21;
 break;
 case BPFS: MaxIndex = 4;
 Switching[0] = 0x99;
 Switching[1] = 0x69;

8 DRIVING MOTORS - DC & STEPPER 247

 Switching[2] = 0x66;
 Switching[3] = 0x96;
 break;
 case BPHS: MaxIndex = 8;
 Switching[0] = 0x99;
 Switching[1] = 0x09;
 Switching[2] = 0x69;
 Switching[3] = 0x60;
 Switching[4] = 0x66;
 Switching[5] = 0x06;
 Switching[6] = 0x96;
 Switching[7] = 0x90;
 }
}

void StepperMotor::Forward()
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Reverse()
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Brake()
{
 switch(MotorType)
 {
 case UPFS: case UPHS:
 WritePort0(0x11);
 break;
 case BPFS: case BPHS:
 WritePort0(0x99);
 }
}

void main()
{
 Motor *MotorPtr;
 int Selection;

8 DRIVING MOTORS - DC & STEPPER 248

 clrscr();

 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;
 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;

 switch(Selection)
 {
 case 1: MotorPtr = new DCMotor;
 break;
 case 2: MotorPtr = new StepperMotor(UPFS);
 break;
 case 3: MotorPtr = new StepperMotor(UPHS);
 break;
 case 4: MotorPtr = new StepperMotor(BPFS);
 break;
 case 5: MotorPtr = new StepperMotor(BPHS);
 break;
 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }

 if(MotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 getch();
 exit(1);
 }
 cout << "**********************************" << endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl;

8 DRIVING MOTORS - DC & STEPPER 249

 cout << "**********************************" << endl;
 cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();
 cout << endl;
 cout << " Keypress changes Speed/Rotation”;
 cout << “ (& Braking)." << endl;

 //..... Motor control part starts here
 MotorPtr->SetSpeed(150);
 while(!kbhit()) MotorPtr->Forward();
 getch(); // clear keyboard buffer

 MotorPtr->SetSpeed(220);
 while(!kbhit()) MotorPtr->Forward();
 getch();

 MotorPtr->SetSpeed(250);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 cout << endl << " Braking Applied!" << endl;
 while(!kbhit()) MotorPtr->Brake();
 getch();

 MotorPtr->Off();
 //..... Motor control part ends here
 // Free the memory occupied by the 'Motor' object
 delete MotorPtr;
}

Don’t be overwhelmed by the length of this program. In general, programmers
create header files and library files to hide all the code that is shown ahead of the
main() function. Had we done the same, the program to control any of the motors
in our list would be the size of the main function.

Observe the motor’s behaviour without the effect of dynamic braking by
commenting out the call to the Brake() function in Listing 8-19. This is best seen
if the motor shaft has some inertial load connected to it.

If we did NOT use virtual functions, then the code to control the motors (shown in

8 DRIVING MOTORS - DC & STEPPER 250

Listing 8-10) will need to be included within each case of the switch statement
in the main() function of Listing 8-13. The pointer used within each case will
need to be declared to point specifically to an object for that particular case, and
all functions will be linked at programming time (early binding). A main()
function equivalent to that of Listing 8-13, but without the use of virtual functions
is given in Listing 8-20.

Listing 8-20 main() function WITHOUT using virtual functions.

void main()
{
 int Selection;
 DCMotor* DCMotorPtr;
 StepperMotor* UPFSStepperMotorPtr;
 StepperMotor* UPHSStepperMotorPtr;
 StepperMotor* BPFSStepperMotorPtr;
 StepperMotor* BPHSStepperMotorPtr;

 clrscr();

 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;
 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;
 cout << endl;

 switch(Selection)
 {

case 1: DCMotorPtr = new DCMotor;
 if(DCMotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 exit(1);
 }
 cout << "**********************************" <<
endl;

8 DRIVING MOTORS - DC & STEPPER 251

 cout << "* CONNECT BOARD POWER SUPPLY NOW *" <<
endl;
 cout << "**********************************" <<
endl; cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();

 cout << " KEYPRESS changes SPEED/ROTATION (&
Braking)." << endl;
 // DCMotor control part starts here
 DCMotorPtr->SetSpeed(150);
 while(!kbhit()) DCMotorPtr->Forward();
 getch(); // clear keyboard buffer

 DCMotorPtr->SetSpeed(255);
 while(!kbhit()) DCMotorPtr->Forward();
 getch();

 DCMotorPtr->SetSpeed(150);
 while(!kbhit()) DCMotorPtr->Reverse();
 getch();

 DCMotorPtr->SetSpeed(255);
 while(!kbhit()) DCMotorPtr->Reverse();
 getch();

 while(!kbhit()) DCMotorPtr->Brake();

 DCMotorPtr->Off();
 // DCMotor control part ends here
 // Release memory occupied by the DCMotor object
 delete DCMotorPtr;
 break;

case 2: UPFSStepperMotorPtr = new StepperMotor(UPFS);
 if(UPFSStepperMotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 exit(1);
 }
 cout << "**********************************" <<
endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" <<
endl;
 cout << "**********************************" <<

8 DRIVING MOTORS - DC & STEPPER 252

endl; cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();
 cout << " KEYPRESS changes SPEED/ROTATION (&
Braking)." << endl;
 // UPFS Motor control part starts here
 UPFSStepperMotorPtr->SetSpeed(150);
 while(!kbhit()) UPFSStepperMotorPtr->Forward();
 getch(); // clear keyboard buffer

 UPFSStepperMotorPtr->SetSpeed(220);
 while(!kbhit()) UPFSStepperMotorPtr->Forward();
 getch();

 UPFSStepperMotorPtr->SetSpeed(250);
 while(!kbhit()) UPFSStepperMotorPtr->Reverse();
 getch();

 UPFSStepperMotorPtr->SetSpeed(255);
 while(!kbhit()) UPFSStepperMotorPtr->Reverse();
 getch();

 while(!kbhit()) UPFSStepperMotorPtr->Brake();

 UPFSStepperMotorPtr->Off();
 // UPFS Motor control part ends here
 // Release memory occupied by the DCMotor object
 delete UPFSStepperMotorPtr;
 break;

case 3: UPHSStepperMotorPtr = new StepperMotor(UPHS);
 if(UPHSStepperMotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 exit(1);
 }
 cout << "**********************************" <<
endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" <<
endl;
 cout << "**********************************" <<
endl; cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;

8 DRIVING MOTORS - DC & STEPPER 253

 getch();
 cout << " KEYPRESS changes SPEED/ROTATION (&
Braking)." << endl;
 // UPHS Motor control part starts here
 UPHSStepperMotorPtr->SetSpeed(150);
 while(!kbhit()) UPHSStepperMotorPtr->Forward();
 getch(); // clear keyboard buffer

 UPHSStepperMotorPtr->SetSpeed(220);
 while(!kbhit()) UPHSStepperMotorPtr->Forward();
 getch();

 UPHSStepperMotorPtr->SetSpeed(250);
 while(!kbhit()) UPHSStepperMotorPtr->Reverse();
 getch();

 UPHSStepperMotorPtr->SetSpeed(255);
 while(!kbhit()) UPHSStepperMotorPtr->Reverse();
 getch();

 while(!kbhit()) UPHSStepperMotorPtr->Brake();

 UPHSStepperMotorPtr->Off();
 // UPHS Motor control part ends here
 // Release memory occupied by the DCMotor object
 delete UPHSStepperMotorPtr;
 break;

case 4: BPFSStepperMotorPtr = new StepperMotor(BPFS);
 if(BPFSStepperMotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 exit(1);
 }
 cout << "**********************************" <<
endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" <<
endl;
 cout << "**********************************" <<
endl; cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();
 cout << " KEYPRESS changes SPEED/ROTATION (&
Braking)." << endl;
 // BPFS Motor control part starts here

8 DRIVING MOTORS - DC & STEPPER 254

 BPFSStepperMotorPtr->SetSpeed(150);
 while(!kbhit()) BPFSStepperMotorPtr->Forward();
 getch(); // clear keyboard buffer

 BPFSStepperMotorPtr->SetSpeed(220);
 while(!kbhit()) BPFSStepperMotorPtr->Forward();
 getch();

 BPFSStepperMotorPtr->SetSpeed(250);
 while(!kbhit()) BPFSStepperMotorPtr->Reverse();
 getch();

 BPFSStepperMotorPtr->SetSpeed(255);
 while(!kbhit()) BPFSStepperMotorPtr->Reverse();
 getch();

 while(!kbhit()) BPFSStepperMotorPtr->Brake();

 BPFSStepperMotorPtr->Off();
 // BPFS Motor control part ends here
 // Release memory occupied by the DCMotor object
 delete BPFSStepperMotorPtr;
 break;

case 5: BPHSStepperMotorPtr = new StepperMotor(BPHS);
 if(BPHSStepperMotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 exit(1);
 }
 cout << "**********************************" <<
endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" <<
endl;
 cout << "**********************************" <<
endl; cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();
 cout << " KEYPRESS changes SPEED/ROTATION (&
Braking)." << endl;
 // BPHS Motor control part starts here
 BPHSStepperMotorPtr->SetSpeed(150);
 while(!kbhit()) BPHSStepperMotorPtr->Forward();
 getch(); // clear keyboard buffer

8 DRIVING MOTORS - DC & STEPPER 255

 BPHSStepperMotorPtr->SetSpeed(220);
 while(!kbhit()) BPHSStepperMotorPtr->Forward();
 getch();

 BPHSStepperMotorPtr->SetSpeed(250);
 while(!kbhit()) BPHSStepperMotorPtr->Reverse();
 getch();

 BPHSStepperMotorPtr->SetSpeed(255);
 while(!kbhit()) BPHSStepperMotorPtr->Reverse();
 getch();

 while(!kbhit()) BPHSStepperMotorPtr->Brake();

 BPHSStepperMotorPtr->Off();
 // BPHS Motor control part ends here
 // Release memory occupied by the DCMotor object
 delete BPHSStepperMotorPtr;
 break;

 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }
}

As you can see, coding without the use of virtual functions can be quite inefficient.
Note: the delete operator was used in Listing 8-10, Listing 8-13, and Listing
8-20 to relinquish the dynamically allocated memory that stored the ‘motor’ object.

8.7 Keyboard Controls
We can enhance control of the motor by making use of the PC keyboard. To do this
the program must be able to detect each press of the keys used for motor control
purposes. These key presses can be detected using several methods. The easiest
method is to use the getch() or the getche() functions. Another option is to
use the library function kbhit().

8 DRIVING MOTORS - DC & STEPPER 256

The functions getch() and getche() as their names imply, can be used to read
the character corresponding to the key pressed. The function getche() has the
extra capability of being able to display the character on-screen as it is read. This is
known as echoing to the screen (the added ‘e’ stands for ‘echo’). However, there is
a disadvantage to using these two functions being that they wait for a key press.
Execution of a getch() function will not allow following statements to be
executed until a key is pressed. This delay will prevent us from generating the fast
changing signals needed for motor control.

The kbhit() function operates differently. It does not wait for a key press. It
checks if a key has been pressed. If a key has been pressed, the function will return
true, if not it will return 0, meaning false. Because it does not wait for a key press,
the program will execute continuously as intended. Note that kbhit() does not
clear the keyboard buffer (ready for the next time it needs to be used).

The built-in library also provides another function named bioskey() used to
detect normal keys with an ASCII code (see Appendix B) or extended keys such as
function keys, INS, DEL keys etc. Extended keys are identified by a two-byte key
code whereas normal keys are identified by a one-byte key code.

The function bioskey() can operate in different modes depending on the
parameter passed to it. It uses one integer parameter whose value determines if it
will detect a key press like the kbhit() function or read the pressed key. Note
that this function does clear the keyboard buffer when used to read a key.

We can read a special location in memory using the peekb() function to detect
keys including Right Shift, Left Shift, Ctrl, Alt, Caps lock, Scroll lock, etc. Note
that the peekb() function cannot detect some keys such as the arrow keys.

The byte read from this memory location has flags (bits, shown in Figure 8-27) that
are used to indicate which keys are pressed at any given time. The peekb()
function is the fastest to execute and will generate minimum disruption to the
continuous execution of the program. Therefore, using peekb() will enable
smooth operation of the motors. If slower functions were used to read the
keyboard, motor control could be erratic.

We will use the peekb() function to add keyboard control to our program using
the following combinations of keys:

Pressing the Ctrl key will drive the motor forward.
Pressing the Alt key will drive the motor in reverse.
Pressing the Right Shift key will increase speed.
Pressing the Left Shift key will decrease speed.
Pressing both Left Shift and Right Shift keys brakes the motor.
Pressing No keys will switch motor power off.
Pressing the Insert key will end the program.

The status of the Shift keys, Control key, Alt key and the Insert key can be
determined by reading a special memory location using peekb(). This 8-bit

8 DRIVING MOTORS - DC & STEPPER 257

memory location is at the segment:offset address of 0x40:0x17. When the
respective key is pressed, its bit will be 1. For an explanation of segment:offset
addressing, see Technical Reference: Personal Computer AT by IBM Corporation.

Figure 8-27 Memory byte at 0x40:0x17 used to store key status.

A while loop is implemented in the program segment shown in Listing 8-21
which will run continuously provided the variable Quit is 0. This listing can be
viewed as a replacement for Listing 8-10.

Listing 8-21 Motor control using a keyboard.

 Motor *MotorPtr;

 int Quit = 0;
 unsigned char key = 0;
 int SpeedLock = 1;

 while(!Quit)
 {
 key = peekb(0x40,0x17); // Read control key byte.
 if(key & 0x80) // Test Insert key ON (MSBit '1').
 Quit = 1; // Exit the program.

 else
 {
 // If both shift keys are released SpeedLock is
 // released

if(!(key & 0x01) && !(key & 0x02))
 SpeedLock = 0;

 key &= 0x0F; // Filter out bits corresponding to

Right shift

0 1 2 3 4 5 6 7

Left shift

Ctrl

AltScroll lock

Num lock

Caps lock

Insert

Byte at 0x40:0x17

8 DRIVING MOTORS - DC & STEPPER 258

 // just SHIFT, ALT & CTRL keys.

 switch(key)
 {
 case 0x04 :
 MotorPtr->Forward();
 break;

 case 0x08 :
 MotorPtr->Reverse();
 break;

 case 0x01 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 break;

 case 0x02 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
 SpeedLock = 1;
 }
 break;

 case 0x03 :
 MotorPtr->Brake();
 break;

 case 0x05 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 MotorPtr->Forward();
 break;

 case 0x06 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);

8 DRIVING MOTORS - DC & STEPPER 259

 SpeedLock = 1;
 }
 MotorPtr->Forward();
 break;

 case 0x09 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 MotorPtr->Reverse();
 break;

 case 0x0B :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
 SpeedLock = 1;
 }
 MotorPtr->Reverse();
 break;

 case 0x00 :
 MotorPtr->Off();
 }
 }
 delete MotorPtr;

The peekb() function is used within the while loop to read the contents of the
memory location 0x40:0x17. This value is stored in the variable key. We first
check if the Insert key has been pressed, used as input to end program operation.
We can detect if the Insert key has been pressed by carrying out an AND operation
with 0x80. If the Insert key has been pressed, the result will be a non-zero value
and therefore we set Quit to 1. As a result, the while loop will end followed by
normal program termination.

If the Insert key has not been pressed, then program operation will continue.
Hence, we now only need to read the lower four bits of the byte shown in Figure
8-27. These bits represent the remaining keys assigned for use by the program
since we are not using Caps lock, Num lock, or Scroll lock keys. By filtering out
the unused upper four bits of key (setting them to zero), we will have unique byte
values for our respective key-press combinations. These bits are filtered out using
an AND operation of the byte with 0x0F. The resulting value is stored back in key
and then tested in a switch statement. All cases that can be implemented are
listed in the switch statement where appropriate actions are taken. The main()

8 DRIVING MOTORS - DC & STEPPER 260

function of Listing 8-19 has been modified as shown in Listing 8-22 to implement
keyboard controls.

The program has been given a ‘speed-locking’ mechanism that uses the identifier
SpeedLock to control changes in motor speed. This mechanism will only allow
speed to be changed once by a small increment for each press of the respective
control key. Repeated reading of the speed control key while it is held pressed is
not allowed to produce further change in speed, hence the term ‘speed-locking’.
Without this control in place, excessive changes in motor speed would occur
during the many executions of the while loop when the key is pressed.

Motor speed can only be adjusted with the initial press of a speed control key (Shift
keys). At this time the variable SpeedLock will be set. Once SpeedLock is set,
no further changes in speed can be made until that speed control key has been
released. Releasing the key frees or ‘unlocks’ the speed-locking mechanism by
clearing the value of SpeedLock (i.e. !SpeedLock is now true) and allows
another increment in speed to be effected.

Speed-locking is implemented in the program in all speed control statements inside
the switch statement block. Each speed control statement requires SpeedLock
to be false (SpeedLock = 0) before its respective if statement can be executed.
SpeedLock will be false whenever both speed control keys are released. When
one of the speed control keys is pressed, its associated speed control statement will
be selected within its if statement. This speed control statement increments or
decrements the value of Speed by 4. The next statement in this if block turns
speed-locking back on by setting the value of SpeedLock. Speed-locking will
remain in effect until the speed control key is again released.

IMPORTANT: Do not use the following program to drive any motor without first
observing the power-up procedure and motor connections as explained in the Note
Box on page 243. If the motor does not drive as expected, first check the motor is
correctly wired.

Listing 8-22 The complete program with keyboard controls

// **
// Program implements virtual functions and keyboard
// controls to operate a Motor.
// **
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

class ParallelPort
{

8 DRIVING MOTORS - DC & STEPPER 261

 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
 virtual ~ParallelPort(){}
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Inverting Most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

8 DRIVING MOTORS - DC & STEPPER 262

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~AbstractMotor(){}
};

AbstractMotor::AbstractMotor()
{
 Speed =0;
}

void AbstractMotor::SetSpeed(int speed)
{
 Speed = speed;
 if(Speed > 255) Speed = 255; // Limit upper value
 if(Speed < 0) Speed = 0; // Limit lower value
}

int AbstractMotor::GetSpeed()
{
 return Speed;
}

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress=0x378);
 void Off();
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~Motor(){}
};

8 DRIVING MOTORS - DC & STEPPER 263

Motor::Motor(int baseaddress):ParallelPort(baseaddress)
{
 Off();
}

void Motor::Off()
{
 WritePort0(0x00);
}

class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

DCMotor::DCMotor(int baseaddress):Motor(baseaddress)
{
}

void DCMotor::Forward()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x09);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Reverse()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x06);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Brake()
{
 WritePort0(0x0C);
}

8 DRIVING MOTORS - DC & STEPPER 264

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS};

class StepperMotor : public Motor
{
 private:
 MOTORTYPE MotorType;
 unsigned char Switching[8];
 int CycleIndex;
 int MaxIndex;

 public:
 StepperMotor(MOTORTYPE motortype = UPFS,
 int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

StepperMotor::StepperMotor(MOTORTYPE motortype,
 int baseaddress): Motor(baseaddress)
{
 MotorType = motortype;
 CycleIndex = 0;

 switch(MotorType)
 {
 case UPFS: MaxIndex = 4;
 Switching[0] = 0x11;
 Switching[1] = 0x12;
 Switching[2] = 0x22;
 Switching[3] = 0x21;
 break;
 case UPHS: MaxIndex = 8;
 Switching[0] = 0x01;
 Switching[1] = 0x11;
 Switching[2] = 0x10;
 Switching[3] = 0x12;
 Switching[4] = 0x02;
 Switching[5] = 0x22;
 Switching[6] = 0x20;
 Switching[7] = 0x21;
 break;
 case BPFS: MaxIndex = 4;
 Switching[0] = 0x99;

8 DRIVING MOTORS - DC & STEPPER 265

 Switching[1] = 0x69;
 Switching[2] = 0x66;
 Switching[3] = 0x96;
 break;
 case BPHS: MaxIndex = 8;
 Switching[0] = 0x99;
 Switching[1] = 0x09;
 Switching[2] = 0x69;
 Switching[3] = 0x60;
 Switching[4] = 0x66;
 Switching[5] = 0x06;
 Switching[6] = 0x96;
 Switching[7] = 0x90;
 }
}

void StepperMotor::Forward()
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Reverse()
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Brake()
{
 switch(MotorType)
 {
 case UPFS: case UPHS:
 WritePort0(0x11);
 break;
 case BPFS: case BPHS:
 WritePort0(0x99);
 }
}

void main()
{
 Motor *MotorPtr;

8 DRIVING MOTORS - DC & STEPPER 266

 int Quit = 0;
 unsigned char key = 0;
 int SpeedLock = 1;
 int Selection;

 clrscr();
 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;
 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;
 switch(Selection)
 {
 case 1: MotorPtr = new DCMotor;
 break;
 case 2: MotorPtr = new StepperMotor(UPFS);
 break;
 case 3: MotorPtr = new StepperMotor(UPHS);
 break;
 case 4: MotorPtr = new StepperMotor(BPFS);
 break;
 case 5: MotorPtr = new StepperMotor(BPHS);
 break;
 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }

 if(MotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 getch();
 exit(1);

8 DRIVING MOTORS - DC & STEPPER 267

 }
 cout << "**********************************" << endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl;
 cout << "**********************************" << endl;
 cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();

 while(!Quit)
 {
 key = peekb(0x40,0x17); // Read control key byte.
 if(key & 0x80) // Test Insert key ON (MSBit '1').
 Quit = 1; // Exit the program.

 else
 {
 // If both shift keys are released SpeedLock is
 // released
 if(!(key & 0x01) && !(key & 0x02))
 SpeedLock = 0;

 key &= 0x0F; // Filter out bits corresponding to
 // just SHIFT, ALT & CTRL keys.

 switch(key)
 {
 case 0x04 :
 MotorPtr->Forward();
 break;

 case 0x08 :
 MotorPtr->Reverse();
 break;

 case 0x01 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 break;

 case 0x02 :
 if(!SpeedLock)

8 DRIVING MOTORS - DC & STEPPER 268

 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
 SpeedLock = 1;
 }
 break;

 case 0x03 :
 MotorPtr->Brake();

 break;

 case 0x05 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 MotorPtr->Forward();
 break;

 case 0x06 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
 SpeedLock = 1;
 }
 MotorPtr->Forward();
 break;

 case 0x09 :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
 SpeedLock = 1;
 }
 MotorPtr->Reverse();
 break;

 case 0x0B :
 if(!SpeedLock)
 {
 MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
 SpeedLock = 1;
 }
 MotorPtr->Reverse();
 break;

8 DRIVING MOTORS - DC & STEPPER 269

 case 0x00 :
 MotorPtr->Off();
 }
 }
 delete MotorPtr;
 }
}

In our program that uses virtual functions, we were able to write the motor control
portion as a generic module. This approach allows the program to bind the correct
function to the object associated with the selected motor during program execution
(late binding). Only after the user has selected the type of motor, will dynamic
memory allocation and late binding take place to drive the motor. If the program
had not used virtual functions, the programmer would need to provide extensive
dedicated code to control each motor. This was seen in the modified main()
function given in Listing 8-20.

The program that uses virtual functions to control the motors does not need
dedicated motor control code for each type of motor. Instead, the code is
independent of the specific motor type and will even work for motors that may be
added to the hierarchy in the future. These benefits are the main advantages of
using virtual functions and can also be seen as one of the greatest strengths of
object-oriented programming.

8.8 Summary
This chapter presented the construction and operation of DC Motors and Stepper
Motors. Various means of controlling these motors has also been described.

A class hierarchy was developed to represent all types of motor discussed at the
beginning of the chapter. This was followed by a conceptual explanation of
abstract classes and pure virtual functions. Class hierarchy’s and multiple
inheritance were also explained. The need for a set of virtual destructors in a class
hierarchy was also demonstrated. Unlike constructors, destructors can be virtual.
These destructors are used to free an object’s dynamically allocated memory once
the program no longer needs the object.

A generic program for all real motor classes of the hierarchy was developed and
integrated into a main() function to demonstrate the concept and advantages of
late binding. Keyboard controls were then incorporated into the program to
improve control of motors when using the interface board.

8 DRIVING MOTORS - DC & STEPPER 270

8.9 Bibliography
Bergsman, P. , Controlling The World With Your PC, HighText Publications, San
Diego, 1994.

Stiffler, K., Design with Microprocessors for Mechanical Engineers, McGraw-
Hill, 1992.

PARKER HANNIFIN CORP, Positioning Control Systems and Drives, 1992-
1993.

Lafore, R. Object Oriented Programming in MICROSOFT C++, Waite Group
Press, 1992.

Wang, P.S., C++ with Object Oriented Programming, PWS Publishing, 1994.

Borland, Borland C++ version 5, User’s Guide, Borland International, 1996.

Borland, Borland C++ version 5, Programmers Guide, Borland International,
1996.

Barton, J.J. and L.R. Nackman, Scientific and Engineering C++ - An Introduction
with Advanced Techniques and Examples, Addison Wesley, 1994.

Stevens, A. Teach Yourself C++ Fifth Edition, MIS Press, 1997.

Schildt, H. Teach Yourself C++ Third Edition, Osborne/McGraw-Hill, 1998.

8 DRIVING MOTORS - DC & STEPPER 271

9

Program
Development
Techniques

Inside this Chapter

Developing programs – what is involved?

Efficient coding techniques.

Modular development approach.

Header Files.

Function files.

Project files and make files.

9.1 Introduction
So far we have learned how to develop efficient object-oriented programs where
the emphasis has been on the program statements (source code). In this chapter we
will learn how to plan a program using pseudo-code, organise its structure, and
write the program so typographical errors can be kept to a minimum. The
development process to produce modular programs will also be explained.

A modular program can be made by separating a lengthy single file program into a
number of logical modules and then placing each module into its own dedicated
file. This process greatly improves our ability to maintain our programs.
Furthermore, it allows us to carry out modifications with greater ease and also
promotes more efficient debugging of programs. An inevitable consequence of this
modular approach is the multi-file program. We will learn how to create a multi-
file program from a number of source files and then generate a final executable
file.

9.2 Efficient Coding Techniques
The word coding is used is used in this chapter and refers to the writing of
programming statements. No coding should commence until a detailed plan for the
program is established. This plan is written as a general worded discription known
as pseudo-code. If we are writing an object-oriented program, the first step should
be creating the object classes and the associated class hierarchy. Using an object-
oriented approach tends to result in a program with good structure. Program
development should be carried out in a number of manageable steps. At each of
these steps the program (or the part of the program) coded to that point can be
compiled and verified for errors.

Most editors used for programming provide cutting and pasting facilities for text
editing. We can minimise typographical errors during the coding process by using
text cutting and pasting operations. These typographical errors tend to be the cause
of most compilation errors.

Pseudo-code
Using pseudo-code to outline the basic operation of an application can assist in its
development. The following example demonstrates how pseudo-code is developed
and used to generate program code.

Program description:

A crane is used to lift a weight from point A and move it to another point B. It
is assumed that the crane uses three DC motors; one to lift/lower the load,
another to move the load in the x direction, and the third motor to move the
load in the y direction.

9 PROGRAM DEVELOPMENT TECHNIQUES

The pseudo-code is:

Enter coordinates for points A and B.
Move the crane to point A.
Lift the load.
Move the crane to point B.
Lower the load.
End.

We can translate this pseudo-code into a C++ object-oriented program. The
following example program shows one implementation of a main() function that
implements the pseudo-code:
void main()
{
 Crane OurCrane; // Create a Crane object.
 Point a, b; // Create two Point objects.

 cout << “Enter coordinates of point A ”;
 cin >> a;

 cout << endl << “Enter coordinates of point B ”;
 cin >> b;

OurCrane.MoveToPoint(a);
OurCrane.LiftLoad();
OurCrane.MoveToPoint(b);
OurCrane.LowerLoad();

}

This main() function uses a Point object. It also uses a Crane object and
implies that MoveToPoint(), LiftLoad() and LowerLoad() be member
functions of the Crane class. This operation requires two points and three motors;
one motor lifts and lowers the load, one motor drives in the X direction and another
motor drives in the Y direction.

The corresponding Point class would be as follows:

class Point
{
 private:
 int X;
 int Y;

 public:
 Point();
 Point(int x, int y);
 void SetX(int x);

275

 void SetY(int y);
 int GetX();
 int GetY();
};

A suitable class definition for the Crane class would be:

class Crane
{
 private:
 Point A, B;
 DCMotor LiftMotor, Xmotor, Ymotor;

 public:
 Crane();
 void SetPointA(Point a);
 void SetPointB(Point b);

 void MoveToPoint();
 void LiftLoad();
 void LowerLoad();

};

All member functions of the Crane class that generate movement will need to use
the Forward(), Reverse(), and Brake() functions of the DCMotor class.

As demonstrated here, structured programming starts with good pseudo-code
written with the program steps outlined in a structured manner. Each of these steps
forms a statement in the main() function. The member functions of the class
definition are expanded to include the necessary details for the function to perform
their planned tasks. The following section describes a good approach for coding the
AbstractMotor class and its member functions.

Creating functions starting from class definitions.
A few basic principles should be kept in mind when coding object classes and their
member functions. In general, the members of a class can be listed anywhere
within the scope of the class definition (between the open and close braces) under
different access attributes. However, keeping the member data together and
separate from the member functions can facilitate coding.

The object class will often have a user-defined constructor that is used to initialise
all its data members. Having placed data members together allows them to be
copied as a block and placed into the body of the constructor for initialisation.
They can also be copied and pasted elsewhere to code the definitions of other
functions. The bodies of the member functions can be left empty and the source
code then compiled to verify that it conforms to the syntax used by the C++
language.

Consider the AbstractMotor class definition from Listing 8-1 in Chapter 8 that
has been reproduced in Listing 9-1.

276 9 PROGRAM DEVELOPMENT TECHNIQUES

Listing 9-1 AbstractMotor class definition.

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
};

In this class definition the data and functions are kept separate. It allows us to copy
the set of non-pure virtual functions (that need to be defined) to a position just
below the class definition as shown in Listing 9-2. Note that the pure virtual
functions do not need to be copied since they will not have a function definition. It
is good practice to keep the pure virtual functions together, preferably at the end of
the member function declarations. This makes it easier to copy and paste the group
of member function declarations we need to define.

Listing 9-2 Set of member functions copied to be defined.

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
};
AbstractMotor();
void SetSpeed(int speed);
int GetSpeed();

9 PROGRAM DEVELOPMENT TECHNIQUES 277

This file cannot be compiled in its present form since it has incomplete and
therefore incorrect syntax. It must be modified to give the functions the required
basic syntax. To do this, each function name just copied must be qualified with the
class name followed by the double colon operator (::). In the case of the
AbstractMotor() function shown in Listing 9-2, we need to have:

AbstractMotor::AbstractMotor()

The semicolon at the end of each line must be removed and an open brace and a
close brace added to provide the start and the end of each member function. These
changes to Listing 9-2 are shown in Listing 9-3.

Listing 9-3 Skeletal member functions for the AbstractMotor class.

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
};

AbstractMotor::AbstractMotor()
{
}

void AbstractMotor::SetSpeed(int speed)
{
}

int AbstractMotor::GetSpeed()
{
}

This file can now be compiled. Although it does not have any statements within the
bodies of the member functions, correct program syntax has been applied. Note
that the contents of the file cannot be linked to form an executable file without
having a main() function. However, compiling will generate object code. There

278 9 PROGRAM DEVELOPMENT TECHNIQUES

is an advantage to compiling the file at this early stage; we can verify the structure
of the class has correct syntax.

Skeletal functions
Function definitions with empty bodies (as shown in Listing 9-3) can be referred to
as skeletal functions. The bodies of these functions could be coded at this early
stage of program development. However, they are intentionally left empty to
simplify the task of establishing good program structure and correct syntax. It can
even be advantageous to write an entire program using skeletal functions to verify
its conceptual operation and structure.

Filling-in the constructors’ bodies
The next stage is to code the bodies of the member functions, starting say with the
constructor definition. As mentioned earlier, the most common purpose of the
constructor is to initialise the data members of the class. This can be done by
copying and pasting the entire set of data members into the body of each
constructor of the class. In the example discussed above, we only have one data
member. Listing 9-4 shows the constructor that has this data member copied and
pasted into its body. Note that this function is incomplete and does not carry out its
intended task.

Listing 9-4 Copying the member data declarations into the body of the constructor.

AbstractMotor::AbstractMotor()
{
 int Speed;
}

This single statement shown in Listing 9-4 needs to be corrected as shown in
Listing 9-5. Once this is done the constructor can initialise this data member and
operate as intended.

Listing 9-5 The constructor with the syntax error eliminated.

AbstractMotor::AbstractMotor()
{
 Speed = 0; // copied and pasted data members are
 // initialized as required.
}

Good habits with parenthesis, square brackets and braces
Pairs of parentheses (), square brackets [], and braces {} are used extensively in
C++ programming. We’ll use the general term brackets to describe all three types.
When writing text we sometimes place an open parenthesis and forget to place the

9 PROGRAM DEVELOPMENT TECHNIQUES 279

close parenthesis. People use their intelligence to check and correct missing
parentheses, however, a compiler lacks this ability. As a result, the programmer
must correct for missing brackets. The misuse of brackets generally happens when
the programmer loses track of a close bracket, and this generates errors when
compiling the program. It can be difficult to determine the position in the program
where the missing bracket should be placed once the program statements have been
added. This situation is further complicated when nested brackets are used.

The best approach to avoid these problems is to place the matching open and close
brackets simultaneously. The following techniques can be used to efficiently
implement a class definition:

Step 1:
class AbstractMotor
{
};

Step 2:
class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
}

The following steps show how the function declarations are developed:

Step 1:
void SetSpeed();

Step 2:
void SetSpeed(int speed)
{
}

Step 3:
void SetSpeed(int speed)

280 9 PROGRAM DEVELOPMENT TECHNIQUES

{
 int Speed;
}

Step 4:
void SetSpeed(int speed)
{
 Speed = 0;
}

Nested Levels
The following steps show how a nested if statement is developed:

Step 1:
if()
{
}
else
{
}

Step 2:
if()
{
if()
{
}
else
{
}
}
else
{
}

Indentation is then used to clearly show the levels of nesting. The skeletal if
statement shown above would then become:
if()
{
 if()
 {
 }
 else
 {

9 PROGRAM DEVELOPMENT TECHNIQUES 281

 }
}
else
{
}

Applying the same habits will help you type error-free code when using logical
operators as part of conditional expressions in if statements:

if()
{
 if(() && ())
 {
 }
 else
 {
 }
}
else
{
}

We can complete the conditional expression as shown in this example:
if(b > 0)
{
 if((a != 0) && (b/a > n))
 {
 }
 else
 {
 }
}
else
{
}

9.3 Modular Programs
Each program developed in previous chapters has all its program statements
contained in one file. While this is satisfactory for smaller programs, it becomes
less practical as programs grow in size and complexity. Larger programs have
specific portions of their code separated into modules and stored as separate files.
Because more than one file needs to be compiled and linked, the program becomes
known as a multiple file program.

There are additional reasons why programs are developed in a multiple file format.

282 9 PROGRAM DEVELOPMENT TECHNIQUES

In the case of object-oriented programming, the files can be treated as modules
where each module contains the code for one object class. As a result, when
distributing software relating to a particular object, only the code for that object
needs to be distributed. Software developers typically supply object code modules
(unreadable to the users) accompanied by files that allow the object code to be used
and linked with a program. This helps to prevent the developers’ object code being
illegally used or misused.

When a particular object is used, only the file that corresponds to that one object
needs to be included in the user code. This helps to minimise the size of a program.
Had multiple objects been part of the file, the additional unused functions for those
objects would also be compiled, slowing the compilation process.

9.3.1 Separating Software into Modules

Figure 9-1 Class hierarchy for Motor Driver class (Chapter 8).

We will use the motor driver program developed in Chapter 8 (class hierarchy
shown in Figure 9-1) to explain the process of generating a multiple file program.
Each class is separated into two types of files. The class definition is placed into a
header file, and the definitions of member functions for that class are placed into a
function file (Figure 9-2). The remaining file for this example program (not shown)
is generated from the main() function (note that this is not always the case).

The compiler needs to access the class definitions in the header file and function
definitions in the function file. The function file (as source code; *.cpp) is
compiled into an .obj file or .lib file by the developer. The programmer that

AbstractMotor
Class

ParallelPort
Class

DCMotor
Class

StepperMotor
Class

Motor
Class

9 PROGRAM DEVELOPMENT TECHNIQUES 283

uses these files cannot read them, and so the developer’s software is protected from
unauthorised copying and misuse.

Figure 9-2 Code separation into header and function files.

// class definition
class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

Class definition

Header File (*.h)

// member f’n 1 definition
DCMotor::DCMotor(...)
{
 .
 .
 .
}

// member f’n 2 definition
DCMotor::Forward()
{
 .
 .
 .
}

// member f’n 3 definition
DCMotor::Reverse()
{
 .
 .
 .
}

// member f’n 4 definition
DCMotor::Brake()
{
 .
 .
 .
}

// member f’n 5 definition
DCMotor::Off()
{
 .
 .
 .
}

Member function definitions

Function File (*.cpp or *.obj or *.lib)
Note: a *.cpp file is shown here

// class definition
class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};

// member f’n 1 definition
DCMotor::DCMotor(...)
{
 .
 .
 .
}

// member f’n 2 definition
DCMotor::Forward()
{
 .
 .
 .
}

// member f’n 3 definition
DCMotor::Reverse()
{
 .
 .
 .
}

// member f’n 4 definition
DCMotor::Brake()
{
 .
 .
 .
}

// member f’n 5 definition
DCMotor::Off()
{
 .
 .
 .
}

Class

284 9 PROGRAM DEVELOPMENT TECHNIQUES

Object-oriented and non-object-oriented programs differ; in one case the functions
are member functions, and in the other case all the functions are non-member
functions. It is also possible for an object-oriented program to use a combination of
the two cases. Its header file may contain a class definition and also some non-
member function declarations.

If non-member C/C++ functions are to be used in the program, it is general practice
to put the declarations of such functions into a header file and then to include that
header file at the top of the source file. The definitions of the non-member
functions may be provided in a separate function file in much the same way as the
member functions of a particular class. The function file in its .obj/.lib form
will be needed at linking time.

9.3.2 Generating a Multiple File Program

Figure 9-3 Use of include directives.

As mentioned previously, whenever an object from a class is needed within a
program, its class header file needs to be included in the program before the object
can be used. The compiler will first interpret the class definition (from the first
header file encountered) and then check that the class has been implemented
correctly throughout the remainder of the program. The program will only compile
correctly if the programmer has made function calls that are compatible with the
function declarations in the header files. Figure 9-3 shows the use of the Motor,
DCMotor, and StepperMotor objects in the User Program, evident by the
inclusion of their class header files.

#include <stdlib.h>
#include “motor.h”
#include “dcmotor.h”
#include “stepper.h”

void main()
{

.
 .
 .
}

User Program (main.cpp)

Header files are
included for
each object
used.

DCMotor class header file (dcmotor.h)

Even inside a header file, the header
file corresponding to each object
used (in this header file) is included.

#include “motor.h”

class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
 virtual void Off();
};

9 PROGRAM DEVELOPMENT TECHNIQUES 285

Figure 9-4 Include header file in the function file of its class.

Figure 9-4 shows the inclusion of the header file for the DCMotor class at the start
of the function file for the DCMotor class. This will ensure all member function
definitions of the DCMotor class (that were derived from the Motor class and
overridden as required) will conform with the function declarations stipulated in
the header file dcmotor.h.

// class definition
#include “motor.h”

class DCMotor : public Motor
{
 public:
 DCMotor(int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
 virtual void Off();

Class definition

Header File (dcmotor.h)

#include “dcmotor.h”

// member f’n 1 definition
DCMotor::DCMotor(..
{
 .
 .
 .
}

// member f’n 2 definition
DCMotor::Forward()
{
 .
 .
 .
}

// member f’n 3 definition
DCMotor::Reverse()
{
 .
 .
 .
}

 .
 .
 .
 .
 . .

Member function definitions

Function File (dcmotor.cpp or *.obj or *.lib)

The structure of DCMotor
class member functions must
conform to the function
declarations given in the
dcmotor.h file.

286 9 PROGRAM DEVELOPMENT TECHNIQUES

Include directives
The files that are included from the ‘include’ directory of the C/C++ program
development software are enclosed between angle brackets angle brackets (< >):

#include <stdlib.h> // For standard C library fn’s

Header files included from the same directory or any other directory in the path are
enclosed between double quotation marks (“ “):

#include “motor.h” // For motor class objects used.

The proper use of angle brackets and double quotation marks is crucial as it allows
the compiler to efficiently locate the included header files during compilation and
linking.

Preventing Multiple Inclusions of Header Files
A particular header file is included only once in a program. Should a header file be
included more than once, the compiler will interpret this as an error and issue an
error message. The compiler can interpret multiple inclusion as, for example, the
redefinition of a class that is already defined by the first instance of the include file
– hence the error!

The general rule “Include the header file of the object you use in the program” may
lead to multiple inclusions. For example, if a program uses a DCMotor object and
a StepperMotor object, we must include dcmotor.h as well as stepper.h
files. They both have motor.h included in them. As a result motor.h will be
included twice. There is a mechanism that enables us to practice the general rule
above and at the same time avoid multiple inclusions of the same header file. The
procedure uses a ‘status flag’, explained as follows:

Before the preprocessor begins to include header files, the flag will be inactive (file
not included).

The first time a particular header file is presented for inclusion, the flag will be
tested, and the result will indicate that the header file has not been included. The
header file will be included this time and the flag will then be activated, indicating
inclusion has now taken place.

When this header file is presented for inclusion on subsequent occasions, the flag
will be tested and its status (this time; file included) will direct the preprocessor to
ignore this file, preventing any multiple inclusions.

Sentries for header files
Sentries in header files are compiler directives for the preprocessor. They
implement the function of the ‘status flag’ just described and prevent the compiler
from including the same header file more than once.

The following example uses the AbstactMotor class to show how sentries are
added to a header file.

9 PROGRAM DEVELOPMENT TECHNIQUES 287

Listing 9-6 AbsMotor.h header file.

#ifndef AbsmotorH
#define AbsmotorH

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~AbstractMotor(){}
};
#endif

The first preprocessor directive #ifndef represents ‘if not defined’. It is similar
to an if statement, with its body starting at #ifndef and ending at the line with
the directive #endif. Therefore, the preprocessor interprets:

#ifndef AbsmotorH

as ‘if AbsmotorH is not defined’. The body of this #if statement will be
executed only if AbsmotorH is not defined.

The identifier AbsmotorH will not be defined when proceeding to process a
multiple file program for the first time. As such, when the pre-processor encounters
the line #ifndef AbsmotorH, it will enter the body of the #if statement. The
first line within the body is:
#define AbsmotorH

The #define directive is used to state that identifier AbsmotorH is to be
defined. The identifier must be unique and not already used to name another header
file from a different class. Improper naming of identifiers can lead to programming
bugs that are difficult to find. Since the file system of your computer maintains
unique names for each file, the best practice is to derive the sentry name based on
the name of that header file. This approach has been used to form the name of the
AbsmotorH sentry from the associated header file absmotor.h. When all
remaining lines in the body are processed by the pre-processor, the
AbstractMotor class will be interpreted by the compiler and the sentry
AbsMotorH defined. Should the pre-processor encounter another absmotor.h

288 9 PROGRAM DEVELOPMENT TECHNIQUES

file included in another file of that program, execution of the #ifndef
AbsmotorH directive will return false. In this case the body of the #if statement
will be skipped, avoiding a repeated inclusion of its contents.

9.4 Case Study - Motor Driver Program
This section will demonstrate the process of generating a multiple file program as
described previously using the motor driver program developed in Chapter 8. We
will first create the software modules for each object class in our program. Each
module will have its own header file and function file.

Figure 9-5 Form a multiple file program.

Figure 9-5 shows the original single file program on the left with its main function
and classes. The header file and function file associated with each class is shown
on the right. The program from Chapter 8 (Listing 8-19) is shown following. Each
code segment has been identified from the program, copied and labelled to its
appropriate file type; being a header file or function file. These files are then saved
with *.h and *.cpp extensions, preferably in the same directory to minimise file
search time.

ParallelPort Class Defn’s
AbstractMotor Class Defn’s

Motor Class Defn’s

StepperMotor Class Defn’s

dcmotor.h

DCMotor Class Defn’s

ParallelPort Function File
AbstractMotor Function File

Motor Function File

StepperMotor Function File

dcmotor.cpp

ParallelPort Class
AbstractMotor Class

Motor Class
StepperMotor Class

DCMotor Class

main.cpp

User Program

DCMotor Function File

Single file program

9 PROGRAM DEVELOPMENT TECHNIQUES 289

Listing 9-7 Motor driver program - segmented.

absmotor.h (header file)
#ifndef AbsmotorH
#define AbsmotorH

class AbstractMotor
{
 private:
 int Speed;

 public:
 AbstractMotor();
 void SetSpeed(int speed);
 int GetSpeed();
 virtual void Off()=0;
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~AbstractMotor(){}
};
#endif

absmotor.cpp (function file)
#include "absmotor.h"

AbstractMotor::AbstractMotor()
{
 Speed =0;
}

void AbstractMotor::SetSpeed(int speed)
{
 Speed = speed;
 if(Speed > 255) Speed = 255; // Limit upper value
 if(Speed < 0) Speed = 0; // Limit lower value
}

int AbstractMotor::GetSpeed()
{
 return Speed;
}

pport.h (header file)
#ifndef PportH

290 9 PROGRAM DEVELOPMENT TECHNIQUES

#define PportH

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
 virtual ~ParallelPort(){}
};
#endif

pport.cpp (function file)
#include <dos.h>
#include "pport.h"

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)
{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()

9 PROGRAM DEVELOPMENT TECHNIQUES 291

{
 InDataPort1 = inportb(BaseAddress+1);
// Inverting Most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

motor.h (header file)
#ifndef MotorH
#define MotorH

#include "absmotor.h"
#include "pport.h"

class Motor : public AbstractMotor, public ParallelPort
{
 public:
 Motor(int baseaddress=0x378);
 void Off();
 virtual void Forward()=0;
 virtual void Reverse()=0;
 virtual void Brake()=0;
 virtual ~Motor(){}
};
#endif

motor.cpp (function file)
#include "motor.h"

Motor::Motor(int baseaddress):ParallelPort(baseaddress)
{
 Off();
}

void Motor::Off()
{
 WritePort0(0x00);
}

dcmotor.h (header file)
#ifndef DcmotorH

#define DcmotorH

292 9 PROGRAM DEVELOPMENT TECHNIQUES

#include "motor.h"

class DCMotor : public Motor

{

 public:

 DCMotor(int baseaddress=0x378);

 virtual void Forward();

 virtual void Reverse();

 virtual void Brake();

};

#endif

dcmotor.cpp (function file)
#include "dcmotor.h"

DCMotor::DCMotor(int baseaddress):Motor(baseaddress)
{
}

void DCMotor::Forward()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x09);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Reverse()
{
 int j;
 for(j = 0; j < GetSpeed(); j++)
 WritePort0(0x06);
 for(;j < 256; j++)
 WritePort0(0x00);
}

void DCMotor::Brake()
{
 WritePort0(0x0C);
}

9 PROGRAM DEVELOPMENT TECHNIQUES 293

stepper.h (header file)
#ifndef StepperH
#define StepperH

#include "motor.h"

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS};

class StepperMotor : public Motor
{
 private:
 MOTORTYPE MotorType;
 unsigned char Switching[8];
 int CycleIndex;
 int MaxIndex;

 public:
 StepperMotor(MOTORTYPE motortype = UPFS,
 int baseaddress=0x378);
 virtual void Forward();
 virtual void Reverse();
 virtual void Brake();
};
#endif

stepper.cpp (function file)
#include <dos.h>

#include "stepper.h"

StepperMotor::StepperMotor(MOTORTYPE motortype,
 int baseaddress): Motor(baseaddress)
{
 MotorType = motortype;
 CycleIndex = 0;

 switch(MotorType)
 {
 case UPFS: MaxIndex = 4;
 Switching[0] = 0x11;
 Switching[1] = 0x12;
 Switching[2] = 0x22;
 Switching[3] = 0x21;
 break;
 case UPHS: MaxIndex = 8;

294 9 PROGRAM DEVELOPMENT TECHNIQUES

 Switching[0] = 0x01;
 Switching[1] = 0x11;
 Switching[2] = 0x10;
 Switching[3] = 0x12;
 Switching[4] = 0x02;
 Switching[5] = 0x22;
 Switching[6] = 0x20;
 Switching[7] = 0x21;
 break;
 case BPFS: MaxIndex = 4;
 Switching[0] = 0x99;
 Switching[1] = 0x69;
 Switching[2] = 0x66;
 Switching[3] = 0x96;
 break;
 case BPHS: MaxIndex = 8;
 Switching[0] = 0x99;
 Switching[1] = 0x09;
 Switching[2] = 0x69;
 Switching[3] = 0x60;
 Switching[4] = 0x66;
 Switching[5] = 0x06;
 Switching[6] = 0x96;
 Switching[7] = 0x90;
 }
}

void StepperMotor::Forward()
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Reverse()
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1;
 WritePort0(Switching[CycleIndex]);
 delay(259-GetSpeed());
}

void StepperMotor::Brake()
{
 switch(MotorType)
 {

9 PROGRAM DEVELOPMENT TECHNIQUES 295

 case UPFS: case UPHS:
 WritePort0(0x11);
 break;
 case BPFS: case BPHS:
 WritePort0(0x99);
 }
}

main.cpp (user program)
//***
// Motor driver program using Virtual Functions (chapter 8).
//***
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream.h>

#include “motor.h”
#include "dcmotor.h"
#include "stepper.h"

void main()
{
 Motor *MotorPtr;
 int Selection;

 clrscr();

 cout << endl << " MOTOR MENU";
 cout << endl << " ~~~~~~~~~~" << endl;
 cout << " 1 DC Motor" << endl;
 cout << " 2 UPFS" << endl;
 cout << " 3 UPHS" << endl;
 cout << " 4 BPFS" << endl;
 cout << " 5 BPHS" << endl;
 cout << " 6 QUIT" << endl;
 cout << endl;
 cout << " Select the MOTOR Number: ";

 cin >> Selection;

 switch(Selection)
 {
 case 1: MotorPtr = new DCMotor;

296 9 PROGRAM DEVELOPMENT TECHNIQUES

 break;
 case 2: MotorPtr = new StepperMotor(UPFS);
 break;
 case 3: MotorPtr = new StepperMotor(UPHS);
 break;
 case 4: MotorPtr = new StepperMotor(BPFS);
 break;
 case 5: MotorPtr = new StepperMotor(BPHS);
 break;
 case 6: return;

 default: cout << endl;
 cout << " Unspecified Motor type....";
 cout << " PRESS a key to END Program!";
 getch();
 exit(1); // Exits the program
 }

 if(MotorPtr == NULL)
 {
 cout << "Memory allocation failed " << endl;
 getch();
 exit(1);
 }
 cout << "**********************************" << endl;
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl;
 cout << "**********************************" << endl;
 cout << endl;
 cout << " After connecting power,”;
 cout << “ press a key to continue " << endl;
 getch();
 cout << endl;
 cout << " Keypress changes Speed/Rotation (& Braking)."
<< endl;

 //..... Motor control part starts here
 MotorPtr->SetSpeed(150);
 while(!kbhit()) MotorPtr->Forward();
 getch(); // clear keyboard buffer

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Forward();
 getch();

 MotorPtr->SetSpeed(150);

9 PROGRAM DEVELOPMENT TECHNIQUES 297

 while(!kbhit()) MotorPtr->Reverse();
 getch();

 MotorPtr->SetSpeed(255);
 while(!kbhit()) MotorPtr->Reverse();
 getch();

 cout << endl << " Braking Applied!" << endl;
 while(!kbhit()) MotorPtr->Brake();
 getch();

 MotorPtr->Off();
 //..... Motor control part ends here
 // Free the memory occupied by the 'Motor' object
 delete MotorPtr;
}

Main Function File
The programmer uses the objects from the class hierarchy in the development of
the main() function. A programmer only needs to know how to apply the user
interface of the object classes i.e. the public members of the classes. This
information allows the member functions to be used in the main function file
according to their specification in the class definition. The programmer using the
classes does not need to know the full internal details of the member functions
being used. The compiler however, needs to know the exact construct of each class
used, and their base classes if any. We fulfil this requirement by including the
appropriate header files.

Note that the file motor.h is the only file included in the files dcmotor.h and
stepper.h. The file motor.h, in turn, has the files absmotor.h and
pport.h included. Therefore, when the compiler reaches the dcmotor.h file, it
has already seen the files absmotor.h, pport.h, and motor.h. These files
provide all the base class definitions needed for the definition of the DCMotor and
StepperMotor classes.

We have used the objects of the classes Motor, DCMotor, and StepperMotor
in the main() function. Therefore, the main() function must include these three
header files. These header files are quoted within double quotes which directs the
compiler to search for them in the current directory or directories in the search
path. Header files that are included within angle brackets (< >) have not been
created by us. They reside in the ‘include’ directory of the C/C++ programming
software.

This main() function is an ideal place to examine the effect of the sentries we
included in the header files. The header files dcmotor.h and stepper.h both
include motor.h. Therefore, the header file motor.h is shown included in three

298 9 PROGRAM DEVELOPMENT TECHNIQUES

parts of the complete program listing; once explicitly in the main function file
(main.cpp) and twice indirectly via the inclusion of dcmotor.h and
stepper.h. However, this does not result in the Motor class actually being
defined and included three times. The first inclusion of the file motor.h will
provide the class definition and define the sentry MotorH. The pre-processor will
ignore any subsequent attempts to include motor.h since MotorH has already
been defined. Thererefore, the two cases of indirect inclusion of motor.h in the
files dcmotor.h and stepper.h will not be processed. This does not mean that
the files dcmotor.h and stepper.h cannot function. They will use the Motor
class definition that the compiler has already interpreted (from the first inclusion of
motor.h) and so can provide the definitions of the classes DCMotor and
StepperMotor.

Creating Library Files
The linking process uses library files to produce the executable file. Library files
are made by combining a number of object files together, and are normally given
the file name extension .lib. C/C++ program development software provides
utilities to generate library files. The library file will contain the compiled
definitions of all the functions that were in each object file. The library file is
generated as a binary file and so cannot be read by a programmer.

Project Files and Make Files
Compilation and linking is more complicated for multiple file programs than for
our previous programs that used single source files. Nevertheless, this process can
easily be automated using one of two methods. The first method creates a project
file containing a list of the files used to form the final executable file. This project
file includes all source files, library files and object files for the program. Note that
project files do not contain header files. The preprocessor will include the header
files when the source files are compiled.

The second method creates what is known as a make file. The make file is
processed by a utility application known as a make utility program which operates
the compiler and linker in accordance with commands contained in the make file.

Project files
We must create a project file, for example, named drive.* before being able to
compile the motor drive program. The name of the file extension given to the
project file is peculiar to the particular compiler being used. For example, Inprise™
Borland C++ for DOS will use .prj, and Microsoft™ Visual C++ will use .dsp
as the extension for the project filename. Three different versions of managing and
processing of project files are now given to work with our example program:

Version 1:
 main.cpp
 absmotor.cpp
 pport.cpp

9 PROGRAM DEVELOPMENT TECHNIQUES 299

 motor.cpp
 dcmotor.cpp
 stepper.cpp

When the project file has been processed, all .cpp files will be compiled
individually to form .obj files. Then all .obj files will be linked with any other
system related .obj or .lib files to form the final executable file.

If all files associated with the classes are available as object files (.obj), the
project file would contain the following:

Version 2:
 main.cpp
 absmotor.obj
 pport.obj
 motor.obj
 dcmotor.obj
 stepper.obj

The main.cpp file will be compiled to form an .obj file. Then all .obj files
will be linked with any other system related .obj or .lib files to form the .exe
file.

It is also possible to form one .lib file combining all the files related to all
classes of the hierarchy. Suppose we had a library file created named
motors.lib. Then the project file would be as follows:

Version 3:
 main.cpp
 motors.lib

In this case, the file main.cpp will be compiled and linked with motors.lib
and any other related .obj or .lib system files to form the .exe file.

Make files
The other option for automating compilation and linking is to generate a make file
containing a sequence of commands used to compile and link all files needed to
form an executable file. Commands can be placed in the make file to provide the
required variety of options, such as compile only, link only, compile and link, etc.

A make file for the motor drive program that will generate the executable file
drive.exe is given below in Listing 9-8. Replace the “CC” characters with the
actual command line of the C++ compiler you are using to generate an operational
make file. The file names used must be the exact file names. For example, if your
compiler generates pport.o as the object file instead of pport.obj, then
change all .obj file extensions to .o.

300 9 PROGRAM DEVELOPMENT TECHNIQUES

In a make file we include dependencies and command-line compiler commands.
The dependencies must start at the left-most column of a line in a make file as
shown in the following statement from the make file of Listing 9-8:
drive: drive1.obj pport.obj dcmotor.obj stepper.obj motor.obj
absmotor.obj

This statement informs the make utility that if any of the files listed after the colon
have been changed, then the executable file drive.exe will be re-generated.

Listing 9-8 Make file example for drive.exe.

Makefile

#makefile for drive program
drive: drive1.obj pport.obj dcmotor.obj stepper.obj
 motor.obj absmotor.obj
 CC –edrive drive1.obj pport.obj dcmotor.obj
 stepper.obj motor.obj absmotor.obj
drive1.obj : drive1.cpp motor.h stepper.h dcmotor.h
motor.h : pport.h absmotor.h
stepper.h : motor.h
dcmotor.h : motor.h
 CC -c drive1.cpp
pport.obj : pport.cpp pport.h
 CC -c pport.cpp
dcmotor.obj : dcmotor.cpp dcmotor.h
 CC -c dcmotor.cpp
stepper.obj : stepper.cpp stepper.h
 CC -c stepper.cpp
motor.obj : motor.cpp motor.h
 CC -c motor.cpp
absmotor.obj : absmotor.cpp absmotor.h
 CC -c absmotor.cpp

Command-line compiler commands must not start at the left-most column of a line;
instead they start after a tab character as shown below:
CC -edrive drive1.obj pport.obj dcmotor.obj
 stepper.obj motor.obj absmotor.obj

These commands provide information to the make utility for generating the
drive.exe file. Note that the ‘switch’ –e informs the compiler that the
executable file is to be given the name drive.exe. All other lines in the make
file follow the rules just described. The switch –c represents compile only.

The make utility processes a file whose default name is makefile. By giving the
file shown in Listing 9-8 the name makefile, the make utility can be invoked by
entering the command make at the command prompt to generate drive.exe.

9 PROGRAM DEVELOPMENT TECHNIQUES 301

9.5 Summary
In the first planning stages of a program, the program’s operation should be
described using pseudo-code. This description can be refined when working
towards a realisable C++ program which has the objects that are needed in the
program identified and then defined. These objects can then be organised into a
suitable hierarchy; this is extremely beneficial for determining if the efficient use
of virtual functions can be employed.

Many typographical errors can be produced when writing a program. When this
occurs the compiler will detect the errors and notify the programmer accordingly.
Some of these problems can be avoided by using the copy and paste facilities
available in modern editors. Copy and paste operations are readily facilitated by
using good layout practices when developing a program’s classes. This simplifies
the process of defining functions and reduces the possibility of errors. Improper use
of nested parenthesis and brackets is also a common cause of compilation and run-
time errors. Several good habits have been demonstrated to help avoid these
problems. Indentation also plays an important role in identifying levels of nesting,
improving readability, and thereby reducing the likelihood of errors in the source
file.

The modular approach to program development requires the generation of header
files and functions files for each class. When distributing object classes to
programmers or using object classes in a program, only the required modules need
to be distributed or used. Because modular programs have multiple files,
generating their executable files is more involved than for programs that use only
one source file. The executable files for modular files are generated using either a
project file or a make file to simplify and automate this process.

9.6 Bibliography
Meyer, B., Object Oriented Software Construction, Prentice Hall, 1988

Staugaard A. C. (Jr), Structured and Object Oriented Techniques, Prentice Hall,
1997.

Lafore, R. Object Oriented Programming in MICROSOFT C++, Waite Group
Press, 1992

Wang, P.S., C++ with Object Oriented Programming, PWS Publishing, 1994.

Winston, P.H., On to C++, Addison Wesley, 1994.

302 9 PROGRAM DEVELOPMENT TECHNIQUES

10

Voltage and
Temperature
Measurement

Inside this Chapter

Voltage-to-Frequency Conversion (VFC) using
a Voltage-Controlled Oscillator (VCO).

Temperature sensing using thermistors.

Object class for the VCO.

Pulse counting.

Graphics programming.

Programs for voltage and temperature
measurement.

10.1 Introduction
This chapter describes a means of converting an analog voltage to a digital
pulse-train, the frequency of which is proportional to the applied voltage. This
provides an excellent means of measuring analog voltages using a single digital
input. We will be using a device known as a Voltage-Controlled Oscillator
(VCO) to carry out this ‘analog-to-digital conversion’.

Software will be developed that measures the period of the pulse-train to
quantify the applied voltage. The operation of a temperature sensitive resistor
will also be described and this device will be used to measure actual
temperature. This chapter also introduces graphics programming, where a
graphics program is developed to display the digital pulse-train on-screen.

10.2 Converting a Voltage to a Digital
 Pulse-train

One of the simplest forms of analog-to-digital converter is the voltage-to-frequency
converter (VFC). The voltage-to-frequency converter produces a digital pulse-train
whose frequency is proportional to the voltage applied to the converter input. A
specialised type of VFC is the voltage-controlled oscillator (VCO) which produces
either a sinusoidal or a square waveform.

Figure 10-1 Typical voltage-to-frequency converter (VFC).

As shown in Figure 10-1, a typical VFC operates using a current source to charge a
capacitor C with current that is proportional to the voltage applied to its input.

The output of the voltage comparator (initially a positive voltage) changes state
when the voltage across the capacitor C, connected to its –ve input, rises to exceed
the positive voltage at its +ve pin. When this happens, the output of the comparator
will change polarity to a negative voltage and activate the switch closure across
capacitor C. This action discharges capacitor C and also brings the comparator’s

Voltage-controlled
Current Source Voltage

Comparator

Input
Voltage

Ccomparator

+V

R1 R2

C
Output

Frequency
I

Vcap

10 VOLTAGE AND TEMPERATURE MEASUREMENT

resistor-capacitor circuit, connected to the comparator +ve pin, to a negative
voltage.

Following these events, the voltage generated at the +ve pin by the comparator’s
resistor-capacitor circuit will increase, eventually exceeding the ‘zero’ volts across
the discharged capacitor C. When this happens, the comparator output will revert to
a positive voltage level. The switch across capacitor C will open, allowing current
to flow into capacitor C and charge the voltage at the –ve pin until it again exceeds
the positive voltage at the +ve pin. This marks the completion of one VFC cycle.
This process repeats continuously, producing a digital pulse-train at the VFC
output. As the input voltage increases, the level of current charging the capacitor C
increases and the time to reach the voltage at the comparator +ve pin falls, leading
to an increase in the frequency of the output signal.

The interface board uses a VCO housed within part of a CMOS 4046 phase-lock
loop integrated circuit. The phase-lock loop device can be used for a range of
purposes, however, we have configured it to use just its VCO. Note: the VCO input
voltage range that generates a linear output is approximately 1.5V to 3.5V. Its
output frequency range is set by two resistors and a capacitor connected to its pins.

10.3 Temperature Measurement
There are many types of electrical sensors that are sensitive to changes in
temperature. These include thermistors, thermocouples, thermally sensitive
capacitors, semiconductor diodes, and quartz crystals.

Thermistors are one of the more popular temperature sensors in use and the only
sensor described in this text. They are simply resistors with very high temperature
coefficients, usually having a negative temperature coefficient (NTC). A negative
temperature coefficient is one in which the resistance decreases as the temperature
of the thermistor increases. Thermistors have an exponential change in their
resistance with temperature, making them a little difficult to work with. However,
they are low in cost, have high sensitivity, and are small in size.

The simplest means of implementing temperature measurement with a thermistor is
by connecting the thermistor in a voltage divider circuit as shown in Figure 10-2.

Figure 10-2 Thermistor voltage divider circuit.

Thermistor

+V

Bias
 Resistor

Output
Voltage

305

10 VOLTAGE AND TEMPERATURE MEASUREMENT

Figure 10-3 Typical curve – voltage divider output vs temperature (NTC thermistor).

The output voltage of this circuit will drop as the temperature increases for
negative coefficient thermistors as shown in Figure 10-3. The shape of this curve
can be brought closest to a straight line when the value of the bias resistor in the
voltage divider circuit is chosen to equal the resistance of the thermistor
approximately midway through its temperature range. The circuit output may need
to be buffered if a significant level of current must be supplied to the electronics
that senses this output voltage (in our case the VCO). Note that time is required for
the body of the thermistor to reach the temperature of the object or medium it is
placed into contact with. Also, the temperature of its body can be adversely
affected if excessive current is passed through the device.

10.4 The Object Class VCO
The output voltage from the thermistor voltage divider circuit is connected to the
VCO input pin. This voltage determines the output frequency (and hence the
period) of the VCO’s pulse-train. The higher the voltage that is applied to the input
of the VCO, the higher the frequency of the pulse-train. If we develop a method to
measure the period of the pulse-train (i.e. the time to complete one cycle) we can
evaluate the frequency. As expected we will be using the parallel port of the PC to
interface the VCO output to the computer.

We can develop a new object to provide for future use of the VCO in other
program applications. This object will need to process the pulse-train signal
received at the parallel port and measure its period by detecting its signal level. By
signal level, we mean the logic-high or logic-low status of the signal at any given
instant. To develop this new object we can use the class ParallelPort as the
base class. The class definition for the new VCO class is given in Listing 10-1.

Low Hi

Low

Output
Voltage

Temperature

High

306

Listing 10-1 The class definition for the VCO class, file – vco.h.

#ifndef VcoH
#define VcoH

#include "pport.h"

enum BITNUMBER{Bit7=0x80,Bit6=0x40,Bit5=0x20,
 Bit4=0x10,Bit3=0x08};

class VCO : public ParallelPort
{
 private:
 long int Period;
 BITNUMBER Bit;

 public:
 VCO(int baseaddress = 0x378, BITNUMBER bit=Bit3);
 long int MeasurePeriod();
 long int GetPeriod();
 int SignalLevel();
 virtual ~VCO(){}
};
#endif

The VCO class has two data members and five member functions. The data member
Period will store the measured period. We will use the port at address BASE+1
to read the VCO output into the computer via the parallel port. Note that the VCO
output can be connected to any bit number between bit 3 and bit 7 inclusive of the
port at address BASE+1. To provide the user with the flexibility to connect the
VCO output to any of these bits, we pass a parameter to the constructor that
specifies the bit number. The enumerated data type BITNUMBER is created for this
purpose, and the enumerated identifiers are assigned integer values. The use of
these values will be understood once we define all the member functions. We have
used Bit3 as the default bit that will interface to the VCO output.

A strategy must be developed to measure the period of the pulse-train before
defining the member functions of the VCO class. We can monitor the logic level of
the VCO output by reading the port at address BASE+1 and then filtering out all
unwanted bits. We can recognise the start of a pulse by detecting a transition in
signal level - from low to high, or from high to low. After the transition we can
begin measuring the pulse period. The signal must undergo two more transitions to
complete one cycle as shown in Figure 10-4.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 307

Figure 10-4 Detection of one complete cycle.

Since the signal level plays an important role, let us first establish the member
function SignalLevel().

Listing 10-2 The member function SignalLevel().

int VCO::SignalLevel()
{
 if(ReadPort1() & Bit)
 return 1;
 else
 return 0;
}

The signal level will either be logic-low or logic-high at any given time. To signify
these two states we can use 0 and 1 respectively. The function SignalLevel()
shown in Listing 10-2, returns 0 or 1 depending on the logic level of the VCO
output.

First the inherited member function ReadPort1() is used to read the port at
address BASE+1. An AND operation with Bit is used to filter out all bits except
the bit we have allocated for use with the VCO output. If the signal is logic-high,
the AND result will be equal to Bit which is non-zero, the if condition will
evaluate to a non-zero value and 1 will be returned. However, if the logic level of
the signal is low, the result of the AND operation will be zero and a 0 is returned.

A signal transition can be detected if we read the port continuously, checking for a
change in the logic level of the bit used. Measurement of the period begins as the
first transition is detected and will be complete once the next two signal level
transitions have been detected. The ideal means to measure the period of the pulse-
train is to use real-time techniques, however, this topic is yet to be covered (in
Chapter 13). Instead, we will use software loops to measure the pulse-train period
by counting the number of times the port is read within a pulse-train cycle. It may
be possible to evaluate the period as an actual time value if the time for one port

Start of Cycle End of Cycle

1st transition 3rd transition

2nd transition

Bit 3 of BASE+1 t

10 VOLTAGE AND TEMPERATURE MEASUREMENT 308

read and filter operation was known. However, program execution times will vary
for different computers, and are also affected by intervening system events.

The steps required to measure the period are as follows (assume that the signal is
connected to bit 3):

1. Initialise a counter variable to zero.
2. Repeatedly read the signal level of bit 3 until a change is detected.
3. Repeatedly read the signal level of bit 3 until the second change is detected

while incrementing the counter after each read.
4. Repeatedly read the signal level of bit 3 until the third change is detected

while incrementing the counter after each read.
5. Return the counter value as the period.

These steps (the pseudo code) can now be converted to form the function
MeasurePeriod(). Examining the pseudo-code; steps 2, 3 and 4 are very
similar. We will start by developing code for step 2. It is then possible for us to use
the same code for step 3 and 4, and add the incrementing of the counter after each
read.

Step 2 of the pseudo-code can be implemented as shown in Listing 10-3.
SignalLevel() uses the inherited function ReadPort1() of the class
ParallelPort.

Listing 10-3 Detecting a signal transition in the VCO output.

 VCO Vco;
 unsigned char Signal;

 Signal = Vco.SignalLevel();
 while(Signal == Vco.SignalLevel());

First, the variable Signal is used to store the current signal level by calling the
member function SignalLevel(). Then the program enters a while loop,
where the signal level is repeatedly read by calling the SignalLevel() function
and its result compared with the previously stored value of the signal level. While
they are equal, the while loop will continue to execute. Note that the body of the
while loop is empty - containing only a semi-colon. When a change in signal
level is detected, the while condition will evaluate to false and the while loop
will terminate.

Definitions for all the member functions of the VCO class are given in Listing 10-4.
The function MeasurePeriod() determines the period of the signal being
measured and returns this value. The GetPeriod() function merely accesses
and returns the value of the private data member Period. The development of the
VCO class is now complete. In the next section we will learn how to use VCO
objects in a program that will measure voltages.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 309

Listing 10-4 Member function definitions of the VCO class – vco.cpp.

#include "vco.h"

VCO::VCO(int baseaddress, BITNUMBER bit)
 :ParallelPort(baseaddress)
{
 Bit = bit;
 Period = 0;
}

long int VCO::MeasurePeriod()
{
 unsigned char Signal;
 Period = 0;

 Signal = SignalLevel();
 while(Signal== SignalLevel())
 ; // empty body

 Signal = SignalLevel();
 while(Signal== SignalLevel())
 Period++;

 Signal = SignalLevel();
 while(Signal== SignalLevel())
 Period++;

 return Period;
}

long int VCO::GetPeriod()
{
 return Period;
}

int VCO::SignalLevel()
{
 if(ReadPort1() & Bit)
 return 1;
 else
 return 0;
}

10 VOLTAGE AND TEMPERATURE MEASUREMENT 310

10.5 Measuring Voltages Using the VCO
As described in section 10.2, the voltage-controlled oscillator (VCO) is an
electronic circuit that generates a square wave at a frequency proportional to the
analog voltage applied to its input. Various voltage levels need to be applied to its
input to verify its proper operation. The easiest way to do this is to connect the
output of the interface board’s potentiometer to the VCO input. We can measure
the potentiometer output voltage with a voltmeter to establish a quantifiable
relationship between the VCO output and the voltage applied to the VCO input. A
different approach which eliminates the need for a voltmeter, is to use the output of
the DAC circuit to generate a known analog voltage. We can easily control the
DAC output by writing a number to it as explained in Chapter 6.

The following keyboard controls will be implemented within the main() function
for easy use of the program:

Pressing the up arrow will increase the output voltage of the DAC.
Pressing the down arrow will decrease the output voltage of the DAC.
Pressing Alt-X will exit the program.

A fragment of skeleton code is given in Listing 10-5 to implement the above steps.

Listing 10-5 Implementing keyboard control.

 int Quit = 0, key;

 while(!Quit)
 {
 // Insert lines to measure and display the pulse period

 if(bioskey(1)!=0) // check if a key is pressed
 {
 key = bioskey(0); // read key code

 switch(key)
 {
/* Alt-X */ case 0x2d00 : Quit = 1;
 break;
/* Up Arrow */ case 0x4800 : //Increase DAC output
 break;
/* Down Arrow */ case 0x5000 : //Decrease DAC output
 ; // Empty statement
 }
 }
 }

10 VOLTAGE AND TEMPERATURE MEASUREMENT 311

The while loop will eventually contain code to measure and display the pulse
period. This code is not shown yet - instead, a comment is included to that effect.
The next statement in the while loop is an if statement that contains a switch
statement. Program control will be transferred to the true clause of the if
statement when the if condition evaluates to true - when a key is pressed. The
bioskey() function (when passed an actual argument of 1) will return true if a
key has been pressed. If no key is pressed it will return false. The bioskey()
function will not wait for a key press. This means that if a key has not been
pressed, the body of the if statement will be skipped, and the other statements of
the while loop (such as those used to measure the pulse period and display it) will
continue to execute.

If a key has been pressed, program control will be transferred to the body of the if
statement where its true clause will be executed. Within the true clause, the first
action to perform is to determine the actual key pressed. The bioskey() function
can be used for this purpose, although to do this it must be passed an actual
argument of 0. The bioskey() function will now retrieve the key code of the
key pressed. The three key codes corresponding to the keys; up arrow, down arrow,
and Alt-X are listed as cases of the switch statement. Within the switch
statement; if the key code of the pressed key matches one of the cases, program
control will be transferred to that case. If no matching cases are found, no action
will be taken. In the case of Alt-X, the case statement sets the variable Quit to 1.
This will cause the while loop to terminate the next time the while condition is
evaluated. Programming statements for the two cases corresponding to the up
arrow and the down arrow are not included yet. Instead, comments are used in their
place.

A main() function that sends the DAC output to the VCO and measures the pulse
period of the VCO output is given in Listing 10-6. The comment lines in Listing
10-5 have now been replaced by actual programming statements. Note that the
program is written to jointly operate the VCO and the DAC. Therefore, a DAC
object named Dac and a VCO object named Vco have been instantiated at the start
of the main() function.

Listing 10-6 Measuring VCO pulse period (DAC driving VCO input) – period.cpp.

#include <bios.h>
#include <conio.h>

#include "dac.h"
#include "vco.h"

void main()
{
 DAC Dac;

10 VOLTAGE AND TEMPERATURE MEASUREMENT 312

 VCO Vco;
 int Quit = 0, key;

unsigned char DACbyte;

 clrscr();
 Dac.SendData(0); // initialise to zero

 while(!Quit)
 {
 gotoxy(10,10);
 cprintf("The pulse period is %10lu\a",
 Vco.MeasurePeriod()/1000);

 if(bioskey(1)!=0)
 {

DACbyte = Dac.GetLastOutput();
 key = bioskey(0);
 switch(key)
 {
/*Alt-X*/ case 0x2d00 : Quit = 1;
 break;
/*Up Arrow*/ case 0x4800:

if(DACbyte>247) // limit max value
 DACbyte = 247;

Dac.SendData(DACbyte+8);
 break;
/*Down Arrow*/ case 0x5000 :

if(DACbyte<8) // limit min value
 DACbyte = 8;

Dac.SendData(DACbyte-8);
 }
 }
 }
}

The gotoxy()function locates the cursor at screen coordinates (10,10). The first
number within the above pair of parentheses is referred to as the ‘X coordinate’ and
is measured from the left edge of the screen. The second number is referred to as
the ‘Y coordinate’ and is measured from the top edge of the screen. Screen
coordinates are shown in Figure 10-5. Therefore, the measured pulse period will be
displayed starting at screen coordinates (10,10). The function cprintf()is
similar to the printf() function we saw previously, with the exception that it
does not convert the new line character combination (\n) to a new line and
carriage return combination (\n\r). It is especially designed to send output to the

10 VOLTAGE AND TEMPERATURE MEASUREMENT 313

Origin (1,1)

Positive x

Positive y

screen. In general, gotoxy() is used to set the position of the cursor, and
therefore there is no need for a line feed or carriage return.

The measured value of the pulse period is a ‘representation’ of the square wave
period. This value is obtained by using the member function MeasurePeriod()
of the Vco object. We use the cprintf() function to call the
MeasurePeriod() function. The cprintf() function prints the measured
value divided by 1000 on the screen.

The member function GetLastOutput() of the DAC class is called to obtain
the previous value output to the DAC. This value is then used within the switch
statement block to ensure that the byte being sent to the DAC is kept within its
operating range of 0 to 255 for each press of the up or down arrow key. The two
cases corresponding to the up arrow and the down arrow have been implemented
using the SendData() function of the DAC class. Depending whether the up or
down arrow key has been pressed, the value sent to the DAC is either incremented
or decremented by 8. During execution of the SendData() function, the data
member LastOutput of the DAC class is updated to store the value just output.

Figure 10-5 Screen coordinates in text mode.

Three code modules are required to generate an executable program for the code
segment shown in Listing 10-6. These are the ParallelPort, VCO, and DAC
modules. A project file (or make file) must be formed to compile all modules and
link them together to form the executable file. The VCO module consists of the
header file given in Listing 10-1 and the function file given in Listing 10-4. The
ParallelPort class header file and its function file were formed in Section 9.4
and are repeated in Listing 10-7 and Listing 10-8, respectively.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 314

Listing 10-7 Header file for the ParallelPort class - pport.h.

#ifndef PportH
#define PportH

class ParallelPort
{
 private:
 unsigned int BaseAddress;
 unsigned char InDataPort1;

 public:
 ParallelPort();
 ParallelPort(int baseaddress);
 void WritePort0(unsigned char data);
 void WritePort2(unsigned char data);
 unsigned char ReadPort1();
 virtual ~ParallelPort(){}
};
#endif

Listing 10-8 Function file for the ParallelPort class - pport.cpp.

#include <dos.h>
#include "pport.h"

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378;
 InDataPort1 = 0;
}

ParallelPort::ParallelPort(int baseaddress)
{
 BaseAddress = baseaddress;
 InDataPort1 = 0;
}

void ParallelPort::WritePort0(unsigned char data)
{
 outportb(BaseAddress,data);
}

void ParallelPort::WritePort2(unsigned char data)

10 VOLTAGE AND TEMPERATURE MEASUREMENT 315

{
 outportb(BaseAddress+2,data ^ 0x0B);
}

unsigned char ParallelPort::ReadPort1()
{
 InDataPort1 = inportb(BaseAddress+1);
// Inverting Most significant bit to compensate
// for internal inversion by printer port hardware.
 InDataPort1 ^= 0x80;
// Filter to clear unused data bits D0, D1 and D2 to zero.
 InDataPort1 &= 0xF8;
 return InDataPort1;
}

So far we haven’t created a header file and a function file for the DAC module.
These files are given in Listing 10-9 and Listing 10-10 respectively.

Listing 10-9 The header file for the DAC class - dac.h.

#ifndef DacH
#define DacH

#include "pport.h"

class DAC : public ParallelPort
{
 private:
 unsigned char LastOutput;

 public:
 DAC();
 DAC(int baseaddress);
 void SendData(unsigned char data);
 unsigned char GetLastOutput();
 ~DAC(){};
};
#endif

Listing 10-10 The function file for the DAC class - dac.cpp.

#include "dac.h"

10 VOLTAGE AND TEMPERATURE MEASUREMENT 316

DAC::DAC()
{
 LastOutput = 0;
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
 LastOutput = 0;
}

void DAC::SendData(unsigned char data)
{
 ParallelPort::WritePort0(data);
 LastOutput = data;
}

unsigned char DAC::GetLastOutput()
{
 return LastOutput;
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
vco.cpp
vco.h
dac.cpp
dac.h
period.cpp

Listing 10-8
Listing 10-7
Listing 10-4
Listing 10-1
Listing 10-10
Listing 10-9
Listing 10-6

pport.cpp

vco.cpp

dac.cpp

period.cpp

The table shown above lists all the files needed to form the executable file that
should be stored in the one directory. Form a project file using the program
development environment of your choice and add the files that are listed in the
column titled ‘Project File Contents’. Then the compiler and linker can be directed
to form the executable file. Tables such as the one shown above will be provided in
this text whenever modules must be combined to form an executable file.

Make the connections on the interface board as shown in Table 10-1 to Table 10-3
before executing the program. These tables list the wiring needed to control the
DAC and the VCO. Set the DAC output to unipolar mode by fitting the jumper
across the position on the board marked LINK1. Remember to connect an
operational 9V battery to its terminal block (J14) to allow proper DAC operation.
Note that the VCO response is linear (typically 1%) for input voltages in the range

10 VOLTAGE AND TEMPERATURE MEASUREMENT 317

of 2.2V to 2.8V. Although linearity deteriorates outside this range, the VCO can be
characterised across its entire input range and used effectively.

Table 10-1 Connections for the DAC.

BASE Address
(Buffer IC, U13)

DAC0800
(U8)

D0 D0 (12)
D1 D1 (11)
D2 D2 (10)
D3 D3 (9)
D4 D4 (8)
D5 D5 (7)
D6 D6 (6)
D7 D7 (5)

Table 10-2 INPUT connections
for the VCO.

Table 10-3 OUTPUT connections
for the VCO.

LM358
 (U10B)

VCO
(4046, U4)

 VCO
(4046, U4)

BASE+1 Address
(Buffer IC, U6)

VDAC (7) VIN (9) VCO OUTPUT (4) D3

NOTE

If any malfunction occurs; first check the 9V battery is operational – its voltage
should be greater than 7V when it is being used.

10.6 Graphics Programming – Square
Wave Display

A program was developed in Section 10.5 that can measure the period of the square
wave generated by the VCO and produce a simple numerical output. In this section
we will use graphics programming to generate a graphical display so the user can
visualise the signal’s waveform.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 318

The potentiometer circuit on the interface board provides a very convenient means
of generating an analog voltage to apply to the input of the VCO. Varying the
position of the potentiometer will change its output voltage (0V to +5V) and hence
change the output frequency of the VCO. The connections that need to be made
between the potentiometer and the VCO are shown in Table 10-4 and Table 10-5.

Table 10-4 INPUT connections for the VCO.

Potentiometer
(POT1)

VCO
(4046, U4)

OUTPUT VIN (9)

Table 10-5 OUTPUT connections for the VCO.

VCO
(4046, U4)

BASE+1 Address
(Buffer IC, U6)

VCO OUTPUT (4) D3

10.6.1 Screen Programming
This program to be developed will display the signal from the VCO as a waveform
inside a fixed area of the screen. The waveform being displayed will trace across
the screen similar to the trace of an oscilloscope. This must happen in real-time; the
changes shown on-screen matching the instantaneous changes of the VCO signal.

The standard library provides many graphics routines for our program to use.
These routines can determine which graphics driver should be used, the appropriate
graphics mode, the maximum number of pixels in x and y directions, etc. The
screen uses an array of pixels, where each pixel is one element of the screen that is
individually illuminated to form part of the picture. Because different screens
contain different numbers of pixels, it is often necessary to determine the screen’s
pixel count before deciding the size of the display area to be used by a program.

In any graphics program running under DOS, the system must first be configured
in a graphics mode that uses a graphics driver. A driver is a module of executable
code that is used to drive the actual graphics output. These drivers can operate in
different modes that set the number of pixels used in x and y directions, and set
which colour palette to use. The program must set the system in a suitable graphics
mode and then determine the number of pixels in the x and y directions. This
information allows the program to calculate the screen coordinates needed to centre
the waveform on-screen inside the area known as the Viewport. Figure 10-6 shows
the screen coordinates and the calculations performed by the program’s functions
to generate the waveform.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 319

Figure 10-6 Arrangement to display the VCO output.

The program will use half of the x pixel-range and one hundred and fifty pixels in
the vertical direction for its Viewport, centred on-screen in both the horizontal and
vertical directions. We have separated the high and low levels of the waveform by
50 pixels in the vertical direction. The functions getmaxx() and getmaxy()
are functions that can be used to determine the number of pixels in the x and y
directions. The Viewport is now established (with its origin located at its upper
left-most corner).

The waveform can be plotted as a line joining sequential points, explained as
follows (note: the positive y direction is down). When the port is read; if the signal
level is high, the Y coordinate of the current point will be 50 pixels in the y
direction from the Viewport Origin. If the signal level is low, the Y coordinate will
be 100 pixels in the y direction from the Viewport Origin. The first VCO value
read will be plotted 0 pixels from the Viewport Origin in the x direction. The next
point will be plotted at x=1, the following at 2, and so on. When we reach the end
in the x direction, we must re-start plotting from x=0, but not before erasing the
current waveform being displayed. This plotting process will repeat continuously
until the program detects a keypress and then terminates.

The required program steps can be listed as follows:

1. Initialise graphics and set the graphics mode.
2. Determine the maximum number of pixels in the x and y directions.
3. Configure the Viewport.
4. Enter a while loop conditioned on !kbhit(). If any key is pressed,

terminate the program.

getmaxx()*1/4

g
e
t
m
a
x
y
(
)
/
2

-
7
5

Po
si

tiv
e

y Origin (0,0)

Positive x

getmaxx()*3/4

g
e
t
m
a
x
y
(
)
/
2

+
7
5
 Viewport

Origin (0,0)

Screen
Boundary

Displayed
Waveform

Viewport

10 VOLTAGE AND TEMPERATURE MEASUREMENT 320

5. Read the port and obtain the output signal level of the VCO.
6. Plot the pixel according to the signal level (high or low) and increment the

x pixel count.
7. If the x pixel count has not reached the end of its range, return to step 4.

Else, reset the x pixel count to restart plotting, clear the view port, and
return to step 4.

A program that carries out the above set of tasks is given in Listing 10-11. The
appearance of the program’s display is basic and could be improved by adding
some finishing touches.

Listing 10-11 Graphically display the VCO output – trace.cpp.

/***
The frequency of the pulse-train being output by the
voltage-controlled oscillator will change as we change
the analog input voltage to the VCO circuit. The
Potentiometer (POT1) on the interface board generates
the input voltage to the VCO and the program reads the
pulse-train being output by the VCO. This pulse-train
is graphically displayed on-screen.
***/
#include <graphics.h>
#include <stdlib.h>
#include <iostream.h>
#include <conio.h>
#include <dos.h>

#include "vco.h"

void main()
{
 VCO Vco;
 int i=0; // controls plotting in the x range
 int SignalLevel;
 int Driver = DETECT, GraphicsMode, ErrorCode;
 int X, Y;

// set to graphics mode
 initgraph(&Driver, &GraphicsMode, "");

// check for error codes
 ErrorCode = graphresult();
 if (ErrorCode != grOk)
 {

10 VOLTAGE AND TEMPERATURE MEASUREMENT 321

 cout << "Graphics error: "
 << grapherrormsg(ErrorCode) << endl;
 cout << "Press any key to halt:" << endl;
 getch();
 exit(1);
 }

 X = getmaxx();
 Y = getmaxy();
 rectangle(X/4-1, Y/2-76,X*3/4+1,Y/2+76); // border
 setviewport(X/4, Y/2-75,X/4*3,Y/2+75,1);

 while(!kbhit())
 {
 SignalLevel = Vco.SignalLevel();
 if(SignalLevel == 0) // low level
 lineto(i,100);
 else // high level
 lineto(i,50);

 i++;
 delay(2);

 if(i > X/2) // half screen = Viewport width
 {
 i = 0;
 while(Vco.SignalLevel()); // wait for low level

 // wait for signal level to go high again
 while(!Vco.SignalLevel());
 clearviewport();
 }
 }
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
vco.cpp
vco.h
trace.cpp

Listing 10-8
Listing 10-7
Listing 10-4
Listing 10-1
Listing 10-11

pport.cpp

vco.cpp

trace.cpp

10 VOLTAGE AND TEMPERATURE MEASUREMENT 322

The file graphics.h is needed for all graphics-related routines such as
initgraph(), grapherror(), moveto(), lineto(), etc, and for use of
the constants DETECT and grOk. The class VCO is used to create an instance of
VCO named Vco as in the previous program. Several variables of type int are
declared inside main(). Variables X and Y will initially be used to store the
maximum number of pixels in x and y directions respectively. At later stages in the
program they will be used for other purposes. Variable i is used to control plotting
of pixels in the Viewport’s x range. It will be reset to 0 for the start of a new plot
when the trace reaches the end of the Viewport range.

The variables Driver and GraphicsMode are explained together with the
initgraph() function. The first parameter to initgraph() must specify the
type of graphics driver. The driver could be for the Colour Graphics Adapter
(CGA), Enhanced Graphics Adapter (EGA), Video Graphics Array (VGA), etc. If
the value of Driver is set to 1, then CGA is specified; if it is set to 2, EGA is
specified. A description of these constants should be found in the documentation
for initgraph(). A number of graphics modes will be available for each driver
to generate the resolution (number of pixels) and the colour palette used. For
example; 16 colour, 640 x 480 screen resolution is specified by assigning
GraphicsMode the value 2. If GraphicsMode is assigned the value 1, the
screen will use 16 colours and a resolution of 640 x 320. However, when the value
of Driver is set to DETECT (predefined to be 0), the program will automatically
detect the driver suitable for the computer’s graphics card and set the resolution to
the highest available. In this situation, GraphicsMode does not need to be
assigned a value. The third parameter to initgraph() is a string specifying the
path to the graphics driver, in this case the location of the file EGAVGA.BGI. If the
graphics driver is in your current directory (the directory where you have your
executable file) then this field can have an empty string. Note that, when the call to
initgraph() is made, the first two arguments are preceded by the & character.
This is needed because initgraph() takes these arguments as pointers (i.e. an
address value).

To determine if initgraph() has successfully completed its task, we call
graphresult() and store the value returned by graphresult() in
ErrorCode. If ErrorCode is not equal to the predefined constant grOk, then
an error has occurred. A message corresponding to the value in ErrorCode can
be generated by calling grapherrormsg(). The true clause of the if statement
will display the error messages and then call the exit() function to terminate the
program. If no errors occurred, program execution will proceed to carry out the
next task – to determine the maximum number of pixels in x and y directions. A
rectangle will be drawn just one pixel outside the chosen Viewport followed by
configuration of the Viewport. As explained previously, the Viewport is the area
where the waveform will be displayed. Once the Viewport is established, the origin
(0,0) becomes the upper left-corner of the Viewport.

The while loop, conditioned on !kbhit(), is used to continuously display the
waveform on-screen. The lineto() function uses the new coordinate frame of

10 VOLTAGE AND TEMPERATURE MEASUREMENT 323

the Viewport. The value of i will be zero when beginning to plot a new trace. A
line will be drawn from the previous screen position to the new vertical position
determined by the signal level. The x plot position is then incremented for the next
plot. When the value of i reaches the end of its range in the x direction (Viewport
width = X/2), i is reset to zero for a new plot. The remaining code synchronises
the plotting so the next trace will always begin on a low level. The Viewport is
then cleared to erase the current trace.

Note that since interrupts are enabled, some of the pulses displayed on-screen may
have wider widths due to time consumed by interrupt service routines.

10.7 Temperature Measurement
We measure temperature indirectly by using the analog voltage generated by the
thermistor resistive-divider circuit. The voltage being generated drops in a non-
linear manner as the temperature increases whan a negative temperature coefficient
thermistor is used in the resistive-divider circuit (as shown in Figure 10-3). To
simplify our programming let us approximate the curve by a straight line. We can
develop a program that will measure the actual temperature using the same wiring
as described in Section 10.6 (except the POT output is replaced with the
Thermistor output, VTH). A typical thermistor/VCO relationship is shown in
Figure 10-7.

10.7.1 Thermistor Calibration
The program needs to measure the cycle time of the VCO output and interpret this
value as temperature. The first task is to calibrate the thermistor. This is done by
subjecting the thermistor to known temperatures such as that of ice, the body, and
say boiling water to obtain measures of corresponding cycle times. Then we can
establish a calibration equation or calibration table which can be used to
extrapolate or interpolate values of temperature (within linearity limits of the
thermistor/VCO circuit response). Note that the output of the thermistor circuit
may extend well beyond the linearity range of the VCO (approximately 1.5V to
3.5V). If the voltage applied to the VCO input is outside its linear range, the output
from the VCO will be a distorted measure of the thermistor output. However, the
temperature measuring system made up of the thermistor and VCO can still be
calibrated and used, but with less accuracy.

The calibration equation can be determined as follows (refer to Figure 10-7). We
can add a few extra statements to the program in Listing 10-6 to include a means of
entering an upper temperature and a lower temperature. The corresponding cycle
times can then be read and a calibration equation can be established. If no upper
and lower temperatures are entered (HiTemp and LoTemp), the program will
display the cycle time as did the program in Listing 10-6. If calibration has been
performed correctly, the program will display the actual temperatures. This feature
requires some logic to be built into the program. We can use flags to detect whether

10 VOLTAGE AND TEMPERATURE MEASUREMENT 324

upper and lower temperatures have been entered. If both flags are set; that is, if
both temperatures have been entered, we can establish the calibration equation.
Then we can display temperature instead of cycle times. We will adhere to using
the same keys as for Listing 10-6; Alt-X to quit the program, up arrow to enter an
upper temperature, and down arrow to enter a lower temperature.

Figure 10-7 Typical curve - Thermistor circuit/VCO output (calibration).

The program steps can be listed as follows:

1. Initialise a counter to zero.
2. Repeatedly check the signal level until a change is detected.
3. Repeatedly check the signal level until the second change is detected while

incrementing the counter after each read.
4. Repeatedly check the signal level until the third change is detected while

incrementing the counter after each read.
5. Check if the calibration temperature for upper temperature and lower

temperature has been entered (respective flags are both set).
If they are both entered, use the calibration equation and display the
temperature, else display the cycle time.

6. Check if a key has been pressed. If no key has been pressed return to step 1.
7. If the pressed key is Alt-X, exit the program.
8. If the up arrow key is pressed, read upper temperature. Return to step 1.
9. If the down arrow key is pressed, read lower temperature. Return to step 1.

Some of these steps can be expanded further as shown below:

8.1 Ask user to enter the upper temperature and store value entered.
8.2 Store the cycle time.
8.3 Set the flag confirming the upper calibration temperature has been read.

LoCount HiCount

LoTemp

HiTemp

i

Temp

HiCount - LoCount

Period in Counts

HiTemp - LoTemp

Temperature

10 VOLTAGE AND TEMPERATURE MEASUREMENT 325

9.1 Ask the user to enter the lower temperature and store value entered.
9.2 Store the cycle time.
9.3 Set the flag confirming the lower calibration temperature has been read.

The program that implements these steps is given in Listing 10-12.

Listing 10-12 Temperature measurement using thermistor & VCO – temp.cpp.

/***
This program uses the thermistor on the interface board
to generate a voltage for input to the VCO, and then
repeatedly reads the cycle time of the VCO’s output pulse-
train. It also allows you to calibrate the thermistor so
the program can display the actual temperature.
***/
#include <iostream.h>
#include <bios.h>
#include <conio.h>
#include "vco.h"

void main()
{
 VCO Vco;
 int Quit=0, HiFlag = 0, LoFlag = 0;
 int key = 0;
 float HiTemp, LoTemp, Temp;
 long int HiCount, LoCount;

 clrscr();
 while(!Quit)
 {
 Vco.MeasurePeriod();
 clrscr();
 gotoxy(10,10);

 if((HiFlag == 1) && (LoFlag == 1))
 {
 Temp = LoTemp+(HiTemp-LoTemp)*
 (Vco.GetPeriod()-LoCount)/(HiCount-LoCount);

 cprintf("The temperature is:%7.1 lf (deg)\a",Temp);
 }
 else
 cprintf("The pulse period is: %10lu\a",

10 VOLTAGE AND TEMPERATURE MEASUREMENT 326

 Vco.GetPeriod()/1000);

 if(bioskey(1)!=0)
 {
 key = bioskey(0);
 switch(key)
 {
/* Alt-X */ case 0x2d00 : Quit = 1;
 break;

/* Up Arrow */ case 0x4800 : gotoxy(10,5);
 cout << "Enter Upper
 Calibration Temp: ";
 cin >> HiTemp;
 HiCount = Vco.GetPeriod();
 HiFlag = 1;
 break;

/* Down Arrow */ case 0x5000 : gotoxy(10,6);
 cout << "Enter Lower
 Calibration Temp: ";
 cin >> LoTemp;
 LoCount = Vco.GetPeriod();
 LoFlag = 1;
 }
 }
 }
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
vco.cpp
vco.h
temp.cpp

Listing 10-8
Listing 10-7
Listing 10-4
Listing 10-1
Listing 10-12

pport.cpp

vco.cpp

temp.cpp

The variable HiFlag is used to denote the upper calibration temperature has been
entered, and similarly the variable LoFlag to denote the lower calibration
temperature has been entered. Although HiFlag and LoFlag they are declared
as integer variables, they will only be used with values of 0 or 1. The variables
HighTemp and LowTemp will store the upper temperature and the lower
temperature entered during calibration. The value of the pulse period (measured in

10 VOLTAGE AND TEMPERATURE MEASUREMENT 327

counts) will be stored in the variable HiCount for the upper calibration
temperature, and in the variable LowCount for the lower temperature. The actual
temperature to be displayed is stored in the variable Temp.

The first if statement within main() tests whether both temperatures have been
entered by checking the values of the flags HiFlag and LoFlag. If both flags are
set, the temperature will be calculated using the calibration equation and printed
on-screen.

Be aware of the importance of correctly specifying mathematical operations when
calculating the value Temp in the program’s formula:

Temp = LoTemp + (HiTemp-LoTemp)*
 (Vco.GetPeriod()-LoCount)/(HiCount-LoCount);

Note that Vco.GetPeriod(), HiCount and LoCount are long integer type,
whereas Temp, LoTemp and HiTemp are float type. If we had placed a set of
brackets around the expression shown on the lower line, the compiler would cast
this part result to become a long integer number (incorrect – it should be a floating
point number). Likewise, rearranging the order of mathematical operations can
cause the compiler to implicitly cast part-expressions and change the result of an
expression.

If both temperatures have not been entered yet, the calibration equation will not be
used and the period is printed on the screen instead. The switch statement block
is used to detect key presses for the up and down arrow keys, and the Alt-X key
combination. If you press the up arrow key, you will be prompted to enter the
upper temperature which will be stored in the variable HiTemp. The current value
of Vco.GetPeriod() (returns the data member Period) will be stored in
variable HiCount. The flag HiFlag will then be set to one. The equivalent
procedure will be followed when the down arrow key is pressed to enter the lower
calibration temperature.

Note: the thermistor requires time to reach the temperature of the body it is placed
into contact with. Therefore, sufficient time must be allowed before pressing the
up/down arrows to enter each calibration temperature. The program can be verified
after it has been calibrated. Subject the thermistor to known temperatures and the
program should display values close to those temperatures.

10.8 Summary
In this chapter we have described the operating principle of the Voltage-controlled
Oscillator (VCO). The VCO produces a pulse-train having a frequency that is
proportional to the voltage applied to its input. By measuring the frequency (or
period as we did) the voltage/frequency relationship can be used to generate a
measurement of voltage. In this way the VCO can be used as a simple and
inexpensive alternative to an analog-to-digital converter.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 328

A new object class named VCO was developed using the ParallelPort as the
base class. Software methods have been described to continuously check the level
of an incoming digital signal while incrementing a counter, and thereby measure
the period of the waveform. Graphics programming was introduced to display the
resulting waveform, followed by the development of a program that uses the
thermistor on the interface board with the VCO to measure the actual temperature.

10.9 Bibliography
Bentley, J., Principles of Measurement Systems, Second edition, Longman
Scientific & Technical, Essex, 1988.

Horowitz, P. and Hill, W., The Art of Electronics, Cambridge University Press,
Cambridge, 1989.

NS CMOS, CMOS Logic Databook, National Semiconductor Corporation, 1988.

Webb, R.E., Electronics for Scientists, Ellis Horwood, New York, 1990.

Wobschall, D., Circuit Design for Electronic Instrumentation, McGraw-Hill, 1987.

Lafore, R. Object Oriented Programming in MICROSOFT C++, Waite Group
Press, 1992.

Wang, P.S., C++ with Object Oriented Programming, PWS Publishing, 1994.

Winston, P.H., On to C++, Addison Wesley, 1994.

10 VOLTAGE AND TEMPERATURE MEASUREMENT 329

11

Analog-to-Digital
Conversion

Inside this Chapter

Analog-to-Digital Conversion (ADC) explained.

Types of ADCs.

Sampling Signals.

An Object Class for the ADC.

Voltage and Temperature Measurement using the
ADC.

11.1 Introduction
This chapter explains the principles of analog-to-digital conversion and the
operation of several commonly used types of analog-to-digital converters. This is
followed by a discussion of the limitations encountered when sampling and
converting signals.

Transducers measure physical quantities such as temperature, pressure, flow rate,
and distance. Analog transducers typically output current, voltage, or charge, which
form some mathematical relationship with the measured physical quantity. This
mathematical relationship can be obtained using the calibration process we
described in the previous chapter. An analog-to-digital converter (ADC) is
typically used to interface these analog signals to a digital computer. Signal
conditioning circuitry transforms the analog currents or charge into voltages that
are sampled by the ADC system and converted to digital bit patterns.

Software is used to control the ADC on the interface board and read its output. This
is made possible by deriving an object from the ParallelPort class and then
encapsulating the functionality of the ADC. This new object will be used in our
programs to measure analog voltages.

11.2 Analog-to-Digital Conversion
Analog-to-digital conversion is the process of sampling and then converting an
analog signal, usually a voltage, to a multi-bit digital number that is proportional to
the amplitude of the analog signal. Analog-to-digital conversion is used in many
applications ranging from encoding of voice-generated signals in
telecommunication systems, to data acquisition and control systems. Figure 11-1
shows the block diagram for a typical (8-bit) ADC. Conversion is initiated by
activating the ‘Start Conversion’ input of the converter. At completion of the
conversion process the ‘Conversion Complete’ output of the converter will change
logic state. This signal is used to notify the controlling device that data conversion
is complete, and valid data can now be read.

Figure 11-1 Block diagram of an 8-bit ADC.

Analog
Voltage

8-bit value
(8 logic signals)

8-Bit ADC

D
ig

ita
l O

ut
pu

ts

Voltage
Input

Commence
Conversion

Start
Conversion

Conversion
Complete

End of
Conversion

11 ANALOG-TO-DIGITAL CONVERSION

The time that elapses from the start of conversion to the valid output of the digital
code is referred to as the conversion time. The Conversion Complete output of the
ADC can be ignored if the device requesting the converted data delays its reading
of the data by a longer period than the conversion time.

An analog voltage signal has an infinite number of possible voltage levels within
its range. The analog voltages are converted to digitally coded numbers by
sampling and converting the analog signal into a fixed number of possible digital
states or levels. This process is known as quantisation. For example, a 3-bit ADC
can digitise an analog voltage and create digital numbers from zero to seven, which
represents the analog voltage over a set range (say 0 to 3.5V) as shown in Figure
11-2 and Table 11-1. In this example the analog signal has been divided up or
quantised into eight levels.

Figure 11-2 Ideal ADC Conversion.

Table 11-1 Quantisation of analog voltages to 3-bit code.

Quantised Analog
Input Voltage

3-bit ADC
Digital Code Decimal

0.0 V 000 (0)
0.5 V 001 (1)
1.0 V 010 (2)
1.5 V 011 (3)
2.0 V 100 (4)
2.5 V 101 (5)
3.0 V 110 (6)
3.5 V 111 (7)

Digital
Code

Analog Input
Voltage

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

000

001

010

011

100

101

110

111

333

The digital code produced by the ADC will be correct and not contain any error
when the analog input voltage corresponds exactly with a quantised voltage level.
However, the ADC will incur an error known as quantisation error, when the input
voltage is not exactly equal to the nearest quantised voltage level. For example,
referring to Figure 11-2; zero quantisation error occurs when the analog input is
equal to 0V, 0.5V, 1.0V, etc. The quantisation error is a maximum (equal to ½ a
quantisation level) when the analog input voltage lies halfway between two
quantisation levels – 0.25V for the previous example.

Another type of error can occur with analog-to-digital conversion, known as
monotonic error. If the input voltage to the converter increases in discrete
quantised levels, the digital output code should also increase by the same number
of increments. If this does not happen, then monotonic error has occurred, reducing
the useful resolution of the converter.

The digital output code from an ADC is produced in either serial or parallel format.
The converter shown in Figure 11-1 uses parallel format with all 8 output bits
available. Parallel output converters usually have faster operating times than the
serial output types but require additional connections to the digital system.
However, ADCs with serial output require more work to control than parallel
output types. Some converters contain an internal analog multiplexer, allowing
multiple analog input channels to be processed (at a proportionately slower speed).

At the start of the conversion process the input voltage must be sensed by the
converter’s input stage circuitry. The output impedance of the external circuit that
is providing the input signal to the ADC must be sufficiently low compared to the
ADC’s input impedance for the ADC to function properly. The converter will
operate over a limited range of input voltage, and this too must be considered when
scaling the source of input voltage before connecting it to the ADC.

11.3 Conversion Techniques
Several popular analog-to-digital conversion techniques are implemented with
electronic circuitry including voltage-to-frequency converters, single slope ADC,
dual slope ADC, successive approximation ADC, and flash ADC. Some converters
use a combination of methods to take advantage of the independent benefits of
each approach. For example, the high-speed flash technique is combined with
successive approximation to produce a ‘low cost’ but very fast converter. The
voltage-to-frequency technique has been mentioned previously (Chapter 10) and is
not normally considered for use, due to its relatively slow speed. The other
converter techniques are widely used and are explained as follows.

Single Slope ADC
This converter uses a constant current source charging a capacitor, a voltage
comparator, and a counter with clock source and control logic as shown in Figure
11-3.

11 ANALOG-TO-DIGITAL CONVERSION 334

Figure 11-3 Simplified single slope ADC.

The conversion process begins immediately after the ‘Start Conversion’ input is
driven to its active state and proceeds in two stages as follows:

Stage 1 - Initialisation

The discharging switch across capacitor C closes (activated by the control
logic), discharging the capacitor to zero volts. Next the counter is reset to a
value of zero, the counter logic opens the switch, and counting commences.

Stage 2 - Integration

The constant current source drives current into capacitor C, generating a
ramping voltage at the comparator +ve input (this process is known as
integration). When this ramping voltage exceeds the positive input voltage
(VIN) present on the comparator –ve input, the comparator will toggle state
from low to high. This change in state of the comparator will signal the
counter logic to cease counting, at which time conversion is complete. The
‘Conversion Complete’ output pin will then be switched to its active state to
indicate end of conversion to external devices. The counter output code will
now represent the analog input voltage. A larger magnitude of input voltage
will require a longer time period for the ramping voltage to reach its level,
producing a larger digital output value.

The cycle described as Stage 1 and 2 will repeat when the next ‘Start Conversion’
pulse arrives.

The conversion speed of the single slope ADC is relatively slow although its
accuracy is reasonably good, being affected by the long-term stability of the
counter’s clock, the stability of the constant current source, and the quality of the

Constant
Current
Source

Digital Output
Code

Counter, Clock
Source and

Control Logic

I

Voltage
Comparator

VIN

Start
Conversion

Conversion
Complete

C

VCAP

33511 ANALOG-TO-DIGITAL CONVERSION

capacitor, ideally having low dielectric absorption. When capacitors with high
dielectric absorption are discharged and then removed from the discharging circuit,
some charge will remain stored inside the capacitor on polarised dielectric
interfaces. This charge generates an unwanted error voltage. Capacitors with very
low dielectric absorption will have negligible voltage across them after being
discharged. A further advantage of the single slope converter is that noise on the
input voltage signal is averaged out during the process of integration.

Dual Slope ADC
This converter is similar to the single slope ADC except that two ramping stages
are employed during conversion to greatly improve accuracy. Figure 11-4 shows
the block diagram for such a converter.

Figure 11-4 Simplified dual slope ADC.

Once the ‘Start Conversion’ input is asserted, the conversion process will proceed
in three stages as follows:

Stage 1 – Initialisation

The ADC is ‘zeroed’ by closing SW2 to fully discharge the integrating
capacitor C to zero volts.

Stage 2 – Integrate Up using ‘VIN’

At the start of this stage the counter is reset to a count of zero, and SW1 is set
to position 1, connecting the input voltage (VIN) to the voltage-controlled
current source. SW2 is opened, allowing the current source, controlled by the
input voltage signal VIN, to charge the integration capacitor C, producing an
upwards ramping voltage shown as ‘A’ in Figure 11-5. The ramping is

Voltage -
Controlled

Current
Source

Digital Output
Code

Counter, Clock
Source and

Control Logic

I Voltage
Comparator

VIN

Start
Conversion

Conversion
Complete

Reference
Voltage

(VREF, -ve)

2

1

C

VCAP
SW1

SW2

11 ANALOG-TO-DIGITAL CONVERSION 336

Stage 1

Capacitor
Voltage

Time

Stage 2
(Fixed Time)

Stage 3

0V
End of

Conversion
Start of

Conversion

B

C
D

A

allowed to proceed for a fixed time period (usually the maximum count value
of the counter – to maximise conversion accuracy). At the end of this time
period, the counter is reset to a count of zero and the final stage of conversion
will begin.

Stage 3 – Integrate Down using ‘Reference Voltage’

SW1 is moved to position 2, allowing the precise negative reference voltage
to control the current source. This produces a negative current of constant
value, which progressively discharges capacitor C until the voltage at the
comparator +ve input falls just below the ground potential (0V) connected to
the comparator’s –ve input. When this occurs the comparator output changes
state and stops the counter. The count value reached during this stage
represents the analog input voltage (VIN), being proportional to its magnitude.

Figure 11-5 shows the voltage waveform generated during the two integration
stages. The lower set of rising and falling voltages across the capacitor shown as
‘C’ and ‘D’ are generated when the input voltage VIN is a lower value. Note that
the down ramping voltages marked as ‘B’ and ‘D’ have the same slope since they
are generated by a constant current of the same value (controlled by VREF).

Figure 11-5 Dual slope ADC voltage waveform.

The advantage of the dual slope ADC compared with the single slope converter is
its improved accuracy, largely determined by the stability of the reference voltage.
Unlike the single slope ADC, the dual slope ADC is not affected by any long-term
drift in clock frequency since the same clock is used for timing Stage 2 and Stage
3. The dual slope ADC shares similar noise immunity characteristics as the single
slope converter and requires the use of a good quality capacitor with low dielectric
absorption. This converter is relatively slow but very accurate – up to around 18-bit
resolution. Other converters cannot match this converter for accuracy at low cost
and this is one of the reasons it is widely used in instruments such as precision
digital multimeters.

11 ANALOG-TO-DIGITAL CONVERSION 337

DAC

D
ig

ita
l O

ut
pu

t
C

od
e

Control Logic

Voltage
Comparator

Analog
Voltage

Start
Conversion

Conversion
Complete

VDAC

VIN

Successive Approximation ADC
This converter is very popular due to its relatively fast conversion speed, good
accuracy and low cost. Figure 11-6 shows the block diagram for this converter.

Figure 11-6 Simplified successive approximation ADC.

Conversion begins immediately after the ‘Start Conversion’ input is driven to its
active state and proceeds as follows:

Stage 1 – Initialisation

The control logic clears all control logic output bits.

Stage 2 – Successive Approximation Process

The converter digital output code is formed sequentially during a series of
tests, where the analog input voltage is compared against the analog value of a
digital code, this code constructed during the conversion cycle itself.

Each bit value is tested sequentially against the analog input voltage, starting
with the most significant bit (MSB). For example, using an 8-bit converter,
the digital test code would be 1000 0000, representing half the quantised
voltage range. This code is fed to the input of the digital-to-analog converter
(DAC), producing the analog voltage VDAC. Voltage VDAC is tested against
voltage VIN using the comparator. If VIN is greater in magnitude than VDAC,
the comparator output will be HIGH and the control logic will keep the
current bit, in this case the MSB and the output code would then be

11 ANALOG-TO-DIGITAL CONVERSION 338

1000i0000. If VIN was lower in magnitude than VDAC, the comparator output
would be LOW and the control logic would discard this bit, the output code
would then be 0000 0000.

The next test would involve the next lower bit. This bit would be added to the
code output from the control logic’s previous bit value test, producing the
code 1100 0000 (assuming VIN was greater in the first test). This code is then
passed to the DAC to generate a new value of VDAC to be used for this current
bit value test. This process continues as before for this bit and in-turn for the
remaining bits. At the conclusion of all bit testing, the conversion complete
output will change to its active state to provide external indication. This type
of converter has significant benefit being that conversion time is fixed and
reasonably fast.

The interface board is fitted with a successive approximation ADC, namely the
ADC0804. A few additional input control pins are used with this device, one being
the /RD pin (where / signifies active low) used to control reading of output data
bits. The other pin is the /CS input which is used in combination with the /RD pin
to allow the output data bits to be placed into tri-state mode. When a device’s
output pin is in a tri-state mode it will have high-impedance connections to other
interconnected circuitry. The other two states are the low voltage state (logic-
LOW) and the high voltage state (logic-HIGH). The tri-state feature of the
ADC0804 is used when connecting the device into microprocessor-type systems
where the data bus is shared with other devices. These systems require the ADC to
be ‘disconnected’ at specific times to allow other devices to share the data bus.

Figure 11-7 ADC0804 conversion timing.

Starting a conversion and then later reading the output data takes place as shown in
Figure 11-7. Note that the /CS signal must be held low for the duration of the

/WR
(Start Convert.)

Reset Circuitry Commence Conversion

/INTR
(Conversion Complete Flag)

/RD
(Controls tri-state of output pins)

Data Outputs

~ 100 s

~12 s

135
 to
200 ns

125
 to
200 ns

/CS
(Chip Select)

DATA VALID

11 ANALOG-TO-DIGITAL CONVERSION 339

conversion cycle. In many applications it can be held low permanently (when tri-
stating is not needed).

Caution: the analog input voltage to the converter must not exceed +5V or drop
below 0V. If the input voltage is outside the specified operating range the device
will likely suffer permanent damage.

Note also that the conversion complete signal (/INTR) is low for only a brief period
of time. When using a PC to monitor this signal, bear in mind that the software
running on the PC through the parallel port is relatively slow and might be
unreliable when detecting the change in level of the /INTR signal. Generally, this
signal is latched using hardware means (latching refers to detecting an event and
then indicating its occurrence). The interface board does not have latching circuitry
included for this purpose. Our programs will not detect the /INTR signal after
issuing the start conversion signal. Instead, they use a software delay to wait for a
longer time period than the conversion time before reading the output code.

The ADC0804 converter is constructed internally with separate digital and analog
grounds to minimise effects of noise to its analog circuitry. These grounds must be
connected together externally at one point as shown on the interface board
schematic diagram (Appendix, Figure A-26). Here you will see two different types
of ground symbol connected together, the hollow triangular symbol being analog
ground and the lined ground symbol, digital ground.

Flash ADC
This converter is the fastest of all types of analog-to-digital converters and also the
most expensive. Applications using flash converters include digital signal
processing, video signal processing, and other types of waveform analysis as used
in digital oscilloscopes. The converter does not need a ‘Start Conversion’ input;
instead conversion is a continuous process taking place as shown in Figure 11-8.

Figure 11-8 Simplified 2-bit flash ADC.

2-Bit Digital
Output Code

Encoding
Logic

Voltage
Comparator

Voltage
Comparator

Voltage
Comparator

VIN

R

R

R

VREF

R

(Or a Constant
Current Source)

i V3

V2

V1

11 ANALOG-TO-DIGITAL CONVERSION 340

Using a 2-bit ADC for explanation purposes, the 2-bit ADC will quantise an analog
input voltage to four possible levels. For example, if the ADC input voltage range
was to be 0 to 3V, then the four quantisation levels would be 0V, 1V, 2V, and 3V.
VREF would be set to a level of 4V. The analog input voltage is tested against three
of the four quantisation levels using three comparators. The fourth quantisation
level in this case being 0V does not need testing.

The first comparator, shown with V1 connected to its –ve input, tests for the analog
input voltage VIN exceeding 1V. If VIN exceeds V1, the comparator output will be
high and this will be sensed by the encoding logic. Otherwise the comparator
output will be low. The other two comparators test if the analog input exceeds 2V,
and 3V, respectively. The encoding logic converts the individual comparator output
signals into valid n-bit logic output, where n in this case is 2. This conversion
process is continuous and is extremely fast – the conversion time being the addition
of the delays generated by the comparators and the encoding logic.

The other significant characteristic of a flash ADC is related to conversion speed -
its extremely short aperture interval. The aperture interval is the time taken for the
converter to ‘read’ the analog voltage level during conversion. For the flash
converter, this time is equal to the interval when the comparator outputs are latched
(stored in the encoding logic) and does not include the remaining conversion time
when encoding takes place. This characteristic of the converter makes it ideal for
use in applications having ‘fast’ changing signals and means it doesn’t need to use
a sample and hold circuit – explained later in this chapter.

As the conversion resolution increases, so too does the number of comparators. For
an n-bit device, 2n - 1 comparators are needed. For converters beyond the range of
8 to 10 bits, the devices become quite expensive and relatively large. One way to
improve resolution is to cascade converters – for example, using four 6-bit units
would create an 8-bit flash converter.

11.4 Measuring Voltages with an ADC
It is beneficial to understand some of the basic concepts of signal processing before
using an ADC for measuring dynamic signals. These concepts include slew rate ,
sample and hold, aliasing, and equivalent time sampling. Consider a repetitive
triangular waveform as shown in Figure 11-9.

Imagine we are to sample this changing input voltage using an 8-bit ADC having a
conversion time of 100 s (the interface board’s ADC0804 ADC). At the start of
conversion, the input voltage to the converter will either be ramping up or down
depending on the point in time conversion was initiated. Examine the case when
the input voltage is ramping up from 0V at the rate of 5V per 0.5 second (10V/sec).
Knowing the rate of change of input voltage to be 10V/sec, implies that over a
100 s period the analog input voltage will rise by 1mV.

11 ANALOG-TO-DIGITAL CONVERSION 341

Figure 11-9 Triangular waveform.

The 8-bit converter quantises the analog voltage into 256 levels over an input range
of say 5V (for maximum accuracy), where each level is equal to 5V/256 = 19mV.
In order to use the converter’s full 8-bit accuracy, the analog input voltage must not
change by more than ½ a quantisation level during the conversion interval, being
9.5mV in 100 s (95V/sec). For the extremely slow changing input signal of
10V/sec used in this example, conversion accuracy is maintained since the analog
input signal changes only 1mV during the conversion period (10V/sec) and the
converter can tolerate up to 9.5mV change at its analog input (95V/sec) before
losing resolution accuracy.

Should the period of the triangular waveform be changed to 0.1 seconds, the rate of
change of the analog signal will be 5V/0.05 seconds (100V/sec). In this case the
converter cannot quite keep up – it can work at full resolution accuracy for analog
input voltages having slew rates of less than 95V/sec. As you can see, a 0.1 second
period or 10 Hz signal is around the frequency limit for this converter (and the
ADC0804!) when digitising a triangle shaped waveform. The triangular waveform
is the least demanding of all waveforms to digitise, the sine wave being the next
most demanding. Digitising a sine wave is treated as follows.

Figure 11-10 Sinusoidal waveform.

0V

5V

0 1 sec 2 sec Time

Input
Voltage

Input
Voltage

0 1 sec Time
0V

5V
Maximum
Slew Rate

Voltage

Time

Vp

Vp

11 ANALOG-TO-DIGITAL CONVERSION 342

A sinusoidal changing input voltage is expressed as:

v (t) = Vp sin t + Vp where Vp is half the peak-to-peak voltage,
 is the circular frequency (radians/sec)

(= 2 f, where f is the frequency in Hertz)

The rate of change of v (t), or its slew rate is:

 dv/dt = Vpcos t this being a maximum when cos t = 1
Max slew rate = Vp

= 2 f Vp

 The ADC ‘sees’ the changing input voltage for nearly the whole conversion
interval, Tc. To use the full-bit accuracy of the converter, this input voltage change
must be less than ½ a quantisation level (or half a least significant bit, LSB) during
the conversion interval Tc. Remember that one quantisation level is equal to the
converter input voltage range divided by the number of quantisation states possible
for the converter. For an n-bit converter there can be a maximum of 2n states, so
half a quantisation level can be expressed as:

 ½ Quantisation Level = ½ (Converter Input Range / 2n)

The maximum slew rate of the analog input voltage to the converter is:

 Converter max
input slewrate

= (Converter Input Range / 2n+1) / Tc

Note: In order to optimise the accuracy and maximum digitising frequency range of
the converter, scale the maximum analog input voltage up to use the full converter
input range where possible.

Equating the input signal slew rate for a sinusoidal signal to the limiting converter
slew rate creates the expression:

 Max slew rate
input voltage

< Max slew rate
 ADC

2 f Vp < (Converter Input Range / 2n+1) / Tc

f < Converter Input Range / Vp Tc 2n+2

In order to improve the accuracy and allow digitisation of much higher frequency
signals, a circuit known as a sample and hold is often used, placed between the
analog input signal and the input to the converter. Since many ADCs do not
contain an internal sample and hold, external sample and hold devices are often
used with converters.

Sample and Hold
This circuit stores a ‘snapshot’ of the changing analog voltage signal and presents
an ‘unchanging’ buffered version of the signal to the input of the ADC. The

11 ANALOG-TO-DIGITAL CONVERSION 343

S/H Output

Analog Input
Voltage

Sample
Command

HoldSampleHold

Acquisition
Time

Voltage
Droop

Time

Aperture
Delay
Time

Switch
Opens

Voltage

S/H Output
(to ADC input)

i2 0

Voltage Buffer

Analog Input
Voltage

Sample
Command

Ci1

Analog
Switch

‘Sample Command’ signal from the host controller is connected to the input of the
sample and hold to synchronise sampling. Sampling and holding takes place in two
stages explained as follows and shown in Figure 11-11 and Figure 11-12:

Figure 11-11 Simplified sample and hold circuit.

Figure 11-12 Sample and hold timing.

Stage 1 – Sampling Input Signal

Once the sample command input is activated to ‘Sample’, the analog switch
closes and the capacitor is charged to the same voltage as the analog input

11 ANALOG-TO-DIGITAL CONVERSION 344

voltage. The time taken for the voltage across the capacitor to ‘reach’ the
input voltage (within limits) is referred to as the acquisition time.

Stage 2 – Holding Sampled Voltage

At the end of the sampling period, the ‘Sample Command’ is toggled to the
‘Hold’ state to store the sampled signal for the ADC input. Unfortunately
there is a delay in opening the analog switch known as aperture delay. This
delay causes the output of the sample and hold (S/H) to follow the input
voltage for the aperture delay time period, creating an error in sampled
voltage and hence possible errors in the digital code produced by the ADC.
The ADC conversion commences during the hold period that follows the
sampling process.

Ideally the output of the sample and hold (S/H) remains fixed in amplitude over the
entire ADC conversion interval. In practice the S/H output drops over time
producing what is known as voltage droop. The droop occurs as charge stored on
the capacitor is lost during the hold period, drawn into the neighbouring S/H
circuitry connected to the capacitor, and also lost through the capacitor itself.

Aliasing
When sampling a repetitive waveform, it is possible to produce various sets of data
values depending on the sample rate as shown in Figure 11-13 to Figure 11-15.
Considering a sinusoidal waveform; should the sample rate be less than half the
signal cycle or period, then a waveform similar to that shown in Figure 11-13 will
be reconstructed from the data values produced by sampling and conversion. The
reconstructed signal has a different frequency from the original sampled signal and
is termed an alias signal. Beware: in this case the alias signal has the same
amplitude and sinusoidal shape as the input signal and can be mistaken to be a
proper representation of the actual input signal.

Figure 11-13 Aliased reconstruction – sample rate too low.

Note: triangular-shaped waveforms will be reconstructed from digitised samples
made at twice the signal frequency as shown in Figure 11-14. These reconstructed
waveforms will have different amplitude depending on the position in the cycle

Input Signal and
Sampling Points

Digitised
Waveform

Reconstructed

11 ANALOG-TO-DIGITAL CONVERSION 345

when sampling begins.

Figure 11-14 Digitising sample rate at 2 samples/signal cycle.

As the sample rate increases, the reconstructed waveform starts to resemble the
original signal as shown in Figure 11-15.

Figure 11-15 Digitising sample rate approximately 5 samples/signal cycle.

Real and Equivalent Time Sampling
All waveforms shown above have been sampled in real-time, meaning that data
points are collected and stored sequentially as they are digitised. Repetitive signals
of high frequency can be sampled and reconstructed using equivalent time
sampling, where groups of sample sets are stored in memory and then used to
generate complete waveform reconstruction. The resultant constructed waveform
represents the originally sampled signal as shown in Figure 11-16. This technique
is often utilised in digital oscilloscopes. When the user sets the oscilloscope time-
base to sample high-speed repetitive waveforms, equivalent time sampling is used
to create a pseudo sampling rate much greater than that of the oscilloscope’s
digitiser.

Input Signal and
Sampling Points

Digitised
Waveform

Reconstructed

Input Signal and
Sampling Points

Digitised
Waveform

Reconstructed

11 ANALOG-TO-DIGITAL CONVERSION 346

Figure 11-16 Equivalent time sampling.

Equivalent time sampling cannot be applied to the digitisation process when
working with non-repetitive signals as shown in Figure 11-17. Instead, these
signals need to be sampled and stored at a sufficiently high rate to provide enough
detail in the reconstructed signal. Under these conditions many digital
oscilloscopes are often challenged to provide adequate sampling rate and sufficient
high-speed memory to store the digitised data. These two factors have a significant
influence on the price of digital oscilloscopes.

Figure 11-17 Real-time sampling of a non-repetitive waveform.

11.5 An Object Class for the ADC
In the last few chapters we learnt to design object classes to suit various objects
such as the parallel port, the DAC, motors and the VCO. In a similar manner we
can develop a software object for the ADC. The principle purpose of an analog-to-
digital converter is to convert an analog voltage applied at its input to an integer bit
number that can be read by the computer.

The conversion process for most analog-to-digital converters involves the
following steps:

Input Signal and
Sampling Points

Digitised Waveform Reconstructed using
Sequential Equivalent Time Sampling

Input Signal and
Sampling Points

Digitised
Waveform

Reconstructed

11 ANALOG-TO-DIGITAL CONVERSION 347

1. Start an analog-to-digital conversion.
2. Wait for the conversion to complete.
3. Read the converted data.

Some analog-to-digital converter subsystems have a multiplexed analog input (i.e.
more than one analog input where only one analog input is switched to the ADC at
any given time). In such cases the above set of steps must be preceded by a “Select
Input Channel” operation. The ADC used with our interface board does not have a
multiplexer to use with multiple analog input channels. Therefore, we will not need
to incorporate channel selection.

We must design our object class to have a member function to implement the steps
listed above. The ADC on the interface board is designed to communicate through
the parallel port. Therefore, the ParallelPort object forms an ideal base class
for the new ADC class.

The ADC class needs to have only one private data member to store the digital
value read from the ADC. Apart from the constructors, the ADC class must have a
function to carry out the analog-to-digital conversion and store the resulting digital
value into the private data member. A function is also needed to provide access to
this private data member. A class definition that encapsulates this data and
functions is given in Listing 11-1.

Listing 11-1 The header file for the ADC class – adc.h.

#ifndef AdcH
#define AdcH

#include "pport.h"

class ADC : public ParallelPort
{
 private:
 unsigned char ADCValue;

 public:
 ADC(int baseaddress=0x378);
 unsigned char ADConvert();
 unsigned char GetADCValue();
};
#endif

The function ADConvert() is the most involved of the three functions and is
discussed first. We must decide which parts of the parallel port will be used and
their purpose before before being able to write the C++ statements for this
function.

11 ANALOG-TO-DIGITAL CONVERSION 348

ADC0804

D0VIN

/CS

/START C.

/READ /DATA VALID

D7

Figure 11-18 shows a block diagram of the ADC0804 with its input pins (on the
left side) and output pins. The pin labels and descriptions are given in Table 11-2.
These labels are used on the schematic diagram and can also be found near the
ADC on the interface board.

Figure 11-18 ADC0804 block diagram.

Table 11-2 Interface pins of the ADC.

Pin Label† Input Output Function
VIN Analog input voltage
/CS Chip select (activates device)
/START C. Start a conversion
/READ Enable reading the digital data
/DATA VALID Indicates conversion complete
D0-D7 Output digital data bits

†Pin labels with a prefix of ‘/’ are active low.

The dots marking the Input and Output columns of Table 11-2 identify each signal
as an input or an output with reference to the ADC. Now we need to evaluate a
means of interfacing these signals to the parallel port.

Operation of signals
The voltage signal to be converted by the ADC is connected to its analog input pin
labelled VIN. For testing purposes we can generate a suitable analog input voltage
for the ADC using either the on-board potentiometer, the thermistor circuit, or the
DAC operating in unipolar mode (jumper fitted across the header position marked
LINK1).

The ADC’s input pins are configured as follows. The chip select pin (/CS) must be
at logic-low for the ADC to operate. The read enable pin (/READ) must be held
logic-low to enable reading the digital data from the ADC. The chip select signal is
typically generated by the address decoding circuit of a hardware system that has
several devices sharing a data bus. The interface board does not share a data bus, so

11 ANALOG-TO-DIGITAL CONVERSION 349

we can permanently activate the above two signals; i.e. connect them directly to
GND. This reduces the number of signals we need to interface with the parallel
port.

The computer must control the start conversion signal connected to the start
conversion pin (/START C.). An analog-to-digital conversion is initiated by
applying an active-low pulse to this pin. We can generate an active-low pulse by
driving a high-level signal momentarily to a low-level, returning the signal to a
high state.

Immediately after the ADC completes its conversion operation, the data valid pin
(/DATA VALID) will produce a brief low-level pulse. Since this low-level pulse is
short in duration, it may not be possible to detect it and therefore determine the
precise moment conversion was completed. Typically, this pulse is latched using
hardware to ensure that a program will reliably detect the end of conversion. The
electronic circuitry on the interface board has been kept to a minimum and as such
does not include a latch circuit. Therefore, our best option is to allow sufficient
time for the conversion to complete before reading the digital data. In addition,
using this approach will free us from the need to interface the /DATA VALID
signal.

Configuration of Port data bits to interface the ADC
We now need to assign the data bits that will interface the ADC to the parallel port.
When using the ADC it is possible that the DAC will be used to provide
programmable input voltages to the ADC. We will assume this to be the case when
allocating our data bits. The digital input and output requirements for the ADC and
DAC are shown in Table 11-3.

Table 11-3 DAC & ADC digital input and output pins.

DAC ADC
Digital Inputs Digital Inputs Digital Outputs

D0 /CS D0
D1 /RD D1
D2 /START C. D2
D3 D3
D4 D4
D5 D5
D6 D6
D7 D7

 /DATA VALID

Digital Inputs to the DAC: The eight digital input pins to the DAC need to be
driven by parallel port output signals. Therefore, it makes sense to use output data
bits (D0 to D7) of the port at address BASE to drive the DAC inputs (D0 to D7).

11 ANALOG-TO-DIGITAL CONVERSION 350

Digital Inputs to the ADC: To drive the ADC input pin /START C., we can use
data bit D0 of the port at address BASE+2. The ADC data bus is configured to an
active state by connecting /CS and /READ directly to GND using interconnecting
leads. We can do this because our ADC’s output data is not connected to a shared
data bus.

Digital Outputs from the ADC: The software must read eight digital output signals
from the ADC being sent through the parallel port (/DATA VALID not used). The
parallel port has five input signals (D3 to D7) available from the port at address
BASE+1. Note that we have not used port address BASE+2 in input mode as it can
be unreliable at higher data transfer rates.

The interface board has been fitted with a four-channel 2-to-1 multiplexer (as
shown in Figure 11-19) to provide extra capability for transfer of data to the port. If
we make use of this device, we can transfer eight data bits to the port using only
four signals. We do this by separating the eight data bits from the ADC into two
groups of four bits. The first group is selected by the multiplexer and the port then
reads these four data bits. This is followed by selection of the second group of four
bits that are then read by the port. Note that we need one output data bit from the
port to control the multiplexer’s selection operation. Since the eight bits from the
ADC represent one byte of data, driving the multiplexer’s Select input low will
select the low nibble (D0 to D3). Conversely, driving the Select input high will
select the high nibble (D4 to D7).

Figure 11-19 Complete ADC system using the Multiplexer.

Now that we know how to read the eight bits of data from the ADC using only four
transmission signals, we can establish the configuration for the remainder of the

ADC

D0 D0

D1 D1

D2 D2

D3 D3

D4 D4

D5 D5

D6 D6

D7 D7

BASE+1
Address

D4

D5

D6

D7

Interconnect
Leads

(SW position)
MULTIPLEXER

(MUX)
Select

D3
/DATA VALID

START C. D0

D1
BASE+2
Address

/READ

VIN

/CS

(not used)

11 ANALOG-TO-DIGITAL CONVERSION 351

parallel port data bits. We can use four input data bits (D4 to D7) of the port at
address BASE+1 to read the four output signals from the multiplexer that transmits
the ADC output byte as two nibbles.

If you should decide to modify the program to detect the narrow output pulse
/DATA VALID from the ADC, then connect a lead from this pin to data bit D3 of
the port at BASE+1 and write extra program statements to read its status.

Digital Input to the Multiplexer: We can drive the Select input of the multiplexer to
control which nibble at its input pins is switched to its output by using an output
data bit (D1) of the port at address BASE+2.

A summary of all connections for interfacing the parallel port to the ADC, to the
DAC, and to the Multiplexer is given in Table 11-4. This table does not provide the
internal connections needed on the interface board between the ADC and the
Multiplexer - they are shown in Figure 11-19.

Table 11-4 Parallel Port interface connections for the DAC, ADC, and MUX.

BASE Address BASE+1 Address BASE+2 Address
D0 DAC, D0 D3 (ADC, /DATA VALID) D0 ADC, /START C.
D1 DAC, D1 D4 MUX, D4 D1 MUX, Select
D2 DAC, D2 D5 MUX, D5
D3 DAC, D3 D6 MUX, D6
D4 DAC, D4 D7 MUX, D7
D5 DAC, D5
D6 DAC, D6
D7 DAC, D7

Note: 1. ADC inputs /CS and /READ must be connected to GND using interconnect leads.
 2. ADC output /DATA VALID is not used for our program.
 3. Set DAC to Unipolar mode by fitting the jumper across header position marked LINK1.

We are now in a position to define the member function ADConvert(). Listing
11-2 shows one possible definition of the function.

Listing 11-2 Member function ADConvert().

unsigned char ADC::ADConvert()
{
// Declare variables to store nibbles.
 unsigned char LowNibble, HighNibble;

// Start conversion pulse.
 WritePort2(0x01); // set /START C to high
 WritePort2(0x00); // pull /START C to low

11 ANALOG-TO-DIGITAL CONVERSION 352

 WritePort2(0x01); // set /START C back to high

// Set Select signal of multiplexer (D1) to logic-high and
// maintain /START C high. This operation takes more time
// than the conversion of the ADC, so we do not need to
// check for signal /DATA VALID. */
 WritePort2(0x03); // 0000 0011

// Conversion finished by this time.
// Read high nibble and nullify low nibble.

HighNibble = ReadPort1() & 0xF0;

// Set Select signal of multiplexer (D1) to logic-low.
 WritePort2(0x01); // 0000 0001

// Read low nibble, move data bits across into position
// and nullify high nibble.

LowNibble = (ReadPort1() >> 4) & 0x0F;

// Form complete byte.
ADCValue = HighNibble + LowNibble;

 return ADCValue;
}

The three statements from Listing 11-2 shown in bold typeface need explanation.
Note that when reading the port at address BASE+1, only the bits D4-D7 carry data
coming from the ADC. The data from the 8-bit ADC is read into the PC using
these four bits in two stages; first the high nibble (four bits) is read and stored,
followed by reading and storing the low nibble. Then the high and low nibbles are
added to obtain the complete 8-bit result (ADCValue).

Figure 11-20 Reading the high nibble and filtering out unwanted bits.

1 0 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 1

Actual data Garbage data

Garbage bits forced to be zero

Byte read from port at BASE+1

0xF0 used in AND operation

HighNibble Result, garbage bits forced to 0

11 ANALOG-TO-DIGITAL CONVERSION 353

We use the inherited member function ReadPort1() to read the high nibble
through the port at address BASE+1 and then clear all unused bits that contain
unpredictable (garbage) data (lower four bits) by carrying out an AND operation
with 0xF0. This operation is shown in Figure 11-20.

When reading the low nibble, we first read the port and then shift these data bits by
4 locations to the right to reside in the low nibble of the final data byte. After
shifting we carry out an AND operation with 0x0F to clear all bits in the high
nibble that can contain unpredictable data. This is shown in Figure 11-21.

Figure 11-21 Reading the low nibble and filtering out unwanted bits.

Now we have an 8-bit number (unsigned char) named LowNibble, which has
some data in the lower four bits and definitely zeros in the upper four bits. We also
have an 8-bit number named HighNibble, which has some data in the upper four
bits and definitely zeros in the lower four bits. Then we add these two bytes
together to form one complete byte named ADCValue which has all 8 bits
carrying the data from the analog-to-digital converter. Figure 11-22 shows the
formation of ADCValue.

Figure 11-22 Add low & high nibbles to form the ADC output.

The function given in Listing 11-2 can be re-written in a slightly more efficient
form as given in Listing 11-3. The data member ADCValue has been used to
combine an operation and eliminate the need for variables LowNibble and
HighNibble.

Byte read from port at BASE+11 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1
? ? ? ? 1 1 0 1

Wanted data Garbage data bits will drop out during shift operation

Garbage bits forced to be zero

0x0F used in AND operation

Result of shift operation

0 0 0 0 1 1 0 1 LowNibble Result, garbage bits forced to 0

Shift to right by 4 positions
Possibility of new

garbage data

New location of wanted data

1 0 1 1 1 1 0 1
1 0 1 1 0 0 0 0
0 0 0 0 1 1 0 1 LowNibble

HighNibble

ADCValue

11 ANALOG-TO-DIGITAL CONVERSION 354

Listing 11-3 A more efficient version of ADConvert().

unsigned char ADC::ADConvert()
{
// Start conversion pulse.
 WritePort2(0x01); // set /START C to high
 WritePort2(0x00); // pull /START C to low
 WritePort2(0x01); // set /START C back to high

// Set Select signal of multiplexer (D1) to logic-high and
// maintain /START C high. This operation takes more time
// than the conversion of the ADC, so we do not need to
// check for signal /DATA VALID. */
 WritePort2(0x03); // 0000 0011

// Conversion finished by this time.
// Read high nibble and nullify low nibble.

ADCValue = ReadPort1() & 0xF0;

// Set Select signal of multiplexer (D1) to logic-low.
 WritePort2(0x01); // 0000 0001

// Read low nibble and assemble the final 8-bit number.
ADCValue += (ReadPort1() >> 4) & 0x0F;

 return ADCValue;
}

The complete definition of the ADC class must include the definitions of its
member functions as given in Listing 11-4. The member function
GetADCValue() provides access to the final 8-bit number ADCValue for
functions outside the ADC class.

Listing 11-4 Member function definitions of the ADC class – adc.cpp.

#include "adc.h"

ADC::ADC(int baseaddress) : ParallelPort(baseaddress)
{
 ADCValue = 0;
}

unsigned char ADC::ADConvert()
{

11 ANALOG-TO-DIGITAL CONVERSION 355

 WritePort2(0x01); // Start C. pulse
 WritePort2(0x00);
 WritePort2(0x01);

 WritePort2(0x03); // Set Mux to read high nibble.
 ADCValue = ReadPort1() & 0xF0;

 WritePort2(0x01); // Set Mux to read low nibble.
 ADCValue += (ReadPort1() >> 4) & 0x0F; // Read, combine.

 return ADCValue;
}

unsigned char ADC::GetADCValue()
{
 return ADCValue;
}

11.6 Measuring Voltage Using the ADC
Recall that in Chapter 10 we developed a program to measure an analog voltage
using the VCO. The MeasurePeriod() function in the VCO program returned
a number representing the pulse period (and hence input voltage) of the VCO. We
should be able to use the same program with the VCO object replaced by the ADC
object. The function ADConvert()can then generate a number proportional to
the analog voltage. Note that we have used a DAC object in the VCO program to
provide an analog voltage. We will keep the same DAC object operating exactly the
same way to provide the analog input to the ADC (at VIN).

Listing 11-5 shows the main() function from Listing 10-6 reproduced with the
modifications needed to use it with the ADC.

Listing 11-5 Measuring voltage using the ADC – voltage.cpp.

#include <conio.h>
#include <bios.h>

#include "dac.h"
#include "adc.h"

void main()
{
 DAC Dac;

11 ANALOG-TO-DIGITAL CONVERSION 356

ADC Adc;
 int Quit = 0, key;

unsigned char DACbyte;

 clrscr();
 Dac.SendData(0); // initialise to zero

 while(!Quit)
 {
 gotoxy(10,10);

cprintf("The ADC output is: %3u",
 (int) Adc.ADConvert());

 if(bioskey(1)!=0)
 {

DACbyte = Dac.GetLastOutput();
 key = bioskey(0);
 switch(key)
 {
/*Alt-X*/ case 0x2d00 :
 Quit = 1;

Dac.SendData(0); // reset to 0
break;

/*Up Arrow*/ case 0x4800 :
 if(DACbyte>247) // limit max value
 DACbyte = 247;
 Dac.SendData(DACbyte+8);
 break;

/*Down Arrow*/ case 0x5000 :
 if(DACbyte<8) // limit min value
 DACbyte = 8;
 Dac.SendData(DACbyte-8);
 }
 }
 }
}

We have made changes to just a few statements in the main function. The keyboard
controls operate almost identically to the program in Listing 10-6 that used the VCO
object. The difference being the addition of statements to limit the maximum and
minimum value of the number written to the DAC (0 to 255).

11 ANALOG-TO-DIGITAL CONVERSION 357

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
dac.cpp
dac.h
adc.cpp
adc.h
voltage.cpp

Listing 10-8
Listing 10-7
Listing 10-10
Listing 10-9
Listing 11-4
Listing 11-1
Listing 11-5

pport.cpp

dac.cpp

adc.cpp

voltage.cpp

The entire definition of the DAC class must be provided before the compiler can
compile the main() function given in Listing 11-5. The VCO object is not being
used. Therefore, its class definition and function definition can be eliminated,
however, its inclusion will not affect the operation of our program. When
compiled, linked and run, this program will display an integer value on the screen
that corresponds to the voltage applied at the VIN input of the ADC.

The program can be modified slightly to display the analog voltage instead of an
integer number. The ADC produces an output that is 8 bits wide. These 8 bits can
represent any value in the range 0–255 both inclusive (which forms 256 numbers).
The operation of the ADC requires the full-scale range to be quantised (segmented)
into 256 equal quantum levels. Each quantum then represents the full-scale voltage
(5V) divided by 256. The ADC’s integer output of 0 corresponds to 0 volts at VIN,
and its integer output value of i corresponds to an applied voltage of:

volts

Note that from a C++ program’s point of view, the division operation 5/256 is
considered as an integer division and the result will be 0. Therefore, when
including the above expression in the program, it must be typed in as:
5.0/256.0*i

Now the compiler will treat the division and multiplication operations as floating
point operations, and a non-zero result will be evaluated for the expression
5.0/256.0. The statement containing the cprintf() function in Listing 11-5 must
now be modified to include the above factor as shown below:
cprintf("The ADC output is: %5.2f (V)",

5.0/256.0*Adc.ADConvert());

The program will now display the actual voltage applied at the analog input pin of
the ADC (VIN). The connections that need to be made for this program to operate
are given in Figure 11-19, Table 11-4 and Table 11-5.

11 ANALOG-TO-DIGITAL CONVERSION 358

NOTE

Ensure that the DAC is placed into unipolar mode (0 to +5V output) by fitting the
jumper across the header in the position marked as LINK1. Then connect the 9V
battery before connecting the output of the DAC circuit to the ADC input.

Table 11-5 Partial connections for the ADC.

 ADC0804 (U8)
VDAC (pin 7, U10B) VIN

GND /READ
GND /CS

11.7 Measuring Temperature Using the
ADC

A program was developed in Chapter 10 to measure temperature using the interface
board’s thermistor and VCO. That program (Listing 10-12) only requires minor
changes to measure temperature using the ADC. This new modified program is
shown in Listing 11-6. Note that in this case we can accurately characterise the
thermistor circuit response over the full 0 to +5V range since the ADC has very
good linearity over its entire input range. In comparison, the VCO has similar
linearity between +2.2V and +2.8V.

Listing 11-6 Program measures temperature using ADC and thermistor – temp.cpp.

/***
This program uses the thermistor circuit on the interface
board to generate the analog input voltage to the ADC. The
byte produced by the ADC will be proportional to the applied
voltage (temperature of the thermistor).
The program also calibrates the thermistor circuit output
using upper and lower temperature points. The calibration
equation will then interpolate a straight line through these
two points. Once calibrated, the program will be able to
display actual temperatures.
***/
#include <bios.h>

11 ANALOG-TO-DIGITAL CONVERSION 359

#include <conio.h>
#include <iostream.h>

#include "adc.h"

void main()
{

ADC Adc;
 int Quit=0, HiFlag = 0, LoFlag = 0;
 int key = 0;
 float HiTemp, LoTemp, Temp;
 long int HiCount, LoCount;

 clrscr();

 while(!Quit)
 {

Adc.ADConvert();

 gotoxy(10,10);
 if((HiFlag == 1) && (LoFlag == 1))
 {
 Temp = LoTemp+(HiTemp-LoTemp)*
 (Adc.GetADCValue()-LoCount)/(HiCount-LoCount);

 cprintf("The temperature is: %6.1f (deg)", Temp);
 }
 else
 cprintf("The ADC Value is: %3u",

(int)Adc.GetADCValue());

 if(bioskey(1)!=0)
 {
 key = bioskey(0);

 switch(key)
 {
 case 0x2d00 : /* Alt-X */
 Quit = 1;
 break;

 case 0x4800 : /* Up Arrow */
 gotoxy(10,5);
 cout << "Enter Upper Calibration Temp.";
 cin >> HiTemp;

11 ANALOG-TO-DIGITAL CONVERSION 360

 HiCount = Adc.GetADCValue();
 HiFlag = 1;
 break;

 case 0x5000 : /* Down Arrow */
 gotoxy(10,6);
 cout << "Enter Lower Calibration Temp.";
 cin >> LoTemp;
 LoCount = Adc.GetADCValue();
 LoFlag = 1;
 }
 }
 }
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h
temp.cpp

Listing 10-8
Listing 10-7
Listing 11-4
Listing 11-1
Listing 11-6

pport.cpp

adc.cpp

temp.cpp

The wiring connections need to be changed slightly for this program to operate. We
do not use the DAC to provide the analog voltage. Instead we use the thermistor
circuit to generate a voltage that represents the temperature of the thermistor. The
output of the thermistor circuit is connected to the ADC analog input (VIN) as
given in Table 11-6. The remaining connections for the ADC and the MUX are
shown in Figure 11-19.

Table 11-6 Thermistor circuit connections to the ADC.

Thermistor Circuit
ADC 0804

(U8)
VTH VIN

 /READ (to GND)
 /CS (to GND)

It has been rather easy for us to change our program that used the VCO to now
operate in conjunction with the ADC. We have been careful to be consistent in
developing our classes so that minimum changes will be needed if they are later

11 ANALOG-TO-DIGITAL CONVERSION 361

modified for new or existing programs. These examples are typical of the ease with
which object-oriented programs can be maintained and upgraded.

11.8 Summary
This chapter described the principles of operation and use of an analog-to-digital
converter. The more popular types of analog-to-digital converters and their various
methods of conversion have been explained. This was followed by a discussion of
the importance of a sample and hold circuit and the effects of aliasing that occurs
when signals are sampled too slowly.

We used our now familiar object-oriented approach to develop software for
interfacing the parallel port of the PC with the ADC. We developed a new object
class named ADC using an approach consistent with that of Chapter 10 when the
VCO class was developed. This object-oriented approach has allowed us to
develop the voltage and temperature measuring programs that used the ADC by
making minor changes to the programs written for the VCO.

11.9 Bibliography
Fluke, The ABC’s of Oscilloscopes, Fluke Corporation, 1997.

Horowitz, P. and Hill, W., The Art of Electronics, Cambridge University Press,
Cambridge, 1989.

Loveday, G., Microprocessor Sourcebook, Pitman Publishing Limited, London,
1986.

NS DATA CONVERSION/ACQUISITION Databook, National Semiconductor
Corporation, 1984.

Stiffler, K., Design with Microprocessors for Mechanical Engineers, McGraw-
Hill, 1992.

Webb, R.E., Electronics for Scientists, Ellis Horwood, New York, 1990.

Wobschall, D., Circuit Design for Electronic Instrumentation, McGraw-Hill, 1987.

Van Gilluwe, F., The Undocumented PC, Addison Wesley, 1994.

Winston, P.H., On to C++, Addison Wesley, 1994.

11 ANALOG-TO-DIGITAL CONVERSION 362

12

Data Acquisition
with Operator
Overloading

Inside this Chapter

Pass parameters by value and by
reference.

Returning values by reference.

Operator overloading.

The Copy constructor and the
assignment operator.

File input/output.

Friend functions.

Pass-through objects.

Data acquisition using the ADC.

12.1 Introduction
Some of the programs written in this book can be improved to require less memory
when executing, and also operate faster by using pass by reference and return by
reference mechanisms. They can also be changed to take advantage of simpler
statements by using operator overloading and gain access to private member data
through friend functions.

In this chapter, we will develop a data acquisition program to demonstrate how
operator overloading can be used to write elegant programs that have the
advantages outlined above. During data acquisition, signals are converted to data
using a device such as an analog-to-digital converter. The data is then directly
processed or written to a data file on a mass storage device such as a hard disk, or
in some cases, sent to a standard output device such as a screen or printer.

12.2 Operator Overloading
When an operator is overloaded, the action carried out by the operator depends on
the arguments the operator is associated with. For example, the results will be
different if the division operator (/) is used in the following two contexts. One
operation produces integer division and the other floating-point division:
5/2; // the result is 2
5.0/2.0; // the result is 2.5

Similarly, the double left arrow operator behaves in two different ways in the
following two cases:
int y = 200;
cout << y; // 200 is sent to the standard output.
y << 1; // Shifts bits of y to left by 1 bit-position.

The action of an operator depends on the type of object it is used with. In the
expression cout << y, cout is a class object of type ostream and y is an
object of type int. The << operator takes appropriate action to print the value of y
on the screen. However, both operands are of type integer in y << 1, and the
action taken by the operator is to shift bits of y by 1 bit-position to the left.

The operators shown in Table 12-1 cannot be overloaded.

Table 12-1 Operators that cannot be overloaded.

. ?: :: .* sizeof

12 DATA ACQUISITION WITH OPERATOR OVERLOADING

We will demonstrate operator overloading by developing program segments that
overload the double right arrow (>>) and the double left arrow (<<) operators to
perform the following tasks:

1. Carry out an analog-to-digital conversion using an Adc object of type
ADC, and store the result in the variable named value of type unsigned
char. We want to be able to use a statement of the following form to
accomplish this.
Adc >> value;

2. Carry out an analog-to-digital conversion and send the data directly to the
standard output device (computer screen) using a statement of the
following form. The object cout is of type ostream and Adc is again an
object of type ADC.

cout << Adc;

Using a statement like this would simplify programming of a data
acquisition system with an analog-to-digital converter where the results are
to be viewed onscreen or stored in a file.

Operators can be overloaded in two different ways by writing a function using
syntax that is specific to operator overloading:

1. As a member function of a class.
2. As a non-member function.

These two ways of overloading an operator will be discussed in the sections ahead.
Operators can also operate as unary operators (such as ++ in the case of ++i) or as
binary operators (such as + in the expression x+y). The unary operators shown in
Table 12-2 operate on an object of type ObjectX. The binary operators operate on
two objects; one of type ObjectX, and the other of type ObjectY. In this
example the operator being overloaded is the @ symbol.

Table 12-2 Function headings for operator overloading.

Unary operator as a member function ObjectX::operator@()

Unary operator as a non-member function operator@(ObjectX x)

Binary operator as a member function ObjectX::operator@(ObjectY y)

Binary operator as a non-member function operator@(ObjectX x, ObjectY y)

The operators overloaded as shown above are used as follows. In the case of a
unary operator, the operand must be to the right of the operator. For example, if x
is an object of type ObjectX, the usage is:

@x;

365

In the case of a binary operator, the first operand must be to the left of the operator
and the second operand must be to the right of the operator. If x is an object of
type ObjectX and y is an object of type ObjectY, then the usage is:

x @ y;

The syntax used with the operator is the same if the operator is overloaded as a
member function or a non-member function. C++ concepts such as pass by value,
pass by reference and copying objects with the copy constructor need to be
understood before being able to understand how operators can be overloaded.
These concepts are explained in the sections ahead.

12.2.1 Passing Parameters to a Function by Value
Our previous programs have often employed functions that used parameters. At the
time of calling the function, these parameters are replaced by copies of the actual
arguments (the real values used in the calling function). These copies of the
arguments passed to the function are created as temporary values, used by the
function, and destroyed when the function exits. As a result, the actual argument
used when calling the function (in the calling environment) will not be affected by
any changes the function makes to its copy.

The passing of parameters to functions can be better understood by considering the
following example that attempts to add up n integers that start from the number 0:

#include <iostream.h>

// NOTE: the result from this function cannot be used!
void FindSum(int sum, int n)
{
 for(int j = 0; j < n; j++)
 sum = sum + j;
}

void main()
{
 int Sum = 0;
 int n = 10;

 FindSum(Sum,n); // FindSum() is called here
 cout << "The sum of " << n << " integers is " << Sum

 << endl;
}

This program will print the following text on the screen:
The sum of 10 integers is 0

366 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

When FindSum() is called it receives a copy of Sum and a copy of n. The copy
of Sum is changed as expected inside this function. When the function exits, this
copy is discarded and as a result the sum of ten integers evaluated within the
function is also discarded. The outcome is that the variable Sum declared within
the main() function remains unchanged (i.e. it still has the value 0).

This manner of passing parameters is known as pass by value, which is actually
‘pass by a copy’. The two disadvantages when passing parameters by value are; i)
the time taken, and ii) memory space needed to make a copy. If the passed
parameter is an object that occupies a large portion of memory, an equal amount of
extra memory space will be needed to make the copy, and this will take time.

12.2.2 Passing Parameters to a Function by Reference
A different way of passing parameters to a function is by reference. Passing
parameters by reference allows a function to effect changes to a variable being
used in the calling environment. The program segment given in Section 12.2.1 has
been reproduced below with an apparently minor change. In this modified
example, when the function FindSum() changes the value of sum, it actually
changes the variable Sum that was declared within the main() function – not a
copy of it. The function directly uses the variable in the calling environment (to
generate a correct result) rather than working with a copy of it.

#include <iostream.h>

void FindSum(int& sum, int n) // Function heading changed
{
 for(int j = 0; j < n; j++)
 sum = sum + j;
}

void main()
{
 int Sum = 0;
 int n = 10;

 FindSum(Sum,n);
 cout << "The sum of " << n << " integers is " << Sum

 << endl;
}

This program will print the following line on the screen:
The sum of 10 integers is 45

The change in the program is shown in bold typeface. Instead of declaring the first
parameter sum as an int, it is now declared as reference to int by changing int

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 367

to int&. Therefore, when the function is called, no copy is made, and the function
carries out changes to the variable in the calling environment, i.e. the variable Sum
declared within the main() function.

Passing parameters by reference is memory efficient and time efficient (no need to
make a copy). It also allows the function to deliver a result through reference
parameters and also through return values. The disadvantage is that the passed
parameters are vulnerable to inadvertent changes carried out by the function.

Use of const with reference parameters
The keyword const can be added in the parameter declaration to prevent the
function from making changes to the reference variable. The keyword const can
also be added to parameters passed by value. In either case, statements within the
body of the function are not allowed to change the value of the parameter.

Note that in the previous example we cannot use the function heading:
void FindSum(const int& sum, int n)

for the simple reason that we want to change the value of sum to be able to obtain
the correct result.

12.2.3 Preferred Ways of Passing Parameters
Passing parameters by value has the advantage of safeguarding the original values
of the actual arguments in the calling environment. However, making a copy
consumes time and memory. A more serious subtlety associated with pass by
value is related to objects in a class hierarchy. This subtlety is demonstrated using
the following example.

Consider the simple class hierarchy and the program shown in Listing 12-1.

Listing 12-1 Adverse effects of passing parameters by value.

//This program produces WRONG results!
#include <iostream.h>

class Base
{
 private:
 int BaseClassData;

 public:
 Base(int baseclassdata)
 {
 BaseClassData = baseclassdata;
 }

368 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

 virtual int GetClassData() const // Constant function.
 {
 return BaseClassData;
 }
};

class Derived : public Base
{
 private:
 int DerivedClassData;

 public:
 Derived(int derivedclassdata,
 int baseclassdata): Base(baseclassdata)
 {
 DerivedClassData = derivedclassdata;
 }

 int GetClassData() const // Constant function.
 {
 return DerivedClassData;
 }
};

int GetData(const Base baseObject)//Pass by value
{
 return baseObject.GetClassData();
}

void main()
{
 Base* BasePtr;
 int ClassData;

 BasePtr = new Base(100);
 ClassData = GetData(*BasePtr);
 cout << "Base class data " << ClassData << endl;
 delete BasePtr;

 BasePtr = new Derived(200, 100);
 ClassData = GetData(*BasePtr);
 cout << "Derived class data " << ClassData << endl;
 delete BasePtr;
}

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 369

Note that for both GetClassData() functions in program Listing 12-1, the
keyword const is added at the end of the function heading as shown below:

int GetClassData() const
{

return DerivedClassData;
}

Such functions are named constant functions. These functions are not allowed to
modify any of the data members of their class.

Now consider the function GetData():

int GetData(const Base baseObject) //Pass by value
{
 return baseObject.GetClassData();
}

The parameter baseObject passed to the non-member function GetData(), is
passed by value as a const object. As such, the object passed must not be
changed by any statements within the body of the GetData() function.
Therefore, the statement baseObject.GetClassData() must not make any
changes to baseObject. This is ensured since the GetClassData() function
has been specified as a constant function. In the next program, when we pass
parameters by reference, we will pass them as const objects to prevent the
function from changing them. This allows us to keep both programs as similar as
possible and to focus on the behaviour of the two programs in terms of pass by
reference and pass by value.

The GetData() function is intended to extract the value of the data member that
belongs to a particular class. The value of data member BaseClassData will be
returned if baseObject is of type Base, and the value of data member
DerivedClassData is returned if baseObject is of type Derived.

In this program we call the GetData() function under two different
circumstances. Consider the first case:
Base* BasePtr = new Base(100);
int ClassData = GetData(*BasePtr);

We would expect the function GetData()to call, from within its body, the
member function GetClassData() belonging to the Base class. This should
and does retrieve the value of member data BaseClassData and assign its value
of 100 to variable ClassData. Now consider the second case:

Base* BasePtr = new Derived(200, 100);
int ClassData = GetData(*BasePtr);

Once again, we would expect the GetData() function to call, from within its
body, the member function GetClassData() belonging to the Derived class.

370 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

This should set the value of ClassData to 200. However, this will not happen in
this case. Instead, the program produces an unexpected (error) result by setting
ClassData to 100. Note: the parameter is passed by de-referencing a pointer.
Recall that base class pointers can point to derived class objects. Had a pointer not
been used, we could not pass an object of type Derived as an actual argument for
a parameter of type Base. If we simply attempted to pass a derived class object to
take the place of a base class parameter, the compiler would report a type mismatch
error.

In the second case described above, since the function GetData() is
programmed to receive its parameter by value, the function will be compiled to get
a copy of a Base class object rather than a copy of a Derived class object. Thus,
the entire derived class object is not visible to the GetData() function – only the
base class portion (inherited by derivation) is visible. This is a typical situation
where the object type of the parameter is different from the object type of the
actual argument. Note that the compiler cannot detect this situation since it occurs
at run-time. The program in Listing 12-1 demonstrates this faulty behaviour
producing the following result when it executes:
Base class data 100
Derived class data 100

The data from the Derived class is certainly not 100. The program should have
stored and then retrieved the data as 200. This problem can be rectified by passing
the baseObject parameter by reference to the GetData() function. If passed
by reference, no copy of a base class object will be made. The entire Derived
class object will be accessible to the function GetData(), and the correct result
of 200 will be produced. The corrected program is shown in Listing 12-2.

Listing 12-2 Corrected version of Listing 12-1.

//This program produces correct results.
#include <iostream.h>

class Base
{
 private:
 int BaseClassData;
 public:
 Base(int baseclassdata)
 {
 BaseClassData = baseclassdata;
 }

 virtual int GetClassData() const
 {

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 371

 return BaseClassData;
 }
};

class Derived : public Base
{
 private:
 int DerivedClassData;

 public:
 Derived(int derivedclassdata,
 int baseclassdata): Base(baseclassdata)
 {
 DerivedClassData = derivedclassdata;
 }

 int GetClassData() const
 {
 return DerivedClassData;
 }
};

int GetData(const Base& baseObject) //Pass by reference
{
 return baseObject.GetClassData();
}

void main()
{
 Base* BasePtr;
 int ClassData;

 BasePtr = new Base(100);
 ClassData = GetData(*BasePtr);
 cout << "Base class data " << ClassData << endl;
 BasePtr = new Derived(200, 100);
 ClassData = GetData(*BasePtr);
 cout << "Derived class data " << ClassData << endl;
}

You will see the following result when this program executes:
Base class data 100
Derived class data 200

372 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

There is a lesson to be learned from this exercise - whenever class objects are
passed to a function it is prudent to pass them by reference. As shown in Listing
12-2, the keyword const can be prefixed to the parameter passed by reference to
protect the parameter from any inadvertent changes within the function.

12.2.4 The Copy Constructor
In previous chapters we used default constructors and standard constructors to
instantiate objects. The copy constructor is a special constructor that is called when
a copy of an object is created. If the developer does not provide a copy constructor,
the compiler will generate one by default. This constructor makes a copy of an
object by copying member-by-member from one object to the other for three
situations:

(i) When passing parameters to a function by value, a copy of the object
must be created.

(ii) When parameters are returned by value, a copy of the object to be
returned must be made. Again, the same copy constructor will be called
to make the copy.

(iii) If an object is declared and initialised using another object passed as a
parameter, the copy constructor must be called.

The assignment operator can also be used to initialise an object that was created
previously using the default constructor. In principle, the assignment operator (=)
must carry out the same actions as the copy constructor. If the developer does not
overload the assignment operator the compiler will do so to suit the class. We will
defer discussing overloading the assignment operator until operator overloading
concepts have been described.

A few examples of object instantiation using various constructors are:
DCMotor Motor1; // default constructor used
DCMotor Motor2(Motor1); // copy constructor used
DCMotor Motor3; // default constructor used
Motor3 = Motor1; // assignment operator used

We will develop an example program that operates with arrays using the
IntArray object to improve your understanding of the copy constructor.
Consider the definition of the IntArray class given in Listing 12-3.

Listing 12-3 Header file intarray.h shows a class definition for an array of integers.

#ifndef IntarrayH
#define IntarrayH

class IntArray
{
 private:

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 373

 int NumInts;
 int* ArrayPointer;

 public:
 IntArray(); // Default constructor
 IntArray(int numints); // Constructor
 ~IntArray(); // Destructor
 void EnterArray(); // Other member functions
 void PrintArray();
};
#endif

The IntArray class will instantiate an array of integers having a specified
number of elements. The data member NumInts will store the total number of
elements in the array and the pointer ArrayPointer will point to the
dynamically allocated portion of memory containing the array of integers. The
destructor ~IntArray() will release the dynamically allocated memory. The
function EnterArray() will prompt the user for array values, receive user input
via the keyboard, and fill the array. The final function PrintArray() is used to
print the contents of the array on the screen.

The IntArray class’s constructor and its default constructor initialise the
member data NumInts and ArrayPointer. If a parameter is passed to the
constructor, memory for the array will be dynamically allocated as shown in the
following constructor definitions:

IntArray::IntArray() // Default constructor
{
 NumInts = 0;
 ArrayPointer = NULL;
}

IntArray::IntArray(int numints) // Constructor
{
 if(numints <=0)

{
 NumInts = 0;
 ArrayPointer = NULL;
}
else
{
 NumInts = numints;
 ArrayPointer = new int[NumInts];
}

}

374 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

Memory dynamically allocated by
the constructors

Copy of A Copy of B

NumInts

ArrayPointer

NumInts

ArrayPointer

Object A Object B

NumInts

ArrayPointer

NumInts

ArrayPointer

Note that if the value of numints is 0 or negative, NumInts is initialised to 0
and ArrayPointer is initialised to the predefined constant NULL to indicate that
the pointer is not pointing anywhere.

Suppose we use the object class IntArray in a main() function to instantiate
two IntArray objects named A and B. We will then pass the objects A and B by
value to a function named AddArrays() to add the IntArray object A to the
IntArray object B as shown in the fragment of code below:

void AddArrays(IntArray a, IntArray b) // Pass by value
{
 // print the result of summation on-screen
}

void main()
{
 IntArray A(5);
 IntArray B(5);

 AddArrays(A,B);
 .
 .

.
}

Figure 12-1 Objects A and B copied by the compiler-generated copy constructor.

When the actual arguments A and B are passed by value to the function
AddArrays(), copies of A and B must be made. The compiler-generated copy

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 375

Object A Object B

NumInts

ArrayPointer

NumInts

ArrayPointer? ?

Memory dynamically allocated
by the constructors

Object A

NumInts

ArrayPointer

Object B

NumInts

ArrayPointer

Memory dynamically allocated
by the copy constructors

Copy of A

NumInts

ArrayPointer

Copy of B

NumInts

ArrayPointer

constructor will be called to make these copies; this copy-making process is shown
graphically in Figure 12-1.

The compiler-generated copy constructor has created a copy of each data member
of the original objects. However, it did not make copies of the dynamically
allocated memory. As a result, the pointer to the original object and the pointer to
the copied object point to the same portion of memory.

The destructor ~IntArray() is called after the function AddArrays()
executes. The destructor will free the memory used for the temporary copies of A
and B together with the original data objects that were dynamically allocated. This
outcome is shown in Figure 12-2.

Figure 12-2 Result of discarding the copies of A and B.

Figure 12-3 Copies of objects A and B made by a user written copy constructor.

Now the main() function has lost the original data it had created at the time of
instantiating the objects A and B. We can overcome the problem created by the
compiler-generated copy constructor if we write our own copy constructor that not

376 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

only carries out member-by-member copying, but also makes copies of any
portions of memory pointed to by pointer data members. Having such a copy
constructor will change the situation shown in Figure 12-1 to that shown in Figure
12-3.

Now when the destructor is called to discard the copies, the original data will be
unaffected and the outcome will be as shown in Figure 12-4.

Figure 12-4 The original data areas are not destroyed by the destructor.

The header file intarray.h contains the definition of the copy constructor as
given in Listing 12-4.

Listing 12-4 The header file intarray.h with user supplied copy constructor.

#ifndef IntarrayH
#define IntarrayH

class IntArray
{
private:
 int NumInts;
 int* ArrayPointer;

public:
 IntArray();
 IntArray(int numints);

IntArray(const IntArray& intArray);
 ~IntArray();
 void EnterArray();
 void PrintArray();
};
#endif

The heading of the copy constructor is:

Memory dynamically allocated
by the constructors

Object A

NumInts

ArrayPointer

Object B

NumInts

ArrayPointer

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 377

IntArray(const IntArray& intArray);

Remember that constructors do not have return values. The parameter passed to the
copy constructor is the same type as the class the copy constructor belongs to and
must be passed by reference. If it is passed by value, then a copy will be created by
a call to the copy constructor. To pass a parameter to that copy constructor by
value, another copy has to be created and so on – an endless sequence of function
calls. Therefore, the parameter passed to the copy constructor must be passed by
reference. The keyword const is used to protect the parameter passed by
reference. Therefore, no changes will be made to the parameter being passed.

The complete function file is given in Listing 12-5.

Listing 12-5 The function file intarray.cpp for the IntArray class.

#include <iostream.h>
#include "intarray.h"

IntArray::IntArray()
{
 NumInts = 0;
 ArrayPointer = NULL;
}

IntArray::IntArray(int numints)
{
 if(numints <=0)
 {
 NumInts = 0;
 ArrayPointer = NULL;
 }
 else
 {
 NumInts = numints;
 ArrayPointer = new int[NumInts];
 }
}

IntArray::IntArray(const IntArray& intArray)
{
 NumInts = intArray.NumInts;
 ArrayPointer = new int[NumInts];
 for(int i=0; i < NumInts; i++)
 *(ArrayPointer+i) = *(intArray.ArrayPointer +i);
}

378 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

IntArray::~IntArray()
{
 if(ArrayPointer !=NULL)
 {
 delete ArrayPointer;
 ArrayPointer = NULL;
 }
}

void IntArray::EnterArray()
{
 cout << "Enter " << NumInts << " integer values."
 << endl;
 for(int i = 0; i < NumInts; i++)
 cin >> *(ArrayPointer + i);
}

void IntArray::PrintArray()
{
 for(int i =0; i < NumInts; i++)
 cout << *(ArrayPointer + i) << '\t';
 cout << endl;
}

A main() function can be written with an explicit call to the copy constructor and
an explicit call to the destructor to destroy the object generated by the copy
constructor. The program copycnst.cpp given in Listing 12-6 demonstrates
that the call to the destructor does not destroy the original data.

Listing 12-6 This program tests the user supplied copy constructor - copycnst.cpp.

#include <iostream.h>
#include <conio.h>

#include "intarray.h"

void main()
{
 IntArray A(5);
 A.EnterArray();

 cout << "A " ; A.PrintArray(); // Print array A.
 getch();
 IntArray B(A); // Call copy constructor.

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 379

 cout << "B "; B.PrintArray(); // Print array B.
 B.~IntArray(); // Destroy array B.
 // Print array A again, check data is intact.
 cout << "A "; A.PrintArray();
}

Executable File Generation
Required Files Listing No. Project File Contents
copycnst.cpp
intarray.cpp
intarray.h

Listing 12-6
Listing 12-5
Listing 12-4

copycnst.cpp
intarray.cpp

12.2.5 Overloading Operators as Member Functions
In this section we will be overloading the >> operator for the ADC class so that it
can be used to carry out an analog-to-digital conversion and store the result in a
variable. To do this the class definition in the header file adc.h must be changed
to include the member function that overloads the operator. We will follow the
syntax for function headings shown in Table 12-2 to produce the new header file
for the ADC class given in Listing 12-7.

The parameter passed to the operator overloading function has been passed by
reference. This allows the passed parameter to be changed within the function and
the parameter in the calling environment will now hold the new value read from the
ADC when the function exits.

Listing 12-7 Header file adc.h shows operator overloading as a member function.

#ifndef AdcH
#define AdcH
#include "pport.h"

class ADC : public ParallelPort
{
 private:
 unsigned char ADCValue;

 public:
 ADC(int baseaddress=0x378);
 unsigned char ADConvert();
 unsigned char GetADCValue();

void operator>>(unsigned char& value);
};
#endif

380 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

The original adc.cpp file from Listing 11-4 is then modified to that given in
Listing 12-8.

Listing 12-8 Function file adc.cpp associated with header file in Listing 12-7.

#include "adc.h"

ADC::ADC(int baseaddress) : ParallelPort(baseaddress)
{
 ADCValue = 0;
}

unsigned char ADC::ADConvert()
{
 WritePort2(0x01);
 WritePort2(0x00);
 WritePort2(0x01);

 WritePort2(0x03);
 ADCValue = ReadPort1() & 0xF0;

 WritePort2(0x01);
 ADCValue += (ReadPort1() >> 4) & 0x0F;

 return ADCValue;
}

unsigned char ADC::GetADCValue()
{
 return ADCValue;
}

void ADC::operator>>(unsigned char& value)
{
 ADConvert();
 value = ADCValue;
}

Note: although the >> operator needs two arguments, we have passed only one
parameter. This parameter becomes the operand to the right of the >> operator. The
operand to the left of the >> operator is the object of type ADC (see the main()
function in Listing 12-9). Furthermore, within the function’s body we have used
the statements:
ADConvert();
value = ADCValue;

rather than the statement:
value = ADConvert();

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 381

We deliberately do this to keep the program (which overloads an operator as a
member function) as similar as possible to the next program (which overloads an
operator as a non-member function). The main() function shown in Listing 12-9
demonstrates use of the overloaded operator as a member function.

Listing 12-9 main() function file ovld.cpp uses the overloaded operator >>.

#include <bios.h>
#include <conio.h>

#include "adc.h"

void main()
{
 ADC Adc;
 int Quit = 0, key;
 unsigned char Value;

 clrscr();

 while(!Quit)
 {
 gotoxy(10,10);

Adc >> Value;
 cprintf("The ADC output is %10d\a",(int)Value);

 if(bioskey(1)!=0)
 {
 key = bioskey(0);

 if(key == 0x2d00) Quit = 1; // Alt-X key
 }
 }
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h
ovld.cpp

Listing 10-8
Listing 10-7
Listing 12-8
Listing 12-7
Listing 12-9

pport.cpp

adc.cpp

ovld.cpp

382 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

The operation of this program can be verified with the interface board by
connecting the potentiometer output to the input of the ADC.

12.2.6 Overloading Operators as non-member f’ns
The operator overloading function will now be moved outside the class definition
as an ordinary function to create the header file adc.h given in Listing 12-10.

Listing 12-10 File adc.h shows operator overloading as a non-member function.

#ifndef AdcH
#define AdcH

#include "pport.h"

class ADC : public ParallelPort
{
 private:
 unsigned char ADCValue;

 public:
 ADC(int baseaddress=0x378);
 unsigned char ADConvert();
 unsigned char GetADCValue();
};

// declaration of the non-member function
void operator>>(ADC adc, unsigned char& value);
#endif

Listing 12-11 shows the function file associated with the above header file.

Listing 12-11 Function file adc.cpp associated with the header file in Listing 12-10.

#include "adc.h"

ADC::ADC(int baseaddress) : ParallelPort(baseaddress)
{
 ADCValue = 0;
}

unsigned char ADC::ADConvert()
{
 WritePort2(0x01);
 WritePort2(0x00);
 WritePort2(0x01);

 WritePort2(0x03);
 ADCValue = ReadPort1() & 0xF0;

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 383

 WritePort2(0x01);
 ADCValue += (ReadPort1() >> 4) & 0x0F;

 return ADCValue;
}

unsigned char ADC::GetADCValue()
{
 return ADCValue;
}

void operator>>(ADC adc, unsigned char& value)
{
 adc.ADConvert();
 value = adc.GetADCValue();
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h

Listing 10-8
Listing 10-7
Listing 12-11
Listing 12-10

pport.cpp
adc.cpp
ovld.cpp

ovld.cpp Listing 12-9

The operator overloading function has now been passed two parameters unlike the
case described in Section 12.2.5. The first parameter becomes the operand to the
left of the operator >> and the second parameter becomes the operand to the right.
Since the function does not belong to any class, the first parameter must be used
explicitly. We cannot use the following statement in this function because we do
not have access to the private data member ADCValue:
value = adc.ADCValue;

Instead, the public member function GetADCValue() must be called. The same
main() function (Listing 12-9) can now be used provided that its #include
“adc.h” statement includes the header file given in Listing 12-10, and is
compiled and linked with the function file given in Listing 12-11.

12.2.7 Friend Functions
Ordinary non-member functions can be declared as friends of a particular class to
eliminate the difficulties associated with accessing private data members. In this
case the non-member friend function will have unrestricted access to all data
members of the class that it is declared in. The friend functions can be viewed as

384 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

public functions of the class that do not need to be attached (tagged) to the object
using the membership access operators (i.e . or ->). Careful use of friend
functions can facilitate some tasks such as input/output streaming we will be
discussing shortly. To demonstrate the use of friend functions, we can modify
the header file given in Listing 12-10 to become that given in Listing 12-12.

Listing 12-12 Use of friend functions - adc.h.

#ifndef AdcH
#define AdcH

#include "pport.h"

class ADC : public ParallelPort
{
 private:
 unsigned char ADCValue;

 public:
 ADC(int baseaddress=0x378);
 unsigned char ADConvert();
 unsigned char GetADCValue();

friend void operator>>(ADC adc, unsigned char& value);
};
#endif

Since the operator overloading function is a friend of the ADC class, it will now
have access to the private data member ADCValue. Therefore, instead of the line:

value = adc.GetADCValue();

we can now use:
value = adc.ADCValue;

This avoids a function call and so speeds up program execution. The associated
function file is shown in Listing 12-13.

Listing 12-13 Function file adc.cpp for the header file in Listing 12-12.

#include "adc.h"

ADC::ADC(int baseaddress) : ParallelPort(baseaddress)
{
 ADCValue = 0;
}

unsigned char ADC::ADConvert()
{
 WritePort2(0x01);

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 385

 WritePort2(0x00);
 WritePort2(0x01);

 WritePort2(0x03);
 ADCValue = ReadPort1() & 0xF0;

 WritePort2(0x01);
 ADCValue += (ReadPort1() >> 4) & 0x0F;

 return ADCValue;
}

unsigned char ADC::GetADCValue()
{
 return ADCValue;
}

void operator>>(ADC adc, unsigned char& value)
{
 adc.ADConvert();

value = adc.ADCValue;
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h
ovld.cpp

Listing 10-8
Listing 10-7
Listing 12-13
Listing 12-12
Listing 12-9

pport.cpp

adc.cpp

ovld.cpp

In the previous sections we implemented operator overloading to carry out analog-
to-digital conversion and stored the resulting value in a variable. We overloaded
the >> operator to accomplish this ‘input’ operation. Next we will overload the <<
operator to output the result of an anlog-to-digital conversion to the screen or to a
file. Before we do this, we need to have a fundamental understanding of I/O
streams and pass-through objects.

12.2.8 I/O Streams
I/O streams can be viewed as a sequential transfer of one or more objects between
two locations. Examples of such transfers could be data generated by the keyboard
to a program, program data to screen, program data to a file, data from a file to a
program, etc. C++ software provides a number of object classes and a large variety
of functions to facilitate input/output streaming of objects. Output streams can be

386 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

generated by calling the constructor of the ostream class. Similarly, an input
stream can be generated by calling the constructor of the istream class.

The object classes, ofstream and ifstream are part of the standard C++
library and facilitate writing to and reading from various types of objects including
files. To enable us to use these objects we must include the header file
fstream.h just as we included the header file iostream.h file for us to use
the cin and cout objects.

A simple program that demonstrates file I/O is given in Listing 12-14.

Listing 12-14 File Input/Output.

#include <fstream.h>

main()
{
 int Data;

 ifstream is("infile.dat");
 ofstream os("outfile.dat");

 while(is)
 {
 is >> Data; // Number from file -> Data
 if(!is.fail())
 os << '\t' << Data; // Data -> file os
 }
 os.close();
 is.close();
 return 0;
}

The statements:
ifstream is("infile.dat");
ofstream os("outfile.dat");

call the ifstream() and ofstream() constructors and instantiate the two
objects named is and os, respectively. Each constructor opens the file whose
name has been passed as a parameter in the form of a character string. The
constructors also create their own memory buffer needed to transfer data between
memory and the respective file.

Assume that the file infile.dat contains the number data:

10
20

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 387

30
40
50

Each number needs to be separated by white space (one or more spaces, tab, line
feed or a carriage return). The variable Data is used to temporarily store the
number read from infile.dat.

The contents of outfile.dat will be:

 10 20 30 40 50

Only data that has been read successfully from infile.dat will then be written
to the file outfile.dat. The ifstream class has a member function fail()
that is called to determine if an error has occurred when reading data from the file.
The ifstream object is will evaluate to be 0 when the end of the file has been
reached and cause the while loop to terminate.

12.2.9 Pass-through Objects
Pass-through objects are objects that enter a function as a parameter by reference
and appear as a return value of the function, also by reference. We will examine
returning values by reference in a moment. First, let us understand the motivation
behind the use of pass-through objects. Consider the following three output
streaming operations where a, b, and c are integer objects:
cout << a;
cout << b;
cout << c:

These three operations can be combined in one statement as follows:
cout << a << b << c ;

Parentheses can be used to show the precedence of output streaming as follows:
(((cout << a) << b) << c);

After streaming the object a out, the remainder of the operation will be:

(((cout) << b) << c);

The last statement to be executed is then:
(cout << c);

Consider the output streaming of any one of the objects where the overloaded
operator << receives two arguments, namely cout and an integer object. The
overloaded operator will return cout as the return value. This is why (cout <<
a) is replaced by cout. Here, cout enters the function as a parameter and then
appears as the return value. Therefore, cout becomes a pass-through object in the
operator overloading function for the operator <<. Pass-through objects must

388 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

maintain their ‘life’ throughout this process and so there is no object copying
involved. Therefore, the parameter passed must be passed by reference and the
value returned must also be returned by reference.

Pass-through objects are especially useful in ‘chained’ use of operators or
functions. Another example is shown below where a, b, and c are integer objects:

a = b = c = 3;

Once again, the precedence of operations can be shown using parentheses:
(a = (b = (c = 3)));

After the first assignment operation the expression reduces to:
(a = (b = (c));

Therefore, in the operation c = 3, c enters as a parameter and then appears as the
return value, explaining why c = 3 can be replaced by c.

An analogy from day-to-day life can be used to further explain the use of returning
values by reference. Consider a situation where you have a string and a set of
beads. We want to thread all the beads, one at a time, onto the string. We will
write a function to receive the string and a bead. The purpose of the function is to
attach one bead to the string and to return the same string with the beads(s) it
received.

We specify that a function must return a value by reference by adding & after the
return value type in the function heading. This is shown in bold typeface in the
Add_a_Bead function shown below:

String& Add_A_Bead(String& string, Bead bead)
{

string = string + bead;
return string;

}

For the two parameters of the function Add_A_Bead(), parameter string is of
data type String and bead is of data type Bead. The expression string =
string + bead represents attaching a bead to the string. You can attach n
beads to the same string by executing this function n times.

If we did not return the value by reference, each time you execute the function to
attach a bead, you will get a new copy of the string, with an increasing number of
beads on each subsequent copy. If you execute such a function n times, you will
create and discard n copies of the string, the first copy having one bead, the second
copy having 2 beads etc. until you end up with the last copy having n beads - what
a waste of time and memory! In addition, you do not have the original string - you
have a copy.

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 389

12.2.10 Assignment Operator
If the developer does not provide an operator overloading function to overload the
assignment operator, the compiler will generate a default overloaded assignment
operator. This applies in the same way as for the copy constructor. The assignment
operator is used to carry out member-by-member assignment from one existing
object to another existing object. The compiler-generated assignment operator has
the same weakness as the compiler-generated copy constructor; it will not copy any
portions of memory pointed to by pointer type data members. The developer must
provide a function to safely overload the assignment operator to overcome this
deficiency.

The function heading to overload the assignment operator is:
IntArray& operator=(const IntArray& intarray);

Note that the parameter is passed in exactly the same way it was passed to the copy
constructor, however, the return value is a reference to an IntArray object. This
is necessary to be consistent with the usage of the assignment operator so a chained
assignment can be carried out like that shown in this simple example:
int a,b,c;
a = b = c = 3;

The object class IntArray and the associated source files described in Section
12.2.4 are used below to enhance the capabilities of the class by the addition of the
overloaded assignment operator. The overloaded assignment operator that has been
added is shown in the header file of Listing 12-15 and the function file of Listing
12-16.

Listing 12-15 Header file intarray.h with overloaded assignment operator.

#ifndef IntarrayH
#define IntarrayH

class IntArray
{
private:
 int NumInts;
 int* ArrayPointer;

public:
 IntArray();
 IntArray(int numints);
 IntArray(const IntArray& IntArray);

IntArray& operator=(const IntArray& intArray);
 ~IntArray();
 void EnterArray();

390 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

 void PrintArray();
};
#endif

Listing 12-16 Function file intarray.cpp with overloaded assignment operator.

#include <iostream.h>
#include "intarray.h"

IntArray::IntArray()
{
 NumInts = 0;
 ArrayPointer = NULL;
}

IntArray::IntArray(int numints)
{
 if(numints <=0)
 {
 NumInts = 0;
 ArrayPointer = NULL;
 }
 else
 {
 NumInts = numints;
 ArrayPointer = new int[NumInts];
 }
}

IntArray::IntArray(const IntArray& intArray)
{
 NumInts = intArray.NumInts;
 ArrayPointer = new int[NumInts];
 for(int i=0; i < NumInts; i++)
 *(ArrayPointer+i) = *(intArray.ArrayPointer +i);
}

IntArray& IntArray::operator=(const IntArray& intArray)
{
 if(this != &intArray)
 {
 if(ArrayPointer != NULL)
 delete ArrayPointer;// Release any allocated memory
 NumInts = intArray.NumInts;

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 391

 ArrayPointer = new int[NumInts];
 for(int i = 0; i < NumInts; i++)
 *(ArrayPointer + i) = *(intArray.ArrayPointer + i);
 }
 return *this;
}

IntArray::~IntArray()
{
 if(ArrayPointer !=NULL)
 {
 delete ArrayPointer;
 ArrayPointer = NULL;
 }
}

void IntArray::EnterArray()
{
 cout << "Enter " << NumInts << " integer values." << endl;
 for(int i = 0; i < NumInts; i++)
 cin >> *(ArrayPointer + i);
}

void IntArray::PrintArray()
{
 for(int i =0; i < NumInts; i++)
 cout << *(ArrayPointer + i) << '\t';
 cout << endl;
}

We have used the this pointer that points to the object itself to overload the
assignment operator. A test is performed inside the if condition to check that the
object to be copied is the same object. If so, there is no point copying the object.
Within the true clause of the if statement a test is made to check whether
ArrayPointer is pointing to any previously allocated memory area. If so the
delete operator is used to release that memory. If this is not done there will be a
memory leak; i.e. there will be a portion of memory that is not used and cannot be
used again because it has not been released. Identical steps are then carried out as
performed for the copy constructor. Finally, the object itself is returned to facilitate
the chained use of the assignment operator. This is done by returning the object
using the result *this (where this is the pointer to the object, and *this is the
object itself).

Listing 12-17 shows a program that demonstrates the use of the copy constructor
and the assignment operator with the IntArray class.

392 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

Listing 12-17 File asgnopr.cpp shows use of the assignment operator.

#include <iostream.h>
#include <conio.h>

#include "intarray.h"

void main()
{
// Call constructor
 IntArray A(5);
 A.EnterArray();

// Print array A
 cout << "A " ; A.PrintArray();
 getch();

// Call copy constructor
 IntArray B(A);

// Print array B
 cout << "B "; B.PrintArray();
 getch();

// Call default constructor
 IntArray C;

// Use assignment operator
 C = A;

// Print array C
 cout << "C "; C.PrintArray();
}

Executable File Generation
Required Files Listing No. Project File Contents
asgnopr.cpp
intarray.cpp
intarray.h

Listing 12-17
Listing 12-16
Listing 12-15

asgnopr.cpp
intarray.cpp

12.3 Data Acquisition
In this section, we will combine the concepts we have learned in this chapter to
create a data acquisition program that uses operator overloading. An analog-to-
digital conversion will be performed by writing a function that overloads the
operator << in association with an ADC object and an output stream object such as

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 393

cout. This overloading process will enable us to output the converted value to
cout. The header file adc.h must be modified to include the new operator
overloading function. It is possible to write this function without it needing to
access any private data of the ADC class. We have chosen to write a non-member
function, and so it does not need to be declared as a friend function. The new
header file is given in Listing 12-18.

Listing 12-18 File adc.h overloads the << operator.

#ifndef AdcH
#define AdcH

#include <iostream.h>
#include "pport.h"

class ADC : public ParallelPort
{
 private:
 unsigned char ADCValue;

 public:
 ADC(int baseaddress=0x378);
 unsigned char ADConvert();
 unsigned char GetADCValue();
 friend void operator>>(ADC adc, unsigned char& value);
};

// declaration of the non-member functions
ostream& operator<<(ostream& os, ADC adc);
#endif

Observe the similarity of the following function with the Add_A_Bead()
function described earlier in Section 12.2.9:
ostream& operator<<(ostream& os, ADC adc);

The operator overloading function operates in a very similar manner, except the
operator << is now used to call the function. The function file is given in Listing
12-19.

Listing 12-19 Function file adc.cpp for the header file in Listing 12-18.

#include <iostream.h>
#include "adc.h"

ADC::ADC(int baseaddress) : ParallelPort(baseaddress)
{
 ADCValue = 0;

394 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

}

unsigned char ADC::ADConvert()
{
 WritePort2(0x01);
 WritePort2(0x00);
 WritePort2(0x01);

 WritePort2(0x03);
 ADCValue = ReadPort1() & 0xF0;

 WritePort2(0x01);
 ADCValue += (ReadPort1() >> 4) & 0x0F;

 return ADCValue;
}

unsigned char ADC::GetADCValue()
{
 return ADCValue;
}

void operator>>(ADC adc, unsigned char& value)
{
 adc.ADConvert();
 value = adc.ADCValue;
}

ostream& operator<<(ostream& os, ADC adc)
{
 os << “ “ << (int)adc.ADConvert();

 return os;
}

The following programming statement demonstrates the elegance of operator
overloading.
cout << Adc << Adc << Adc;

Each use of the overloaded operator << with an Adc object will perform an
analog-to-digital conversion and then send the resulting output value to the
standard output device. As such we will be able to use the above statement to
produce three output values to the screen.

The above statement has the precedence of evaluation as shown by the parentheses
in the statement below:

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 395

(((cout << Adc) << Adc) << Adc;)

The program dataacq.cpp shown in Listing 12-20 contains a main() function
you can experiment with. This program will carry out three analog-to-digital
conversions and send the values to the screen every second. Several analog-to-
digital conversion samples can be acquired as a group and averaged to overcome
the effects of noise on a signal. Note that a significant period of time is consumed
to print each set of results to the screen, slowing the effective speed of acquisition.

Listing 12-20 main() function datacq.cpp checks operation of operator <<.

#include <conio.h>
#include <bios.h>
#include <dos.h>

#include "adc.h"

void main()
{
 ADC Adc;
 int Quit = 0;

 clrscr();

 while(!Quit)
 {
 cout << endl << Adc << Adc << Adc;

 if(bioskey(1)!=0)
 if(bioskey(0) == 0x2d00) Quit = 1; /*Alt-X*/
 delay(1000);
 }
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h
dataacq.cpp

Listing 10-8
Listing 10-7
Listing 12-19
Listing 12-18
Listing 12-20

pport.cpp

adc.cpp

dataacq.cpp

Operator overloading can be used for a variety of other tasks. For example, we can
overload the ++ operator in the DCMotor class described in Chapter 8 to enable us
to increment the Speed by 1 unit of resolution. Similarly, the -- operator can be

396 12 DATA ACQUISITION WITH OPERATOR OVERLOADING

overloaded in the DCMotor class to decrement the Speed by 1 unit of resolution.
A segment of sample code that uses such overloaded operators could be:
DCMotor Motor1;
Motor1++; // increase speed by 1

Another example would be to overload the << operator in the DAC class so it can
output the integer value N to the Digital-to-Analog Converter:

DAC Dac;
Dac << N;

12.4 Summary
There are several methods that can be used to pass parameters into functions and
return the result from the function. Most functions receive their parameters as a
copy of the argument given in the calling environment. An alternate means of
passing parameters is pass by reference. When passing parameters by reference the
function has access to the actual argument used in the calling environment. This
saves memory space and also provides an improvement in speed. For reasons such
as these, pass by reference is generally preferred when passing class objects to
functions.

Similarly, most functions are written to return values as a copy of the value
generated within the function. If values are returned by reference, the real object
within the function is returned rather than a copy of it. This facility can be used
efficiently in operator overloading, in particular with the chained use of an
operator.

Friend functions are a special category of functions that have unrestricted access to
all members of the class they are declared in. Although they are not member
functions, they have all the privileges of a member function. Friend functions have
a further advantage over member functions in that they do not need to be tagged to
an object when being called (using ‘.’ or ‘->’ membership operators).

12.5 Bibliography
Winston, P.H., On to C++, Addison Wesley, 1994.

Johnsonbaugh, R and Martin Kalin, Object-Oriented Programming in C++,
Prentice Hall, 1995.

Staugaard A. C. (Jr), Structured and Object Oriented Techniques, Prentice Hall,
1997.

Lafore, R. Object Oriented Programming in MICROSOFT C++, Waite Group
Press, 1992.
Wang, P.S., C++ with Object Oriented Programming, PWS Publishing, 1994.

12 DATA ACQUISITION WITH OPERATOR OVERLOADING 397

13

The PC Timer

Inside this Chapter

What is a timer?

The PC timer architecture.

Programming the PC timer.

Time measurement.

Reflex measurement.

Plotting with a time-base.

Digitising a signal with a time-stamp.

13.1 Introduction
So far we have not used real-time for tasks that have involved timing. Recall the
generation of PWM signals from Chapter 8. In these programs we generated time
delays by executing software loops whose duration was unknown and dependent
on the computer’s speed. A hardware timer is typically used when time needs to be
measured accurately. Your PC is equipped with such a timer that can be
programmed to carry out various timing-related tasks. It operates independently of
the PC’s processor to ensure uninterrupted and accurate operation, and has spare
resources for us to use in our own programs.

In general, the timer subsystem of your PC has three independent timers. More
modern systems will have five independent timers. We will keep our discussion to
the most general case, i.e. three timers. There are two principal functions associated
with timers; timing of an event and counting events. The basic requirement for any
timer is a clock signal; being a continuous train of pulses with a known and highly
stable frequency. Having access to a steady clock allows us to write programs that
can take advantage of real-time operations.

13.2 PC Timer System
Central to the timing system of all but the most recent PC’s is the 8254
Programmable Interval Timer containing three timers, named Timer 0, Timer 1
and Timer 2 as shown in Figure 13-1. The timers can be operated in several
different modes controlled by gate signal level and the use of a control register
(explained in section 13.2.2). These modes include single timeout, square wave
generator and rate generator, discussed in section 13.2.3. They share a common
clock signal driving their clock inputs, but only Timer 2 has a gate input that is free
to be controlled through software.

Each of the timers contains a 16-bit counter. A counter can be considered as a
special memory location in hardware, the value of which is incremented or
decremented by each incoming clock pulse. In your PC, each clock pulse drives the
counters down a count value. Typically, the counter’s output signal will change
state when it reaches zero.

Because all three timers share the same fixed clock signal, they cannot be used for
event counting. Event counting takes place when a counter/timer is used to count
external pulses applied to its clock input - often arriving at irregular intervals.
Regardless of the speed of a PC, its clock frequency will be 1.1932 MHz. This
enables every PC to maintain a fixed standard for timing.

13 THE PC TIMER

Timer 0

(16-bit counter)
Timer Interrupts

Clock

Gate

Timer 1

(16-bit counter)

Clock

Gate

Timer 2

(16-bit counter)

Clock

Gate

Clock
(1.1932 MHz)

Programmable
Signal 2

Programmable
Signal 1

AND
Gate

To Speaker
Drive Circuitry

Periodic Pulses to
Refresh Dynamic
RAM

Figure 13-1 PC Timing System - 3 timers (clock input, gate, and output).

The three timers in your PC have special tasks assigned to them, explained as
follows.

TIMER 0
Timer 0 is used to generate the so-called timer interrupt. The timer interrupt will
regularly trigger the CPU to execute a special routine that updates the system time.
This action takes place every 54.9 milliseconds. The gate signal of Timer 0 is held
permanently at logic-HIGH, and therefore is not programmable. Since the clock
and the gate are not programmable, the only timer variables that can be altered are
the count value written to the counter and the mode of operation. Timer 0 has an
output latch register that allows software to read the count value. Furthermore, the
state of its output signal can be determined (i.e. high or low) by reading Timer 0’s
status register.

NOTE

An interrupt is a signal generated by hardware or software that is sent to the CPU
to request its attention. Depending upon the priority of an interrupt, it will be
attended to immediately or flagged for later attention. The interrupt generated by
timer 0 has the highest priority and will be attended to immediately by the CPU.

401

TIMER 1
Timer 1 is used to generate a periodic signal for driving the hardware that refreshes
the dynamic RAM (memory). Timer 1 also has its clock and gate signals
permanently wired. Like Timer 0, it has an output latch register that allows
software to read the count value. The state of its output signal can be determined by
reading Timer 1’s status register.

TIMER 2
Timer 2 is used to drive the speaker via an AND gate whose other input is
programmable (see Figure 13-1). Its clock signal is permanently connected,
although the gate is free to be controlled through software. Timer 2 also has an
output latch register that allows software to read the count value. Similarly, the
state of its output signal can be determined by reading Timer 2’s status register.

13.2.1 Configuring the Counters
As mentioned earlier, all three timers countdown when operating. The number
loaded into each timer’s counter determines the timing duration. Therefore, writing
a smaller number to a counter will result in a shorter time interval before it reaches
zero. A particular counter can be read or written to at any time.

The counter’s value is constantly changing as it operates and can be read by
sampling the count value and storing the result. The hardware device that performs
such a function is known as a latch register. Each timer has an input latch register
to allow writes to its counter (load it) and also an output latch register to allow its
counter’s value to be read. This event is also dependent upon the status of the gate
and the mode of operation.

A special Control Register is used to provide the facility to select which counter we
wish to write to or read from, set the mode of operation, set the number format, etc.
There is one more register in addition to the three Timer registers and the Control
Register. This register allows access to the output of Timer 2 and the speaker gate
control signal.

Timer Ports

Table 13-1 Port addresses - PC timers and speakers.

Address Function
0x40 Timer 0 data latch register (input and output).
0x41 Timer 1 data latch register.
0x42 Timer 2 data latch register .
0x43 Control Register for Timers 0, 1 and 2.
0x61 Timer 2 output and speaker control.

13 THE PC TIMER402

The timers are part of your hardware system. To be able to program the timers,
software must have access to timer subsystem hardware. This is possible by
accessing the timer’s ports similar to the way we accessed the parallel port
hardware using its port addresses. The port addresses associated with the timer and
speaker system are given in Table 13-1.

Programming the timer starts with programming the Control Register as described
in the following sections.

13.2.2 The Control Register
The Control Register is used to configure a timer. It can also be used to request the
counter status or to latch the current count value. The register contains eight bits
that must be appropriately set to enable the following:

Select a particular counter.
Specify the byte(s) used to Read/Load the counter.
Specify the mode of operation.
Specify the counting format in binary or BCD.

The configuration of the Control Register is shown in Table 13-2.

Table 13-2 Configuration of the Control Register (address 0x43).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SC1 SC0 RL1 RL0 M2 M1 M0 BCD

Select Counter
Read/Load
MSB/LSB Mode Select

Binary
or BCD

Select Counter
The counter can be selected by programming Bits 6 (SC0) and 7 (SC1) of the
Control Register as shown:

SC1 SC0 Counter

0 0 Counter 0
0 1 Counter 1
1 0 Counter 2

Byte(s) used to Read/Load Counters
Bits 4 (RL0) and 5 (RL1) can be programmed to choose either Least Significant
Byte (LSB) only, or the Most Significant Byte (MSB) only, or to use both bytes of
the counter when counting:

13 THE PC TIMER 403

Operation RL1 RL0

Counter Latch 0 0
Read/Load LSB 0 1
Read/Load MSB 1 0
Read/Load LSB then MSB 1 1

For example; if the LSB is to be written to a counter, RL1 and RL0 will need to be
set at 0 and 1 respectively. The LSB is then loaded into the counter by writing to its
data register (e.g. 0x40 for Timer 0).

If the MSB is to be written to a counter, RL1 and RL0 will need to be set to 1 and 0
respectively. The MSB is then loaded into the counter by writing to its data register
(e.g. 0x40 for Timer 0).

If a 16-bit number (two bytes) is to be written to a counter, both RL1 and RL0 will
need to be set to 1. The 16-bit number will be loaded into the counter by carrying
out two consecutive write operations to the appropriate data register (e.g. 0x40 for
Timer 0) by first writing the LSB followed by writing the MSB.

Counting format (Binary/BCD)
The mode of counting can be set to binary (typically used) or BCD (Binary Coded
Decimal) - we don’t explain counting in BCD mode, so set the bit to 0.

BCD Counting Operation

0 Binary
1 Binary Coded Decimal (BCD)

Timer mode of operation

Mode Select
M2 M1 M0 Mode Name
0 0 0 Mode 0
0 0 1 Mode 1
0 1 0 Mode 2
0 1 1 Mode 3
1 0 0 Mode 4
1 0 1 Mode 5
1 1 0 Mode 2
1 1 1 Mode 3

13 THE PC TIMER404

The Timer’s modes of operation are explained in the next section. They are set
using the Control Register bits 1, 2 and 3 as shown in the previous table.

13.2.3 Modes of Operation of the Timers
There are up to six different modes of timer operation. Timer 0 and Timer 1 have
their gates hard-wired to a logic-HIGH level. This excludes them from operating in
some of the modes described below. Timer 2 is the only timer that has a
controllable gate. As such it can operate in all six modes.

Mode 0: Single Timeout
In this mode, the counter generates a low-level output signal for the fixed number
of clock pulses loaded into its data register. Each incoming clock pulse will
decrement the count value by one count (provided the gate input is high). When the
count value reaches 0, the output line will change from low to remain high. Note
that the maximum period is obtained when the decimal number 65,535 is loaded
into the counter. This period will be approximately 54.9 ms.

All three counters can be programmed in this mode. To initiate single timeout
operation, first configure the timer to operate in this mode and then write the count
value to the data register. The countdown will begin immediately after writing the
count data. If the gate signal is held low, counting stops until the gate signal returns
high. Timers 0 and 1 have their gate signals hard-wired to a logic-HIGH level. This
is not the case for Timer 2, whose gate input can be controlled by writing to bit 0 of
the port 0x61. The bits of the port at 0x61 for operating Timer 2 are shown in Table
13-3.

Table 13-3 Bits at port address 0x61 (control of Timer 2 output & speaker).

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

X X Timer 2
OUT X X X Speaker

Gate
Timer 2
GATE

Mode 1: Re-triggerable one-shot
This mode is used to generate a low-level pulse following a trigger command from
the gate (hence only Timer 2 can use this mode). The duration of the pulse is set by
the count value loaded into the counter. The gate signal is briefly sent from low to
high and back to low to initiate counting down. As this happens, the counter output
will drop from a high state to a low state. When the count value has decremented to
zero, the output will return to a high state.

Count
Time

Count
Time

13 THE PC TIMER 405

The previously used count value is automatically reloaded into the counter at the
end of the countdown when the counter reaches zero. Another one-shot period is
generated when another high pulse is applied to the gate (hence the term ‘re-
triggerable’). The timer can also be re-triggered during the current countdown. In
this case, a new countdown will start immediately after the re-trigger. A new count
value can also be written to the input latch register during the current countdown;
this will not affect the current countdown. The new count value in the input latch
register will be loaded for the next countdown immediately after the next re-
trigger.

Mode 2: Rate generator
This mode is used to periodically generate a narrow low-level output pulse. When
the value that was loaded into the counter reaches 1, the output changes to a low
state for one clock period. The count value is then automatically reloaded to repeat
the same process. All three timers can be used in this mode. Counting is stopped
whenever the gate signal is low (only applies to Timer 2). The rate generator is
predominantly used to generate hardware interrupts at regular intervals since the
narrow pulse can be missed when detecting using software means.

Mode 3: Square wave generator
This mode produces a continuous square wave output. Everytime the timer’s
counter reaches zero, the output toggles and the count value is automatically re-
loaded into the counter from its input latch. Note that the gate must be high to
enable down-counting and the count is decremented by two for each clock pulse.
All three timers can operate in this mode. Timer 0 generates the timer interrupt
when configured in this mode.

Mode 4: Software triggered strobe
Counting down is initiated when a count value is written to the data register. This
mode produces a single narrow output pulse for one clock period when the count
reaches zero (a non-periodic narrow pulse is known as a strobe). The counter will
remain inactive until at a later time software again writes to the counter. The gate
must be high at all times to enable operation.

Mode 5: Hardware triggered strobe
This mode is identical to Mode 4 except triggering is carried out by hardware
means. The start of a countdown is triggered by applying a brief high-level pulse to
the gate. The output will pulse low for one clock period when the count reaches

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time

13 THE PC TIMER406

zero. The counter will remain inactive until the next hardware trigger. As for mode
1, this mode is only possible with Timer 2.

13.2.4 Read-back Commands
A timer ‘read-back’ command allows the following data to be read from a counter;
the count value, status of its output signal, read/load status, configuration mode,
and count mode. Two very useful ‘read-back’ tasks can be invoked by writing the
bit patterns described below to the Control Register.

Task 1 - Multi Counter Latch:
A counter is latched by taking a ‘snap shot’ of the selected counter’s value and
transferring that count value to the counter’s output latch register. A command to
latch one or more counters can be issued by writing the bit pattern shown below to
the Control Register at address 0x43:

Control Register at address 0x43.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 1 0 1 CT2 CT1 CT0 0

Setting of bits CT0, CT1, and CT2 determines which counter(s) will be latched.
Once latched, a program can read the count value by reading the output latch
register. Addresses of latch registers are shown in Table 13-1. Two 8-bit reads of
the output latch register must be carried out to read the 16-bit count value. The low
byte will be obtained in the first read followed by the high byte in the second read.

Task 2 - Status of Timers:
The status information for each timer can be read via the corresponding timer data
register. The command to report the status is issued by assembling the byte as
shown following, and writing it to the Control Register (at address 0x43). We
select the timer(s) by setting their respective control bits CT0, CT1 and CT2 of the
Control Register to 1. The 8-bit status value is obtained by reading the data register
of the selected timer (addresses are shown in Table 13-1). The status information is
interpreted according to Figure 13-2.

Control Register at address 0x43.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 1 1 0 CT2 CT1 CT0 0

13 THE PC TIMER 407

 7 6 5 4 3 2 1 0

 Meaning
 0 Binary counting
 1 BCD Counting
 0 0 0 Mode 0 selected
 0 0 1 Mode 1 selected
 0 1 0 Mode 2 selected
 0 1 1 Mode 3 selected
 1 0 0 Mode 4 selected
 1 0 1 Mode 5 selected
 0 0 undefined
 0 1 Read/Load status – MSB only
 1 0 Read/Load status – LSB only
 1 1 Read/Load Status – LSB first, then MSB
 0 New initial count loading finished
 1 New initial count loading in progress
 0 Timer output signal status – LOW
 1 Timer output signal status – HIGH

Figure 13-2 Description of the returned counter status byte.

13.3 Programming the Timer
Programs will be developed in the coming sections that take advantage of the PC
timer’s accurate timing. We will start by developing an object class for the PC
timer. Note that although the timer hardware is independent of the parallel port
hardware, the object classes we created in the preceding chapters can be used with
the new timer object class developed in this chapter.

Programs have been developed to accurately measure time periods, measure a
persons reflexes, and to generate a time-base for an earlier program that displayed
the VCO output on-screen (see Chapter 10). The final program digitises an
electrical waveform generated on the interface board, and saves the digitised values
for later analysis.

As explained previously, the PC’s three timers are connected to a clock signal
having a frequency of 1.1932 MHz. Their counters can be loaded with a maximum
value of 65,535 to produce a maximum time of 54.9 ms per countdown cycle. If we
are to measure times greater than 54.9 ms, we must monitor and account for the
number of down-counts. Each countdown of Timer 0 is referred to as a ‘tick’. A
special region of memory known as BIOS is used to store the number of ticks since
mid-night. BIOS is the abbreviation for the PC’s Basic Input Output System. It is a
segment of software that predominantly interacts with hardware devices to carry

13 THE PC TIMER408

out low-level tasks. Like many operating systems, the PC’s operating system
suffers from poor determinism (determinism is the term used to describe the ability
of software to carry out tasks on time), and other latencies (time delays when
actioning requests – some generated by hardware). As a result of these latencies,
the tick count does not always get updated immediately, and so the BIOS tick
count cannot be used reliably. We need to devise a reliable method to monitor and
account for the number of tick counts so we can use this value in conjunction with
the timer count value to measure time periods greater than one full timer
countdown cycle. We will use Timer 0 for our time reference since it operates in a
suitable mode.

13.3.1 Reading Timer 0 Count Value and Ticks
To read the number of counts corresponding to a given instant in time, we must
read the timer ticks and also the contents of the Timer 0 counter. Section 13.2.4
describes how to latch the count value of Timer 0 (a snap shot taken) by issuing a
read-back command. The latched data can be read later by reading the output
register of Timer 0.

Before starting to program the timers, it is important to be aware that we will not
adhere to the strict practice of structured procedure abstraction (use of functions).
This will allow us to produce programs that execute fast and provide satisfactory
accuracy when reading the timer. Additional time would be consumed if we called
a function within one of the member functions of our PCTimer class.

13.4 The Object Class PCTimer
We will develop a class to provide a means of measuring time and generating time
delays. To do this the class needs functions that perform the following tasks:

Set a ‘zero’ time reference (this does not mean clearing the hardware timer
in the PC).
Generate a time delay of a specified value.
Read the current time.

The definition of the PCTimer class that has the above capabilities is shown in
Listing 13-1.

Listing 13-1 The PCTimer class - pctimer.h.

#ifndef PctimerH
#define PctimerH

class PCTimer
{

13 THE PC TIMER 409

private:
 unsigned int InitCount;
 unsigned long TickCount;
 unsigned int LastCount;

public:
 PCTimer();
 void ResetTimer();
 void Delay(const double& milliseconds);
 double ReadTimer();
 void UpdateTicks();
};
#endif

Setting ‘Zero’ Time
The basic requirement when making use of time is to have a reference of ‘zero’
time. The data member InitCount is used to store the count value (remaining
before the next tick) that corresponds to this ‘zero time’ as shown in Figure 13-4.
This value of InitCount is established at the time of instantiating the PCTimer
object, and can also be re-established by calling the member function
ResetTimer().

The ResetTimer() function can be used at any time to create a ‘zero time’
reference. It latches and reads Timer 0, then stores the count value into the data
members InitCount and LastCount. LastCount is to temporarily store the
timer’s last count value so the other member functions can detect the next tick as
described in the following text. The number of ticks that have occurred, stored in
data member TickCount, is then reset to zero.

Accounting for Timer Ticks
As explained previously, to determine the exact time that corresponds to any given
instant, we need to know the number of timer ticks elapsed since the ‘zero’ time
reference was created using Timer 0. We must monitor each countdown of Timer 0
to prevent any ticks being missed. The three member functions; Delay(),
ReadTimer(), and UpdateTicks(), all need to track and record the number
of ticks that take place during their operation. Figure 13-3 shows three different
scenarios when monitoring timer ticks, explained as follows.

The counter is first read and its count value stored in the member variable
LastCount. A short time later during execution of the program, the counter is
read again to test if a tick has passed, and this count value is stored in the variable
Count. Case (a) shows the two reads of the counter occurring within a countdown
cycle – no tick has occurred. In this case the variable Count is not greater than the
variable LastCount. Case (b) shows a new countdown cycle underway when the
counter is read for the second time. In this case a tick has occurred; Count is
greater than LastCount. Case (c) shares the same result as case (a) in that

13 THE PC TIMER410

Count is not greater than the variable LastCount. When using the same criteria
to test for a tick as used for case (a), we will make an incorrect evaluation that a
tick has not occurred because the two reads of the counter in case (c) are made
more than a full countdown period apart (and Count < LastCount).

Figure 13-3 Accounting for timer ticks.

Evaluating Elapsed Time
At the start of the timing process, the counter is latched, read, and its value is
stored in the data member InitCount. This value represents ‘zero’ time, and is
the number of counts remaining before the next tick as shown in Figure 13-4.

Figure 13-4 Evaluation of the elapsed time.

At the end of the ‘Elapsed Time’ the timer is read again and its value stored in the
variable Count. The number of timer counts since the last tick can be evaluated by
subtracting Count from 65,535 (i.e. 65,535 – Count). The number of tick counts
within the elapsed time is stored in TickCount. Therefore, the total counts
corresponding to the elapsed time is:
TotalCounts = InitCount + (TickCount-1)*65535 + 65535–Count;

Which can be written as:

(a) Tick has not occurred
 Count is not LastCount

65,535

LastCount

Count

0 Time
0

(b) Tick has occurred
 Count LastCount

65,535
Count

LastCount

0 Time
0

(c) Tick is missed
Read period 1 countdown (54.9 ms)

65,535

Count
LastCount

0 Time
0

Elapsed Time

65,535

0

InitCount, LastCount

0
‘zero time’

Tick occurred
 (0 65,535)

Tick occurred
 (0 65,535)

Time

65,535

0
0

Count

Current
Time

Tick occurred
 (0 65,535)

Tick occurred
 (0 65,535)

13 THE PC TIMER 411

TotalCounts = InitCount + TickCount*65535 – Count;

This is then easily converted into a value of time by knowing the frequency of the
PC’s clock that drives the counter.

The purpose and operation of the member functions of this class are explained as
follows.

The PCTimer() function shown in Listing 13-2 is the constructor for the
PCTimer object class. The constructor allocates space for all data members of the
class and then takes an initial reading of the timer for the ‘zero time’ reference.
Obtaining the ‘zero time’ reference is performed within the body of the constructor
by using the function ResetTimer().

Listing 13-2 The constructor of the PCTimer class.

PCTimer::PCTimer()
{
 ResetTimer();
}

The ReadTimer() function determines the total number of counts since zero
time until the instant ReadTimer() is called. The total number of counts is
calculated as described above. Finally, the total count value is converted into a
value of time in milliseconds and a value of type double is returned. The
ReadTimer() function does not call another member function to avoid added
delays. Instead, all the code it needs is placed within its body.

The Delay() function is used to generate a specified delay that is passed to it as a
parameter in milliseconds. When called, it reads the timer once to determine the
start of the delay period, being the current number of counts since zero time. Then
it adds the number of counts since zero time to the number of counts corresponding
to the specified delay. The timer is then read repeatedly until the number of counts
since zero time is equal to the total number of counts evaluated above. At this point
in time the delay will expire.

The UpdateTicks() function simply performs the task of quickly monitoring
the tick status during down-counting (faster than the ReadTimer() function). It
does this using the same method as employed in the other member functions of the
PCTimer class. For the proper functioning of the PCTimer class, the Update()
function must be called at least once within a countdown, preferably every 40 ms.
This completes the development of our PCTimer object class. The function file
pctimer.cpp that contains these functions is given in Listing 13-3.

Listing 13-3 Member functions of the PCTimer class - pctimer.cpp.

#include <dos.h>

13 THE PC TIMER412

#include "pctimer.h"

PCTimer::PCTimer()
{
 ResetTimer();
}

void PCTimer::ResetTimer()
{
// Latch Timer 0
 outportb(0x43, 0xD2);

// Read latched Count
 LastCount = InitCount = inportb(0x40)+inportb(0x40)*256;
 TickCount = 0; // Initialise to zero.
}

double PCTimer::ReadTimer()
{
 double Time;
 unsigned long TotalCounts;
 unsigned int Count;

// Latch Timer 0.
 outportb(0x43, 0xD2);

// Read latched Count
 Count = inportb(0x40) + inportb(0x40)*256;

 if(Count > LastCount)
 TickCount++;

 LastCount = Count;

 TotalCounts = ((long)InitCount + TickCount*65535L
 -(long)Count);
 Time = (TotalCounts/1.1932)/1000.0;
 return Time; // In milliseconds.
// return TotalCounts;
}

void PCTimer::Delay(const double& milliseconds)
{
 unsigned int Count;
 long StartCount, DelayCount, EndCount, TotalCount;

13 THE PC TIMER 413

// Latch Timer 0.
 outportb(0x43, 0xD2);

// Read latched CountOne.
 Count = inportb(0x40) + inportb(0x40)*256;

 if(Count > LastCount)
 TickCount++;

 LastCount = Count;
 StartCount = ((long)InitCount + TickCount*65535L
 -(long) Count);
 DelayCount = (long) (milliseconds*1.1932*1000);
 EndCount = StartCount + DelayCount;

// Repeat a loop for the duration of the period.
 do
 {
 // Latch Timer 0.
 outportb(0x43, 0xD2);

 // Read latched CountOne.
 Count = inportb(0x40) + inportb(0x40)*256;

 if(Count > LastCount)
 TickCount++;

 LastCount = Count;
 TotalCount = ((long)InitCount + TickCount*65535L
 -(long)Count);
 }
 while (TotalCount < EndCount);
}

void PCTimer::UpdateTicks()
{
 unsigned int Count;

// Latch Timer 0.
 outportb(0x43, 0xD2);

// Read latched Count.
 Count = inportb(0x40) + inportb(0x40)*256;

13 THE PC TIMER414

 if(Count > LastCount)
 TickCount++;

 LastCount = Count;
}

As mentioned previously, it is essential that when using any of the member
functions of the class that they are called within a countdown cycle. The class will
function best if the PC’s interrupts are disabled, however, we have chosen to leave
all interrupts active to avoid unnecessary complexity in our programs. The effect of
these interrupts may cause small and unforeseen time delays.

For example; An attempt is made to read the timer at a particular instant using the
ReadTimer() function. If the timer interrupt also occurs at this time, it will force
the function ReadTimer() to wait until the timer interrupt has been serviced.
This delay will cause ReadTimer() to return a count value that is greater than
the instantaneous value when the call to the ReadTimer() function was initiated.
The effect of interrupts is demonstrated in one of the programs that uses a member
function of the PCTimer object.

NOTE

Although updating the tick count is handled automatically by the Delay()
function while it is active, the ReadTimer() and UpdateTicks()
functions will only perform this task at the instant they are called. Therefore, if time
periods need to be measured, ensure that functions ReadTimer() and
UpdateTicks() are called repetitively within a full timer countdown period
(54.9 ms) to correctly monitor and update the tick count value.

13.5 Measurement of Time
The PCTimer object class will be used to demonstrate the measurement of real-
time. As explained earlier, measurement of time periods can be affected by the
execution of interrupt routines. The following program will allow us to observe the
delays that can be generated by the various interrupt service routines executing in
the PC. The disable() function can be called to stop all interrupts (disabling
most of the PC’s peripherals, including the keyboard). Therefore, make sure that
the interrupts are disabled for a minimum length of time! Calling the enable()
function re-enables the interrupts and allows the PC’s peripherals to resume
operation. The program that measures time is shown in Listing 13-4.

13 THE PC TIMER 415

Listing 13-4 Measurement of time – time.cpp.

#include <iomanip.h>
#include <math.h>
#include <iostream.h>
#include <conio.h>
#include <dos.h>

#include "pctimer.h"

main()
{
 PCTimer T;
 double TimeValue[1000];
 int i;

// disable();
 for(i = 0; i < 1000; i++)
 {
 for(int j = 0; j < 50; j++)
 sin(j);
 TimeValue[i] = T.ReadTimer();
 }
 enable();

 for(i = 1; i < 1000; i++)
 {
 cout << i << '\t';
 cout << setprecision(3) << TimeValue[i] << '\t';
 cout << setprecision(3) << (TimeValue[i] -
 TimeValue[i-1])<< '\t';
 cout << endl;

 if(i % 20 == 0)
 {
 cout << "Press a key for more ... ";
 getch();
 cout << endl;
 }
 }

 return 0;
}

13 THE PC TIMER416

Executable File Generation
Required Files Listing No. Project File Contents
pctimer.cpp
pctimer.h
time.cpp

Listing 13-3
Listing 13-1
Listing 13-4

pctimer.cpp
time.cpp

The program measures the time consumed by each iteration of a for loop that
executes 1000 times. Within this for loop is another for loop that repeatedly
executes the sin() function 50 times for no real purpose except to waste time.
You can alter the number of times the sin() function executes to change the time
spent by each iteration of the external for loop. The ReadTimer() function is
called within each iteration to read the time and store the time values in an array.
Note that the UpdateTicks() function does not need to be called since the
ReadTimer() function monitors and accounts for timer ticks, and importantly,
the for loop will execute in less than a full countdown period.

The time value and also the time difference between two consecutive readings of
the timer are displayed on-screen 20 lines at a time. Interrupts will have the effect
of adding time delays of varying value to the time taken to perform the
calculations. Therefore, if interrupts are active (not disabled), calculations will take
different periods of time, and it is these differences that the program is displaying.
If the interrupts are disabled, calculation times will be uniform. Therefore, any
irregularities in the times displayed in the third column will be caused by
interrupts. You can run the program twice, once with the interrupts disabled and
then with the interrupts enabled to observe these effects. These results should
provide some insight into the effect of interrupts when measuring time.

13.6 Reflex Measurement
In this section we will use the interface board to measure a person’s hand reflexes.
A program has been provided that will light up a set of LEDs on the interface board
after a random time delay. The person under test will react and press the button
switch on the board in response to the LEDs lighting up. The delay in time from
the LEDs lighting up and the press of the button switch is a measure of a person’s
reflexes. Listing 13-5 shows the program that performs the reflex measurement.

Listing 13-5 Reflex measurement – reflex.cpp.

#include <iomanip.h>
#include <conio.h>
#include <iostream.h>
#include <stdlib.h>

13 THE PC TIMER 417

#include "pport.h"
#include "pctimer.h"

main()
{
 double ReflexTime;
 ParallelPort PPort;
 PCTimer T;

// Turn off LEDs at start.
 PPort.WritePort0(0);
// A long beep.
 cout << "\a\a\a\a\a" ;

// Time delay of 1.5-5.0 sec.
 T.Delay(1500+rand()%3500);

// Light up all 8 LEDs.
 PPort.WritePort0(255);

// Reset Timer.
 T.ResetTimer();

// Wait for button press.
 while((PPort.ReadPort1() & 0x80) == 0)
 T.UpdateTicks();

// Read PC Timer.
 ReflexTime = T.ReadTimer();

// Turn off LEDs.
 PPort.WritePort0(0);

 cout << "Your reflex time is ";
 cout << setprecision(3) << ReflexTime;
 cout << " ms." << endl;
 getch();

 return 0;
}

13 THE PC TIMER418

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
pctimer.cpp
pctimer.h
reflex.cpp

Listing 10-8
Listing 10-7
Listing 13-3
Listing 13-1
Listing 13-5

pport.cpp

pctimer.cpp

reflex.cpp

When this program first executes, it turns off all LEDs and issues a long beep. It
then generates a random time delay between 1.5 and 5.0 seconds, followed by
lighting all eight LEDs and initialising the timer to ‘zero time’. The user then reacts
to the LEDs lighting up by pressing the button switch on the interface board. The
program detects the button press and calls the ReadTimer() function to read the
timer and return the time that has elapsed since ‘zero time’. The LEDs are turned
off and the reflex time is displayed on-screen.

Connect the interface board’s BASE address outputs to the inputs of the LED
Driver IC according to Table 13-4. The button switch connects to the BASE+1
input as shown in Table 13-5.

Table 13-4 LED connections. Table 13-5 Switch connection.

BASE Address
(Buffer IC, U13)

ULN2803A Pin No.
(Driver IC, U3) Button Switch

BASE+1 Address
(Buffer IC, U6)

D0 1 OUT D3
D1 2
D2 3
D3 4
D4 5
D5 6
D6 7
D7 8

13.7 Generating a Time-Base
In Chapter 10 we developed a program (Listing 10-11) to monitor and display the
pulse-train from the the interface board’s VCO (voltage-controlled oscillator). The
horizontal axis of the plot (time) was generated by using software loops and not
from real-time techniques. In the original program, at every instant the VCO’s
pulse-train was read, the trace was plotted and the value of i incremented.

13 THE PC TIMER 419

Therefore, each change in i could be considered as a ‘new reading’. Our real-time
capabilities can be now used to incorporate an accurate time-base with the graphics
plot. Listing 13-6 shows a modified version of the original program (changes
shown in bold typeface) that uses a proper time-base for its horizontal axis.

In this program the variable i is still used for positioning the trace along the x axis.
However, its meaning is different, now becoming a time unit of 10 ms. For this
new arrangement, the main loop in the program plots continuously but only
increments the value of i every 10 ms. Therefore, plotting along the horizontal
axis moves by one pixel every 10 ms. This also means that the resolution of the
plot is 10 ms. That is, if the signal changes in less than a 10 ms period, its change
cannot be properly represented and may show as a series of vertical lines. This can
be rectified by re-coding the program to use a smaller value for the delay between
timer reads to suit the frequency of the incoming signal.

Listing 13-6 Graphical display of pulse-train with a real time-base - timebase.cpp.

/***
The frequency of the pulse-train being output by the
voltage-controlled oscillator will change as we change
the analog input voltage to the VCO circuit. The
Potentiometer (POT1) on the interface board generates
the input voltage to the VCO and the program reads the
pulse-train being output by the VCO. This pulse-train
is graphically displayed on-screen.
***/
#include <graphics.h>
#include <stdlib.h>
#include <iostream.h>
#include <conio.h>
#include <dos.h>

#include "vco.h"
#include "pctimer.h"

void main()
{
 VCO Vco;

PCTimer T;
 int i=0; // controls plotting in the x range
 int SignalLevel;
 int Driver = DETECT, GraphicsMode, ErrorCode;
 int X, Y;

// set to graphics mode

13 THE PC TIMER420

 initgraph(&Driver, &GraphicsMode, "");

// check for error codes
 ErrorCode = graphresult();
 if (ErrorCode != grOk)
 {
 cout << "Graphics error: "
 << grapherrormsg(ErrorCode) << endl;
 cout << "Press any key to halt:" << endl;
 getch();
 exit(1);
 }

 X = getmaxx();
 Y = getmaxy();
 rectangle(X/4-1, Y/2-76,X*3/4+1,Y/2+76); // border
 setviewport(X/4, Y/2-75,X/4*3,Y/2+75,1);

T.ResetTimer();
 while(!kbhit())
 {
 SignalLevel = Vco.SignalLevel();

 if(SignalLevel == 0) // low level
 lineto(i,100);
 else // high level
 lineto(i,50);

if(T.ReadTimer() > 10)
 {
 T.ResetTimer();
 i++;
 }

 if(i > X/2) // half screen = Viewport width
 {
 i = 0;
 while(Vco.SignalLevel()); // wait for low level
 while(!Vco.SignalLevel());// wait for high level
 clearviewport();
 moveto(0,50);

T.ResetTimer();
 }
 }
}

13 THE PC TIMER 421

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
vco.cpp
vco.h
pctimer.cpp
pctimer.h
timebase.cpp

Listing 10-8
Listing 10-7
Listing 10-4
Listing 10-1
Listing 13-3
Listing 13-1
Listing 13-6

pport.cpp

vco.cpp

pctimer.cpp

timebase.cpp

The ‘zero time’ reference is set before starting to plot by calling the function
ResetTimer(). This function is also used in the following if statement to
periodically reset the timer every 10 ms:
if(T.ReadTimer() > 10)
{
 T.ResetTimer();
 i++;
}

If a 10 ms period has elapsed, the timer is reset to allow the next 10 ms period to be
measured, and the index i is incremented to allow the next pixel to be plotted.
Otherwise, i will remain as is and plotting will repeat at the same time position.

When the trace has reached the edge of the Viewport’s plot region (X/2; half the
screen width) the program enters an if statement used to setup the screen ready
for a new trace. Inside this if statement the program resets the value of i to zero,
and then waits for the incoming VCO signal to switch to a high level by waiting for
the VCO output to change state from logic-low to logic-high using the following
combination of statements:
while(Vco.SignalLevel()); // wait for low level
while(!Vco.SignalLevel());// wait for high level

This ensures the plot always starts with the same edge transition on-screen. Once
the VCO signal has made the required low-to-high level transition, the screen is
cleared, the cursor repositioned to the left edge, and the timer is reset to a fresh
‘zero time’ reference. Note: if interrupts are enabled, some of the pulses displayed
may have wider widths due to time consumed by interrupt service routines.

Just as we used a real-time program to plot a waveform on the screen, we can
timestamp data in real-time as it is acquired. We will generate a waveform using
the VCO and Charge/Discharge circuitry on the interface board, digitise its
analogue output using the ADC, timestamp these values, and store this data in a
file.

13 THE PC TIMER422

13.8 Data Acquisition with Timestamp
The Charge/Discharge circuit on the interface board can be driven by a digital logic
signal to generate an analog waveform that can be sampled to demonstrate the data
acquisition process. Each data sample can be accurately time-stamped as it is
acquired by using the PCTimer object in the data acquisition program.

In this section, one program will perform data acquisition, time-stamp the data as it
is acquired, and store the data into a disk file for later analysis. A second program
will retrieve the stored data from the disk file and process the data to determine the
period of the waveform generated by the Charge/Discharge circuit.

13.8.1 The Charge/Discharge Circuit
The Charge/Discharge circuit can be driven from any digital logic signal, including
one that may be generated by software using an output bit of one of the ports.
However, this application uses the simple arrangement whereby the VCO drives
the input of the Charge/Discharge circuit with a periodic signal as shown in Figure
13-5. The Charge/Discharge circuit has a capacitor that is charged when the VCO
output becomes low and discharged when the VCO output becomes high. The
analog signal output from the Charge/Discharge circuit (shown in Figure 13-6) is
digitised by connecting it to the analog-to-digital converter. The program will
acquire the digitised signal for more than one period and time-stamp each digitised
sample. This data is then stored by writing it to a file.

Figure 13-5 Connections for the VCO to drive the Charge/Discharge circuit.

Figure 13-6 Voltage waveform generated by the Charge/Discharge circuit.

0

Voltage
(V)

Time

Period (T)

0

5V
Threshold

O

A B C

VCO Charge/Discharge
Circuit

Input
voltage

POT

Interconnect Lead

Output
pulse-train Input

Output
waveform

+5V

(To ADC)

13 THE PC TIMER 423

13.8.2 Programming Data Acquisition & Timestamp
In this section we will develop two programs. The first program (named
TimeStmp.cpp) will sample the signal using the analog-to-digital converter,
and read the time of sampling. These paired results will then be written to a disk
file. This program will need to use the ADC class and the PCTimer class. Note:
the VCO object is not used since the VCO circuit is only used as a signal generator
to drive the input of the Charge/Discharge circuit.

The second program (named Period.cpp) will retrieve the stored data from the
disk file and scan through the data to determine the period (T) of the waveform. It
does not need to use any of the objects developed previously.

Program 1 – TimeStmp.cpp
The steps involved in this program that digitises the signal are:

1. Reset the timer.
2. While looping until sufficient time has elapsed (5 seconds suggested):

- read time and store in an array.
- read ADC and store in an array.
- wait for sampling period (10 ms. is suggested)

3. Write the data to a file.

The program for timed acquisition of data is given in Listing 13-7.

Listing 13-7 Program to acquire data with time-stamps – timestmp.cpp.

#include <iomanip.h>
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <conio.h>

#include "adc.h"
#include "pctimer.h"

void main()
{
 ADC Adc;
 PCTimer T;
 double Time[500];
 unsigned char Data[500];
 double TempTime;
 double Duration = 5000; // Acquisition period - 5000 ms.
 int i = 0;
 const int SamplingInterval = 10; // Milliseconds

13 THE PC TIMER424

 T.ResetTimer();
 do
 {
 TempTime = T.ReadTimer();
 if(TempTime > i*SamplingInterval)
 {
 Data[i] = Adc.ADConvert();
 Time[i++] = TempTime;
 }
 }
 while(T.ReadTimer() < Duration);

// Create, open then write data to disk file.
 ofstream os("timestmp.dat");

 for(int j = 0; j < i; j++)
 {
 os << setprecision(3) << Time[j] << '\t';
 os << setprecision(3) << (double) Data[j] << endl;
 }
 os.close(); // Close file.
}

Executable File Generation
Required Files Listing No. Project File Contents
pport.cpp
pport.h
adc.cpp
adc.h
pctimer.cpp
pctimer.h
timestmp.cpp

Listing 10-8
Listing 10-7
Listing 10-4
Listing 10-1
Listing 13-3
Listing 13-1
Listing 13-7

pport.cpp

adc.cpp

pctimer.cpp

timestmp.cpp

This program uses the ADC class and the PCTimer class. The ADC class is used to
acquire the data by controlling and reading the analog-to-digital converter. The
PCTimer class is used to accurately measure the time when the signal was
sampled by the ADC. The two objects Adc of type ADC and T of type PCTimer
have been instantiated from these two classes.

We have decided to perform data acquisition for a 5 second duration using a
sampling interval of 10 ms, generating a total of 500 samples. Two arrays named
Time and Data have been created to store the respective data, each having 500
elements, with the variable i used as the array subscript. The variable named

13 THE PC TIMER 425

Duration is used to store the overall sampling duration, and is set to 5000
milliseconds (5 seconds). The variable named SamplingInterval is used to
define the sampling interval and is set to 10 ms. Since the sampling interval is
constant during this data acquisition process, SamplingInterval is declared as
const. The identifier TempTime is used to temporarily store the time read by
reading the PC timer.

Just prior to entering the do-while loop, the program resets the PCTimer object
T, thereby establishing ‘zero time’. The loop will execute continuously with data
read at 10 ms intervals. The if statement compares the current time with the time
when the next sample must be taken. When the current time becomes greater than
the time for the next sample, the ADC will be read, its value stored in the array
Data[], and the time stored in array Time[]. The while loop terminates when
the time exceeds the value of Duration.

All the data stored in the two arrays is then written to a data file named
timestmp.dat. The ofstream constructor is called to create the file by
instantiating the object os of type ostream. The file name timestmp.dat is
passed as a parameter to the ofstream constructor. The for loop initialises the
integer identifier j to zero and continues to write the values until the value of the
subscript j reaches the number of data elements recorded in the do-while loop.
The file os is then closed by calling the member function close() of the
ofstream class. When the program has completed its execution, all data will be
stored as two columns separated by a tab character in the text file
timestmp.dat. The first column contains time values and the second column
contains integer values representing the analog voltage output from the
Charge/Discharge circuit.

Program 2 – Period.cpp
The second program retrieves the data from the disk file and stores this data in
memory. It then processes the data to determine the period of the waveform that
was sampled.

The steps involved in the second program are now given:

1. Read the data file and store the data values in memory.
2. Loop to find two data points one period apart:

- search until a data value in the second column is less than the threshold
(Point O).

- continue searching until a data value is greater than the threshold; store its
corresponding time value (Point A).

- continue searching until a number less than the threshold is found (Point
B).

- continue searching until a number greater than threshold is found; store its
corresponding time value (Point C). Then quit the loop.

3. Calculate the period of the waveform, being the difference between the two
times (Point C – Point A).

13 THE PC TIMER426

The program that performs the above data retrieval and data processing steps is
shown in Listing 13-8 and does not need to use any of the object classes that have
developed previously.

Listing 13-8 Program to determine the period of the output waveform - period.cpp

#include <iostream.h>
#include <fstream.h>

void main()
{
 double *TimePtr; // Pointer to Time data
 double *DataPtr; // Pointer to ADC data
 double MaxData = 0; // Maximum value of ADC data
 int NumData=0; // Number of data pairs in file
 int i =0;
 int Case = 1; // Case in initialised to 1
 int Quit = 0; // Quit = 0 means do not quit
 unsigned char Threshold;
 double TimeA, TimeC;

//Instantiate ifstream object (is).
 ifstream is("tmddata.dat");

// Read through the file to find the number of
// data pairs and the max value of ADC data.
 while(is)
 {
 is >> *TimePtr >> *DataPtr;
 if(!is.fail())
 {
 if(*DataPtr > MaxData)
 MaxData = *DataPtr;
 NumData++;
 }
 }

// close input stream
 is.close();

// Set Threshold based on MaxData
 Threshold = MaxData - 5;

// Alocate memory for Time and ADC data

13 THE PC TIMER 427

 TimePtr = new double[NumData];
 DataPtr = new double[NumData];

// Re-open the file so that reading starts from beginning.
 is.open("tmddata.dat");

// Read file and fill allocated memory
 while(is)
 {
 is >> *(TimePtr+i) >> *(DataPtr+i);
 if(!is.fail())
 i++;
 }

// scan through all array elements pointed by DataPtr.
 for(int j = 0; j < i; j++)
 {
 switch(Case)
 {
 // Search for a Data element less than
 // the threshold
 case 1: if(*(DataPtr+j) < Threshold)
 Case = 2;
 else
 break;

 // Search for a Data element greater than the
 // threshold. Note the time.
 case 2: if(*(DataPtr+j) > Threshold)
 {
 TimeA = *(TimePtr+j);
 Case = 3;
 }
 else
 break;

 // Search for a Data element less than
 // threshold
 case 3: if(*(DataPtr+j) < Threshold)
 Case = 4;
 else
 break;

 // Search for a Data element greater than
 // threshold. Note the time. Set Quit flag

13 THE PC TIMER428

 case 4: if(*(DataPtr+j) > Threshold)
 {
 TimeC = *(TimePtr+j);
 Quit = 1;
 }
 }
 if(Quit)
 break;
 }

// Clean up - deallocate dynamic memory
 delete TimePtr;
 delete DataPtr;

// Display the time difference on the screen.
 cout << "The VCO signal period is ";
 cout << TimeC - TimeA;
 cout << " ms." << endl;
}

The initial part of this program scans through the data file to determine the number
of data pairs (time and ADC data) it contains, and stores this value in the variable
NumData. During this process, the program also determines the maximum value
of ADC data that was sampled, and stores this value in the variable named
MaxData. A threshold value (calculated as five ADC units below the value of
MaxData) is evaluated for use to determine the period of the measured waveform.
Then the program dynamically allocates memory for time data and ADC data using
the two pointer variables TimePtr and DataPtr. The data file is then closed and
opened again so it can be re-read from its beginning to fill the dynamically
allocated memory with its data.

The second part of the program scans through the data stored in the allocated
memory, and evaluates the period of the signal as follows. It first searches for an
element of ADC data (second column) that is below the threshold value. This
would, for example, represent a point such as ‘O’ shown in Figure 13-6. Starting
from this element, the program begins scanning the second column of data until an
element with a value greater than the threshold is first encountered. For example,
this point would represent a point such as ‘A’ shown in Figure 13-6. At this point
the corresponding time value from the first column is stored. Scanning then
continues down the second column of data while searching for an element less than
the threshold value. Such a point would correspond to point ‘B’ in Figure 13-6.
Recording of time is not needed for this point. Scanning continues down the second
data column for the next number that is greater than the threshold value. This will
correspond to point ‘C’ in Figure 13-6. The time corresponding to this instant is
stored. The Quit flag will then be set since we no longer need to continue

13 THE PC TIMER 429

scanning the data. The period of the digitised waveform is then the difference
between the time at point ‘A’ and ‘C’.

Note that the identifier Case (initially set to 1) is used to control the different
phases of scanning the data. When the value of Case is 1, the ADC data array is
first searched for an element pointed to by DataPtr that is less than the threshold.
Once such an element has been found, the variable Case is set to 2 to commence
the next phase of scanning. The identifier Quit is used in a logical sense. It is
initially set to 0, meaning ‘do not quit’. The value of Quit is tested at the end of
each iteration of the loop and if set, the loop will be terminated by executing the
break statement. Once the last point (C) has been found, there is no need to
proceed with scanning, so Quit is set to 1. The time difference representing the
period of the signal is then calculated and printed on-screen.

13.9 Summary
In this chapter we learned how the built-in timer of the PC operates and how it can
be used. The object class PCTimer has been developed with the capability to
measure very long time periods. It has member functions to mark a time reference,
accurately read the elapsed time, and also generate specific delays.

The PCTimer class operates without disabling the PC’s interrupts. As such, the
interrupt service routines will generate short interruptions that can contribute to
minor inaccuracies when measuring time. This was demonstrated when one of our
example programs made repeated measurements of a ‘fixed-time’ event with
interrupts enabled, and later with interrupts disabled. Other programs were
presented in this chapter that measured a person’s reflex reaction time, generated a
waveform plot using an accurate time-base, and used regular and accurate timing to
digitise the electrical waveform produced by the interface board’s
Charge/Discharge circuit.

13.10 Bibliography
Van Gilluwe, F., The Undocumented PC, Addison Wesley, 1994.

IBM, Technical Reference – Personal Computer AT, IBM Corporation, 1985.

Auslander D.M. and Tham, C. H., Real-Time Software for Control, Prentice Hall,
1990.

Intel, M8254 Programmable Interval Timer – Data Sheet, Intel Corporation, 1986.

13 THE PC TIMER430

Appendix A - Hardware

Circuit Construction

Interface Board Bill of Materials

Circuit Construction
The interface board contains many different and independent circuit blocks to give
the reader the option of working with any number of projects in any order. This
flexibility also allows the reader to combine the board’s various circuit
elements/blocks to form a wide range of custom projects. All circuit blocks need to
be powered and most must be able to interface with the PC’s parallel port. To
satisfy these needs, the interface board has its own power supply circuit block and
a parallel port interface circuit block.

The power supply is the first circuit block that should be assembled, tested, and be
operating properly - should any faults in the power supply be present, then only
this part of the board will need to be investigated and debugged (assuming the
interface pcb was properly checked to be functional). Next, the parallel port
interface circuit block should be assembled, tested, and be operating properly
before the other circuit blocks on the interface board are constructed (in any order).

IMPORTANT: The interface printed circuit board (pcb) should be checked for
faults before proceeding to assemble and solder components onto the board. If in
the very unlikely case the board does have faults, these faults can be detected
quickly and simply on the unpopulated pcb and easily rectified as explained in the
next section. The following sections provide instructions for the assembly of
components, soldering, testing, and debugging of circuits.

Bare Printed Circuit Board
Visually check the bare printed circuit board (pcb) for any obvious short-circuit
tracks or open-circuit tracks caused by faulty manufacture or handling. If any faults
are detected, repair with a sharp blade and/or soldering iron as follows. Breaks in
tracks can be repaired by scraping the coating from both sides of the break to
expose the copper surface. Solder a piece of solid wire across the break. Short-
circuits can be removed by cutting between shorted tracks with a sharp blade.

Test the power supply tracks for short-circuits by measuring the resistance between
the following power and ground paths using a multimeter:

+5V and GND. 12Vunreg and GND.
+9V and GND. - 8V and GND.

The easiest place to probe each of these paths is at one of the pcb pads connected to
that power path as shown in Figure A-1. In all cases the resistance should be at
least several mega-ohms. If not, there is a short-circuit somewhere which needs to
be detected visually, or by cutting/removing links to break the path up into more
easily managed segments, and re-measuring with the multi-meter.

 APPENDIX A - HARDWARE

Figure A-1 Test Power Supply track paths for short-circuits.

The Assembly Process
Equipment: 1 pair of Cutters/Nippers and 1 pair of small sized long-nose pliers.

The easiest approach to take when assembling the printed circuit board (pcb) is to
manage the process in several stages, assembling on a project-by-project basis if
convenient. This will simplify the testing and any debugging that might be
necessary. However, if the whole board is to be completely assembled in just one
stage, then the following guidelines should simplify and speed the process.

Components should be assembled and soldered flush with the pcb, starting with
those that are lowest in height before proceeding with taller components. This
strategy will result in the following order of assembly:

1. Flat mounting diodes and resistors.
2. IC sockets/ICs.
3. LEDs.
4. Pcb pins.
5. Capacitors that are small in size.
6. Vertically mounted resistors.
7. Terminal blocks and remaining tall components.

433

As each component is fitted to the board, bend two of its leads over slightly to
retain the part. When all components of this category are fitted, flip the board over
and lay the partially complete assembly flat against the work surface (these
components should now be in contact with the work surface). This will keep the
parts positioned flush against the pcb, ready for soldering.

Note: It is easiest to fit a limited number of components at a time, solder them and
then trim their leads close to the board surface using cutters, and then repeat these
steps. This will avoid the situation occuring where a large number of component
leads restrict access to a joint that needs to be soldered.

Many components must be correctly oriented when fitted to the board. These
components include ICs, electrolytic capacitors, LEDs, diodes, and transistors.
Figure A-2 shows the convention used to mark ICs to denote orientation with
respect to pin number one. Usually a notch or dot is placed at the end of the IC
where pin number one is found.

Figure A-2 Marking of IC orientation and pin numbering (top view).

When using IC sockets (recommended) make sure the socket is soldered into the
board with it’s ‘notched’ end corresponding to the IC outline marked on the board.
The notched end of the socket will provide the marker for correct orientation when
fitting the IC into its socket.

Other components have characteristic marking schemes to denote polarity.
Electrolytic capacitors are marked with either a + or - sign on their body. To
determine correct LED orientation, look through the transparent coloured body at
the two terminals as shown in Figure A-3. Typically, the smaller shaped contact is
the anode and the other contact the cathode.

Figure A-3 LED polarity.

Anode Cathode

Anode Cathode

Pin 1 Pin 1 etc. Pin 8

Pin 9Pin 16
Notch

APPENDIX A - HARDWARE 434

Diodes are marked with a line across the length of their body to represent the
cathode. Transistors are correctly fitted to the pcb by complying with the pcb
overlay markings that show appropriate orientation of the transistor bodies.
Importantly, CMOS devices are sensitive to damage from static electricity and are
preferably assembled with antistatic precautions in place.

Note: apply a thin film of heatsink paste to the flat metalised surfaces of the
transistors and voltage regulators before fitting heatsinks. This will improve the
transfer of heat to the heatsink.

The Soldering Process
Equipment & Materials: Soldering iron (> 15 Watts) and electronics grade solder
(0.7 mm to 1.0 mm diameter, 60% tin, 40% lead with flux inside).

Soldering by hand can be described basically as a process where heat is transferred
to the joint to be soldered, followed by the application of solder that then melts and
flows into and around the joining materials. The heat source is removed and the
molten solder solidifies, forming a connection between the component lead and the
pcb pad.

Preparation: To ensure successful soldering, the soldering iron tip and the joint
itself must be clean. Normally the printed circuit board and the component lead
passing through the board will be sufficiently clean. Unfortunately, the same
cannot be said for the soldering iron tip. To clean the iron tip, wet a piece of
‘kitchen’ sponge to be damp but not soaked, and then repeatedly wipe the iron tip
across the sponge until the tip is in a shiny metallic state. If the iron tip cannot be
brought to a shiny metallic state, try tinning the soldering iron tip by applying
solder to it, waiting a short period of time and then wiping it against the sponge. If
this fails to work, a new soldering iron tip is probably needed.

Soldering: This process takes place in three steps:

1. Lightly wet the iron tip with solder (the tip may be sufficiently wet with
solder from the previous soldering operation). This improves the rate at
which heat can be transferred from the iron tip to the joint.

2. Heat the joint with the iron tip for several seconds.
3. Apply solder sparingly to the heated joint - it will flow to fill the joint if the

joint was heated sufficiently during step 2.

Note: When applying solder to the joint in step 3, do not be tempted to apply solder
to the iron tip in order to melt the solder (this can result in a poorly soldered joint).
If the joint is heated sufficiently in step 2, solder flows into the joint as required.
Figure A-4 shows the shape of a correctly soldered joint before and after trimming
using cutters.

 APPENDIX A - HARDWARE 435

Figure A-4 Correctly soldered and trimmed joint (plated through hole).

Schematic Diagram Conventions
The following information will help you interpret the schematic circuit diagrams
when studying the circuit blocks and during times of test and debugging:

Inputs to circuits are generally drawn on the left side of the component and
outputs are generally drawn on the right side of the component.
Logic circuits or circuits having logic inputs and/or outputs sometimes have
small circles placed on their input or output pins at the border of the circuit
block. This denotes an active low pin. In the case of an input, a low logic
level will activate the pin. For the case of an output, the output pin will be at
a low logic level when in an active state.
The small dots at the ends of input and output lines are pcb pins. Solid dots
show connection between signal lines.
VCC denotes logic circuit +5V.
There are two types of grounds shown on the schematic; horizontally-lined
triangular shape (digital ground) and hollow triangular shape (analog
ground). They are connected together on the printed circuit board and will
both be at 0V.

Testing and Debugging
Testing and debugging should take place in a systematic manner to minimise the
time and effort required. The easiest means of achieving this is to reduce the size or
scope of the system under test by breaking it into smaller circuit blocks and testing
them separately in-turn.

When testing circuit blocks; the input voltages/currents must be set to appropriate
levels for that block before the outputs are checked. If a fault in circuit function is
detected, it will usually be caused by factors such as:

incorrect wiring lead connections.
incorrect value or type of a component(s).
incorrect orientation of a component(s).

Solder Joint

Board Underside

Component Side

PCB

Trimmed Lead

APPENDIX A - HARDWARE 436

poor/inadequate solder joint or wiring connection.
short-circuit due to solder bridging.
defective pcb track(s) caused by faulty manufacture, improper handling of the
pcb (excessive flexing, scoring, etc), and damage from poor repair by the user.
incorrect power supply voltage to circuit(s).
damaged component(s).

The typical steps in circuit test and debugging are:

1. Check for correct wiring connections.
2. Check that the correct components are installed in the right position, with

proper orientation.
3. Check correct power supply to a circuit. If the voltage to the circuit is not

correct:
– Feel the IC to check if the package is unusually warm or hot; indicating

an overloaded or damaged IC that may need to be replaced. Also, check if
other components connected to the power supply are also excessively hot.

– Visually check the tracks and solder joints for any unintended short-
circuits and also for unintended open-circuits or inadequate soldering. If
necessary, follow this with an electrical continuity test using a multimeter
as discussed below.

4. Check that voltages or currents to circuit inputs are set at the correct levels.
5. Test that circuit outputs are correct for the given state of the inputs – if this is

not so:
– The outputs are excessively loaded by; connection to other circuits or

components on the board, or by short-circuited track(s).
– The component is faulty and needs to be replaced.

CONTINUITY TESTS

Continuity tests are performed to detect short-circuits and open-circuits using a
multi-meter switched to ‘resistance’ mode. The power to all circuitry MUST be
TURNED OFF before commencing with continuity tests.

As mentioned earlier, to simplify testing and debugging, one circuit block should
be assembled and then tested at a time, before proceeding to build the next circuit
block. The testing and debugging of these circuit blocks is explained in the
following text, presented in the order the related projects appear through the book.

Removing Components
The following instructions are recommended for removing components from the
pcb (and not damaging it) with the aid of the most basic hand tools. More elaborate

 APPENDIX A - HARDWARE 437

tools are often used if they are available, however, most readers will not have
access to such equipment. To minimise any likelihood of damage to the pcb,
components with more than two leads (or pins) are sacrificed during their removal.
NOTE: the pcb can also be damaged if any pads (or tracks) are subject to the
application of heat from a soldering iron for excessive periods of time.

Discrete components (resistors, capacitors, etc.)
If the component has pliable leads, then the simplest method to remove the
component is to grip one lead using pliers and then heat its solder joint until the
joint becomes molten. Once this happens, lift the lead completely from the board.
Perform the same process for the other component lead(s).

If the component has stiff leads that will not allow an individual lead to be lifted
from the board, the component will need to be sacrificed by snipping each of its
leads using cutters.

Integrated Circuits (ICs)
IC sockets should be used for all positions on the pcb where ICs are to be placed.
This allows quick and easy fitting and removal of ICs without damage to the board
or the IC. Should an IC be fitted without using an IC socket, it is recommded that it
be removed from the board by cutting each of its legs. Then remove each leg in-
turn in a similar method as for individual leads of discrete components.

Cables and Connection Leads
Table A-1 shows the components needed for all cabling. These cables are shown in
Figure A-5 and Figure A-6. We recommended you fabricate only those
interconnecting leads actually needed for a particular project and purchase the
D25M to D25M cable as an already manufactured unit.

Table A-1 Cable Components for all Projects.

Quantity Component Description
1 One-to-one D25 Male to D25 Male cable
50 Pcb pin socket, suit pin 0.9 – 1.0 mm

(for interconnect cables)
7 m Hookup wire (for interconnect cables)
1 m Heatshrink tubing; 2.5 - 3 mm diameter

APPENDIX A - HARDWARE 438

Figure A-5 One-to-one D25 Male to D25 Male cable.

Interconnect Lead Assembly
The interconnect leads are used to connect outputs of circuit blocks/elements to
inputs of circuit blocks/elements. DO NOT at any time connect an output to
another output - doing so will most likely damage the components involved. Each
interconnect lead (shown in Figure A-6) you need can be fabricated as follows.

Solder a pcb pin socket to one end of a 25 cm length of hookup wire. Slide a 15
mm length (approximate) of heatshrink tube along the wire and onto the socket.
The tube should be positioned about halfway along the socket (far enough to
prevent contact between sockets when the sockets are in use connected to adjacent
pcb pins on the board). Apply heat to the heatshrink tube to shrink it in place.

Slide a second 15 mm length (approximate) of heatshrink tube onto the other end
of the wire. Solder this end of the wire to the second pcb pin socket. Position and
shrink the second heatshrink tube tube as described above.

Figure A-6 PCB interconnecting lead – socket to socket.

Interconnect Lead Testing
Test the mechanical strength of each lead’s solder joints by holding a socket in
each hand and pulling the lead using moderate force. Should a socket come loose,
repeat the assembly operation. Electrical continuity can be tested using a
multimeter set to resistance mode. Resistance between sockets should be
thousandths of an Ohm at most.

2 metres

D25 Male D25 Male

25 cm

 APPENDIX A - HARDWARE 439

Power Supply Circuitry

Assembly
Fit and solder all the components listed in Table A-2 into their position as marked
on the pcb overlay and as shown in Figure A-8 and Figure A-9.

Table A-2 Power Supply - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

2 0.1 F ceramic monolithic capacitor 0.2 inch C2, 3
2 1 F 16V tantalum electrolytic capacitor 0.2 inch C13, 14
1 4700 F, 16V electrolytic capacitor RB 0.5 or

0.35 inch
C1

1 1K resistor ¼ W R94
1 1K8 resistor ¼ W R52
3 1N4004 diode D1, 2, 10
1 LM7805CT voltage regulator TO-220 U1
1 LM7809CT voltage regulator TO-220 U2
1 Power pack; +12V DC, 1A
3 2 way terminal block 5mm pitch J2, 9, 10

16 Pcb pin, 0.9 - 1.0 mm diameter
2 Heatsink 12 C/W HS1, 2
2 M3 screw 6-10 mm long (or equiv.)
2 M3 nut
2 M3 locking washer

Testing
Figure A-7 shows the schematic diagram for the power supply, excluding the
circuitry for generating –8V DC, that is used solely by the DAC and grouped with
it. The interface board can be powered by any DC power supply capable of
providing voltages in the range from 13V to 18V at currents of 1A or greater. The
cheapest means of providing this power is by using a 12V DC powerpack with 1A
capacity. The powerpack will usually provide voltages above 12V until current
draw becomes excessive (greater than approximately 1A).

APPENDIX A - HARDWARE 440

Figure A-7 Power Supply Circuit – schematic diagram.

The input voltage to both the +5V and +9V voltage regulators should be in the
range +12V to +18V (this upper value depends on the powerpack or DC supply
used). If not:

– Ensure the wiring between the powerpack or DC power supply, and
terminal block J2 has the correct polarity.

– Check that diode D10 is fitted with correct polarity.

The output voltage of the +5V and +9V regulators should be within +4.75V to
+5.25V and +8.55V to +9.45V respectively, due to their voltage tolerances. If this
is not the case, check:

– Tantalum electrolytic capacitors C13, C14, and diodes D1, D2 are fitted
with correct polarity.

– Regulators are fitted in the correct orientation as marked on the pcb.
– Short- and open-circuits on connecting tracks or around solder joints.
– That load resistors R52 and R94 are fitted.

NOTE

Eight pcb pins connected to GND and eight pcb pins connected to +5V are located
adjacent to the power supply’s two-way terminal blocks. These pins have been
provided to set input logic levels for circuits, and to facilitate testing of circuits.

 APPENDIX A - HARDWARE 441

Figure A-8 Power Supply Circuit – component positions.

Figure A-9 Power Supply Circuit – components fitted.

PINS
+5V PINS40

46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04
74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

APPENDIX A - HARDWARE 442

Parallel Port Interface

Assembly
Fit and solder all the components listed in Table A-3 into their position as marked
on the pcb overlay and as shown in Figure A-11 and Figure A-12.

Table A-3 Parallel Port Interface - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

2 0.1 F ceramic monolithic capacitor 0.2 inch C20, 22
4 470 resistor ¼ W R29, 30, 43,

44
16 10K resistor ¼ W R78 - 93
2 74HC245 CMOS IC DIL20 U6, 13
2 IC socket 20 pin
1 D25 female right angle connector J1

23 Pcb pin, 0.9 - 1.0 mm diameter

Testing
Figure A-10 shows the schematic diagram for the interface circuitry. The two
‘Buffer’ ICs are used to protect the parallel port of the PC from damage should
faults occur on the interface board.

Note: Ensure that both Buffers are fully disconnected from other devices (including
the parallel port) prior to testing.

The voltage at the power supply pin of each logic ‘Buffer’ (74HC245, pin 20)
should be approximately +5V (the same as that output by the +5V voltage
regulator). If this is not the case, check:

– Incorrect IC orientation, faulty IC socket connections, short-circuits,
open-circuits, a faulty IC, and the +5V internal power supply.

The input pins that control the direction of data flow and enable the output signals
must be connected as follows:

– DIR input (pin 1) must be at +5V, and EN (pin 19) must be at 0V.

The input data lines to the Buffers have pull-up resistors fitted. This ensures correct
interfacing to any TTL logic in the parallel port. The resistors also connect any
unused input pins to a high logic state. Inputs not connected to a logic level can
cause unpredictable circuit behaviour. These resistors will produce +5V input
voltages at each pin when the interface cable to the PC is disconnected. The output
data pins from the Buffers should have corresponding high logic levels. The four
resistors connected to the D25 connector help protect the BASE+2 interface at the
parallel port from damage.

 APPENDIX A - HARDWARE 443

Figure A-10 Parallel Port Interface Circuit - schematic diagram.

Disconnect the PC interface cable when testing the following circuitry. Test one
data input of the Buffer (74HC245, U13) at a time as follows:

The input data pin (shown as A1, A2, ..., A8) should be at +5V, and therefore, at a
high logic state. The corresponding output pin (shown as B1, B2, ..., B8) should be
at the same high logic state. Repeat this test for all other input pins.

Connect the input data pin (shown as A1, A2, ..., A8) to GND by first grounding
one end of an interconnecting lead. Touch the other end of the lead to that pin’s
pull-up resistor lead that is in-line with the pin on the board. The corresponding
output pin (B1, B2, ..., B8) should be at the same low logic state. Repeat for all
other input data pins.

Test one data input of the Buffer (74HC245, U6) at a time as follows:

Connect one input data pin to GND by first grounding one end of an
interconnecting lead and connecting the other end to an input pcb pin. The
corresponding output pin should be at the same low logic state. Repeat for all other
input data pins.

Swap the lead connection from GND to +5V and connect the other end to apply
+5V to an input pcb pin. The corresponding output pin should be at the same high
logic state. Repeat for all other input data pins.

If any of the above tests fail, check for:
– Incorrect IC orientation, short-circuits, open-circuits and a faulty IC.

APPENDIX A - HARDWARE 444

Figure A-11 Parallel Port Interface Circuit - component positions.

Figure A-12 Parallel Port Interface Circuit - components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04

74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

PINS
+5V PINS

 APPENDIX A - HARDWARE 445

LED Driver Circuitry

Assembly
Fit and solder all the components listed in Table A-4 into their position as marked
on the pcb overlay and as shown in Figure A-14 and Figure A-15.

Table A-4 LED Driver Circuitry - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

8 330 resistor ¼ W R1, ..., R10
(not inclusive)

8 Red LED 3mm diameter body LED1-8
1 ULN2803A transistor array DIL18 U3
1 IC socket 18 pin
8 Pcb pin, 0.9 - 1.0 mm diameter

Testing

Figure A-13 LED Driver Circuit - schematic diagram.

Figure A-13 shows the schematic diagram of the LED Driver circuitry. This circuit
block is ideal for testing logic levels of particular signals read or controlled by
software – especially when writing and debugging a program. The circuit
comprises one ULN2803A Driver IC along with eight associated resistors and
LEDs. The IC contains eight separate darlington transistors, each one used to
switch current through an output pin. Connecting logic level signals to the Driver
will turn on and off the respective LEDs to indicate their logic state.

Note: assemble and test one series connected LED and resistor first – to check the
correct polarity of the LED. Establishing LED polarity is discussed in the earlier
section of this appendix titled “The Assembly Process”.

APPENDIX A - HARDWARE 446

The voltage level at the ULN2803A power pin (10) should be +5V. The LED
terminals furthest from the resistors should also be at +5V. If this is not so, check:

– Incorrect IC orientation, faulty IC socket connections, short-circuits,
open-circuits, a faulty IC or LED, and faulty +5V internal power supply.

The ULN2803A Driver operates as follows:

3. When a Driver input pin (D0, D1, …, D7) is taken to a high logic level (use
+5V), the corresponding output pin (Q0, Q1, …, Q7) will be switched
internally to ground voltage (0V). This will light the corresponding LED as
current flows from VCC (+5V), through the LED, resistor and the Driver
output pin to its internal ground.

4. When a Driver input is driven to a low logic level (use GND), the
corresponding output pin connection to GND will be broken, interrupting
current flow through the LED and resistor, extinguishing the LED.

Should any LED fail to light, check:
– Incorrect LED polarity, short-circuits, open-circuits and faulty LEDs or

resistors.

 APPENDIX A - HARDWARE 447

Figure A-14 LED Driver Circuit – component positions.

Figure A-15 LED Driver Circuit – components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04
74HC157

74HC245

74HC245

40
93

PINS
+5V PINS

U
LN

28
03

A

APPENDIX A - HARDWARE 448

 APPENDIX A - HARDWARE

Digital to Analog Converter Circuitry
The DAC circuitry is shown in Figure A-16 and comprises the DAC itself and a
DAC Buffer Circuit.

Assembly
Fit and solder all the components listed in Table A-5 into their position as marked
on the pcb overlay and as shown in Figure A-17 and Figure A-18.

Table A-5 Digital to Analog Converter - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint

PCB
Designator

-8V Supply:
1 1N4004 diode D3
1 2 way terminal block 5 mm pitch J14
1 9V battery clip

DAC cct:
1 10 nF ceramic monolithic capacitor 0.2 inch C16
2 0.1 F ceramic monolithic capacitor 0.2 inch C7, 8

11 10K resistor ¼ W R39-41, 70-
77

1 20K resistor ¼ W R22
1 DAC0800 CMOS IC DIL16 U8
1 IC socket 16 pin
8 Pcb pin, 0.9 – 1.0 mm diameter
2 2 pin header 0.1 inch LINK1,

LINK2
1 Jumper (fit to header LINK1 or LINK2) 0.1 inch

DAC Buffer cct:
2 0.1 F ceramic monolithic capacitor 0.2 inch C5, 6
2 10K resistor ¼ W R26, 27
1 LM358 IC DIL8 U10
1 IC socket 8 pin
1 Pcb pin, 0.9 - 1.0 mm diameter

449

Testing the DAC Circuit

Figure A-16 DAC & DAC Buffer Circuit - schematic diagram.

Note: Ensure that a usable 9V battery is connected to the terminal block J14.

The voltage level at the DAC (U8) positive power supply pin V+ (13) should be at
+5V, the DAC negative power supply pin V- (3) should be at approximately –8V.
If not, check:

– Incorrect IC orientation, faulty IC socket connections, flat 9V battery,
short-circuits, open-circuits, faulty DAC IC, and the +5V internal supply.

When all DAC logic input pins (D0, D1, ..., D7) are unconnected, all logic inputs
should be pulled up to +5V. If this is not so, check for:

– Short-circuits, open-circuits, faulty resistors, and poor solder joints.

Fit the single Jumper to the Unipolar position, marked as LINK1. With all DAC
logic inputs pulled to +5V (input pins unconnected), the output of the DAC (pin 4)
should be at –5V. Conversely, when all DAC logic inputs are connected to GND
(0V) the DAC should produce 0V. If this is not so, check for:

– Poor lead connections, short-circuits, open-circuits, faulty soldering of
components, components having incorrect value, and faulty components.

Fit the jumper to the bipolar position (LINK2). With all DAC logic inputs pulled to
+5V (input pins unconnected), the DAC output should be at –5V. With all DAC
logic inputs connected to GND (0V), the DAC output should produce +5V.

APPENDIX A - HARDWARE 450

Testing the Buffer Circuit
This circuitry buffers the output voltage generated by the DAC circuitry and inverts
this voltage about zero volts to bring the DAC output voltage, VDAC, to a positive
convention (increasing value of the DAC input byte produces an increasing
voltage, VDAC).

The voltage level at the op-amp (U10) power supply pins should be +9V (pin 8)
and approximately –8V (pin 4). If not, check:

– Incorrect IC orientation, faulty IC socket connections, +9V internal power
supply, flat 9V battery, short-circuits, open-circuits, and a faulty LM358
IC.

With the DAC output at –5V (all DAC logic inputs pulled to +5V), the non-
inverting input of the ‘Buffer’ op-amp (U10, pin 3) should also be –5V. Likewise
the inverting input and the output of the ‘Buffer’ op-amp (U10, pin 2 and pin 1
respectively) should be –5V. If not, check:

– Short-circuits, open-circuits, faulty IC socket connections, and a faulty
LM358 IC.

The ‘inverter’ op-amp’s non-inverting input pin (U10, pin 5) and the inverting
input pin (U10, pin 6) should both be at 0V. The ‘inverter’ op-amp output pin
(U10, pin 7) should be at +5V. If not, check:

– Short-circuits, open-circuits, faulty IC socket connections, incorrect value
or faulty resistors R26, R27, and a faulty LM358 IC.

 APPENDIX A - HARDWARE 451

Figure A-17 DAC & DAC Buffer Circuit – component positions.

Figure A-18 DAC & DAC Buffer Circuit – components fitted.

40
46

LM
35

8

LM
35

8

LM
35

8

D
A

C
08

00

A
D

C
08

04
74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

PINS
+5V PINS

DAC Cct
DAC Buffer Cct

APPENDIX A - HARDWARE 452

Motor Control Circuitry

Assembly
Fit and solder all the components listed in Table A-6 into their position as marked
on the pcb overlay and as shown in Figure A-20 and Figure A-21.

Table A-6 Motor Control Circuitry - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

4 4K7 resistor ¼ W R34, 35, 51, 53
12 10K resistor ¼ W R18-21, 24, 25,

45-50
8 1N4004 diode D5-8, 11-14
4 24V zener diode 1W ZD1, 2, 4, 5
4 BC547 npn transistor TO-92 Q1, 2, 13, 14
4 BD649 npn darlington transistor

(or equivalent)
TO-220 Q5, 6, 15, 16

4 BD650 pnp darlington transistor
(or equivalent)

TO-220 Q8, 10, 17, 18

4 2 way terminal block 5mm pitch J7, 8, 12, 13
2 4 way terminal block 5 mm pitch J6, 11
8 Heatsink 20 C/W HS5-12
8 Pcb pin, 0.9 – 1.0 mm diameter
8 M3 screw 6-10 mm long

(or equivalent)
8 M3 nut
8 M3 locking washer

Testing
Figure A-19 shows the schematic diagram for the motor control circuitry,
comprising two H-bridge circuits used for driving DC and stepper motors. Ensure
wire links are fitted across each two-way terminal block before testing the
circuitry. Connect an external DC power supply (less than 30V) capable of
powering the motor(s) (or the +12V DC 1A power pack if suitable) to the four-way
terminal block connections: Power Supply +ve connects to Vm1 and Vm2, Power
Supply –ve connects to Vm1 GND and Vm2 GND.

 APPENDIX A - HARDWARE 453

Figure A-19 Motor Control Circuit - schematic diagram.

APPENDIX A - HARDWARE 454

The appropriate voltage from the motor power supply should be present at each of
the respective two-way terminal blocks. If not, check:

– Powerpack or external power supply wiring/operation, and wire links are
fitted across two-way terminal blocks.

The four ‘transistor switches’ used in each H-bridge operate independently - each
‘closes’ when its logic input is taken to a high level. Each H-bridge circuit uses two
types of transistor:
1. Two identical lower transistor switch circuits, each using a npn darlington

transistor (e.g. Q5).
2. Two identical upper transistor switch circuits, each using a npn transistor (e.g.

Q2) driving a pnp darlington transistor (e.g. Q8). Without the npn transistor,
the logic input signal could not drive the pnp darlington transistor, since this
darlington configuration needs to be controlled by an input voltage capable of
rising close to the motor supply voltage (Vm1) to turn off the transistor. The
npn transistor ‘inverts’ the logic input signal and can switch off at voltages up
to Vm1. The ‘inverted’ signal then drives the pnp darlington transistor.

Test each of the transistor switches in the two H-bridge circuits in-turn. Fit a
resistor, say 1K (1000) as a light load in place of an actual motor across the
four way terminal block contacts marked M1 and M2.

One lower npn darlington transistor and its diagonally opposing upper pnp
darlington transistor circuitry will be tested at a time, all other logic inputs must
not be connected. For example, logic input C and logic input B will be switched as
follows:

When logic input C is wired to +5V (Q5 ON) and logic input B is wired to +5V
(Q10 ON), the voltage at the four way terminal block contact, M1 should be equal
to approximately 1V and M2 should be equal to approximately Vm1 minus 1V.

Repeat this test for the opposite transistor circuits in the H-bridge controlled by
logic inputs A and D. This circuit test will give opposite voltages at terminal block
contacts M1 (Vm1 minus approximately 1V) and M2 (approximately 1V). Should
any of these tests fail, check:

– Power supply operation, poor lead connections, missing wire links, short-
circuits, open-circuits, faulty soldering of components, components
having incorrect value or incorrect orientation, and faulty components.

Note that the BD649 and BD650 darlington transistors used in the H-bridge (shown
on the schematic with two arrows) are capable of switching currents up to 8A.
Other darlington transistors with similar current capacity and matching pin
configuration can be used. A 24V zener diode in series with a regular diode is
connected across the BD650 darlington transistors to absorb spikes of back-emf
generated during switching. The diodes across the BD649 darlington transistors
limit negative voltages across the transistor to one forward-biased diode drop
approximately (0.7V).

 APPENDIX A - HARDWARE 455

Figure A-20 Motor Driver Circuit – component positions.

Figure A-21 Motor Driver Circuit – components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04
74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

APPENDIX A - HARDWARE 456

Voltage-Controlled Oscillator Circuitry
The VCO circuit uses the Thermistor circuit for several projects within the main
text. Therefore, assembling and testing the Thermistor circuit has been included
with the VCO material.

Assembly
Fit and solder all the components listed in Table A-7 into their position as marked
on the pcb overlay and as shown in Figure A-23 and Figure A-24.

Table A-7 Voltage-Controlled Oscillator - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

VCO cct:
1 1 F ceramic monolithic capacitor 0.2 inch C18
1 100K resistor ¼ W R11
1 1M resistor ¼ W R13
1 4046 CMOS IC DIL16 U4
1 IC socket 16 pin U4
2 Pcb pin, 0.9 - 1.0 mm diameter U4

Thermistor cct:
1 0.1 F ceramic monolithic capacitor 0.2 inch C9
1 100K - 470K resistor (suit thermistor

- see main text Chapter 10)
 R31

1 Thermistor RT1

Testing the VCO Circuit
Figure A-22 shows the circuit diagram for the voltage-controlled oscillator (part of
the phase lock-loop IC) and the thermistor circuitry. The VCO circuit outputs a
digital signal having a square waveform at a frequency proportional to the voltage
applied to its input pin.

The voltage at the power supply pin of the Phase-Lock Loop IC (U4, pin 16)
should be equal to approximately +5V, the same as that output by the +5V voltage
regulator. If not, check:

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket
connections, faulty 4046 IC, and the +5V power supply.

 APPENDIX A - HARDWARE 457

Figure A-22 VCO & Thermistor Circuit - schematic diagram.

Connect the VCO’s voltage input pin VIN (9) to GND and connect an interconnect
lead from the VCO output (pin 4) to one of the 8 LED Driver input pins. This
should produce a slowly changing signal, evident by a LED flashing on and off.
Connecting the VCO voltage input pin to +5V should produce an output pulse-train
having a much higher frequency. If this is not so, check:

– Short-circuits, open-circuits, incorrect value of associated resistors and
capacitors, faulty components, incorrect IC orientation, and faulty
soldering.

Testing the Thermistor Circuit
This is a simple voltage divider circuit having a capacitor connected across its
output to GND. The capacitor has been added to reduce the possible effects of any
high-frequency noise coupled through from the +5V power supply.

Test for +5V at the end of resistor R31 (furthest from capacitor C9). If not present,
check:

– +5V power supply, short-circuits, and open-circuits.

The thermistor will have a particular resistance at room temperature, producing a
corresponding output voltage (VTH) from the voltage divider circuit. Hold the
body of the thermistor between two fingers to warm it (change its resistance) and
the output voltage should change. If not so, check:

– Inappropriate value of resistance for R31, faulty soldering of components,
short-circuits, open-circuits, faulty resistor R31, faulty thermistor, or
faulty capacitor.

APPENDIX A - HARDWARE 458

Figure A-23 VCO & Thermistor Circuit – component positions.

Figure A-24 VCO & Thermistor Circuit – components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04

74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

Thermistor Cct

Voltage-Controlled
Oscillator Cct

 APPENDIX A - HARDWARE 459

Analog-to-Digital Converter Circuitry

Assembly
Fit and solder all components listed in Table A-8 into their position as marked on
the pcb overlay and as shown in Figure A-26 and Figure A-27.

Table A-8 Analog-to-Digital Converter - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

1 150 pF ceramic capacitor 0.2 inch C17
1 0.1 F ceramic monolithic capacitor 0.2 inch C11
1 100 resistor ¼ W R69
4 10K resistor ¼ W R9, 15-17
1 ADC0804 CMOS IC DIL20 U7
1 IC socket 20 pin

13 Pcb pin, 0.9 - 1.0 mm diameter

Testing
Figure A-25 shows the schematic for the Analog-to-Digital Converter (ADC)
circuitry.

Figure A-25 ADC Circuit - schematic diagram.

APPENDIX A - HARDWARE 460

This circuit uses an ADC0804 IC to sample an analog voltage (0 to +5V) at its
input pin (VIN) and produce a digital output byte (0 to 255) that represents this
analog voltage.

The voltage at the ADC0804 power pin (20) should be +5V. If not, check:
– +5V power supply, incorrect IC orientation, short-circuits, open-circuits,

faulty IC socket connections, and a faulty ADC0804 IC.

If the IC has +5V present at its power pin as intended, but the IC is HOT, the
device may be suffering from what is known as CMOS SCR Latch-up. This
phenomena can occur with some CMOS devices, and has the effect of internally
short-circuiting the power pin to GND. To overcome this problem, turn the power
off to the interface board and allow the IC to cool, then re-apply power and check
for normal cool temperature.

The three logic inputs to the ADC0804 (/READ, /START C., and /CS) should be
pulled to +5V by the pull-up resistors R16, R9, and R17. If not, check:

– Faulty soldering of components, short-circuits, open-circuits, faulty
resistors, incorrect IC orientation, and a faulty ADC0804 IC.

To perform the final test for the ADC, connect the /CS and /READ input pins to
GND. Connect an interconnecting lead to the /START C. input, at this stage
leaving the other end of the lead free.

Connect the ADC digital output pins (D0-D7) to the LED Driver Circuit to visually
display their logic state.

Connect the analog input voltage (VIN) to GND. Briefly connect the /START C.
input to GND to initiate a conversion. The resulting ADC output byte should be
close to decimal 0, or binary 0000 0000.

Repeat this test with VIN connected to +5V. The resulting ADC output byte should
be close to decimal 255, or binary 1111 1111.

Note that the most significant bit of the ADC0804 is DB7 (pin 11). This bit should
remain high until the input voltage drops below half the input voltage range (2.5V).

If any of the above tests fail, check:
– Incorrect IC orientation, faulty soldering of components, short-circuits,

open-circuits, faulty IC socket connections, and faulty components.

 APPENDIX A - HARDWARE 461

Figure A-26 ADC Circuit – component positions.

Figure A-27 ADC Circuit – components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04
74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

APPENDIX A - HARDWARE 462

Miscellaneous Circuitry

Figure A-28 Miscellaneous Circuits – component positions.

Figure A-29 Miscellaneous Circuits – components fitted.

40
46

LM
35

8

LM
35

8
D

A
C

08
00

LM
35

8

A
D

C
08

04

74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

Charge/Discharge Cct
Multiplexer Cct

Voltage Buffer Cct

Diode
Test
Cct

Photonic Cct Switch Cct

PO
T

Transistor Cct

Const.
Curr.
Sce.

 APPENDIX A - HARDWARE
463

Multiplexer Circuit

Assembly
Fit and solder all the components listed in Table A-9 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

Table A-9 Multiplexer - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

1 0.1 F ceramic monolithic capacitor 0.2 inch C19
9 10K resistor ¼ W R58-66
1 74HC157 CMOS IC DIL16 U12
1 IC socket 16 pin

13 Pcb pin, 0.9 - 1.0 mm diameter

Testing

Figure A-30 Multiplexer Circuit - schematic diagram.

Figure A-30 shows the schematic for the multiplexer circuitry. This circuit splits
eight bits (or digital signals) into two groups of four bits and allows one group at a
time to be switched through to its four output pins. In this manner, a stream of
eight-bit data can be transmitted as a series of two four-bit groups to another
device, using only four signal transmission signal lines. The disadvantage is the
doubling of time required to transmit when compared to the use of eight direct
connections and no multiplexer.

APPENDIX A - HARDWARE 464

The Select input (pin 1) to the multiplexer controls the connection of inputs 1A-4A
or inputs 1B-4B to the outputs 1Y-4Y respectively. When Select is at a low logic
level, A’s inputs are switched to the output pins. Conversely when Select is at a
high logic level, B’s inputs are switched to the output pins.

The voltage at the power supply pin of the Multiplexer (74HC157, pin 16) should
be equal to approximately +5V, the same as that output by the +5V voltage
regulator. If not, check:

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket
connections, and a faulty 74HC157 IC.

Switch Test I
Ensure all input pins (and output pins) are disconnected. This places all
inputs (including Select) in a high state due to their pull-up resistors. This
will switch the second set of four high-level inputs 1B-4B (inputs D4-D7) to
their corresponding output pins 1Y-4Y (outputs D4-D7) that should all be in
a high state.
Connect the Select input to GND using an interconnect lead (input data pins
disconnected) as before. This will switch the first set of four high-level inputs
1A-4A (inputs D0-D3) to their corresponding output pins 1Y-4Y (outputs
D4-D7) that should all be in a high state.

If either of these tests show bits that are not as stated, then measure the voltages at
each input data pin (disconnected as before). If voltages are not at +5V, check:

– Continuity (turn off power) across each resistor to its respective data bit
(pcb pin). If this value is greater than the 10K resistance specified, then
check the resistor(s) for open-circuits and faulty solder joints.

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket
connections, and a faulty 74HC157 IC.

Switch Test II
Connect all four inputs 1A-4A (inputs D0-D3) to GND using interconnect
leads. Ensure remaining four inputs 1B-4B (inputs D4-D7) are disconnected
(pulled to a high state). Connect the Select input to GND using an
interconnect lead. This will switch the four input bits 1A-4A to their
corresponding output pins 1Y-4Y (outputs D4-D7). The output bits should all
be in a low state. If not, check:
– Incorrect IC orientation, poor connections, short-circuits, open-circuits,

faulty IC socket connections, and a faulty 74HC157 IC.

Connect the Select input to a high state (disconnect the interconnect lead).
This will switch the other four high-level input bits 1B-4B (inputs D4-D7) to
their corresponding output pins 1Y-4Y (outputs D4-D7). At this stage the
output bits should be in a high state. Connect all four inputs 1B-4B (inputs
D4-D7) to GND using interconnect leads. The output bits should now all be
in a low state. If either of these two tests do not comply as stated, check:
– Incorrect IC orientation, poor connections, short-circuits, open-circuits,

faulty IC socket connections, and a faulty 74HC157 IC.

 APPENDIX A - HARDWARE 465

Adjustable Current Source Circuit

Assembly
Fit and solder all the components listed in Table A-10 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

Table A-10 Adjustable Current Source - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

3 0.1 F ceramic monolithic capacitor 0.2 inch C4, 10, 23
1 3K resistor ¼ W R67
4 10K resistor ¼ W R28, 55-57
1 12K resistor ¼ W R68
1 BD650 pnp darlington transistor (or

equivalent)
TO-220 Q9

2 LM358 IC DIL8 U9, 11
2 IC socket 8 pin
2 2 way terminal block 5 mm pitch J4, 16
1 Heatsink 12 C/W HS4
2 Pcb pin, 0.9 - 1.0 mm diameter
1 M3 screw 6-10 mm long

(or equiv.)
1 M3 nut
1 M3 locking washer

Testing
Figure A-31 shows the schematic for the adjustable current source circuitry.
Adjustable current sources have many uses such as charging NiCad batteries and
for electronic test and measurement purposes. This circuitry generates a current
that is proportional to an input voltage (0 to +5V) such as that produced by VDAC.
The resistor Rcurr (of appropriate value) is fitted across the terminal block J16 to
set the range of current level that can be supplied.

The adjustable current source is implemented using three op-amp stages, each stage
performing a different operation. The first op-amp circuit (U11B) scales the input
voltage VDAC by 4/5ths, using a voltage divider circuit formed by resistors R67
and R68. This means that for a maximum input voltage of +5V, the resistive
divider will give +4V at its output. Op-amp U11B buffers this voltage for use by
the second stage of the circuitry (U11A).

The second stage uses op-amp U11A configured as a non-inverting amplifier,
amplifying the voltage signal at its +ve (non-inverting) input terminal using a gain
of two. Note: for a non-inverting amplifier configuration, the gain is equal to 1 + Rf
/R, where Rf is the feedback resistor and R is the grounded resistor. A second

APPENDIX A - HARDWARE 466

voltage divider circuit (that uses resistors R28 and R57) generates the input voltage
at the non-inverting terminal. When the output from the first stage (U11B, pin 7) is
+4V, the input voltage at the non-inverting terminal of U11A will be +4.5V. This
voltage is amplified by two to produce +9V at the output of U11A (pin 1).

Figure A-31 Adjustable Current Source Circuit - schematic diagram.

The final stage in the current source circuitry uses op-amp U9A operating as an
adjustable current source. It takes the output voltage from U11A and drives a pnp
darlington transistor (Q9) such that the voltage at the emitter of this transistor
(marked by an arrow and connected to the –ve input terminal) is equal to the
voltage at the +ve input terminal. Therefore, when the previous stage outputs +9V,
the voltage at the emitter side of the terminal block J16 will also be at +9V. This
produces a net voltage of zero across the resistor Rcurr, meaning that no current
flows through Rcurr, the transistor, and the component fitted across the terminal
block J4.

When the input voltage (VDAC) to the first stage is 0V, the output of U11B will be
0V, the output of the second stage will be +5V and the voltage at the emitter side of
terminal block J16 will also be +5V, producing a maximum voltage across Rcurr
equal to 4V. The level of current generated by the four volts across Rcurr will
depend on its resistance value. Select the value of Rcurr to set the maximum
current range needed.

This adjustable current source can be used for many purposes, including the three
following examples:

i) Virtual Ohmmeter - fit a resistor of correct value (Rcurr) across terminal
block J16 to generate a corresponding range of current. The resistor to be
measured is fitted across terminal block J4. A controlled voltage VDAC
applied to input pin ‘Vin Curr’ will generate a current through the resistor
being evaluated, to produce a voltage across it. This voltage can be

 APPENDIX A - HARDWARE 467

measured using the ADC (or the VCO if its transfer function has been
measured).

ii) NiCad Battery Charger - fit the battery across terminal block J4 with
correct polarity and charge with an appropriate level of current for a
suitable period of time (or until the battery has been charged to the
required voltage).

iii) Transistor or Diode tester (plot characteristic curve) - connect the
component being tested to terminal block J4 with correct polarity. Then
control the current through the device while measuring the voltage
generated across it.

To test this circuit, fit the resistors across each terminal block – try using a 390
resistor for Rcurr and a 470 resistor across terminal block J4.

First test the voltage at both op-amp power supply pins (U11 and U9, pin 8). The
voltage should be approximately +12V when using a +12V powerpack or +12V
power supply. The negative voltage supply pins (U11 and U9, pin 4) should be
approximately –8V.

Connect either 0V or +5V as the input voltage Vin Curr (described above using
VDAC) and move through each stage, testing the input voltage and then the
corresponding output voltage of that stage. Note that the op-amp +ve and –ve input
terminals will be at the same voltage (within a few microvolts) if the op-amp is
functioning properly.

Remembering that effectively zero current passes through the op-amp –ve input
(and +ve input), the current through Rcurr will flow down and branch into the
emitter of darlington transistor Q9. Zero volts connected to Vin Curr will generate
4V across Rcurr (390) and produce a current through Rcurr of approximately
10mA. Nearly all of this current will flow down through terminal block J4 (470)
to generate slightly less than 4.7V across it. The very small amount of current that
does not pass through the terminal block (470) passes through the emitter of the
darlington transistor Q9 to the output of op-amp U9A. This current is used to drive
the emitter voltage to match that voltage present on the op-amp +ve input pin.

If any faults are detected, check:
– +12V power supply, -8V power supply (9V battery), incorrect IC and

transistor orientation, incorrect components, faulty soldering, short-
circuits, open-circuits, faulty IC socket connections or faulty components.

Voltage Buffer Circuit (High Current)

Assembly
Fit and solder all the components listed in Table A-11 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

APPENDIX A - HARDWARE 468

Table A-11 Voltage Buffer (High Current) - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

1 10K resistor ¼ W R23
1 BD649 npn darlington transistor (or

equivalent)
TO-220 Q7

1 LM358 IC DIL8 U9
1 IC socket 8 pin
1 Heatsink 12 C/W HS3
2 Pcb pin, 0.9 - 1.0 mm diameter
1 M3 screw 6-10 mm long

(or equivalent)
1 M3 nut
1 M3 locking washer

Testing
Figure A-32 shows the schematic for the voltage buffer circuitry.

Figure A-32 Voltage Buffer Circuit (High Current) - schematic diagram.

This circuit takes an input voltage signal having low current drive capacity (say a
few milliamps) and produces a matching output voltage capable of providing up to
0.5A of current.

The circuit uses op-amp U9B to drive an npn darlington transistor (Q7) such that
the emitter (shown with an arrow) voltage matches the input voltage at the +ve
input terminal. Resistor R23 is used to generate the feedback voltage and allow
proper circuit operation. The op-amp automatically adjusts the drive current to the
transistor to maintain a constant output voltage as changes in current draw take
place at the output.

First test the voltage at both op-amp power supply pins. These voltages should be
approximately +12V (pin 8) and approximately –8V (pin 4). Connect a resistive

 APPENDIX A - HARDWARE 469

load (say a 100 resistor) across the output pin (VADJ) to GND. With the input
voltage Vin at 0V, the output voltage VADJ should also be at 0V. Apply fixed DC
voltages (up to a maximum of +5V) to the input, Vin. The output voltage (VADJ)
should match the input voltage being applied. The Potentiometer is ideal for
generating various voltages up to +5V.

Note: op-amp U9 uses the –8V power supply. Therefore, ensure the components
listed in Table A-5 that make up the –8V supply are fitted, and a usable 9V battery
is connected.

If any faults are detected, check:
– +12V power supply and –8V power supply (9V battery), incorrect IC and

transistor orientation, faulty soldering, short-circuits, open-circuits, faulty
IC socket connections, and faulty components.

Charge/Discharge RC Circuit

Assembly
Fit and solder all the components listed in Table A-12 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

Table A-12 Charge/Discharge RC Circuit - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

1 1 F, 16V tantalum electrolitic capacitor 0.2 inch C15
2 4K7 resistor ¼ W R36, 37
1 100K resistor ¼ W R12
1 470K resistor ¼ W R38
1 BC547 npn transistor TO-92 Q3
1 BC557 pnp transistor TO-92 Q12
3 Pcb pin, 0.9 - 1.0 mm diameter

This circuitry is shown in Figure A-33 and is used to demonstrate the
charging/discharging characteristics of a resistor/capacitor (RC) circuit. The ADC
circuit can digitise the output signal produced by this circuit and then a waveform
can be plotted.

Charging takes place when the /Charge input signal is activated by driving it from a
high logic level to a low logic level while the Discharge input signal is kept
inactive at low logic level. The voltage across capacitor C15 will increase during
the charging process. The pnp transistor (Q12) controlled by /Charge, conducts
when its base terminal (connected to R36) voltage drops at least approximately
0.7V lower than the emitter terminal (shown with an arrow). This allows current to
flow through charging resistor R12 and charge up capacitor C15 to +5V.

APPENDIX A - HARDWARE 470

Testing

Figure A-33 Charge/Discharge RC Circuit - schematic diagram.

The npn transistor (Q3) is controlled by Discharge and will only conduct when its
base terminal is at a voltage at least approximately 0.7V above its emitter terminal
(connected to GND).

Discharging occurs when the /Charge input is driven to its inactive state (> 4.3V
ensuring transistor Q12 will not conduct) and the Discharge input signal is
activated using a logic-HIGH level. This causes transistor Q3 to conduct and allow
charge stored on the capacitor to flow as a current through the discharge resistor
(R38) and transistor (Q3) to GND. The voltage across the capacitor (C15) will drop
to zero volts by the end of this process. Note that the discharge resistor (R38) is
approximately five times the resistance value of the charge resistor (R12),
producing different charge and discharge time constants (see Figure 13-6).

First test the voltage at the charge transistor (Q12) emitter pin (connected to the
thick track on the pcb) - it should be equal to +5V. If not so, check:

– +5V power supply, incorrect transistor or capacitor orientation, faulty
soldering, short-circuits, open-circuits, and faulty components.

Connect the /Charge and Discharge inputs as described above and observe circuit
function. If the output voltages are not as described, check:

– Incorrect transistor or capacitor orientation, faulty soldering, short-
circuits, open-circuits, and faulty components and/or drive signals used
for /Charge and Discharge inputs that cannot supply the required voltages.

LED and Photodiode/Phototransistor Pair Circuit

Assembly
Fit and solder all the components listed in Table A-13 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

 APPENDIX A - HARDWARE 471

Table A-13 LED and Photodiode/Phototransistor Pair - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

1 0.1 F ceramic monolithic capacitor 0.2 inch C21
2 150 resistor ¼ W R14, 54
2 LED (red or infrared) LED9, 10
1 Photodiode (suit type of LED) D9
1 Phototransistor (suit type of LED) Q11
1 4093 CMOS IC DIL14 U5
1 IC socket 14 pin U5
2 2 way terminal block 5 mm pitch J3, 15
4 Pcb pin, 0.9 - 1.0 mm diameter

Testing
Figure A-34 shows the schematic for the circuirtry associated with the LED and
photodiode/phototransistor pair. These circuits can be used to measure light level,
as proximity sensors, for optical communication and for detecting rotational and
linear position/speed.

Fit appropriate value resistors across terminal blocks J3 and J15 to bias (allow
desired operation) the photodetectors, being either photodiodes or phototransistors.
The value of these resistors will need to be determined through repeated trials.
Note that the phototransistor can be replaced by a second photodiode. Try
increasing resistor values by powers of ten, starting from 100R. Then fine tune for
the most suitable value.

Figure A-34 LED and Photodiode/Phototransistor Pair - schematic diagram.

First, test the supply voltage VCC (+5V) at all four resistors. If the voltage is not
correct, check:

– +5V power supply, faulty soldering, short-circuits, open-circuits and
faulty components.

Test the photo-response of the two photo-transceiver pairs by directing the LED
light sources at the photo-detectors and observing the voltage increase at their pcb

APPENDIX A - HARDWARE 472

pin terminals as the light is blocked. Note that infra-red light is not blocked by
paper. If these tests fail, check:

– incorrect LED or photodetector orientation, faulty soldering, short-
circuits, open-circuits and faulty components.

The NAND gates (NOT AND) are used to produce digital signals from the analog
voltages generated by the photodetectors. They have in-built hysteresis indicated
by the symbol inside their outline. This hysteresis prevents the NAND gate output
fluctuating with small changes of light level.

Switch Interface, Potentiometer, Diode, Zener Diode
and Transistor Circuits

Assembly
Fit and solder all the components listed in Table A-14 into their position as marked
on the pcb overlay and as shown in Figure A-28 and Figure A-29.

Table A-14 Switch Interface, Potentiometer, Diode, Zener Diode
 and Transistor Circuits - Bill of Materials.

Quantity Component Description
Lead Spacing
or Footprint Designator

Switch Interface:
1 2K7 resistor ¼ W R8
1 SPST normally open keyboard pushbutton

switch (or equivalent)
5 mm pitch SW1

1 Pcb pin, 0.9 - 1.0 mm diameter
Potentiometer:

1 Knob for potentiometer
1 1K 16 mm potentiometer 0.2W POT1
1 Pcb pin, 0.9 - 1.0 mm diameter
1 Fabricate POT right angle support bracket

Semiconductor circuits:
2 1K resistor ¼ W R32, 33
1 Resistor (test with a range of values, from

100 to 10K)
¼ W R42

1 1N4148 diode D4
1 3V3 zener diode 1W ZD3
1 BC547 npn transistor TO-92 Q4
6 Pcb pin, 0.9 - 1.0 mm diameter

 APPENDIX A - HARDWARE 473

Testing
Figure A-35 shows the schematic for the switch interface, potentiometer, diode,
zener diode, and transistor circuitry.

Switch Interface:
When the switch is open the output will be low. Conversely, when the switch is
closed the output will be high.

If the switch interface circuit does not function correctly, check:
– Faulty soldering, short-circuits, open-circuits, incorrect switch orientation,

and faulty components.

Note: This switch circuit will need to be altered if it is to interface with TTL logic
devices. TTL logic circuits require much greater current flow in and out of their
input pins than do CMOS circuits. Should you use this circuit with TTL devices,
lower the value of resistor R8 to approximately 330 .

Figure A-35 Switch Interface, Potentiometer, Diode, Zener Diode,
 and Transistor Circuits - schematic diagram.

Potentiometer:
Ensure that the wiper terminal of the potentiometer is not connected to another
circuit. As the knob of the potentiometer is rotated through its range, the output of
its wiper terminal should produce voltages ranging from 0V to +5V.

APPENDIX A - HARDWARE 474

Semiconductor circuits:
These circuits are used to observe the electrical characteristics of diodes, zener
diodes, and bipolar transistors.

Diode D4 is driven by either an adjustable voltage source or current source while
the voltage at its anode is measured to observe its basic electrical characteristics.

Zener diode ZD3 is also driven by an adjustable voltage source or current source
while the voltage at its anode is measured to observe its basic electrical
characteristics.

Bipolar npn transistor Q4 is driven by the adjustable current source (0 to 1mA
using Rcurr at 3K9) while the voltage at its base (B) and collector (C) are measured
to observe basic electrical characteristics. It can also be driven by a voltage source
using a series connected resistor placed between the voltage source and the base
pin.

Two sockets from an IC socket strip can be used to provide a socket at each end of
resistor R42. This will ease the process of trialling different values of this resistor.

Note: the adjustable current source can be controlled using the output of the
potentiometer POT1 connected to the input of the adjustable current source (Vin
Curr).

 APPENDIX A - HARDWARE 475

Interface Board Bill of Materials

Quantity Component Description
Lead Spacing
or Footprint

PCB
Designator

1 150 pF ceramic capacitor 0.2 inch C17
1 10 nF ceramic monolithic capacitor 0.2 inch C16

14 0.1 F ceramic monolithic capacitor 0.2 inch C2-11, 19-23

1 1 F ceramic monolithic capacitor 0.2 inch C18

3 1 F, 16V tantalum electrolitic capacitor 0.2 inch C13-15

1 4700 F, 16V electrolytic capacitor RB 0.5 or
0.35 inch

C1

1 100 resistor ¼ W R69

2 150 resistor ¼ W R14, 54

8 330 resistor ¼ W R1,...,R10 not incl.

4 470 resistor ¼ W R29, 30, 43, 44

3 1K resistor ¼ W R32, 33, 94
1 1K8 resistor ¼ W R52
1 2K7 resistor ¼ W R8
1 3K resistor ¼ W R67
6 4K7 resistor ¼ W R34-37, 51, 53

59 10K resistor ¼ W R9, 15-17, 18-21, 23-
28, 39-41, 45-50, 55-
66, 70-93

1 12K resistor ¼ W R68
1 20K resistor ¼ W R22
2 100K resistor ¼ W R11, 12
1 470K resistor ¼ W R38
1 1M resistor ¼ W R13
1 100K to 470K resistor (suit thermistor) R31
1 resistor (range of values, say 100 to 10K) ¼ W R42

1 1K 16 mm potentiometer 0.2W POT1
1 Knob for potentiometer
1 Thermistor RT1

1 1N4148 diode D4
12 1N4004 diode D1-3, 5-8, 10-14
1 3V3 zener diode 1W ZD3
4 24V zener diode 1W ZD1, 2, 4, 5
8 Red LED 3mm LED1-8
2 LED (red or infrared) LED9, 10
1 Photodiode (suit type of LED) D9
1 Phototransistor (suit type of LED) Q11
6 BC547 npn transistor TO-92 Q1-4, 13, 14

APPENDIX A - HARDWARE 476

1 BC557 pnp transistor TO-92 Q12
5 BD649 npn darlington transistor (or equivalent) TO-220 Q5-7, 15, 16
5 BD650 pnp darlington transistor (or equivalent) TO-220 Q8-10, 17, 18

1 4046 CMOS IC DIL16 U4
1 4093 CMOS IC DIL14 U5
1 74HC157 CMOS IC DIL16 U12
2 74HC245 CMOS IC DIL20 U6, 13
1 DAC0800 CMOS IC DIL16 U8
3 LM358 IC DIL8 U9, 10, 11
1 ADC0804 CMOS IC DIL20 U7
1 LM7805CT TO-220 U1
1 LM7809CT TO-220 U2
1 ULN2803A transistor array DIL18 U3

3 IC socket 20 pin
1 IC socket 18 pin
3 IC socket 16 pin
2 IC socket 14 pin
3 IC socket 8 pin
2 2 pin header 0.1 inch LINK1, LINK2
1 Jumper (across header) 0.1 inch LINK1 or LINK2

12 2 way terminal block 5mm pitch J2-4, 7-10, 12-16
2 4 way terminal block 5 mm pitch J6, 11
1 9V battery clip
1 SPST normally open keyboard pushbutton switch

(or similar)
5 mm pitch SW1

1 D25 female right angle connector J1
1 D25 Male to D25 Male, one to one cable

50 Pcb pin socket, suit pin 0.9 – 1.0 mm
111 Pcb pin, 0.9 - 1.0 mm diameter
7 m Hookup wire (for interconnect cables)
1m Heatshrink tubing, 2.5 - 3 mm diameter
4 Heatsink 12 C/W HS1-4

8 Heatsink 20 C/W HS5-12

1 Heatsink paste
12 M3 screw 6-10 mm long (or equivalent), nut,

locking washer
4 Pcb rubber stick-on feet
1 Power pack; +12V DC, 1A
1 Fabricated right angle support bracket (POT)

 APPENDIX A - HARDWARE 477

Appendix B - Software

C++ Keywords

Operator Precedence

ASCII Character Set

C++ Keywords

asm private

auto protected

break public

case register

catch return

char short

class signed

const sizeof

continue static

default struct

delete switch

do template

double this

else throw

enum try

far typedef

float union

for unsigned

friend virtual

goto void

if volatile

inline while

int

interrupt

long

near

new

operator

 APPENDIX B - SOFTWARE

Operator Precedence
The table below shows the precedence of C++ operators. The highest priority is
given to the operators on the first row and the lowest priority is given to the
operator in the last row. Operators placed on the same row have the same priority.
The operators are used from left to right, except for the rows marked with a †.
These rows are used from right to left. For example, a=b; is used from right to
left. That is, b’s value is assigned to a.

Table B-1 Operator precedence.

Operators
() [] -> :: .

! ~ + - ++ -- & * †

sizeof new delete †

.* ->*

* / %

+ -

<< >>

< <= > >=

== !=

&

^

|

&&

||

?: †

= *= /= %= += -= &= ^= |= <<= >>= †

,

481

ASCII Character Set

 NUL
0x00

DLE
0x10

SP
0x20

0
0x30

@
0x40

P
0x50

`
0x60

p
0x70

 SOH
0x01

CD1
0x11

!
0x21

1
0x31

A
0x41

Q
0x51

a
0x61

q
0X71

 STX
0x02

DC2
0x12

"
0x22

2
0x32

B
0x42

R
0x52

b
0x62

r
0x72

 ETX
0x03

DC3
0x13

#
0x23

3
0x33

C
0x43

S
0x53

c
0x63

s
0x73

 EOT
0x04

DC4
0x14

$
0x24

4
0x34

D
0x44

T
0x54

d
0x64

t
0x74

 ENQ
0x05

NAK
0x15

%
0x25

5
0x35

E
0x45

U
0x55

e
0x65

u
0x75

 ACK
0x06

SYN
0x16

&
0x26

6
0x36

F
0x46

V
0x56

f
0x66

v
0x76

 BEL
0x07

ETB
0x17

'
0x27

7
0x37

G
0x47

W
0x57

g
0x67

w
0x77

 BS
0x08

CAN
0x18

(
0x28

8
0x38

H
0x48

X
0x58

h
0x68

x
0x78

 HT
0x09

EM
0x19

)
0x29

9
0x39

I
0x49

Y
0x59

i
0x69

y
0x79

 LF
0x0A

SUB
0x1A

*
0x2A

:
0x3A

J
0x4A

Z
0x5A

j
0x6A

z
0x7A

 VT
0x0B

ESC
0x1B

+
0x2B

;
0x3B

K
0x4B

[
0x5B

k
0x6B

{
0x7B

 FF
0x0C

FS
0x1C

,
0x2C

<
0x3C

L
0x4C

/
0x5C

l
0x6C

|
0x7C

 CR
0x0D

GS
0x1D

-
0x2D

=
0x3D

M
0x4D

]
0x5D

m
0x6D

}
0x7D

 SO
0x0E

RS
0x1E

.
0x2E

>
0x3E

N
0x4E

^
0x5E

n
0x6E

~
0x7E

 SI
0x0F

US
0x1F

/
0x2F

?
0x3F

O
0x4F

_
0x5F

o
0x6F

DEL
0x7F

APPENDIX B - SOFTWARE 482

Index
- ...150
--...150

!

! ...150
!=...150

#

...3
#define.....................................288
#endif288
#ifndef.....................................288

$

$...31

%

%c ...49
%d ...49
%f ...49
%s ...49
%X, %x ..49

&

&161, 163, 186, 368

(

(...6

)

) ...6

*

* ...161, 186
*/...7

.

.exe ..300

.lib ..300

.obj ..300

/

/*...7

:

:: ..83

;

; ...79

?

?: ..155

\

\n ..313
\r ..313

^

^ ...52
^= ...55

{

{ ...9, 45, 79

}

} ...9, 45, 79

~

~ ...150

“

“ “ ..287

+

+ ...150
++ ..150

<

< ...149
< >..287
<< ..8
<= ..149

=

== ..150

INDEX

>

> ...149
->...164
>=...149

0

0x...31
0x378..32
0x379..32
0x37A..32

8

8254 ...400

A

abstract objects...............................58
AbstractMotor class......211, 213
access attributes79, 90, 118, 145
private...................................79
protected79, 131
public79

access specifiers122, 133
private.................................133
protected133
public133

ADC
dual slope336
flash..340
single slope...............................334
successive approximation338

ADC class......................................348
ADC0804339
ADConvert()352
address decoding..........................349
aliasing ...345
analog to digital converter...See ADC
anode..41
aperture interval341
arrays......................................11, 157

one dimensional158
subscript158
two dimensional159

B

back-emf210
BASE ..29

base address27, 32
base class64, 121
base_adr.exe46
BASE+1 ...29
BASE+2 ...29
bias...43
bifilar winding205
binary ...30
binary logic24
bioskey()................................257
bipolar output...............................114
bit ...26
block ..148
body ...8
Brake()214
break155, 157
breakdown voltage.........................42
brushless motor............................199
buffer39, 41, 115
byte ..26

C

calibration324
carriage return................................50
case..157
catch ...190
cathode...41
central processing unitSee CPU
ChangeAddress()93
char ..16
chip select349
chopper drive209
class ...62
class definition62, 79
class hierarchy64
CMOS..25
coding ..274
comments...7
commutator198
compiler ...3
compiler directives.....................3, 45
compound statement148
conceptual objects..........................58
conditional expression152
const ...368
constant integer expression..........157

484

 INDEX

constructor................................62, 81
copy....................................81, 373
default ..81
default ..62

continue155
conversion time............................333
cout ..8
CPU..3

D

D25F connector..............................26
DAC

R-2R Ladder.............................111
summing amplifier110

DAC0800113
data area185
data logging..................................393
data types ...9

floating point15
fundamental................................15
integral15
pointer ..15

DC Motors198
DCMotor class...................212, 221
decimal...30
declaration......................................89
define ...45
Delay().....................................412
delete186
delimiters..4
de-referencing161
derived classes121
destructor..................................62, 82

default ..62
dielectric absorption.....................336
digital logic24
digital to analog converter...See DAC
diode.......................................37, 305
double...16
do-while152
driver41, 319
duty cycle224
dynamic binding...........................215
dynamic memory allocation.161, 185

E

early binding215

editor ..2
else ..152
encapsulation63
encoder...201
endl..8
enum....................................228, 307
equality operators.........................150
equivalent time sampling.............346
event counting..............................400
exception handling.......................189
exclusive-ORSee XOR
executable file..................................5
exit()323

F

false clause...................................152
field width................................50, 98
filter ...53, 55
float ..16
for statement..............................148
format specifiers49
forward voltage..............................42
Forward()................................214
free store20, 186
full-scale error..............................117
functions

actual arguments to10
caller of20
calling14, 20
const370
declaration of13, 19
default arguments to219
definition of12
formal arguments to...................10
friend384
in-line...84
overloading82, 135
parameters to..............................10
polymorphic.............................212
prototype of..........................14, 45
pure virtual...............................216
return value of............................10
syntax of13
virtual233

G

gain error......................................117

485

GetADCValue()356
getch().................................47, 50
getmaxx()320
getmaxy()320
GetPeriod()309
GetSpeed()..............................214
gotoxy()..314
grapherror().........................323
grapherrormsg()..................323
graphresult()323

H

hardware triggered strobe.............406
header files7
heap ..20, 186
heatsink ..37
hexadecimal30

I

I/O address27
I/O stream.......................................10
I/O streams386
IDE...2, 47
identifiers9, 16, 17

declaration............................16, 49
declared and initialised...............17

if ...152
ifstream387
include directory7
include files................................7, 32
include statement7
incremental expression.................150
inheritance........................65, 72, 122

multiple211
initgraph()323
initializing expression149
inportb()47
input impedance334
instantiation........................63, 81, 89
int ...16
Integrated Development

Environment..................... See IDE
integration335
interface board

power supply..............................36
interface cable29

interrupts401
inversions.......................................50
inverting input..............................107
istream387

K

kbhit()178
keywords..9

L

late binding65, 213, 215
least significant bit See LSB
LED ...41

characteristic curve42
LED class....................................176
library...4
light emitting diode..............See LED
line feed3, 50
lineto() ...323
linker..5
loader ...5
logic families25
logic levels24
loop counters................................149
LSB..30

M

macros..184
main()6, 45
mains supply36
make files.....................................299
MeasurePeriod()309
member data62, 78
member functions62, 78
memory leak187
microstepping210
modules..283
monotonic error334
most significant bitSee MSB
Motor class212, 217
moveto()323
MSB...30
multiple file program282
multiplexer...................................334

N

negative feedback109

INDEX486

negative temperature coefficient ..305
new ..186
nibble ...31
noise margins24
non-inverting input.......................107
non-linearity.................................117
NULL ..188

O

object class58, 61
object code4
object file ...3
object oriented programming58
Off()..214
offset error....................................117
ofstream387
open loop......................................225
operand...52
operational amplifier106
operator(s)

address of161
bit-wise.......................................52
indirection161
overloaded assignment.............390
overloading380, 383
scope resolution138

operators
overloaded assignment...............81

ostream.....................................387
outportb()................................44

P

parallel port24
ParallelPort class76, 99
parameter passing

by reference..............................367
pass through objects388
pcb..24
PCTimer class409
pointer
this ..392

pointers...160
arithmetic167
arrays of166
base class..................................234
class objects163
constant164

declaration162
function....................................170
functions returning...................173
one dimensional arrays164
scalars162
two dimensional arrays165
void..173

polymorphism........................66, 134
port...24
positive feedback109
power-pack36
preprocessor.....................................3
printer port24
printf()47, 313
procedure abstraction...............12, 14
project file....................................299
pseudo-code274, 309
public interface60, 72
pull-up resistor39
pulse frequency modulation.........200
pulse width modulation......See PWM
pure virtual functions.....................64
PWM..224

Q

quadrature201
quantisation..................................333

error ...334
level ...343

quartz crystals305

R

ReadPCTimer()412
ReadPort1()95
real objects58
real time sampling........................346
rectifier...37
reflex measurement......................417
relational operators149
return ...19
return value49

recipient20
type ..9

Reverse()................................214
RTL..5
Run-time library...................See RTL

 INDEX 487

S

sample and hold341, 343
scalar ..11
schematic diagrams........................28
segment:offset258
sentries ...287
series resistance drive209
SetSpeed()..............................214
settling time..................................117
SignalLevel()308
signed and unsigned types..............15
single timeout...............................405
sink current...........................109, 113
slew rate343
source code.......................................3
source current...............................109
source file...3
speaker ...402
square wave generator..................406
stack20, 186
static binding................................215
stepper motors

bipolar205
control of..................................208
dynamic torque.........................210
full stepping202
half stepping.............................203
holding torque210
hybrid202
permanent magnet202
pull-in torque............................210
pull-out torque..........................210
ramped step rate210
unipolar205
variable reluctance202

StepperMotor class.......212, 227
switch156
syntax4, 8, 83

T

text editors..2
thermistor305, 324
this174, 392
throw..190
time base generation419
timer

clock signal400
control register407
count value...............................401
counter400
counting format........................404
gate signal401
interrupt401
latch register.............................402
modes of operation403
port addresses...........................403
status ..407

Timer 0401, 402
Timer 1 ..402
Timer 2 ..402
transformer.....................................36
transistor transistor logic...... See TTL
tri-state ...339
true clause152
true or false149
try ..189
TTL..25
type casting188

U

ULN2803A41
unary operators150
undefined references........................4
unipolar output.............................114
unsigned15
unsigned char16, 48
unsigned int16

V

variable names16
VCO...304
VFC ...304
Viewport.......................................319
virtual212
virtual functions65, 134, 212, 233
virtual ground.......................108, 111
void..9, 48
voltage buffer...............................115
voltage comparator109
voltage controlled oscillatorSee VCO
voltage inverter116
voltage regulator37
voltage ripple37

INDEX488

voltage to frequency converter..... See
VFC

W

while loop...................................151

WritePort0().....................78, 95

X

XOR ...52, 53

 INDEX 489

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

