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This Book is Written For… 
C++ is considered by many to be among the most widely used and powerful 
object-oriented programming language in industry today. This book is for people 
who are interested in learning and exploring C++ programming in a fresh and 
enjoyable environment where programs are developed to interface with real world 
devices. Other people may leave learning C++ for a later time, instead choosing to 
interact with various hardware devices by simply running the fully developed 
programs supplied with this book. 

Many readers may already have acquired some knowledge of C++ programming 
but know little about how to interface a computer to physical devices and want to 
know more. You might be an engineer, scientist, programmer, technical personnel, 
hobbyist, student in a technically related field or someone who is simply interested 
in programming and interfacing a computer to perform real activities. 

Inside This Book… 
C++ programming is approached in a straightforward, practical and simplified 
manner using mostly short programs that are clearly explained. You will explore 
areas of electronics integral to a wide range of modern technologies using an 
interface board specially developed to support all projects described in this book. 

The intertwining of C++ programming and electronics knowledge takes place as 
we work through interesting and enjoyable real-world projects. These projects 
encompass the following topics: 

Digital Input and Output. 
Analog-to-Digital Conversion and Digital-to-Analog Conversion. 
DC Motor and Stepper Motor Control. 
Measuring Voltage, Temperature, and Time. 

Important concepts are reinforced during the learning and exploration process as 
we gradually progress from simple straightforward projects to those that are more 
advanced. Projects on the interface board have been developed as independent 
modules. This allows readers with C++ programming knowledge to build and play 
with whichever projects they wish, in any order.

For those readers who want to know how to manage the development of larger 
programs, a chapter has been specially written to cover the process of program 
development, demonstrated with the use of a program from an earlier chapter. In 
this chapter we cover topics such as coding techniques, generating header files and 
building libraries. 



What is C++? 
C++ is a language used to program computers to perform specific tasks. There 
exist many other popular programming languages including C, Pascal, FORTRAN, 
BASIC, Cobol and Modula II. Computers operate using instructions based on 
binary format, i.e. on and off states (or ones and zeros). Programming languages 
allow the programmer to use a language similar to that normally written and then 
generate computer-based instructions for program execution. Specialised software 
is used to manage the task of developing programs; in particular converting the 
program written in its programming language to binary form needed by the 
computer.

In the recent past the language known as C became very popular and was the most 
significant commercially used programming language. The C language was 
developed in response to the need for a good programming language to develop the 
UNIX operating system. While it is considered a high-level language, it also has 
many low-level features. This is of great benefit when programs need to work with 
hardware. On the other hand it was also well suited to performing numerical 
operations. It can match the capabilities of FORTRAN and Pascal (a language able 
to handle complex logic). These are some of the reasons for the popularity of the C 
language.

As the size of programs increased, the benefits of being able to reuse millions of 
instructions written and assembled by programmers around the world, became 
apparent. Soon afterwards the concept of object-oriented programming (OOP) was 
born and the C++ language came into being, evolved from C. C++ can be 
considered an expanded and better C.  In other words, C became a subset of C++. 
The programmer could now combine associated data and functions to avoid 
inadvertent misuse. The so-called virtual functions in C++ added extra flexibility 
allowing decision-making at run time, rather than at compile time. While C++ has 
gained all this extra power, it has retained other good features of C such as low-
level bit and byte operations, easy input and output to ports, etc. In today's world, 
C++ is the most widely used programming language for sophisticated tasks. 

X 



Compiler and Operating System Compatibility 

Most programs in this book have been written to carry out some form of interfacing
 task. An essential feature of such programs is 

operating  systems such as DOS, Windows  3.1,
 Windows 95/98 allow programs to directly access ports. Other operating systems 
such as Windows NT/2000/XP and Linux do not allow direct  port access. These

 operating systems will only allow programs to access ports via a piece of software
 known as a device driver that has the necessary privileges to access ports. The

 application programs access the ports via the device drivers. 

Borland C++ for DOS 
Apart from the programs using exception handling (See Chapter 7), all programs in 
the textbook can be compiled and linked using Borland C++ without any changes 
to generate executable files. All program listings that are to be compiled using 
Borland C++ are located in the directory ‘BC++’ on the companion CD. 

GNU C++ for Linux 
The programs in the textbook have been modified to request the required privileges 
to enable them to run under Linux with port access.  The modified versions of 
programs can be found in the directory ‘GNUC++’ of the companion CD. If a 
make file is necessary, it is also included in the appropriate chapter subdirectories 
of the directory GNUC++. Graphics programs, keyboard control programs and PC 
timer related programs are not available to run under Linux. 

Microsoft Visual C++ for Windows 
The modified versions of the programs that can be used with Microsoft® Visual 
C++ can be found in the directory ‘VC++’ on the companion CD. The programs in 
the ‘Win98’ subdirectory can be run under Windows98 without the need of a 
device driver. The programs in the ‘Windows’ subdirectory can be run under 
Windows NT/2000/XP with the use of WinIO, which will act as the driver. These 
programs have been modified to enable them to access the ports through the use of 
WinIO. WinIO has not been included in the accompanying CD. Its latest version 
can be downloaded from http://www.internals.com/. You must first install WinIO 
in order to be able to run the programs in the ‘Windows’ subdirectory. The readers 
of this book who use WinIO are bound by the WinIO licensing agreement 
published on the web. Graphics programs, keyboard control programs and PC 
timer related programs are not available to run under Microsoft® Windows. 

the ability to read from and write 
to the  hardware  ports. Some 
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Getting Started 

Inside this Chapter 

Developing programs – what is involved? 

Writing and running your first C++ program. 

Program syntax. 

Functions.

Fundamental data types. 



1.1 Introduction 
The aim of this chapter is to get you started in writing C++ programs. We will 
develop a number of simple C++ programs and learn the syntax and typography 
associated with writing a program. One of the basic building blocks of any C++ 
program is the so-called function. This chapter will explain the basic concepts 
behind C++ functions and their use. The C++ language has built-in fundamental 
data types that can be used to develop complex user-written data types. Some of 
the fundamental data types will be explained in this chapter. 

Towards the end of the chapter we will step through the complete program 
development process; starting from planning a small program down to using the 
elements of program development software needed to generate a program that can 
be run on your computer. We will commence with the use of non-object-oriented 
programming methods because these programs are simpler to understand at this 
early stage. Object-oriented programming concepts will be explained in Chapter 4 
and then used extensively through the remainder of the text. 

1.2 Program Development Software 
The process of program development includes a number of subtasks. To be able to 
develop a program you must have an editor, a compiler and a linker. In modern 
program development platforms, these subtasks are seamlessly integrated and the 
entire process is very transparent. Such platforms are known as Integrated
Development Environments (IDEs). Most modern C++ packages (the software that 
you will use to develop C++ programs) provide some sort of an IDE. Some of the 
commercially available packages include Turbo C++, Borland C++, C++ Builder 
and Visual C++. There are also packages referred to as command line versions. The 
command line versions require you to type a command (say at the DOS prompt) to 
invoke the editor. Then you must use another command line to invoke the compiler 
and so forth.

Along with the editor, compiler and linker, these packages also provide extensive 
library support. Sometimes these libraries are referred to as run-time libraries 
(RTLs). They contain a wide variety of routines or functions we can use within our 
programs. Regardless of what package we use, it is worthwhile to understand what 
happens during each subtask. The following sections will describe editing, pre-
processing, compiling, and linking.

1.2.1 Editing 
The first step in preparing your program is to use some kind of editor to type your 
program. Not every editor is suitable for this purpose. The edit program of DOS 
and the Notepad editor of Windows are two suitable editors. Integrated 
Development Environments (IDE) that are part of C++ packages provide built-in 
editors known as text editors. At the end of the editing session you must store the 
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contents of the editor into a file. The two editors mentioned above will only store 
what you type. They will not add extra characters to your file (unlike some editors). 
What we normally type includes digits, letters, punctuation marks, the space, tab, 
carriage return and line-feed characters. The line-feed character is used by the 
editor to position the cursor on a new line. The carriage return character is used by 
the editor to position the cursor at the start of the next line. A program file must not 
contain characters apart from those listed above. The file that contains all 
programming instructions, is known as the source file. The source file is said to 
contain the source code, which is nothing more than the programming instructions 
you typed. 

1.2.2 Compiling 
The second step is to compile the source file. For this purpose, a special program 
known as a compiler is used. As part of the compiler, a program named the 
preprocessor is invoked. This takes place before the actual compilation of your 
source code. The preprocessor attends to your source code statements that start 
with the '#' sign. (See the program listings ahead for the lines starting with a ‘#’ 
sign). These statements are referred to as compiler directives. The preprocessor 
takes action as directed by these statements and will modify your original source 
file. At the end of preprocessing, all lines starting with the '#' sign will have been 
processed and eliminated. This process is shown in Figure 1-1. The preprocessor 
and the compiler are gradually becoming merged - most modern compilers have 
the preprocessor as a built-in part of the compiler itself.

Figure 1-1 Preprocessor attends to all lines starting with '#' symbol. 

The compiler in-turn processes the file produced by the preprocessor and produces 
a file known as an object file. The object file contains what is known as object 
code, which the Central Processing Unit (CPU) of your computer understands, also 
known as machine code. However, the PC cannot execute the object code since it 

#include <iostream.h> 

void main() 
{
  cout <<  "... 
}

.

.

.

void main() 
{
  cout << " ... 
}PREPROCESSOR
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still has a few parts missing. At this stage your program is in a similar state to an 
unfinished highway with some stretches complete and others not. As a result, the 
compiled program cannot yet be executed (i.e. run on your computer).

At this incomplete stage, the object code is said to contain undefined references.
The undefined references refer to pieces of object code that need to be retrieved 
from elsewhere to complete the entire program. Just like the highway, the object 
file does not have a continuous execution path. The compiling process is shown in 
Figure 1-2. 

Figure 1-2 The compiler converts the source code to object code. 

The syntax used as part of the program statements is extremely important. As 
mentioned earlier, syntax refers to the use of punctuation marks within the source 
file. Most of the time these punctuation marks act as delimiters. A delimiter 
identifies the end of variables, keywords, numbers, statements etc. The space, the 
comma, the semicolon, the colon, the brace etc., act as delimiters for different 
contexts of usage. Compilers have limited in-built intelligence. If you miss a 
semicolon the compiler will detect it and report an error, but it cannot correct the 
error for you. 

As mentioned earlier, the object code is incomplete with many unresolved areas 
and it cannot be executed. For example, the object code may contain calls to 
various routines. The object file includes function calls to be made. The actual 
instructions to be executed during the call are not yet in place. These instructions 
may be available elsewhere in the object file, or they may need to come from a 
library file or another object file. Note that finding the missing bits is not part of 
the compiler’s duties – the compiler can be viewed in basic terms as a translator 
that checks grammatical content! 

Source Code 

.

.

.

void main() 
{
  cout << " .... 
}

01000101001001010010100
01010101011111001001001
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
???undefined references
???????????????????????
11100000101001001010100
00100101001010010100101
0010001001001001001010?
??undefined references
??????????????????????0

Object Code 

COMPILING

1 GETTING STARTED 4



1.2.3 Linking 
The program that bridges all the gaps and completes assembly of the program is 
known as the linker. It will search all the object files and the libraries to find the 
missing sets of instructions. Sometimes the linker must be told to search certain 
libraries and object files. These are either third party libraries you may have 
purchased or the libraries and object files you developed. The linker automatically 
searches the libraries and object files that come with the C++ software, one being 
the so-called Run-Time Library (RTL). The linker will insert the missing sets of 
instructions into appropriate places to form a file that has a ‘gaps free’ execution 
path. This process is known as linking. At the end of the linking process, we have a 
file the PC can execute, known as an executable file.

The program must be loaded into the computer's memory before execution can 
begin. This action is carried out by a piece of executable code known as a loader.
Most linkers append a loader to the start of the executable file. Therefore, when we 
try to run the program, first the loader will run, loading the program into memory 
and then actual program execution will begin. Figure 1-3 shows the linking 
process.

Figure 1-3  Linking forms a gaps-free executable code. 

01000101001001010010100
01010101011111001001001
01010100100100100100100
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
???undefined references
???????????????????????
1110000010100100101010
00010010100101001010010
10010001001001001001010
???undefined references

01000101001001010010100
01010101011111001001001
01010100100100100100100
01010010000011110101001
01111001001100110010010
01111100011100100100001
11001000011101010100010
00110100100010001001000
10010100101000100100100
01010101000100101010100
01001010010010010100101
01110000010100100101010
00010010100101001010010
10010001001001001001010

Library Routines 

Object code Executable Code 

LINKING

1110001
1011010
0011010
1000100
1010110

1110001
1011010
0011010
1000100
1010110

1100101
1000101
1011010
1110100
1010001

1010001
1010111
0010001
1100110
1011110

1010011
0011011
0010011
1000101
0010111

0100001
1000010
1111010
0111000
0000101 Library Routines 

10111001001001011010001
01001001100001010110010??????????????????????0
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1.3 A C++ Program 
A computer sees a program as a set of instructions to be executed. The programmer 
arranges these instructions in a certain order depending on the tasks the computer is 
expected to perform. To give you a simple example; if you want to write a program 
to add two numbers, the numbers must be entered first and then the addition must 
be carried out. Therefore, the instructions to read the numbers must come before 
the instructions to add the numbers.

Each programming language has its own unique syntax. Syntax is the typography 
and the use of punctuation marks. Here, we will learn the syntax that applies to the 
C++ programming language. 

As mentioned earlier, the basic building block of a C++ program can be viewed as 
the function – a procedure that produces an end result. Therefore, every C++ 
program that contains a set of executable instructions must have a function. One of 
these functions is special, and is named main. To uniquely identify functions 
separately from other entities in our text, we use a pair of parentheses () after the 
function name. Simple programs can be written just with a main() function. 
When programs become more elaborate and complex, other functions may have to 
be written in addition to the main() function. 

The aim of our first C++ program is to print a text message on the screen of your 
computer. The lines of this program are given in Listing 1-1.

Listing 1-1 Program to print a text message on the screen. 

/* This program prints a text message on your screen. 
   The program consists of just one function named
   main.*/ 

#include <iostream.h> 

// The main function.
void main() 
{
   cout << “Getting Started “ << endl; 
}

If you run this program, you will see the message: 
Getting Started 

printed on your screen. The following sections explain the composition of this 
program.

1 GETTING STARTED 6



1.3.1 Comments in Programs 
Comments are descriptions included in a program that are used so programmers 
can document their work. They often describe a program or specific parts of a 
program and do not form any part of the actual program’s instructions that will run 
on the computer. If you include comments, you must indicate to the compiler that 
they are not to be considered as actual code when the compiler prepares the final 
program prior to execution. There are two different ways to include comments: 

(i) To include single line or multi-line comments you can use ‘/*’ at the 
start of the comment and ‘*/’ at the end of the comment. 

(ii) If the comment is a single line comment you may use ‘//’ at the start of 
the comment. 

In Listing 1-1, we have a multi-line comment and a single line comment.  The 
multi-line comment is: 
/* This program prints a text message on your screen 
   The program consists of just one function named
   main().*/ 

The single line comment is: 
// The main function. 

The text contained within ‘/*’ and ‘*/’ will be ignored by the compiler. Likewise 
for the text after ‘//’ on that line.

1.3.2 Header Files 
The first line after the multi-line comment of Listing 1-1 is an include statement:
#include <iostream.h>

It instructs the preprocessor to replace that statement with the entire contents of the 
file iostream.h. In our program this takes place just before the start of the 
main() function. The files with the file extension ‘.h’ are known as header files
or as include files. A header file can already exist within the C++ development 
software, or it may be a file created by the programmer. If it is a file provided with 
the C++ development software, then it resides in a special sub-directory known as 
the Include Directory, as is the case for the iostream.h file. Programs can have 
more than one include statement, resulting in the inclusion of a number of header 
files.

The header files are text files that contain C++ programming statements, most of 
which do not form executable program statements. Not all statements in your 
program are executable. However, the statements in header files play a major role 
in the preparation of your program. The majority of the statements in a header file 
assist the compiler to carry out a thorough check of the program statements you 
write in your program. Once the header files are written and tested, we do not 

1 GETTING STARTED 7



change them. If the compiler issues error or mismatch messages, then we must 
change our program – not the header file.

Library routines are ready-made pieces of software we can make use of. The 
programmers who write the library routines must also prepare the header files 
belonging to the library routines. By programming in strict conformance with the 
header files, we are conforming with the library routines we have used that are 
associated with those same header files. 

In the program shown in Listing 1-1 we have used cout, double left arrows 
‘<<’, and endl within our program. They do not form part of the C++ language 
in the context we have used them. Unless we instruct the compiler as to the usage 
of these elements, the compiler cannot interpret their proper use. The header file 
iostream.h contains all the necessary programming statements to inform the 
compiler how the elements should be used. This information must appear before 
using cout, << and endl. Hence, the include statement appears before the 
first use of cout, << and endl in our program. 

The compiler does not need the entire contents of the file iostream.h to be able 
to translate the program shown in Listing 1-1 into code that the computer 
understands. In our example, it would be sufficient to show the part of 
iostream.h that describes cout, endl, and the behaviour of the operator <<.
However, it is very difficult to determine exactly which parts of a header file are 
necessary for a particular program. Therefore, compilers run through the entire 
header file. The size of the header files will not have any affect on the size of the 
executable files, although the time to prepare the program will increase slightly. If 
necessary, we may need to include more than one header file.  In addition, there 
may be other header files used in each of the ones we include. 

In conclusion, the appropriate header file must be included first to provide various 
definitions of constants and data types, and also to declare various functions before 
using those constants, data types and functions in a program.

1.3.3 Program Syntax 
Syntax refers to the use of punctuation marks in the program. In our program, we 
have used the # symbol, angle brackets (< >), the pair of parentheses, braces ({}),
semi-colon and <<. These punctuation marks must be correctly inserted at the 
appropriate places before the compiler can recognise your program as being error-
free. The program in Listing 1-1 shows only basic syntax. As programs become 
more complex, their syntax also becomes more involved. 

All lines starting with a hash symbol (#) are instructions to a special part of 
program development software named the preprocessor, discussed previously.

Our program has just one function – the main() function. The start of the body
of the main() function is signified by the open brace ({). The end of the main()
function is signified by the close brace (}). Between the two braces are the 
statements to be executed by the program. Program execution always starts at the 
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line that contains main(). It ends at the closing brace of the main() function’s 
body.

The syntax of the main() function can be expressed in a compact form as shown: 

void main(){statement1; statement2; statement3;} 

The function has the name main. The pair of parentheses that follow the name 
main may or may not be empty - in our simple program they are empty. As can be 
seen, semi-colons are used to separate the statements of the program. Although it 
may appear redundant, the semi-colon after the last statement is essential.

1.3.4 Keywords 
Keywords are words reserved by the language. They must not be used for purposes 
other than those specified for them by the C++ language. For example, a keyword 
cannot be used as an identifier. Identifiers are variable names we create to identify 
various entities such as functions, user created data types and data. So far, the only 
keyword we have seen is void. A list of keywords is given in Appendix B.

1.3.5 The Return Value Type 
The word void right at the start of our main function describes the return value 
type of the main() function. Every function, let it be the main() function or 
some other function, must specify a return value type. The return value can be 
viewed as the end-product or the output produced by the function. If a function is 
programmed to return a value, the programmer must specify the data type of the 
value to be returned (to be issued out). It is also possible to program a function to 
not return a value. Such functions generally carry out some task but do not produce 
a value to be issued out. For these functions the return value type is void. This is 
the case in our program. Note that when no values are returned by a function the 
keyword void must be used to specify the return value type. 

NOTE

If a return value type is not specified for the main() function, the return value 
type will default to that of an integer. This means the function must produce an 
integer output.

1.3.6 The Body of main()
The body of the main() function contains just one statement. This line is 
enclosed within the open brace ({) and the close brace (}). If there is to be more 
than one statement forming the body of the main() function, they all need to be 
included within the two braces. The solitary statement in our program reads as: 
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cout << “Getting Started “ << endl; 

The use of cout will instruct the computer to stream whatever follows to the 
standard output device, in this case your screen. Streaming has a definition in the 
C++ language. For now, it’s sufficient to understand streaming as directing one 
entity (such as a group of characters, an integer, etc.) after another to a certain 
destination. First, Getting Started will appear on the screen. Next, endl
will be streamed to the screen. The effect of this is to position the cursor at the start 
of a new line on the screen. Execution of the program is now complete.

You can experiment by replacing the previous statement by: 
cout << “Getting Started”; 

This will only stream Getting Started to the screen. It will not stream endl
to the screen. You will see the cursor blinking at the end of the words ‘Getting 
Started’.

1.4 Use of Functions 
As mentioned earlier, functions form an integral, important part of C++ 
programming. In this section we will learn how to use a function. As explained 
earlier, a function can be thought of as a procedure that produces some sort of an 
end result based on the inputs it receives. Some of the inputs the function will 
receive are known as parameters or formal arguments. The formal arguments are 
used at the time of programming a function to indicate the type of arguments it can 
receive. At the time of executing the function in your computer, the formal 
arguments must be replaced by actual arguments. For example, at the time of 
programming, we may use a formal argument named a. At the time of executing 
the function, the formal argument a must be replaced by an actual argument such 
as the number 3. The same function can be called (executed) again replacing the 
formal argument with a different actual argument, producing a different return 
value. It is worth mentioning here that, although the formal way of receiving the 
output of a function is via the return value, there are other ways of receiving the 
outputs from functions. 

Figure 1-4 General schematic of a function. 

The function outputs a return value.
Only ONE value can be returned. 

Parameters are the 
inputs to the function 

Function
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What we have described so far is the most general case for a function. This is 
shown schematically in Figure 1-4. There are a number of special cases. These 
special cases depend on whether or not the function receives parameters and 
whether or not it returns a value. The number of parameters received by a function 
can vary from function to function. 

The number of values returned by a function is always one and it must be a scalar
quantity. A scalar quantity can be loosely defined as a single entity. In other words, 
functions cannot return arrays (groups of entities). For example, a function can 
produce a result through the return value, which is just one integer. It cannot 
produce a result that has more than one integer. Figure 1-5 and Figure 1-6 show 
some typical forms of functions. 

Figure 1-5 A function that takes two arguments and returns NO value. 

For the case shown in Figure 1-5 the function will perform a task such as calculate 
a value and print a message on the screen. If that is all the function needs to do, 
then there is no need for the function to return a value. 

Figure 1-6 A function that takes no parameters but returns a value. 

In the case of Figure 1-6, the function may be receiving some data from an external 
source such as the printer port and returning an integer number. For example, the 
integer number may indicate the status of paper in the printer; 0 indicating no paper 
and 1 indicating paper is still present. 

The two integers a and b
are the two inputs to the 
function

a

Because the return 
value type is void, 
NO value is returned

b
void func1(int a, int b) 

An integer value is  returned 
by the function 

No parameters are 
taken by the function 

int func2(void) 
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1.4.1 A Program with a Function Call 
The program shown in Listing 1-2 produces the same output as the program in 
Listing 1-1. The only difference is that it uses a function to produce the output on 
the screen. Moreover, the function does not receive any parameters and does not 
produce any return value. The main emphasis in this section is to explain the 
concept of procedure abstraction. Procedure abstraction means hiding the details 
of a certain procedure behind a function and then calling the function to have the 
procedure carried out. 

Listing 1-2 A program with a function call. 

/* This program prints a text message on your screen. 
   The program consists of two functions named
   PrintMessage and main.*/ 

#include <iostream.h> 

// The PrintMessage() function 
void PrintMessage() 
{
   cout << “Getting Started” << endl; 
}

// The main function.
void main() 
{
   PrintMessage(); // calling the function 
}

A new function named PrintMessage has been added to this program. The 
name PrintMessage is our own creation. We have also added the pair of 
parentheses at the end of the name PrintMessage to signify it as being a 
function. The pair of parentheses are empty (which is equivalent to placing void
there) because the function does not have any parameters. The return value type of
the PrintMessage() function is void because the function does not return any 
value. The definition of the PrintMessage() function is as follows: 

void PrintMessage() 
{
   cout << “Getting Started” << endl; 
}

A function definition must specify four things, being: 

1. The return value type 
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2. The function name 
3. Number of parameters and their types 
4. The body of the function 

The syntax of a function is depicted in Figure 1-7: 

Figure 1-7 The syntax of a function definition. 

The function definition contains the complete function, informing the compiler 
what instructions need to be executed. In other words, the body of the 
PrintMessage() function is provided, starting with the open brace and ending 
with the close brace. Note: a semicolon is not placed after the function name 
PrintMessage(). This allows the following lines containing the function body 
to be associated with the function name.

The return value type is void for the PrintMessage() function. The function 
name is PrintMessage. The list of parameters is empty and the body of the 
function contains the cout statement. 

A function declaration is slightly different (as shown in Figure 1-8). It is sufficient 
for the compiler to just see the function declaration for it to be able to compile calls 
to the function. The entire function definition is not needed at this stage. However, 
in order to execute the function, a compiled version of the function definition is 
needed. The function declaration has to specify only three things: 

1. The return value type. 
2. The function name. 
3. Number of parameters and their types. 

Figure 1-8 Function declaration, also known as the function prototype. 

void PrintMessage() 
{
   cout << “Getting Started” << endl; 
}

Return value type 
Function name Number of parameters and their types 

The body of the function 

void PrintMessage(); 

Return value type 
Function name Number of parameters and their types 
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The body of the function is not necessary. However, it must be provided sometime 
before execution of your program. If the body of the function is obtained from a 
library, then it will be brought in at linking time. If it is not obtained from a library 
or another object file, then you must type the code for the function somewhere in 
your program. In our example, the function declaration would be: 
void PrintMessage(); 

Note that the line ends with a semi-colon. 

In C++, the function prototype is exactly the same as the function declaration. 
However, in a C program the function declaration and function prototype are two 
different things. See the note in Section 1.6 for an example. 

In the main() function the body has been changed. The only statement in the 
body is: 
PrintMessage();

Note that the line ends with a semi-colon and the return value type does not appear. 
Such a line is termed a function call. In a function call, two things must be 
specified.  They are: 

1. The function name. 
2. The list of actual arguments. 

Figure 1-9 An example showing the syntax of a function call. 

The actual arguments replace the parameters (or the formal arguments) when it 
comes to the time of execution. Note the syntax and that the line ends with a semi-
colon. An example of a function call that uses a parameter list can be found in 
Section 1.6. 

When the program is executed, as always its execution will begin at the main()
function. Then the body of the main() function will be executed. At this time the 
computer will encounter the instruction: 
PrintMessage();

This is a function call that results in the execution of the body of the 
PrintMessage() function. Therefore, the message Getting Started 
will be printed on your screen. As mentioned at the start of this section, using the 
PrintMessage() function in the main() function enables the details of what 
it does to be hidden - known as procedure abstraction (explained in Section 1.6). 

     PrintMessage(); 

Return value type is not mentioned 
Function name 

Formal arguments must be replaced
by actual arguments 
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1.5 Fundamental Data Types 
Most of the time programming instructions manipulate data. As such, data plays an 
important role in programs. Data comes in a variety of data types that is sometimes 
mixed in with other types. It is important to be able to identify data of different 
types. There are a small number of data types built into the C++ language known 
as fundamental data types. Data types are described by three attributes: 

1. The name of the data type. 
2. The size of the data type in bytes (see Chapter 2). 
3. The range of values the data type can handle. 

For C++ data types, the size (and therefore the range) differs depending on whether 
we write 16-bit programs or 32-bit programs. Bits and bytes are explained in the 
next chapter. For now, it is sufficient to know that 32-bit data types occupy more 
memory and cover values over a larger range than 16-bit data types. 

Data types can be broadly categorised into three types: 

1. Integral data types. 
2. Floating point data types. 
3. Pointer data types. 

Integral data types are used to store integral type data (whole numbers) whereas 
floating-point data types store numbers with a fractional part. Pointer data types are 
used to store memory addresses. Memory addresses are described in Chapter 2 and 
pointer data types are discussed in Chapter 7. 

The integral data types are further sub-divided into signed types and unsigned 
types. The signed types can carry both positive and negative numbers whereas 
unsigned types carry only positive numbers. Floating point numbers can carry both 
positive and negative numbers. The pointer data types are always positive since 
there are no negative memory locations. 

A programmer can use these fundamental data types to develop custom data types 
that can be very complex. To start with we will be looking at the following three 
fundamental data types: 

char
int
float

The first two are integral types and the third is a floating-point type. Table 1-1 
shows the three data types mentioned above along with their sizes in bytes and the 
range of values they can take. 
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Table 1-1 A few of the fundamental data types. 

Data type 
Number of 

bytes Range of values 
char 1 -128 to 127 
unsigned char 1 0 to 255 
int 2 -32768 to 32767 
unsigned int 2 0 to 65535 
float 4 3.4 10-38 to 3.4 1038

double 8 1.7 10-308 to 1.7 10308

Data Type char
This is the data type that is primarily used to store characters. One char type data 
will occupy one byte in memory. The signed version is simply referred to as char
and the unsigned version as unsigned char. This data type can also be used to 
store small integer numbers that fit into one byte of memory. 

Data Type int
This is the data type that is used to store integer numbers. One int type data will 
occupy 2 bytes of memory in 16-bit programs. The signed version is simply 
referred to as int and the unsigned version as unsigned int. A synonym for 
int in 16-bit representation is short int.

Data Type float
This is the data type that is used to store fractional numbers. One float type data 
occupies 4 bytes in memory. The data type float can handle both positive and 
negative numbers and so there is no separate data type named unsigned float! 

Identifiers

Identifiers are the symbols or variable names we will be using in our programs to 
identify various entities such as integers, floating point numbers, characters, 
memory addresses, functions, objects, classes and many more. Identifiers are case
sensitive and can be of any length. 

NOTE

Identifiers must start with a letter (upper case or lower case) or the underscore “_” 
character. They may contain digits (0 to 9), but not as the first character of the 
identifier.

An identifier must be declared before using it in a program. When declaring an 
identifier you must specify two things (as shown in Figure 1-10): 
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Semi-colon is a must! int a=0; 

Data type 

Identifier

Equal sign is used to assign the initial value 

Assigned value 

1. The data type  
2. The identifier name 

Figure 1-10 An example showing the syntax of a single identifier declaration. 

An example of an identifier declaration is: 
int a; 

The data type is int and the identifier name is a. If needed, more than one 
identifier can be declared in one statement as shown in Figure 1-11: 

Figure 1-11 An example showing the syntax of a multiple identifier declaration. 

Such a declaration must be provided before being able to use an identifier in your 
program.

An identifier can also be declared and initialised simultaneously. In such a case, in 
addition to declaring the variable, we also set the identifier to take up an initial 
value. An example of such a situation that applies to a single identifier is: 
int a=0; 

The data type is int, variable name is a and it is initialised to have a value of 0 as 
shown in Figure 1-12. 

Figure 1-12  An example - syntax of a single identifier declaration and definition. 

Semi-colon is a must! int a,b,c; 

Data type 

Identifiers, all of type int

Commas used to separate identifiers 

Semi-colon is a must! int a; 

Data type 

Identifier Name 
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Semi-colon is a must! int a=0,b,c;

Data type 

Identifiers, all of type int

Commas used to separate identifiers 

This identifier is initialised to 0 

The identifier declarations we have seen so far can be combined in any manner. 
Such a declaration is shown in Figure 1-13: 

Figure 1-13  An example showing the syntax of a general identifier declaration. 

1.6 Functions with Parameters and Return 
Values

In Section 1.4.1 we learned how to make a function call with a view to understand 
the concept of procedure abstraction. In this section we will look at a function that 
can be called repeatedly to carry out the addition of two numbers. We will program 
the function to receive the two numbers as parameters and to return their sum as 
the end result produced by the function. This will help us understand the role of 
function parameters and their return value.

Listing 1-3 Functions with parameters and return values. 

/* This program calls a function (twice) to add two numbers 
together from within the main function and outputs the result 
to the screen. */ 

#include <iostream.h> 

float Add (float a, float b) // The Add() function 
{
   float sum; 

   sum = a + b; 
   return sum; 
}

void main()  // The main function. 
{
   float p=1, q=2.3, r=3, s=4.5; 

1 GETTING STARTED 18



   float Sum1, Sum2; 

   Sum1 = Add(p,q); // First call to ‘Add’ function 
   cout << “First Sum “ << Sum1 << endl; 
   Sum2 = Add(r,s); // Second call to ‘Add’ function 
   cout << “Second Sum “ << Sum2 << endl; 
}

In the program shown in Listing 1-3 we have defined a new function named Add.
As mentioned earlier, the definition of a function provides the return value type, 
the function name, the list of parameters and their types, and the body of the 
function. Unlike the function we have seen so far in this book, the Add()
function’s pair of parentheses are not empty, meaning the function receives some 
parameters. In this case the Add() function receives two parameters of type 
float. Furthermore, the return value type of the Add() function is float. This 
means the function must produce a return value of type float. The value to be 
returned must also be specified within the body of the function in a return
statement. The Add() function is reproduced below to explain its operation: 

float Add (float a, float b) 
{
   float sum; 

   sum = a + b; 
   return sum; 
}

NOTE

According to the C language, the declaration of the Add() function is: 
 float Add(); 

Therefore, a declaration in C does not provide information about the parameters. 
The prototype of the Add() function is: 
 float Add(float, float); 

This does provide information about the parameters. In C++, the declaration and 
the prototype of a function are exactly the same. Therefore, the prototype (and 
declaration) of the function Add() is: 
 float Add(float, float); 
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Within the body of this function we have declared a float type identifier named 
sum. Then sum is assigned the result of adding a to b. Finally, the return
statement sends the value of sum out of the function. Note that the type of the 
returned value, i.e. the type of sum (which is float), is the same as the return 
value type of the Add() function (specified on the first line). 

The main() function of our program is shown ahead, with its function calls  
highlighted in bold typeface. In the first call to the Add() function, its parameters 
or formal arguments a and b are replaced by copies of the actual arguments p and 
q, which carry real values. The parameters a and b can be viewed as placeholders. 
In the second call to the Add() function, its parameters are replaced by copies of 
r and s.

void main() 
{
   float p=1, q=2.3, r=3, s=4.5; 
   float Sum1, Sum2; 

Sum1 = Add(p,q); // First call to ‘Add’ function 
   cout << “First Sum “ << Sum1 << endl; 

Sum2 = Add(r,s); // Second call to ‘Add’ function 
   cout << “Second Sum “ << Sum2 << endl; 
}

The value returned by the first call to the Add() function is assigned to Sum1.
Therefore, Sum1 becomes the summation of p and q. In our case, Sum1 will have 
the value of 3.3. Similarly, Sum2 will have the value of 7.5. Since the main()
function is making the calls to the Add() function, the main() function 
becomes the caller and at the same time the recipient of any return values. In this 
case, the main() function’s body is also known as the calling environment. The 
other lines in the main function are identifier declarations and/or definitions, and 
the statement used to print the values of Sum1 and Sum2 on the screen. 

Figure 1-14 shows an example of the sequences a program goes through. This 
complete program consists of a main() function and a number of other functions 
and data. The program starts from within the main() function where various 
other functions are called throughout its operation. 

The main() function and all the other functions are stored in the so-called code
area of program memory, and are generally not expected to change during the life 
of the program. The data is stored in the data area where its contents are expected 
to change. Apart from the data in fixed data areas, there may be other data that is 
created in a temporary area known as the stack, and also in a semi-permanent area 
known as the heap (or free store).
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Figure 1-14  Program with main()function, other functions and data. 

1.7 Summary 
Program development software is typically used to write C++ programs. This 
software provides an integrated environment for editing, compiling and linking 
programs. Built-in libraries known as Run-Time Libraries are part of the 
development environment and contain useful functions. To use these functions, 
header files are included at the start of the program to provide the respective 
function declarations. 

A C++ program comprises the code written using correct syntax, comments, 
keywords, identifiers, fundamental data types, user-written data types and header 
files. Keywords are the reserved words that are part of the C++ language. 
Fundamental data types are built-in data types +and can be used to develop more 
complex user-written data types. Identifier names are chosen by the programmer 
and must not be C++ keywords. Both identifiers and functions must be declared 
ahead of their use in a program. 

C++ programs carry out procedures by using functions that operate on specific 
data. This simplifies programming since the programmer only calls the function to 
perform a task and does not need to know how the function implements the call 
(this is procedure abstraction). A special type of function named main starts and 
ends program execution. Functions can return a value from within their body after 
carrying out their assigned operations. The type of this data must be specified at the 
time of defining the function, therefore, the function has what is known as a return 
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value type. In addition to this, functions often require input data in order to carry 
out their dedicated operations. This input data is passed into functions with the use 
of their function parameters. 

Early in this chapter we explained a basic C++ program comprising just the 
main() function. An additional function was then added to this program to carry 
out the same task and demonstrate procedure abstraction. Finally, a program was 
presented and discussed that added two numbers using a function that had 
parameters and a return value. 
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2.1 Introduction 
A basic understanding of digital logic principles and converting data between 
number systems is needed before the parallel port can be used effectively. This 
chapter covers these topics and also describes the configuration of the parallel port 
itself. Concepts such as binary logic, logic levels, input/output address space and 
the physical connection to the port will be explained. 

Working through this chapter will prime you for programming and connecting to 
the parallel port. You will use this knowledge in future chapters when developing 
programs to control and monitor hardware through the port. An understanding of 
basic electronic logic principles is also beneficial when constructing and testing 
many circuits on the interface board.

2.2 What is the Parallel Port? 
Generally speaking, a port is a portion of electronic hardware that is used as an 
interface to connect with another electronic device for the purpose of information 
exchange. This connection allows information in the form of data to flow into, out 
of, or both into and out of the port. 

The parallel port has the facility to transfer data both in and out, between the PC 
and the outside world. It is normally used for sending information to a printer and 
also known as the printer port. With older computers, the printer port is made up of 
circuitry residing on a separate printed circuit board (referred to as a pcb) which 
plugs into the PC motherboard. Newer computers, however, tend to have the 
parallel port circuitry integrated along with the rest of the PC motherboard. 

Having a basic familiarisation with concepts such as logic families, logic levels and 
noise margins helps to be able to gain an understanding how electronic devices 
communicate digitally. This understanding will also prove useful should electrical 
problems arise when using digital circuitry on the interface board. 

2.2.1 Digital Logic 
As mentioned earlier, computer programs are executed by hardware which operates 
using binary logic, also known as digital logic. Binary logic has two possible 
states, ON and OFF. Typically these binary logic states are represented using 
binary logic notation, where 1’s denote the ON state and 0’s denote the OFF state. 

The ON and OFF states used by the parallel port circuitry and many other digital 
logic circuits are implemented using voltage levels known as logic levels which 
commonly lie between 0V and +5V. Note that not all types of logic circuits use the 
same logic voltage levels. These logic circuits are also known as integrated circuits 
(IC’s), containing groups of circuit elements housed on a single piece of 
semiconductor material known as a “chip”. The chip is packaged inside either 
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plastic or ceramic material with metal leads that are bonded internally with wire to 
the chip to allow external connection. 

The two most popular types of logic circuit or logic families are TTL (transistor 
transistor logic) and CMOS (complementary metal oxide semiconductor). Each 
logic family is fabricated in a unique way, resulting in distinctive electrical 
operating characteristics. Some basic electrical differences between TTL and 
CMOS logic families are shown in Figure 2-1. There are several different versions 
for each family, with characteristic variations in electrical specification. 

Note that some CMOS logic families can operate at voltages outside the 0V to +5V 
range shown. Also, the output voltage level for these circuits does depend on the 
level of current drawn through each output. 

TTL (transistor transistor logic) CMOS (complementary metal oxide 
semiconductor)

a) b)

Output Level (sending) 
Logic-HIGH or One

Input Level (receiving) 
Logic-HIGH or One

Output Level (sending) 
Logic-HIGH or One

Input Level (receiving) 
Logic-HIGH or One

c) d)

Output Level (sending) 
Logic-LOW or Zero

Input Level (receiving) 
Logic-LOW or Zero

Output Level (sending) 
Logic-LOW or Zero

Input Level (receiving) 
Logic-LOW or Zero

Figure 2-1  Typical CMOS and TTL logic voltage levels (5V supply). 

These differences in logic levels from one family to the other are very significant 
when connecting between them. For example, referring to Figure 2-1 quadrants a) 

+5V

+2.0V

0V

+2.4V

+5V

0V

Noise
Margin

0V

+5V
4.7V

0V

+3.2V

+5V

Noise
Margin

0V

+0.4V

+5V

0V

+0.8V

+5V

Noise
Margin

+0.2V
0V

+5V

0V

+1.5V

+5V

Noise
Margin

25



and b); consider the case where a TTL integrated circuit sends a HIGH logic level 
(+5V to +2.4V) to a CMOS integrated circuit. In this case, the TTL circuit could, at 
worst, send (output) a logic-HIGH having +2.4V, the lowest output voltage level 
when operating normally (not damaged or being over-driven). If the CMOS circuit 
is to correctly recognise a received (input) logic-HIGH level, this received voltage 
must be at least +3.2V and no more than +5V. The problem with this situation is 
that the TTL integrated circuit can output a signal down to +2.4V, too low a 
voltage level for the CMOS integrated circuit to accept as a valid logic-HIGH. The 
result could be that the CMOS circuit incorrectly mistakes the TTL HIGH level as 
a LOW level. 

Figure 2-1 also shows the voltage noise margin when a data signal is sent from one 
logic circuit to another of the same family. Let us look at the case in which a 
CMOS circuit outputs a logic-LOW to another CMOS circuit, as shown in 
quadrant d) of the figure. The sending device will output a signal between 0V and 
0.2V during normal operation and the receiving device will accept a signal level 
between 0V and 1.5V as a valid logic-LOW. If we use an output signal of 0.2V, the 
worst case for normal operation, then we can have voltage noise of up to 1.3V 
(1.5V – 0.2V) on this logic signal, and the receiving circuit will still recognise a 
valid logic-LOW. From this example we can see we have a noise margin of 1.3V. 

If you examine the same case shown in quadrant c) for a TTL circuit transmitting a 
logic-LOW to another TTL circuit, you will find that there is a noise margin of 
only 0.4V. CMOS circuits typically have better noise margin characteristics than 
TTL circuits. Other differences between TTL and CMOS circuits include their 
power consumption, their input current requirements, and their output current drive 
capacity and speed when switching states. For additional information concerning 
digital logic families, consult the references at the end of this chapter. 

2.2.2 Parallel Port Architecture 
The parallel port allows print data to be sent from the PC to the printer and data 
indicating printer status to be received by the PC. This data, sent by the PC, uses 
eight wires, to transmit a byte of information to the printer. A byte is simply a 
group of eight bits used together to make a unit of data. Each wire is used to 
transmit one bit of data at a time. Each bit of data can have one of two possible 
logic values, 1 or 0. Another nine wires are used to allow the PC to determine the 
state of the printer and control the flow of data. These nine lines are broken into a 
set of five input lines and four input/output lines as shown in Figure 2-2. 

The physical connection to this port is through a 25-pin connector known as a 
‘D25F’ connector (where the ‘D’ refers to the shape of the connector body). The 25 
contacts making up this connector are all sockets (female type, hence the ‘F’ in 
‘D25F’) which mate with the printer cable connector having 25 pins (male type). 

2 PARALLEL PORT BASICS AND INTERFACING 26



Figure 2-2  Parallel Port Configuration. 

The three sets of wires shown in Figure 2-2 show the connection between a PC’s 
parallel port and an external device, in this case a printer. Each group of wires are 
controlled, or read, by accessing three sequential locations in the PC’s Input/Output
address space, abbreviated to I/O address space. This address space is made up of a 
number of data storage locations used to allow intercommunication with 
input/output devices. It is different from the memory generally used by the 
computer. The PC writes data to particular I/O addresses, where the data is stored 
and can be accessed by external devices. Other I/O addresses are used to allow 
external devices to write data into storage for the PC to read, and still other I/O 
addresses allow bi-directional data transfer. 

   

   

   
 BASE + 2 

 BASE + 1 

 BASE

0 1st Address

Figure 2-3  I/O Addressing. 

The first of the three I/O addresses is referred to as the BASE address as shown in 
Figure 2-3. It is the lowest address and is used as a reference from which to 
increment to the other two I/O addresses belonging to the parallel port. Writing to 
the BASE address will output eight bits of data (a byte) from the parallel port (see 
Figure 2-2), where each bit uses an individual wire. 

Increasing
order

I/O Addresses

Output                                    8 wires 

Input                                    5 wires 

Input/Output                                    4 wires 

PC (Parallel Port) Printer

BASE Address

BASE+1 Address

BASE+2 Address
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The next address in this block has a numerical value one more than the BASE 
address, so we label it the BASE+1 address. The BASE+1 address has access to the 
five input data bits to the PC. This address can only be used to read the state of 
these five signals. 

The third address of this set is labelled the BASE+2 address, being two addresses 
past the BASE address. This address location is used to control the four bi-
directional data bits of the port. Using this address, we can read and write to these 
four bits. 

NOTE

Beware: the four BASE+2 lines used for input and output are NOT ‘strict’ logic 
outputs. The parallel port interface often has resistors and capacitors connected to 
these lines to reduce the influence of electrical noise. This causes their states to 
change much slower than a strict logic output, meaning that erroneous recognition 
of data can occur when connecting with certain types of logic families. 
In addition, due to variation in the individual capacitor values, these signals do not 
switch at ‘exactly’ the same time (synchronously). This non-synchronous 
(asynchronous) switching of BASE+2 outputs can cause data transfer problems 
with data interfaces designed to work synchronously.

Table 2-1 provides a summary of the data bits and D25 connector pins that the 
parallel port connector uses for each of the three port addresses. Each wire in the 
cable linking the port to the external device (usually a printer), carries the signal of 
a particular data bit for that port address. The BASE and BASE+2 addresses have 
their data bits commencing from D0 upwards. The BASE+1 address, however, 
starts at data bit D3. 

Some data bits used by BASE+1 and BASE+2 addresses are inverted by the 
parallel port circuitry. These inverted bits are marked by a “ / ” character preceding 
the letter “D” of that bit. This signal convention is also used on the interface board 
schematic diagrams which show detailed electrical interconnections. When using 
these data bits, the program must compensate for this inversion in order that signals 
are output from the port or read in through the port as intended. 

If a program needs to send a data bit out as a signal through one of the port’s 
inverted bits, it needs to invert that data bit in software beforehand. This double 
inversion (once in hardware and again in software) has the effect of correcting the 
signal back to the intended state. Likewise, when a signal is read through an 
inverted bit of the port, the now inverted signal must be inverted once more by the 
program to correct it. The program implements this inversion using one simple line 
of code, explained in Section 3.6 of the next chapter. 
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Table 2-1 Parallel Port D25 Connector Pin Assignment. 

BASE Address 
(8-bit output data) 

BASE +1 Address 
(5-bit input data) 

BASE+2 Address 
(4-bit input/output data) 

D0 - pin 2  /D0 - pin 1 
D1 - pin 3  /D1 - pin 14 
D2 - pin 4   D2 - pin 16 
D3 - pin 5 D3 - pin 15  /D3 - pin 17 
D4 - pin 6 D4 - pin 13  
D5 - pin 7 D5 - pin 12  
D6 - pin 8 D6 - pin 10  
D7 - pin 9 /D7 - pin 11  

Note: “/ ” denotes the signal bit is inverted internally by the parallel port circuitry. 

D25 pin numbers 18 to 25 are not shown in Table 2-1. They are all connected to 
the PC electrical ‘ground’ which is connected to the interface board through the 
interface cable (Figure 2-4). This cable has a D25 male connector at both ends, 
connected by individual wires in a “one-to-one” arrangement (D25 pin 1 of one 
connector to the D25 pin 1 of the other connector; likewise for all remaining pins). 

Figure 2-4  D25M to D25M Cable. 

NOTE

Data bits D0 to D2 of BASE+1 address are not connected to the parallel port 
circuitry inside the PC. The same holds true for D4 to D7 of the BASE+2 address.  
Reading these particular bits will produce invalid data.

2 metres 

D25 Male D25 Male
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2.3 Data Representation 
As mentioned previously, computers use ‘ON’ and ‘OFF’ states (high and low 
voltages) to store data, termed binary data since we have only two states. This 
leads to the representation of numbers using the binary (on/off) number system. 
The binary system is based on raising the number two to increasing integer powers 
to form higher and higher digit values. We can see how such a system works by 
comparing it with our familiar decimal number system. Decimal numbers are based 
on raising the number ten to higher and higher integer powers. 

For example, the decimal number 25 is broken down as follows: 

25 = 2x101 + 5x100

   = 2x10 + 5x1

Decimal 25 is equivalent to the binary number of 11001 as follows: 

  11001 = 1x24 + 1x23 + 0x22 + 0x21 + 1x20

   = 1x16 + 1x8 + 0x4 + 0x2 + 1x1

  = 25 (decimal) 

NOTE

The binary digit to the far right has the lowest weighting and is known as the least
significant bit (LSB). Conversely, the left-most binary digit has the highest 
weighting and is termed the most significant bit (MSB). 

Binary numbers with many digits are not easy to read. To solve this problem we 
use a more convenient number representation named hexadecimal. This system is 
based on sixteen number states. 

The decimal number system uses ten unique Arabic numerals being 0, 1, 2, …, to 
9. In hexadecimal representation we need sixteen unique numerals. The first ten 
hexadecimal digits use Arabic numerals 0, 1, 2, ..., to 9, however, we must use 
unique digit representation for the remaining numbers ten to fifteen. This is done 
by using capital letters A, B, C, D, E and F to represent ten, eleven, twelve, …, to 
fifteen.

Table 2-2 illustrates numerical conversion between decimal, binary and 
hexadecimal numbers. 
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Table 2-2 Number System Conversions. 

Decimal Binary Hexadecimal 
0 = 0x100 0 = 0x20 0  = 0x160

1 = 1x100 1 = 1x20 1  = 1x160

2 = 2x100 10 = 1x21 + 0x20 2  = 2x160

3 = 3x100 11 = 1x21 + 1x20 3  = 3x160

4 = 4x100 100 = 1x22 + 0x21 + 0x20 4  = 4x160

5 = 5x100 101 = 1x22 + 0x21 + 1x20 5  = 5x160

6 = 6x100 110 = 1x22 + 1x21 + 0x20 6  = 6x160

7 = 7x100 111 = 1x22 + 1x21 + 1x20 7  = 7x160

8 = 8x100 1000 = 1x23 + 0x22 + 0x21 + 0x20 8  = 8x160

9 = 9x100 1001 = 1x23 + 0x22 + 0x21 + 1x20 9  = 9x160

10 = 1x101 + 0x100 1010 = 1x23 + 0x22 + 1x21 + 0x20 A  = 10x160

11 = 1x101 + 1x100 1011 = 1x23 + 0x22 + 1x21 + 1x20 B  = 11x160

12 = 1x101 + 2x100 1100 = 1x23 + 1x22 + 0x21 + 0x20 C  = 12x160

13 = 1x101 + 3x100 1101 = 1x23 + 1x22 + 0x21 + 1x20 D  = 13x160

14 = 1x101 + 4x100 1110 = 1x23 + 1x22 + 1x21 + 0x20 E  = 14x160

15 = 1x101 + 5x100 1111 = 1x23 + 1x22 + 1x21 + 1x20 F  = 15x160

16 = 1x101 + 6x100 10000 = 1x24 + 0x23 + 0x22 + 0x21 + 0x20 10 = 1x161 + 0x160

17 = 1x101 + 7x100 10001 = 1x24 + 0x23 + 0x22 + 0x21 + 1x20 11 = 1x161 + 1x160

When developing programs, it is sometimes necessary to output digital signals 
through a port as one or more bytes of data. The signals to be output form binary 
bit patterns, which are more conveniently represented within program code as 
hexadecimal numbers. At other times you will need to represent incoming binary 
data sent from external devices as hexadecimal numbers. The following examples 
demonstrate the conversion of a binary number into hexadecimal. 

We can obtain the hexadecimal representation for a binary number if we divide the 
binary number into groups of four digits starting from the least significant digit or 
bit (LSB, right-most digit of the number). Note that when we break a byte into two 
groups of four bits, we have what is termed two nibbles of data. 

10001 = 

=

1 0001 

1         1  hex 
(hexadecimal numbers are often 
written using a 0x prefix , i.e. 0x11) 

1010001101 = 

=

10   1000   1101 

 2       8        D  hex  (0x28D) 

Alternately, hexadecimal is denoted by using the $ or H symbols, i.e. $11 or 11H. 
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From the preceding example, if we want our program to store data at the binary 
address 1010001101, we would manually convert this number into hexadecimal 
format as 0x28D and use this hexadecimal number as the storage address in our 
program. Had we converted the binary number into decimal format as 653, we 
would need to carry out a more involved conversion. 

Now we are familiar with hexadecimal representation, we can use this notation for 
our parallel port address. The BASE address of the parallel port is 0x378 for most 
PC’s, however, in some instances the parallel port uses a BASE address of 0x278, 
0x3BC, or 0x300. Working with the more common BASE address of 0x378, we 
have the BASE+1 address of 0x379 and BASE+2 address as 0x37A. 

2.4 Program Demonstrating Hexadecimal 
      to Decimal 
The program shown in Listing 2-1 can be used to convert numbers from decimal to 
hexadecimal and vice-versa. It is often more convenient to use hexadecimal 
notation in program code when outputting bit patterns through the port than 
decimal notation. Conversely, it is at times most convenient to display on-screen, 
the decimal number representation for the bit patterns read in through the port. Use 
this program to improve your familiarity between decimal and hexadecimal 
number systems. 

Listing 2-1 Program to display numbers in decimal and hexadecimal format. 

/*****************************************************
This program prints a number you would enter in 
decimal format in hexadecimal format. 
*****************************************************/
#include <iostream.h> 

void main() 
{
   int Number; 

   cout << "Enter an integer number -> "; 
   cin >> Number; 
   cout << "The number is:" << endl; 
   cout << dec << Number << " in decimal" << endl; 
   cout << hex << Number << " in hexadecimal" << endl; 
}

In Listing 2-1, the include file iostream.h facilitates the use of cout and the 
number conversion argument hex. The variable, Number ,will receive the integer 
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you will pass to the program in response to the prompt “Enter an integer 
number -> ”. The same number is then printed on two successive lines, first in 
decimal format, which is the default number representation, and then in 
hexadecimal format. The hexadecimal format is activated by the format specifier
hex.

2.5 Summary 
This chapter explained the configuration of the parallel port and the digital logic 
concepts involved when using the port with external circuitry. These concepts 
include binary notation, digital logic levels, noise margins and different types of 
logic families such as CMOS and TTL. 

The PC parallel port uses three I/O addresses to transfer data through the port’s 
interface. Each address controls one byte of data, however, for two I/O addresses, 
several data bits are unused and a few other bits are inverted internally by the port 
circuitry. The first I/O address is used to output data only, the second address is 
used to input data through the port and the last address can be used to both input 
and output data. Furthermore, representation of data using decimal, hexadecimal 
and binary number systems has been explained. This knowledge will be used when 
developing programs in the chapters ahead. 
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3.1 Introduction 
The aim of this chapter is to develop software that will enable us to see the basic 
input/output operations when using the parallel port of your PC. Program operation 
is verified using a simple test circuit with LEDs as indicators. Operation of the on-
board power supply, parallel port interface and LED Driver circuits is explained 
before directing the reader to build these circuits. Once these circuits are built (in 
the order presented), programs can be written and tested. 

We will start our program development by writing simple non-object-oriented 
programs to input and output data through the parallel port. Later on, in Chapter 5, 
you will be introduced to object-oriented programming (OOP). When you reach the 
end of this chapter, you will have seen operation of the parallel port for data 
transfer and you will have gained an understanding of how a simple C++ program 
is written. 

3.2 Interface Board Power Supply 
All circuitry on the interface board requires electrical power at a steady voltage in 
order to function properly. A power supply as part of the interface board generates 
the individual voltages needed by its different circuits. This section of the board 
should be assembled and tested first before assembling any other circuitry. You 
should proceed to assemble the next segment of circuitry only when the power 
supply is generating correct voltages. 

Figure 3-1  Power Supply Block Diagram. 

A block diagram of the power supply is shown in Figure 3-1. Most of the power 
used by the interface board is supplied from the high voltage power point (known 
as mains supply) via the transformer (power-pack). The power supply +5V and 
+9V outputs can operate at their fixed voltages when supplying currents up to 
approximately 1A. This maximum current rating applies when the correctly rated 
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heatsink is fitted to each of the voltage regulators. The –8V output does not use 
mains supply; instead a 9V battery is used to meet its voltage and low current 
requirements. The –8V output powers analog circuitry which has a wide operating 
margin for its supply voltage, and hence there is no need for voltage regulation. 

Figure 3-2  Power supply sub-circuits. 

Figure 3-2 shows a more detailed functional diagram of the entire power supply. 
The 9V battery passes electrical energy through a diode that allows current to flow 
only if the battery is connected with correct polarity. When current is drawn 
through this circuit, the diode drops approximately 1V, producing a –8V low 
current power source. 

The portion of the power supply using mains voltage is made up of four sub-
circuits: a transformer, a rectifier/filter and two voltage regulators (+5V and +9V). 
The combined effect of these sub-circuits is to take the alternating mains voltage 
and convert it into stable +5V and +9V DC voltages, free of oscillation. 

The alternating mains voltage needs to be reduced in amplitude and then rectified 
before it can be of use to our ‘low voltage’ circuits. The transformer inside the 
Power-Pack carries out this function. It has two diodes fitted inside to allow current 
to flow in one direction only, rectifying the sinusoidal waveform from the 
transformer as shown in Figure 3-3. 

The voltage regulators will not function properly unless the voltage fed to their 
input voltage terminals is at least several volts greater than the regulator output 
voltage. A large value capacitor is added to the output from the power-pack to 
prevent its output from repeatedly dipping to zero, and instead dipping within 
acceptable levels as shown in Figure 3-4. 
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Figure 3-3  Power-Pack Power Supply (without capacitor). 

Figure 3-4  Power-Pack Output with Capacitor added. 

The voltage regulators accept a rippling input voltage as can be seen in Figure 3-5, 
and use their internal circuitry to steady their output voltage to within a few percent 
of their rated voltage. For example, the +5V regulator will produce an output 
voltage that lies between +4.75V and +5.25V. The voltage regulators on the 
interface board have several capacitors connected between their input pins and 
ground, and between their output pins and ground. These capacitors prevent the 
output of each regulator from oscillating at “high frequencies” and improve the 
ability of the regulator to respond to fast transient loads. 

Power-Pack

To Power Point 
(AC Volts)

Transformer Diodes

_

+

0

~ +12V 

0V

To Voltage 
Regulator

Power-Pack

To Power Point 
(AC Volts)

 (reduced ripple) 

_

+

0
Capacitor

0V

~ +12V 

To Voltage
Regulator

3 TESTING THE PARALLEL PORT 38



Figure 3-5  Voltage Regulator (without capacitors). 

The hardware for the power supply should now be assembled and tested. Appendix 
A contains guidance for hardware assembly, soldering, schematic diagram 
conventions, testing and debugging, printed circuit board preparation and checking.
This material should be read before commencing with the assembly and testing of 
the power supply. The power supply schematic diagram, bill of materials and test 
instructions are also to be found in Appendix A.

3.3 Parallel Port Interface 
We will often need to check the correct operation of our programs during their 
software development cycle. The interface board has circuitry that allows us to test 
the functionality of the entire parallel port and thus provide feedback on program 
execution. A block diagram of this circuit is shown in Figure 3-6. 

The signals from the parallel port are connected through the interface cable to the 
interface board D25 connector. From here, eight of the signals connect with a 
Buffer integrated circuit. These signals are generated by writing data to the BASE 
address. A second Buffer IC on the interface board is used to send five signals to 
the PC’s BASE+1 Address, via pcb tracks connected to the D25 connector. A 
further four signals controlled by the BASE+2 address, pass through the D25 
connector to individual resistors. This part of the port can both output data or input 
data.

Permanent damage often occurs when output pins of IC’s are accidentally 
connected together without any means of limiting the resulting currents. Resistors 
are connected in series with BASE+2 signal lines to limit the currents and 
minimise damage should any of these lines from the PC be improperly connected 
to other outputs on the interface board. 

Note that the two 8 way Buffer ICs shown in Figure 3-6 also have pull-up resistors 
fitted to their input pins (resistors not shown). Their function is explained in the 
Parallel Port Interface section of Appendix A. 
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Figure 3-6  Parallel Port Interface & LED Driver Block Diagram. 

The circuitry shown in Figure 3-6 has small pins with dots at their ends. These dot 
symbols represent printed circuit board pins that allow interconnection between 
other circuits on the board. This is made possible by using an interconnecting lead 
(shown in Figure 3-7) to connect between pins. You can fabricate these leads as 
required by following the instructions given in Appendix A.

Each connection made with an interconnecting lead connects an output pin of a 
circuit to an input pin of another circuit. DO NOT at any time connect outputs pins 
to other outputs pins. Doing so will most likely damage the components involved.

Figure 3-7  Interconnecting Lead. 
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Also shown on the diagram of Figure 3-6, is a resistor and light emitting diode 
(LED), representative of a group of eight such devices. This circuit is used to 
indicate the state of data coming from the PC or the interface board itself. Check 
the data generated within the interface board by connecting the relevant output pins 
of the circuit to individual resistor and LED pairs. 

To test programs that read data into the PC through the parallel port, the interface 
board has a number of pcb pins permanently connected to either +5V or GND. This 
arrangement allows us to test any of the four or five input bits of the PC parallel 
port that use BASE+1 and BASE+2 addresses respectively. 

Proceed to assemble the parallel port hardware and test for correct operation. 
Appendix A contains the schematic diagram, hardware assembly and test 
instructions for this circuitry. Several interconnect leads will need to be made for 
test purposes. 

3.3.1 LED Driver Circuit 
Figure 3-6 shows eight logic outputs (that originate from the parallel port) 
connected to a Buffer via pcb tracks. Unfortunately, like most digital logic circuits, 
a single logic output from the parallel port circuit does not have the capacity to 
pass sufficient current through a LED; hence the need for the Driver IC. Each 
output pin from the Buffer is connected to an individual pcb pin. The interconnect 
lead wires connect the Buffer output pins to the input pins of the LED Driver IC. 

The Driver used on this board has the part number ULN2803A. It houses a bank of 
internal transistors, each one well suited to accept the limited current from a logic 
output pin and then to drive a LED. Most LEDs require between 5mA and 20mA 
of current through them to glow with adequate brightness. The ULN2803A Driver 
switches current flow independently through each of the eight LEDs and resistors, 
and operates as follows: 

1. When a Driver input pin (on the left side of the Driver) is taken to a high
voltage level, the corresponding output pin is switched internally to ground 
voltage. This allows current to flow from Vcc (equal to +5V), through the 
LED, and resistor, and through the Driver output pin to ground, causing the 
LED to glow. 

2. When the Driver input is driven to a low voltage level, the corresponding 
output pin connection path to GND will become highly resistive. This reduces 
current flow through the LED and resistor to extremely low levels and 
extinguishes the glow of the LED. 

3.3.2 LED Operation 
A minimum amount of current needs to flow through a light emitting diode (LED) 
for it to light. LEDs, like most diodes, conduct significant levels of current in one 
direction only during normal operation. The current flows from the anode (denoted 
by a triangle) to the cathode (denoted by a bar) as shown in Figure 3-8.
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Figure 3-8  Conventional Current through a LED. 

For current to flow in this direction, the anode must have a more positive voltage 
applied than the voltage at the cathode (known as forward voltage, VF). This 
difference in applied voltage (VF) typically needs to be approximately 2V for most 
LEDs and approximately 0.7V for ordinary diodes, if they are to conduct. 

Figure 3-9 Typical LED characteristic curve (without a series resistor). 

A characteristic curve for a LED is shown in Figure 3-9. This curve shows the 
current through the LED and voltage across the LED for its normal range of 
operation, indicated by the bold portion of the curve at the right side of the current 
axis. When using the LED in its normal operating range, an increase in current 
through the LED will increase its light output. When the current exceeds the 
maximum limit for the LED (indicated by the value IF), the device will be 
destroyed. A current limiting resistor, shown in Figure 3-10, is used to control the 
current and prevent failure due to excessive current. 

Note that if we reverse the voltage applied across the LED, we will reach the LEDs 
reverse breakdown voltage (VBR, shown as –5V in Figure 3-9). Once the reverse 
breakdown voltage has been exceeded, reverse current will increase to the point at 
which the device is destroyed (IR).
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When we generate sufficient forward voltage to make the LED conduct, we say we 
have biased the device to operate. As mentioned previously, the LED will be 
destroyed if we do not use a resistor to limit the current flowing through it. The 
amount of current flowing through a resistor depends on the voltage across it. Since 
the LED and resistor are connected as shown in Figure 3-10, they share the same 
current. This circuit arrangement is known as a series circuit. Current through this 
circuit is analysed as follows. 

If we know the voltage across the resistor we can work out the current flowing 
through it (and the LED) since Current = Voltage/Resistance. 

Figure 3-10  Current flow through the Series Circuit. 

We know that the voltage across a conducting LED is approximately 2V and we 
also know that the total voltage across the series circuit from VCC to Ground is 
5V. Therefore, the voltage across the resistor is: 

5V – 2V = 3V 

The current (I) through a resistor is given by voltage across the resistor, divided by 
its resistance in Ohms ( ):

i.e. I = 3V / 330  = 0.009 A (amperes are denoted by the symbol A.) 

The currents flowing in electronic circuits are often small fractions of an ampere 
and so the units of milliamps (mA) which is 1/1000th of an amp are commonly 
used. Thus we have 0.009 amps which is 9 milliamps flowing through the LED and 
resistor.

Proceed to assemble and then test the hardware for the LED Driver circuit along 
with at least eight interconnecting leads, as explained in Appendix A. 

3.4 Basic Output Using the Parallel Port 
As described in Chapter 2, there are three addresses associated with the parallel 
port (typically being 0x378, 0x379 and 0x37A). Although we use the term parallel 
port, this ‘port’ is really three ports combined together. The simplest of the three 
ports is the one at address 0x378. In general, this port is only used for output, 
however, more recent computers have the capability to input data using this port 

Ground
(0V)

i

2V3V

330RDriver
VCC (+5V)
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address. Nevertheless, to maintain compatibility, the software we have developed 
only uses data output to port 0x378. We will write a program that outputs a byte of 
data via port 0x378 to light up the respective LEDs on the interface board. 

To verify the proper operation of our program, we need to connect the interface 
board to the parallel port of the PC. This is done using the interface board cable 
described in Chapter 2. The remainder of the connections to be carried out on the 
interface board must be made according to Table 3-1 below. Note that pin 1 of an 
IC on the interface board can be recognised by its rectangular shaped pcb pad. 
Make these connections using the interconnecting leads assembled earlier. When 
the connections are complete, the signal lines of the port at BASE address (0x378) 
will be connected to the Driver circuit that lights the eight LEDs via the Buffer IC 
on the interface board.

Table 3-1 Connections for basic output. 

BASE Address 
(Buffer IC, U13)

ULN2803A Pin No. 
(Driver IC, U3)

D0 1 
D1 2 
D2 3 
D3 4 
 D4 5
 D5 6
 D6 7
 D7 8

The program shown in Listing 3-1 has several lines of program statements 
followed by comments. It uses a library function outportb() to output a byte of 
data to the port at BASE address. The port address and the data can be specified as 
actual arguments to outportb() at the time of calling. Since outportb() is a 
library function, we do not have to provide the body of the function. It comes from 
the library and will be searched for when linking takes place. 

Listing 3-1  Writing to the port at Base address. 

/*****************************************************
WRITING TO A PORT (output operation) 

This program outputs a certain bit pattern to the port at 
BASE address to light the respective LEDs on the interface 
board.
*****************************************************/
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#include <dos.h> 

#define BASE 0x378 

void main() 
{
   outportb(BASE,255); // in binary, 255 = 1111 1111 

// The number 255 can be changed to any value betwen 0 
// and 255, causing the eight output signals to 
// correspond to the binary value represented by the
// number. For example 65 = 0100 0001. 
}

As mentioned in Section 1.2.2, the two lines starting with the hash sign (#) are 
compiler directives. The first compiler directive will include the header file dos.h
(which is a source file). This file contains the prototype of the outportb()
function. The header file dos.h also contains information about many other 
functions. However, as far as this program is concerned, only the information 
regarding the outportb()function is needed. The compiler would not be able to 
process the outportb() function, and the program could not use it if we did not 
include this header file. Note that the prototype does not specify how the function 
is to be executed. In other words, until linking takes place, the program will not 
have access to the actual instructions contained in the function. 

The second compiler directive is a define statement. It simply instructs the 
preprocessor to replace any occurrences of BASE in the program by the 
hexadecimal number 0x378. Using the word BASE instead of 0x378 makes the 
code more readable since it is easier to relate to the word BASE than a number. In 
addition, if we ever wanted to change the base address, we only need to modify the 
define statement and the preprocessor will automatically implement that change 
in address throughout the program. The define statement can be used when 
writing larger programs to simplify the task of coding and improve readability. 

Next we encounter the main() function (the only function in this particular 
program) where all C++ programs start their operation. Usually a typical C++ 
program will have many functions coded (defined). The keyword void indicates 
that the main() function will not return any value. The body of the main()
function starts with the open brace ({) just after the line void main() followed 
by its instructions. The only executable statement in this program is 
outportb(BASE,255). This statement is used to output a byte of data from the 
PC.  After a few comments, the body of the main function ends with a close brace 
(}).

The function outportb() takes in two parameters; a port address and the data to 
be written to that address. In this program the port address is BASE, which will be 
replaced with 0x378 by the preprocessor. Therefore, the address of the port 
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where the data is to be sent is 0x378. The value of the data is 255 (decimal). It 
must be noted that the size of the data passed to a port is, most of the time, a byte. 
A byte can take 256 different values. When the value is 0, all eight bits of the byte 
will have their values as 0. When the value is 255, all eight bits of the byte will 
have their values set to 1. Other values between 0 and 255 will correspond to 
different bit patterns. After the interfacing connections given in Table 3-1 are made 
and the parallel port cable is connected to the interface board, this program can be 
compiled and executed. It will set all eight bits equal to 1 and as a result you should 
see all eight LEDs light up. If, for example, you change the outportb() line to 
outportb(BASE,65), then only the LEDs corresponding to bits 0 and 6 will be 
lit and all other LEDs will be off.

If the program fails to work and light the LEDs, make sure your base address is 
correct by using the program titled ‘base_adr.exe’ included with the accompanying 
CD-ROM.

Edit the program a number of times replacing the value of 255 with different 
numbers (less than 255) and observe how the LEDs light up on the board. This 
exercise will also help you understand how bit patterns relate to decimal data. as 
explained in Chapter 2. Alternatively, you may replace the number 255 with 
hexadecimal numbers; for example: 
outportb(BASE, 0xF0); 

3.5 Basic Input Using the Parallel Port 
In this section we will learn how to write a program to read the port associated with 
the BASE+1 address (0x379). This is the only port address of the three port 
addresses comprising the parallel port that is dedicated to input operations. We will 
be reading this port and displaying the number on-screen that corresponds to the 
input data received. 

Table 3-2 Connections for basic input. 

BASE+1 Address*

(Buffer ID, U6)
Power Supply 

+5V and GND pins
D3 +5V 
D4 GND 
D5 GND 
D6 +5V 
/D7 +5V 

* The signal preceded by a slash ( / ) is internally inverted by the parallel port hardware. 

Once again, program operation can be verified by connecting the PC to the 
interface board using the interface cable. The remaining connections to be made 
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are on the interface board and shown in Table 3-2. The incoming data can easily be 
changed by swapping the wiring for the second column of Table 3-2 between +5V 
and GND. 

Use the interconnect leads to make the connections shown in Table 3-2. When the 
connections are complete, the signals on the interface board are connected to the 
port at address BASE+1 (0x379). Note that this port has only five signal lines out 
of eight that can be used. Three of the signal lines, namely the ones corresponding 
to Data Bits 0 to 2 are unavailable, as they are not dedicated to the port at BASE+1
in the PC parallel port.

The essential steps required in this program are: 

1. Read the port. 
2. Display the result on the screen. 

Both these actions require very simple statements and do not justify coding extra 
functions. Therefore, just a main function will suffice. To read a port carrying 8 
bits of data, we can use the library function inportb(). To display the result on 
the screen, we can use the library function printf(). It may be convenient to 
stop the program immediately after displaying the result so we can read the screen. 
This is especially useful when an Integrated Development Environment (IDE) is 
used to develop the program. When IDEs are used, the screen will automatically 
revert to the IDE’s editor once program execution terminates. This will prevent the 
user from observing what happened on the screen at the time the program ran. 
However, we will be able to see the onscreen results if we make the program wait 
for a key press just before it ends. We can do this using the library function 
getch(). Therefore, the program must use the function sequence inportb(),
printf() and getch() in that order. In order for us to be able to use these 
functions we must provide their prototypes, contained in the header files dos.h,
stdio.h, and conio.h, respectively. This program is shown in Listing 3-2. 

Listing 3-2 Reading the port at address BASE+1.

/*****************************************************
 READING THE PORT AT ADDRESS BASE+1 

This program will read the port at address BASE+1 and
print the number read on the screen. The number is 
formed by combining the five signal lines read in
through the port. Bits 0, 1 and 2 have no valid data as 
they are not dedicated to BASE+1 internally in the PC. 
Bits 3, 4, 5 and 6 will be read as normal. Bit 7 is 
permanently inverted by the parallel port hardware. 
*****************************************************/
#include <dos.h> 
#include <conio.h> 
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#include <stdio.h> 

#define BASE 0x378 

void main() 
{
   unsigned char InputData;     // Declare data type for 
                                // various InputData. 

   InputData = inportb(BASE+1); // Read port at BASE+1. 

   printf("%2X\n",InputData);   // Print result to screen 
                                // as a hexadecimal number. 

   getch();                     // Wait for key press. 
}

NOTE

Detailed descriptions of the library functions can be found in the documentation 
that comes with the C++ development software.  More recently, the descriptions 
are available on-line in help files.  The documentation will also provide the names 
of the header files associated with each library function. This will enable you to 
determine the name of the header file that must be included in order to be able to 
use a particular function. 

This program has compiler directives; three are include statements and the one 
is a define statement. The three include statements will include the header 
files dos.h, stdio.h and conio.h. The define statement will allow us to 
use the identifier BASE whenever we need to refer to the actual address 0x378.

The main() function begins with the line void main() whose meaning has 
been explained previously. The main() function like all functions can take in 
parameters. In this case it does not take any parameters, and so an empty pair of 
parenthesis are used to follow the word main. This signifies to the compiler that it 
does not take any parameters and ensures it is recognised as a function.

An example of a function that does take in parameters is the outportb()
function used in Listing 3-1. It takes in two parameters - the address the data is to 
be written to and the data itself. Therefore, its parentheses are not empty. 

The next statement (after the brace) in the program is: 
unsigned char InputData; 
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As mentioned earlier, this is an identifier declaration. It simply informs the 
compiler the identifier’s name (in this case, InputData) and the type of data the 
identifier is allowed to represent (in this case, unsigned char).

This variable is declared so it can be used to store the value returned by the 
inportb() function. This is an ideal place to understand the concept of return 
value of a function. The prototype of the inportb() function, as provided by the 
header file dos.h  states that its return value is of type unsigned char.
Therefore, the variable InputData must also be declared as unsigned char
in order to receive the value returned by inportb().

The next statement in the program is: 
InputData = inportb(BASE+1); 

This statement makes a call to the function inportb() and takes in one 
parameter, which is an address. The placeholder BASE is defined as 0x378.
Therefore, BASE+1 will evaluate to be 0x379. This value specifies the location 
of the port to be read. Therefore, this statement will read the second port associated 
with the parallel port of your PC. The value read by the inportb() function is 
then placed into the variable InputData.

The statement used to display the result on the screen is: 
printf(“%2X\n”,InputData);

The printf() function is a C function – not C++. However, since C is a subset 
of C++ it can be used in C++ programs. When it comes to printing data on the 
screen, printf() offers good flexibility and ease of use. In our programs we use 
the good features of C with C++ to develop better applications. The function 
printf() is a relatively unusual and very useful function in that you can pass a 
variable number of parameters to it. Most of the functions you will be writing will 
have a fixed number of parameters. In the current example, the number of 
parameters passed to the printf() function is two. The first argument is the 
string of characters “%2X\n” and the second argument is the value of the variable 
InputData. These two arguments are separated by a comma. 

C Examples of frequently used format specifiers 

%10.3f Floating point format with a field width of 10 and 3 decimal places. 
%5d Integer format with a field width of 5. 
%c Character format. 
%s String format (used for a sequence of characters such as a sentence). 
%X or %x Hexadecimal format. X will print upper case hexadecimal letters and x

will print lower case hexadecimal letters. 
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The first argument “%2X\n” is a format specifier that is used when printing the 
value of InputData on your screen. The characters %2X specify that a 
hexadecimal format of field width 2 is to be used. A carriage return and a line feed 
are specified by the two characters \n, the character ‘n’ known as the new line 
character.

To represent a byte of incoming data, two hexadecimal digits are needed since each 
hexadecimal digit represents 4 bits. Therefore, a field width of 2 is appropriate. 
After printing the number, the cursor on your screen will be positioned at the start 
of the next line. 

The line:
getch();

is used to make the program wait for a key press and give us time to read what has 
been printed on the screen. The getch() function waits to receive a character 
from the keyboard and so the program will not proceed until a key is pressed. 
When this happens the program will terminate since there are no more statements 
to execute. 

The operation of the program can be verified by interpreting the bit pattern of the 
hexadecimal value printed on-screen and then checking that this bit pattern 
corresponds to the actual signals generated on the interface board. You can change 
the connections on the interface board by changing the connections shown in the 
right-most column of Table 3-2. That is, you can re-arrange the connection of 
signals to ground and to +5V. If you run the program again, you should see a 
different result on the screen. 

3.6 Compensating for Internal Inversions 
Consider the program shown in Listing 3-2. When we read the port at address 
BASE+1 (0x379), one of the signals (bit D7) we read from the interface board was 
inverted by the parallel port hardware. Similarly, some of the signals at port 
address BASE+2 (0x37A) will be inverted by the hardware when output through 
this port (bits D0, D1, and D3). In this section we will learn how to modify our 
software to compensate for such inversions. This compensation can be done in 
software by simply inverting the affected bits to counteract the inversions that are 
made by the hardware. 

3.6.1 Output Operation 
The program shown in Listing 3-3 will write data to the port at address BASE+2.
Note that this port only controls bits 0, 1, 2 and 3; bits 4, 5, 6 and 7 are not 
dedicated for internal use by the port at address BASE+2. Some of these bits that 
can be controlled are inverted internally by the parallel port electronics when 
output; bits 0, 1, and 3. Therefore, to nullify this inversion by hardware we must 
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invert bits 0, 1 and 3 in software. Bit 2 is not inverted internally by the parallel port 
hardware, and so we do not not need to invert it in software. 

The that need to be made on the interface board are shown in Table 3-3. 

Table 3-3  Connections to the LED Circuit. 

BASE+2 Address†
ULN2803A

(Driver IC, U3)

/D0 D0 (1)
/D1 D1 (2)
D2 D2 (3)
/D3 D3 (4)

† The signals preceded with a slash ( / ) are internally inverted by the parallel port hardware. 

Listing 3-3 Writing to the port at BASE+2 with compensation for internal inversions. 

/*****************************************************
WRITING TO PORT @ BASE+2, INTERNAL INVERSIONS COMPENSATED 

This program outputs 4 bits of data to the port at address 
BASE+2, compensating for the inverted bits 0, 1 and 3. 
You can change the value of the actual bit pattern you 
want to see output to the interface board. 
*****************************************************/
#include <dos.h> 
#define BASE 0x378 

void main() 
{
// BASE+2 bits 0,1 and 3 are internally inverted by 
// the parallel port hardware before being output. This 
// can be compensated in software by carrying out an 
// exclusive OR operation with the output data and 0x0B 
// (0000 1011).  Bits 4-7 do not matter as they are not 
// connected. 

   outportb(BASE+2,0x0B ^ 0x0F); 

// NOTE: In binary 0x0F = 0000 1111 
// The number being output (0x0F) can be changed to any 
// value between 0x00 and 0x0F. The four output signals 
// will correspond to the binary bit pattern represented by 
// the number. 
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// Examples: 
//  Bit No:  7  6  5  4  3  2  1  0 
//  0x0F     0  0  0  0  1  1  1  1 
//  0x05     0  0  0  0  0  1  0  1 
}

In this program, the only line that requires explanation is: 
outportb(BASE+2,0x0B ^ 0x0F); 

The outportb()function writes data to the port in a manner similar to its use 
before. In this case, the address of the port is BASE+2. The define statement 
defines BASE to be a placeholder for 0x378. Therefore, the value of the first 
parameter is 0x378+2, which is 0x37A. The value of the second parameter is the 
data we want to send out the port. This data is obtained, by evaluating: 
0x0B ^ 0x0F 

The operator ‘^’ used in the above expression is known as the Exclusive-OR 
(XOR) operator. It is one of the many bit-wise operators available in C and C++ 
that is used to operate at bit level. You will have a better understanding of how bit-
wise operators work once the operation shown in Table 3-5 has been explained. 
The operation of the exclusive OR operator will be described with the aid of Table 
3-4. This operator requires two operands when used.

Table 3-4 Exclusive OR operation. 

Operand A 0 0 1 1 
Operand B 0 1 0 1 
Result 0 1 1 0 

     

NOTE

In the simple arithmetic operation:
 3 + 5  
the operator is ‘+’ and the two operands are 3 and 5. 

For a bit-wise operator, the operands must be bits. In Table 3-4 the two operands 
are given the names Operand A and Operand B. The results produced by the XOR 
operation for all four possible combinations of the two operands are listed in the 
‘Result’ row. As can be seen, the result is 1, only when just one of the two 
operands in a column is 1. When both operands in a column are identical, the result 
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is zero. So when the operands differ, the result is 1. As shown by columns 2 and 4 
of Table 3-4, if we hold the Operand B at 1, the result will be the inversion of 
operand A. Operand B acts as a ‘filter’ for inverting specific bits of Operand A. 

We use this operation to perform software inversions to counteract the internal 
inversions generated by the parallel port hardware. Table 3-5 explains the result of 
evaluating:
0x0B ^ 0x0F 

Here Operand A contains the data to be sent out and Operand B is the “filter” used 
to invert the bits already inverted by the parallel port. 

Table 3-5 Evaluation of 0x0B ^ 0x0F.

Bit No.  7  6  5  4  3  2  1  0 

Operand A (0x0F) 0  0  0  0  1  1  1  1 

Operation XOR 

Operand B (0x0B) 0  0  0  0  1  0  1  1 

Result 0  0  0  0  0  1  0  0

As explained earlier, bit-wise operators operate on a bit-by-bit basis. In other 
words, bit 0 of Operand A and bit 0 of Operand B are put through an exclusive OR 
operation. Likewise, another exclusive OR operation takes place between bit 1 of 
Operand A and bit 1 of Operand B, and so forth.

The filter comprises data bits that we want inverted set to 1, and bits to be left as is 
set to 0. Thus, to invert bits 0, 1 and 3 of data to be sent out, the bits 0, 1 and 3 of 
the filter are set to 1. As can be seen, in the ‘Result’ row of Table 3-5, bits 0, 1 and 
3 are the opposite values of bits 0, 1 and 3 of Operand A. Therefore, when we write 
the exact bit pattern we want as Operand A, the affected bits will be inverted by 
software to become the ‘Result’. When those affected bits of the ‘Result’ are then 
sent to the parallel port hardware and internally inverted, the data arriving at the 
interface board will correspond to Operand A that we originally want to send out. 

To verify operation of the program, you can change the data (i.e. 0x0F) to any 
value between 0x00 and 0x0F. The LEDs that light up will correspond to the 
binary bit pattern of the data specified in the program. Note that the filter value 
0x0B must not be changed – otherwise not all those specific bits we want to invert 
(0, 1, and 3) will actually be inverted in software. 

3.6.2 Input Operation 
In program Listing 3-2, one of the signals being read in through the port at address 
BASE+1 was internally inverted by the parallel port hardware. Note that the port 
BASE+1 can only input the bits numbered 3, 4, 5, 6 and 7. Of these bits, bit 7 is 
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internally inverted. Similar to the operation performed in the previous section, this 
internal inversion can also be compensated in software. This is done by performing 
an Exclusive OR operation using a ‘filter’ bit to toggle bit 7 as soon as the port is 
read. The value of the filter to be used is: 
0x80 = 1 0 0 0  0 0 0 0 

The required operation is shown in Table 3-6. Note that the unused and therefore 
invalid data bits D0, D1 and D2 are shown as ‘x’ in the example. These bits can be 
in either logic state and therefore the Exclusive OR result will also be 
indeterminate for these bits. 

Table 3-6  Inversion of bit 7. 

Bit no. 7  6  5  4  3  2  1  0 

Operand A (data received) 1  0  1  1  1  x  x  x 
Operation XOR 
Operand B (the filter, 0x80) 1  0  0  0  0  0  0  0 
Result (corrected data) 0  0  1  1  1  x  x  x  

Listing 3-4 Reading the port BASE+1 with internal inversions compensated. 

/*****************************************************
READING THE PORT @ BASE+1, INTERNAL INVERSIONS COMPENSATED 

This program reads the port at address BASE+1 (0x379). It 
compensates for the hardware inversion of bit 7 after 
reading the data. The net result is as if the hardware 
inversions had not taken place. 
*****************************************************/
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 

#define BASE 0x378 

void main() 
{
   unsigned char InputPort1; 

   InputPort1 = inportb(BASE+1); 
   InputPort1 ^= 0x80; 

3 TESTING THE PARALLEL PORT 54



   printf("%2X\n",InputPort1); 
   getch(); 
}

The only line that needs explanation in the program given in Listing 3-4 is: 
InputPort1 ^= 0x80; 

This statement is equivalent to the following statement: 
InputPort1 = InputPort1 ^ 0x80; 

And is of the form: 
Result = Operand A ^ Filter; 

Operand A stands for the raw data read from the port. Result stands for the 
compensated value. Consider the statement: 
InputPort1 = InputPort1 ^ 0x80; 

InputPort1 on the right-hand side contains the raw data affected by the internal 
inversion of the parallel port hardware. The InputPort1 shown on the left-hand 
side is the result obtained by carrying out an Exclusive OR operation between the 
raw data and the filter value 0x80. In other words, the value of InputPort1 is 
Exclusive-ORed with the filter value and then this result is stored back into the 
InputPort1 variable. The printf() statement then prints the compensated 
value on the screen. As a result, the number appearing on the screen should 
represent the actual signal levels connected on the interface board. 

3.7 Summary 
In this chapter we have explained the operation of the interface board power 
supply, port interface, and LED Driver circuits. These circuits allow the parallel 
port of the PC to interface with the interface board and test operation of programs. 

We learned how to develop C++ programs for sending and receiving bytes of data 
through the three addresses associated with the parallel port of the PC. These 
programs printed their results to the screen using either the cout object (as we did 
in Chapter 1), or using the functions of the printf() family. We also explained 
a small subset of the format specifiers that the printf() function uses. 

The Exclusive OR bitwise operator was used to toggle some of the data bits we 
transmitted through the parallel port. Bitwise operators are a very useful part of the 
C and C++ languages and allow us to manipulate specific bits within a byte. 
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4

The Object-
Oriented
Approach

Inside this Chapter 

What exactly is object-oriented programming 
(OOP)?

Encapsulation.

Member data and member functions of an 
object.

Inheritance and Polymorphism. 

Constructors and the Destructor. 

Abstract classes. 

Class Hierarchies.



4.1 Introduction 
In this chapter we will explain object-oriented programming concepts that apply to 
C++ programming. Object-oriented programming is the newer way of developing 
software. The superseded style of developing software is known as procedural
programming.

In procedural programming, data and functions can be thought of as being ‘out in 
the open’. In this case data may be used and/or altered by any function, and 
inadvertent misuse is common, often causing detrimental side-effects to a 
program’s operation. Also, any changes or modifications to the existing software 
can cause problems that are very difficult to debug.

In this chapter we use examples from everyday life to gain a qualitative 
understanding of the concepts that apply to object-oriented programming. We then 
take a detailed look at the terminology associated with object-oriented 
programming and define these concepts. By the end of this chapter, we expect you 
to have developed a good understanding of the object-oriented concepts and 
terminology you will need when we commence with object-oriented programming 
in the next chapter. 

4.2 Conceptual and Physically Realisable 
Objects

Objects in object-oriented programming resemble the objects we encounter in real-
life. An object can be viewed as a self-contained entity, which has some sort of a 
description and some uses associated with it. The description may list all the 
features of the object. The uses associated with the object may be a set of functions 
the object carries out for us, or a set of functions we carry out on the object, or a 
combination of both types of functions. A software representation of such an object
type in object-oriented programming terms is referred to as an object class. The 
C++ language provides mechanisms to list all the features or properties of an object 
class and all the functions associated with the object class. 

In real-life, we have descriptions of real objects that physically exist and also 
descriptions of abstract objects that are either imaginary or conceptual. Real objects 
are tangible whereas conceptual objects are not. While tangible objects can be 
duplicated, conceptual objects cannot be duplicated for the simple reason that there 
is no such thing as “two identical concepts”. However, it is possible to have “two 
identical objects”. The conceptual objects (abstract objects) can be developed into 
physically realisable objects by including exact definitions of every detail of the 
object, at which stage a real object may be produced. Then the object definition has 
passed through the transition from abstract to real.

To better understand this concept, consider a vehicle as an object. The most likely 
description of a vehicle that comes to mind is an object that is used to transport 
people or goods, perhaps rolling on wheels, with some form of energy to drive it 
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along (as shown in Figure 4-1 a). A manufacturer cannot proceed to build a vehicle 
unless they have determined its specific details. Is the vehicle a train, a bus, a car or 
something else? If it is a car, is it a small car, a medium car or a large car? What is 
its engine type and capacity? How many doors should it have? This refinement 
must continue until every detail of the “vehicle to be built” has been defined. At 
this stage the object is no longer an abstract object. Once completely defined, any 
number of “cars” can be manufactured as real objects.

Figure 4-1 The concept of abstract objects and real objects.

4.3 Real Objects 
Although the cars of this class are identical, when built, they are individual items. 
Each of these cars will have its own engine, fuel system, braking system, etc. If 
someone is asked to “Start the engine!”, they cannot start an engine without 
knowing which car is to be started. Accordingly, the word “engine” does not 
uniquely identify “an engine”. To be able to do so, the engine must be tagged with 
a particular car. For example, suppose three cars have been built and they are 
labelled A, B, and C. Then “Engine of Car A” will uniquely identify an engine. 
Thus, while “Car” is an object type, “Car A” is an actual object. It is important to 
understand the difference between the object type and the actual object. The 
existence of an object type does not necessarily mean that actual objects of that 
type exist. However, an actual object cannot exist without having its object type in 
existence.

The terms such as engine, fuel system, braking system, etc. can be used to 
generally describe those systems. For example, to describe features of the engine of 
a particular car type, we do not have to say the engine of the ‘blue’ car has such 
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and such features. We would simply say engines of this particular car type have 
these features. On the other hand, if an engine of a car is faulty, we must 
specifically refer to that car by saying ‘the engine of that blue car’ is faulty and 
needs to be repaired. Therefore, when an object type is described, we can use its 
terms without having to tag them to a physical object. 

4.3.1 Public Interface of an Object 
A motorcar was a sophisticated object even in early times. There are certain parts 
of a motorcar that the user is not expected to access; for example, the fuel injection 
system. The fuel injection system is not directly accessible to the user; 
nevertheless, it carries out its functions behind the scenes. On the other hand, the 
driver of the motorcar has direct access to the steering wheel, the brake pedal, the 
indicator stalk, etc. These can be referred to as the public interface of the object 
“Car”. Similarly, in object-oriented programming, every object must have a public 
interface for it to be useful. An object without a public interface is like a perfectly 
built car, which is completely encased and sealed off so that no one can ever get 
into it to drive it.

Figure 4-2 The public interface of an object.

The software objects will also have private functions with some designated purpose 
that are not directly accessed by the users of the object (like the fuel injection 
system of a motor car). Therefore, in the most general case, an object is an 
encapsulated entity with a public interface that has restricted access to its hidden 
details. How objects can be realised in software will be understood as we proceed 
through the development of object classes in the coming chapters. 

4.3.2 Construction and Destruction of Objects 
All cars come to life through some kind of a manufacturing process, which we may 
refer to as the “construction process”. If needed there can be slight variations to the 
cars built according to the ‘same’ plan – for example, cars that have different 
colour. Furthermore, manufacturing processes themselves could be slightly 
different. In one factory, cars may be built starting from sub-assemblies.  In another 
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factory, cars may be built from scratch. In either case, the same type of car will be 
produced.

After the car has been brought to physical reality, it can then be driven. At the end 
of the car’s life it will undergo some sort of destruction process which could take 
place in a car disposal yard. Destruction is an important process, which carries out 
the disposal of unwanted items to maintain environmental cleanliness and to allow 
the efficient management of resources. In the case of computer programs, object 
destruction is necessary for the efficient management of memory.

The techniques available in object-oriented software development provide 
mechanisms to realise all these aspects. Although we can draw analologies between 
the objects in our day-to-day life and the software objects, the real power of object-
oriented programming in C++ comes from the combination of object-oriented 
programming techniques and C++ programming techniques. 

4.4 Object Classes 
An object class describes a particular type of object. The object class does not refer 
to a real object but the type of those real objects yet to be created. If we take an 
analogy from everyday life; a building plan is analogous to an object class – not the 
building itself. The same building plan can be used to create any number of 
buildings. Likewise, the same object class can be used to create any number of 
objects. Each object that will be created according to an object class will reside in 
the memory of your computer. If more objects of the same type are created, more 
memory will be used. 

Figure 4-3 Components of an object class.
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Each object class will have its own name, also known as the object type name. The 
word class is a keyword in C++. It is used to identify a detailed plan with a 
name. Programmers are free to choose class names when developing new classes. 

Each object class must have a class definition. Similar to the case for real-life 
objects, the properties or features of the object and the functions associated with 
the object are listed in its class definition. The properties or features are given the 
name member data of the class and the functions associated with the object are 
referred to as member functions.

Among the member functions are two special types of functions. The first type can 
have more than one function per class and are known as constructors. Constructors 
are used by the program to create each individual object (that resides in memory). 
The second type has only one function per class and is known as a destructor.
Destructors are used by the program to free the memory that a variable used once 
the variable is no longer needed. If a constructor is not provided, the C++ compiler 
will provide a default constructor (invisible to the programmer). Similarly, if a 
destructor is not provided, the C++ compiler will add a default destructor (also 
invisible to the programmer). 

Figure 4-4 Public interface of an object class .

Some of the class members (both data and functions) can be publicly accessed; 
other members will have restricted access. The publicly accessible members 
provide the public interface of the object as shown in Figure 4-4. These include the 
public member data and public member functions. Members with more restricted 
access are known to have either private or protected access attributes.
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4.5 Encapsulation 
Grouping the member data and member functions together is known as 
encapsulation. There are some great benefits associated with encapsulation. First of 
all, encapsulation limits access to the internal details of the object. Access to the 
data is always through controlled and supervised means. In general, access will be 
restricted to most data members where data should not be freely accessible or 
changeable. Some of the functions may also have restricted access. 

Access to the object is allowed only through the public interface. This ‘restricted 
visibility’ to member data and member functions is also known as information 
hiding. Sometimes it is not necessary to know the internal details of an object. In 
this case it is often sufficient to just be able to know how to use it. A good example 
is a scroll bar. It is sufficient for the programmer to know how to place a scroll bar 
in an application to make the screen scroll. The scroll bar’s internal workings are 
hidden and normally are of no concernt to the programmer.

While all these restrictions are imposed to functions outside of the class, internally, 
any function of the class can manipulate or access any other member of the same
class. This provides efficient operation of object-oriented programs for the 
following reasons. It eliminates the need to declare member data within the 
functions and also the need to pass member data as parameters to member 
functions. While an ordinary non-member function can only return one value, the 
member functions can return ‘more than one value’ by being able to change any 
number of the data members of the class. 

4.5.1 Object Instantiation 
The process of creating an actual object is known as object instantiation.
Therefore, to instantiate an object of a particular class, one of the constructors of 
that class must be called. The constructor resembles “the manufacturing process” in 
our ‘car’ analogy.  The constructor, like any other function is a function written in 
C++. It must be called to create a physical object of the object class. While the 
object class is of type ‘Car’, the actual objects created, which we refer to as class 
objects, could be named A, B, C, etc. They are all equivalent, perhaps with minor 
differences like their colour. In object-oriented programming, a class definition 
does not occupy memory. However, a class object does occupy memory. Likewise 
a building plan does not occupy any land, whereas the actual building occupies 
finite space.

In object-oriented programming, the constructor must be called to create an actual 
object. At the time of calling the constructor, you can pass parameters to it in a 
likeness to selecting the colour of a car to be built. In a class definition, there may 
be more than one constructor. In our car analogy, a car may be constructed from 
scratch or may be constructed from subassemblies. 
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4.6 Abstract Classes 
Abstract classes can be viewed as initial conceptual class definitions which are 
insufficiently complete to carry out instantiation. Many good hierarchies of class 
objects will often start with an abstract class. The real power of abstract classes 
cannot be properly demonstrated until some advanced concepts of the C++ 
language are explained in the coming chapters. 

An abstract class needs to be developed to become a real class that has working 
functions if it is to be able to instantiate real objects and use them. There is no such 
thing as ‘an abstract object’ for the simple reason that anything abstract does not 
physically exist. In our ‘vehicle’ example, there will definitely be a characteristic 
such as speed. However, we cannot discuss how to increase or decrease speed until 
we know more details of the actual vehicle. We can also include ‘functions’ to 
increase and decrease the value of the speed. However, we cannot define the exact 
steps these ‘functions’ should take to increase or decrease the speed without 
knowing whether the vehicle is a car, or a train, or something else. In an analogous 
class definition, these types of functions are known as pure virtual functions. They 
are pure because their actions (bodies) cannot be defined yet, and virtual because 
their actions (bodies) need to be defined in future derived classes to carry out their 
required tasks.

4.7 Class Hierarchies 
A class hierarchy is a set of classes that are developed starting from one or more 
classes known as base classes (located at the root of the hierarchy). The new 
classes developed from the base classes are known as derived classes. The derived 
classes are more detailed and complete than their base classes. One of the most 
important benefits of object-oriented programming is code reuse. Developing class 
object hierarchies greatly facilitates the ability to reuse code by not having to 
rewrite code that new code is based on. Object-oriented programming allows us to 
re-use already written code as often as we like.

The base class can be an abstract class, although this is not an essential 
requirement. As mentioned earlier, no real object can be instantiated from an 
abstract class. However, it is useful to form a general abstract base class by 
including the essential member data and member functions that will be common to 
all objects of the derived classes of the hierarchy. 

As an example, if you consider a graphics program which works with geometric 
shapes such as lines, circles, triangles, squares, etc; a base class definition can be 
formed to move, scale, hide, show, stretch any of these objects. Let us call this 
class the Shape class. The class that we form, without referring to a specific 
object, can be an abstract class. As mentioned above, base classes do not need to be 
abstract classes. The abstract class will define the functionality of all objects of the 
hierarchy without specifying a particular object type. 
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The derived classes must be more specific than the abstract class. For example, 
there can be a derived class, which specifically works with a circle. Let us name 
this the Circles class. Then, all functions within the Circles class such as 
Move, Scale, Hide, Show, and Stretch can be coded specifically to operate 
on circle objects. As you can imagine, it is very difficult to transfer the 
functionality of the Circles class over to a new class named Squares to work 
with squares! You will need to make so many changes to be able to operate with 
squares in place of circles. It is easier to directly derive the Squares class from 
the abstract class Shape, and then define the functions the Squares class needs. 
Although the abstract classes cannot be used to instantiate new objects, they have a 
very powerful use associated with virtual functions and late binding. We will 
discuss these two concepts in Chapter 8. 

4.8 Inheritance 
Inheritance is closely associated with class hierarchies. When a new object class is 
derived from a base class, the new class is said to inherit all the member data and 
member functions of the base class. This is the mechanism that underlies code 
reuse. The functions and data of the base class automatically exist in the derived 
class. They do not need to be written again. To provide the new class with 
functionality beyond that of the base class, we only need to add whatever 
additional data and functions are necessary. It is also possible to modify the 
inherited functions to suit their more specific tasks. However, there may need to be 
restrictions for access to some inherited data and functions. 

Figure 4-5 Inheriting from an abstract class. 

As an example, consider the graphics program we mentioned earlier. We discussed 
an abstract class named Shape. In that class we had graphics functions such as 
Move, Scale, Show, Hide, Stretch, etc. If we need a new class to specifically 
work with circles, then we can use the abstract class Shape as the base class and 
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derive the new Circles class from it. The derived class Circles is said to be a 
sub-class of the abstract class Shape and will inherit all its functions (and data if it 
had any). The Shape class does not have properties specific to a circle object such 
as centre and radius. These properties will be added as new member data to the 
derived class.

4.9 Multiple Inheritance 
It is also possible for a derived class to have more than one base class. In this case 
the derived class will inherit all the member data and member functions of all the 
base classes. For example, we can have a base class named Colours, which 
allows us to set foreground and background colours, choose fill patterns, and carry 
out filling. We can use the Shape class and the Colours class to derive our new 
object class Circles (as shown in Figure 4-6). Now the Circles class can be 
made to show colourful circles on the screen! 

Figure 4-6 Multiple inheritance.

4.10 Polymorphism 
In principle, object-oriented concepts are profoundly based on the mechanisms of 
encapsulation, inheritance, and polymorphism. Polymorphism is a more complex 
concept than the concepts of encapsulation and inheritance which have already 
been briefly explained.

As applied to object-oriented programming, polymorphism means the existence of 
a function with the same name, same return value type, same number of parameters 
and the same type of parameters in a number of classes of the same hierarchy. The 
bodies of the functions will differ to suit the requirements for each class. It is not 
essential for every object in the hierarchy to have this function. Furthermore, there 
can be any number of polymorph functions in a given hierarchy. Polymorphism 
allows a common interface for related actions. The most powerful feature of 
object-oriented programming is associated with polymorphism of virtual functions 
(discussed in Chapter 8). 
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Let us consider an example of polymorph functions. Since a polymorph function is 
the ‘same’ function throughout the hierarchy, one would imagine that it carries out 
the same task in each class. Going back to our graphics example, we can consider 
Show to be a polymorph function. The function Show is in the Shape class, in the 
Circles class, in the Squares class, and so forth. Another polymorph function 
is Hide. Suppose the Show function makes the object visible on the screen. If we 
are using the Show function with a circle object, it will show a circle. If it is 
used with a square object, it will show a square. Therefore, although the function 
name is the same, it operates in a context-sensitive manner according to the type of 
object it is working with.

Polymorphism is the key to harnessing the great benefits of virtual functions. It is 
possible for a programmer to use a virtual function in a program without knowing 
which object it will be used with at run-time (when the program is executing). The 
program will be written generically to suit all classes of the hierarchy. The 
programmer does not need to write the complex logic for selecting the correct 
function to suit the object chosen by the user at run-time. This task is passed on to 
the compiler and linker, simplifying the programming task immensely. This is of 
most benefit for programs with large numbers of classes and complex hierarchies. 

As an example, a programmer can write a generic program in which the virtual 
function Show is used to show any object in the hierarchy. The user of the program 
decides at run time, the actual object the function Show will operate on. The 
programmer has not needed to develop the full range of complex logic needed to 
handle whatever type of object from the shape class the user will choose at a 
particular time. Nonetheless, the correct Show function for that object type will 
automatically be selected during program operation. This concept will be 
demonstrated in detail in Chapter 8.

4.11 An Example Object Hierarchy 
To enable you to relate some of the concepts described previously, we will develop 
an object hierarchy without using C++ language syntax or its keywords. The class 
definitions shown below cannot be compiled in an actual C++ program, however, 
they demonstrate the principles associated with an object hierarchy. We start with 
the abstract class Vehicle discussed earlier:

Abstract Class Vehicle 

Member data: 
Speed
Power

Member Functions: 
Stop
Go
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This class is the most fundamental of all classes of this example. It has 
encapsulated the bare minimum that is essential for a vehicle. It must possess 
Power for it to be able to move, and also will have a Speed characteristic to 
describe its motion. The member function Go will start the vehicle moving, and the 
other member function Stop will bring it to a stand-still.

New classes with more specific details added to them can then be derived from the 
Vehicle class. We have done this by forming two new class definitions named 
Passenger Transport, and Goods Transport. This class hierarchy is 
shown in Figure 4-7 where there are two branches coming from its root (base 
class). The class definitions are shown below: 

Derived Class Passenger Transport: derived from Vehicle class 

Additional member data: 
  Number of Passengers 

Derived Class Goods Transport: derived from Vehicle class 

Additional member data: 
  Load carrying capacity in Kg. 

Note that these two classes inherit all the member data and member functions of 
the base class Vehicle. For example, if we list everything in the Passenger
Transport class we will form the class definition show below:

Derived Class Passenger Transport

Member data: 
  Speed 

 Power 
Number of Passengers 

Member Functions: 
 Stop 
 Go 

Figure 4-7 Deriving classes from a base class.
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Although we did not specifically mention Speed, Power, Stop and Go, they are 
present in the new derived class as a result of inheritance. Furthermore, the Goods
Transport class is a direct descendant of just the abstract class Vehicle and 
therefore does not inherit anything from the Passenger Transport class.

Therefore, there are two branches, right at the root of this object hierarchy as 
shown in  Figure 4-7.Also, the Passenger Transport class and the Goods
Transport class may or may not be abstract classes. Any of these classes can 
be used to further derive new classes with additional refinements.

In the next class definition, a new class named Passenger Train is derived
from the Passenger Transport base class: 

Derived Class Passenger Train: derived from Passenger 
Transport class 

 Additional member data: 
  Number of passenger cars 

 Additional member functions: 
  Doors Open 
  Doors Close 
  Air Conditioning

In this class definition, the members of the Passenger Transport class are in 
effect added to the already existing members of the Passenger Transport
class that have been inherited (and are invisible). If we managed to see the 
equivalent complete class definition for the Passenger Train class, it would 
appear as follows - the inherited members are shown in bold italic typeface: 

Derived Class Passenger Train

Member data: 
Speed
Power
Number of Passengers 

  Number of passenger cars 

Member Functions: 
Stop
Go

  Doors Open 
  Doors Close 
  Air Conditioning 

Just as we used Passenger Transport as a base class, the Goods
Transport class can be used to derive further classes. An example of a new 
Goods Train class derived from the Goods Transport class is now given:
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Derived Class Goods Train: derived from Goods Transport class 

 Additional member data: 
  Number of boxcars 
  Number of tank cars 
  Number of open cars 

Motorcars are primarily meant for transporting passengers. Therefore, if we wish to 
form a new class to represent motorcars, the best place to start is the Passenger
Transport class. An example class definition for the new Motorcar class is 
now given: 

Derived Class Motorcar: derived from Passenger Transport 
class

 Additional member data: 
  Engine Capacity 
  Body Colour 
  Trim Colour 
  Number of Cylinders 
  Wheel Size 
  Number of Doors 

 Additional member functions: 
  Steer 
  Brake 

If we then need a class definition to represent luxury cars, the best starting point is 
the Motorcar class. The Motorcar class is chosen instead of the Passenger
Transport class because Motorcar objects form a more complete sub-object 
of a Luxury Car class. If we use the Passenger Transport class as the 
base class of the Luxury Car class, we will have to re-introduce members such 
as Engine Capacity, Body Colour, Trim Colour, etc. This involves a 
lot of unnecessary work, is error prone, and does not take advantage of code reuse.

Derived Class Luxury Car: derived from Motor Car class 

 Additional member data: 
  Inside Air temperature 
  Global Position 

 Additional member functions: 
  Air Conditioning Control 
  Power Mirror Control 
  Power Window control 
  Cruise Control 
  Antenna Control 
  CD Control 
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In a class hierarchy, future changes that need to be carried out can be done with 
minimum reprogramming. If the necessary changes are very specific, then the 
changes are more likely to be made in the most recently derived classes. If the 
required changes are more general in nature, it is most likely that the changes will 
be carried out closer to the root of the hierarchy. For example, if all luxury cars are 
to have automatic navigation in the future, we will add a new member function 
named Navigate to the Luxury Car class. On the other hand, if all vehicles 
are to be fitted with automatic navigation facilities in the future, we will add the 
Navigate member function to the abstract class Vehicle.

Figure 4-8 The example class hierarchy. 

A set of object classes that fit into a class hierarchy always has an expansive nature 
rather than a multiplicity nature. In an expansive situation, additional member data 
and member functions will be added to the new derived class. In a multiplicity 
situation more members of the same object type are added to the new class. 

For example, an object class representing a house and another object class 
representing a better house fit nicely into a class hierarchy. On the contrary, the 
class representing a house and another class representing many houses of the same 
type as the other class do not fit into a class hierarchy. New, completely different 
member objects need to exist in the new class. 

Although you may have understood how classes are formed, their use may still be 
unclear. In the coming chapters, we will develop classes and begin to use them. For 
now, it is important to gain an understanding of what a class hierarchy is and how 
it is formed. 
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4.12  Advantages of Object-Oriented 
Programming

A large part of the programming community has already embraced object-oriented 
programming as a better way to program. One of the main advantages is the 
robustness of the programs, a direct result of encapsulation. The changes carried 
out within an object class have no side effects on other parts of the program, and 
the internal details of an object class are well insulated from the outside world. 
This significantly simplifies the maintenance of programs. If in the future, the 
functionality of a class needs to be enhanced, the additional coding needed will be 
localised to the class itself and will not affect the functionality of unrelated classes. 
The changes may not even affect the public interface of the object itself. If we take 
a real-life example, drivers operate motorcars exactly the same way they did in the 
past. However, the fuel system has changed from carburisation to fuel injection. 
While the performance of the object is enhanced, the motorcar is driven exactly the 
same way through the public interface (the accelerator pedal). 

Inheritance permits us to reuse the code over and over again. This reduces re-
programming time and the associated debugging time. It allows us to reduce our 
time-to-market and lower the cost of software development. The natural 
relationship between real-life objects and software objects makes it easier to 
understand the class structures. This is the strategy we used in this chapter to give 
you a good insight into object classes.

The most powerful and the most useful feature of object-oriented programming is 
associated with virtual functions and object hierarchies. Using virtual functions 
enables the program to select the correct function to operate on the objects that are 
specified at run time. This relieves the programmer from having to write lengthy 
code to cater for individual objects that may be specified at run time by the user of 
the program. 

4.13  Disadvantages of Object-Oriented 
Programming

In general there is reluctance among programmers who are familiar with 
procedural programming to embrace object-oriented programming. Object-oriented 
concepts are quite foreign and require some adjustment in thinking, especially so 
for novices.

Object-oriented programming is often not usually justified when programs are very 
small. Also, object-oriented programming may not be the best choice for programs 
requiring time-critical program execution. However, with the increasing speed of 
computers this is becoming a less significant issue. Operating systems that burden 
the computer are typically more of a concern than the object-oriented programs 
themselves.
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4.14 Summary 
In this chapter we used real-life examples to promote understanding of object-
oriented concepts. We started by differentiating the two programming methods; 
procedural programming and object-oriented programming. Procedural 
programming exposes data and functions for inadvertent misuse and it can lead to 
unexpected side-effects and difficult debugging. Object-oriented programming 
imposes data hiding and protects data from inadvertent misuse by encapsulating 
data and functions together to form object classes. The public interface of an 
encapsulated object class has been explained using real-life examples.

A qualitative explanation was given to explain the abstract object classes and actual 
object classes. This has then been consolidated using object-oriented terminology 
to explain abstract classes and real classes.  Also, inheritance has been exploited in 
an example object hierarchy to show how a class hierarchy can be developed. 

The use of constructors and destructors has been briefly introduced and will be 
explained in greater detail in the coming chapters. Instantiation has a close 
association with constructors, and a given class may have any number of 
constructors.

The important concepts of polymorphism and virtual functions have been discussed 
in limited detail due to their relative complexity. They will be further explained and 
used extensively in Chapter 8. Finally, advantages and disadvantages of object-
oriented programming have been discussed.
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5.1 Introduction 
Our aim in this chapter is to teach you how to develop object classes for use in C++ 
programs. The object-oriented concepts introduced in the previous chapter will be 
expanded upon and C++ syntax will be added to the class definitions. The object 
classes developed in this chapter will be used in the development of future 
programs that interact with various devices on the interface board through the 
parallel port of your PC. 

We will start the chapter by developing a fundamental parallel port object type 
named ParallelPort that will be developed in three separate stages. Each 
stage of developement will give the ParallelPort object additional 
functionality, with the final class capable of data transfer to and from the computer 
using most features of the parallel port. 

5.2 Naming Convention 
In order to improve the readability of our programs, we will establish a naming 
convention to be used when assigning names to functions and other identifiers. As 
explained in Chapters 2 and 3, the parallel port of the PC occupies three 
consecutive addresses. In most cases, the hexadecimal values of these consecutive 
addresses are 0x378, 0x379 and 0x37A. The term BASE will be used to refer to the 
first of the three addresses which we call the base address (0x378 in this case). 
Table 5-1 summarises the naming convention. 

Table 5-1 Naming convention for identifiers in programs. 

Suffix for Identifiers 
Offset with respect to 
Base Address (BASE)

Physical Address
(most widely used) 

Port0 0 0x378 
Port1 1 0x379 
Port2 2 0x37A 

NOTE

The port addresses you will be using may not necessarily be 0x378, 0x379 and 
0x37A.  However, they will be three consecutive addresses. The object classes 
we develop will have the flexibility to specify the BASE address that applies to 
your particular case. 
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According to the naming convention shown in Table 5-1, all member data and 
member functions ending with Port0 will use address BASE. For example, a 
function with the name WritePort0() writes data to the port at address BASE.
Similarly, WritePort2() writes data to the port at address BASE+2.

5.3 Developing an Object Class 
By the end of this chapter we will have developed a complete ParallelPort
class that encompasses most functional aspects of the port. This will take place in 
three stages; in the first stage we will develop a class using the BASE address. This 
class will be expanded in two following stages to include the functionality of the 
BASE+1 address, and lastly the BASE+2 address. 

Figure 5-1  Developing the ParallelPort Class. 

The port at BASE address is the easiest to use and can send one byte of data at a 
time. Note that newer computers can both send and receive data through this port. 
We will only use the BASE address as an output port to maintain compatibility 
with older computers. 

Designing an object class: 

1. Select an appropriate name for the object class.  It should be concise, yet 
descriptive enough to suit the purpose and content of the class. 

2. Determine class member data (features or properties associated with the 
object).

3. Determine class member functions (uses of the object). 
4. Use the appropriate access attributes to encapsulate the data and functions. 
5. Establish constructor(s) and the destructor for the class. 

class ParallelPort 

{
   . 
   .
   .
   .

.
   . 
   .
}

class ParallelPort 
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class ParallelPort 

{
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}
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In the previous chapter, member data were identified as features or properties 
associated with the object. Member functions were identified as the uses of the 
object. If we use everyday language to describe a port at address BASE as an object 
class, it will read something like this: 

“The port is at a certain address and can output one byte of data” 

According to this description, the port is identified by an address. The object is 
used to output a byte of data to an external device using this port. Now that we 
have established the features and the uses, we can try to define the object class.  
We will encapsulate this member data and member function to form our 
fundamental object class ParallelPort.

5.3.1 Member Data 
The ParallelPort object class we are developing must know the base address 
of the port in order to operate. This data needs to be stored in a data member that 
we have appropriately named BaseAddress. Most parallel port addresses will 
fall in the range of 0 to 0x3FF. An 8-bit number (0 to 0xFF) will be too small to 
store these values, and so a 16-bit number (0 to 0xFFFF) must be used. Therefore, 
we need to declare a data type of unsigned int to the data member 
BaseAddress so it can store the required range of possible port addresses: 

unsigned int BaseAddress; 

5.3.2 Member Functions 
Since the ParallelPort class needs to be able to write a byte of data to the port 
at BASE address, a function named WritePort0() will be created for this 
purpose. One byte is represented by the data type unsigned char. The function 
only outputs data, so it does not need to return a value. This means its return value 
type should be void. The resulting function is: 
void WritePort0(unsigned char data) 
{
 outportb(BaseAddress, data); 
}

The function WritePort0()takes in one parameter, namely data of type 
unsigned char. The body of the function contains just one statement; it 
outputs the value of the parameter passed as data to the port at the address 
specified by the value of BaseAddress.

WritePort0() has a return value specified as void. In functions that do not 
return any value, the return value type must be specified as void. If the functions 
are to return a value, then there must be a return statement within the body of 
the function. 
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5.3.3 Access Attributes 
The access attributes control accessibility to the members of the class by functions 
anywhere else in the program. There are three different types of access attributes; 
private, protected, and public, described as follows. 
private
Functions and data listed under the private access attribute can only be accessed 
by member functions of the same class. Other functions from elsewhere cannot 
modify or even see any of the private member data, nor can they call any private 
member functions. Importantly, if an access attribute is not specified for any of the 
members in a class definition, the access attribute defaults to be private.

protected
Functions and data listed under the protected access attribute can be accessed 
by the member functions of the class itself and member functions of all other 
classes derived using this class as the base class. Classes, which have no 
relationship to this class, cannot access the protected member data or protected 
member functions. Class derivation is further explained in Chapter 6. 
public
Functions and data listed under the public access attribute can be accessed by 
any function regardless of its relationship to the class. 

5.3.4 Defining a Class 
The more attractive way to develop object classes that offers greater protection is 
to use class definitions. A class definition starts with the keyword class followed 
by the name given to the object type (in this case ParallelPort). It is entirely 
up to you to choose this identifier for the object type. It is also possible in C++ to 
define an object using aggregates of related data known as structures.

As shown in Figure 5-2, the body of the class definition starts at the first open 
brace ({) and it ends when the last close brace (}) is encountered. Remember to 
place a semicolon (;) after the close brace to complete the class definition. 

There are two segments within the body of the class definition. The first segment 
relates to member data, and the second segment relates to member functions. 
Although the member data and member functions can be intermingled, it is good 
practice to keep them separate. 

As mentioned earlier, if an access attribute is not specified, then it defaults to 
private. Therefore, the keyword private in the class definition is not 
essential. If it was dropped, the variable BaseAddress would still be private. 
However, it is good practice to include the keyword private to make the code 
more explicit.
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class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

 public: 
  void WritePort0(unsigned char data) 
  { 
   outportb(BaseAddress, data); 
  } 
};

Figure 5-2  Class definition. 

The class has a default constructor and a default destructor provided by the 
compiler that are not visible. The constructor creates objects for use in a program 
and the destructor relinquishes objects from memory once the program no longer 
needs them. 

Figure 5-3  Schematic of the ParallelPort Class. 

Must not forget semicolon! 

Start of the body of
the class definition 

Class definition ends 
with last close brace 

Member Data

Member Function(s)

Interface to outside program 
code (main function)

Public Member Functions: 

    WritePort0( )

Private Member Data: 

    BaseAddress

ParallelPort Class

Constructors & Destructors: 

    Defaults provided by  compiler 
    (invisible)
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In the case of the object class ParallelPort, BaseAddress is a private data 
member. Therefore, it can only be accessed by the function WritePort0()
belonging to this class. This function is declared to be public and as such can be 
called by any other function in your program. This provides an interface between 
the object and the outside world. If the function WritePort0() was declared 
private, it could not be called by any function outside the class (including the 
main() function). As a result the object of type ParallelPort could not be 
used (recall the sealed off car that no one can get in to drive!). 

5.3.5 The Constructor 
The purpose of a constructor is to create objects for use in a program. Simply 
because there is an object type definition, it does not mean that there is an actual 
object that resides in memory. For an object to hold data and execute functions, 
both data and functions must reside in memory. This occurs when the constructor is 
called. It creates an object and allocates memory to all its data members in a 
process known as instantiation. At the time of instantiating an object all statements 
in a constructor’s body will be executed. The programmer may code the 
constructor to suit the needs of the objects at the time of their creation. 

Constructors always have the same name as the object type – in this case, 
ParallelPort. A constructor, although a function, never has a return value. 
This is a unique feature of constructors. They are one of only two types of 
functions in C++ which have no return value type, not even void. The second 
type of function with no return value is the destructor. 

5.3.6 Default Constructor 
The strict definition of the default constructor is a constructor that does not take 
any parameters (i.e. the pair of parentheses are empty). In the absence of a 
constructor provided by a programmer, the compiler will provide a constructor and 
that constructor is always a default constructor. The default constructor provided 
by the compiler has one main job, to allocate memory for all data members of the 
object. It will also call the default constructor of its base class if it has one – this 
occurs before the derived class constructor calls allocates memory for its own data 
members.

It is also possible for a programmer to provide a default constructor. The default 
constructor written by the programmer also takes no parameters, but can have 
some statements in its body. If the programmer provides a constructor, be it default 
or otherwise, the compiler will not provide a constructor. The programmer-supplied 
default constructor will also call the default constructor of its base class before
executing its own duties. 

The compiler also provides a special constructor named the copy constructor, and 
an overloaded assignment operator (the = sign).  We will defer the discussion of 
copy constructors and overloaded assignment operators until Chapter 12. 
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5.3.7 Overloading of Constructors 
The term overloading is used to describe the situation when many functions exist 
under the same name but carry out different tasks. For the case of overloaded 
constructors, there is more than one constructor in a class definition, all having the 
same name (the name of the class), and as for all constructors, not having return 
value types. Any number of overloaded constructors are allowed in a class. 
Therefore, the only difference between the constructors should be in the number 
and types of parameters passed to each of them and the statements included in each 
of their bodies.

5.3.8 Destructors 
The destructor serves the opposite purpose of the constructor. A constructor brings 
an object into life by creating it in memory. A destructor removes the object from 
memory, freeing the space. The name of the destructor must always be the name of 
the object class and preceeded by the tilde symbol (~). For example, the destructor 
for the ParallelPort class would be named ~ParallelPort(). The 
program developer can choose to include a destructor in the class definition. If the 
developer does not include a destructor, the compiler will generate a default 
destructor.

Unlike constructors, destructors are not explicitly called. They will be called 
automatically when a locally defined object ceases to exist or when the delete
operator is used to delete the object from memory. For class hierarchies, the 
destructor of the derived class is executed before the destructor of its base class. 

While there are no virtual constructors, destructors can be virtual functions. Virtual 
destructors will be described in detail in Section 8.5. We will now begin the 
development of the ParallelPort class in the three stages we mentioned at the 
start of Section 5.3 and as shown in Figure 5-1. 

5.4 Parallel Port Class – Stage I 
This first stage in the development of the ParallelPort class will produce a 
class having the simplest features of the three stages. This stage will only use the 
capabilities of the BASE address component of the port, being the ability to write a 
byte of data (8 bits, D0-D7 inclusive) to external devices. 

Initially a default constructor will be used as part of the class (generated by the 
compiler). This design has some deficiencies discussed ahead. The class will be 
developed further to overcome these shortcomings. 

5.4.1 Class Definition 
As described earlier, WritePort0() is a public member function. Therefore, 
any function in the program can call this function. The WritePort0() function
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in-turn calls the familiar outportb() function to send data to the port at address 
given by BaseAddress.

We can have a default constructor generated automatically by the compiler if we 
do not write a constructor in the class definition. 

C++ Syntax of member functions

There are two ways the compiler can be informed of member functions: 
(i) Member function definition placed outside the class.  

In this case the syntax used is the same as that for normal functions, except 
the object class name followed by two colons (::) is placed before the 
function name as shown in Listing 5-1. 

(ii) Member function definition placed within the class.  
In this case the syntax used in (i) is not necessary as shown in Listing 5-2. 

The member function definition shown in Listing 5-1 for the WritePort0()
function is defined outside the class. 

Listing 5-1 Definition of the member function(s) for the ParallelPort class. 

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

When the WritePort0() member function is defined within the class definition 
itself, the class definition will be as shown in Listing 5-2. Any member functions 
that are defined within the class definition and are small, will be treated as in-line
functions (discussed ahead). When functions are declared outside the class 
definition, they will be treated as normal functions. 

Listing 5-2 Defining member functions within the class definition. 

#include <dos.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

 public: 
  void WritePort0(unsigned char data) 
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  { 
   outportb(BaseAddress,data); 
  } 
};

C++ In-line member functions

The compiler allows small member functions defined in the class definition to be 
in-line functions. Whenever an in-line function is called in a source file, the 
compiler may replace that call with the actual instructions within the body of the 
in-line function.This will happen if the in-line function is small in size and does 
not involve complicated (lengthy) parameter passing. 

This means every time an in-line function is called in the code, the compiler will 
add a new instance of the function to the executable code which increases the 
size of the program. However, there is a benefit that program execution flows 
directly into the in-line function, avoiding the overheads associated with a 
function call and therefore promotes greater speed. 

Normal functions use only one instance of the function stored in memory. In this 
case, a function call results in the current program status being temporarily saved 
before the program jumps to the memory area containing the function. The code 
for the function is executed followed by a return jump and recovery of prior 
program status. These extra steps of saving, jumping and recovering add 
execution time, and slow performance compared with using in-line functions 
(although the executable programs are smaller in size).

NOTE Listing 5-1 and Listing 5-2 both have a deficiency. Examining the 
parameters of the WritePort0() function, we see that we can pass an actual 
argument (such as 0x7F) in place of the parameter data, however, there is no 
way for us to specify the BaseAddress.

If we do not have a mechanism to specify a numerical value for BaseAddress,
the outportb() function will not work. One poor solution is to fix the address at 
a predetermined value. For example: 
void WritePort0(unsigned char data) 
{
 outportb(0x378,data); 
}

The above approach will only work for those users having 0x378 as the BASE
address of their parallel port. Other users would need to edit and re-code the 
member function to suit whatever BASE address their PC’s parallel port uses. 
Additionally, this solution does not use the data member BaseAddress.
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Class Definition – Improvement I 

We need to provide the user with the ability to specify the base address according 
to hardware requirements. This is best done at the time of creating the 
ParallelPort object – ie at the time of calling the constructor. Our default 
constructor will need to be replaced with a constructor that allows us to set the 
member data BaseAddress to a desired value at the time of creating the object. 

New constructor: We pass the parameter baseaddress to the constructor, which 
then assigns this value to the member data BaseAddress. Now the original 
outportb function will work as intended. You will have noticed in Listing 5-4 
that the member function is defined separately from the class definition. The reason 
for this is explained in the box presented previously titled “In-line member 
functions”.

Listing 5-3 The class definition for ParallelPort - with a constructor. 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

 public: 
ParallelPort(int baseaddress);  // constructor 

  void WritePort0(unsigned char data); 
};

Listing 5-4 Definitions of member functions for the improved ParallelPort class. 

ParallelPort::ParallelPort(int baseaddress)  // constructor 
{
 BaseAddress = baseaddress; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}
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NOTE

The member data BaseAddress is different to baseaddress. The 
parameter baseaddress is a placeholder for the actual argument one would 
pass at the time of calling the constructor and plays a role only at the time of 
calling the constructor. On the contrary, the member data BaseAddress will 
reside in memory storing data for the entire life of the object; in most cases, for the 
whole life of the program. 

Class Definition – Improvement II 

Because most users will operate their parallel port at address 0x378, ideally we 
would like to have a constructor that by default sets the BASE address to 0x378. 
We still need the option of being able to set the port to other address values as was 
implemented in the previous class definition. 

We achieve this by adding a second constructor (overloaded constructors) that sets 
the member data BaseAddress to 0x378 by default. This programmer-defined 
default constructor takes no parameters (ie. a default constructor) but assigns the 
member data BaseAddress to 0x378 inside its body. The class definition and 
member function definitions are given in Listing 5-5 and Listing 5-6. 

Listing 5-5 Class definition for ParallelPort with a default constructor. 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

 public: 
ParallelPort();  // default constructor 

  ParallelPort(int baseaddress);  // constructor 
  void WritePort0(unsigned char data); 
};
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Listing 5-6 Member function definitions for the class definition in Listing 5-5.

ParallelPort::ParallelPort()  // default constructor 
{
 BaseAddress = 0x378; 
}

ParallelPort::ParallelPort(int baseaddress)  // constructor 
{
 BaseAddress = baseaddress; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

If in our program we do not pass a value to the constructor, the default constructor 
will be called and the BASE address will default to 0x378. Alternatively we can 
set the BASE address to say 0x3BC by passing this value when creating a 
ParallelPort object as shown: 

ParallelPort(0x3BC);

In this case the second constructor (takes a parameter) will be called to create the 
ParallelPort object. Although constructors commonly initialise some or all of 
the member data, a constructor can be programmed to carry out any actions a 
regular function may perform. 

An important point to note is that the member function WritePort0() has not 
been specifically informed of the member variable BaseAddress – that is, 
BaseAddress has not been declared within this function. This is not necessary 
since BaseAddress and WritePort0() are both members of the same class, 
hence WritePort0() has unrestricted access to BaseAddress as explained in 
Section 5.3.3. 

5.5 Using Class Objects in Programs 
We will now use the ParallelPort object type developed in the previous 
section to output a byte of data to the port at BASE address. The object-oriented 
program that performs this task seems lengthy, however, the advantages of object-
oriented programming will be realised as we progress through later chapters. 
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Listing 5-7 Writing to port at address BASE using object-oriented approach. 

/*****************************************************
WRITING TO A PORT (object-oriented approach) 

The program uses the fundamental ParallelPort object 
class to output a byte of data to the interface board. 
*****************************************************/
#include <dos.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
        void WritePort0(unsigned char data); 
};

ParallelPort::ParallelPort() // default constructor 
{
 BaseAddress = 0x378; 
}

ParallelPort::ParallelPort(int baseaddress) // constructor 
{
 BaseAddress = baseaddress; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void main() 
{
 ParallelPort OurPort; // object instantiation 

 OurPort.WritePort0(255); // calling a member function 
}

The class definition and function definitions are the same as developed earlier and 
have already been explained. What has not been explained is the body of the 
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main() function. This is where a programmer uses the object classes to develop 
an application. The first of the two lines in main() creates an object named 
OurPort of type ParallelPort. The second line calls OurPort’s member 
function WritePort0()and outputs the value 255 to the port. The actual port 
address used by WritePort0() is assigned when we create the OurPort object 
by calling one of the two constructors. This process will now be explained in more 
detail.

Object Creation (instantiation) 
The first line in main() is: 

ParallelPort OurPort; 

This is a declaration line and is similar to: 
int a;  // Data type is int, variable name is a. 

Similarly; ParallelPort is the data type, which is an object type. OurPort is 
the name of the variable. The only difference is that int is a fundamental built-in 
data type whereas ParallelPort is a data type we developed. 

In C++, the declaration lines not only inform the compiler the name (such as 
OurPort) and type of the object (such as ParallelPort), but also call the 
constructor of that object class to create the object. The creation of the object 
OurPort is what we mentioned earlier as instantiation – it brings into life a real 
usable object that will reside in memory. It is important to know the difference 
between ‘an object’ (also known as a class object) and ‘an object type’ (also known 
as the object class). The object is OurPort and the object type is 
ParallelPort. Thus, we have created an object named OurPort of object
type ParallelPort.

Referring to the class definition given in Listing 5-5, we see that there are two 
constructor functions available. They are: 
ParallelPort();
ParallelPort(int baseaddress); 

Which of these two constructors were used by the declaration line to instantiate the 
OurPort object? The compiler will automatically select the correct constructor 
based on the parameters passed (or the absence of them). Since we did not specify 
a value for the parameter baseaddress at the time of instantiating the 
OurPort object, the compiler will call the first of the above two constructors, 
being the default constructor. 

On the other hand, the declaration line in the main() function could have been: 

ParallelPort OurPort(0x3BC); 

In this case, the compiler will not call the default constructor, since a value for a 
parameter has been specified. Instead, the other constructor (which accepts a 
parameter) will be called to instantiate the object OurPort:
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ParallelPort(int baseaddress); 

In the example above, when creating a ParallelPort object, the parameter 
baseaddress is replaced by the actual argument 0x3BC. The value 0x3BC will 
then be assigned to the data member BaseAddress (see the body of the 
constructor in Listing 5-6). 

Returning to the program in Listing 5-7, the created object named OurPort will 
have all the features given in the class definition. It has its own private data 
member named BaseAddress and three public member functions. Two of the 
functions are constructors with the name ParallelPort and  the other function 
is named WritePort0.

Sending data to the Port 
The object we created named OurPort, makes use of its member function 
WritePort0() to send the value 255 out the port. The syntax for accessing this 
member function uses a period placed after the object name followed by the 
member name: 
OurPort.WritePort0(255);

The other members of the object are accessed in exactly the same manner, although 
their access attributes may restrict access. For example, despite the correct syntax, 
any function outside the class trying to execute the following instruction will fail: 
OurPort.BaseAddress = 0; // Will not work! 

This is because BaseAddress is a private data member of the class and functions 
outside of the class cannot change it (the main() function is not part of the class). 
This illegal attempt to access the member data BaseAddress will be detected 
during compilation and a compilation error will be reported. The next section will 
present additional examples of access attributes used in our program. 

Note that the WritePort0() function takes in one parameter. This parameter 
has been replaced by the actual argument 255. In binary, the decimal value of 255
will be represented with all eight bits set to 1. 

The operation of the program can be checked by connecting the PC to the interface 
board as shown in Table 3-1. Passing the parameter 255 to the 
WritePort0()function should generate eight lit LEDs. You can change this 
number to any value between 0 and 255 inclusive. If you re-run the program you 
should see the LEDs light up accordingly. 

5.5.1 Examples using Access Attributes 
In the preceding section, an illegal attempt was made to assign the value 0 to data 
member BaseAddress, as now shown again: 

OurPort.BaseAddress = 0; // Will not work! 

5 OBJECT-ORIENTED PROGRAMMING 90



In that program, BaseAddress was declared as a private data member, which 
prevented the main() function from gaining access to change its value.

Instead of declaring BaseAddress as a private member, it can be declared as a 
public member. This being the case, it can be accessed by any function in the 
program and the compilation error will no longer appear. Listing 5-8 shows how 
this is done. Note that if you do not have a second parallel port (LPT2:) in your 
computer, the address 0x3BC does not exist, and the program will not function.
However, it will compile error-free. Also, ensure the data cable that connects with 
the parallel port is plugged into the D25 connector of the correct port. 

Listing 5-8 Declaring BaseAddress as a public data member. 

/*****************************************************
Note that the member variable BaseAddress is now
declared under the public access attribute.  Therefore
it can be changed from within the main function and 
there will be NO compilation errors. 

If your computer DOES NOT have a second parallel port, 
attempting to use the port address 0x3BC will FAIL! 
*****************************************************/
#include <dos.h> 

class ParallelPort 
{

public:  // Private access attribute has been 
    // changed to public.
  unsigned int BaseAddress; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
}
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void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void main() 
{
 ParallelPort OurPort; 

OurPort.BaseAddress = 0x3BC; // Will NOT cause a 
                              // compilation error
 OurPort.WritePort0(255); 
}

Declaring member data as public is considered poor programming practice. The 
main purpose of using object-oriented programming is to form encapsulated 
objects, that are to some extent protected against misuse. This will not be the case 
if member data are declared to be public. 

If a member variable needs to be changed, then it can be changed through a 
member function specifically designed for that purpose. This concept is 
demonstrated by the ChangeAddress() function shown in Listing 5-9. 

Listing 5-9 The acceptable way to change a data member of an object. 

/*****************************************************
WRITING TO A PORT (Adding a member function to change 
the private member data). 

Note: attempting to use the port address 0x3BC will fail 
if your computer doesn’t have a second parallel port. 
*****************************************************/

#include <dos.h> 

class ParallelPort 
{

private: // Access attribute has been changed 
    // back to private.
  unsigned int BaseAddress; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
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  void WritePort0(unsigned char data); 

 // New public member function added. 
  void ChangeAddress(unsigned int newaddress);
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

// New public member function defined. 
void ParallelPort::ChangeAddress(unsigned int newaddress) 
{
 BaseAddress = newaddress; 
}

void main() 
{
 ParallelPort OurPort; 

//  The correct way to manipulate a private data member 
 OurPort.ChangeAddress(0x3BC);
 OurPort.WritePort0(255); 
}

The program statement shown below from the previous listing will legally change 
the value of the private data member BaseAddress to 0x3BC:

OurPort.ChangeAddress(0x3BC);

In this illustrative example we have shown how a private data member can be 
changed using a public member function. The public member function 
ChangeAddress() has complete access to the private data member 
BaseAddress since it is a member function of that same object class. We will 
not use the ChangeAddress() function in our proper ParallelPort class. 
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Instead, the user can pass the desired value for the base address to the constructor 
so the BaseAddress can be set to a different value than its default value of 
0x378 (set by the default constructor).

5.6 Parallel Port Class – Stage II 
In the first stage we created an object class named ParallelPort which 
provided the required functionality to use the port associated with address BASE.
We now need this object to also use the port at address BASE+1. Note that the port 
at address BASE is used as an output port and the port at address BASE+1 is an 
input port. The new object’s intended functionality is: 

Ability to specify the base address of the parallel port. 
Send data through port at address BASE.
Receive data through port at address BASE+1.

Adding further functionality to an existing object is an ideal situation for using 
class derivation. However, there is no justification to develop a hierarchy of classes 
for each part of the parallel port, since there is no great use of parts of the parallel 
port. It is most appropriate to develop the entire parallel port as one object. 
Therefore, in this second stage we will add the extra functionality to the 
ParallelPort class so it can also use the port at address BASE+1.

The class definition for the new ParallelPort class is given in Listing 5-10, 
with additions shown in bold text. It contains the declarations for the member data 
and the member functions. All data members of the class ParallelPort are 
declared as private. All the member functions are declared as public. As 
before, BaseAddress is one of the data members and the function 
WritePort0()is included so that data can be sent out to port at address BASE.

Listing 5-10 New class definition for the object ParallelPort.

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 

unsigned char InDataPort1; 
 public: 
  ParallelPort(); // default constructor 
  ParallelPort(int baseaddress); // constructor 
  void WritePort0(unsigned char data); 

unsigned char ReadPort1(); 
};
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The port at address BASE+1 is an input port (data into the PC). The function 
ReadPort1() has been introduced to the ParallelPort class to read data 
through this port. The private data member InDataPort1 is declared to store the 
data read from this port. The number assignments used for all the members of the 
class represent the offsets from the base address. For example, WritePort0()
function will be writing to an address with offset 0 with respect to the base address 
– in this case BASE+0, being the BASE address. Similarly, the ReadPort1()
function will read from an address with offset 1. Therefore, it will read the port at 
address BASE+1.

The definitions of all the functions belonging to this expanded class are contained 
in Listing 5-11. 

Listing 5-11 Function definitions of the ParallelPort object. 

ParallelPort::ParallelPort()  // default constructor 
{
 BaseAddress = 0x378; 

InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress)  // constructor 
{
 BaseAddress = baseaddress; 

InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate for 
// internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

The only change to the constructors is the extra statement that initialises the data 
member of the BASE+1 address, InDataPort1 to 0. If InDataPort1 is not 
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initialised it will store some unknown value. However, initialising this variable to 0 
is not essential. It may be initialised to any other value or left un-initialised 
provided precautions are taken to prevent its use until InDataPort1 holds an 
actual value read from the port. 

The function ReadPort1(), reads the port at address BASE+1 and returns a 
value of type unsigned char. This requires the body of this function to have a 
return statement, which is return InDataPort1. Therefore, while this 
function stores the results of input operations in the data member InDataPort1,
at the same time it provides an interface to other functions outside of the class to 
receive the value of this data member. This will enhance the flexibility of the 
object. In the coming chapters the ParallelPort object will be used when 
writing many programs. It is advantageous to have full flexibility in the 
ParallelPort object so that it can be used to write good and efficient 
programs.

The function inportb() is called within ReadPort1() and carries out the task 
of reading the data from the port at the specified address, in this case BASE+1.
Note that only bits 3 to 7 are free to be read through this port. Also, bit 7 is 
internally inverted by the parallel port hardware. The ReadPort1() function is 
coded to compensate for the inversion (explained in Section 3.6) and also clear the 
unused bits D0-D2 to zero by using the logical AND operator (&). The 
hexadecimal number F8 represents a bit pattern of 1111 1000 and will clear bits 
D0-D2 of any number it is ANDed with. The value produced from this correcting 
operation will be stored in the data member InDataPort1. The last line of the 
ReadPort1() function contains the return statement which returns the value 
of InDataPort1.

The complete program is shown in Listing 5-12. Check operation of the program 
by connecting your interface board to the PC according to Table 3-1 and Table 3-2. 

Listing 5-12 Write data to port at BASE and read data from port at BASE+1.

/*****************************************************
The fundamental object class ParallelPort is expanded to 
include the input port at address BASE+1. The combined 
object is still named ParallelPort and is used to write 
to the port at address BASE and to read data from the port 
at address BASE+1. 
*****************************************************/
#include <stdio.h> 
#include <dos.h> 

class ParallelPort 
{
 private: 
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  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

void main() 
{
 unsigned char BASE1Data; 
 ParallelPort OurPort; 

 OurPort.WritePort0(255); 
 BASE1Data = OurPort.ReadPort1(); 
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 printf("\nData Read from Port at BASE+1 
                             %2X\n",BASE1Data); 
}

Listing 5-10 and Listing 5-11 (explained earlier) are incorporated unchanged in 
Listing 5-12 which has a main() function added. 

The first line in the main() function is: 

unsigned char BASE1Data; 

This line declares a variable named BASE1Data to store data of type unsigned
char. In strict C++ terms, this line has instantiated an object of type unsigned
char and given it the name BASE1Data. As such, BASE1Data will now reside 
in memory. The purpose of BASE1Data is to store the value read from the port at 
address BASE+1. How this is done will become clear as we work through the rest 
of the statements of the main() function.

The next line in the main() function is: 

ParallelPort OurPort; 

This line instantiates the OurPort object, which is of type ParallelPort.
Therefore, Ourport will have two data members, namely BaseAddress and 
InDataPort1. When the above line is executed, the default constructor will be 
called (no argument used for the base address). As a result the variable 
BaseAddress will be set to 0x378 and the variable InDataPort1 will be set 
to 0.

The two member functions are called in the next two lines: 
OurPort.WritePort0(255);
BASE1Data = OurPort.ReadPort1(); 

The first line writes a byte of data (255 in this case) to the port at address BASE.
This will cause all eight LEDs to light. The second line will read the port at address 
BASE+1 and compensate for inverted bit D7. ReadPort1() stores this result for 
later retrieval in the data member InDataPort1 and returns the value of 
InDataPort1 to the main() function. This value received by the main()
function is stored into its variable BASE1Data.

The last line of the main() function displays the value of BASE1Data on the 
screen in hexadecimal format with a field width of 2. A carriage return and line 
feed is inserted before the value is displayed by using the new line character 
combination \n. In this example main() function, its variable BASE1Data was 
assigned the value returned from the ReadPort1() function. Our future 
programs will not always be programmed to do operate this way. For these cases 
where the main() function

Also note we need to have the data member InDataPort1 so the value read 
from the port can be stored in our object. Without having such a storage variable, 
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the program must rely on the main() function’s variable BASE1Data to be 
assigned the value returned from the ReadPort1() function. It will not always 
be desirable for our future programs to be programmed to use a main() function 
variable in this way. In these cases, if the ParallelPort object did not have the 
data member InDataPort1 to store the value returned from ReadPort1(),
then this value would be lost once ReadPort1() completes its execution.

5.7 Parallel Port Class – Stage III 
In this final stage we will further develop the object class ParallelPort to 
encompass all input/output functionality of the parallel port of the PC - with one 
exception. This being the absence of input through BASE+2 as it can be unreliable 
on some computers. This class will output data through the port at address BASE,
input data through the port at address BASE+1, and output data through the port at 
address BASE+2. It will also compensate for internal inversions that occur within 
the parallel port hardware. 

5.7.1 Full function Object Class ParallelPort
The functionality required for the final object class ParallelPort is: 

Ability to specify the BASE address of the parallel port. 
Output data through the port at address BASE.
Input data through the port at address BASE+1.
Output data to the port at address BASE+2.

The definition for the final ParallelPort class is shown in Listing 5-13. 

Listing 5-13 The definition for the ParallelPort class. 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 

void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};
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In the class definition, a function is included for each of the requirements in the 
list. The definitions of the member functions are given in Listing 5-14. Additions 
made to the earlier ParallelPort object class are shown in bold font in Listing 
5-13 and  Listing 5-14. 

Listing 5-14 Definitions of member functions of the class ParallelPort.

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
// Invert bits 0, 1 and 3  to compensate for 
// internal inversions by printer port hardware. 
 outportb(BaseAddress+2, data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate for 
// internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}
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The ParallelPort object class is used in the program shown in Listing 5-15 to 
carry out data transfer operations using all three ports of the parallel port of your 
PC. The operation of the program can be checked with the interface board. The 
connections to be made on the interface board are those given in Table 3-1 and 
Table 3-2. Note that before stepping through the program to test the operation of 
the port at address BASE+2, remove connections from the BASE address outputs to 
the LED Driver IC and reconnect the LED Driver IC to the BASE+2 address 
outputs as per Table 3-3. 

Listing 5-15 Input and Output operations using ParallelPort class.

/*****************************************************
The object class created to use ports at addresses 
BASE and BASE+1 has been expanded to include output 
through the port at address BASE+2. The combined object 
class is still named ParallelPort. 
*****************************************************/
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
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 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Inverting Most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

void main() 
{
 unsigned char BASE1Data; 
 ParallelPort OurPort; 

 OurPort.WritePort0(0x55); 
 printf("\n\nData sent to Port at BASE\n"); 
 getch(); 

 BASE1Data = OurPort.ReadPort1(); 
 printf("\nData read from Port at BASE+1: %2X\n", 
                                             BASE1Data); 
 getch(); 

 OurPort.WritePort2(0x00); 
 printf("\nData sent to Port at BASE+2\n"); 
 getch(); 
}

The first line of the main() function’s body instantiates one object of type 
unsigned char named BASE1Data used to store data read from the port at 
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address BASE+1. The next line calls the default constructor of the object class 
ParallelPort to instantiate the object named OurPort. This object has 
member data and member functions to write or read data to and from all three ports 
of the parallel port. 

The remaining statements of the main() function carry out a number of output 
and input operations. The getch() functions are used to make the program wait 
for a key press to allow the user to read the screen. If the getch() statements 
were omitted, the screen would scroll up or revert back to the IDE before the user 
could see the results. The getch() function is not a member function of the 
object OurPort. Therefore, it is not attached to this object and as such is called as 
a normal function. 

5.8 Summary 
At the start of this chapter we developed an object class with the name 
ParallelPort. This class contained only sufficient data members and member 
functions to give us basic use of the port. We applied particular access attributes to 
the class members and explained the importance of making proper use of these 
access attributes. 

Several programs were used to explain the relationship between multiple 
constructors and the default constructor. The ParallelPort class was then 
expanded to include use of the BASE+1 and BASE+2 addresses. The operation of 
objects instantiated from this expanded class was demonstrated using a program 
which transferred data to and from the interface board. Now that we have a fully 
functioning ParallelPort class, we will be able to use it extensively in future 
chapters.
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6.1 Introduction 
Digital-to-Analog Converters (DAC) form an integral part of many automated 
control systems. This chapter describes the principle of operation of a DAC and its 
typical use to produce an analog voltage or current. 

You will learn how new classes are derived from existing classes during the 
development of software to drive a DAC. The new classes will inherit the existing 
functionality, have extra functionality added, and the inherited functions will be 
modified. In the course of this process, access attributes and access specifiers will 
be further explained. 

6.2 Digital-to-Analog Conversion 
Digital-to-analog conversion is the generation of an analog voltage or current by 
using a group or sequence of digital logic levels to set the state of an analog output 
as shown in Figure 6-1. Some types of digital-to-analog converters (DACs) use 
digital data presented to the DAC in a serial format, and others use digital data 
presented in a parallel format. 

Figure 6-1 Digital-to-Analog Conversion. 

There are several types of digital-to-analog converter in use. Some take in a 
digital pulse-train and use integration to give an analog voltage (for example, 
frequency to voltage converters). Other DACs use the popular method of digital-
to-analog conversion discussed in this text like the DAC in this chapter’s project. 
In order to appreciate how the DAC operates, we need to understand a little 
about its main building block, the operational amplifier.

6.2.1 Operational Amplifier Basics 
The operational amplifier is a fundamental building block for many analog 
electronic systems. The schematic symbol for an operational amplifier (op-amp) is 
shown in Figure 6-2. 

Digital–to-Analog Converter 

(DAC)
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(Voltage or Current)
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Figure 6-2 Operational amplifier (op-amp) schematic representation. 

The operational amplifier component is a very high internal gain amplifier that 
only needs a minute amount of current to flow through its input pins (marked with 
a + and – sign), in order to function. The –ve input is referred to as the inverting
input and the +ve input is referred to as the non-inverting input. The device also 
has power supply rails (normally hidden) that connect to the upper and lower 
power supply voltages to power the device. When the polarity of the input voltage 
differential V is positive, with the +ve input voltage higher than the –ve input 
voltage, the op-amp output voltage (Vout) will be positive. Likewise the reverse 
holds true when the polarity of V is negative.

Since the op-amp internal gain is very high, say 1 million, then if a 10V output 
signal was to be generated, only 10/millionth of a volt is required between the two 
input pins ( V = 10 V,  represents micro, which is 10-6). The current entering the 
op-amp is extremely low, and might be say 200nA (n represents nano, 10-9).

The op-amp is a building block for various amplifier designs. The two rules 
concerning its very high gain and practically zero input current allow us to evaluate 
many op-amp circuits. The op-amp shown previously in Figure 6-2 has no external 
components connected to it. In this state it is of no practical use, so we must 
connect external components from the output to the input and take advantage of  
what is known as a feedback configuration. The term feedback is used because we 
are feeding the output signal back into the input of the op-amp. Now let us look at a 
current-to-voltage circuit as shown in Figure 6-3, since its function is fundamental 
to the operation of the DAC on the interface board. 

Figure 6-3 Current-to-voltage op-amp circuit. 
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The input voltage Vin, generates a current i which flows through the resistors Ra 
and Rf as shown, generating voltage Vout. We calculate the output voltage Vout by 
knowing the value of the current i and also the value of the voltage at the –ve input 
pin (and of course knowing the values of the two resistors Ra and Rf). 

Vout cannot fall outside the op-amp’s power supply voltage range, since the op-
amp doesn’t have any special internal circuitry to generate output voltages 
exceeding that of the power supply. Most op-amps are powered from upper supply 
voltages of +15V or less and lower power supply voltages of –15V or higher. 
Bearing this in mind, along with the fact that the op-amp has huge internal gain, 
then no matter what the output voltage of the op-amp might work out to be, the 
difference in voltage between the +ve and –ve input pins ( V) must be less than 
say fifteen microvolts. 

Vout (max) = V x Internal Gain 
+/- 15V = 15 V x 106

In the above example, the output voltage, Vout, cannot exceed either supply 
voltage at +/-15V, therefore V will always be less than ~15 V, assuming the op-
amp internal gain is one million. 

The voltage at the –ve input pin is equal to the voltage at the +ve input pin plus 
V. Since the voltage at the +ve input pin is equal to analog ground (0V, shown by 

the hollow triangle symbol), and we know that the difference in voltage ( V)
between the +ve and –ve input pins will always be less than 15 V, the voltage at 
the –ve input pin will be less than 0V + 15 V = 15 V. This –ve input pin voltage 
is so close to zero volts that we might as well call it zero volts or virtual ground.
Now that we know the –ve input pin voltage, we can calculate the current flow i
and determine the output voltage Vout. 

Figure 6-4 Calculating input current i. 

Current flows from higher voltages to lower voltages, therefore, the current i will 
flow as shown in Figure 6-4 since Vin is at a greater voltage than the –ve input pin 
of the op-amp at virtual ground (  0V). With 1V at one end of resistor Ra and 
‘zero’ volts at the other end, the current i is as follows: 
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Current i = Volts / Resistance 
 = (1V – 0V) / 1K 
 = 1mA 

Note that the symbol ‘K’ represents one thousand ohms. 

Since effectively zero current flows into the op-amp input pins, all of current i must 
flow through Rf, into the output pin and to the op-amp load (not shown). 

Vout is equal to the voltage at the –ve input pin plus whatever the voltage is across 
resistor Rf. Using V = I x R, the voltage across resistor Rf is equal to current i
multiplied by the resistance of Rf. 

VRf = 1mA x 2K 
 = 2V 

As mentioned previously, current flows from higher voltages to lower voltages, 
therefore the voltage at the left end of Rf is at a higher voltage than the voltage at 
the right end of Rf. Since the left end of Rf is at 0V, the voltage difference VRf is 
2V, the right end of Rf must be at –2V. Knowing that the right end of Rf is 
connected to Vout, Vout must be equal to –2V. 

The current i flowing through the feedback circuit must enter the junction at the op-
amp output and split, part-of this current flowing into the op-amp load (not shown, 
towards Vout) and the remainder flowing into the op-amp output. How the op-amp 
draws the right amount of current into its output will be understood once the 
operation of negative feedback is explained. 

In principle, the op-amp will draw (sink) or supply (source) sufficient current to 
ensure that current i remains at a level to force the –ve input pin to ‘0V’. This 
process happens automatically when a negative feedback configuration is used, as 
shown in Figure 6-3 and Figure 6-4. To configure negative feedback, connect the 
output voltage Vout back to the –ve input, either directly or through the use of 
external components, usually resistors. Negative feedback works as follows. 

If say, the input voltage Vin increases, the voltage at the –ve input will increase 
slightly, increasing the small negative voltage difference between the op-amp’s +ve 
and –ve inputs ( V). This increased negative voltage ( V) will generate an 
increasingly more negative output voltage Vout, which will in-turn have the 
negative effect of reducing the voltage at the –ve input pin. This generates a 
decrease in V that will eventually settle to equilibrium. This process takes place 
automatically and quite rapidly in the op-amp when using negative feedback. 

Positive feedback, on the other hand is altogether different and does not produce a 
self-correcting output voltage. Instead, the output voltage swings to the appropriate 
voltage supply. Later when the polarity between the +ve and –ve inputs is reversed, 
the output will swing to the opposite voltage supply. This type of feedback is used 
inside voltage comparators. 

Armed with an understanding of how a current-to-voltage converter circuit works, 
we can move on to analyse and understand how practical DAC circuitry works. 
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6.2.2 DAC Circuit Principles 
Two DAC methods will be discussed that use a group of parallel digital inputs to 
generate an analog output voltage. Both methods use current-to-voltage conversion 
as discussed in the preceding section. The two methods differ in the configuration 
of their logic input resistor arrays. The first method discussed is the summing 
amplifier DAC.

6.2.2.1 Summing Amplifier DAC 
This circuit (shown in Figure 6-5) operates under the same principle as the current-
to-voltage amplifier circuit shown in Figure 6-3 and Figure 6-4 earlier. Previously 
one input resistor was used to generate the current iT, whereas in this case the 
summing amplifier uses four input resistors, each resistor generating its own input 
current. For the summing amplifier, the individual currents flowing out of each 
input resistor add together to form iT.

Figure 6-5 Summing amplifier DAC. 

If all four input resistors were the same resistance value, each would be able to 
contribute either zero current (logic zero input) or ¼ of the total current iT (logic-
HIGH input). Therefore, the DAC output could have the following states: 

DAC Output 0V  (all logic inputs at 0V) 
 -1V  (one logic input +5V, others 0V) 
 -2V (two logic inputs +5V, others 0V) 
 -3V (three logic inputs +5V, other 0V) 
 -4V (all logic inputs +5V) 
   

Having all four resistors with identical resistance will only give us five output 
states with 1V steps. Knowing that four unequally weighted logic bits can form 
sixteen unique numbers, we change the resistance values accordingly to achieve 
sixteen unique current levels of iT. Input resistors R0, R1, R2 and R3 are chosen 
such that their input resistance values differ by a power of two from one resistor to 
the next. 

Resistor R0 contributes the equivalent of the binary number 20, R1 is equivalent to 
21 etc., as shown in Figure 6-5. The current derived from the 20 logic input will be 
1/8 th that of the 23 logic input, the current from the 21 logic input will be ¼ that of 
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the 23 logic input and the current from the 22 logic input will be ½ that of the 23

logic input. By using the various combinations of logic input states, sixteen 
different combined current levels can be generated, resulting in sixteen different 
output voltages. 

This DAC method has a drawback; to implement a DAC with finer voltage 
resolution (a larger number of logic input bits), requires more accurate resistor 
values. For example, an 8-bit DAC (having 256 states) would need to have 
resistance tolerances of much less than 1/256 in order to avoid over-stepping 
between states within the whole DAC output range. Also, the actual values of these 
resistors will be non-standard – more difficult to achieve. The following circuit 
known as a R-2R ladder avoids these problems. 

6.2.2.2 R-2R Ladder DAC 
This circuit also uses current-to-voltage conversion like the Summing Amplifier 
DAC. The difference between these two methods is the configuration of the input 
resistor arrays. 

The input voltage to the resistor array is a very stable and precise voltage reference, 
marked as VREF in Figure 6-6. This is needed to allow the generation of accurate 
current levels to flow through the circuit. If you examine the R-2R circuit, you will 
see four switches (actually semiconductor switches), each switch individually 
controlled by one of the four logic inputs. The switches connect with either the 
analog ground (shown by the  symbol) at 0V, or they connect with the op-amp    
–ve input pin at virtual ground. The term virtual ground is used because this pin is 
nearly at 0V (as described previously in Section 6.2.1). Realising that the switches 
will connect with 0V in either switch position, the R-2R resistor array can be 
analysed as follows. 

Figure 6-6 R-2R ladder DAC. 

The current flowing through the switch controlled by the least significant bit, 20 is 
1/8th of the current flowing through the switch of the most significant bit, 23.
Similarly, the current through the switch controlled by the 21 bit is ¼ of the current 
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through the most significant bit switch, and the current through the switch 
controlled by the 22 bit is ½ of the current through the switch controlled by the 
most significant bit. When the switch is in the position marked ‘0’, the current 
through the 2R resistor passes to analog ground and not towards the –ve input pin 
of the op-amp. In the other position marked ‘1’, the current through the 2R resistor 
flows towards the op-amp –ve input pin, adding to the other currents from any 
other switches also in the ‘1’ position. These currents combine to become iT and 
generate the output voltage in the same way that any current-to-voltage amplifier 
circuit does. As mentioned previously, the positive current flowing through Rf 
produces a negative voltage output. DACs will often need to have a positive output 
voltage, and to achieve this, we add an inverting amplifier to reverse the polarity of 
the DAC output signal. A circuit performing such a function is found on the 
interface board and will be discussed shortly. 

Figure 6-7 Reference voltage (VREF) loading. 

There is one last point to be made concerning the R-2R ladder circuit. This circuit 
has a very nice feature in that the resistance the voltage reference ‘sees’ is always 
equal to a resistance value of R, no matter which position the switches are in. This 
excludes the short time when the switch is in ‘mid air’ and not connected to either 
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contact. Voltage references or regulators have slight changes in their output voltage 
as their load varies. Because the R-2R ladder circuit presents a uniform load to the 
voltage reference, the output voltage of the voltage reference will remain quite 
steady. Figure 6-7 demonstrates the constant resistance, R, loading on the voltage 
reference – remembering that the switch ends of the 2R resistors always see zero 
volts, no matter which position the switches are in. 

To summarise, the R-2R ladder array has the advantage of using a simple ratio of 
resistance for the entire array, the ratio of two. Also, the resistor array places a 
relatively constant load on the voltage reference, resulting in superior accuracy. 

6.2.3 Operation of the DAC0800 
The DAC used in the interface board is the DAC0800, an 8-bit device providing a 
programmable output current. We use this programmable output current with a 
current-to-voltage circuit to generate a voltage output. Figure 6-8 shows a block 
diagram of the DAC0800 circuit used on the interface board. 

The DAC0800 produces an output current, where the current flowing through its 
output pin actually flows into the DAC (sink current). To generate an analog 
voltage, we need to use a current-to-voltage converter, in this case a single resistor, 
R, one end connected to the DAC output pin and the other end to a reference 
voltage, 0V, as shown in Figure 6-8. When current i flows through the resistor, a 
voltage V ( V = i x R) is generated across the resistor. Knowing that current 
flows from a more positive voltage to a less positive voltage, the voltage at the end 
of the resistor, R, which connects to the DAC output, will be equal to 0V + - V = -

V. With a current i equal to zero, the output voltage generated across resistor R 
will be 0V. 

Figure 6-8  Block diagram - Interface board DAC0800 circuit. 

So we have a programmable output voltage ranging from 0V to - V, where the 
actual value of V for a given digital input will be dependent on the resistance 
value of resistor R. A DAC output range that always remains on the same side of 
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zero volts (the negative side in this particular case) is termed a unipolar output.
The other type of DAC output is one that which crosses between the positive and 
negative sides of zero volts, and is termed a bipolar output. Figure 6-9 shows the 
resistor configuration needed by the current-to-voltage converter for it to operate in 
a bipolar mode. 

Figure 6-9 Bipolar current-to-voltage conversion. 

The output voltage (VDAC) of the bipolar current-to-voltage converter is evaluted 
from the relationship: 

VDAC = +5V – Voltage drop across R 
 = +5V – i x R 

The minus sign in the preceding equation comes from the fact that the current i
flows into the DAC0800, and that current flows from a more positive voltage to a 
less positive voltage – therefore the voltage at the current-to-voltage converter will 
be equal to +5V minus the voltage drop across resistor R.

As current draw i into the DAC output increases, the voltage at the DAC output 
drops from +5V (all 8 logic inputs zero) to lower voltages, passing through zero 
volts and into the negative voltage region, eventually reaching –5V (all logic inputs 
high, and using the appropriate value for resistor R). The current-to-voltage 
converter on the interface board can be configured in unipolar or bipolar mode by 
fitting a link in either of two positions respectively. 

Table 6-1  Current-to-Voltage Converter Output. 

DAC Logic Input Unipolar mode Bipolar mode 
255 -5V -5V 

0 0V +5V 
   

Table 6-1 summarises the output voltage of the current-to-voltage converter for 
both unipolar and bipolar configurations of the resistor R (chosen to have the 
appropriate value). 
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Usually, we expect the output voltage from a DAC to be lowest when all logic 
input bits are zero and highest when all logic input bits are high (255 for an 8-bit 
DAC). To meet this convention, the current-to-voltage converter output needs to be 
inverted to produce +5V for all logic input bits high and 0V for all logic input bits 
low when in unipolar mode. Bipolar mode should produce +5V when all logic 
input bits are high and –5V for all logic input bits at zero. The Buffer and Inverter 
circuit block shown ahead in Figure 6-11 and Figure 6-12 perform this voltage 
inversion.

A typical inverter circuit will need to draw some current i through its input as 
shown in Figure 6-10. If this current draw is significant, it will adversely affect the 
voltage generated across R. This occurs because we now have two currents i and i
flowing through R with i  generating an error voltage VERROR = i  x R. The total 
voltage across resistor R is V = (i + i ) x R, equal to the correct voltage (i x R), 
plus VERROR.

Figure 6-10 Inverter circuit affecting voltage V.

To ensure that we do not draw a significant current into the inverter circuit, we 
precede it with a Voltage Buffer circuit. The Voltage Buffer draws a minute 
amount of current (~200 nA), not enough to interfere with the accuracy of the DAC 
current-to-voltage converter. 

6.2.3.1 The Voltage Buffer Circuit 
This circuit performs the function of buffering the output voltage of the DAC 
current-to-voltage converter as mentioned previously. The Buffer uses a special op-
amp configuration that draws almost zero current. This circuit is shown in Figure 
6-11.
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Figure 6-11 Voltage Buffer circuit. 

Remember that the current flowing into an op-amp input pin is effectively zero, 
therefore the current flowing from the DAC0800 current-to-voltage converter 
circuit and into the op-amp +ve input pin is zero. This op-amp is configured using 
negative feedback. The output of the op-amp (VBUFFER) will be driven to ensure 
there is effectively zero voltage between its –ve and +ve input pins. Therefore, the 
output voltage of the op-amp will follow or buffer the input voltage (from the 
DAC) present at its +ve input. 

6.2.3.2 The Voltage Inverter Circuit 
The DAC output circuitry produces a falling voltage as the input bit number value 
increases (see Table 6-1). The Voltage Inverter circuit inverts the voltage signal 
generated by the DAC current-to-voltage converter circuit, to give an increasing 
output voltage as the DAC input increases in value. We have already examined a 
circuit that produces an output voltage with opposite polarity to that presented to its 
input: the current-to-voltage op-amp circuit. That circuit performs voltage 
inversion and also amplification, where the amplification or gain is equal to the 
ratio of the resistor Rf to Ra. If we make Rf equal to Ra then we will have a gain of 
unity – now we have an inverter as shown in Figure 6-12. The circuit analysis of 
the inverter is identical to that carried out in Section 6.2.1. 

Figure 6-12 Op-amp Voltage Inverter circuit. 
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6.2.4 DAC Characteristics and Specifications 
The DAC has some basic characteristics that specify its performance. These 
include settling time, non-linearity and full-scale error. The settling time is a 
measure of how fast the output of the DAC can change and settle to within half of a 
least significant bit (LSB - the smallest change in output voltage, caused by the 20

logic input). The DAC0800 has a typical settling time of 100 ns. 

The linearity refers to the maximum deviation from the converter’s ideal 
input/output relationship – being the relationship between the DAC output value 
and the DAC input value, over the whole input range of the converter. Ideally, this 
relationship should be a straight line, the output increasing in value as the input 
increases. Figure 6-13 shows an ideal input/output relationship along with two 
independent errors, the offset error and the gain error.

The offset error is the voltage (or current) present at the output of the DAC when 
the digital input is zero. Ideally the offset error should be zero. Gain error occurs 
when the output of the DAC doesn’t increase by the correct amount for an increase 
in the digital input. 

Figure 6-13  DAC Input/Output Relationship. 

The DAC0800 used in the interface board has the following relevant specifications. 
Its non-linearity is 0.1% over its rated temperature range (meaning that it has a 
linearity of 99.9%) and its full-scale error is 1 LSB (least significant bit), meaning 
that its maximum output value will be within 1 LSB of the true value 
corresponding to the ideal transfer function (input/output relationship). 

6.3 Programming the Digital-to-Analog 
Converter
At the end of the previous chapter, we developed an object class named 
ParallelPort. This object has the capability to input and output data using all 
three addresses of the PC’s parallel port. It can easily be used to drive an 8-bit 
Digital-to-Analog Converter. Only partial functionality of the ParallelPort
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class is needed to drive the DAC on the interface board. The DAC just needs to 
receive an 8-bit number from the PC. This can be done by sending an 8-bit number 
from the PC to the interface board using the port at address BASE. This is an output 
port with eight parallel signals we can connect to the interface board. Since we 
already have ParallelPort as a completely packaged object class, we can use 
it to drive the DAC. 

The rest of the chapter will progress as follows. First, we will develop a program 
using the ParallelPort object to drive the DAC. When this program is 
executed, the DAC system will generate an analog voltage proportional to the 8-bit 
number sent to it. We will then proceed to learn about inheritance using an exercise 
in which a new class is derived to represent the DAC. This new object may require 
extra functionality that is specific to the DAC. We will then turn our attention to 
restrictions imposed by various access attributes. The proper use of access 
attributes will be described in detail. We will proceed through several different 
versions of the same program, each time strengthening code reuse. The final 
program presented will then be used in future chapters as the most appropriate 
object-oriented program to drive the DAC. 

The first program to drive the DAC is given in Listing 6-1. The class definition and 
the member function definitions of the ParallelPort object class are exactly 
the same as given in the previous chapter.  In the main() function, an object is 
instantiated using the ParallelPort class and it is given the name D_to_A.
Then the WritePort0() function of the object is used repeatedly to send 
different data to the parallel port each time. Following each WritePort0()
function is a getch() function. These getch() functions force the program to 
wait for a key press before executing the next statement. This will allow you time 
to carry out measurements on the interface board to verify whether or not the 
correct analog voltage has been generated by the DAC system. 

Table 6-2 Connections for the DAC. 

BASE Address 
(Buffer IC, U13)

DAC0800
(U8)

D0   D0 (12) 
D1  D1 (11) 
D2  D2 (10) 
D3  D3 (9) 
D4  D4 (8) 
D5  D5 (7) 
D6  D6 (6) 
D7  D7 (5) 

   

Before running your DAC programs, configure the interface board as follows. 
Ensure that an operational 9V battery is connected to the terminal block (J14). Fit 
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the jumper on the interface board across the two-pin header position marked 
LINK1, to select unipolar mode (0V to +5V). When the connections are completed 
according to Table 6-2, the 8 bits of the port at address BASE of the parallel port 
will be connected to the 8-bit input of the DAC.

Listing 6-1 Digital-to-Analog Conversion using the ParallelPort object class. 

/*****************************************************
This program uses the ParallelPort object developed in the 
previous chapter to write a byte of data to the Digital to 
Analog Convertor (DAC). The DAC generates an analog voltage 
proportional to the value of the data byte it receives. 
*****************************************************/
#include <iostream.h> 
#include <conio.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 
 public: 
  ParallelPort(); // default constructor 
  ParallelPort(int baseaddress); // constructor 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
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}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 

 return InDataPort1; 
}

void main() 
{
 ParallelPort D_to_A; 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(0); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(32); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(64); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(128); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(255); 
}
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The analog output voltage can be measured at the pin on the interface board 
labelled VDAC, which is connected to pin 7 of the operational amplifier LM358 
(U10B). Each time you press a key, the program will output a slightly higher 8-bit 
value and the DAC will produce a corresponding higher analog voltage. Read the 
analog voltage by connecting a voltmeter between the pin marked VDAC on the 
interface board and a ground pin. 

As described earlier, additional circuitry has been provided on the interface board 
to facilitate both unipolar and bipolar output from the DAC. Move the jumper to 
the position marked LINK2 on the interface board and re-execute the program to 
check the bipolar operation of the DAC system. 

6.4 Derivation of Object Classes
In the last example, we used the ParallelPort object class to operate the DAC. 
This object is designed for general-purpose use of the parallel port. The 
ParallelPort object class is more than capable of handling the simple 
requirements of the DAC. However, using the ParallelPort object class for 
digital-to-analog conversion is not particularly appropriate. Instead, it is desirable 
to create an object class, which at least has a name that suits digital-to-analog 
conversion. This is an ideal situation to derive a class. We are for now merely 
applying a change in name which will reduce the complexity associated with the 
derivation of the new class. As we progress through the book we will confront 
more involved class derivations. 

One of the main strengths of object-oriented programming is the re-useability of 
the program segments developed in the past. The C++ language has excellent 
mechanisms in place to expand the capabilities of an existing class and thereby to 
form a new super class. As described in Chapter 4, these super classes are known 
as derived classes. To be able to derive a class, a base class must exist. The derived 
classes are meant for more specific purposes than the base class. In our case, the 
general-purpose object class ParallelPort can be considered as the base class. 
The new class to be created needs to be more specific to suit the Digital-to-Analog 
Converter. Listing 6-2 shows the simplest way to create the new class. 

Listing 6-2 Derivation of DAC class. 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
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  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

class DAC : public ParallelPort 
{
};

The class derivation is kept simple so that we can direct our attention to the 
principles of derivation of classes rather than the actual functionality of the DAC
object class. The class definition for the ParallelPort object class is identical 
to that given in Chapter 5. The only new part in the above listing is the class 
definition for the object type DAC shown in bold typeface. The first line of the new 
object class definition is: 
class DAC : public ParallelPort 

Here, we derive a new class named DAC, using the existing class ParallelPort
as the base class. The keyword public before ParallelPort, is referred to as 
an access specifier. We will return to access specifiers after considering the 
member data and member functions we inherited from the base class.

Inherited members of the DAC class 
Here, the word inheritance is used to describe the fact that the derived class inherits 
all the member data and member functions of the base class. If you now take a 
closer look at the DAC object class, you will see that the body of the DAC class 
definition is empty. It was explained in Chapter 5 that if we do not provide our own 
constructor and destructor for the object class, the compiler will provide them. 
Therefore, although not visible, the DAC class has a default constructor and a 
default destructor provided by the compiler. Also, because the DAC class has been 
derived from the ParallelPort class, it has inherited all the members (both 
data and functions including constructors) of the ParallelPort class.

If we list the data members of the DAC class, they are as follows: 

unsigned int BaseAddress; 
unsigned char InDataPort1; 

The member functions of the DAC class are as follows: 

 DAC(); // Compiler-generated constructor (hidden). 
ParallelPort();
ParallelPort(int baseaddress); 

 void WritePort0(unsigned char data); 
 void WritePort2(unsigned char data); 
 unsigned char ReadPort1(); 
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 ~ParallelPort(); // Inherited compiler-generated 
  // destructor (hidden). 

 ~DAC(); // Compiler-generated destructor (hidden). 

NOTE

Note that we did not include destructors in the class definition for the 
ParallelPort class and also in the class definition for the DAC class. 
Therefore,the compiler will generate a hidden default destructor for each of these 
classes as listed above. All compiler-generated constructors and destructors are 
described as hidden to the programmer because they are invisible in the source 
code. See Chapter 8 for a more detailed description of destructors. 

The DAC class is equivalent to the ParallelPort class except that it has a 
default constructor and destructor provided by the compiler. It is clear that this 
particular class derivation is just a name changing exercise since we did not expand 
the capability of the DAC class. It can only do as much as the ParallelPort
class and no more. However, if we need to enhance the power of the DAC class, it 
is an easy matter to add member data and member functions to the new DAC class 
in its class definition and then provide the definitions of the added functions.

Instantiating DAC objects (calling constructors) 
The question to consider is “Can we use this class?” To instantiate an object of 
type DAC, we must call the constructor of the DAC class. It would be called in the 
declaration statement for the new object named D_to_A as shown below: 

DAC D_to_A; 

When the constructor of a derived class is first called, it will call the constructor of 
its inherited base class that takes whatever parameters it is being passed from the 
derived class constructor (this will be further explained ahead). The base class 
constructor instantiates its members and completes whatever tasks it has been 
coded to do. When it is finished it returns program execution back to the start of 
the body of the derived class constructor. The derived class constructor then 
instantiates its members and completes whatever tasks it has been coded to do. 

In the case of this particular program, the DAC class does not have a programmer-
generated constructor, so the compiler adds its own default constructor (takes no 
parameters). This is the constructor that is called when the above statement is 
executed. Before it performs its own tasks, it will call its inherited base class 
constructor. Because the derived class constructor is not passing an argument to the 
constructor of the base class, the constructor ParallelPort() and not the 
constructor ParallelPort(int baseaddress) will be called to allocate 
memory for the inherited base class members. If you look at the body of this 
constructor in Listing 6-1 you will see that it also initialises BaseAddress to the 
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value 0x378, (and InDataPort1 to zero). Then the DAC class’s default 
constructor instantiates memory for whatever members are added to it (none) and 
executes its empty body. 

The public function WritePort0() has been inherited from the 
ParallelPort class. Therefore, it can be used to send the data (in this case, 
255) to the parallel port at the initialised base address value (0x378) using the 
following statement: 
D_to_A.WritePort0(255);

There is a problem with this program – the DAC class does not allow the user to 
specify a value for the BASE address of the parallel port. This is inadequate for 
those users that have their parallel ports at a different BASE address than 0x378. 
Therefore, we need some mechanism to provide the option to initialise the data 
member variable BaseAddress to a suitable value. Normally the best way to do 
this is to use the constructor. Similar to the early stages when developing the 
ParallelPort object, the compiler-generated constructor for the DAC class is 
not adequate for our application. We must provide our own constructors and code 
them in a manner that allows us to specify the value of BaseAddress. An 
improved DAC class is given in Listing 6-3. 

Listing 6-3 An improved DAC class. 

class ParallelPort 
{
 private: 

  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

class DAC : public ParallelPort 
{
 public: 
  DAC(); // default constructor.
  DAC(int baseaddress); // constructor.
};
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This time we have used a similar approach as for the ParallelPort class and 
declared two constructors for the DAC class. Note that the compiler will not 
provide a default constructor because we have provided the constructor DAC(int
baseaddress) shown in Listing 6-3. Therefore, we must provide our own 
default constructor DAC().

We can now define these constructors by providing their statements which will set 
the parallel port’s BASE address by initialising inherited private data member 
BaseAddress. The first attempt to define the constructors is given in Listing 6-4.

Listing 6-4 A failed attempt to define the constructor. 

DAC::DAC() // Does work.
{
}

DAC::DAC(int baseaddress) 
{
 BaseAddress = baseaddress; // Fails to work!
}

The following statement will use the DAC class’s programmer-generated default 
constructor DAC() to instantiate an object of type DAC named D_to_A:

DAC D_to_A; 

This default constructor of the DAC class will operate in the same way that its 
compiler-generated default compiler did. It will first call the inherited base class 
constructor that also takes no arguments - the base class’s default constructor 
ParallelPort(). This constructor will instantiate the inherited base class 
members, initialise the private data member InDataPort1 to 0, and initialise the 
private data member BaseAddress to the value 0x378. Then the DAC class’s 
default constructor will be executed to instantiate whatever members have been 
added to it (none), followed by executing its body – in this case with nothing in it. 

The derived class DAC inherits the members of its base class ParallelPort but 
does not have access to the private members of its inherited base class (regardless 
of the acess specifier used – public in this case). This means that the constructor 
DAC(int baseaddress) shown in Listing 6-4 will not be able to access the 
inherited base class data member BaseAddress (declared as private). Therefore, 
it cannot be compiled and so cannot work! 

The solution in this situation is as follows. Instead of a member function from the 
derived DAC class trying to make an illegal attempt to directly access a private data 
member inherited from its base class ParallelPort, a call can be made to a 
public function inherited from the base class that can change the private data 
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member BaseAddress of its class as shown in Figure 6-14. A proper constructor 
definition for the DAC class is given in Listing 6-5. 

Figure 6-14  Accessing the inherited private data member BaseAddress.

Listing 6-5  Corrected definition of the constructor of the DAC class. 

DAC::DAC()
{
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress)
{
}

The part-line of bold font code shown in Listing 6-5 is new and is the mechanism 
that allows the value of private data member BaseAddress to be set to the value 
of the argument passed at the time of instantiating the DAC object  named D_to_A:

DAC D_to_A(0x3BC); 

When the program encounters this statement, it calls the appropriate constructor 
from the DAC class. Because the parallel port’s BASE address is given as an 
argument when instantiating the D_to_A object, the constructor DAC(int
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Derived Class 

DAC
     public 
         DAC ( ) 
         DAC (baseaddress) 

Derived Class Members

Case (b) 

Parallel Port 
     private 
         BaseAddress 
         InDataPort1 
     public 
         ParallelPort ( ) 
         ParallelPort (baseaddress) 
      . 
      .

Inherited Base Class’s Members 

Derived Class
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baseaddress) will be called, and not the default constructor DAC(). When 
first called, the constructor calls the appropriate constructor of the inherited base 
class that takes the same arguments being passed to it. The bolded part-line: 
DAC::DAC(int baseaddress) : ParallelPort(baseaddress)

informs the compiler that the derived class constructor DAC(int
baseaddress) is to pass the parameter baseaddress to the inherited base 
class constructor ParallelPort(baseaddress). This base class constructor 
will instantiate its members and then initialise its private data member 
BaseAddress to be equal to the argument passed to the parameter 
baseaddress  (and initialise InDataPort1 to zero). Immediately following 
this action, the constructor DAC(int baseadress) will be executed to 
instantiate its added members (none) and then complete its tasks contained within 
its empty body. 

This is how to initialise the inaccessible private data member BaseAddress
inherited from the ParallelPort class - with minimum code thanks to 
inheritance.

Now we can turn our attention to using this object class in a program to carry out 
digital-to-analog conversion. The complete program is shown in Listing 6-6. 
Instead of instantiating an object of type ParallelPort, this program 
instantiates an object of type DAC. The operation of the program is identical to the 
one shown in Listing 6-1. 

Listing 6-6 The use of the DAC class for Digital-to-Analog Conversion. 

/*******************************************************
The new class DAC is used in the main() function to 
sequentially write several bytes of data to the Digital 
to Analog convertor. 
*******************************************************/
#include <iostream.h> 
#include <conio.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
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  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class DAC : public ParallelPort 
{
 public: 
  DAC(); 
  DAC(int baseaddress); 
};

DAC::DAC()
{
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}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{
}

void main() 
{

DAC D_to_A; 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(0); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(32); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(64); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(128); 

 cout << "Press a key ... " << endl; 
 getch(); 
 D_to_A.WritePort0(255); 
}

6.5 Adding Members to Derived Classes 
Having considered a simple class definition to understand the principles of 
inheritance and the derivation of new classes, we can now proceed to add extra 
functionality to the derived class. In the next example program, the DAC class has 
had a data member and a member function of its own added. The data member will 
remember the data last output to the DAC. The member function provides an 
interface to the outside world, allowing any function to query the last value output 
to the DAC. The DAC class will have a modified version of the inherited function 
WritePort0() to enable it to store the last output value. We will now see how 
to carry out the following: 

1. Add new members to a derived class. 
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2. Modify an inherited function. 

The new DAC class definition and its member function definitions are given in 
Listing 6-7. Note that in this listing we have re-declared the function 
WritePort0() as a member function of the DAC class. The C++ language 
requires us to do this so the body of the inherited function WritePort0() can be 
changed to suit our requirements.  See Section 6.5.2 for additional details. 

Listing 6-7  The DAC class with new members added. 

class DAC : public ParallelPort 
{
 private: 

unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 
  void WritePort0(unsigned char data); 
  unsigned char GetLastOutput();
};

DAC::DAC()
{

LastOutput = 0; 
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{

LastOutput = 0; 
}

void DAC::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); // Will not work! 
 LastOutput = data;
}

unsigned char DAC::GetLastOutput() 
{
 return LastOutput; 
}

The private data member LastOutput is added to the derived class DAC for the 
purpose of storing the value output by the WritePort0() function. A member 
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function named GetLastOutput() is also added to the derived class. It returns 
the value stored in LastOutput. Therefore, the only statement within the body of 
the GetLastOutput() function is: 

return LastOutput; 

Any function in the program that requires the value of the last data number output 
to the DAC (from the port at address BASE) must call the DAC class’s public 
function GetLastOutput(). This is the only way to access the value stored in 
the private data member LastOutput and ensures that functions outside the DAC
class have no direct access to it. Once again, this demonstrates the controlled 
access to private data of a class by an object-oriented program. 

Both constructors have been modified to initialise LastOutput to 0 by including 
the statement: 
LastOutput = 0; 

Therefore, at the time of instantiating a DAC object, the constructor will initialise 
the new data member LastOutput to 0.

We have modified the WritePort0() function in order to store the latest value 
output to the DAC by adding the line: 
LastOutput = data; 

However, the definition of the WritePort0() function given in Listing 6-7 will 
fail to compile. This is because the WritePort0() function of the derived class 
DAC is trying to use the inherited data member BaseAddress which is private to 
the base class. Although the private data of the base class is inherited, the derived 
classes cannot access this private data as shown in Figure 6-15. 

One means to allow access to BaseAddress is by relaxing its access attributes. 
This can be done by declaring BaseAddress in the base class with protected
access. Then BaseAddress can be accessed by all functions of all derived 
classes provided the classes are derived using a public or protected base 
class access specifier. Access specifiers are described in more detail ahead in 
section 6.5.1. The modified class definition of the base class is given in Listing 6-8. 

NOTE

Declare variables as private unless you plan to derive other classes using the 
current class as a base class. When you want to use the current class as a base 
class to derive new classes, carefully determine the variables of the current class 
you would want the derived class to have access to. Declare only these variables 
as protected in the current class. 
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Figure 6-15  Private and protected access specifiers. 

Listing 6-8 Base class ParallelPort - BaseAddress as protected data member. 

class ParallelPort 
{
 protected: 
  unsigned int BaseAddress;

 private: 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

Parallel Port 
     private 
         BaseAddress 
         InDataPort1 
     public 
           ParallelPort ( ) 
      . 
      . 
      . 

DAC
     private 
         LastOutput 
     public 
         DAC ( ) 
         DAC (baseaddress) 
         WritePort0 ( ) 
         GetLastOutput ( ) 

Derived Class Members

Inherited Base Class Members

Derived Class 

DAC
     private 
         LastOutput 
     public 
         DAC ( ) 
         DAC (baseaddress) 
         WritePort0 ( ) 
         GetLastOutput ( ) 

Derived Class Members

Case (a) Case (b) 

Parallel Port 
protected

         BaseAddress 
     private 
         InDataPort1 
     public 
         ParallelPort ( ) 
      . 
      . 

Inherited Base Class’s Members 

Derived Class
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class DAC : public ParallelPort 
{
 private: 
  unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 
  void WritePort0(unsigned char data); 
  unsigned char GetLastOutput(); 
};

A program that uses the class definition shown above is given in Listing 6-9.

6.5.1 Access specifiers 
Consider the line:
class DAC : public ParallelPort 

The keyword public in this line is an access specifier. Access specifiers change 
the access attributes as follows. The protected variables of the ParallelPort
class can be accessed by the member functions of the DAC class, if and only if, the 
DAC class is derived from ParallelPort using a public or protected
base class access specifier. Access specifiers can also be private. Figure 6-16 
shows how the access specifiers determine access attributes of inherited members. 

Access Specifier public
When deriving a class using a public base class access specifier, all inherited 
public members of the base class will become public members of the derived 
class, all inherited protected members of the base class will become 
protected members of the derived class. All inherited private members will 
remain private to the base class, and so the derived class cannot access them. 

Access Specifier protected
When deriving a class using a protected base class access specifier, all 
inherited public and protected members of the base class will become 
protected members of the derived class.  All inherited private members will 
remain private to the base class, and so the derived class cannot access them. 

Access Specifier private
When deriving a class using a private base class access specifier, all inherited 
public and protected members of the base class will become private
members of the derived class. All inherited private members will remain 
private to the base class, and so the derived class cannot access them. 
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Figure 6-16 Access specifiers determine access attributes of derived class members. 

6.5.2 Polymorph Functions 
The attempt to redefine the member function WritePort0() in Listing 6-9 is 
quite legitimate. However, WritePort0() is a function the DAC class inherited 
from the base class ParallelPort. To allow derived classes to redefine 
inherited functions, the inherited functions must be explicitly included in the 
derived class definition as done in Listing 6-9 (and  Listing 6-7). In this example, 
there are two WritePort0() functions: one of them belonging to the 
ParallelPort class; and the other belonging to the DAC class. The existence of 
functions of the same name throughout a class hierarchy is termed polymorphism.
These functions not only have the same name, but also the same number of 
parameters, same types of parameters, and the same sequence of parameters. 

The declaration of the DAC class is given in Listing 6-8. Despite the DAC class 
inheriting the function WritePort0() from the base class ParallelPort, it 
is explicitly coded again in the DAC class. This allows us to redefine the body of 
the WritePort0() function to suit the needs of the DAC class. 
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NOTE

There is a clear difference between the term polymorphism and overloading. 
Overloaded functions also have the same function name. They differ in the 
number or type of parameters passed to the functions. In addition, overloaded 
functions do not need to be member functions.

The complete program, including the class hierarchy that can be compiled without 
errors is given in Listing 6-9. 

Listing 6-9 Digital-to-analog conversion with the expanded DAC object. 

/*****************************************************
In this program, the compilation error has been 
eliminated by  changing the access attribute of
BaseAddress in  the base class (ParallelPort) from 
private to protected.  Now the functions of the publicly 
derived class can access the inherited BaseAddress. 
This accessibility is only available to the derived 
classes of the base class and to the base class 
itself.  The function WritePort0(), which is re-declared
in the derived class, can now be modified without any
compilation errors. 
*****************************************************/
#include <iostream.h> 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 

class ParallelPort 
{
 protected: 
  unsigned int BaseAddress;

 private: 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
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  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class DAC : public ParallelPort 
{
 private: 
  unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 
  void WritePort0(unsigned char data); 
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  unsigned char GetLastOutput(); 
};

DAC::DAC()
{
 LastOutput = 0; 
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{
 LastOutput = 0; 
}

void DAC::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
 LastOutput = data; 
}

unsigned char DAC::GetLastOutput() 
{
 return LastOutput; 
}

void main() 
{
 DAC D_to_A; 

 D_to_A.WritePort0(0); 
// printf("\nDAC byte:%3d   ", D_to_A.LastOutput); // Does 
                                        // not work, why?
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(32); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage & then press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(64); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 
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 D_to_A.WritePort0(128); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(255); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 
}

In the above program, the constructor DAC() is called at the time of instantiating 
the DAC class object D_to_A. Referring to the function definition of the default 
DAC() constructor; it makes a call to the default constructor of the class 
ParallelPort before entering the body of the DAC() constructor. The default 
constructor of the ParallelPort class will initialise BaseAddress to 0x378 
(and set InDataPort1 to 0). Then execution of the body of the constructor 
DAC() begins. It will initialise the value of the DAC class’s private data member 
LastOutput to 0.

Note that the member function GetLastOutput() is called when the value of 
LastOutput needs to be printed onscreen. This needs to be done because the 
printf() function does not have direct access to the private data member 
LastOutput.

The definition of the WritePort0() function can be modified slightly to revert 
the access attribute of BaseAddress back to private for the following 
reasons. Consider the function WritePort0() from Listing 6-9 reproduced in 
Listing 6-10. 

Listing 6-10 WritePort0() function of the DAC class. 

void DAC::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data);  
 LastOutput = data; 
}

The only time BaseAddress is accessed is when the data is sent out the port. 
The polymorphic function WritePort0() of the ParallelPort class can do 
this. It has no problem in accessing BaseAddress since the function and the data 
are in the same class. It is possible to call the polymorphic function 
WritePort0() of the ParallelPort class from inside the polymorphic 
function WritePort0() of the DAC class by using the scope resolution operator; 
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the double colon (::). This process is shown in Figure 6-17 and is implemented by 
modifying the fragment of code from Listing 6-10 to become that given in Listing 
6-11.

Figure 6-17  Use of inherited polymorphic functions (BaseAddress private again). 

Listing 6-11 Calling a polymorphic function of a base class. 

void DAC::WritePort0(unsigned char data) 
{

ParallelPort::WritePort0(data);
 LastOutput = data; 
}

In the ParallelPort class definition, the access attribute of the data member 
BaseAddress can now be set back to private as shown in Figure 6-17. The 
new and preferred program is given in Listing 6-12. 

Parallel Port 
     private 
         BaseAddress 
         InDataPort1 
     public 
           ParallelPort ( ) 
           WritePort0 (data) 
      . 
      . 
      . 

DAC
     private 
         LastOutput 
     public 
         DAC ( ) 
         DAC (baseaddress) 
         WritePort0 ( ) 
         GetLastOutput () 

Derived Class Members

Inherited Base Class Members

Derived Class 

DAC
     private 
         LastOutput 
     public 
         DAC ( ) 
         DAC (baseaddress) 
         WritePort0 ( ) 
         GetLastOutput ( ) 

Derived Class Members

Case (a) Case (b) 

Parallel Port 
     private 
         BaseAddress 
         InDataPort1 
     public 
         ParallelPort ( ) 
         WritePort0 ( ) 
      . 
      . 
      .

Inherited Base Class’s Members 

Derived Class
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Listing 6-12 Use of polymorphic functions. 

/*********************************************************
In this program, the access attribute of the data 
member BaseAddress has been changed back to private. 
BaseAddress is accessed via the polymorphic WritePort0() 
function of the base class, which can access BaseAddress. 
*********************************************************/
#include <iostream.h> 
#include <stdio.h> 
#include <conio.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress;
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
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 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class DAC : public ParallelPort 
{
 private: 
  unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 
  void WritePort0(unsigned char data); 
  unsigned char GetLastOutput(); 
};

DAC::DAC()
{
 LastOutput = 0; 
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{
 LastOutput = 0; 
}

void DAC::WritePort0(unsigned char data) 
{

ParallelPort::WritePort0(data);
 LastOutput = data; 
}

unsigned char DAC::GetLastOutput() 
{
 return LastOutput; 
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}

void main() 
{
 DAC D_to_A; 

 D_to_A.WritePort0(0); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(32); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(64); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(128); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

 D_to_A.WritePort0(255); 
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 
}

Having learnt this elegant means of manipulating private data of a base class from 
inside a derived class, we can complete our improvements to the DAC class by 
changing the name of the WritePort0() function of the DAC class to something 
more appropriate. Let us choose the name SendData() as a replacement name 
for the function WritePort0() of the DAC class.

The class definition and the complete program to carry out the exact same tasks as 
the program in Listing 6-12, is given in Listing 6-13. We will be using this final 
version of the DAC class when we need to use the DAC system on the interface 
board in future chapters. 
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Listing 6-13 Replacing WritePort0() of DAC class by SendData().

/*****************************************************
In this program, the Function WritePort0() of the DAC 
class is given the new name SendData() which is more 
appropriate for the DAC class. 
*****************************************************/
#include <iostream.h> 
#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
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 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class DAC : public ParallelPort 
{
 private: 
  unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 

void SendData(unsigned char data); 
  unsigned char GetLastOutput(); 
};

DAC::DAC()
{
 LastOutput = 0; 
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{
 LastOutput = 0; 
}

void DAC::SendData(unsigned char data) 
{
 ParallelPort::WritePort0(data); 
 LastOutput = data; 
}

unsigned char DAC::GetLastOutput() 
{
 return LastOutput; 
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}

void main() 
{
 DAC D_to_A; 

 clrscr(); // clear screen 

D_to_A.SendData(0);
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

D_to_A.SendData(32);
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

D_to_A.SendData(64);
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

D_to_A.SendData(128);
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 

D_to_A.SendData(255);
 printf("\nDAC byte:%3d   ", D_to_A.GetLastOutput()); 
 cout << "   Measure voltage and press a key" << endl; 
 getch(); 
}

6.6 Summary 
The operational amplifier, discussed in this chapter, is the building block for many 
analog electronic systems. This device is used in conjunction with the interface 
board DAC0800 IC to form a complete digital-to-analog voltage converter system. 
Basic principles of two types of DAC circuits have been discussed including DAC 
characteristics and specifications. 

In this chapter the important concepts of inheritance and polymorphism have been 
explained. How various access attributes interact with each other, and how various 
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access specifiers affect the access attributes has also been described. We also 
learned how to use the scope resolution operator to call a polymorphic function 
from a base class. The DAC object created at the end of the chapter has all the 
functionality to drive the Digital-to-Analog Converter, and protects the member 
data of both the base class and the derived class at private level.
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7.1 Introduction 
In this chapter we will first explain how to apply the widely used C/C++ 
constructs such as iterative loops and conditional branching. We will then discuss 
the use of pointers that are employed extensively in many C++ programs. 
Knowledge of pointers is essential when using dynamic memory allocation and 
virtual functions as discussed in the next chapter. You will gain a familiarity with 
pointers when they are used to scan an array of numbers. These numbers will then 
be used to light LEDs on the interface board to visualise the array scanning 
operation.

7.2 Iterative Loops 

7.2.1 The for Loop 
The for loop is an iterative loop. It executes one or more statements repeatedly.  
In general, a for statement takes the form shown in Figure 7-1. The braces in the 
for statement are essential only if the body has a compound statement. If the body 
is a single statement, the braces may be used but are not essential. 

C++ Compound statement 

A Compound statement or block is a number of single statements grouped 
together between matching braces ({}).

Figure 7-1  An example of a for loop. 

Three expressions are enclosed within the pair of parentheses belonging to the for
loop. The first of these statements is: 

for(i = 0; i < 10000; i++)
{

†statements
}

The body of the for loop
(braces are necessary if
the body has more than
one statement). 

Initialising expression Test expression Incremental Expression 

† statements must be replaced by proper C++ statements.
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i = 0; 

This expression is executed only once at the start of the for statement and is 
known as the initialising expression. The initialising expression can be quite 
complex. It may be used to initialise a number of variables. In general, these 
variables are known as loop counters. In the preceding example, the value of i is 
used to keep a count of the number of times the for loop is executed; hence the 
name loop counter. In C++, the initialising expression may even include variable 
declarations (e.g. int i = 0;). Note that if the initialising expression is omitted 
the semicolon must still be used. 

The second expression: 
i < 10000; 

is known as the test expression. This expression is evaluated just before the body of 
the for loop is executed. The result of evaluating this expression is considered in a 
logical sense. That is, it will be tested to determine whether the expression 
evaluates to true (one) or false (zero). 

C++ true or false

A program that is given any values that are zero are considered to be false; non-
zero values are considered to be true. 
When a program evaluates a logical expression, if the condition is true the result 
will be 1. If the condition is false the result will be zero. 

In this particular case, the test expression tests whether the value of i is less than 
10000. If the value of i is less than 10000 the expression evaluates to true, 
otherwise false. The body of the for statement will be executed immediately after 
the test expression, if and only if the test expression evaluates to true. If the test 
expression evaluates to false, the for statement terminates without executing the 
statements in its body.

The left angle bracket (<) is known as the less than operator. These operators 
belong to a class of operators named relational operators. Due to the presence of 
the relational operator, the expression (i<10000) is known as a relational 
expression.

C++ Relational Operators 

< less than 
> greater than 
<= less than or equal to 
>= greater than or equal to 
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In addition to relational expressions, we can also use equality expressions. These 
expressions contain equality operators.

C++ Equality Operators 

== equal to 
!= not equal to 

The third expression in the for statement is: 

i++;

This statement is known as the incremental expression. It will be evaluated 
immediately after executing the body of the for statement. Usually, it increments 
one or more loop counters. In this particular case it increments the value of i by 1.

The ++ operator can be used in two different ways. Using it before the identifier 
will cause a pre-increment, e.g. ++i. Using it after the identifier will cause a post-
increment, e.g. i++. In the case of ‘pre’ operations, the operation (operation 
meaning increment or decrement) is carried out before using the identifier in the 
test expression. In the case of ‘post’ operations, the operation is carried out after
using the identifier in the test expression. The -- operator is used exactly the same 
way; the only difference being that it will cause a decrement. These operators fall 
into a category known as unary operators. They are referred to as unary operators 
because they operate on just one argument. 

C++ Unary Operators 

+ unary plus 
- unary minus 
++ pre-increment (prefix) or post-increment (postfix) 
-- pre-decrement (prefix) or post-decrement (postfix) 
~ bitwise complement. Toggles bit by bit. 
! logical negation. Change true to false and vice-versa. 

The code fragment shown below demonstrates the operation of the for loop. It 
also shows how a for loop operates inside another (nested for loops): 

int i, j; 

for (i = 0; i < 5; i++) 
{
 for(j = 0; j < i; j++) 
  cout << ‘*’; 
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 cout << endl; 
}

Implementing this code in a program will produce the output shown in Figure 7-2: 

*
**
***
****
*****

Figure 7-2 The output of the nested for loop operation. 

The body of the outer for loop starts at the open brace and ends at the close brace.  
Between these two braces is the inner for loop. The inner for loop has no braces 
because it only has the one statement as its body:
cout << ‘*’; 

The second statement of the outer for loop is: 

cout << endl; 

and will be executed after the inner for loop has completed all its iterations. Each 
iteration of the inner for loop prints the character ‘*’ on the screen and 
increments the loop counter j. Printing for that line ceases when the value of j
reaches that of the outer loop counter i. Therefore, each iteration of the outer for
loop consists of j iterations of the inner for loop. 

7.2.2 The while Loop and the do–while Loop 
Repetitive iterations as performed with the for loop can be carried out using the 
while loop. The while loop is similar to the for loop without initialising and 
incremental expressions. It simply has a test expression enclosed within a pair of 
parentheses that is evaluated at the start of the loop. This expression must evaluate 
to true for the body of the while loop to be executed. If it evaluates to false (zero) 
the loop will be terminated. It is possible that the body of the while loop is not 
executed at all - if in the first entry of the loop, the test expression evaluates to false 
or zero. 

Because initialising and incremental expressions are omitted, while loops do not 
generally deploy a loop counter. However, the while loop can be used to 
implement the behaviour of a for loop and vice-versa. In general, while loops 
are implemented when the exact number of iterations are not known. 
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Figure 7-3 The while and do-while loops. 

The do-while statement is very similar to the while statement. The difference 
being that the test expression is evaluated at the end of the loop resulting in at least 
one execution of the body of the loop. The statements in the body of the loop are 
between the keyword do and the keyword while. Braces must be used if the body 
is a compound statement. Figure 7-3 shows the anatomy of the two types of loop. 

7.3 Branching 

7.3.1 The if Statement 
The if statement has a conditional expression enclosed within a pair of 
parentheses placed immediately after the keyword if. The most general form of 
the if statement has a true clause and a false clause separated by the keyword 
else. The true clause consists of the statements before else and the false clause 
consists of the statements after else. The conditional expression will evaluate to 
true or false. If it evaluates to true, the true clause will be executed and the false 
clause will be ignored, otherwise the false clause will be executed and the true 
clause will be ignored.

If there are multiple statements in any of the clauses, they must be placed within 
braces ({ and }) to form compound statements. Within these compound statements 
there may be other if statements. If this is the case they are known as nested if
statements. In nested if statements, the else keyword will bind to the last opened 
if statement without an else.

while(i < 10000) 
{
   i++; 
}

do
{
   i++; 
}
while(i < 10000) 

Test expression is evaluated last. 

Statements in the body 

Test expression is evaluated first. 

Statements in the body 
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Figure 7-4 The if statement - the most general case. 

It is also possible to have if statements with only one clause as shown in Figure 
7-5. This clause must be the true clause. 

Figure 7-5 The if statement with only a true clause. 

The if statements can be nested as shown in Figure 7-6. In the two examples 
shown, the else keyword binds to two different if statements. Use of proper 
indentation helps the programmer to see the correct association for each clause in 
nested if statements as shown in Figure 7-7. 

if(i < 10000) 
{
 statements 
}

else
{
 statements 
}

The keyword if
conditional expression 

The true clause. This section will be executed 
if the conditional expression evaluates to true. 
The braces are necessary if there is more than 
one statement in the true clause. The keyword else

separates the true
 and false clauses

The false clause.  This section will be executed 
if the conditional expression evaluates to false.
The braces are necessary if there is more than 
one statement in the true clause. 

if(i < 10000) 
{
 statements 
}

The keyword if
conditional expression 

Statements for the true clause.

No else keyword and no false clause. If the conditional 
expression evaluates to false, no action will be taken.
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Figure 7-6 Nested if statements without indentation. 

Figure 7-7 Indented if statements. 

if (<cond. exp. 1>) 
{
if (<cond. exp. 2>) 
{
   <true clause> 
}
else
{
   <false clause> 
}
}

if (<cond. exp. 1>) 
{
if (<cond. exp. 2>) 
{
 <true clause> 
}
}
else
{
   <false clause> 
}

The else binds to the second if statement. The
first if statement only has a true clause which
contains the second if statement. The second if
statement has a true clause and also a false
clause.

The else binds to the first if statement. The
first if statement has a true clause and a false
clause. The second if statement has only a true
clause and is within the true clause of the first if
statement.

if (<cond. exp. 1>) 
{
 if (<cond. exp. 2>) 
 { 
    <true clause> 
 } 
 else 
 { 
    <false clause> 
 } 
}

if (<cond. exp. 1>) 
{
 if (<cond. exp. 2>) 
 { 
    <true clause> 
 } 
}
else
{
   <false clause> 
}
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The use of an if statement is shown in the following fragment of code: 

int Number; 
cout << “Enter an integer Number “; 
cin >> Number; 

if(Number > 50) 
   cout << “Number is greater than 50” << endl; 
else
   cout << “Number is less than or equal to 50” << endl; 

The number entered by the user will be tested by the if statement and a message 
will be printed on the screen displaying the result of the test. 

A compact version of the if statement can be implemented using the so-called 
conditional operator (?:).  For example, by checking a variable named Switch,
ON/OFF status of the switch can be printed on the screen using: 
Switch == 1 ? cout << “on” : cout “off”; 

This statement is equivalent to: 
if(Switch == 1) 

cout << “on”; 
else

cout << “off”; 

7.3.2 The break and continue Statements 
The break and continue statements are two important statements that can be 
used efficiently to enhance the functionality of our programs. Of the two 
statements, the break statement is more widely used. Their syntax is very simple 
and always used as follows: 
break;
continue;

The break statement is used to terminate the execution of a loop (such as while,
do-while, or for) or a switch statement. The continue statement is used to 
skip and continue the execution of loops. Figure 7-8 shows the two cases. 

As mentioned previously, iterative loops can be nested; i.e. one loop within 
another. Similarly, a switch statement can be placed within a loop. In such 
situations, the break statement will be associated with the nearest loop or 
switch statement. The continue statement will be associated with the nearest 
loop and cannot be used with the switch statement. 

The C++ language also supports the use of goto to jump to a label. Use of goto
can severely damage the structure of a program. Its use is discouraged and is not 
explained in this text - see references listed in Section 7.11.
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Figure 7-8 The break and continue statements. 

7.3.3 The switch – case Statement 
A switch-case statement is used to select and then execute one of several 
cases. Selection is carried out by a switch expression located after the keyword 
switch and enclosed between parenthesis. 

Figure 7-9 The switch statement. 

int i = 0, Sum = 0; 
int n = 50; 

while(1)
{
   i++; 
   Sum += i; 
   if(i==n)
     break; 
}

int Sum = 0; 
int n = 20, m = 30; 

for(i=0; i<100; i++) 
{
 if((i>=n) && (i<=m)) 
    continue; 
 Sum += i; 
}
For all values of i between n and m, continue will
be executed, forcing all remaining statements within
the body of the for loop to be skipped. The next
statement to be executed is the incremental expression
i++.

Always true Infinite while
loop

When i is equal to 
n, the if statement 
will execute break,
terminating the 
infinite while loop.

switch(switch expression) 
{
 case n1 : statements 
              break; 
 case n2 : statements 
              break; 
    . 
    . 
    . 
 default : statements 
}

The switch expression must produce an integer result. 

These two must be constant 
integer expressions such as 
3, or 0x0C, etc. 

If the switch expression 
evaluates to n1, these 
statements will be executed. 
If the switch expression 
evaluates to n2, these 
statements will be executed. 

If the switch expression 
evaluates to none of the cases 
listed, the default case will be 
executed. The default case may 
be omitted. 

The body of the switch 
statement starts here. 

The body of the switch 
statement ends here. 
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The switch expression must be of integral type such as char, unsigned char,
int, unsigned int, etc. Program control will be transferred to a case statement
that matches the value of the switch expression. 

The cases are listed within the body of the switch statement. Immediately after 
the keyword case, there must be a constant integer expression, which must have a 
unique value. Each case may have any statement including an empty statement. 
All statements under a case will be executed sequentially. 

The break statement must be used to exit a switch statement at the end of a 
particular case. If break is not used, program execution will flow on to the next 
case. Optionally, a special case named default may be used to take necessary 
action if no matching case is found. 

C++ Constant Integer Expression 

A constant integer expression must produce an integer result and cannot contain 
any variables. 
#define TWIN 2 

Here the symbolic constant TWIN is defined to be a substitute for the number 2. 
Then TWIN+1 is a constant integer expression. Note that TWIN is not a 
variable.

However, if int a=0; 

Then    a+1   is not a constant integer expression, because a is a variable. 

7.4 Arrays 
An array is a collection of objects of the same type. The objects could be 
fundamental data types or user-defined data types. Each individual object of the 
collection is referred to as an element. Towards the end of the chapter, we will be 
using arrays to store LED lighting patterns for the program.

Arrays can be represented in different configurations or number of dimensions as 
shown in Figure 7-10. Each cell can store one object of the designated type. There 
is practically no limit to the number of dimensions an array can have.

The size of the array is given by the number of elements (cells) for each dimension. 
Using Figure 7-10 as an example, the sizes of the arrays are: 

1-dimensional array: 5 elements. 

2-dimensional array: 3 rows, 5 elements/row. Size = 15 elements. 

3-dimensional array: 3 rows, 4 elements/row, 2 elements/row. Size = 24 
elements.
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Figure 7-10 Diagramatic representation of arrays. 

Although the arrays can be represented as shown in Figure 7-10, in your computers 
memory the elements of the array are stored sequentially row after row, termed 
row-major fashion. In storing a 3-D array, the first layer is stored first in a row-
major fashion and then the second layer in row-major fashion and so on. 

One-Dimensional Arrays 
When declaring one-dimensional arrays, the size of the array is specified within a 
pair of square brackets immediately after the array identifier. The array subscripts 
always start with 0 and range to the array size minus one. An example of a 
declaration is:
int a[10]; 

This declares an array of 10 int type objects. They are stored in adjacent memory 
locations starting from the element a[0] ranging up to a[9], making available a 
set of 10 elements as shown in Figure 7-11. Note that there is no element named 
a[10]. Attempting to access such an element will be illegal, since this memory 
location is not part of the array a.

Figure 7-11 Schematic of a one-dimensional array. 

If a variable subscript is used to access array elements, as in a[i], then i must be 
an integer expression and as just mentioned must not evaluate to a value outside the 
permitted range of array subscript values, in this case 0 to 9. 

The array elements can be initialised individually during program execution by 
assigning each element a value. For example, the following code fragment sets the 
value of all elements to zero: 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

0 1 2 3 4

1 Dimensional
Array

0 1 2 3 4

1

0

2

2 Dimensional 
Array

0
1

1

0

2

0 1 2 3

3 Dimensional
Array
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for(int i = 0; i < 10; i++) 
a[i] = 0; 

Alternatively, the array elements can be initialised when the array is declared. The 
values for each element to be initialised need to be listed within braces and 
separated by commas as shown in the following line: 
int a[8] = {2,3,7,4}; // 8 elements 

In this example the array a is partially filled with the values listed between the 
braces; element a[0]=2, a[1]=3, a[2]=7, and a[3]=4. The remaining 
elements (a[4] to a[7]) that have not been explicitly initialised are initialised by 
default with values of zero. Therefore, to declare and initialise an array with all 
zero values can be done as follows:
int a[8] = {}; 

Accessing array elements 
Individual elements of the array can be accessed by using a subscript. In the 
following example the array subscripts range from 0 to 7 (8 elements). 
int a[8];  // declare a to be 8 elements 
int Result;  // declare a variable named Result 

a[0] = 2;  // access and set a[0] to 2 
a[1] = 3;  // access and set a[1] to 3 

Result = a[0]*a[1]; // 2*3 = 6 

Two-Dimensional Arrays 
A two dimensional array can be viewed as an array of one-dimensional arrays. 
Two-dimensional arrays have two sizes specified. The total number of elements is 
the product of the two sizes. For example, a two-dimensional array can be declared 
as follows: 

Figure 7-12  Declaring a 2-D array. 

Two subscripts are used to access each element of the array. In array b, one of the 
array dimensions ranges from 0 to 1 and the other dimension from 0 to 4. The array 
can be thought of as the arrangement shown in Figure 7-13. Note that elements are 
stored in consecutive memory locations in row-major fashion. That is, the first row 

number of elements per row 

number of rows 

int b[2][5];
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is stored first, immediately followed by the second row, and so forth. Thus, the 
element b[0][4] is immediately followed by the element b[1][0].

Figure 7-13  2-D array schematic representation. 

The array elements can be individually initialised during program execution by 
assigning each element a value. For example, the following code fragment sets the 
values of all elements to zero. 
int i, j; 

for(i = 0; i < 2; i++) 
for(j = 0; j < 5; j++) 

b[i][j] = 0;

Alternatively the array elements can be initialised when the array is declared. This 
is shown in the following line. 
int b[2][5] = {{0,0,0,0,0};{0,0,0,0,0}}; 

Each row of initialised elements is enclosed by inner braces, and separated from 
adjacent rows by a semicolon.

7.5 Pointers 
A pointer is an address of an entity that resides in memory. Examples of entities 
that reside in memory are; class objects, fundamental data type objects such as 
int, float, char, long, etc., arrays of objects (a group of objects of the same 
type), and functions. A pointer in C++ will hold where the object is and most of the 
time the pointer will know the type of object. For example, a pointer to an integer 
knows that the data type is integer and it will also know where the integer is, but it 
does not know the value of the integer. 

Pointers play an important role in helping to make C++ programs very efficient. 
There are three major uses for pointers that offer distinct advantages: passing large 
objects to functions, dynamic memory allocation, and using virtual functions. In 
the most common case when passing a parameter to a function, we replace the 
parameter by a copy of the actual argument. If the actual argument is very large, 
the program will need to consume a large amount of memory when it creates a 
copy of the argument. It is more efficient to make a copy of where the large object 

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

b[0][1] b[0][2] b[0][3] b[0][4]b[0][0]
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is than copy the entire object. This is done by using a pointer which occupies a 
small amount of memory in order to store the address of the object. 

Dynamic memory allocation involves the provision of storage space at run-time. 
Normally, dynamic memory allocation is a need-based process – i.e. if during 
program operation there is a need for more memory it can be requested and will be 
granted depending on availability. The dynamic memory allocation process returns 
a pointer indicating the location in memory where the allocation has been made. 
This pointer can then be used to manipulate the data in the allocated memory area. 

Perhaps the most obscure use of pointers is in association with virtual functions 
which will be described in detail in Chapter 8. The following sections describe 
general use of pointers in the C++ language. 

Two unary operators are used closely with pointers. As mentioned before, a unary 
operator takes only one argument. These operators are given in Table 7-1. 

Table 7-1  Unary operators used with pointers. 

Operator Name 
& address of operator 
* indirection operator 

The address of operator can be used to find the address of an object in memory.

The indirection operator can be used to obtain the contents of a location given its 
memory address. This is also known as de-referencing.

7.5.1 Declaration of Pointer Variables 
As you know, there is a dedicated data type named int to represent integers and 
many other fundamental data types. Programmers can also create their own data 
types such as DAC created in Chapter 6. However, there is no unique data type 
named pointer. Since all memory addresses are integers, all pointer data types carry 
integer values. The locations pointed to by these addresses can contain all types of 
data or functions.

Figure 7-14 Syntax of a pointer declaration. 

data type *identifier; 

The asterisk identifies the identifier as a pointer variable 

To be replaced by a data type such as int, char
or an object class type such as DAC
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When declaring a pointer variable, the C++ language requires us to specify the type 
of data or function pointed to by the pointer variable. We will see the significance 
of knowing the data type pointed to by the pointer variables when pointer 
arithmetic is explained in section 7.5.6. In the simplest of cases, the syntax for 
declaring pointer variables takes the form shown in Figure 7-14. Pointers to 
different entities are each declared differently as described ahead. 

7.5.2 Pointers to Scalar Quantities 
A single item is referred to as a scalar quantity. If a pointer variable is declared to 
point to one solitary integer, then that pointer is said to point to a scalar quantity. 
This is in contrast to pointers that point to arrays. Examples of declarations of 
ordinary variables and declaration of pointers to scalar quantities are shown in 
Table 7-2. 

Table 7-2 Declaration of scalar identifiers and pointers to scalar identifiers. 

Declaration – scalar identifiers Declaration – pointers to scalar identifiers 
int a; int a; 

int *IntPtr = &a; 

int b = 0; int b = 0; 

*IntPtr = b; 

float p = 0.0; float p = 0.0; 

float *FltPtr = &p 

The following line is a combined declaration and initialisation of a pointer variable 
to an int:

int *IntPtr = &a; 

The same effect can be achieved with the following two lines: 
int *IntPtr; 
IntPtr = &a; 

Initialisation  part 

int *IntPtr = &a; 

Declaration part
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The first statement declares a pointer to an int. The second statement uses the 
‘address of’ operator ‘&’ to obtain the address of the integer variable a which is 
assigned to the pointer variable IntPtr. Note that the int type variable a must 
be declared before assigning its address to IntPtr.

The statement: 
*IntPtr = b; 

carries out a de-referencing and an assignment operation. The expression 
*IntPtr reads as ‘the contents of the location pointed to by IntPtr’. This is 
known as de-referencing. Therefore, the entire expression reads as ‘the contents of 
the location pointed to by IntPtr is assigned the value of b’. Since IntPtr
already points to the location of a, the effect is same as: 

a = b; 

An example of declaring a pointer to a float type variable and assigning it a value is 
given in Table 7-2. 

NOTE

Given the following two declarations;
int a=0; 
float* FltPtr; 

An assignment of the form;
FltPtr = &a; // Illegal! 

is illegal. The pointer FltPtr is expected to carry an address of a float type
object. However, &a is an address of an integer object. These two do not match 
and therefore it is an illegal assignment.

7.5.3 Pointers to Class Objects 
Pointers to class objects are declared in a similar manner to pointers to scalar 
quantities. An example is given below: 
ParallelPort *PortPtr; 

Here the data type is ParallelPort and the pointer variable is PortPtr. A 
pointer to an object of the DAC class can be declared as follows: 

DAC *DACPtr; 

An object of type DAC can be declared as follows: 

DAC Dac; 

7 DRIVING LEDS 163



Then the following assignment is valid: 
DACPtr = &Dac; 

Membership Access Operators 
If we use the object Dac, we can call the SendData() function as follows using 
the dot operator (.), also known as the membership access operator: 

Dac.SendData(255);

We can also use a pointer variable such as DACPtr to call the SendData()
function, although the syntax is different. In this case the membership pointer 
operator is used (->), formed by combining the minus sign (-) and the right angle 
bracket (>):

DACPtr->SendData(255);

Pointers to Base Class Objects can point to Objects of Derived Classes 
This is one of the most useful and important concepts in object-oriented 
programming. In earlier sections it was explained that a pointer pointing to a 
float type variable cannot point to a location containing an int. This rule does 
not apply to base classes and derived classes. Although the two objects are 
different, a pointer to a base class object can point to an object of a derived class: 
ParallelPort *PortPtr;  
DAC Dac;  
PortPtr = &Dac; // is allowed!  

We are yet to discuss the advantages of using this type of pointer assignment. Its 
major use is associated with virtual functions and will be explained in Sections 8.5 
and 8.6. 

7.5.4 Pointers to Arrays 

Pointers to One-Dimensional Arrays 
When an array is declared to be equivalent to that shown in Figure 7-15, the 
address of the array will be a (no subscripts) which points to the first element of 
the array. Therefore, a and &a[0] are equivalent and both point to the first 
element. The important thing to note is that a is a pointer constant. It cannot be 
incremented, decremented or assigned any other values. Since the array has been 
stored in a specific memory space, the address value is fixed. 

Figure 7-15 Schematic of a one-dimensional array. 

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] 

7 DRIVING LEDS 164



The following statements are all valid: 

int a[10]; 
int *ElementPtr; 
int b = 0; 
ElementPtr = a;  // same as ElementPtr = &a[0]; 
*a = b;    // the value of b is deposited  
      // in a[0] 

Some of the statements shown below are illegal:

int a[10]; 
float *FltPtr; 
int b = 0; 
FltPtr = a;  // illegal – type mismatch 
a = &b;    // illegal – a is constant 

Pointers to Two-Dimensional Arrays 
As mentioned earlier, a two-dimensional array can be viewed as an array of one-
dimensional arrays. An example two-dimensional array can be declared as: 

 int a[5][5]; 

Recall that elements are stored in consecutive memory locations. For example, the 
element a[1][0] is stored next to a[0][4].

Unlike the case for one-dimensional arrays, the array name a is a pointer to the 
entire row starting at a[0][0] and ending at a[0][4]. The pointer a is still a 
constant.

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] 

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] 

  .   

  .   

  .   

a[4][0] a[4][1] a[4][2] a[4][3] a[4][4] 

Figure 7-16 Schematic of a two-dimensional array. 

number of elements per row 

number of rows 
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A pointer to a row of five elements can be declared as follows: 
int (*RowPtr)[5]; 

Note the subtle difference between the presence and absence of the parentheses in 
the above declaration. Compare this declaration to the declaration of an array of 
pointers discussed earlier. 

If a is de-referenced, the result will be a pointer to the first element of the first row, 
i.e. &a[0][0]. This resulting pointer is still a constant. To access the value of 
a[0][0], the pointer a must be de-referenced twice. The following statements 
illustrate this: 
int *ElementPtr; 
int b; 
int a[5][5]; 
int (*RowPtr)[5]; 
RowPtr = a;   // pointer to the first row 
ElementPtr = *a; // pointer to the first element 
     // of the first row 
b = **a;    // same as b = *ElementPtr; 
ElementPtr = a;  // Illegal – type mismatch 
RowPtr = *a;   // Illegal – type mismatch 
*a = &b;    // Illegal - *a is constant 

An important observation is that when an array name is de-referenced, it points to 
the next lower level entity. For example, if the name of a two-dimensional array is 
de-referenced, it will point to a one-dimensional array. If the name of a one-
dimensional array is de-referenced it will evaluate to be the contents of the first 
element of the array.  Any further de-referencing is illegal. 

7.5.5 Arrays of Pointers 

It is also possible to declare arrays of pointers. In such an array, each element itself 
is also a pointer. An example of a pointer array declaration is given as follows: 
int *IntPointers[20]; 

In this declaration, IntPointers is a constant pointer. It points to the first 
element of the array of pointers. If we use the de-referencing operator as shown 
below we will obtain the contents of the first element, which itself is a pointer to an 
int. Therefore it must be assigned to a compatible pointer variable. Consider the 
following declaration: 
int a; 
int *IntPtr; 
int *IntPointers[20]; 

IntPointers is the start address of the array of pointers to int. In other words, 
it holds a memory address. This location contains a pointer to an int. Thus, the 
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contents of any element of the array can be assigned to a pointer to an int, such as 
IntPtr. To obtain the contents of the first element of the IntPointers array, 
we can de-reference IntPointers. Once de-referenced, it can be assigned to 
IntPtr as shown in the line below: 

IntPtr = *IntPointers; // contents of 1st element 

A pointer to an int is stored at the address obtained by de-referencing 
IntPointers (i.e. *IntPointers). If we need the contents of the location 
pointed to by this pointer to int, we must de-reference *IntPointers once 
more to obtain the integer value. Such an integer value can be assigned to an int
type variable such as a. Thus: 

a = **IntPointers;   // Same as a = *IntPtr; 

7.5.6 Pointer Arithmetic 
As already seen, a pointer variable can be incremented or decremented. Likewise 
an integer value can be added or subtracted. However, the results produced by 
pointer arithmetic are different to the results produced by normal arithmetic. Before 
explaining this further, we should understand where pointer arithmetic is useful. 

One-dimensional Arrays 
Pointer arithmetic is especially useful for accessing array elements. Consider the 
example:
int a[5]; 

Here we have declared an array of 5 integers. The array name a is a constant 
pointer and it points to the first element of the array. Figure 7-17 shows an example 
of such an array in memory. 

Memory
Address

Array Element 
and its value 

600000 a[0] is 4 

600002 a[1] is 9 

600004 a[2] is 8 

600006 a[3] is 3 

600008 a[4] is 5 

Figure 7-17 An example of 5 integers in memory. 
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In the example shown in Figure 7-17, the memory address values change by 2 
when we move from one address to the next address. This is because we have 
assumed each integer occupies two bytes. Thus, the element a[0] occupies the 
addresses 600000 and 600001. The next element a[1] begins at 600002 and so 
on.

The value of a is 600000. The pointer a is not a variable, it is a constant. It points 
to the first element of the array and therefore cannot be assigned another value. It 
can be de-referenced like other pointers as follows: 

*a a[0] which is 4 

Although a cannot be changed, we can add an integer value to a to obtain a new 
value. Thus: 

a+1  is a valid expression. 

If we interpret this result using normal arithmetic, it evaluates to 600001. However, 
in pointer arithmetic it evaluates to 600002. Since a is a pointer to an integer, ‘+1’
really means plus one int type data, which is two bytes in our example. The 
compiler takes into account the size of the data type pointed to by the pointer when 
evaluating pointer arithmetic expressions. The result a+1 still remains a pointer 
and points to the next element of the array: 

a+1 600002

a+2 600004

a+3 600006

Just like the pointer a, the following three pointers can also be de-referenced: 

*(a+1) a[1] which is 9 
*(a+2) a[2] which is 8 
*(a+3) a[3] which is 3 

Use of parentheses is very important in the cases shown above. If the parentheses 
had not been used, the results would be as follows: 

*a+1 a[0]+1 which is 5 
*a+2 a[0]+2 which is 6 
*a+3 a[0]+3 which is 7 

As can be seen from this discussion, pointer arithmetic can be used to access an 
array element of a one-dimensional array. For the array a, the ith element can be 
accessed by: 
*(a+i)
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Two-dimensional arrays 
Pointer arithmetic is applied slightly differently to two-dimensional arrays.  
Consider the example: 
int a[3][2]; 

This declares an array of 6 elements stored in sequential memory as shown in 
Figure 7-18. 

Memory
Address

Array Element 
and its value 

600000 a[0][0] is  6 

600002 a[0][1] is  7 

600004 a[1][0] is 55 

600006 a[1][1] is  9 

600008 a[2][0] is  3 

600010 a[2][1] is 33 

Figure 7-18 Two-dimensional array in memory. 

As for the case of one-dimensional arrays, the array name a is still a pointer. Its 
value is 600000. It is a constant and cannot be changed. The difference for two-
dimensional arrays is that a points to the first row of elements, not the first element 
of the array. Therefore, it represents a data size of 2 integers as specified by the 
second subscript of the array declaration. As a result the pointer a represents 2 
integers, i.e. points to 4 bytes of memory. With this in mind, pointer arithmetic 
works as follows. 

a+1 600004 points to the second row 
a+2 600008 points to the third row 

Using this notation, a pointer to the ith  row can be obtained by adding i to a:

a+i  points to the ith row 

Like any other pointer, these pointers can also be de-referenced. When these 
pointers are de-referenced, the result is still a pointer: 

0 1 

1

0

2

Array a[3][2]

55

6

3

9

7

33
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*(a+1) 600004  points to the first element of the second row 
*(a+2) 600008  points to the first element of the third row 
*(a+i)  points to the first element of the (i+1)th row 

The size of data pointed to by these de-referenced pointers is no longer an entire 
row. They now point to elements, which are single integers. Now pointer 
arithmetic will be based on single integers or two bytes. Thus: 

*(a+1) + 1 600006  points to a[1][1]
*(a+2) + 1 600010  points to a[2][1]

Therefore, the pointer that points to the jth element of the ith row is: 

*(a+i) + j  points to a[i][j]

By de-referencing the above pointers, the values of the elements can be accessed: 

*(*(a+1) + 1) a[1][1] which is 9 
 *(*(a+i) + j)  a[i][j] 

The same arguments we presented for two-dimensional arrays can be extended in 
the same logical manner to higher-dimensional arrays. 

7.5.7 Pointers to Functions 
Pointers can be declared to point to functions. Just like all the pointers discussed 
previously, function pointers will also have an address in memory. These addresses 
point to the first instruction to be executed. 

An example of a function pointer declaration is: 
int (*CalcFunctionPtr)(int,int); 

In the above example, the name of the function pointer is CalcFunctionPtr.
This pointer can only point to a particular category of function as specified by the 
pointer declaration. The declaration specifies that the function to be pointed to by 
CalcFunctionPtr must receive two integer parameters and must return an 
integer value. An example of a function that can be pointed to by 
CalcFunctionPtr is:

int Add(int a, int b) 
{

return (a + b); 
}

Another function that can be pointed to by the CalcFunctionPtr is: 

int Sub(int a, int b) 
{
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return (a – b); 
}

In a similar manner to arrays, where the array name is a constant pointer, function 
names are also constant pointers for the simple reason that when a program is 
running the location of a function in memory is fixed. 

In the above two functions, Add and Sub are two constant function pointers. Each 
of them point to the first instruction to be executed in their respective functions. 
These constant pointer values can be assigned to a declared pointer variable. An 
example program is given in Listing 7-1. 

Listing 7-1 Use of pointers to functions. 

#include <iostream.h> 
#include <conio.h> 

int Add(int a, int b) 
{
 return (a + b); 
}

int Sub(int a, int b) 
{
 return (a - b); 
}

void main() 
{
 int a, b, Result; 
 char key; 
 int (*CalcFunctionPtr)(int,int); 

 cout << "Enter two integer values " << endl; 
 cin >> a >> b; 
 cout << "Press '+' or '-' key" << endl; 

 key = getch(); // getch() reads the key pressed 

 switch(key) 
 {    
 case '+' : CalcFunctionPtr = Add;               
  break;    
 case '-' : CalcFunctionPtr = Sub; 
 } 
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 Result = CalcFunctionPtr(a,b); 
 cout << "The result is " << Result << endl; 
}

If the ‘+’ key is pressed, the switch statement will set the CalcFunctionPtr
to point to the Add() function. If the ‘-‘ key is pressed, CalcFunctionPtr will 
be set to point to the Sub() function. The second-last line of the code fragment 
will execute either the Add() function or the Sub() function depending on the 
key pressed. This is an example where a function pointer is used to carry out 
different tasks using the same statement for different cases (Result = 
CalcFunctionPtr(a,b)).

In a more complex program you may have a large portion of the program written 
using the function pointer variable. If we need to change the cases, we do not need 
to change the part of the program that calculates the result. The program in Listing 
7-2 shows how we can add another case for multiplication and yet the result will be 
calculated using the same statement as for Listing 7-1; ‘Result = 
CalcFunctionPtr(a,b);’.

Listing 7-2 Adding more functionality to the program in Listing 7-1. 

#include <iostream.h> 
#include <conio.h> 

int Add(int a, int b) 
{
 return (a + b); 
}

int Sub(int a, int b) 
{
 return (a - b); 
}

int Mult(int a, int b) 
{
 return (a * b); 
}

void main() 
{
 int a, b, Result; 
 char key; 
 int (*CalcFunctionPtr)(int,int); 
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 cout << "Enter two integer values " << endl; 
 cin >> a >> b; 
 cout << "Press '+', '-' or '*' key" << endl; 

 key = getch(); // getch() reads the key pressed 

 switch(key) 
 {    
 case '+' : CalcFunctionPtr = Add;               
  break;    
 case '-' : CalcFunctionPtr = Sub; 

 break; 
 case '*' : CalcFunctionPtr = Mult;
 } 

 Result = CalcFunctionPtr(a,b); 
 cout << "The result is " << Result << endl; 
}

Functions Returning Pointers 
Functions returning pointers are discussed here since their declarations are similar. 
A function with the name AnyFunction that receives two int type parameters 
and returns a pointer to an int is declared as follows: 

int *AnyFunction(int,int); 

Compare this declaration with the declaration of FunctionPtr, which is a 
pointer to a function taking two int type parameters and returning an int type 
value:
int (*FunctionPtr)(int,int); 

In one case a pair of parentheses is present and in the other case the parentheses are 
omitted. Although only slightly different, these two declarations are completely 
different. AnyFunction is a function name and therefore is a constant pointer. 
FunctionPtr is a pointer variable. 

7.5.8 Pointers to void
Pointers can also be declared to be of type ‘pointer to void’. These pointers do not 
have any restrictions as to the type of data or functions they can point to. The 
following example outlines their use.

int a;  // declaration of an int 
float b; // declaration of a float 
void *VoidPtr;  // declaration of a void pointer 
int Add(int,int); // declaration of a function 
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.

.

.
VoidPtr = &a; // int address assigned to void 
    // pointer 
VoidPtr = &b; // float address assigned to void 
    // pointer  
VoidPtr = Add; // function address assigned to  
    // void pointer 

The advantage when using pointers to void is that the same pointer can be used to 
point to many different types of entities without needing to create specific pointers 
to specific objects. 

7.5.9 The Pointer this
In object-oriented programming, each object maintains an invisible pointer named 
this which points to itself. Although invisible, if need be, the this pointer can 
be used exactly like any other pointer. The member functions of a particular class 
can determine exactly which object the function should operate on by using the 
this pointer. To understand how the pointer this operates, consider the function 
GetLastOutput() of the DAC class described in Chapter 6: 

unsigned char DAC::GetLastOut() 
{

return LastOutput; 
}

If we make the this pointer visible, the function would appear as follows: 

unsigned char DAC::GetLastOut() 
{

return this->LastOutput;
}

Now suppose we had created two DAC objects: 

DAC Dac1, Dac2; 

We will call the GetLastOutput() function once each for each of the two 
objects as shown below: 
Dac1.GetLastOutput();
Dac2.GetLastOutput();

When the first of these functions is executed, the this pointer will point to the 
address of the object Dac1 and thus this->LastOutput will select the 
LastOutput member of the Dac1 object. When the second 
GetLastOutput() function prefixed with Dac2 is called, the this pointer 
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will point to the address of the object Dac2, and this->LastOutput will 
select the LastOutput member of the object Dac2.

To demonstrate situations where the this pointer is used explicitly, consider the 
constructor of the ParallelPort class: 

ParallelPort::parallelPort(int baseaddress) 
{

BaseAddress = baseaddress; 
}

We have deliberately named the parameter baseaddress. However, if instead 
we named it BaseAddress, the constructor would be: 

ParallelPort::ParallelPort(int BaseAddress) 
{

BaseAddress = BaseAddress; // confusion! 
}

As can be seen, the parameter cannot be differentiated from the member data. The 
solution to this is to modify the function as follows: 
ParallelPort::parallelPort(int BaseAddress) 
{

this->BaseAddress = BaseAddress; 
}

Within the body, the part-statement this->BaseAddress definitely refers to 
the member data. 

7.6 Using Pointers 
To demonstrate the use of pointers, we will create an array of numbers that can be 
sent out to the interface board to light up the LEDs in a specific pattern. This array 
will then be scanned using a pointer to fetch consecutive values from the array. The 
port at address BASE will be used to output the numbers to the interface board.

7.6.1 Number arrays for the LEDs 

Firstly we will develop a program which ‘walks a LED’ along the bank of eight 
LEDs. This program uses a fixed pattern.

Walking LEDs – Fixed Array Defined Within the Class 
We will be using an array and scanning it cyclically to light up the LEDs using the 
port at address BASE. The effect of cyclic scanning will be the appearance of a 
“walking LED” across the bank of 8 LEDs. The array will contain eight elements, 
each element used to light just one LED of the group. When we move from one 
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element to the next element in the array, the LED that is currently lit will turn off 
and the adjacent LED in the direction of the ‘walk’ will light up. 

Table 7-3 shows each hexadecimal number and corresponding binary bit pattern 
for each array element that in-turn must be output to the port. 

Table 7-3 LED pattern values stored in Pattern array. 

Binary Number Array
Element D7 D6 D5 D4 D3 D2 D1 D0 

Hex
value

Pattern[0] 0 0 0 0 0 0 0 1 0x01 
Pattern[1] 0 0 0 0 0 0 1 0 0x02 
Pattern[2] 0 0 0 0 0 1 0 0 0x04 
Pattern[3] 0 0 0 0 1 0 0 0 0x08 
Pattern[4] 0 0 0 1 0 0 0 0 0x10 
Pattern[5] 0 0 1 0 0 0 0 0 0x20 
Pattern[6] 0 1 0 0 0 0 0 0 0x40 
Pattern[7] 1 0 0 0 0 0 0 0 0x80 

         

A new object class named LEDs will be created which will have Pattern as a 
data member and also have the functionality to initialise the Pattern array to the 
desired values. The contents of the array Pattern will be fixed for the class and 
cannot be changed by the user within the main() function. The class must also 
have a function to sequentially output the appropriate values in Pattern to the 
port at address BASE. The LEDs class can be derived from the ParallelPort
class to inherit the required interface functionality. Listing 7-3 shows the class 
definition.

Listing 7-3 LEDs class definition. 

class LEDs : public ParallelPort 
{
   private: 
      unsigned char Pattern[8]; 
      int PatternIndex; 

   public: 
      LEDs(); 
      LEDs(int baseaddress); 
      void LightLEDs(); 
};
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The private data member PatternIndex is required to store the number of the 
LED that was previously lit so cycling can be controlled as we move through the 
array to produce the ‘LED walk’. Note that Pattern is an array of eight 
unsigned char elements. The elements need to be unsigned char to
provide just 8 bits in each element, and to avoid the added complications that 
would be involved if signed numbers were used instead.

The member functions for the class can now be defined as shown in Listing 7-4. 

Listing 7-4  Member functions for the LEDs class. 

LEDs::LEDs()
{
   // Fill in the Pattern array 
   for(int i = 0; i < 8; i++) 
      *(Pattern + i) = 1 << i; 

   PatternIndex = 0;   // initialise to 0 
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress) 
{
   // Fill in the Pattern array 
   for(int i = 0; i < 8; i++) 
      *(Pattern +i) = 1 << i; 

   PatternIndex = 0;   // initialise to 0 
}

void LEDs::LightLEDs() 
{
   while(!kbhit())   // key press terminates function 
   { 
      WritePort0(*(Pattern + PatternIndex++)); 

      // Reset PatternIndex when it gets to 8 
      if(PatternIndex == 8) PatternIndex = 0; 

      delay(500); 
 } 
}

The array name Pattern (without the subscripts) is a pointer and points to the 
first element of the array. Therefore: 
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Pattern + i 

points to the ith element of the array. To refer to the value pointed to by Pattern
+ i, we must de-reference it as follows: 

*(Pattern + i) 

The constructors of the LEDs class initialise the array by left-shifting the number 1 
by i bit places using: 

1 << i 

The constructors will initialise the Pattern array with the values shown in Table 
7-3 as their respective for loops complete each iteration of the statement: 

*(Pattern + i) = 1 << i; 

The while loop in the LightLEDs() function is conditioned on !kbhit()
and will continue to execute provided a key is not hit. Inside the while loop the 
inherited WritePort0() function is used to write the array Pattern to the 
port at address BASE – one element at a time. Each element is accessed using 
PatternIndex as an offset with respect to the starting memory address of the 
array Pattern. The constant integer pointer Pattern is added the value of 
PatternIndex each time. This allows the Pattern array to be scanned from 
beginning to end. When the end is reached, PatternIndex is reset to 0 to allow 
a new cycle of scanning the Pattern array to repeat. Note that PatternIndex
is post-incremented within the expression: 
*(Pattern + PatternIndex++) 

In this expression, the current value of PatternIndex is used to evaluate the 
current address of the element to access. Following this activity, the value of 
PatternIndex is incremented. A delay of 500 ms is included to provide 
sufficient time to see the LED walk. Connect the BASE address signals on the 
interface board (U13) to the LED Driver IC (U3) to test the complete program 
shown below. 

Listing 7-5  Complete program to 'Walk a LED'. 

// Complete Program to 'walk' a LED 
#include <iostream.h> 
#include <conio.h> 
#include <dos.h> 

class ParallelPort 
{
   private: 
      unsigned int BaseAddress; 
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      unsigned char InDataPort1; 

   public: 
      ParallelPort(); 
      ParallelPort(int baseaddress); 
      void WritePort0(unsigned char data); 
      void WritePort2(unsigned char data); 
      unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
   BaseAddress = 0x378; 
   InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
   BaseAddress = baseaddress; 
   InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
   outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
   outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class LEDs : public ParallelPort 
{
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   private: 
      unsigned char Pattern[8]; 
      int PatternIndex; 

   public: 
      LEDs(); 
      LEDs(int baseaddress); 
      void LightLEDs(); 
};

LEDs::LEDs()
{
  // Fill in the Pattern array 
   for(int i = 0; i < 8; i++) 
      *(Pattern + i) = 1 << i; 

   PatternIndex = 0;   // initialise to 0 
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress) 
{
  // Fill in the Pattern array 
   for(int i = 0; i < 8; i++) 
      *(Pattern + i) = 1 << i; // Shift '1' left 'i' places 
                              // and fill Pattern array. 
   PatternIndex = 0;  // initialise to 0 
}

void LEDs::LightLEDs() 
{
   while(!kbhit())    // keypress terminates function 
   { 
      WritePort0(*(Pattern + PatternIndex++)); 

      // Reset PatternIndex when it reaches 8 
      if(PatternIndex == 8) PatternIndex = 0; 

      delay(500); 
   } 
}

void main() 
{
   LEDs Leds; 
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   Leds.LightLEDs(); // Displays a 'walking' LED. 
   getch(); 

   cout << endl << "Halted !” << endl; 
   cout << “Press a key to continue" << endl; 
   getch(); 

   Leds.LightLEDs(); // 'Walking' restarts with the LED 
                     // alight in the next position. 
}

Walking LEDs – User Definable Contents with Fixed Array Size 
The program shown in Listing 7-5 is rather inflexible. The contents of the array 
Pattern are fixed within the class. It is more appropriate to give the user the 
ability to define the contents of the array, therefore, the LEDs class must be 
modified.

The user will define the contents of the array used to light the LEDs. Therefore, the 
constructors of the LEDs class are not needed to initialise this array. Instead, the 
class can maintain a pointer that points to the array the user will define. The user-
defined array can be scanned by the LightLEDs() function if the starting 
address of the array and its size are known. Therefore, the LEDs class only needs 
to have a data member to store the address of the array and another data member to 
store its size.

To facilitate these changes we will replace the member data Pattern
(unsigned char array) with PatternPtr, a pointer type (pointer to 
unsigned char). A member function must also be included to extract the 
address of the array and to assign it to the pointer maintained within the class. 
Since the size of the array can now be arbritrarily set, a new data member must be 
included to store the maximum number of elements in the array. This new member 
is used to determine when the final element of the array has been scanned, 
whereupon PatternIndex can then be reset to 0. The modifications to the 
LEDs class are shown in Listing 7-6. 

Listing 7-6  Modified LEDs class. 

class LEDs : public ParallelPort 
{
 private: 

unsigned char* PatternPtr; 
  int PatternIndex; 
  int MaxIndex; 

 public: 
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  LEDs(); 
  LEDs(int baseaddress); 

void SetPatternAddress(unsigned char* pattern, 
                                            int maxidx);
  void LightLEDs(); 
};

The definitions of the member functions of this class are given in Listing 7-7. 

Listing 7-7  Member function definitions for the modified class. 

LEDs::LEDs()
{

MaxIndex = 0; 
 PatternIndex = 0; 
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress) 
{

MaxIndex = 0; 
 PatternIndex = 0; 
}

void LEDs::SetPatternAddress(unsigned char* pattern, int maxidx)
{
 PatternPtr = pattern;  // Pointer PatternPtr assigned 
       // address of pattern. 
 MaxIndex = maxidx; 
}

void LEDs::LightLEDs() 
{
 if(MaxIndex <= 0) 
 { 
  cout << "No Patterns to display " << endl; 
  return; 
 }

 while(!kbhit()) 
 { 
  WritePort0(*(PatternPtr + PatternIndex++)); 

  // Reset PatternIndex when it gets to MaxIndex. 
if(PatternIndex == MaxIndex) PatternIndex = 0; 
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  delay(500); 
 } 
}

Listing 7-8 showns a main() function which asks a user to enter patterns into the 
LED pattern array during program execution. 

Listing 7-8  Main function – user fills in the array (LED pattern). 

void main() 
{
 unsigned char LightPattern[8]; 
 int UserPattern; 

 LEDs Leds; 
 int i; 

 cout << "Enter 8 user patterns in the range 0x00-0xFF "; 
 cout << endl; 
 for(i = 0; i < 8; i++)  // fill 8 element Array 
 { 
  cin >> UserPattern; 
  *(LightPattern + i) = UserPattern; 
 } 

 Leds.SetPatternAddress(LightPattern, 8); 
 Leds.LightLEDs(); 
 getch(); 
 Leds.LightLEDs(); 
}

Note that in the main()function shown in Listing 7-8, the programmer is required 
to code the array name (LightPattern[8]) with the number of elements of the 
array (each element will store one of the patterns sent out to the LEDs). The user 
enters the actual values for each sequential pattern at run-time. The local variable 
UserPattern, of type int, is used to read integer data. The data is then 
assigned to the array LightPattern of type unsigned char through the use 
of the array name LightPattern as a pointer. 

The statement in Listing 7-8:
Leds.SetPatternAddress(LightPattern,8);

can be replaced by: 
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Leds.SetPatternAddress(LightPattern,
                            sizeof(LightPattern)); 

Programming with functions can often be made more efficient by defining macros 
and then calling the functions through the macro. As can be seen in the above 
statement, the word LightPattern occurs twice in the function call. In order to 
minimise the possibility of coding an error, a macro can be written that requires the 
parameter LightPattern be specified only once. The following section 
describes the process of defining a macro. 

7.7 Macros 
Macros can be viewed as placeholders that the preprocessor replaces with an 
expression. For example, consider when the compiler encounters the following 
statement:
y = x*x*x; 

We can define a macro to facilitate programming as follows: 
#define CUBE(x)  ((x)*(x)*(x))

The preprocessor will replace all occurrences of CUBE(x) with 
((x)*(x)*(x)). Thus, CUBE(x) can be used freely in the program. The extra 
pair of parenthesis is necessary to adhere strictly with the intended precedence of 
operations. For example, if CUBE(x) was defined as: 

#define CUBE(x)  x*x*x; then,

y = CUBE(3); will be replaced by, y = 3*3*3 evaluating to 27.

On the other hand, the line: 

y = CUBE(2+1); will be expanded to, y = 2+1*2+1*2+1     incorrectly 
evaluating to 7. 

If we now use the definition with every x placed in a pair of parentheses; 
(x)*(x)*(x), the expression will be expanded to: 

y = (2+1)*(2+1)*(2+1) which correctly evaluates to 27. 

If the preceding definition for CUBE was used for the following expression, an 
incorrect result will be generated. 
y = 81/CUBE(3);

This will expand to: 
y = 81/(3)*(3)*(3);

which evaluates to 243 instead of the intended result 3. Using an additional outer 
pair of parenthesis ensures a correct result. 
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To improve the program given in Listing 7-8, we can include a macro as follows: 
#define SetArray(x)   SetPatternAddress((x), sizeof(x))

The main() function is shown in Listing 7-9. 

Listing 7-9  The main() function – user fills in the LED pattern. 

#define SetArray(x) SetPatternAddress((x), sizeof((x))) 

void main() 
{
 unsigned char UserPattern, LightPattern[4]; 
 LEDs Leds; 
 int i; 

 cout << "Enter “ << sizeof(LightPattern); 
 cout << “ user patterns in the range 0x00-0xFF "; 
 cout << endl; 
 for(i = 0; i < sizeof(LightPattern); i++)   
 { 
  cin >> UserPattern; 
  *(LightPattern + i) = UserPattern; 
 } 

Leds.SetArray(LightPattern);
 Leds.LightLEDs(); 
 getch(); 
 Leds.LightLEDs(); 
}

7.8 Dynamic Memory Allocation 
It often happens that a C++ program will use dynamic memory allocation to 
request and have memory allocated at run-time. Dynamic memory allocation is 
used very widely in C++ programs and can greatly reduce the size of the 
executable program. It is especially useful when the actual storage requirements of 
the program are not known at the time of programming. For example, a program 
written to process the marks of a class of students will operate on various sized 
classes, their size unknown at the time of programming. 

Memory allocation can be static or dynamic. In the static case, the compiler 
allocates the required memory at compile time. Programs with statically allocated 
memory tend to be bigger than programs with dynamically allocated memory. 
Furthermore, the statically allocated memory is obtained from the data area - an 
area specially set aside to store data. The memory region used to store program 
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instructions is known as the code area and is a different region to the data area. In 
general, the program instructions or code do not change during the life of the 
program. However, data will change as the executing program operates on it. 

Temporary data is created and destroyed during program execution in another area 
named the stack. The stack is a last-in-first-out (LIFO) type queue using a specially 
allocated region of computer memory. Some examples of temporary data are; 
parameters passed to a function, local variables declared within a function, and 
values returned by functions. 

In the case of dynamic memory allocation, the requested memory is granted from 
yet another area named the heap (also known as the free store). Note: memory that 
has been allocated is not automatically returned back to the heap by the system. It 
is the programmer’s responsibility to include instructions to return the dynamically 
allocated memory for other use. 

The two operators that manage dynamic memory allocation are shown in Table 
7-4. The operator new allocates the requested memory and returns a pointer that 
points to the beginning of the allocated area. The simplest use of the new operator 
is shown in the following example: 
int *IntPtr; 
IntPtr = new int; 

The same effect can be achieved in one statement as follows: 
int *IntPtr = new int; 

Table 7-4 Operators used with dynamic memory allocation. 

Operator Function 
new To request memory 

delete To free up memory 

In this example, we have requested the dynamic allocation of space from the heap 
for one int type data. We do not have a name for the allocated space, however, 
the pointer IntPtr knows where it is. Since we know how to manipulate data 
using pointers, we can use the allocated space as we need. At the end of its use, the 
memory space must be returned using the delete operator as follows: 

delete IntPtr; 

This operation does not remove the pointer variable IntPtr. Instead it releases or 
returns the portion of memory pointed to by IntPtr, thereby making the 
dynamically allocated integer no longer available. Now the memory previously 
occupied by that integer is available for any future dynamic memory allocation 
operations.  If the memory was not released using the delete operator, then that 
memory will not be able to be used during remaining program operation. In this 
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situation we have created what is known as a memory leak and the computer will 
have a reduced amount of memory it can use. 

A slightly more complex example is now given that requests space for an array of 
ten integers: 
int *IntPtr; 
IntPtr = new int[10]; 

When the allocated memory space is no longer needed, it must be relinquished 
using the delete operator as follows: 

delete IntPtr; 

The following example requests space for a two-dimensional array of 100 int
type data: 
int(*RowPtr[10]);
RowPtr = new int[10][10]; 

RowPtr is a pointer to a row of 10 elements. The new operator asks for memory 
to store 10 sets of 10 element arrays of type int. The allocated storage can be 
freed by using: 
delete RowPtr; 

Space can be dynamically allocated to class objects as well. To dynamically create 
a DAC type object, we can use the following statements: 

DAC *DACPtr; 
DACPtr = new DAC; 

We do not have a name for the DAC object that has been dynamically created on 
the heap. However, the pointer DACPtr knows where the object is. The pointer 
can be used just as efficiently as an object name to manipulate the object. 

The allocated space must be deleted by: 
delete DACPtr; 

In all these memory allocation operations the new operator calls the constructor of 
the object. Although we did not create a constructor for int type objects, the data 
type int has its own constructor. For example, to create space for one int type 
data which is initialised to 0, the following statements can be used: 
int *IntPtr; 
IntPtr = new int(0); 

or they can be combined into one line as follows: 
int *IntPtr = new int(0); 
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Similarly, if we want to create a new DAC type object that communicates with the 
PC using the BASE address 0x3BC instead of 0x378, we use the following 
statement:
DAC* DACPtr = new DAC(0x3BC); 

When the new operator calls the constructor of the DAC class, the BASE address 
that is specified (in this case 0x3BC) will be passed. 

When the object belongs to a class hierarchy, the pointer does not necessarily need 
to be of the same type – it can be a pointer to one of its base classes. In the case of 
the DAC class, the following is still valid: 

ParallelPort *Ptr; 
Ptr = new DAC; 

The same pointer can even be made to point to a new, yet different object of the 
same hierarchy. Suppose we had an object type named DAC16Bit further down in 
the hierarchy.  Then, the following statement is allowed: 
Ptr = new DAC16Bit; 

In Section 8.6 we will be using this concept together with virtual functions to 
improve our programming. 

It is also possible for the dynamic memory allocation operation to fail. This can 
occur if there is insufficient memory available to allocate. If memory allocation 
fails, then the pointer returned by the new operator will be set to NULL, a 
predefined constant. A simple test such as that shown below can be carried out to 
check if memory allocation has been unsuccessful: 
if(Ptr == NULL) 
{

cout << “Memory allocation failed “; 
exit(1);

}

The function exit() is a library routine that can be called to terminate the 
program (if you decide insufficient memory on the heap justifies termination). 
Another approach is to write the program to cause an exception as described in 
Section 7.9. Any pointer returned by the new operator can be tested this way 
before proceeding. The usual practice is to pass an actual argument of 1 to the 
exit() function. This indicates to the system that runs your application that the 
program has terminated prematurely. 

Typecasting
Wherever permitted, typecasting can be used to convert an existing type to match 
another type. The application of typecasting to fundamental data types is 
demonstrated by the following example: 
int a; 
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float b = 8.73; 
a = (int) b; // a will be 8. 

The float type variable b is typecast to match that of a (data type int) and hence 
its value rounds down to 8. Similarly, pointers can also be typecast as shown in the 
following example: 
int *IntPtr; 
IntPtr = (*int) new int[10][10]; 

The pointer returned by the new operator is type casted to match the pointer type 
of IntPtr by using (*int), which can be interpreted as ‘pointer to int’. Note 
that the new operator returns a pointer to an array of 10 elements (because the row 
size of the array being created is 10). However, the pointer IntPtr is a pointer to 
just one int type data. 

7.9 Exception Handling 
Exception handling allows a program to take appropriate actions in the event of 
exceptional conditions ocurring. These situations usually happen when a program 
cannot continue exececution as expected due to events that occur outside the scope 
of normal program control. For example, the program may not be able to continue 
its normal operation if there is insufficient memory to fulfil a memory allocation 
request.

There are many situations that can cause a program to terminate abnormally, such 
as not having enough disk space to write to a file, attempting to write to a file that 
is already opened for reading, etc. Such situations often arise due to the 
circumstances under which the program is running and not necessarily due to 
programming errors. To manage such situations, C++ uses exception handling.
Exception handling can only manage routine events that arise when executing a 
program. It is not used to handle events such as user-driven abortion of program 
execution by pressing ‘Control-C’. 

The three keywords associated with exception handling are try, throw and catch.
The keyword try is used to form a try block. A try block consists of the 
keyword try followed by the try block contained within a pair of matching 
braces:
try
{

. . . 
}

All statements that are likely to cause exceptional situations are executed within the 
try block. Each situation that may lead to an exception must be identified and a 
throw statement must then be executed. In the example shown in Listing 7-10 we 
are attempting to allocate memory from the free store; being n unsigned char
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locations. This attempt may fail; (a) if the value of n is less than 1, (b) there is no 
space available in the free store. 

Listing 7-10 An example try block for dynamic memory allocation. 

   unsigned char* LightPattern; 
   try 
   { 
      if(n < 1)
         throw(n); 
      LightPattern = new unsigned char[n]; 
      if(LightPattern == NULL) 
         throw("Memory error"); 
 } 

The most significant observation to be made here is the signature of the throw
statements. The first throw, throws just one integer, being n. The second throw
throws a string. Immediately after the try block, there must be matching catches.  
In our case there must be a catch that matches the throw of one integer and 
another catch that matches the throw of one string. When these two catches are 
included, Listing 7-10 will become the code shown in Listing 7-11. 

Listing 7-11 Try block with the catches. 

   unsigned char* LightPattern; 

   try 
   { 
      if((n < 1) || (n > 4))  // Note: || is logical OR 
         throw(n); 

      LightPattern = new unsigned char[n]; 
      if(LightPattern == NULL) 
         throw("Memory error"); 
   } 

   catch(int n) // catches the throw of integer 
   { 
      cout << "Illegal number of elements requested" << endl; 
      cout << "Array size defaults to 4" << endl; 
      n = 4; 
      LightPattern = new unsigned char[n]; 
   } 
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   catch(char* memerror) 
   { 
      cout << "Memory allocation failed " << endl; 
      cout << "Terminating program " << endl; 
      exit(1); 
 } 

Walking LEDs – User Definable Array Size and Contents 
We can improve the program presented in Listing 7-9 so the user has the flexibility 
to define the size as well as the contents of the LED pattern array. Each number 
entered into the array by the user will be output to the bank of LEDs in sequence, 
followed by a short delay. Therefore, the main() function shown in Listing 7-9 
can be re-written using dynamic memory allocation and exception handling as 
shown in Listing 7-12.

Listing 7-12 Dynamic memory allocation and exception handling for the LED walk . 

#include <iostream.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <dos.h> 

#define SetArray(x) SetPatternAddress((x), sizeof((x))) 

class ParallelPort 
{
   private: 
      unsigned int BaseAddress; 
      unsigned char InDataPort1; 

   public: 
      ParallelPort(); 
      ParallelPort(int baseaddress); 
      void WritePort0(unsigned char data); 
      void WritePort2(unsigned char data); 
      unsigned char ReadPort1(); 
};

ParallelPort::ParallelPort()
{
   BaseAddress = 0x378; 
   InDataPort1 = 0; 
}
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ParallelPort::ParallelPort(int baseaddress) 
{
   BaseAddress = baseaddress; 
   InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
   outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
   outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Invert most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80;  
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

class LEDs : public ParallelPort 
{
   private: 
      unsigned char* PatternPtr; 
      int PatternIndex; 
      int MaxIndex; 

   public: 
      LEDs(); 
      LEDs(int baseaddress); 
      void SetPatternAddress(unsigned char* pattern, 
                                              int maxidx); 
      void LightLEDs(); 
};

LEDs::LEDs()
{
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   MaxIndex = 0; 
   PatternIndex = 0; 
}

LEDs::LEDs(int baseaddress) : ParallelPort(baseaddress) 
{
   MaxIndex = 0; 
   PatternIndex = 0; 
}

void LEDs::SetPatternAddress(unsigned char* pattern, int maxidx)
{
   PatternPtr = pattern;   // pointer Pattern assigned address 
                           // of pattern 
   MaxIndex = maxidx; 
}

void LEDs::LightLEDs() 
{
 if(MaxIndex == 0) 
 { 
  cout << "No Patterns to display " << endl; 
  return; 
 } 

 while(!kbhit()) 
 { 
  WritePort0(*(PatternPtr + PatternIndex++)); 

  // Reset PatternIndex when it gets to MaxIndex. 
  if(PatternIndex == MaxIndex) PatternIndex = 0; 
  delay(500); 
 } 
 getch(); // absorb the key that was hit 
}

void main() 
{
 LEDs Leds;    
 unsigned char* LightPattern; 
 int TempPattern; 
 int n, i; 

 cout << "Pass in the desired size of LightPattern => ";    
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 cin >> n; 

 try 
 {       
  if(n < 1) 
   throw(n);       
  LightPattern = new unsigned char[n]; 
  if(LightPattern == NULL)          
   throw("Memory error"); 
 }    

 catch(int n) // catches the throw of integer    
 { 
  cout << "Illegal number of elements requested" << endl;   
  cout << "Array size defaults to 4" << endl; 
  n = 4;       
  LightPattern = new unsigned char[n]; 
 }    

 catch(char*) // catches the throw of the string 
 { 
  cout << "Memory allocation failed " << endl;       
  cout << "Terminating program " << endl; 
  return;    
 } 

 cout << "Enter " << n ; 
 cout << " numbers in the range (0x00 - 0xFF)" << endl; 

 for(i = 0; i < n; i++)       
 { 
  cin >> TempPattern; 
  *(LightPattern + i) = TempPattern; 
 } 

 Leds.SetPatternAddress(LightPattern,n); 
 Leds.LightLEDs(); 
}

7.10 Summary 
This chapter explained the operation and use of various types of iterative loops 
such as for, while and do-while. The for loop is used primarily when the 
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number of iterations is known at programming time. When this is not the case, 
either a while loop or a do-while loop can be used. In some situations the 
body of a while loop may not execute at all, whereas the body of do-while
loops will execute at least once. Various control mechanisms such as if,
switch-case, break, and continue can be used in conjunction with loops to 
enhance program flow. The switch statement can be used when one of several 
cases needs to be selected for execution. 

Pointers are an important and powerful feature of the C++ language and have been 
explained in this chapter. They contain the memory addresses that “point” to 
locations in memory storing various objects or functions. Arithmetic used with 
pointers automatically takes into account the size of the object the pointer is 
pointing to. Pointers can be used very efficiently to scan arrays as demonstrated by 
the programs developed in this chapter. Most importantly, a pointer pointing to a 
base class object can also point to a derived class object. 

We have used dynamic memory allocation to allow memory to be made available 
for new objects and arrays of objects during program execution. When memory is 
dynamically allocated, the new operator returns a pointer to the allocated memory. 
To free the allocated memory, the delete operator must be used.

Exception handling was introduced in this chapter to contain predictable run-time 
errors. Programming statements, which have the potential to cause run-time errors 
can be contained within a try block. Depending on what is thrown from within a 
try block, a catch statement can be executed to indicate the cause of the run-
time error. We used exception handling to manage any erroneous situations 
occurring from out-of-range array sizing or insufficient memory when attempting 
to allocate memory. 
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8.1 Introduction 
Almost every industry and household has motors used in their equipment or 
appliances. Motors that are often controlled by computers have also become an 
essential part of many motion control systems. This chapter describes the basic 
construction of DC motors, their performance, control techniques, and the effect 
of applying loads to them. The technique known as Pulse Width Modulation 
(PWM) is explained and implemented to control DC motors. This is followed by 
descriptions of stepper motor types, their construction, their different modes of 
operation, and control methods. 

The software segment of the chapter begins with the development of an abstract 
class to represent motors in general. Using this abstract class and the 
ParallelPort class as base classes, a new Motor class is derived using 
multiple inheritance. This new class has the capability to communicate with the 
PC via the parallel port. With this new class as a base class, further classes are 
derived for DC motors and various forms of stepper motors, demonstrating the 
development of object class hierarchies.

Dynamic memory allocation is used in the programs that drive the various types 
of motors. Towards the end of the chapter, the power of virtual functions and the 
concept of late binding will be demonstrated by a motor control program using 
keyboard control. 

8.2 DC Motors 
Most motors employed for control purposes are DC permanent magnet types. 
They are characterised by having a linear torque-speed curve and come in 
several popular configurations. 

8.2.1 DC Motor Construction, Performance 
The basic construction of a DC motor is shown in Figure 8-1. Current flows 
from the power source (shown as a battery) and through the armature coil 
winding via the brushes in contact with the commutator. This current flow 
induces a magnetic field around the armature coil that opposes the magnetic 
field produced by the magnets, and generates a motor torque that is capable of 
doing work. To produce a smoother output torque, many groups of coil windings 
are used in a typical motor armature. Each group of windings connects to 
opposing contacts on the commutator with each commutator contact being 
insulated from its neighbouring contacts. 

Today, permanent magnets are widely used in motors. These magnets are made 
from Alnico, with high-performance motors using high-strength rare-earth 
magnets (samarium cobalt). 
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Figure 8-1 Basic DC motor construction. 

A different type of DC motor, known as the brushless motor, does not have 
commutator brushes; instead current is switched through the coil windings by 
electronic means. These motors use permanent magnets for the rotor and have 
the field windings on the stator. This arrangement gives a greatly improved path 
for heat flow out of the motor and results in high reliability, low noise, high 
speed, and high peak torque characteristics. 

Motor performance depends upon the load connected to the motor and the 
applied voltage driving the motor. Friction in the motor bearings, brush losses, 
iron losses, and short-cut circuit losses (from each brush contact overlapping an 
adjacent contact) limit the upper speed during no-load situations, and the torque 
load at the motor shaft determines the lower speed limit. As the load applied to 
the motor increases, motor speed drops in a linear manner, proportional to the 
load applied. The steady power produced by the motor can be increased if air-
cooling is used or if the motor is used for short periods of operation. When 
selecting a suitable motor for a given task, the load inertia, load torque, and load 
power should all be considered. 

8.2.2 DC Motor Control 
To control DC motors, a variable voltage must be generated and applied to 
power the motor. There are two main sources of voltage supply for a motor: the 
linear power supply, and the switching power supply. The linear power supply 
technique uses power transistors acting in their linear mode to provide a smooth 
and continuously adjustable output voltage depending upon load drive 
requirements. In this mode, the transistors are used as variable resistors, 
conducting according to the level of the input signal applied. This method of 
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control wastes power when the transistors are used to drop voltage and in doing 
so dissipate power. 

Switching power supply techniques use transistors to switch the voltage through 
to the motor in a series of pulses that applies an ‘average’ voltage to the motor. 
Two switching methods are commonly used, pulse-width modulation (PWM) ,
and pulse-frequency modulation (PFM) as shown in Figure 8-2. 

Figure 8-2 Voltage-control using switching methods. 

Pulse-width modulation is the more common method used for motor control. This 
method uses a constant period (T) between sequential pulses, while the width (w) 
of the pulses is altered (duty cycle) to change the effective or average voltage 
applied to the motor.

Pulse-frequency modulation varies the frequency of pulses having a constant 
pulse width (t) to control the average voltage applied to the motor. 

Figure 8-3 Motor control using a H-bridge. 

The most common means of controlling the voltage applied to DC motors is 
through the use of a H-bridge circuit as shown in Figure 8-3. Two switches are 
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closed at a time to switch the DC voltage through to the motor. When switches 
designated as SW1 and SW4 are closed and switches SW2 and SW3 are open, as 
shown in the diagram, the motor will rotate in one direction. Swapping the 
positions of the open and close switches to make SW2 and SW3 closed and SW1 
and SW4 open will reverse the flow of current through the bridge and reverse the 
direction of motor rotation. 

The average voltage delivered to the motor can be controlled using pulse-width 
modulation applied to the switches. In practice, the switch function is performed 
using power transistors in place of each switch. As the switch is opened, a large 
voltage is generated across the motor winding, known as back-emf. This voltage 
must be limited to avoid damage to the active switching transistors. Damage is 
prevented by fitting diodes across the transistors that clamp the voltage to much 
lower levels that will not cause damage. 

Motors can be controlled using both open- and closed-loop control techniques. 
Open-loop control does not use any form of feedback from the output of the motor 
shaft to indicate motor speed or motor shaft rotation. This mode of operation relies 
upon estimating motor speed or rotation by knowing the motor load and motor 
operating characteristics. If accurate motor control is needed and motor load is not 
known or is not constant, closed-loop control is typically used. When controlling 
motor speed, the feedback taken from the motor output will be motor shaft speed. 
This is usually measured using a tachometer that generates an output voltage 
proportional to the motor speed. Alternatively, the tachometer can output a digital 
pulse-train.

Figure 8-4 Motor encoder output – quadrature. 

When position control is needed, resolvers or digital encoders are connected to the 
motor output to provide position feedback. Resolvers generate two out-of-phase 
sinusoidal waves whose amplitudes provide position information. Optical encoders 
output two digital waveforms that are separated in phase by approximately 90 
degrees to provide directional information in quadrature format as shown in Figure 
8-4. It is possible to determine the direction of motor rotation by knowing the order 
in which the rising or falling edges of each waveform occur. 
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8.3 Stepper Motors 
Stepper motors are often used for motor control applications requiring positive 
positioning and good levels of torque at low speed. Provided they are not 
overloaded, their output shaft speed and rotational position are inherently known 
and controlled through simple digital switching of their winding currents – often 
without the need for expensive shaft encoders. 

8.3.1 Stepper Motor Construction 
Three main types of stepper motor construction are in use; these being permanent
magnet, variable reluctance, and hybrid construction.

The permanent magnet type has a permanent magnet rotor with many poles. This 
motor has a residual holding torque when the windings are not energised and 
requires less power to operate than other types. It is low in cost, produces low 
torque and runs at low speed. However, it suffers from resonance effects, relatively 
long settling times and rough performance at low speed. It is mainly used in non-
industrial applications. 

Variable reluctance motors use a soft iron core rotor with a different number of 
teeth than the number of poles on the stator. As the stator poles are energised in-
turn, the rotor aligns itself with the magnetic field of the energised stator pole, to 
create a rotor position having minimum magnetic reluctance. This type of motor 
has a good ratio of torque to inertia but lacks a residual torque when the stator field 
windings are de-energised. Variable reluctance motors are seldom used in 
industrial applications and require a different driving arrangement from the other 
stepper motor types. 

Hybrid motors use a combination of permanent magnet and variable reluctance 
features in their construction. This is the most widely used type of stepper motor 
for industrial applications due to its high torque and residual holding torque. 

8.3.2 Stepper Motor Configuration 
To understand how a stepper motor works, consider the simplified motor shown in 
Figure 8-5. This motor has a permanent magnet rotor with one north-south pole 
pair and uses a stator with four teeth. The motor drive sequence shown uses what is 
known as full-stepping – in this case each full-step corresponds to a 90  rotation. 
There are two independent coil windings used on the stator, meaning this is a two-
phase motor. 

The motor rotates in a clockwise direction as shown in Figure 8-5 when using the 
coil energising sequence in Table 8-1. Both of the motor coils are energised for 
every step position during each drive sequence. 
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Figure 8-5 Simplified 2-phase stepper motor – full-stepping sequence. 

Table 8-1 Full-stepping sequence for a 2-phase motor. 

Coil Contact Voltage 
Step Position A1 A2 B1 B2

1 + +
2 + +
3 + +
4 +   +
     

Smaller step angles can be achieved when a half-stepping drive sequence is used. 
This involves energising only one of the coil windings for every second step angle 
as shown in Figure 8-6 and Table 8-2. 
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Figure 8-6 Half-stepping sequence for a 2-phase motor. 

Table 8-2 Half-stepping sequence for 2-phase motor. 

Coil Contact Voltage 
Step Position A1 A2 B1 B2

1 + +
2   +
3 + +  
4  +   
5 + +
6    +
7 + +
8 +    
     

Stepper motors are categorised depending upon the way current is driven through 
their windings as will now be explained. 
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Bipolar Motor 
This type of motor uses coil currents that reverse in direction throughout the 
stepping sequence, as shown in the preceding text. To achieve this reversal of 
current, bipolar voltages are applied to the coil windings. A bipolar power source 
with +ve, –ve and ground potentials can be used with four switching transistors to 
drive this type of motor. However, the usual means of implementing this form of 
drive is to use a single polarity power supply with eight switching transistors, 
configured using two separate H-bridge circuits as shown in Figure 8-7. Bipolar 
type motors are easily recognized since they have only four connection leads. 

Figure 8-7 Bipolar drive using two H-bridge circuits. 

Unipolar Motor 
This type of motor uses coil winding currents which flow in one direction only. In 
order to obtain a reversal of magnetic field at each stator tooth, the coil is wound in 
two halves as shown in Figure 8-8. One half of the coil is wound clockwise around 
the stator tooth and the other half of the coil is wound anticlockwise around the 
stator tooth – known as a bifilar winding.

Figure 8-8 Unipolar motor – bifilar coil. 
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The wire connection halfway through the coil is connected to the positive power 
supply. Only one half of the coil is energised at a time. A north pole is produced 
when one half of the coil is energised by connecting its end to ground potential; a 
south pole is produced by energising just the other half of the coil by grounding its 
end. This is shown in Figure 8-9, Figure 8-10 and Table 8-3. Note that a north pole 
is produced when coil winding A1 or B1 are grounded; conversely grounding A2 or 
B2 results in a south pole. 

Figure 8-9 Unipolar coil drive. 

Figure 8-10 Full-stepping sequence – unipolar motor. 

Table 8-3 Full-stepping sequence for unipolar motor. 

Coil Contact Voltage 
Step Position A1 A2 B1 B2

1
2     
3     
4     
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Half-stepping is achieved by energising two half coils together followed by 
energising only one coil in a repetitive sequence, generating a similar sequence of 
magnetic fields when half-stepping a bipolar motor. Figure 8-11 and Table 8-4 
show the half-stepping sequence for a unipolar motor.

Figure 8-11 Half-stepping sequence – unipolar motor. 

Table 8-4 Half-stepping sequence for unipolar motor. 

Coil Contact Voltage 
Step Position A1 A2 B1 B2

1
2     
3     
4     
5
6    
7
8     
     

For a unipolar motor to have the same number of turns per winding as a bipolar 
motor, the wire diameter must be decreased due to its bifilar winding scheme. This 
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reduction in wire diameter leads to an increase in coil resistance and lowers the 
motor torque by approximately 30% at low step rates. At higher step rates, unipolar 
motor performance exceeds that of bipolar wound motors. 

Stepper motors come in a variety of wire configurations as shown in Table 8-5. 
The five-wire unipolar motor is identical to the six-wire unipolar motor except the 
two power supply wires are connected together internally and only one wire is 
brought outside the motor case. 

Table 8-5 Stepper motor wire configuration. 

Wire
Arrangement Motor Type 

4-wire  Bipolar – 2 phase 
4-wire  Variable Reluctance – 3 phase 
5-wire  Unipolar – 2 phase 
6-wire  Unipolar – 2 phase 
8-wire  Bipolar – 4 phase 

   

The eight-wire bipolar motor has two pairs of two phases (independently wound 
coils). This arrangement allows a pair of phases to be connected in series or in 
parallel. A series-connected configuration effectively doubles the amp-turns 
producing twice the torque at lower speeds. The inductance of the effective coil is 
proportional to the number of turns squared, meaning that the inductance is now 
raised four-fold. Winding resistance is now double, which lowers the maximum 
value of current through the winding in order to not exceed the motor power rating. 

Connecting the eight-wire motor in a parallel configuration does not change the 
effective number of turns and therefore does not increase the winding inductance. 
The effective winding resistance is now halved, meaning that the motor can be 
driven at higher levels of winding current for the same power dissipation. This will 
give improved torque at this higher current. 

A series-connected configuration of phases leads to a rapid drop in torque as speed 
increases. This occurs because the time constant of the winding, being equal to 
inductance divided by resistance, is now twice that of a single connected phase. 
The parallel-connected windings perform much better at high speed than the series 
configuration since their winding time constant is half that of a single winding and 
therefore ¼ that of the series configuration. Additionally, the torque curve is flatter 
for a motor connected in parallel, producing greater shaft power. 

8.3.3 Stepper Motor Control 
Stepper motor performance is compromised when driven by a simple H-bridge 
circuit as shown previously in this chapter. The coil current requires finite time to 
increase in level once the controlling switch (transistor) is ‘closed’. Since the 
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winding has inductance (L) and resistance (R), the current (I) will increase 
exponentially with increasing time according to the value of the winding time 
constant ( ) as shown in Figure 8-12. 

Figure 8-12  Regular drive and Series resistance drive. 

One means of reducing this winding time constant is by using series resistance 
drive.  In this scheme, an external resistor is added in series to the winding circuit. 
If this resistor was say equal in value to the resistance of the wound coil and the 
applied voltage doubled, the peak current (I) through the winding would remain the 
same, but the winding time constant is now halved. Although this form of motor 
control increases the high-speed torque, it is inefficient due to the loss of power 
generated by the current flowing through the added external resistor. 

Figure 8-13  Coil winding current under chopper drive. 

A better approach to stepper motor control is known as chopper drive. The voltage 
applied to the winding is raised similar to that for the series resistance drive scheme 
but an added resistor is not used. This improves the rise-time of the current through 
the winding. Without using an added resistor, the current would eventually increase 
and exceed the motor’s rated winding current if some form of voltage control was 
not used. To prevent this excessive current build-up, a current sense resistor (with 
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small resistance) is used to measure the winding current. When the level of rising 
current reaches the rated value of the winding, the applied voltage to the motor 
control circuit is turned off, preventing any further current rise. Naturally, the 
winding current will now decay while the winding is not being powered. The sense 
resistor is used to monitor this decay so that voltage can be re-applied to the motor 
control circuit when the level of current has dropped a small amount below the 
rated value. This cycle of current build-up and decay continues until it is time to 
turn off the winding current for the next step sequence as shown in Figure 8-13. 

There is a more refined technique used to drive stepper motors known as 
microstepping. This drive scheme proportions the level of individual coil winding 
current to produce intermediate stepping positions within a normal full-step. 
Accurate control of coil current is needed and high-resolution microstepping in 
excess of several thousand steps per revolution is possible. 

Motor controllers that use integrated circuits are available to simplify the task of 
stepper motor control. These circuits contain waveform-generating logic, power 
transistor switches, and associated protection diodes to control the damaging effect 
of back-emf (electromagnetic force) produced when coil currents are switched off. 

8.3.4 Stepper Motor Specification 
Several terms such as holding torque, dynamic torque, pull-in torque, pull-out 
torque, and ramped step rate are used to specify stepper motor performance. These 
terms are briefly explained in Table 8-6. 

Table 8-6 Stepper motor terminology. 

Holding torque That torque which the motor generates when stationary. 
Dynamic torque The torque generated by the motor when rotating. This torque 

drops as motor speed increases due to the effect of the motor’s 
time constant and the reduced time to build-up current. 

Pull-in torque 
(start without 
error torque)

The pull-in torque is the maximum torque available to be 
applied to the motor load when starting from rest for a 
particular step rate (or when coming to a stop without losing 
steps). It does not include that portion of motor torque needed 
to accelerate the inertia of the motor itself. 

Pull-out torque 
(running torque)

The maximum torque that can be applied to the motor load 
during steady speed without losing steps. This torque is higher 
than the pull-in torque because the motor is not being 
accelerated and therefore no torque is consumed for this 
purpose.

Ramped step rate This is the step rate which avoids any loss of steps during 
periods of acceleration or deceleration. 
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So far in this chapter we have discussed the principles of operation of DC motors 
and stepper motors. Let us now turn our attention to writing object-oriented 
programs to drive these motors using the motor drive circuits of the interface 
board. In the coming sections we will encounter the most powerful feature of 
object-oriented programming – virtual functions.

The approach taken in the following sections is to first develop a class hierarchy to 
represent DC motors and all forms of stepper motors discussed earlier in this 
chapter. Then we will use the classes in this hierarchy to develop a generic 
program that will drive any type of motor in the hierarchy.

8.4 A Class Hierarchy for Motors 
All the motors to be included in our class hierarchy will be driven using the 
interface board. Therefore, while the class hierarchy is in principle for motors,
interfacing also plays an important role. We can identify two major categories for 
all motors described in this chapter. They are; i) DC motors and ii) Stepper Motors.
Stepper motors fall into two types; Unipolar Stepper Motors and Bipolar Stepper 
Motors. These two types of stepper motors can be controlled in two different ways; 
full-step control and half-step control. DC motors have not been further 
subdivided.

To start with, we can think of motors ‘in general’ as abstract objects. A ‘motor’ 
will remain an abstract concept until we can describe all its relevant details. 
Therefore, a good starting point for our class hierarchy is an abstract motor class 
that encompasses the most common features of all motors in the hierarchy. 
Interfacing these motors to the interface board is also a very basic requirement for 
all the motors. In our case, all motors will be controlled via the parallel port and so 
the ParallelPort object we developed earlier can be used for this purpose. 
Since interfacing is necessary for all motors of the hierarchy, the ParallelPort
class must join the hierarchy at a very early stage. The proposed class hierarchy is 
shown in Figure 8-14. 

At the root of the class hierarchy is the abstract class AbstractMotor that 
represents all motors. The ParallelPort class is also at the same level as the 
AbstractMotor class. However, the ParallelPort class developed earlier 
is not an abstract class. It is a real class since objects can be instantiated from it. 

The Motor class is derived by multiple inheritance from the two base classes 
AbstractMotor and ParallelPort. The Motor class is also an abstract 
class since it is not yet a fully described object class of the motor hierarchy. This 
means the class lacks the finer details of the specific motor types needed to 
complete the member function definitions. However, the objects of the Motor
class have more capabilities than the objects of the AbstractMotor class, 
namely they can communicate with devices via the parallel port. 
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Figure 8-14 Motor class hierarchy. 

The Motor class is then used to derive the two classes DCMotor and 
StepperMotor. At this level DCMotor and StepperMotor are completely 
described and must be real classes. The class hierarchy ends here.

The question arises; why not derive further classes to represent, for example, dual-
phase bipolar stepper motors in half-step control? The answer is as follows. The 
functional characteristics of a dual-phase bipolar stepper motor in half-step control 
are different from a dual-phase unipolar stepper motor in full-step control. 
However, from a software point of view, this is analogous to two cars having 
different colour. The different motor drive schemes are certainly not analogous to a 
normal car and a luxury car. When two different coloured cars are needed, the 
choice of colour can be handled by changing the value of a parameter. A new class 
is not necessary for each colour. Our approach in treating different kinds of stepper 
motors will be along similar lines. 

8.5 Virtual Functions – An Introduction 
A virtual function is a function that has the same function signature throughout a 
class hierarchy although behaves according to its definition in each class. Virtual 
functions are polymorphic in nature but with a subtle difference. As discussed in 
Chapter 4, polymorphic functions are functions throughout a class hierarchy with 
the same name, the same number of parameters, same sequence of parameters and 
same types of parameters. However, their bodies are programmed differently to 
suit the requirements of each class. Virtual functions have all the features of 
polymorphic functions, except the keyword virtual is added right at the front of 
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function declarations within their classes. Although virtual and non-virtual 
functions appear to be quite similar, there are significant advantages when using 
virtual functions. They allow the implementation of a very powerful feature known 
as late binding which will be explained in more detail later in this chapter. 

The benefits of late binding are strictly linked to virtual functions within a class 
hierarchy. Virtual functions are added at first to a base class and then later 
implemented throughout the derived classes of the hierarchy. This arrangement 
provides the primary link needed between a virtual function of the base class and a 
virtual function of a derived class somewhere down the class hierarchy. Any virtual 
functions of any derived class can be called using a pointer to the base class. 
Despite using a base-class pointer, rather than a pointer to the derived class itself, 
at run-time the base-class pointer will select the correct function from the derived 
class, thanks to the mechanism that links virtual function within a class hierarchy. 

If virtual functions are not used to select the correct function to match the object 
chosen by the user at run-time, the developer needs to provide additional code to 
carry out these tasks. This extra code will include all the necessary program 
statements placed within a framework of “if-then-else“ logic or switch
statements. When class hierarchies are large and complex, this extra programming 
can be an immense burden and produce programs that are difficult to debug and 
maintain. If a new class is added to the hierarchy, the entire program needs to be 
modified. As can be imagined, this is not a very efficient approach to 
programming.

Virtual functions and associated late binding alleviates the program developer from 
needing to generate this extra code. The developer writes a generic program using 
virtual functions. The compiler and linker are now managing this task. As a result, 
programming and debugging times are markedly reduced. Furthermore, minimal 
change to code is required to incorporate a new addition to the class hierarchy.
These advantages will become evident as we work through the example programs 
ahead.

AbstractMotor Class 
As mentioned previously, the principal motive underlying the development of the 
AbstractMotor class as a base class is to form a foundation for the network of 
virtual functions. All classes derived from the AbstractMotor class will inherit 
all its functions. Only some of the functions can be completely defined at this early 
stage, while the remaining functions will be skeletal due to a lack of exact details 
for the ‘motors’ involved. A thoughtful selection of data and functions to be 
included in a base class for motors is as follows: 

1. A data member to store the set speed of the motor. 
2. A mechanism for functions outside the class to obtain the set speed. 
3. A function to drive ‘a motor’ forward.
4. A function to drive ‘a motor’ in reverse. 
5. A function to brake ‘a motor’. 
6. A function to turn ‘a motor’ off (no applied power). 

8 DRIVING MOTORS - DC & STEPPER 213



A class definition for the AbstractMotor class is given in Listing 8-1. 

Listing 8-1 AbstractMotor class. 

class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 

virtual void Off()=0;
virtual void Forward()=0;
virtual void Reverse()=0;
virtual void Brake()=0;

};

We haven’t seen the bold font code shown in Listing 8-1. It will be discussed in the 
sections ahead.

The AbstractMotor class has Speed as a private data member, which is of 
type int. The member function SetSpeed() receives speed as a parameter 
and then sets the value of data member Speed to equal speed. The public 
member function GetSpeed() can be called by any function in the program to 
obtain the value of private data member Speed. The Off() function turns off all 
power to the motor. The function Forward() is used to drive the motor forward 
at the speed specified in Speed. Similarly, the function Reverse() is used to 
drive the motor in reverse direction at the speed specified by Speed. The 
Brake() function can be used to short-circuit the motor windings to stop the 
motor rotation, in the minimum time. 

We will now provide the definitions for all member functions of the 
AbstractMotor class. The AbstractMotor class does not drive specific 
types of motors. Rather it provides general functions that will be overridden in its 
derived classes to suit specific types of motor. Without knowing the exact details of 
the motor, we cannot define the functions Off(), Forward(), Reverse() and 
Brake(). If we cannot define the functions, why did we include them as member 
functions? One reason is that it is good to specify the form of the objects of the 
hierarchy at its start to maintain a high level of conformity throughout the 
hierarchy. This helps us write code that maintains the relationships with objects of 
the entire hierarchy. For example, all classes of the hierarchy will have a function 
named Forward(). The subsequent derived classes will then redefine the
inherited Forward() function to apply specifically to their respective class. The 
other reason is associated with virtual functions and late binding.

8 DRIVING MOTORS - DC & STEPPER 214



The motor driving part of the program can be very complex. It may contain 
sophisticated operations to change the speed, change direction of rotation and to 
brake the motor. Using virtual functions, the motor control program in the main
function can be written completely, without knowing exact specifics of the 
particular motor to be driven. When the user selects a particular control action for 
the chosen motor, the correct function from that class will be deployed  
automatically to operate on the associated object type (without the programmer 
needing to provide explicit code). When we use virtual functions, the compiler 
generates the actual code that allows this virtual function mechanism to operate in 
this way. This behaviour will be shown in the sections ahead. This part of the 
program will even work for objects that will be added to the class hierarchy in the 
future. This gives us the flexibility to expand the class hierarchy as desired without 
needing to rewrite the motor control portion. 

When the program is running, the user will select an object type (DCMotor or 
StepperMotor) to be used from a choice of motor types. For example, the user 
may select a motor of type DCMotor to be driven forward. Then the program will 
automatically bind the DCMotor object to the Forward() function of the 
DCMotor class. This deferred decision-making is known as late binding. In other 
words, the program selects the correct function to drive the motor forward based on 
the object type selected by the user at run-time. Late binding is also known as 
dynamic binding. The word dynamic is used because the binding takes place while 
the program is running. Note that polymorph functions cannot be used in late 
binding - only virtual functions can use this feature. 

If virtual functions were not used in the program, the programmer would need to 
provide the extra logic to select the correct function. In this case the end of each 
logic branch will be hard-coded to bind a specific object to its associated member 
function. Binding is no longer deferred to a later time. In such a situation the 
compiler can identify the correct function and bind it at programming time. This is 
known as early binding or static binding. The word static is used to signify that 
binding takes place before the program runs - the program is already coded for 
each possible combination of object/function the user might select. 

At first glance, virtual functions and late binding appear to be overkill! However, 
without them it is very difficult to write sound generic programs that work with a 
variety of situations that are decided by the user at run time. Using virtual functions 
can significantly reduce the amount of programming required. The programmer no 
longer needs to write a number of code segments to control each object type. 
Instead, one code segment will be written to control all object types of a given 
hierarchy. Also, the user (or the program itself) has complete flexibility to choose 
the object type at run time. 

8.5.1 Pure Virtual Functions 
It was mentioned previously that without knowing the physical construction and 
interfacing of the motor, it is impossible to define the bodies of the functions 
Off(), Forward(), Reverse(), and Brake(). In order to inform the 
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compiler of our inability to provide the bodies of these functions we must declare 
them as pure functions. Note that only virtual functions can be declared pure. A 
function is declared pure by appending ‘=0’ at the end of the declaration. 

A normal function is declared as: 
void Forward(); 

A virtual function is declared as: 
virtual void Forward(); 

A pure virtual function is declared as: 
virtual void Forward()=0; 

Pure Virtual Functions and Abstract Classes 
An effect of declaring at least one pure virtual function (which has no executable 
code) in a class definition is that the class becomes an abstract class. Some abstract 
classes have useful functions. If the class has a function whose body cannot be 
defined, then the class cannot be used to instantiate completely usable objects. The 
reason for this is that a program may attempt to call a pure virtual function (with no 
executable code). Therefore, a rule is in place that prevents objects from abstract 
classes being instantiated. We will revisit virtual functions when we make use of 
them for controlling the DC and Stepper motors in the class hierarchy (shown in 
Figure 8-14). 

Returning to the class definition given previously in Listing 8-1, only three of the 
member functions can be defined: AbstractMotor(), SetSpeed() and 
GetSpeed(). As explained previously, the other four functions; Off(),
Forward(), Reverse(), and Brake() cannot be defined at this stage, which 
is why they are declared as pure virtual functions. The member function definitions 
are given in Listing 8-2. 

Listing 8-2 AbstractMotor class member function definitions. 

AbstractMotor::AbstractMotor()
{
   Speed =0; 
}

void AbstractMotor::SetSpeed(int speed) 
{
   Speed = speed;  
   if(Speed > 255) Speed = 255; // Limit upper value 
   if(Speed < 0) Speed = 0; // Limit lower value 
}

int AbstractMotor::GetSpeed() 
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{
   return Speed; 
}

The constructor of the AbstractMotor class initialises the data member Speed
to 0. 

The public function Setspeed() can be called by any function to change the 
speed of any of the motors in the hierarchy. This function assigns the actual 
argument passed in speed to the member data Speed. The two if statements in 
the SetSpeed() function ensure the actual argument passed in place of speed
is restricted to within the acceptable range 0 – 255 we have decided to use. If for 
example, a value such as 300 is passed, then the first if statement will limit and 
override that value to become 255. Therefore, the data member Speed will be set 
to 255. In other words, any value above 255 will be forced to be 255. The second 
if statement will force any value below 0 to be 0. Any value inside the acceptable 
range will be left as is.

The GetSpeed() function returns the current value of Speed to any function. 
This is the only mechanism provided for a function outside the class to obtain the 
value of Speed.

Motor Class
Next in the class hierarchy is the Motor class. This class inherits functions and 
data from the two classes AbstractMotor and ParallelPort. Its class 
definition is given in Listing 8-3.

Listing 8-3 Motor class. 

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress=0x378);
  void Off(); 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
};

Note the program line: 
class Motor : public AbstractMotor, public ParallelPort 

The new class name is Motor and it is derived using the public access specifier 
with the two base classes AbstractMotor and ParallelPort. A comma 
separates the base classes. No new data members are added. The two functions that 
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must be defined are the constructor of the Motor class and the Off() function. 
The other three functions remain as pure virtual functions. It was mentioned earlier 
that if at least one of the member functions is a pure virtual function, the class 
becomes an abstract class. Therefore the Motor class is an abstract class and so 
cannot be used to instantiate objects. The difference between the classes 
AbstractMotor and Motor is that the latter has the ability to communicate 
with devices via the parallel port. As such, any objects derived from the Motor
class can communicate via the parallel port. 

The definition of the Motor class constructor and the Off() function is given in 
Listing 8-4. 

Listing 8-4 Member function definitions for the Motor class. 

Motor::Motor(int baseaddress):ParallelPort(baseaddress) 
{
 Off(); 
}

void Motor::Off() 
{
 WritePort0(0x00); 
}

All motors can be controlled using either one or both H-bridge circuits on the 
interface board. Each H-bridge circuit uses four ‘switches’ with a corresponding 
logic control signal for each switch. Therefore, to control both H-bridges requires 
eight control signals, and so our programs will use the port at address BASE for 
this purpose. 

A motor can be turned off by opening switches in the H-bridge. For DC motors, 
open all four switches, and for bipolar stepper motors, open all eight switches of 
the two H-bridges. In general, we can turn off any type of motor by opening all 
eight switches of the two H-bridges if we set all eight bits of the port at address 
BASE to zero. The Off() function does just this. It is not a virtual function since 
none of the derived classes require further specialisation of this function.

Note that the constructor calls the Off() function. This turns all transistors off in 
both H-bridges to eliminate any risk of a short-circuit path being generated 
between the power supply positive output and its ground return. This means that 
the user must allow the program to execute before connecting power to the 
interface board and motor. 

Default Parameter Values for Functions 
The constructor for the Motor class is an improvement on the coding of the 
constructors for the classes in previous chapters. These earlier chapters used a 
default constructor that took no parameters, and a constructor that took an 
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argument of type integer for the baseaddress parameter. The constructor 
Motor(int baseaddress=0x378) takes a parameter to be passed to the 
base class constructor ParallelPort(int baseaddress) and it initialises 
the value of this parameter to 0x378 if no argument is provided when instantiating 
the Motor object. This allows this single constructor to perform the role of the two 
different constructors used in earlier chapters. 

 The default parameter value for baseaddress is shown in bold typeface in 
Listing 8-3. As implied by the word ‘default’, if no actual argument is passed when 
declaring an instance of an object, the actual argument will be taken as 0x378. Note 
that the default argument value is mentioned within the pair of parentheses of the 
constructor in the class definition (Listing 8-3). This is one way to specify default 
actual argument values. Another method for specifying default arguments is to 
include them in the function definition as shown in Figure 8-15. In this case we do 
not specify the default actual argument values in the class definition as is shown in 
Listing 8-5. Note that we must not specify default values in both places! 

Figure 8-15 An alternative way of specifying default actual argument values. 

Listing 8-5 Motor class definition with no default arguments specified inside. 

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress); 
  void Off(); 
  virtual void Forward(int speed)=0; 
  virtual void Reverse(int speed)=0; 
  virtual void Brake()=0; 
};

The Motor class constructor can be called in one of the two following forms as 
shown in Figure 8-16 and Figure 8-17: 

Motor::Motor(int baseaddress=0x378):AbstractMotor(),
 ParallelPort(baseaddress) 
{
 Off(); 
}

Default actual argument for the
parameter baseaddress
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Figure 8-16 Calling the Motor class constructor without arguments. 

Figure 8-17 Calling the Motor class constructor with an actual argument. 

The function Motor() being a constructor, can also be called in the manner 
shown in Figure 8-18. 

Figure 8-18 Calling a constructor with default actual arguments. 

These examples show how one parameter can be given a default actual argument. 
If the function has more than one parameter, any of them can be assigned default 
actual arguments subject to the following condition. All parameters to the right of 
the parameter being considered must also have default actual argument values 
assigned. The two examples in Figure 8-19 show the valid and invalid declarations. 

Figure 8-19 Assigning multiple default actual arguments. 

Motor();

No actual argument is passed, therefore the default argument is used. As a
result the inherited data member BaseAddress will become 0x378. 

Motor(0x3BC);

An actual argument is passed.  As a result the inherited data member
BaseAddress will become 0x3BC. 

 Motor; 

For a constructor, the pair of parentheses can be dropped.  The
result is identical to that for Figure 8-16. 

void AnyFunction(int x, int y=0, int z=1); // correct 

void AnyFunction(int x, int y=0, int z);  // illegal

This situation is acceptable.  Parameter y can be assigned a default actual argument
value because parameter z is already assigned a default actual argument value. 

This situation is illegal.  Parameter y cannot be assigned a default actual argument
value because parameter z has not been assigned a default actual argument value. 
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DCMotor class 

The DCMotor class is at the bottom end of the class hierarchy shown in Figure 
8-14. This class is developed to represent real DC motors. As such, the class is no 
longer an abstract class. The class definition for the DCMotor class is given in 
Listing 8-6. 

Listing 8-6 DCMotor class. 

class DCMotor : public Motor 
{
 public: 
  DCMotor(int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

The DCMotor class is derived from the Motor class. Although the DCMotor
class looks small, it has inherited all member data and member functions from the 
Motor, AbstractMotor, and ParallelPort classes in the hierarchy. Note 
that there are no pure virtual functions in the class definition for the DCMotor
class. Therefore, the class is not an abstract class, but a real class that can be used 
to instantiate objects once complete function definitions are provided. 

To be able to define the member functions of the class, we must know how to drive 
the DC motor and connect it to the interface board. Figure 8-20 shows how a DC 
motor is connected using a H-bridge. We can use the data bits D0 to D3 of the port 
at BASE address to control the switches SW1 to SW4 as shown in Table 8-7. 

Figure 8-20 H-bridge connections to a DC Motor. 
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Table 8-7  DC Motor H-bridge to Parallel Port connections (Figure 8-20). 

Switch No
H-bridge label on 
Interface Board 

BASE Address 
 Data Bit 

SW1 A D0 
SW2 B D1 
SW3 C D2 
SW4 D D3 

   

A data-bit set to 1 closes the switch, whereas a 0 opens the switch. To drive the 
motor forward, the data bits D0 and D3 must be set to 1 and bits D1 and D2 must 
be set to 0. To drive the motor in reverse, we must do the opposite, i.e. data bits D1 
and D2 must be set to 1 and data bits D0 and D3 must be set to 0. 

To brake the motor, short-circuit the ends of the armature together. This can be 
done by either setting bits D0 and D1 to 1 (D2, D3 set to 0), or by setting bits D2 
and D3 to 1 (D0, D1 set to 0). We will choose to short-circuit the armature to 
ground. For this, bits D2 and D3 will be set to 1 and bits D0 and D1 will be set to 
zero. Table 8-8 summarises the values to be written to the port to achieve forward 
motion, reverse motion and braking.

Table 8-8  Data to be written to the port to control the DC motor. 

Operation Data Bits†

D7 D6 D5 D4 D3 D2 D1 D0 
Output to port at 

address BASE

Forward x x x x 1 0 0 1 0000 1001 = 0x09 
Reverse x x x x 0 1 1 0 0000 0110 = 0x06 
Brake x x x x 1 1 0 0 0000 1100 = 0x0C 

† data bits represented as ‘x’ can take either 0 or 1.  They are not connected to the H-bridge to drive 
a DC motor, and so do not have any effect.  They have been taken to be 0 for bits D4 to D7. 

WARNING

Do NOT at any time allow SW1 and SW3 to be turned on together at anytime. 
Likewise, do NOT at any time allow SW2 and SW4 to be turned on together. If 
these events were allowed to happen, the transistors and possibly the power 
supply will be damaged.

The DC motor is connected to the interface board as shown in Table 8-9 and Figure 
8-21. The interface board is designed to drive +12V DC motors that require less 
than 1A of current. However, DC motors can be driven from external DC power 
supplies (up to a maximum 30V) as explained in the following note. Leave the 
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interface board unpowered until the program is being executed since some bits of 
the port to be used may have previously been left in an on state. 

NOTE

The two contacts on the 4-way terminal block labelled VM1 and VM1 GND are 
used to connect power to the H-bridge (VM2 and VM2 GND for the other H-
bridge).
The interface board is capable of providing +12V at up to 1A to drive motors. To 
use this power supply, connect Vm1 (or Vm2 as appropriate) via an insulated wire 
to the +12V of the power supply’s 2-way terminal block (where the power-pack 
connects). A second insulated wire is used to connect the ground of the respective 
H-bridge Vm1 GND (or Vm2 GND) to the ground of the power supply. Most 
importantly, a wire needs to be connected across the two contacts of each 2-way 
terminal block. These 2-way terminal blocks have been provided to allow resistive 
drive schemes to be trialed by fitting resistors of suitable value inplace of the 
wires.
Motors may need to be driven with voltage or current supply requirements differing 
from those of the power supply on the interface board (+12V, 1A). In this case, an 
external power supply up to a maximum of 30 V DC can be used to power the 
motors. DO NOT at any time attempt to connect mains power to the board. 
When using an external power supply, connect the positive contact of its output to 
the 4-way terminal block contact Vm1 (or Vm2 as appropriate). Also, connect the 
negative contact of the external power supply to the 4-way terminal block contact 
Vm1 GND (or Vm2 GND). The external power supply MUST NOT be connected to 
the 2-way terminal block of the interface board power supply. 

Figure 8-21 Connecting a DC power supply to power a DC motor. 
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Table 8-9  H-bridge to DC motor connections. 

H Bridge 1 Connections

Vm1 Motor  Power Supply +ve*

M1 Motor  + terminal 
M2 Motor  - terminal 

Vm1 GND Motor  Power Supply –ve*

Having determined all the connections, we can now proceed to implement a 
method to drive the motor, in particular to control its torque/speed. The most 
appropriate means to do this is by using Pulse Width Modulated (PWM) signals. 

8.5.2 Generating Pulse Width Modulated Signals 
As described earlier in Section 8.2.2, using pulse width modulation with wider 
pulse widths generates higher levels of motor speed/torque. In other words, the 
higher the duty cycle, the higher the motor speed. In our application the duty cycle 
is the proportion of time in a repetitive cycle that the motor will have power 
applied to it. This ratio is usually represented as a percentage. To control the speed 
we must control the duty cycle. Therefore, the design of the program should allow 
the duty cycle to be changed as desired. In general, exact timing is normally used 
to control duty cycle. In this chapter, we will not use exact time delays. Instead, 
duty cycle will be controlled by executing software loops. Different computers will 
have different execution speeds and therefore produce different PWM cycle times 
(frequencies), although the shape/duty cycle of the PWM signal will be the same. 

Figure 8-22 Generation of a PWM signal. 

The PWM signal can be generated as follows. Suppose one cycle consists of 256 
uninterrupted writes to the port. The cycle time is then equal to the time the 

Single PWM cycle, comprising 256
writes to the port at BASE address.
The actual cycle time is determined
by the speed of your computer. 

Next PWM cycle. These 
cycles repeat continuously to
generate a PWM signal. 

N writes of 0x09 to the port 
thereby applying full voltage to 
the armature of the DC motor. 

(256-N) writes of 0x00 to 
the port thereby removing 
the voltage to the armature.

Voltage

Time
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computer would take to complete 256 writes to the port. Depending on the desired 
duty cycle, a portion of the 256 writes to the port can be used to send 0x09 to the 
port (see Table 8-8) to turn the motor on in the forward direction. The remainder of 
the writes can send 0x00 to the port to turn the motor off. For example, if we want 
50% duty cycle, we will output 0x09 to the port for the first 128 writes and output 
0x00 to the port for the remaining 128 writes. This is a means to control the speed 
of the motor. A number between 0 and 255 (forming 256 different speed settings) 
can be used to specify the speed. Figure 8-22 illustrates the PWM process. 

The control of speed in the reverse direction can be achieved by using the same 
procedure, except the data written to the port during the ON portion of the PWM 
cycle is 0x06 instead of 0x09. In strict terms, the speed control our software uses is 
known as open-loop speed control. When using open-loop speed control we do not 
measure the speed of the motor nor apply corrective action for variations in speed. 
In other words, we do not have a form of feedback to measure and correct actual 
motor speed. 

The member function definitions of the DCMotor class are shown in Listing 8-7. 
Referring to the earlier Listing 8-6, it can be seen that a default actual argument is 
specified for baseaddress. This is not evident in the function definitions in 
Listing 8-7. 

Listing 8-7  Member functions of the DCMotor class. 

DCMotor::DCMotor(int baseaddress):Motor(baseaddress) 
{
}

void DCMotor::Forward() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x09); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Reverse() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x06); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}
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void DCMotor::Brake() 
{
 WritePort0(0x0C); 
}

The Forward() function and the Reverse() functions are very similar. They 
differ in the actual argument passed to the WritePort0() function within the 
first for loop of each function. Therefore, we will only explain operation of the 
Forward() function.

The Forward() function operates using the functions shown in bold typeface 
below:

void DCMotor::Forward() 
{

for(int j = 0; j < GetSpeed(); j++) 
WritePort0(0x09);

for(;j < 256; j++)
WritePort0(0x00);

}

The highlighted functions are all member functions of various classes of the 
hierarchy. The function GetSpeed() is inherited from the abstract class 
AbstractMotor and the function WritePort0() is inherited from the 
ParallelPort class.

As described previously, the speed of the motor is determined by the duty cycle of 
the PWM signal. The duty cycle is controlled by the number of writes to the port at 
BASE address that allows the H-bridge to apply the power supply voltage to the 
motor. One cycle of the PWM signal comprises 256 writes to the port at address 
BASE. Counting from 0 to 255 (inclusive) will give us 256 numbers. Therefore, 
255 specifies 100% duty cycle (full speed) and 0 specifies 0% duty cycle (zero 
speed).

When the program enters the first for loop, the inherited data member Speed
must have a valid value, i.e. a value between 0 and 255. The first for loop 
initialises its loop count variable j to 0. It then uses the inherited WritePort0()
function to write 0x09 to the port at BASE. This action will apply full voltage to the 
motor. The loop count variable j is then incremented using j++. Next, the test 
expression j < GetSpeed() is evaluated. The Forward() function of the 
DCMotor class has no direct access to the inherited data member Speed as it is a 
private member of the AbstractMotor class. Therefore, to obtain the value of 
Speed, the public function GetSpeed() of the AbstractMotor class must be 
used. Provided the test condition evaluates to true, the body of the first for loop 
will execute again. For example, if the value of Speed is 5, the function 
WritePort0() will be executed for j equal to 0, 1, 2, 3 and 4. When j is 
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incremented to become 5, the test expression will evaluate to false and the first 
for loop will terminate. Control will then be transferred to the second for loop.

Note that the second for loop is unusual in that it does not have an initialising 
expression. The value of j is passed on to the next loop to complete the rest of the 
PWM cycle - which is why the loop count must not be re-initialised. 

Using the values given in the example above, the value of j will be 5 upon 
entering the second for loop. The second for loop will run until the value of j
exceeds 255. Each time the for loop executes 0x00 will be output to the BASE
address part of the port, preventing voltage being supplied to the motor. When j
becomes 256, the for loop will terminate, having completed one PWM cycle. This 
would produce a duty cycle of 5 ON writes out of 256 total writes in the cycle; i.e. 
2% duty cycle.

Consecutive PWM cycles must be made to generate a continuous PWM signal. 
Therefore, the Forward() function must be called repeatedly until the user 
ceases to issue a forward command. This can be accomplished, for example, by 
implementing a while loop conditioned on !kbhit(). The while loop will 
continue provided the keyboard is not hit. The function kbhit() will return a non 
zero value when a key is pressed. When the logical negation operator (!) is placed 
in front, !kbhit() will return a non-zero value as long as a key is not pressed. 
Now the while loop will continue execution until a key is pressed. Each iteration 
of the while loop generates one PWM cycle and so the PWM signal will continue 
until a key is pressed. The while loop can be implemented outside the member 
functions, in say the main() function. 

The Reverse() function operates in a similar manner to the Forward()
function. The difference being that the first for loop writes a different value to the 
H-bridge to apply a voltage with reversed polarity to drive the motor in the 
opposite direction. The PWM signal is generated in the same manner as for the 
Forward() function. 

The Brake() function calls the WritePort0() function once to close the 
switches of the H-bridge and short-circuit the DC motor armature to brake the 
motor.

In Section 8.6 we explain how the user can use this class to drive a DC motor. 

StepperMotor class 
The StepperMotor class must cater for several types of stepper motors and their 
two modes of operation. These modes and their acronyms are shown in Table 8-10. 
The class definition for the StepperMotor class is given in Listing 8-8.
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Table 8-10 Acronyms for Stepper Motors. 

Stepper Motor Mode Acronym 

Unipolar  Full-Step UPFS 
Unipolar  Half-Step UPHS 
Bipolar  Full-Step BPFS 
Bipolar  Half-Step BPHS 

   

Listing 8-8  New data type MOTORTYPE and StepperMotor class. 

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS}; 

class StepperMotor : public Motor 
{
 private: 
  MOTORTYPE MotorType; 
  unsigned char Switching[8]; 
  int CycleIndex; 
  int MaxIndex; 

 public: 
  StepperMotor(MOTORTYPE motortype = UPFS, 
           int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

A new programmer-defined data type named MOTORTYPE has been created at the 
top of this listing. This data type is termed an enumerated data type because all 
possible values the data type can be given are listed in the type declaration. These 
values are named enumeration constants and are always of type int. Use 
mnemonic identifiers that are meaningful to improve readability of the program. 

Figure 8-23 Enumerated data types. 

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS}; 

new data type name 

keyword enum Mnemonic identifiers 

0 1 2 3 

These enumerated constants (integer values) are 
automatically assigned to the above identifiers. 
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In the declaration shown in Figure 8-23, the new data type has the name 
MOTORTYPE. The enumerated constants 0, 1, 2, and 3 are automatically assigned 
to the mnemonic identifiers UPFS, UPHS, BPFS, and BPHS, respectively. We can 
declare a variable of this type as follows: 
MOTORTYPE NewMotor; 

Note that if you use a C compiler (Not a C++ compiler) then the equivalent 
declaration must be: 
enum MOTORTYPE NewMotor; 

NewMotor can take any value enumerated; i.e. the values listed between the two 
braces. Had we specified that the mnemonic UPFS was equal to say 2 as shown 
below, then UPHS, BPFS and BPHS would become 3, 4 and 5 respectively. 

enum MOTORTYPE {UPFS = 2, UPHS, BPFS, BPHS}; 

Since all enumerated values are represented by integers, it is possible to carry out 
integer arithmetic on the data type. For example:
MOTORTYPE NewBreed;  
NewBreed = UPFS + BPFS; //valid but meaningless! 

While this is possible, it has no meaning whatsoever for our purposes. However, 
under certain circumstances integer arithmetic with enumerated types can be of 
benefit when used with care. 

Referring to Table 8-10, the enumerated data type shown in Listing 8-8 can 
represent any of the stepper motor types we aim to control using our interface 
board. We can now return to study the StepperMotor class definition in Listing 
8-8. It has four private data members described as follows. 

MOTORTYPE MotorType 

The first member data is MotorType. Once initialised this data member will store 
the type of stepper motor to be controlled. 

unsigned char Switching[8] 

This statement declares an array named Switching that has eight unsigned
char elements. The program will load this array with the unique switching 
patterns for the type of stepper motor the user selects. These switching patterns are 
specified ahead when the functions for the class are defined. 

int CycleIndex 

The member data CycleIndex will be used as a subscript to scan through the 
array Switching and select the values of each of its single byte elements in the 
proper sequence to step-wise drive a stepper motor. To drive a stepping motor 
forward using full-steps, CycleIndex will have values 0, 1, 2, 3, 0, etc. To drive 
the same motor in reverse direction CycleIndex will have values 0, 3, 2, 1, 0, 
etc. Similarly, to drive a stepping motor forward using half-steps, CycleIndex
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will have values 0, 1, 2, 3, 4, 5, 6, 7, 0, etc. When driving a stepping motor in 
reverse using half-steps, CycleIndex will have the values 0, 7, 6, 5, 4, 3, 2, 1, 0, 
etc.

int MaxIndex 

This data member will be used to detect the position in the array Switching
when a new cycle must recommence. As such MaxIndex stores the maximum 
value CycleIndex takes. For full-step control, only four elements of the 
Switching array are used, so the value of MaxIndex will be 4. However, all 
eight elements of the array Switching must be used for half-step control. In this 
case the value of MaxIndex will be 8. 

The member function definitions of the StepperMotor class are given in Listing 
8-9.

Listing 8-9 Member functions of the StepperMotor class. 

StepperMotor::StepperMotor(MOTORTYPE motortype, 
    int baseaddress): Motor(baseaddress) 
{
 MotorType = motortype; 
 CycleIndex = 0; 

 switch(MotorType) 
 { 
  case UPFS: MaxIndex = 4; 
       Switching[0] = 0x11; 
       Switching[1] = 0x12; 
       Switching[2] = 0x22; 
       Switching[3] = 0x21; 
       break; 
  case UPHS: MaxIndex = 8; 
       Switching[0] = 0x01; 
       Switching[1] = 0x11; 
       Switching[2] = 0x10; 
       Switching[3] = 0x12; 
       Switching[4] = 0x02; 
       Switching[5] = 0x22; 
       Switching[6] = 0x20; 
       Switching[7] = 0x21; 
       break; 
  case BPFS: MaxIndex = 4; 
       Switching[0] = 0x99; 
       Switching[1] = 0x69; 
       Switching[2] = 0x66; 
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       Switching[3] = 0x96; 
       break; 
  case BPHS: MaxIndex = 8; 
       Switching[0] = 0x99; 
       Switching[1] = 0x09; 
       Switching[2] = 0x69; 
       Switching[3] = 0x60; 
       Switching[4] = 0x66; 
       Switching[5] = 0x06; 
       Switching[6] = 0x96; 
       Switching[7] = 0x90; 
 } 
}

void StepperMotor::Forward() 
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Reverse() 
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Brake() 
{
 switch(MotorType) 
 { 
  case UPFS: case UPHS: 
      WritePort0(0x11); 
      break; 
  case BPFS: case BPHS: 
      WritePort0(0x99); 
 } 
}

As usual, the constructor initialises the private data members of the class. If a 
motor type is specified in the actual argument for the parameter motortype, it 
will be assigned to the private data member MotorType. The CycleIndex is 
always initialised to 0. The MaxIndex is either set to 4 or to 8 depending on full-
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step control or half-step control. The array Switching is initialised depending on 
the motor type and the operating mode, explained as follows.

The MotorType is tested in a switch statement which is used to fill the array 
Switching with appropriate values for that combination of stepper motor and 
drive mode depending on the case value. The values that are written into the array 
Switching control the sequential switching of the H-bridges to drive a given 
stepper motor through its sequence of steps. Note that the stepper motors will use 
both H-bridges and have almost full supply voltage applied to their respective 
windings during each step. Their speed/position is controlled by the rate/number of 
steps. As such they do not use pulse width modulation for speed or torque control. 

The Forward() function of the StepperMotor class operates in a similar 
manner as the Reverse() function, and so only the Forward() function is 
explained (see Figure 8-24).

Figure 8-24 Operation of the Forward() function. 

The Brake() function implements a switch statement to apply braking 
appropriate to the motor type; a unipolar stepper motor or a bipolar stepper motor. 
Dynamic braking is applied uniquely for two of the four cases by closing and 
opening the required switches of the H-bridge. Note that in the configuration we 
have used for unipolar stepper motors, the armature cannot be short-circuited. 
Instead, voltage is not applied to the armature windings. 

The H-bridge connections for Bipolar and Unipolar Stepper Motors are shown in 
Figure 8-25 and Figure 8-26 respectively. All the classes have been defined and the 
definitions of all member functions have been provided. The implementation of the 
class hierarchy is now complete. We now need to develop a main() function to 
make use of these classes. 

void StepperMotor::Forward() 
{
   if(++CycleIndex == MaxIndex) 
      CycleIndex = 0; 
 WritePort0(Switching[CycleIndex]); 
 delay(257-GetSpeed()); 
}

CycleIndex is incremented 
and tested for exceeding its limit. 
If exceeded it will be reset. 

Contents of the array Switching
are written to the port, one element 
per step delay. 

Speed is controlled by inserting a 
controlled delay between 
consecutive writes to the port. 
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Figure 8-25  H-bridge connections for a Bipolar Stepper Motor. 

Figure 8-26  H-bridge connections for a Unipolar Stepper Motor. 

8.6 Virtual Functions - Application 
We are now ready to develop an application that makes use of virtual functions. 
This application will enable any of the types of motor accommodated in our class 
hierarchy developed earlier to be driven: 

1. DC motors. 
2. Unipolar stepper motors with dual-phase full-step control. 
3. Unipolar stepper motors with half-step control. 
4. Bipolar stepper motors with dual-phase full-step control. 
5. Bipolar stepper motors with half-step control. 

We will initially develop that part of the application that controls a ‘motor’ using 
the mechanism of virtual functions. Then we will add code to the program that 
allows a user to select a motor type to be driven.

The principal advantage of using virtual functions is the ability to write programs 
that can automatically bind a function to its associated object type at run-time. This 
allows us to write a very generic program. We start writing such a program by 
selecting a variable that can represent any of the objects in the hierarchy. The ideal 
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variable will be associated with the Motor class; the base class for all the real 
motor classes in the hierarchy. A pointer (which is a variable) to this class can 
point to any of the objects of its derived classes as explained below. 

C++ Base Class Pointers 

A base class pointer can point to objects of its class or it can point to any objects 
of its derived classes. When we use a base class pointer to point to an object 
from a derived class and a virtual function is called through this pointer, the 
corresponding member function of that derived class will be selected and called. 

Therefore, we can create a pointer to the Motor class as shown below and use it to 
point to any of the real motor classes derived from it:
Motor *MotorPtr; 

Our particular program will carry out the following steps: 

1. Drive the motor forward at a speed of 150 until a key is pressed. 
2. Drive the motor forward at a speed of 255 until a key is pressed. 
3. Reverse the motor at a speed of 150 until a key is pressed. 
4. Reverse the motor at a speed of 255 until a key is pressed. 
5. Stop the motor (braking). 
6. Turn off power to the motor. 

The code that implements these requirements is shown in Listing 8-10. Here we 
use the function kbhit() to detect a key press and the function getch() to 
clear the keyboard buffer after the key press.

Listing 8-10 Generic code to control 'a Motor'. 

   Motor *MotorPtr; 

   // Insert statements to choose a specific motor here 

 //..... Motor control part starts here ..... 
 MotorPtr->SetSpeed(150); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); // clear keyboard buffer 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); 

 MotorPtr->SetSpeed(150); 
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 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 cout << endl << "   Braking Applied!" << endl; 
 while(!kbhit()) MotorPtr->Brake(); 
 getch(); 

 MotorPtr->Off(); 
 //..... Motor control part ends here ..... 

The user must be given a list of motor types to be able to choose a motor to 
operate. The code to implement this task is given in Listing 8-11. 

Listing 8-11 Statements to display a menu of Motors on the screen. 

 int Selection; 

 clrscr(); 

 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 

Having selected the motor, we need to use dynamic memory allocation to create 
the object type that corresponds to the motor selected. Listing 8-12 shows the 
dynamic memory allocation segment of the program. 

Listing 8-12  Dynamic memory allocation for the selected Motor. 

 switch(Selection) 
 { 
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 case 1: MotorPtr = new DCMotor; 
  break; 
 case 2: MotorPtr = new StepperMotor(UPFS); 
  break; 
 case 3: MotorPtr = new StepperMotor(UPHS); 
  break; 
 case 4: MotorPtr = new StepperMotor(BPFS); 
  break; 
 case 5: MotorPtr = new StepperMotor(BPHS); 
  break; 
 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
 } 

 if(MotorPtr == NULL) 
 { 
  cout << "Memory allocation failed " << endl; 
  getch(); 
  exit(1); 
 }  

At the end of this program segment, the pointer MotorPtr should be initialised to 
point to a valid object in memory. If not, the program will exit because a matching 
motor type could not be found, or memory allocation has failed. Once the pointer is 
initialised, the program segment given in Listing 8-10 can be executed. The 
complete main() function is given in Listing 8-13. 

Listing 8-13 The main() function to control 'a Motor'. 

void main() 
{
 Motor *MotorPtr; 
 int Selection; 

 clrscr(); 

 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
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 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 

 switch(Selection) 
 { 
 case 1: MotorPtr = new DCMotor; 
  break; 
 case 2: MotorPtr = new StepperMotor(UPFS); 
  break; 
 case 3: MotorPtr = new StepperMotor(UPHS); 
  break; 
 case 4: MotorPtr = new StepperMotor(BPFS); 
  break; 
 case 5: MotorPtr = new StepperMotor(BPHS); 
  break; 
 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
 } 

 if(MotorPtr == NULL) 
 { 
  cout << "Memory allocation failed " << endl; 
  getch(); 
  exit(1); 
 } 
 cout << "**********************************" << endl; 
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl; 
 cout << "**********************************" << endl;
 cout << endl; 
 cout << "   After connecting power,”; 
 cout << “ press a key to continue " << endl; 
 getch(); 
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 cout << "   Keypress changes Speed/Rotation (& 
Braking)." << endl; 

 //..... Motor control part starts here ..... 
 MotorPtr->SetSpeed(150); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); // clear keyboard buffer 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); 

 MotorPtr->SetSpeed(150); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 cout << endl << "   Braking Applied!" << endl; 
 while(!kbhit()) MotorPtr->Brake(); 
 getch(); 

 MotorPtr->Off(); 
 //..... Motor control part ends here ..... 
 // Free the memory occupied by the 'Motor' object 
 delete MotorPtr; 
}

The compiler should have seen the definition of the entire class hierarchy and the 
definition of all member functions when it comes time to compile the main()
function in Listing 8-13. We will defer explaining the complete program until 
virtual destructors have been discussed. 

8.6.1 Virtual Destructors 
The destructor of the class is called indirectly whenever the delete operator is 
used on an object of the class as discussed in Section 5.3.8. Since we have not 
declared any destructors in our motor class hierarchy, the only destructors available 
to our classes are the default destructors generated by the compiler for each class in 
the hierarchy. The selected motor has a corresponding ‘motor’ object instantiated 
in the body of the program’s switch statement (Listing 8-13). When the program 
is finished using the ‘motor’ object, it frees the memory occupied by the ‘motor’ 
object using the following statement: 
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delete MotorPtr; 

Since MotorPtr is a pointer to the abstract base class Motor, the previous 
statement will call the default destructor of the Motor class and will only de-
allocate the space occupied by a Motor class object. The delete statement will 
not free the memory space occupied by the actual object in use (such as 
DCMotor), thereby generating a memory leak. We can demonstrate this event 
using an example program that has a simple class structure and a simple main()
function as shown in Listing 8-14. Note: to further simplify the example, the Base
and Derived classes do not have data members. We have also included cout
statements within the body of the two destructors to show when each destructor is 
called. If the destructors did not have these cout statements, they would be 
identical to the default destructors generated by the compiler. 

Listing 8-14 Use of non-virtual destructors. 

#include <conio.h> 
#include <iostream.h> 

class Base 
{
 public: 
    Base(){} 
    ~Base() 
    { 
     cout << "Base type object deleted" << endl; 
    } 
};

class Derived : public Base 
{
 public: 
    Derived(){}; 
    ~Derived() 
    { 
     cout << "Derived type object deleted " << endl; 
    } 
};

void main() 
{
 Base *BasePtr; 

 BasePtr = new Derived;   // BasePtr points to an object 
                             // of type Derived. 
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 delete BasePtr;   // Deletes object 
}

The pointer identifier BasePtr is declared to be of type Base. However, it is 
used to point to a dynamically allocated class object that is of type Derived. We 
use the following statement with the intention of deleting the dynamically allocated 
object of class Derived:

delete BasePtr; 

We would expect this statement to call the destructor of the derived class. 
However, the following message is displayed when this program is executed: 
Base type object deleted 

This indicates that the destructor of the Derived class has not been called as 
intended to destroy the dynamically allocated Derived type object. We change 
the program to operate correctly by making the destructor ~Base() virtual. The 
modified program listing is shown in Listing 8-15. 

Listing 8-15 Use of virtual destructors. 

#include <conio.h> 
#include <iostream.h> 

class Base 
{
 public: 
    Base(){} 
    virtual ~Base() 
    { 
     cout << "Base type object deleted" << endl; 
    } 
};

class Derived : public Base 
{
 public: 
    Derived(){}; 
    ~Derived() 
    { 
     cout << "Derived type object deleted " << endl; 
    } 
};

void main() 
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{
 Base *BasePtr; 

 BasePtr = new Derived;   // BasePtr points to an object 
                             // of type Derived. 
 delete BasePtr;   // Deletes object 
}

Note that in Listing 8-15 the keyword virtual is added in front of the destructor 
name ~Base(). This provides the link to all virtual destructors down to the next 
level of the class hierarchy so the correct destructors will be called. If you run this 
program you will see the following printed on the screen: 
Derived type object deleted
Base type object deleted 

This demonstrates that the delete statement has called the Derived class 
destructor and the Base class destructor, properly relinquishing the memory 
allocated for the Derived and Base class objects. Note: when an object of a 
derived class is instantiated, the constructor function of the base class is called first 
followed by a call to the constructor of the derived class. The derived class inherits 
the members of the base class that are instantiated in this manner. Therefore, it is 
important to include virtual destructors so that any memory allocation from within 
the derived class and its base class is properly relinquished. 

Now we can return our attention to the motor control program. To allow the 
delete statements to properly de-allocate the dynamically allocated objects, we 
must provide a set of destructors; one destructor for each class of the motor class 
hierarchy, and we must make them virtual destructors. The bodies of these 
destructors can be empty. We simply need to establish a network of virtual 
destructors throughout the class hierarchy so that proper late binding will take 
place for the destructors. The modified class definitions are given in Listing 8-16 
through to Listing 8-18. 

C++ Virtual Destructor Names

In a class hierarchy all virtual functions must have the same function signature; 
i.e. they must have the same function name, same number of formal arguments 
and the same types of formal arguments in each virtual function. However, 
virtual destructors have different names throughout the hierarchy. Despite 
having different destructor function signatures, late binding will enable the 
correct set of destructors to be deployed in response to a delete statement. 
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Listing 8-16 AbstractMotor class with virtual destructor. 

class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 

virtual ~AbstractMotor(){} 
};

Listing 8-17 ParallelPort class with virtual destructor. 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 

virtual ~ParallelPort(){} 
};

Listing 8-18 Motor class with virtual destructor. 

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress=0x378); 
  void Off(); 
  virtual void Forward()=0; 
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  virtual void Reverse()=0; 
  virtual void Brake()=0; 

virtual ~Motor(){} 
};

Now that we have proper destructors in our classes, we can write a complete 
program using virtual functions to control a motor and free memory as intended. 
Such a program is shown in Listing 8-19. Note that virtual destructors are not 
added to the DCMotor class or the StepperMotor class since these two classes 
are the terminal classes of the hierarchy. However, the program would still function 
properly if virtual destructors had been added to these two classes. 

NOTE

Ensure the interface board is unpowered before connecting any type of motor. 
This needs to be done for the following reason. 
Before first running the program, the port controlling the motor will not be under 
control of the program and may be in an unknown state. This unknown state can 
be such that the port’s logic states would drive the transistors to short-circuit the 
motor’s power supply (damaging the transistors and possibly the power supply). 
The program instructs the user to apply power to the board once it has set these 
bits to a safe state. When the program ends, it sets the used bits of the port to a 
safe state to prevent any damage to the transistors or the power supply. 
Connect a DC motor to the interface board as given in Table 8-7 and Table 8-9.  
Stepper motors are connected to the interface board as shown in Figure 8-25 and 
Figure 8-26. 
If the motor does not drive as expected, first check for incorrect connections. 

Listing 8-19  Complete program to control 'a Motor' using Virtual Functions. 

// ************************************************** 
// Program to operate a Motor using Virtual Functions. 
// ************************************************** 
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 

class ParallelPort 
{
 private: 
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  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
  virtual ~ParallelPort(){} 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Inverting Most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}
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class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~AbstractMotor(){} 
};

AbstractMotor::AbstractMotor()
{
   Speed =0; 
}

void AbstractMotor::SetSpeed(int speed) 
{
   Speed = speed; 
   if(Speed > 255) Speed = 255; // Limit upper value 
   if(Speed < 0) Speed = 0; // Limit lower value 
}

int AbstractMotor::GetSpeed() 
{
   return Speed; 
}

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress=0x378); 
  void Off(); 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~Motor(){} 
};

Motor::Motor(int baseaddress): ParallelPort(baseaddress) 
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{
 Off(); 
}

void Motor::Off() 
{
 WritePort0(0x00); 
}

class DCMotor : public Motor 
{
 public: 
  DCMotor(int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

DCMotor::DCMotor(int baseaddress):Motor(baseaddress) 
{
}

void DCMotor::Forward() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x09); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Reverse() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x06); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Brake() 
{
 WritePort0(0x0C); 
}
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enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS}; 

class StepperMotor : public Motor 
{
 private: 
  MOTORTYPE MotorType; 
  unsigned char Switching[8]; 
  int CycleIndex; 
  int MaxIndex; 

 public: 
  StepperMotor(MOTORTYPE motortype = UPFS, 
           int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

StepperMotor::StepperMotor(MOTORTYPE motortype, 
    int baseaddress): Motor(baseaddress) 
{
 MotorType = motortype; 
 CycleIndex = 0; 

 switch(MotorType) 
 { 
  case UPFS: MaxIndex = 4; 
       Switching[0] = 0x11; 
       Switching[1] = 0x12; 
       Switching[2] = 0x22; 
       Switching[3] = 0x21; 
       break; 
  case UPHS: MaxIndex = 8; 
       Switching[0] = 0x01; 
       Switching[1] = 0x11; 
       Switching[2] = 0x10; 
       Switching[3] = 0x12; 
       Switching[4] = 0x02; 
       Switching[5] = 0x22; 
       Switching[6] = 0x20; 
       Switching[7] = 0x21; 
       break; 
  case BPFS: MaxIndex = 4; 
       Switching[0] = 0x99; 
       Switching[1] = 0x69; 
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       Switching[2] = 0x66; 
       Switching[3] = 0x96; 
       break; 
  case BPHS: MaxIndex = 8; 
       Switching[0] = 0x99; 
       Switching[1] = 0x09; 
       Switching[2] = 0x69; 
       Switching[3] = 0x60; 
       Switching[4] = 0x66; 
       Switching[5] = 0x06; 
       Switching[6] = 0x96; 
       Switching[7] = 0x90; 
 } 
}

void StepperMotor::Forward() 
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Reverse() 
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Brake() 
{
 switch(MotorType) 
 { 
  case UPFS: case UPHS: 
      WritePort0(0x11); 
      break; 
  case BPFS: case BPHS: 
      WritePort0(0x99); 
 } 
}

void main() 
{
 Motor *MotorPtr; 
 int Selection; 
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 clrscr(); 

 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 

 switch(Selection) 
 { 
 case 1: MotorPtr = new DCMotor; 
  break; 
 case 2: MotorPtr = new StepperMotor(UPFS); 
  break; 
 case 3: MotorPtr = new StepperMotor(UPHS); 
  break; 
 case 4: MotorPtr = new StepperMotor(BPFS); 
  break; 
 case 5: MotorPtr = new StepperMotor(BPHS); 
  break; 
 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
 } 

 if(MotorPtr == NULL) 
 { 
  cout << "Memory allocation failed " << endl; 
  getch(); 
  exit(1); 
 } 
 cout << "**********************************" << endl; 
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl; 
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 cout << "**********************************" << endl;
 cout << endl; 
 cout << "   After connecting power,”; 
 cout << “ press a key to continue " << endl; 
 getch(); 
 cout << endl; 
 cout << "   Keypress changes Speed/Rotation”; 
 cout << “ (& Braking)." << endl; 

 //..... Motor control part starts here ..... 
 MotorPtr->SetSpeed(150); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); // clear keyboard buffer 

 MotorPtr->SetSpeed(220); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); 

 MotorPtr->SetSpeed(250); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 cout << endl << "   Braking Applied!" << endl; 
 while(!kbhit()) MotorPtr->Brake(); 
 getch(); 

 MotorPtr->Off(); 
 //..... Motor control part ends here ..... 
 // Free the memory occupied by the 'Motor' object 
 delete MotorPtr; 
}

Don’t be overwhelmed by the length of this program. In general, programmers 
create header files and library files to hide all the code that is shown ahead of the 
main() function. Had we done the same, the program to control any of the motors 
in our list would be the size of the main function. 

Observe the motor’s behaviour without the effect of dynamic braking by 
commenting out the call to the Brake() function in Listing 8-19. This is best seen 
if the motor shaft has some inertial load connected to it. 

If we did NOT use virtual functions, then the code to control the motors (shown in 
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Listing 8-10) will need to be included within each case of the switch statement 
in the main() function of Listing 8-13. The pointer used within each case will 
need to be declared to point specifically to an object for that particular case, and 
all functions will be linked at programming time (early binding). A main()
function equivalent to that of Listing 8-13, but without the use of virtual functions 
is given in Listing 8-20. 

Listing 8-20 main() function WITHOUT using virtual functions. 

void main() 
{
 int Selection; 
 DCMotor* DCMotorPtr; 
 StepperMotor* UPFSStepperMotorPtr; 
 StepperMotor* UPHSStepperMotorPtr; 
 StepperMotor* BPFSStepperMotorPtr; 
 StepperMotor* BPHSStepperMotorPtr; 

 clrscr(); 

 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 
 cout << endl; 

 switch(Selection) 
 { 

case 1: DCMotorPtr = new DCMotor;
  if(DCMotorPtr == NULL) 
  { 
   cout << "Memory allocation failed " << endl; 
   exit(1); 
  } 
  cout << "**********************************" << 
endl;
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  cout << "* CONNECT BOARD POWER SUPPLY NOW *" << 
endl;
  cout << "**********************************" << 
endl; cout << endl; 
  cout << "   After connecting power,”; 
  cout << “ press a key to continue " << endl; 
  getch(); 

  cout << "   KEYPRESS changes SPEED/ROTATION (& 
Braking)." << endl; 
  // DCMotor control part starts here 
  DCMotorPtr->SetSpeed(150); 
  while(!kbhit()) DCMotorPtr->Forward(); 
  getch(); // clear keyboard buffer 

  DCMotorPtr->SetSpeed(255); 
  while(!kbhit()) DCMotorPtr->Forward(); 
  getch(); 

  DCMotorPtr->SetSpeed(150); 
  while(!kbhit()) DCMotorPtr->Reverse(); 
  getch(); 

  DCMotorPtr->SetSpeed(255); 
  while(!kbhit()) DCMotorPtr->Reverse(); 
  getch(); 

  while(!kbhit()) DCMotorPtr->Brake(); 

  DCMotorPtr->Off(); 
  // DCMotor control part ends here 
  // Release memory occupied by the DCMotor object 
  delete DCMotorPtr; 
  break; 

case 2: UPFSStepperMotorPtr = new StepperMotor(UPFS);
  if(UPFSStepperMotorPtr == NULL) 
  { 
   cout << "Memory allocation failed " << endl; 
   exit(1); 
  } 
  cout << "**********************************" << 
endl;
  cout << "* CONNECT BOARD POWER SUPPLY NOW *" << 
endl;
  cout << "**********************************" << 
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endl; cout << endl; 
  cout << "   After connecting power,”; 
  cout << “ press a key to continue " << endl; 
  getch(); 
  cout << "   KEYPRESS changes SPEED/ROTATION (& 
Braking)." << endl; 
  // UPFS Motor control part starts here 
  UPFSStepperMotorPtr->SetSpeed(150); 
  while(!kbhit()) UPFSStepperMotorPtr->Forward(); 
  getch(); // clear keyboard buffer 

  UPFSStepperMotorPtr->SetSpeed(220); 
  while(!kbhit()) UPFSStepperMotorPtr->Forward(); 
  getch(); 

  UPFSStepperMotorPtr->SetSpeed(250); 
  while(!kbhit()) UPFSStepperMotorPtr->Reverse(); 
  getch(); 

  UPFSStepperMotorPtr->SetSpeed(255); 
  while(!kbhit()) UPFSStepperMotorPtr->Reverse(); 
  getch(); 

  while(!kbhit()) UPFSStepperMotorPtr->Brake(); 

  UPFSStepperMotorPtr->Off(); 
  // UPFS Motor control part ends here 
  // Release memory occupied by the DCMotor object 
  delete UPFSStepperMotorPtr;    
  break; 

case 3: UPHSStepperMotorPtr = new StepperMotor(UPHS);
  if(UPHSStepperMotorPtr == NULL) 
  { 
   cout << "Memory allocation failed " << endl; 
   exit(1); 
  } 
  cout << "**********************************" << 
endl;
  cout << "* CONNECT BOARD POWER SUPPLY NOW *" << 
endl;
  cout << "**********************************" << 
endl; cout << endl; 
  cout << "   After connecting power,”; 
  cout << “ press a key to continue " << endl; 
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  getch(); 
  cout << "   KEYPRESS changes SPEED/ROTATION (& 
Braking)." << endl; 
  // UPHS Motor control part starts here 
  UPHSStepperMotorPtr->SetSpeed(150); 
  while(!kbhit()) UPHSStepperMotorPtr->Forward(); 
  getch(); // clear keyboard buffer 

  UPHSStepperMotorPtr->SetSpeed(220); 
  while(!kbhit()) UPHSStepperMotorPtr->Forward(); 
  getch(); 

  UPHSStepperMotorPtr->SetSpeed(250); 
  while(!kbhit()) UPHSStepperMotorPtr->Reverse(); 
  getch(); 

  UPHSStepperMotorPtr->SetSpeed(255); 
  while(!kbhit()) UPHSStepperMotorPtr->Reverse(); 
  getch(); 

  while(!kbhit()) UPHSStepperMotorPtr->Brake(); 

  UPHSStepperMotorPtr->Off(); 
  // UPHS Motor control part ends here 
  // Release memory occupied by the DCMotor object 
  delete UPHSStepperMotorPtr;    
  break; 

case 4: BPFSStepperMotorPtr = new StepperMotor(BPFS);
  if(BPFSStepperMotorPtr == NULL) 
  { 
   cout << "Memory allocation failed " << endl; 
   exit(1); 
  } 
  cout << "**********************************" << 
endl;
  cout << "* CONNECT BOARD POWER SUPPLY NOW *" << 
endl;
  cout << "**********************************" << 
endl; cout << endl; 
  cout << "   After connecting power,”; 
  cout << “ press a key to continue " << endl; 
  getch(); 
  cout << "   KEYPRESS changes SPEED/ROTATION (& 
Braking)." << endl; 
  // BPFS Motor control part starts here 
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  BPFSStepperMotorPtr->SetSpeed(150); 
  while(!kbhit()) BPFSStepperMotorPtr->Forward(); 
  getch(); // clear keyboard buffer 

  BPFSStepperMotorPtr->SetSpeed(220); 
  while(!kbhit()) BPFSStepperMotorPtr->Forward(); 
  getch(); 

  BPFSStepperMotorPtr->SetSpeed(250); 
  while(!kbhit()) BPFSStepperMotorPtr->Reverse(); 
  getch(); 

  BPFSStepperMotorPtr->SetSpeed(255); 
  while(!kbhit()) BPFSStepperMotorPtr->Reverse(); 
  getch(); 

  while(!kbhit()) BPFSStepperMotorPtr->Brake(); 

  BPFSStepperMotorPtr->Off(); 
  // BPFS Motor control part ends here 
  // Release memory occupied by the DCMotor object 
  delete BPFSStepperMotorPtr;    
  break; 

case 5: BPHSStepperMotorPtr = new StepperMotor(BPHS);
  if(BPHSStepperMotorPtr == NULL) 
  { 
   cout << "Memory allocation failed " << endl; 
   exit(1); 
  } 
  cout << "**********************************" << 
endl;
  cout << "* CONNECT BOARD POWER SUPPLY NOW *" << 
endl;
  cout << "**********************************" << 
endl; cout << endl; 
  cout << "   After connecting power,”; 
  cout << “ press a key to continue " << endl; 
  getch(); 
  cout << "   KEYPRESS changes SPEED/ROTATION (& 
Braking)." << endl; 
  // BPHS Motor control part starts here 
  BPHSStepperMotorPtr->SetSpeed(150); 
  while(!kbhit()) BPHSStepperMotorPtr->Forward(); 
  getch(); // clear keyboard buffer 
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  BPHSStepperMotorPtr->SetSpeed(220); 
  while(!kbhit()) BPHSStepperMotorPtr->Forward(); 
  getch(); 

  BPHSStepperMotorPtr->SetSpeed(250); 
  while(!kbhit()) BPHSStepperMotorPtr->Reverse(); 
  getch(); 

  BPHSStepperMotorPtr->SetSpeed(255); 
  while(!kbhit()) BPHSStepperMotorPtr->Reverse(); 
  getch(); 

  while(!kbhit()) BPHSStepperMotorPtr->Brake(); 

  BPHSStepperMotorPtr->Off(); 
  // BPHS Motor control part ends here 
  // Release memory occupied by the DCMotor object 
  delete BPHSStepperMotorPtr;    
  break; 

 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
   } 
}

As you can see, coding without the use of virtual functions can be quite inefficient. 
Note: the delete operator was used in Listing 8-10, Listing 8-13, and Listing 
8-20 to relinquish the dynamically allocated memory that stored the ‘motor’ object. 

8.7 Keyboard Controls 
We can enhance control of the motor by making use of the PC keyboard. To do this 
the program must be able to detect each press of the keys used for motor control 
purposes. These key presses can be detected using several methods. The easiest 
method is to use the getch() or the getche() functions. Another option is to 
use the library function kbhit().
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The functions getch() and getche() as their names imply, can be used to read
the character corresponding to the key pressed. The function getche() has the 
extra capability of being able to display the character on-screen as it is read. This is 
known as echoing to the screen (the added ‘e’ stands for ‘echo’). However, there is 
a disadvantage to using these two functions being that they wait for a key press. 
Execution of a getch() function will not allow following statements to be 
executed until a key is pressed. This delay will prevent us from generating the fast 
changing signals needed for motor control. 

The kbhit() function operates differently. It does not wait for a key press. It 
checks if a key has been pressed. If a key has been pressed, the function will return 
true, if not it will return 0, meaning false. Because it does not wait for a key press, 
the program will execute continuously as intended. Note that kbhit() does not 
clear the keyboard buffer (ready for the next time it needs to be used). 

The built-in library also provides another function named bioskey() used to 
detect normal keys with an ASCII code (see Appendix B) or extended keys such as 
function keys, INS, DEL keys etc. Extended keys are identified by a two-byte key 
code whereas normal keys are identified by a one-byte key code. 

The function bioskey() can operate in different modes depending on the 
parameter passed to it. It uses one integer parameter whose value determines if it 
will detect a key press like the kbhit() function or read the pressed key. Note 
that this function does clear the keyboard buffer when used to read a key. 

We can read a special location in memory using the peekb() function to detect 
keys including Right Shift, Left Shift, Ctrl, Alt, Caps lock, Scroll lock, etc. Note 
that the peekb() function cannot detect some keys such as the arrow keys. 

The byte read from this memory location has flags (bits, shown in Figure 8-27) that 
are used to indicate which keys are pressed at any given time. The peekb()
function is the fastest to execute and will generate minimum disruption to the 
continuous execution of the program. Therefore, using peekb() will enable 
smooth operation of the motors. If slower functions were used to read the 
keyboard, motor control could be erratic. 

We will use the peekb() function to add keyboard control to our program using 
the following combinations of keys: 

Pressing the Ctrl  key will drive the motor forward. 
Pressing the Alt key will drive the motor in reverse. 
Pressing the Right Shift key will increase speed. 
Pressing the Left Shift key will decrease speed. 
Pressing both Left Shift and Right Shift keys brakes the motor. 
Pressing No keys will switch motor power off. 
Pressing the Insert key will end the program. 

The status of the Shift keys, Control key, Alt key and the Insert key can be 
determined by reading a special memory location using peekb(). This 8-bit 
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memory location is at the segment:offset address of 0x40:0x17. When the 
respective key is pressed, its bit will be 1. For an explanation of segment:offset 
addressing, see Technical Reference: Personal Computer AT by IBM Corporation.

Figure 8-27  Memory byte at 0x40:0x17 used to store key status. 

A while loop is implemented in the program segment shown in Listing 8-21 
which will run continuously provided the variable Quit is 0. This listing can be 
viewed as a replacement for Listing 8-10. 

Listing 8-21 Motor control using a keyboard. 

 Motor *MotorPtr; 

 int Quit = 0; 
  unsigned char key = 0; 
 int SpeedLock = 1; 

 while(!Quit) 
    { 
   key = peekb(0x40,0x17); // Read control key byte. 
   if(key & 0x80) // Test Insert key ON (MSBit '1'). 
         Quit = 1;  // Exit the program. 

   else 
   { 
  // If both shift keys are released SpeedLock is 
  // released

if(!(key & 0x01) && !(key & 0x02)) 
    SpeedLock = 0;

  key &= 0x0F; // Filter out bits corresponding to 

Right shift 

0 1 2 3 4 5 6 7 

Left shift 

Ctrl

AltScroll lock

Num lock

Caps lock

Insert

Byte at 0x40:0x17 
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        // just SHIFT, ALT & CTRL keys. 

  switch(key) 
   { 
   case 0x04 : 
           MotorPtr->Forward(); 
   break; 

   case 0x08 : 
           MotorPtr->Reverse(); 
   break; 

   case 0x01 : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
    SpeedLock = 1; 
   } 
   break; 

   case 0x02 : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
    SpeedLock = 1;
   } 
   break; 

   case 0x03 : 
   MotorPtr->Brake(); 
   break; 

   case 0x05 : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
    SpeedLock = 1;
   } 
   MotorPtr->Forward(); 
   break; 

   case 0x06 : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
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    SpeedLock = 1;
   } 
   MotorPtr->Forward(); 
   break; 

   case 0x09 : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4);
    SpeedLock = 1;
   } 
   MotorPtr->Reverse(); 
   break; 

   case 0x0B : 
           if(!SpeedLock) 
   { 
    MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4);
    SpeedLock = 1;
   } 
   MotorPtr->Reverse(); 
   break; 

   case 0x00 : 
           MotorPtr->Off(); 
   } 
   }
   delete MotorPtr; 

The peekb() function is used within the while loop to read the contents of the 
memory location 0x40:0x17. This value is stored in the variable key. We first 
check if the Insert key has been pressed, used as input to end program operation. 
We can detect if the Insert key has been pressed by carrying out an AND operation 
with 0x80. If the Insert key has been pressed, the result will be a non-zero value 
and therefore we set Quit to 1. As a result, the while loop will end followed by 
normal program termination. 

If the Insert key has not been pressed, then program operation will continue. 
Hence, we now only need to read the lower four bits of the byte shown in Figure 
8-27. These bits represent the remaining keys assigned for use by the program 
since we are not using Caps lock, Num lock, or Scroll lock keys. By filtering out 
the unused upper four bits of key (setting them to zero), we will have unique byte 
values for our respective key-press combinations. These bits are filtered out using 
an AND operation of the byte with 0x0F. The resulting value is stored back in key
and then tested in a switch statement. All cases that can be implemented are 
listed in the switch statement where appropriate actions are taken. The main()
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function of Listing 8-19 has been modified as shown in Listing 8-22 to implement 
keyboard controls. 

The program has been given a ‘speed-locking’ mechanism that uses the identifier 
SpeedLock to control changes in motor speed. This mechanism will only allow 
speed to be changed once by a small increment for each press of the respective 
control key. Repeated reading of the speed control key while it is held pressed is 
not allowed to produce further change in speed, hence the term ‘speed-locking’. 
Without this control in place, excessive changes in motor speed would occur 
during the many executions of the while loop when the key is pressed. 

Motor speed can only be adjusted with the initial press of a speed control key (Shift 
keys). At this time the variable SpeedLock will be set. Once SpeedLock is set, 
no further changes in speed can be made until that speed control key has been 
released. Releasing the key frees or ‘unlocks’ the speed-locking mechanism by 
clearing the value of SpeedLock (i.e. !SpeedLock is now true) and allows 
another increment in speed to be effected. 

Speed-locking is implemented in the program in all speed control statements inside 
the switch statement block. Each speed control statement requires SpeedLock
to be false (SpeedLock = 0) before its respective if statement can be executed. 
SpeedLock will be false whenever both speed control keys are released. When 
one of the speed control keys is pressed, its associated speed control statement will 
be selected within its if statement. This speed control statement increments or 
decrements the value of Speed by 4. The next statement in this if block turns 
speed-locking back on by setting the value of SpeedLock. Speed-locking will 
remain in effect until the speed control key is again released. 

IMPORTANT: Do not use the following program to drive any motor without first 
observing the power-up procedure and motor connections as explained in the Note 
Box on page 243. If the motor does not drive as expected, first check the motor is 
correctly wired. 

Listing 8-22 The complete program with keyboard controls 

// ************************************************** 
// Program implements virtual functions and keyboard 
// controls to operate a Motor. 
// ************************************************** 
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 

class ParallelPort 
{
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 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
  virtual ~ParallelPort(){} 
};

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Inverting Most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}
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class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~AbstractMotor(){} 
};

AbstractMotor::AbstractMotor()
{
   Speed =0; 
}

void AbstractMotor::SetSpeed(int speed) 
{
   Speed = speed; 
   if(Speed > 255) Speed = 255; // Limit upper value 
   if(Speed < 0) Speed = 0; // Limit lower value 
}

int AbstractMotor::GetSpeed() 
{
   return Speed; 
}

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress=0x378); 
  void Off(); 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~Motor(){} 
};
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Motor::Motor(int baseaddress):ParallelPort(baseaddress) 
{
 Off(); 
}

void Motor::Off() 
{
 WritePort0(0x00); 
}

class DCMotor : public Motor 
{
 public: 
  DCMotor(int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

DCMotor::DCMotor(int baseaddress):Motor(baseaddress) 
{
}

void DCMotor::Forward() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x09); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Reverse() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x06); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Brake() 
{
 WritePort0(0x0C); 
}
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enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS}; 

class StepperMotor : public Motor 
{
 private: 
  MOTORTYPE MotorType; 
  unsigned char Switching[8]; 
  int CycleIndex; 
  int MaxIndex; 

 public: 
  StepperMotor(MOTORTYPE motortype = UPFS, 
           int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};

StepperMotor::StepperMotor(MOTORTYPE motortype, 
    int baseaddress): Motor(baseaddress) 
{
 MotorType = motortype; 
 CycleIndex = 0; 

 switch(MotorType) 
 { 
  case UPFS: MaxIndex = 4; 
       Switching[0] = 0x11; 
       Switching[1] = 0x12; 
       Switching[2] = 0x22; 
       Switching[3] = 0x21; 
       break; 
  case UPHS: MaxIndex = 8; 
       Switching[0] = 0x01; 
       Switching[1] = 0x11; 
       Switching[2] = 0x10; 
       Switching[3] = 0x12; 
       Switching[4] = 0x02; 
       Switching[5] = 0x22; 
       Switching[6] = 0x20; 
       Switching[7] = 0x21; 
       break; 
  case BPFS: MaxIndex = 4; 
       Switching[0] = 0x99; 
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       Switching[1] = 0x69; 
       Switching[2] = 0x66; 
       Switching[3] = 0x96; 
       break; 
  case BPHS: MaxIndex = 8; 
       Switching[0] = 0x99; 
       Switching[1] = 0x09; 
       Switching[2] = 0x69; 
       Switching[3] = 0x60; 
       Switching[4] = 0x66; 
       Switching[5] = 0x06; 
       Switching[6] = 0x96; 
       Switching[7] = 0x90; 
 } 
}

void StepperMotor::Forward() 
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Reverse() 
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Brake() 
{
 switch(MotorType) 
 { 
  case UPFS: case UPHS: 
      WritePort0(0x11); 
      break; 
  case BPFS: case BPHS: 
      WritePort0(0x99); 
 } 
}

void main() 
{
 Motor *MotorPtr; 
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 int Quit = 0; 
  unsigned char key = 0; 
 int SpeedLock = 1; 
 int Selection; 

 clrscr(); 
 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 
 switch(Selection) 
 { 
 case 1: MotorPtr = new DCMotor; 
  break; 
 case 2: MotorPtr = new StepperMotor(UPFS); 
  break; 
 case 3: MotorPtr = new StepperMotor(UPHS); 
  break; 
 case 4: MotorPtr = new StepperMotor(BPFS); 
  break; 
 case 5: MotorPtr = new StepperMotor(BPHS); 
  break; 
 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
 } 

 if(MotorPtr == NULL) 
 { 
  cout << "Memory allocation failed " << endl; 
  getch(); 
  exit(1); 
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 } 
 cout << "**********************************" << endl; 
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl; 
 cout << "**********************************" << endl;
 cout << endl; 
 cout << "   After connecting power,”; 
 cout << “ press a key to continue " << endl; 
 getch(); 

 while(!Quit) 
    { 
  key = peekb(0x40,0x17); // Read control key byte. 
  if(key & 0x80) // Test Insert key ON (MSBit '1'). 
   Quit = 1;  // Exit the program. 

  else 
  { 
  // If both shift keys are released SpeedLock is 
  // released 
   if(!(key & 0x01) && !(key & 0x02)) 
    SpeedLock = 0; 

   key &= 0x0F; // Filter out bits corresponding to 
       // just SHIFT, ALT & CTRL keys. 

   switch(key) 
   { 
    case 0x04 : 
            MotorPtr->Forward(); 
    break; 

    case 0x08 : 
    MotorPtr->Reverse(); 
    break; 

    case 0x01 : 
    if(!SpeedLock) 
    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4); 
      SpeedLock = 1; 
    } 
    break; 

    case 0x02 : 
            if(!SpeedLock) 
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    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4); 
      SpeedLock = 1; 
    } 
    break; 

    case 0x03 : 
 MotorPtr->Brake(); 

    break; 

    case 0x05 : 
            if(!SpeedLock) 
    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4); 
      SpeedLock = 1; 
    } 
    MotorPtr->Forward(); 
    break; 

    case 0x06 : 
            if(!SpeedLock) 
    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4); 
      SpeedLock = 1; 
    } 
    MotorPtr->Forward(); 
    break; 

    case 0x09 : 
    if(!SpeedLock) 
    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()+4); 
      SpeedLock = 1; 
    } 
    MotorPtr->Reverse(); 
    break; 

    case 0x0B : 
    if(!SpeedLock) 
    { 
      MotorPtr->SetSpeed(MotorPtr->GetSpeed()-4); 
      SpeedLock = 1; 
    } 
    MotorPtr->Reverse(); 
    break; 
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    case 0x00 : 
    MotorPtr->Off(); 
    } 
  } 
  delete MotorPtr; 
 } 
}

In our program that uses virtual functions, we were able to write the motor control 
portion as a generic module. This approach allows the program to bind the correct 
function to the object associated with the selected motor during program execution 
(late binding). Only after the user has selected the type of motor, will dynamic 
memory allocation and late binding take place to drive the motor. If the program 
had not used virtual functions, the programmer would need to provide extensive 
dedicated code to control each motor. This was seen in the modified main()
function given in Listing 8-20.

The program that uses virtual functions to control the motors does not need 
dedicated motor control code for each type of motor. Instead, the code is 
independent of the specific motor type and will even work for motors that may be 
added to the hierarchy in the future. These benefits are the main advantages of 
using virtual functions and can also be seen as one of the greatest strengths of 
object-oriented programming. 

8.8 Summary 
This chapter presented the construction and operation of DC Motors and Stepper 
Motors. Various means of controlling these motors has also been described. 

A class hierarchy was developed to represent all types of motor discussed at the 
beginning of the chapter. This was followed by a conceptual explanation of 
abstract classes and pure virtual functions. Class hierarchy’s and multiple 
inheritance were also explained. The need for a set of virtual destructors in a class 
hierarchy was also demonstrated. Unlike constructors, destructors can be virtual. 
These destructors are used to free an object’s dynamically allocated memory once 
the program no longer needs the object. 

A generic program for all real motor classes of the hierarchy was developed and 
integrated into a main() function to demonstrate the concept and advantages of 
late binding. Keyboard controls were then incorporated into the program to 
improve control of motors when using the interface board. 
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Header Files. 

Function files. 

Project files and make files. 



9.1 Introduction 
So far we have learned how to develop efficient object-oriented programs where 
the emphasis has been on the program statements (source code). In this chapter we 
will learn how to plan a program using pseudo-code, organise its structure, and 
write the program so typographical errors can be kept to a minimum. The 
development process to produce modular programs will also be explained. 

A modular program can be made by separating a lengthy single file program into a 
number of logical modules and then placing each module into its own dedicated 
file. This process greatly improves our ability to maintain our programs. 
Furthermore, it allows us to carry out modifications with greater ease and also 
promotes more efficient debugging of programs. An inevitable consequence of this 
modular approach is the multi-file program. We will learn how to create a multi-
file program from a number of source files and then generate a final executable 
file.

9.2 Efficient Coding Techniques 
The word coding is used is used in this chapter and refers to the writing of 
programming statements. No coding should commence until a detailed plan for the 
program is established. This plan is written as a general worded discription known 
as pseudo-code. If we are writing an object-oriented program, the first step should 
be creating the object classes and the associated class hierarchy. Using an object-
oriented approach tends to result in a program with good structure. Program 
development should be carried out in a number of manageable steps. At each of 
these steps the program (or the part of the program) coded to that point can be 
compiled and verified for errors.

Most editors used for programming provide cutting and pasting facilities for text 
editing. We can minimise typographical errors during the coding process by using 
text cutting and pasting operations. These typographical errors tend to be the cause 
of most compilation errors.

Pseudo-code
Using pseudo-code to outline the basic operation of an application can assist in its 
development. The following example demonstrates how pseudo-code is developed 
and used to generate program code. 

Program description: 

A crane is used to lift a weight from point A and move it to another point B. It 
is assumed that the crane uses three DC motors; one to lift/lower the load, 
another to move the load in the x direction, and the third motor to move the 
load in the y direction. 
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The pseudo-code is: 

Enter coordinates for points A and B. 
Move the crane to point A. 
Lift the load. 
Move the crane to point B.
Lower the load. 
End.

We can translate this pseudo-code into a C++ object-oriented program. The 
following example program shows one implementation of a main() function that 
implements the pseudo-code: 
void main() 
{
 Crane OurCrane;    // Create a Crane object. 
 Point a, b;        // Create two Point objects. 

 cout << “Enter coordinates of point A  ”; 
 cin >> a; 

 cout << endl << “Enter coordinates of point B  ”; 
 cin >> b; 

OurCrane.MoveToPoint(a);
OurCrane.LiftLoad();
OurCrane.MoveToPoint(b);
OurCrane.LowerLoad();

}

This main() function uses a Point object. It also uses a Crane object and 
implies that MoveToPoint(), LiftLoad() and LowerLoad() be member 
functions of the Crane class. This operation requires two points and three motors; 
one motor lifts and lowers the load, one motor drives in the X direction and another 
motor drives in the Y direction. 

The corresponding Point class would be as follows: 

class Point 
{
 private: 
  int X; 
  int Y; 

 public: 
  Point(); 
  Point(int x, int y); 
  void SetX(int x); 
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  void SetY(int y); 
  int GetX(); 
  int GetY(); 
};

A suitable class definition for the Crane class would be: 

class Crane 
{
 private: 
  Point A, B; 
  DCMotor LiftMotor, Xmotor, Ymotor; 

 public: 
  Crane(); 
  void SetPointA(Point a); 
  void SetPointB(Point b); 

 void MoveToPoint(); 
 void LiftLoad(); 
 void LowerLoad(); 

};

All member functions of the Crane class that generate movement will need to use 
the Forward(), Reverse(), and Brake() functions of the DCMotor class.

As demonstrated here, structured programming starts with good pseudo-code 
written with the program steps outlined in a structured manner. Each of these steps 
forms a statement in the main() function. The member functions of the class 
definition are expanded to include the necessary details for the function to perform 
their planned tasks. The following section describes a good approach for coding the 
AbstractMotor class and its member functions. 

Creating functions starting from class definitions. 
A few basic principles should be kept in mind when coding object classes and their 
member functions. In general, the members of a class can be listed anywhere 
within the scope of the class definition (between the open and close braces) under 
different access attributes. However, keeping the member data together and 
separate from the member functions can facilitate coding. 

The object class will often have a user-defined constructor that is used to initialise 
all its data members. Having placed data members together allows them to be 
copied as a block and placed into the body of the constructor for initialisation. 
They can also be copied and pasted elsewhere to code the definitions of other 
functions. The bodies of the member functions can be left empty and the source 
code then compiled to verify that it conforms to the syntax used by the C++ 
language.

Consider the AbstractMotor class definition from Listing 8-1 in Chapter 8 that 
has been reproduced in Listing 9-1. 
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Listing 9-1 AbstractMotor class definition. 

class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
};

In this class definition the data and functions are kept separate. It allows us to copy 
the set of non-pure virtual functions (that need to be defined) to a position just 
below the class definition as shown in Listing 9-2. Note that the pure virtual 
functions do not need to be copied since they will not have a function definition. It 
is good practice to keep the pure virtual functions together, preferably at the end of 
the member function declarations. This makes it easier to copy and paste the group 
of member function declarations we need to define. 

Listing 9-2 Set of member functions copied to be defined. 

class AbstractMotor 
{
 private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
};
AbstractMotor();
void SetSpeed(int speed); 
int GetSpeed(); 

9 PROGRAM DEVELOPMENT TECHNIQUES 277



This file cannot be compiled in its present form since it has incomplete and 
therefore incorrect syntax. It must be modified to give the functions the required 
basic syntax. To do this, each function name just copied must be qualified with the 
class name followed by the double colon operator (::). In the case of the 
AbstractMotor() function shown in Listing 9-2, we need to have: 

AbstractMotor::AbstractMotor()

The semicolon at the end of each line must be removed and an open brace and a 
close brace added to provide the start and the end of each member function. These 
changes to Listing 9-2 are shown in Listing 9-3. 

Listing 9-3 Skeletal member functions for the AbstractMotor class. 

class AbstractMotor 
{
 private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
};

AbstractMotor::AbstractMotor()
{
}

void AbstractMotor::SetSpeed(int speed) 
{
}

int AbstractMotor::GetSpeed() 
{
}

This file can now be compiled. Although it does not have any statements within the 
bodies of the member functions, correct program syntax has been applied. Note 
that the contents of the file cannot be linked to form an executable file without 
having a main() function. However, compiling will generate object code. There 

278 9 PROGRAM DEVELOPMENT TECHNIQUES 



is an advantage to compiling the file at this early stage; we can verify the structure 
of the class has correct syntax.

Skeletal functions 
Function definitions with empty bodies (as shown in Listing 9-3) can be referred to 
as skeletal functions. The bodies of these functions could be coded at this early 
stage of program development. However, they are intentionally left empty to 
simplify the task of establishing good program structure and correct syntax. It can 
even be advantageous to write an entire program using skeletal functions to verify 
its conceptual operation and structure.

Filling-in the constructors’ bodies 
The next stage is to code the bodies of the member functions, starting say with the 
constructor definition. As mentioned earlier, the most common purpose of the 
constructor is to initialise the data members of the class. This can be done by 
copying and pasting the entire set of data members into the body of each 
constructor of the class. In the example discussed above, we only have one data 
member. Listing 9-4 shows the constructor that has this data member copied and 
pasted into its body. Note that this function is incomplete and does not carry out its 
intended task. 

Listing 9-4 Copying the member data declarations into the body of the constructor. 

AbstractMotor::AbstractMotor()
{
 int Speed;  
}

This single statement shown in Listing 9-4 needs to be corrected as shown in 
Listing 9-5. Once this is done the constructor can initialise this data member and 
operate as intended.

Listing 9-5 The constructor with the syntax error eliminated. 

AbstractMotor::AbstractMotor()
{
 Speed = 0; // copied and pasted data members are  
    // initialized as required. 
}

Good habits with parenthesis, square brackets and braces 
Pairs of parentheses (), square brackets [], and braces {} are used extensively in 
C++ programming. We’ll use the general term brackets to describe all three types. 
When writing text we sometimes place an open parenthesis and forget to place the 
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close parenthesis. People use their intelligence to check and correct missing 
parentheses, however, a compiler lacks this ability. As a result, the programmer 
must correct for missing brackets. The misuse of brackets generally happens when 
the programmer loses track of a close bracket, and this generates errors when 
compiling the program. It can be difficult to determine the position in the program 
where the missing bracket should be placed once the program statements have been 
added. This situation is further complicated when nested brackets are used.

The best approach to avoid these problems is to place the matching open and close 
brackets simultaneously. The following techniques can be used to efficiently 
implement a class definition: 

Step 1:
class AbstractMotor 
{
};

Step 2:
class AbstractMotor 
{
 private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
}

The following steps show how the function declarations are developed: 

Step 1:
void SetSpeed(); 

Step 2:
void SetSpeed(int speed) 
{
}

Step 3:
void SetSpeed(int speed) 
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{
 int Speed; 
}

Step 4:
void SetSpeed(int speed) 
{
 Speed = 0; 
}

Nested Levels 
The following steps show how a nested if statement is developed: 

Step 1:
if()
{
}
else
{
}

Step 2:
if()
{
if()
{
}
else
{
}
}
else
{
}

Indentation is then used to clearly show the levels of nesting. The skeletal if
statement shown above would then become: 
if()
{
 if() 
 { 
 } 
 else 
 { 
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 }
}
else
{
}

Applying the same habits will help you type error-free code when using logical 
operators as part of conditional expressions in if statements: 

if()
{
 if(() && ())
 { 
 } 
 else 
 { 
 } 
}
else
{
}

We can complete the conditional expression as shown in this example: 
if(b > 0)
{
 if((a != 0) && (b/a > n))
 { 
 } 
 else 
 { 
 } 
}
else
{
}

9.3 Modular Programs 
Each program developed in previous chapters has all its program statements 
contained in one file. While this is satisfactory for smaller programs, it becomes 
less practical as programs grow in size and complexity. Larger programs have 
specific portions of their code separated into modules and stored as separate files. 
Because more than one file needs to be compiled and linked, the program becomes 
known as a multiple file program. 

There are additional reasons why programs are developed in a multiple file format. 
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In the case of object-oriented programming, the files can be treated as modules 
where each module contains the code for one object class. As a result, when 
distributing software relating to a particular object, only the code for that object 
needs to be distributed. Software developers typically supply object code modules 
(unreadable to the users) accompanied by files that allow the object code to be used 
and linked with a program. This helps to prevent the developers’ object code being 
illegally used or misused. 

When a particular object is used, only the file that corresponds to that one object 
needs to be included in the user code. This helps to minimise the size of a program. 
Had multiple objects been part of the file, the additional unused functions for those 
objects would also be compiled, slowing the compilation process. 

9.3.1 Separating Software into Modules 

Figure 9-1 Class hierarchy for Motor Driver class (Chapter 8). 

We will use the motor driver program developed in Chapter 8 (class hierarchy 
shown in Figure 9-1) to explain the process of generating a multiple file program. 
Each class is separated into two types of files. The class definition is placed into a 
header file, and the definitions of member functions for that class are placed into a 
function file (Figure 9-2). The remaining file for this example program (not shown) 
is generated from the main() function (note that this is not always the case). 

The compiler needs to access the class definitions in the header file and function 
definitions in the function file. The function file (as source code; *.cpp) is 
compiled into an .obj file or .lib file by the developer. The programmer that 

AbstractMotor
Class

ParallelPort
Class

DCMotor
Class

StepperMotor
Class

Motor
Class
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uses these files cannot read them, and so the developer’s software is protected from 
unauthorised copying and misuse. 

Figure 9-2  Code separation into header and function files. 

// class definition 
class DCMotor : public Motor 
{
  public: 
    DCMotor(int baseaddress=0x378); 
    virtual void Forward(); 
    virtual void Reverse(); 
    virtual void Brake(); 
};

Class definition 

Header File (*.h)

// member f’n 1 definition 
DCMotor::DCMotor(...)
{
   . 
   . 
   . 
}

// member f’n 2 definition 
DCMotor::Forward()
{
   . 
   . 
   . 
}

// member f’n 3 definition 
DCMotor::Reverse()
{
   . 
   . 
   . 
}

// member f’n 4 definition 
DCMotor::Brake()
{
   . 
   . 
   . 
}

// member f’n 5 definition 
DCMotor::Off()
{
   . 
   . 
   . 
}

Member function definitions 

Function File (*.cpp or *.obj or *.lib) 
Note: a *.cpp file is shown here

// class definition 
class DCMotor : public Motor 
{
  public: 
    DCMotor(int baseaddress=0x378); 
    virtual void Forward(); 
    virtual void Reverse(); 
    virtual void Brake(); 
};

// member f’n 1 definition 
DCMotor::DCMotor(...)
{
   . 
   . 
   . 
}

// member f’n 2 definition 
DCMotor::Forward()
{
   . 
   . 
   . 
}

// member f’n 3 definition 
DCMotor::Reverse()
{
   . 
   . 
   . 
}

// member f’n 4 definition 
DCMotor::Brake()
{
   . 
   . 
   . 
}

// member f’n 5 definition 
DCMotor::Off()
{
   . 
   . 
   . 
}

Class
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Object-oriented and non-object-oriented programs differ; in one case the functions 
are member functions, and in the other case all the functions are non-member 
functions. It is also possible for an object-oriented program to use a combination of 
the two cases. Its header file may contain a class definition and also some non-
member function declarations. 

If non-member C/C++ functions are to be used in the program, it is general practice 
to put the declarations of such functions into a header file and then to include that 
header file at the top of the source file. The definitions of the non-member 
functions may be provided in a separate function file in much the same way as the 
member functions of a particular class. The function file in its .obj/.lib form 
will be needed at linking time. 

9.3.2 Generating a Multiple File Program 

Figure 9-3  Use of include directives. 

As mentioned previously, whenever an object from a class is needed within a 
program, its class header file needs to be included in the program before the object 
can be used. The compiler will first interpret the class definition (from the first 
header file encountered) and then check that the class has been implemented 
correctly throughout the remainder of the program. The program will only compile 
correctly if the programmer has made function calls that are compatible with the 
function declarations in the header files. Figure 9-3 shows the use of the Motor,
DCMotor, and StepperMotor objects in the User Program, evident by the 
inclusion of their class header files. 

#include <stdlib.h>
#include “motor.h”
#include “dcmotor.h”
#include “stepper.h” 

void main() 
{

.
   . 
   . 
}

User Program (main.cpp)

Header files are 
included for 
each object 
used.

DCMotor class header file (dcmotor.h) 

Even inside a header file, the header
file corresponding to each object
used (in this header file) is included.

#include “motor.h”

class DCMotor : public Motor 
{
  public:
    DCMotor(int baseaddress=0x378); 
    virtual void Forward(); 
    virtual void Reverse(); 
    virtual void Brake(); 
    virtual void Off();
};
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Figure 9-4  Include header file in the function file of its class. 

Figure 9-4 shows the inclusion of the header file for the DCMotor class at the start 
of the function file for the DCMotor class. This will ensure all member function 
definitions of the DCMotor class (that were derived from the Motor class and 
overridden as required) will conform with the function declarations stipulated in 
the header file dcmotor.h.

// class definition 
#include “motor.h” 

class DCMotor : public Motor 
{
  public: 
   DCMotor(int baseaddress=0x378); 
   virtual void Forward(); 
   virtual void Reverse(); 
   virtual void Brake(); 
   virtual void Off(); 

Class definition 

Header File (dcmotor.h)

#include “dcmotor.h” 

// member f’n 1 definition 
DCMotor::DCMotor(..
{
   . 
   . 
   . 
}

// member f’n 2 definition 
DCMotor::Forward()
{
   . 
   . 
   . 
}

// member f’n 3 definition 
DCMotor::Reverse()
{
   . 
   . 
   . 
}

   . 
   . 
   . 
   . 
   .    . 

Member function definitions 

Function File (dcmotor.cpp or *.obj or *.lib)

The structure of DCMotor
class member functions must 
conform to the function 
declarations given in  the 
dcmotor.h file.
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Include directives 
The files that are included from the ‘include’ directory of the C/C++ program 
development software are enclosed between angle brackets angle brackets (< >):

#include <stdlib.h>  // For standard C library fn’s 

Header files included from the same directory or any other directory in the path are 
enclosed between double quotation marks (“ “):

#include “motor.h”   // For motor class objects used. 

The proper use of angle brackets and double quotation marks is crucial as it allows 
the compiler to efficiently locate the included header files during compilation and 
linking.

Preventing Multiple Inclusions of Header Files 
A particular header file is included only once in a program. Should a header file be 
included more than once, the compiler will interpret this as an error and issue an 
error message. The compiler can interpret multiple inclusion as, for example, the 
redefinition of a class that is already defined by the first instance of the include file 
– hence the error! 

The general rule “Include the header file of the object you use in the program” may 
lead to multiple inclusions. For example, if a program uses a DCMotor object and 
a StepperMotor object, we must include dcmotor.h as well as stepper.h
files. They both have motor.h included in them. As a result motor.h will be 
included twice. There is a mechanism that enables us to practice the general rule 
above and at the same time avoid multiple inclusions of the same header file. The 
procedure uses a ‘status flag’, explained as follows: 

Before the preprocessor begins to include header files, the flag will be inactive (file 
not included). 

The first time a particular header file is presented for inclusion, the flag will be 
tested, and the result will indicate that the header file has not been included. The 
header file will be included this time and the flag will then be activated, indicating 
inclusion has now taken place. 

When this header file is presented for inclusion on subsequent occasions, the flag 
will be tested and its status (this time; file included) will direct the preprocessor to 
ignore this file, preventing any multiple inclusions. 

Sentries for header files 
Sentries in header files are compiler directives for the preprocessor. They 
implement the function of the ‘status flag’ just described and prevent the compiler 
from including the same header file more than once. 

The following example uses the AbstactMotor class to show how sentries are 
added to a header file. 
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Listing 9-6 AbsMotor.h header file.

#ifndef AbsmotorH 
#define AbsmotorH 

class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~AbstractMotor(){} 
};
#endif

The first preprocessor directive #ifndef represents ‘if not defined’. It is similar 
to an if statement, with its body starting at #ifndef and ending at the line with 
the directive #endif. Therefore, the preprocessor interprets:

#ifndef AbsmotorH 

as ‘if AbsmotorH is not defined’. The body of this #if statement will be 
executed only if AbsmotorH is not defined. 

The identifier AbsmotorH will not be defined when proceeding to process a 
multiple file program for the first time. As such, when the pre-processor encounters 
the line #ifndef AbsmotorH, it will enter the body of the #if statement. The 
first line within the body is: 
#define AbsmotorH 

The #define directive is used to state that identifier AbsmotorH is to be 
defined. The identifier must be unique and not already used to name another header 
file from a different class. Improper naming of identifiers can lead to programming 
bugs that are difficult to find. Since the file system of your computer maintains 
unique names for each file, the best practice is to derive the sentry name based on 
the name of that header file. This approach has been used to form the name of the 
AbsmotorH sentry from the associated header file absmotor.h. When all 
remaining lines in the body are processed by the pre-processor, the 
AbstractMotor class will be interpreted by the compiler and the sentry 
AbsMotorH defined. Should the pre-processor encounter another absmotor.h
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file included in another file of that program, execution of the #ifndef
AbsmotorH directive will return false. In this case the body of the #if statement 
will be skipped, avoiding a repeated inclusion of its contents. 

9.4 Case Study - Motor Driver Program 
This section will demonstrate the process of generating a multiple file program as 
described previously using the motor driver program developed in Chapter 8. We 
will first create the software modules for each object class in our program. Each 
module will have its own header file and function file. 

Figure 9-5  Form a multiple file program. 

Figure 9-5 shows the original single file program on the left with its main function 
and classes. The header file and function file associated with each class is shown 
on the right. The program from Chapter 8 (Listing 8-19) is shown following. Each 
code segment has been identified from the program, copied and labelled to its 
appropriate file type; being a header file or function file. These files are then saved 
with *.h and *.cpp extensions, preferably in the same directory to minimise file 
search time. 

ParallelPort Class Defn’s
AbstractMotor Class Defn’s

Motor Class Defn’s

StepperMotor Class Defn’s

dcmotor.h

DCMotor Class Defn’s

ParallelPort Function File
AbstractMotor Function File

Motor Function File

StepperMotor Function File

dcmotor.cpp

ParallelPort Class
AbstractMotor Class

Motor Class
StepperMotor Class

DCMotor Class

main.cpp

User Program

DCMotor Function File

Single file program
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Listing 9-7  Motor driver program - segmented. 

absmotor.h    (header file) 
#ifndef AbsmotorH 
#define AbsmotorH 

class AbstractMotor 
{
   private: 
  int Speed; 

 public: 
  AbstractMotor(); 
  void SetSpeed(int speed); 
  int GetSpeed(); 
  virtual void Off()=0; 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~AbstractMotor(){} 
};
#endif

absmotor.cpp (function file)
#include "absmotor.h" 

AbstractMotor::AbstractMotor()
{
   Speed =0; 
}

void AbstractMotor::SetSpeed(int speed) 
{
   Speed = speed; 
   if(Speed > 255) Speed = 255; // Limit upper value 
   if(Speed < 0) Speed = 0; // Limit lower value 
}

int AbstractMotor::GetSpeed() 
{
   return Speed; 
}

pport.h (header file)
#ifndef PportH 
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#define PportH 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
  virtual ~ParallelPort(){} 
};
#endif

pport.cpp (function file)
#include <dos.h> 
#include "pport.h" 

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
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{
 InDataPort1 = inportb(BaseAddress+1); 
// Inverting Most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

motor.h (header file)
#ifndef MotorH 
#define MotorH 

#include "absmotor.h" 
#include "pport.h" 

class Motor : public AbstractMotor, public ParallelPort 
{
 public: 
  Motor(int baseaddress=0x378); 
  void Off(); 
  virtual void Forward()=0; 
  virtual void Reverse()=0; 
  virtual void Brake()=0; 
  virtual ~Motor(){} 
};
#endif

motor.cpp (function file)
#include "motor.h" 

Motor::Motor(int baseaddress):ParallelPort(baseaddress) 
{
 Off();
}

void Motor::Off() 
{
 WritePort0(0x00); 
}

dcmotor.h (header file)
#ifndef DcmotorH 

#define DcmotorH 
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#include "motor.h" 

class DCMotor : public Motor 

{

 public: 

  DCMotor(int baseaddress=0x378); 

  virtual void Forward(); 

  virtual void Reverse(); 

  virtual void Brake(); 

};

#endif

dcmotor.cpp (function file)
#include "dcmotor.h" 

DCMotor::DCMotor(int baseaddress):Motor(baseaddress) 
{
}

void DCMotor::Forward() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x09); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Reverse() 
{
 int j; 
 for(j = 0; j < GetSpeed(); j++) 
  WritePort0(0x06); 
 for(;j < 256; j++) 
  WritePort0(0x00); 
}

void DCMotor::Brake() 
{
 WritePort0(0x0C); 
}
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stepper.h (header file)
#ifndef StepperH 
#define StepperH 

#include "motor.h" 

enum MOTORTYPE {UPFS, UPHS, BPFS, BPHS}; 

class StepperMotor : public Motor 
{
 private: 
  MOTORTYPE MotorType; 
  unsigned char Switching[8]; 
  int CycleIndex; 
  int MaxIndex; 

 public: 
  StepperMotor(MOTORTYPE motortype = UPFS, 
           int baseaddress=0x378); 
  virtual void Forward(); 
  virtual void Reverse(); 
  virtual void Brake(); 
};
#endif

stepper.cpp (function file)
#include <dos.h> 

#include "stepper.h" 

StepperMotor::StepperMotor(MOTORTYPE motortype, 
    int baseaddress): Motor(baseaddress) 
{
 MotorType = motortype; 
 CycleIndex = 0; 

 switch(MotorType) 
 { 
  case UPFS: MaxIndex = 4; 
       Switching[0] = 0x11; 
       Switching[1] = 0x12; 
       Switching[2] = 0x22; 
       Switching[3] = 0x21; 
       break; 
  case UPHS: MaxIndex = 8; 

294 9 PROGRAM DEVELOPMENT TECHNIQUES 



       Switching[0] = 0x01; 
       Switching[1] = 0x11; 
       Switching[2] = 0x10; 
       Switching[3] = 0x12; 
       Switching[4] = 0x02; 
       Switching[5] = 0x22; 
       Switching[6] = 0x20; 
       Switching[7] = 0x21; 
       break; 
  case BPFS: MaxIndex = 4; 
       Switching[0] = 0x99; 
       Switching[1] = 0x69; 
       Switching[2] = 0x66; 
       Switching[3] = 0x96; 
       break; 
  case BPHS: MaxIndex = 8; 
       Switching[0] = 0x99; 
       Switching[1] = 0x09; 
       Switching[2] = 0x69; 
       Switching[3] = 0x60; 
       Switching[4] = 0x66; 
       Switching[5] = 0x06; 
       Switching[6] = 0x96; 
       Switching[7] = 0x90; 
 } 
}

void StepperMotor::Forward() 
{
 if(++CycleIndex == MaxIndex) CycleIndex = 0; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Reverse() 
{
 if(--CycleIndex == -1) CycleIndex = MaxIndex -1; 
 WritePort0(Switching[CycleIndex]); 
 delay(259-GetSpeed()); 
}

void StepperMotor::Brake() 
{
 switch(MotorType) 
 { 
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  case UPFS: case UPHS: 
      WritePort0(0x11); 
      break; 
  case BPFS: case BPHS: 
      WritePort0(0x99); 
 } 
}

main.cpp (user program)
//***********************************************************
// Motor driver program using Virtual Functions (chapter 8). 
//***********************************************************
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream.h> 

#include “motor.h” 
#include "dcmotor.h" 
#include "stepper.h"

void main() 
{
 Motor *MotorPtr; 
 int Selection; 

 clrscr(); 

 cout << endl << "   MOTOR MENU"; 
 cout << endl << "   ~~~~~~~~~~" << endl; 
 cout << "   1  DC Motor" << endl; 
 cout << "   2  UPFS" << endl; 
 cout << "   3  UPHS" << endl; 
 cout << "   4  BPFS" << endl; 
 cout << "   5  BPHS" << endl; 
 cout << "   6  QUIT" << endl; 
 cout << endl; 
 cout << "   Select the MOTOR Number: "; 

 cin >> Selection; 

 switch(Selection) 
 { 
 case 1: MotorPtr = new DCMotor; 
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  break; 
 case 2: MotorPtr = new StepperMotor(UPFS); 
  break; 
 case 3: MotorPtr = new StepperMotor(UPHS); 
  break; 
 case 4: MotorPtr = new StepperMotor(BPFS); 
  break; 
 case 5: MotorPtr = new StepperMotor(BPHS); 
  break; 
 case 6: return; 

 default: cout << endl; 
  cout << "   Unspecified Motor type...."; 
  cout << " PRESS a key to END Program!"; 
  getch(); 
  exit(1); // Exits the program 
 } 

 if(MotorPtr == NULL) 
 { 
  cout << "Memory allocation failed " << endl; 
  getch(); 
  exit(1); 
 } 
 cout << "**********************************" << endl; 
 cout << "* CONNECT BOARD POWER SUPPLY NOW *" << endl; 
 cout << "**********************************" << endl;
 cout << endl; 
 cout << "   After connecting power,”; 
 cout << “ press a key to continue " << endl; 
 getch(); 
 cout << endl; 
 cout << "   Keypress changes Speed/Rotation (& Braking)." 
<< endl; 

 //..... Motor control part starts here ..... 
 MotorPtr->SetSpeed(150); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); // clear keyboard buffer 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Forward(); 
 getch(); 

 MotorPtr->SetSpeed(150); 
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 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 MotorPtr->SetSpeed(255); 
 while(!kbhit()) MotorPtr->Reverse(); 
 getch(); 

 cout << endl << "   Braking Applied!" << endl; 
 while(!kbhit()) MotorPtr->Brake(); 
 getch(); 

 MotorPtr->Off(); 
 //..... Motor control part ends here ..... 
 // Free the memory occupied by the 'Motor' object 
 delete MotorPtr; 
}

Main Function File 
The programmer uses the objects from the class hierarchy in the development of 
the main() function. A programmer only needs to know how to apply the user 
interface of the object classes i.e. the public members of the classes. This 
information allows the member functions to be used in the main function file 
according to their specification in the class definition. The programmer using the 
classes does not need to know the full internal details of the member functions 
being used. The compiler however, needs to know the exact construct of each class 
used, and their base classes if any. We fulfil this requirement by including the 
appropriate header files. 

Note that the file motor.h is the only file included in the files dcmotor.h and 
stepper.h. The file motor.h, in turn, has the files absmotor.h and 
pport.h included. Therefore, when the compiler reaches the dcmotor.h file, it 
has already seen the files absmotor.h, pport.h, and motor.h. These files 
provide all the base class definitions needed for the definition of the DCMotor and 
StepperMotor classes. 

We have used the objects of the classes Motor, DCMotor, and StepperMotor
in the main() function. Therefore, the main() function must include these three 
header files. These header files are quoted within double quotes which directs the 
compiler to search for them in the current directory or directories in the search 
path. Header files that are included within angle brackets (< >) have not been 
created by us. They reside in the ‘include’ directory of the C/C++ programming 
software.

This main() function is an ideal place to examine the effect of the sentries we 
included in the header files. The header files dcmotor.h and stepper.h both 
include motor.h.  Therefore, the header file motor.h is shown included in three 
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parts of the complete program listing; once explicitly in the main function file 
(main.cpp) and twice indirectly via the inclusion of dcmotor.h and 
stepper.h. However, this does not result in the Motor class actually being 
defined and included three times. The first inclusion of the file motor.h will 
provide the class definition and define the sentry MotorH. The pre-processor will 
ignore any subsequent attempts to include motor.h since MotorH has already 
been defined. Thererefore, the two cases of indirect inclusion of motor.h in the 
files dcmotor.h and stepper.h will not be processed. This does not mean that 
the files dcmotor.h and stepper.h cannot function. They will use the Motor
class definition that the compiler has already interpreted (from the first inclusion of 
motor.h) and so can provide the definitions of the classes DCMotor and 
StepperMotor.

Creating Library Files 
The linking process uses library files to produce the executable file. Library files 
are made by combining a number of object files together, and are normally given 
the file name extension .lib. C/C++ program development software provides 
utilities to generate library files. The library file will contain the compiled 
definitions of all the functions that were in each object file. The library file is 
generated as a binary file and so cannot be read by a programmer. 

Project Files and Make Files 
Compilation and linking is more complicated for multiple file programs than for 
our previous programs that used single source files. Nevertheless, this process can 
easily be automated using one of two methods. The first method creates a project
file containing a list of the files used to form the final executable file. This project 
file includes all source files, library files and object files for the program. Note that 
project files do not contain header files. The preprocessor will include the header 
files when the source files are compiled. 

The second method creates what is known as a make file. The make file is 
processed by a utility application known as a make utility program which operates 
the compiler and linker in accordance with commands contained in the make file.

Project files 
We must create a project file, for example, named drive.* before being able to 
compile the motor drive program. The name of the file extension given to the 
project file is peculiar to the particular compiler being used. For example, Inprise™ 
Borland C++ for DOS will use .prj, and Microsoft™ Visual C++ will use .dsp
as the extension for the project filename. Three different versions of managing and 
processing of project files are now given to work with our example program: 

Version 1: 
 main.cpp 
 absmotor.cpp 
 pport.cpp 
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 motor.cpp 
 dcmotor.cpp 
 stepper.cpp 

When the project file has been processed, all .cpp files will be compiled 
individually to form .obj files. Then all .obj files will be linked with any other 
system related .obj or .lib files to form the final executable file. 

If all files associated with the classes are available as object files (.obj), the 
project file would contain the following: 

Version 2: 
 main.cpp 
 absmotor.obj 
 pport.obj 
 motor.obj 
 dcmotor.obj 
 stepper.obj 

The main.cpp file will be compiled to form an .obj file. Then all .obj files 
will be linked with any other system related .obj or .lib files to form the .exe
file.

It is also possible to form one .lib file combining all the files related to all 
classes of the hierarchy. Suppose we had a library file created named 
motors.lib. Then the project file would be as follows: 

Version 3: 
 main.cpp 
 motors.lib 

In this case, the file main.cpp will be compiled and linked with motors.lib
and any other related .obj or .lib system files to form the .exe file. 

Make files 
The other option for automating compilation and linking is to generate a make file 
containing a sequence of commands used to compile and link all files needed to 
form an executable file. Commands can be placed in the make file to provide the 
required variety of options, such as compile only, link only, compile and link, etc. 

A make file for the motor drive program that will generate the executable file 
drive.exe is given below in Listing 9-8. Replace the “CC” characters with the 
actual command line of the C++ compiler you are using to generate an operational 
make file. The file names used must be the exact file names. For example, if your 
compiler generates pport.o as the object file instead of pport.obj, then 
change all .obj file extensions to .o.
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In a make file we include dependencies and command-line compiler commands. 
The dependencies must start at the left-most column of a line in a make file as 
shown in the following statement from the make file of Listing 9-8: 
drive: drive1.obj pport.obj dcmotor.obj stepper.obj motor.obj 
absmotor.obj

This statement informs the make utility that if any of the files listed after the colon 
have been changed, then the executable file drive.exe will be re-generated. 

Listing 9-8   Make file example for drive.exe.

Makefile

#makefile for drive program 
drive: drive1.obj pport.obj dcmotor.obj stepper.obj 
   motor.obj absmotor.obj 
 CC –edrive drive1.obj pport.obj dcmotor.obj 
   stepper.obj motor.obj absmotor.obj 
drive1.obj : drive1.cpp motor.h stepper.h dcmotor.h 
motor.h : pport.h absmotor.h 
stepper.h : motor.h 
dcmotor.h : motor.h 
 CC -c drive1.cpp 
pport.obj : pport.cpp pport.h 
 CC -c pport.cpp 
dcmotor.obj : dcmotor.cpp dcmotor.h 
 CC -c dcmotor.cpp 
stepper.obj : stepper.cpp stepper.h 
 CC -c stepper.cpp 
motor.obj : motor.cpp motor.h 
 CC -c motor.cpp 
absmotor.obj : absmotor.cpp absmotor.h 
 CC -c absmotor.cpp

Command-line compiler commands must not start at the left-most column of a line; 
instead they start after a tab character as shown below: 
CC -edrive drive1.obj pport.obj dcmotor.obj 
     stepper.obj motor.obj absmotor.obj 

These commands provide information to the make utility for generating the 
drive.exe file. Note that the ‘switch’ –e informs the compiler that the 
executable file is to be given the name drive.exe. All other lines in the make 
file follow the rules just described. The switch –c represents compile only. 

The make utility processes a file whose default name is makefile. By giving the 
file shown in Listing 9-8 the name makefile, the make utility can be invoked by 
entering the command make at the command prompt to generate drive.exe.

9 PROGRAM DEVELOPMENT TECHNIQUES 301



9.5 Summary 
In the first planning stages of a program, the program’s operation should be 
described using pseudo-code. This description can be refined when working 
towards a realisable C++ program which has the objects that are needed in the 
program identified and then defined. These objects can then be organised into a 
suitable hierarchy; this is extremely beneficial for determining if the efficient use 
of virtual functions can be employed. 

Many typographical errors can be produced when writing a program. When this 
occurs the compiler will detect the errors and notify the programmer accordingly. 
Some of these problems can be avoided by using the copy and paste facilities 
available in modern editors. Copy and paste operations are readily facilitated by 
using good layout practices when developing a program’s classes. This simplifies 
the process of defining functions and reduces the possibility of errors. Improper use 
of nested parenthesis and brackets is also a common cause of compilation and run-
time errors. Several good habits have been demonstrated to help avoid these 
problems. Indentation also plays an important role in identifying levels of nesting, 
improving readability, and thereby reducing the likelihood of errors in the source 
file.

The modular approach to program development requires the generation of header 
files and functions files for each class. When distributing object classes to 
programmers or using object classes in a program, only the required modules need 
to be distributed or used. Because modular programs have multiple files, 
generating their executable files is more involved than for programs that use only 
one source file. The executable files for modular files are generated using either a 
project file or a make file to simplify and automate this process. 
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10.1 Introduction 
This chapter describes a means of converting an analog voltage to a digital 
pulse-train, the frequency of which is proportional to the applied voltage. This 
provides an excellent means of measuring analog voltages using a single digital 
input. We will be using a device known as a Voltage-Controlled Oscillator 
(VCO) to carry out this ‘analog-to-digital conversion’. 

Software will be developed that measures the period of the pulse-train to 
quantify the applied voltage. The operation of a temperature sensitive resistor 
will also be described and this device will be used to measure actual 
temperature. This chapter also introduces graphics programming, where a 
graphics program is developed to display the digital pulse-train on-screen. 

10.2 Converting a Voltage to a Digital 
 Pulse-train 

One of the simplest forms of analog-to-digital converter is the voltage-to-frequency
converter (VFC). The voltage-to-frequency converter produces a digital pulse-train 
whose frequency is proportional to the voltage applied to the converter input. A 
specialised type of VFC is the voltage-controlled oscillator (VCO) which produces 
either a sinusoidal or a square waveform. 

Figure 10-1 Typical voltage-to-frequency converter (VFC). 

As shown in Figure 10-1, a typical VFC operates using a current source to charge a 
capacitor C with current that is proportional to the voltage applied to its input. 

The output of the voltage comparator (initially a positive voltage) changes state 
when the voltage across the capacitor C, connected to its –ve input, rises to exceed 
the positive voltage at its +ve pin. When this happens, the output of the comparator 
will change polarity to a negative voltage and activate the switch closure across 
capacitor C. This action discharges capacitor C and also brings the comparator’s 
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resistor-capacitor circuit, connected to the comparator +ve pin, to a negative 
voltage.

Following these events, the voltage generated at the +ve pin by the comparator’s 
resistor-capacitor circuit will increase, eventually exceeding the ‘zero’ volts across 
the discharged capacitor C. When this happens, the comparator output will revert to 
a positive voltage level. The switch across capacitor C will open, allowing current 
to flow into capacitor C and charge the voltage at the –ve pin until it again exceeds 
the positive voltage at the +ve pin. This marks the completion of one VFC cycle. 
This process repeats continuously, producing a digital pulse-train at the VFC 
output. As the input voltage increases, the level of current charging the capacitor C 
increases and the time to reach the voltage at the comparator +ve pin falls, leading 
to an increase in the frequency of the output signal. 

The interface board uses a VCO housed within part of a CMOS 4046 phase-lock 
loop integrated circuit. The phase-lock loop device can be used for a range of 
purposes, however, we have configured it to use just its VCO. Note: the VCO input 
voltage range that generates a linear output is approximately 1.5V to 3.5V. Its 
output frequency range is set by two resistors and a capacitor connected to its pins. 

10.3 Temperature Measurement 
There are many types of electrical sensors that are sensitive to changes in 
temperature. These include thermistors, thermocouples, thermally sensitive 
capacitors, semiconductor diodes, and quartz crystals.

Thermistors are one of the more popular temperature sensors in use and the only 
sensor described in this text. They are simply resistors with very high temperature 
coefficients, usually having a negative temperature coefficient (NTC). A negative 
temperature coefficient is one in which the resistance decreases as the temperature 
of the thermistor increases. Thermistors have an exponential change in their 
resistance with temperature, making them a little difficult to work with. However, 
they are low in cost, have high sensitivity, and are small in size. 

The simplest means of implementing temperature measurement with a thermistor is 
by connecting the thermistor in a voltage divider circuit as shown in Figure 10-2. 

Figure 10-2 Thermistor voltage divider circuit. 
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Figure 10-3  Typical curve – voltage divider output vs temperature (NTC thermistor). 

The output voltage of this circuit will drop as the temperature increases for 
negative coefficient thermistors as shown in Figure 10-3. The shape of this curve 
can be brought closest to a straight line when the value of the bias resistor in the 
voltage divider circuit is chosen to equal the resistance of the thermistor 
approximately midway through its temperature range. The circuit output may need 
to be buffered if a significant level of current must be supplied to the electronics 
that senses this output voltage (in our case the VCO). Note that time is required for 
the body of the thermistor to reach the temperature of the object or medium it is 
placed into contact with. Also, the temperature of its body can be adversely 
affected if excessive current is passed through the device. 

10.4 The Object Class VCO
The output voltage from the thermistor voltage divider circuit is connected to the 
VCO input pin. This voltage determines the output frequency (and hence the 
period) of the VCO’s pulse-train. The higher the voltage that is applied to the input 
of the VCO, the higher the frequency of the pulse-train. If we develop a method to 
measure the period of the pulse-train (i.e. the time to complete one cycle) we can 
evaluate the frequency. As expected we will be using the parallel port of the PC to 
interface the VCO output to the computer.

We can develop a new object to provide for future use of the VCO in other 
program applications. This object will need to process the pulse-train signal 
received at the parallel port and measure its period by detecting its signal level. By 
signal level, we mean the logic-high or logic-low status of the signal at any given 
instant. To develop this new object we can use the class ParallelPort as the 
base class. The class definition for the new VCO class is given in Listing 10-1.
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Listing 10-1  The class definition for the VCO class, file – vco.h. 

#ifndef VcoH 
#define VcoH 

#include "pport.h" 

enum BITNUMBER{Bit7=0x80,Bit6=0x40,Bit5=0x20, 
        Bit4=0x10,Bit3=0x08}; 

class VCO : public ParallelPort 
{
 private: 
  long int Period; 
  BITNUMBER Bit; 

 public: 
  VCO(int baseaddress = 0x378, BITNUMBER bit=Bit3); 
  long int MeasurePeriod(); 
  long int GetPeriod(); 
  int SignalLevel(); 
  virtual ~VCO(){} 
};
#endif

The VCO class has two data members and five member functions. The data member 
Period will store the measured period. We will use the port at address BASE+1
to read the VCO output into the computer via the parallel port. Note that the VCO 
output can be connected to any bit number between bit 3 and bit 7 inclusive of the 
port at address BASE+1. To provide the user with the flexibility to connect the 
VCO output to any of these bits, we pass a parameter to the constructor that 
specifies the bit number. The enumerated data type BITNUMBER is created for this 
purpose, and the enumerated identifiers are assigned integer values. The use of 
these values will be understood once we define all the member functions. We have 
used Bit3 as the default bit that will interface to the VCO output. 

A strategy must be developed to measure the period of the pulse-train before 
defining the member functions of the VCO class. We can monitor the logic level of 
the VCO output by reading the port at address BASE+1 and then filtering out all 
unwanted bits. We can recognise the start of a pulse by detecting a transition in 
signal level - from low to high, or from high to low. After the transition we can 
begin measuring the pulse period. The signal must undergo two more transitions to 
complete one cycle as shown in Figure 10-4. 
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Figure 10-4  Detection of one complete cycle. 

Since the signal level plays an important role, let us first establish the member 
function SignalLevel().

Listing 10-2  The member function SignalLevel().

int VCO::SignalLevel() 
{
 if(ReadPort1() & Bit) 
  return 1; 
 else 
  return 0; 
}

The signal level will either be logic-low or logic-high at any given time. To signify 
these two states we can use 0 and 1 respectively. The function SignalLevel()
shown in Listing 10-2, returns 0 or 1 depending on the logic level of the VCO 
output.

First the inherited member function ReadPort1() is used to read the port at 
address BASE+1. An AND operation with Bit is used to filter out all bits except 
the bit we have allocated for use with the VCO output. If the signal is logic-high, 
the AND result will be equal to Bit which is non-zero, the if condition will 
evaluate to a non-zero value and 1 will be returned. However, if the logic level of 
the signal is low, the result of the AND operation will be zero and a 0 is returned. 

A signal transition can be detected if we read the port continuously, checking for a 
change in the logic level of the bit used. Measurement of the period begins as the 
first transition is detected and will be complete once the next two signal level 
transitions have been detected. The ideal means to measure the period of the pulse-
train is to use real-time techniques, however, this topic is yet to be covered (in 
Chapter 13). Instead, we will use software loops to measure the pulse-train period 
by counting the number of times the port is read within a pulse-train cycle. It may 
be possible to evaluate the period as an actual time value if the time for one port 

Start of Cycle End of Cycle 

1st transition 3rd transition

2nd transition 

Bit 3 of BASE+1 t
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read and filter operation was known. However, program execution times will vary 
for different computers, and are also affected by intervening system events. 

The steps required to measure the period are as follows (assume that the signal is 
connected to bit 3): 

1. Initialise a counter variable to zero. 
2. Repeatedly read the signal level of bit 3 until a change is detected. 
3. Repeatedly read the signal level of bit 3 until the second change is detected 

while incrementing the counter after each read. 
4. Repeatedly read the signal level of bit 3 until the third change is detected 

while incrementing the counter after each read.
5. Return the counter value as the period. 

These steps (the pseudo code) can now be converted to form the function 
MeasurePeriod(). Examining the pseudo-code; steps 2, 3 and 4 are very 
similar. We will start by developing code for step 2.  It is then possible for us to use 
the same code for step 3 and 4, and add the incrementing of the counter after each 
read.

Step 2 of the pseudo-code can be implemented as shown in Listing 10-3. 
SignalLevel() uses the inherited function ReadPort1() of the class 
ParallelPort.

Listing 10-3  Detecting a signal transition in the VCO output. 

 VCO Vco; 
 unsigned char Signal; 

 Signal = Vco.SignalLevel(); 
 while(Signal == Vco.SignalLevel()); 

First, the variable Signal is used to store the current signal level by calling the 
member function SignalLevel(). Then the program enters a while loop, 
where the signal level is repeatedly read by calling the SignalLevel() function 
and its result compared with the previously stored value of the signal level. While 
they are equal, the while loop will continue to execute. Note that the body of the 
while loop is empty - containing only a semi-colon. When a change in signal 
level is detected, the while condition will evaluate to false and the while loop 
will terminate. 

Definitions for all the member functions of the VCO class are given in Listing 10-4. 
The function MeasurePeriod() determines the period of the signal being 
measured and returns this value. The GetPeriod() function merely accesses 
and returns the value of the private data member Period. The development of the 
VCO class is now complete. In the next section we will learn how to use VCO
objects in a program that will measure voltages. 
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Listing 10-4  Member function definitions of the VCO class – vco.cpp. 

#include "vco.h" 

VCO::VCO(int baseaddress, BITNUMBER bit) 
 :ParallelPort(baseaddress) 
{
 Bit = bit; 
 Period = 0; 
}

long int VCO::MeasurePeriod() 
{
 unsigned char Signal; 
 Period = 0; 

 Signal = SignalLevel(); 
 while(Signal== SignalLevel()) 
    ; // empty body 

 Signal = SignalLevel(); 
 while(Signal== SignalLevel()) 
  Period++; 

 Signal = SignalLevel(); 
 while(Signal== SignalLevel()) 
  Period++; 

 return Period; 
}

long int VCO::GetPeriod() 
{
 return Period; 
}

int VCO::SignalLevel() 
{
 if(ReadPort1() & Bit) 
  return 1; 
 else 
  return 0; 
}
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10.5 Measuring Voltages Using the VCO 
As described in section 10.2, the voltage-controlled oscillator (VCO) is an 
electronic circuit that generates a square wave at a frequency proportional to the 
analog voltage applied to its input. Various voltage levels need to be applied to its 
input to verify its proper operation. The easiest way to do this is to connect the 
output of the interface board’s potentiometer to the VCO input. We can measure 
the potentiometer output voltage with a voltmeter to establish a quantifiable 
relationship between the VCO output and the voltage applied to the VCO input. A 
different approach which eliminates the need for a voltmeter, is to use the output of 
the DAC circuit to generate a known analog voltage. We can easily control the 
DAC output by writing a number to it as explained in Chapter 6. 

The following keyboard controls will be implemented within the main() function 
for easy use of the program: 

Pressing the up arrow will increase the output voltage of the DAC. 
Pressing the down arrow will decrease the output voltage of the DAC. 
Pressing Alt-X will exit the program. 

A fragment of skeleton code is given in Listing 10-5 to implement the above steps. 

Listing 10-5  Implementing keyboard control. 

 int Quit = 0, key; 

 while(!Quit) 
 { 
 // Insert lines to measure and display the pulse period  

 if(bioskey(1)!=0) // check if a key is pressed 
  { 
   key = bioskey(0); // read key code 

   switch(key) 
   { 
/* Alt-X */  case 0x2d00 : Quit = 1; 
                             break; 
/* Up Arrow */ case 0x4800 : //Increase DAC output 
                             break; 
/* Down Arrow */ case 0x5000 : //Decrease DAC output 
                             ; // Empty statement 
   } 
  } 
 } 
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The while loop will eventually contain code to measure and display the pulse 
period. This code is not shown yet - instead, a comment is included to that effect. 
The next statement in the while loop is an if statement that contains a switch
statement. Program control will be transferred to the true clause of the if
statement when the if condition evaluates to true - when a key is pressed. The 
bioskey() function (when passed an actual argument of 1) will return true if a 
key has been pressed. If no key is pressed it will return false. The bioskey()
function will not wait for a key press. This means that if a key has not been 
pressed, the body of the if statement will be skipped, and the other statements of 
the while loop (such as those used to measure the pulse period and display it) will 
continue to execute.

If a key has been pressed, program control will be transferred to the body of the if
statement where its true clause will be executed. Within the true clause, the first 
action to perform is to determine the actual key pressed. The bioskey() function 
can be used for this purpose, although to do this it must be passed an actual 
argument of 0. The bioskey() function will now retrieve the key code of the 
key pressed. The three key codes corresponding to the keys; up arrow, down arrow, 
and Alt-X are listed as cases of the switch statement. Within the switch
statement; if the key code of the pressed key matches one of the cases, program 
control will be transferred to that case. If no matching cases are found, no action 
will be taken. In the case of Alt-X, the case statement sets the variable Quit to 1. 
This will cause the while loop to terminate the next time the while condition is 
evaluated. Programming statements for the two cases corresponding to the up 
arrow and the down arrow are not included yet. Instead, comments are used in their 
place.

A main() function that sends the DAC output to the VCO and measures the pulse 
period of the VCO output is given in Listing 10-6. The comment lines in Listing 
10-5 have now been replaced by actual programming statements. Note that the 
program is written to jointly operate the VCO and the DAC. Therefore, a DAC
object named Dac and a VCO object named Vco have been instantiated at the start 
of the main() function. 

Listing 10-6  Measuring VCO pulse period (DAC driving VCO input) – period.cpp. 

#include <bios.h> 
#include <conio.h> 

#include "dac.h" 
#include "vco.h" 

void main() 
{
 DAC Dac; 
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 VCO Vco; 
 int Quit = 0, key; 

unsigned char DACbyte;

 clrscr(); 
 Dac.SendData(0); // initialise to zero 

 while(!Quit) 
 { 
     gotoxy(10,10); 
     cprintf("The pulse period is %10lu\a", 
     Vco.MeasurePeriod()/1000);

     if(bioskey(1)!=0) 
     { 

DACbyte = Dac.GetLastOutput();
   key = bioskey(0); 
   switch(key) 
   { 
/*Alt-X*/  case 0x2d00 : Quit = 1; 
         break; 
/*Up Arrow*/ case 0x4800: 

if(DACbyte>247) // limit max value 
       DACbyte = 247;

Dac.SendData(DACbyte+8);
         break; 
/*Down Arrow*/ case 0x5000 : 

if(DACbyte<8) // limit min value 
       DACbyte = 8;

Dac.SendData(DACbyte-8);
   } 
  } 
 } 
}

The gotoxy()function locates the cursor at screen coordinates (10,10). The first 
number within the above pair of parentheses is referred to as the ‘X coordinate’ and 
is measured from the left edge of the screen. The second number is referred to as 
the ‘Y coordinate’ and is measured from the top edge of the screen. Screen 
coordinates are shown in Figure 10-5. Therefore, the measured pulse period will be 
displayed starting at screen coordinates (10,10). The function cprintf()is
similar to the printf() function we saw previously, with the exception that it 
does not convert the new line character combination (\n) to a new line and 
carriage return combination (\n\r). It is especially designed to send output to the 
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Origin (1,1) 

Positive x 

Positive y 

screen. In general, gotoxy() is used to set the position of the cursor, and 
therefore there is no need for a line feed or carriage return. 

The measured value of the pulse period is a ‘representation’ of the square wave 
period. This value is obtained by using the member function MeasurePeriod()
of the Vco object. We use the cprintf() function to call the 
MeasurePeriod() function. The cprintf() function prints the measured 
value divided by 1000 on the screen. 

The member function GetLastOutput() of the DAC class is called to obtain 
the previous value output to the DAC. This value is then used within the switch
statement block to ensure that the byte being sent to the DAC is kept within its 
operating range of 0 to 255 for each press of the up or down arrow key. The two 
cases corresponding to the up arrow and the down arrow have been implemented 
using the SendData() function of the DAC class. Depending whether the up or 
down arrow key has been pressed, the value sent to the DAC is either incremented 
or decremented by 8. During execution of the SendData() function, the data 
member LastOutput of the DAC class is updated to store the value just output.

Figure 10-5 Screen coordinates in text mode. 

Three code modules are required to generate an executable program for the code 
segment shown in Listing 10-6. These are the ParallelPort, VCO, and DAC
modules. A project file (or make file) must be formed to compile all modules and 
link them together to form the executable file. The VCO module consists of the 
header file given in Listing 10-1 and the function file given in Listing 10-4. The 
ParallelPort class header file and its function file were formed in Section 9.4 
and are repeated in Listing 10-7 and Listing 10-8, respectively. 
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Listing 10-7  Header file for the ParallelPort class - pport.h. 

#ifndef PportH 
#define PportH 

class ParallelPort 
{
 private: 
  unsigned int BaseAddress; 
  unsigned char InDataPort1; 

 public: 
  ParallelPort(); 
  ParallelPort(int baseaddress); 
  void WritePort0(unsigned char data); 
  void WritePort2(unsigned char data); 
  unsigned char ReadPort1(); 
  virtual ~ParallelPort(){} 
};
#endif

Listing 10-8  Function file for the ParallelPort class - pport.cpp. 

#include <dos.h> 
#include "pport.h" 

ParallelPort::ParallelPort()
{
 BaseAddress = 0x378; 
 InDataPort1 = 0; 
}

ParallelPort::ParallelPort(int baseaddress) 
{
 BaseAddress = baseaddress; 
 InDataPort1 = 0; 
}

void ParallelPort::WritePort0(unsigned char data) 
{
 outportb(BaseAddress,data); 
}

void ParallelPort::WritePort2(unsigned char data) 
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{
 outportb(BaseAddress+2,data ^ 0x0B); 
}

unsigned char ParallelPort::ReadPort1() 
{
 InDataPort1 = inportb(BaseAddress+1); 
// Inverting Most significant bit to compensate 
// for internal inversion by printer port hardware. 
 InDataPort1 ^= 0x80; 
// Filter to clear unused data bits D0, D1 and D2 to zero. 
 InDataPort1 &= 0xF8; 
 return InDataPort1; 
}

So far we haven’t created a header file and a function file for the DAC module.  
These files are given in Listing 10-9 and Listing 10-10 respectively. 

Listing 10-9  The header file for the DAC class - dac.h. 

#ifndef DacH 
#define DacH 

#include "pport.h" 

class DAC : public ParallelPort 
{
 private: 
  unsigned char LastOutput; 

 public: 
  DAC(); 
  DAC(int baseaddress); 
  void SendData(unsigned char data); 
  unsigned char GetLastOutput(); 
  ~DAC(){}; 
};
#endif

Listing 10-10  The function file for the DAC class - dac.cpp. 

#include "dac.h" 
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DAC::DAC()
{
 LastOutput = 0; 
}

DAC::DAC(int baseaddress) : ParallelPort(baseaddress) 
{
 LastOutput = 0; 
}

void DAC::SendData(unsigned char data) 
{
 ParallelPort::WritePort0(data); 
 LastOutput = data; 
}

unsigned char DAC::GetLastOutput() 
{
 return LastOutput; 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
vco.cpp
vco.h
dac.cpp
dac.h
period.cpp

Listing 10-8 
Listing 10-7 
Listing 10-4 
Listing 10-1 
Listing 10-10 
Listing 10-9 
Listing 10-6 

pport.cpp

vco.cpp

dac.cpp

period.cpp

The table shown above lists all the files needed to form the executable file that 
should be stored in the one directory. Form a project file using the program 
development environment of your choice and add the files that are listed in the 
column titled ‘Project File Contents’. Then the compiler and linker can be directed 
to form the executable file. Tables such as the one shown above will be provided in 
this text whenever modules must be combined to form an executable file. 

Make the connections on the interface board as shown in Table 10-1 to Table 10-3 
before executing the program. These tables list the wiring needed to control the 
DAC and the VCO. Set the DAC output to unipolar mode by fitting the jumper 
across the position on the board marked LINK1. Remember to connect an 
operational 9V battery to its terminal block (J14) to allow proper DAC operation. 
Note that the VCO response is linear (typically 1%) for input voltages in the range 
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of 2.2V to 2.8V. Although linearity deteriorates outside this range, the VCO can be 
characterised across its entire input range and used effectively. 

Table 10-1  Connections for the DAC. 

BASE Address 
(Buffer IC, U13) 

DAC0800
(U8)

D0   D0 (12) 
D1   D1 (11) 
D2   D2 (10) 
D3   D3 (9) 
D4   D4 (8) 
D5   D5 (7) 
D6   D6 (6) 
D7   D7 (5) 

   

Table 10-2  INPUT connections 
for the VCO.

Table 10-3  OUTPUT connections 
for the VCO.

LM358
 (U10B)

VCO
(4046, U4)

 VCO 
(4046, U4)

BASE+1 Address 
(Buffer IC, U6)

VDAC (7) VIN (9)  VCO OUTPUT (4) D3 
     

NOTE

If any malfunction occurs; first check the 9V battery is operational – its voltage 
should be greater than 7V when it is being used.

10.6  Graphics Programming – Square 
Wave Display 

A program was developed in Section 10.5 that can measure the period of the square 
wave generated by the VCO and produce a simple numerical output. In this section 
we will use graphics programming to generate a graphical display so the user can 
visualise the signal’s waveform. 
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The potentiometer circuit on the interface board provides a very convenient means 
of generating an analog voltage to apply to the input of the VCO. Varying the 
position of the potentiometer will change its output voltage (0V to +5V) and hence 
change the output frequency of the VCO. The connections that need to be made 
between the potentiometer and the VCO are shown in Table 10-4 and Table 10-5. 

Table 10-4  INPUT connections for the VCO. 

Potentiometer
(POT1)

VCO
(4046, U4)

OUTPUT VIN (9)

Table 10-5  OUTPUT connections for the VCO. 

VCO
(4046, U4)

BASE+1 Address 
(Buffer IC, U6)

VCO OUTPUT (4) D3

10.6.1 Screen Programming 
This program to be developed will display the signal from the VCO as a waveform 
inside a fixed area of the screen. The waveform being displayed will trace across 
the screen similar to the trace of an oscilloscope. This must happen in real-time; the 
changes shown on-screen matching the instantaneous changes of the VCO signal. 

The standard library provides many graphics routines for our program to use. 
These routines can determine which graphics driver should be used, the appropriate 
graphics mode, the maximum number of pixels in x and y directions, etc. The 
screen uses an array of pixels, where each pixel is one element of the screen that is 
individually illuminated to form part of the picture. Because different screens 
contain different numbers of pixels, it is often necessary to determine the screen’s 
pixel count before deciding the size of the display area to be used by a program. 

In any graphics program running under DOS, the system must first be configured 
in a graphics mode that uses a graphics driver. A driver is a module of executable 
code that is used to drive the actual graphics output. These drivers can operate in 
different modes that set the number of pixels used in x and y directions, and set 
which colour palette to use. The program must set the system in a suitable graphics 
mode and then determine the number of pixels in the x and y directions. This 
information allows the program to calculate the screen coordinates needed to centre 
the waveform on-screen inside the area known as the Viewport. Figure 10-6 shows 
the screen coordinates and the calculations performed by the program’s functions 
to generate the waveform. 
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Figure 10-6  Arrangement to display the VCO output. 

The program will use half of the x pixel-range and one hundred and fifty pixels in 
the vertical direction for its Viewport, centred on-screen in both the horizontal and 
vertical directions. We have separated the high and low levels of the waveform by 
50 pixels in the vertical direction. The functions getmaxx() and getmaxy()
are functions that can be used to determine the number of pixels in the x and y 
directions. The Viewport is now established (with its origin located at its upper 
left-most corner). 

The waveform can be plotted as a line joining sequential points, explained as 
follows (note: the positive y direction is down). When the port is read; if the signal 
level is high, the Y coordinate of the current point will be 50 pixels in the y 
direction from the Viewport Origin. If the signal level is low, the Y coordinate will 
be 100 pixels in the y direction from the Viewport Origin. The first VCO value 
read will be plotted 0 pixels from the Viewport Origin in the x direction. The next 
point will be plotted at x=1, the following at 2, and so on. When we reach the end 
in the x direction, we must re-start plotting from x=0, but not before erasing the 
current waveform being displayed. This plotting process will repeat continuously 
until the program detects a keypress and then terminates. 

The required program steps can be listed as follows: 

1. Initialise graphics and set the graphics mode. 
2. Determine the maximum number of pixels in the x and y directions. 
3. Configure the Viewport. 
4. Enter a while loop conditioned on !kbhit(). If any key is pressed, 

terminate the program. 
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5. Read the port and obtain the output signal level of the VCO. 
6. Plot the pixel according to the signal level (high or low) and increment the 

x pixel count. 
7. If the x pixel count has not reached the end of its range, return to step 4. 

Else, reset the x pixel count to restart plotting, clear the view port, and 
return to step 4. 

A program that carries out the above set of tasks is given in Listing 10-11. The 
appearance of the program’s display is basic and could be improved by adding 
some finishing touches. 

Listing 10-11  Graphically display the VCO output – trace.cpp. 

/*****************************************************
The frequency of the pulse-train being output by the 
voltage-controlled oscillator will change as we change 
the analog input voltage to the VCO circuit. The
Potentiometer (POT1) on the interface board generates 
the input voltage to the VCO and the program reads the 
pulse-train being output by the VCO.  This pulse-train 
is graphically displayed on-screen. 
*****************************************************/
#include <graphics.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <conio.h> 
#include <dos.h> 

#include "vco.h" 

void main() 
{
 VCO Vco; 
 int i=0; // controls plotting in the x range 
 int SignalLevel; 
 int Driver = DETECT, GraphicsMode, ErrorCode; 
 int X, Y; 

// set to graphics mode 
 initgraph(&Driver, &GraphicsMode, ""); 

// check for error codes 
 ErrorCode = graphresult(); 
 if (ErrorCode != grOk) 
 { 
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  cout << "Graphics error:  " 
    << grapherrormsg(ErrorCode) << endl; 
  cout << "Press any key to halt:" <<  endl; 
  getch(); 
  exit(1); 
 } 

 X = getmaxx(); 
 Y = getmaxy(); 
 rectangle(X/4-1, Y/2-76,X*3/4+1,Y/2+76); // border 
 setviewport(X/4, Y/2-75,X/4*3,Y/2+75,1); 

 while(!kbhit()) 
 { 
  SignalLevel = Vco.SignalLevel(); 
  if(SignalLevel == 0) // low level 
   lineto(i,100); 
  else                 // high level 
   lineto(i,50); 

  i++; 
  delay(2); 

  if(i > X/2) // half screen = Viewport width 
  { 
   i = 0; 
   while(Vco.SignalLevel()); // wait for low level 

   // wait for signal level to go high again 
   while(!Vco.SignalLevel()); 
   clearviewport(); 
  } 
 } 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
vco.cpp
vco.h
trace.cpp

Listing 10-8 
Listing 10-7 
Listing 10-4 
Listing 10-1 
Listing 10-11 

pport.cpp

vco.cpp

trace.cpp
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The file graphics.h is needed for all graphics-related routines such as 
initgraph(), grapherror(), moveto(), lineto(), etc, and for use of 
the constants DETECT and grOk. The class VCO is used to create an instance of 
VCO named Vco as in the previous program. Several variables of type int are 
declared inside main(). Variables X and Y will initially be used to store the 
maximum number of pixels in x and y directions respectively. At later stages in the 
program they will be used for other purposes. Variable i is used to control plotting 
of pixels in the Viewport’s x range. It will be reset to 0 for the start of a new plot 
when the trace reaches the end of the Viewport range.

The variables Driver and GraphicsMode are explained together with the 
initgraph() function. The first parameter to initgraph() must specify the 
type of graphics driver. The driver could be for the Colour Graphics Adapter 
(CGA), Enhanced Graphics Adapter (EGA), Video Graphics Array (VGA), etc. If 
the value of Driver is set to 1, then CGA is specified; if it is set to 2, EGA is 
specified. A description of these constants should be found in the documentation 
for initgraph(). A number of graphics modes will be available for each driver 
to generate the resolution (number of pixels) and the colour palette used. For 
example; 16 colour, 640 x 480 screen resolution is specified by assigning 
GraphicsMode the value 2. If GraphicsMode is assigned the value 1, the 
screen will use 16 colours and a resolution of 640 x 320. However, when the value 
of Driver is set to DETECT (predefined to be 0), the program will automatically 
detect the driver suitable for the computer’s graphics card and set the resolution to 
the highest available. In this situation, GraphicsMode does not need to be 
assigned a value. The third parameter to initgraph() is a string specifying the 
path to the graphics driver, in this case the location of the file EGAVGA.BGI. If the 
graphics driver is in your current directory (the directory where you have your 
executable file) then this field can have an empty string. Note that, when the call to 
initgraph() is made, the first two arguments are preceded by the & character. 
This is needed because initgraph() takes these arguments as pointers (i.e. an 
address value). 

To determine if initgraph() has successfully completed its task, we call 
graphresult() and store the value returned by graphresult() in 
ErrorCode. If ErrorCode is not equal to the predefined constant grOk, then 
an error has occurred. A message corresponding to the value in ErrorCode can 
be generated by calling grapherrormsg(). The true clause of the if statement 
will display the error messages and then call the exit() function to terminate the 
program. If no errors occurred, program execution will proceed to carry out the 
next task – to determine the maximum number of pixels in x and y directions. A 
rectangle will be drawn just one pixel outside the chosen Viewport followed by 
configuration of the Viewport. As explained previously, the Viewport is the area 
where the waveform will be displayed. Once the Viewport is established, the origin 
(0,0) becomes the upper left-corner of the Viewport. 

The while loop, conditioned on !kbhit(), is used to continuously display the 
waveform on-screen. The lineto() function uses the new coordinate frame of 
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the Viewport. The value of i will be zero when beginning to plot a new trace. A 
line will be drawn from the previous screen position to the new vertical position 
determined by the signal level. The x plot position is then incremented for the next 
plot. When the value of i reaches the end of its range in the x direction (Viewport 
width = X/2), i is reset to zero for a new plot. The remaining code synchronises 
the plotting so the next trace will always begin on a low level. The Viewport is 
then cleared to erase the current trace. 

Note that since interrupts are enabled, some of the pulses displayed on-screen may 
have wider widths due to time consumed by interrupt service routines. 

10.7 Temperature Measurement 
We measure temperature indirectly by using the analog voltage generated by the 
thermistor resistive-divider circuit. The voltage being generated drops in a non-
linear manner as the temperature increases whan a negative temperature coefficient 
thermistor is used in the resistive-divider circuit (as shown in Figure 10-3). To 
simplify our programming let us approximate the curve by a straight line. We can 
develop a program that will measure the actual temperature using the same wiring 
as described in Section 10.6 (except the POT output is replaced with the 
Thermistor output, VTH). A typical thermistor/VCO relationship is shown in 
Figure 10-7. 

10.7.1 Thermistor Calibration 
The program needs to measure the cycle time of the VCO output and interpret this 
value as temperature. The first task is to calibrate the thermistor. This is done by 
subjecting the thermistor to known temperatures such as that of ice, the body, and 
say boiling water to obtain measures of corresponding cycle times. Then we can 
establish a calibration equation or calibration table which can be used to 
extrapolate or interpolate values of temperature (within linearity limits of the 
thermistor/VCO circuit response). Note that the output of the thermistor circuit 
may extend well beyond the linearity range of the VCO (approximately 1.5V to 
3.5V). If the voltage applied to the VCO input is outside its linear range, the output 
from the VCO will be a distorted measure of the thermistor output. However, the 
temperature measuring system made up of the thermistor and VCO can still be 
calibrated and used, but with less accuracy.

The calibration equation can be determined as follows (refer to Figure 10-7). We 
can add a few extra statements to the program in Listing 10-6 to include a means of 
entering an upper temperature and a lower temperature. The corresponding cycle 
times can then be read and a calibration equation can be established. If no upper 
and lower temperatures are entered (HiTemp and LoTemp), the program will 
display the cycle time as did the program in Listing 10-6. If calibration has been 
performed correctly, the program will display the actual temperatures. This feature 
requires some logic to be built into the program. We can use flags to detect whether 
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upper and lower temperatures have been entered. If both flags are set; that is, if 
both temperatures have been entered, we can establish the calibration equation. 
Then we can display temperature instead of cycle times. We will adhere to using 
the same keys as for Listing 10-6; Alt-X to quit the program, up arrow to enter an 
upper temperature, and down arrow to enter a lower temperature. 

Figure 10-7  Typical curve - Thermistor circuit/VCO output (calibration). 

The program steps can be listed as follows: 

1. Initialise a counter to zero.  
2. Repeatedly check the signal level until a change is detected. 
3. Repeatedly check the signal level until the second change is detected while 

incrementing the counter after each read. 
4. Repeatedly check the signal level until the third change is detected while 

incrementing the counter after each read. 
5. Check if the calibration temperature for upper temperature and lower 

temperature has been entered (respective flags are both set). 
If they are both entered, use the calibration equation and display the 
temperature, else display the cycle time. 

6. Check if a key has been pressed. If no key has been pressed return to step 1. 
7. If the pressed key is Alt-X, exit the program.  
8. If the up arrow key is pressed, read upper temperature. Return to step 1. 
9. If the down arrow key is pressed, read lower temperature. Return to step 1. 

Some of these steps can be expanded further as shown below: 

8.1 Ask user to enter the upper temperature and store value entered. 
8.2 Store the cycle time. 
8.3 Set the flag confirming the upper calibration temperature has been read. 

LoCount HiCount

LoTemp

HiTemp

i

Temp

HiCount - LoCount 

Period in Counts 

HiTemp - LoTemp 

Temperature
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9.1 Ask the user to enter the lower temperature and store value entered. 
9.2 Store the cycle time. 
9.3 Set the flag confirming the lower calibration temperature has been read. 

The program that implements these steps is given in Listing 10-12. 

Listing 10-12  Temperature measurement using thermistor & VCO – temp.cpp. 

/*****************************************************
This program uses the thermistor on the interface board 
to generate a voltage for input to the VCO, and then 
repeatedly reads the cycle time of the VCO’s output pulse- 
train. It also allows you to calibrate the thermistor so 
the program can display the actual temperature. 
*****************************************************/
#include <iostream.h> 
#include <bios.h> 
#include <conio.h> 
#include "vco.h" 

void main() 
{
   VCO Vco; 
   int Quit=0, HiFlag = 0, LoFlag = 0; 
   int key = 0; 
   float HiTemp, LoTemp, Temp; 
   long int HiCount, LoCount; 

   clrscr(); 
   while(!Quit) 
   { 
      Vco.MeasurePeriod(); 
      clrscr(); 
      gotoxy(10,10); 

      if((HiFlag == 1) && (LoFlag == 1)) 
      { 
         Temp = LoTemp+(HiTemp-LoTemp)* 
            (Vco.GetPeriod()-LoCount)/(HiCount-LoCount); 

         cprintf("The temperature is:%7.1 lf (deg)\a",Temp); 
      } 
      else 
         cprintf("The pulse period is: %10lu\a", 
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            Vco.GetPeriod()/1000); 

      if(bioskey(1)!=0) 
      { 
         key = bioskey(0); 
         switch(key) 
         { 
/* Alt-X */      case 0x2d00 : Quit = 1; 
                              break; 

/* Up Arrow */  case 0x4800 : gotoxy(10,5); 
          cout << "Enter Upper 
                                        Calibration Temp: "; 
          cin  >> HiTemp; 
          HiCount = Vco.GetPeriod(); 
          HiFlag = 1; 
          break; 

/* Down Arrow */ case 0x5000 : gotoxy(10,6); 
        cout << "Enter Lower 
                                        Calibration Temp: "; 
        cin  >> LoTemp; 
        LoCount = Vco.GetPeriod(); 
        LoFlag = 1; 
         } 
      } 
   } 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
vco.cpp
vco.h
temp.cpp

Listing 10-8 
Listing 10-7 
Listing 10-4 
Listing 10-1 
Listing 10-12

pport.cpp

vco.cpp

temp.cpp

The variable HiFlag is used to denote the upper calibration temperature has been 
entered, and similarly the variable LoFlag to denote the lower calibration 
temperature has been entered. Although HiFlag and LoFlag they are declared 
as integer variables, they will only be used with values of 0 or 1. The variables 
HighTemp and LowTemp will store the upper temperature and the lower 
temperature entered during calibration. The value of the pulse period (measured in 
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counts) will be stored in the variable HiCount for the upper calibration 
temperature, and in the variable LowCount for the lower temperature. The actual 
temperature to be displayed is stored in the variable Temp.

The first if statement within main() tests whether both temperatures have been 
entered by checking the values of the flags HiFlag and LoFlag. If both flags are 
set, the temperature will be calculated using the calibration equation and printed 
on-screen.

Be aware of the importance of correctly specifying mathematical operations when 
calculating the value Temp in the program’s formula: 

Temp = LoTemp + (HiTemp-LoTemp)* 
            (Vco.GetPeriod()-LoCount)/(HiCount-LoCount); 

Note that Vco.GetPeriod(), HiCount and LoCount are long integer type, 
whereas Temp, LoTemp and HiTemp are float type. If we had placed a set of 
brackets around the expression shown on the lower line, the compiler would cast 
this part result to become a long integer number (incorrect – it should be a floating 
point number). Likewise, rearranging the order of mathematical operations can 
cause the compiler to implicitly cast part-expressions and change the result of an 
expression.

If both temperatures have not been entered yet, the calibration equation will not be 
used and the period is printed on the screen instead. The switch statement block 
is used to detect key presses for the up and down arrow keys, and the Alt-X key 
combination. If you press the up arrow key, you will be prompted to enter the 
upper temperature which will be stored in the variable HiTemp. The current value 
of Vco.GetPeriod() (returns the data member Period) will be stored in 
variable HiCount. The flag HiFlag will then be set to one. The equivalent 
procedure will be followed when the down arrow key is pressed to enter the lower 
calibration temperature.

Note: the thermistor requires time to reach the temperature of the body it is placed 
into contact with. Therefore, sufficient time must be allowed before pressing the 
up/down arrows to enter each calibration temperature. The program can be verified 
after it has been calibrated. Subject the thermistor to known temperatures and the 
program should display values close to those temperatures. 

10.8 Summary 
In this chapter we have described the operating principle of the Voltage-controlled 
Oscillator (VCO). The VCO produces a pulse-train having a frequency that is 
proportional to the voltage applied to its input. By measuring the frequency (or 
period as we did) the voltage/frequency relationship can be used to generate a 
measurement of voltage. In this way the VCO can be used as a simple and 
inexpensive alternative to an analog-to-digital converter.
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A new object class named VCO was developed using the ParallelPort as the 
base class. Software methods have been described to continuously check the level 
of an incoming digital signal while incrementing a counter, and thereby measure 
the period of the waveform. Graphics programming was introduced to display the 
resulting waveform, followed by the development of a program that uses the 
thermistor on the interface board with the VCO to measure the actual temperature.
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11.1 Introduction 
This chapter explains the principles of analog-to-digital conversion and the 
operation of several commonly used types of analog-to-digital converters. This is 
followed by a discussion of the limitations encountered when sampling and 
converting signals. 

Transducers measure physical quantities such as temperature, pressure, flow rate, 
and distance. Analog transducers typically output current, voltage, or charge, which 
form some mathematical relationship with the measured physical quantity. This 
mathematical relationship can be obtained using the calibration process we 
described in the previous chapter. An analog-to-digital converter (ADC) is 
typically used to interface these analog signals to a digital computer. Signal 
conditioning circuitry transforms the analog currents or charge into voltages that 
are sampled by the ADC system and converted to digital bit patterns. 

Software is used to control the ADC on the interface board and read its output. This 
is made possible by deriving an object from the ParallelPort class and then 
encapsulating the functionality of the ADC. This new object will be used in our 
programs to measure analog voltages. 

11.2 Analog-to-Digital Conversion 
Analog-to-digital conversion is the process of sampling and then converting an 
analog signal, usually a voltage, to a multi-bit digital number that is proportional to 
the amplitude of the analog signal. Analog-to-digital conversion is used in many 
applications ranging from encoding of voice-generated signals in 
telecommunication systems, to data acquisition and control systems. Figure 11-1 
shows the block diagram for a typical (8-bit) ADC. Conversion is initiated by 
activating the ‘Start Conversion’ input of the converter. At completion of the 
conversion process the ‘Conversion Complete’ output of the converter will change 
logic state. This signal is used to notify the controlling device that data conversion 
is complete, and valid data can now be read. 

Figure 11-1  Block diagram of an 8-bit ADC. 
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The time that elapses from the start of conversion to the valid output of the digital 
code is referred to as the conversion time. The Conversion Complete output of the 
ADC can be ignored if the device requesting the converted data delays its reading 
of the data by a longer period than the conversion time.

An analog voltage signal has an infinite number of possible voltage levels within 
its range. The analog voltages are converted to digitally coded numbers by 
sampling and converting the analog signal into a fixed number of possible digital 
states or levels. This process is known as quantisation. For example, a 3-bit ADC 
can digitise an analog voltage and create digital numbers from zero to seven, which 
represents the analog voltage over a set range (say 0 to 3.5V) as shown in Figure 
11-2 and Table 11-1. In this example the analog signal has been divided up or 
quantised into eight levels. 

Figure 11-2  Ideal ADC Conversion. 

Table 11-1  Quantisation of analog voltages to 3-bit code. 

Quantised Analog 
Input Voltage

3-bit ADC 
Digital Code Decimal

0.0 V 000  (0) 
0.5 V 001  (1) 
1.0 V 010  (2) 
1.5 V 011  (3) 
2.0 V 100  (4) 
2.5 V 101  (5) 
3.0 V 110  (6) 
3.5 V 111  (7) 
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The digital code produced by the ADC will be correct and not contain any error 
when the analog input voltage corresponds exactly with a quantised voltage level. 
However, the ADC will incur an error known as quantisation error, when the input 
voltage is not exactly equal to the nearest quantised voltage level. For example, 
referring to Figure 11-2; zero quantisation error occurs when the analog input is 
equal to 0V, 0.5V, 1.0V, etc. The quantisation error is a maximum (equal to ½ a 
quantisation level) when the analog input voltage lies halfway between two 
quantisation levels – 0.25V for the previous example.

Another type of error can occur with analog-to-digital conversion, known as 
monotonic error. If the input voltage to the converter increases in discrete 
quantised levels, the digital output code should also increase by the same number 
of increments. If this does not happen, then monotonic error has occurred, reducing 
the useful resolution of the converter. 

The digital output code from an ADC is produced in either serial or parallel format. 
The converter shown in Figure 11-1 uses parallel format with all 8 output bits 
available. Parallel output converters usually have faster operating times than the 
serial output types but require additional connections to the digital system. 
However, ADCs with serial output require more work to control than parallel 
output types. Some converters contain an internal analog multiplexer, allowing 
multiple analog input channels to be processed (at a proportionately slower speed). 

At the start of the conversion process the input voltage must be sensed by the 
converter’s input stage circuitry. The output impedance of the external circuit that 
is providing the input signal to the ADC must be sufficiently low compared to the 
ADC’s input impedance for the ADC to function properly. The converter will 
operate over a limited range of input voltage, and this too must be considered when 
scaling the source of input voltage before connecting it to the ADC. 

11.3 Conversion Techniques 
Several popular analog-to-digital conversion techniques are implemented with 
electronic circuitry including voltage-to-frequency converters, single slope ADC, 
dual slope ADC, successive approximation ADC, and flash ADC. Some converters 
use a combination of methods to take advantage of the independent benefits of 
each approach. For example, the high-speed flash technique is combined with 
successive approximation to produce a ‘low cost’ but very fast converter. The 
voltage-to-frequency technique has been mentioned previously (Chapter 10) and is 
not normally considered for use, due to its relatively slow speed. The other 
converter techniques are widely used and are explained as follows. 

Single Slope ADC 
This converter uses a constant current source charging a capacitor, a voltage 
comparator, and a counter with clock source and control logic as shown in Figure 
11-3.
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Figure 11-3  Simplified single slope ADC. 

The conversion process begins immediately after the ‘Start Conversion’ input is 
driven to its active state and proceeds in two stages as follows: 

Stage 1 - Initialisation 

The discharging switch across capacitor C closes (activated by the control 
logic), discharging the capacitor to zero volts. Next the counter is reset to a 
value of zero, the counter logic opens the switch, and counting commences. 

Stage 2 - Integration 

The constant current source drives current into capacitor C, generating a 
ramping voltage at the comparator +ve input (this process is known as 
integration). When this ramping voltage exceeds the positive input voltage 
(VIN) present on the comparator –ve input, the comparator will toggle state 
from low to high. This change in state of the comparator will signal the 
counter logic to cease counting, at which time conversion is complete. The 
‘Conversion Complete’ output pin will then be switched to its active state to 
indicate end of conversion to external devices. The counter output code will 
now represent the analog input voltage. A larger magnitude of input voltage 
will require a longer time period for the ramping voltage to reach its level, 
producing a larger digital output value. 

The cycle described as Stage 1 and 2 will repeat when the next ‘Start Conversion’ 
pulse arrives. 

The conversion speed of the single slope ADC is relatively slow although its 
accuracy is reasonably good, being affected by the long-term stability of the 
counter’s clock, the stability of the constant current source, and the quality of the 
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capacitor, ideally having low dielectric absorption. When capacitors with high 
dielectric absorption are discharged and then removed from the discharging circuit, 
some charge will remain stored inside the capacitor on polarised dielectric 
interfaces. This charge generates an unwanted error voltage. Capacitors with very 
low dielectric absorption will have negligible voltage across them after being 
discharged. A further advantage of the single slope converter is that noise on the 
input voltage signal is averaged out during the process of integration. 

Dual Slope ADC 
This converter is similar to the single slope ADC except that two ramping stages 
are employed during conversion to greatly improve accuracy. Figure 11-4 shows 
the block diagram for such a converter. 

Figure 11-4  Simplified dual slope ADC. 

Once the ‘Start Conversion’ input is asserted, the conversion process will proceed 
in three stages as follows: 

Stage 1 – Initialisation 

The ADC is ‘zeroed’ by closing SW2 to fully discharge the integrating 
capacitor C to zero volts. 

Stage 2 – Integrate Up using ‘VIN’

At the start of this stage the counter is reset to a count of zero, and SW1 is set 
to position 1, connecting the input voltage (VIN) to the voltage-controlled 
current source. SW2 is opened, allowing the current source, controlled by the 
input voltage signal VIN, to charge the integration capacitor C, producing an 
upwards ramping voltage shown as ‘A’ in Figure 11-5. The ramping is 
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allowed to proceed for a fixed time period (usually the maximum count value 
of the counter – to maximise conversion accuracy). At the end of this time 
period, the counter is reset to a count of zero and the final stage of conversion 
will begin. 

Stage 3 – Integrate Down using ‘Reference Voltage’ 

SW1 is moved to position 2, allowing the precise negative reference voltage 
to control the current source. This produces a negative current of constant 
value, which progressively discharges capacitor C until the voltage at the 
comparator +ve input falls just below the ground potential (0V) connected to 
the comparator’s –ve input. When this occurs the comparator output changes 
state and stops the counter. The count value reached during this stage 
represents the analog input voltage (VIN), being proportional to its magnitude. 

Figure 11-5 shows the voltage waveform generated during the two integration 
stages. The lower set of rising and falling voltages across the capacitor shown as 
‘C’ and ‘D’ are generated when the input voltage VIN is a lower value. Note that 
the down ramping voltages marked as ‘B’ and ‘D’ have the same slope since they 
are generated by a constant current of the same value (controlled by VREF).

Figure 11-5  Dual slope ADC voltage waveform. 

The advantage of the dual slope ADC compared with the single slope converter is 
its improved accuracy, largely determined by the stability of the reference voltage. 
Unlike the single slope ADC, the dual slope ADC is not affected by any long-term 
drift in clock frequency since the same clock is used for timing Stage 2 and Stage 
3. The dual slope ADC shares similar noise immunity characteristics as the single 
slope converter and requires the use of a good quality capacitor with low dielectric 
absorption. This converter is relatively slow but very accurate – up to around 18-bit 
resolution. Other converters cannot match this converter for accuracy at low cost 
and this is one of the reasons it is widely used in instruments such as precision 
digital multimeters. 
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Successive Approximation ADC 
This converter is very popular due to its relatively fast conversion speed, good 
accuracy and low cost. Figure 11-6 shows the block diagram for this converter. 

Figure 11-6  Simplified successive approximation ADC. 

Conversion begins immediately after the ‘Start Conversion’ input is driven to its 
active state and proceeds as follows: 

Stage 1 – Initialisation 

The control logic clears all control logic output bits. 

Stage 2 – Successive Approximation Process 

The converter digital output code is formed sequentially during a series of 
tests, where the analog input voltage is compared against the analog value of a 
digital code, this code constructed during the conversion cycle itself. 

Each bit value is tested sequentially against the analog input voltage, starting 
with the most significant bit (MSB). For example, using an 8-bit converter, 
the digital test code would be 1000 0000, representing half the quantised 
voltage range. This code is fed to the input of the digital-to-analog converter 
(DAC), producing the analog voltage VDAC. Voltage VDAC is tested against 
voltage VIN using the comparator. If VIN is greater in magnitude than VDAC,
the comparator output will be HIGH and the control logic will keep the 
current bit, in this case the MSB and the output code would then be 
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1000i0000. If VIN was lower in magnitude than VDAC, the comparator output 
would be LOW and the control logic would discard this bit, the output code 
would then be 0000 0000. 

The next test would involve the next lower bit. This bit would be added to the 
code output from the control logic’s previous bit value test, producing the 
code 1100 0000 (assuming VIN was greater in the first test). This code is then 
passed to the DAC to generate a new value of VDAC to be used for this current 
bit value test. This process continues as before for this bit and in-turn for the 
remaining bits. At the conclusion of all bit testing, the conversion complete 
output will change to its active state to provide external indication. This type 
of converter has significant benefit being that conversion time is fixed and 
reasonably fast. 

The interface board is fitted with a successive approximation ADC, namely the 
ADC0804. A few additional input control pins are used with this device, one being 
the /RD pin (where / signifies active low) used to control reading of output data 
bits. The other pin is the /CS input which is used in combination with the /RD pin 
to allow the output data bits to be placed into tri-state mode. When a device’s 
output pin is in a tri-state mode it will have high-impedance connections to other 
interconnected circuitry. The other two states are the low voltage state (logic-
LOW) and the high voltage state (logic-HIGH). The tri-state feature of the 
ADC0804 is used when connecting the device into microprocessor-type systems 
where the data bus is shared with other devices. These systems require the ADC to 
be ‘disconnected’ at specific times to allow other devices to share the data bus. 

Figure 11-7  ADC0804 conversion timing. 

Starting a conversion and then later reading the output data takes place as shown in 
Figure 11-7. Note that the /CS signal must be held low for the duration of the 
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conversion cycle. In many applications it can be held low permanently (when tri-
stating is not needed). 

Caution: the analog input voltage to the converter must not exceed +5V or drop 
below 0V. If the input voltage is outside the specified operating range the device 
will likely suffer permanent damage. 

Note also that the conversion complete signal (/INTR) is low for only a brief period 
of time. When using a PC to monitor this signal, bear in mind that the software 
running on the PC through the parallel port is relatively slow and might be 
unreliable when detecting the change in level of the /INTR signal. Generally, this 
signal is latched using hardware means (latching refers to detecting an event and 
then indicating its occurrence). The interface board does not have latching circuitry 
included for this purpose. Our programs will not detect the /INTR signal after 
issuing the start conversion signal. Instead, they use a software delay to wait for a 
longer time period than the conversion time before reading the output code. 

The ADC0804 converter is constructed internally with separate digital and analog 
grounds to minimise effects of noise to its analog circuitry. These grounds must be 
connected together externally at one point as shown on the interface board 
schematic diagram (Appendix, Figure A-26). Here you will see two different types 
of ground symbol connected together, the hollow triangular symbol being analog 
ground and the lined ground symbol, digital ground. 

Flash ADC
This converter is the fastest of all types of analog-to-digital converters and also the 
most expensive. Applications using flash converters include digital signal 
processing, video signal processing, and other types of waveform analysis as used 
in digital oscilloscopes. The converter does not need a ‘Start Conversion’ input; 
instead conversion is a continuous process taking place as shown in Figure 11-8. 

Figure 11-8  Simplified 2-bit flash ADC. 

2-Bit Digital 
Output Code 

Encoding
Logic

Voltage
Comparator

Voltage
Comparator

Voltage
Comparator

VIN

R

R

R

VREF

R

(Or a Constant 
Current Source) 

i V3

V2

V1

11 ANALOG-TO-DIGITAL CONVERSION 340



Using a 2-bit ADC for explanation purposes, the 2-bit ADC will quantise an analog 
input voltage to four possible levels. For example, if the ADC input voltage range 
was to be 0 to 3V, then the four quantisation levels would be 0V, 1V, 2V, and 3V. 
VREF would be set to a level of 4V. The analog input voltage is tested against three 
of the four quantisation levels using three comparators. The fourth quantisation 
level in this case being 0V does not need testing. 

The first comparator, shown with V1 connected to its –ve input, tests for the analog 
input voltage VIN exceeding 1V. If VIN exceeds V1, the comparator output will be 
high and this will be sensed by the encoding logic. Otherwise the comparator 
output will be low. The other two comparators test if the analog input exceeds 2V, 
and 3V, respectively. The encoding logic converts the individual comparator output 
signals into valid n-bit logic output, where n in this case is 2. This conversion 
process is continuous and is extremely fast – the conversion time being the addition 
of the delays generated by the comparators and the encoding logic. 

The other significant characteristic of a flash ADC is related to conversion speed - 
its extremely short aperture interval. The aperture interval is the time taken for the 
converter to ‘read’ the analog voltage level during conversion. For the flash 
converter, this time is equal to the interval when the comparator outputs are latched 
(stored in the encoding logic) and does not include the remaining conversion time 
when encoding takes place. This characteristic of the converter makes it ideal for 
use in applications having ‘fast’ changing signals and means it doesn’t need to use 
a sample and hold circuit – explained later in this chapter. 

As the conversion resolution increases, so too does the number of comparators. For 
an n-bit device, 2n - 1 comparators are needed. For converters beyond the range of 
8 to 10 bits, the devices become quite expensive and relatively large. One way to 
improve resolution is to cascade converters – for example, using four 6-bit units 
would create an 8-bit flash converter.

11.4 Measuring Voltages with an ADC 
It is beneficial to understand some of the basic concepts of signal processing before 
using an ADC for measuring dynamic signals. These concepts include slew rate , 
sample and hold, aliasing, and equivalent time sampling. Consider a repetitive 
triangular waveform as shown in Figure 11-9. 

Imagine we are to sample this changing input voltage using an 8-bit ADC having a 
conversion time of 100 s (the interface board’s ADC0804 ADC). At the start of 
conversion, the input voltage to the converter will either be ramping up or down 
depending on the point in time conversion was initiated. Examine the case when 
the input voltage is ramping up from 0V at the rate of 5V per 0.5 second (10V/sec). 
Knowing the rate of change of input voltage to be 10V/sec, implies that over a 
100 s period the analog input voltage will rise by 1mV. 
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Figure 11-9  Triangular waveform. 

The 8-bit converter quantises the analog voltage into 256 levels over an input range 
of say 5V (for maximum accuracy), where each level is equal to 5V/256 = 19mV. 
In order to use the converter’s full 8-bit accuracy, the analog input voltage must not 
change by more than ½ a quantisation level during the conversion interval, being 
9.5mV in 100 s (95V/sec). For the extremely slow changing input signal of 
10V/sec used in this example, conversion accuracy is maintained since the analog 
input signal changes only 1mV during the conversion period (10V/sec) and the 
converter can tolerate up to 9.5mV change at its analog input (95V/sec) before 
losing resolution accuracy. 

Should the period of the triangular waveform be changed to 0.1 seconds, the rate of 
change of the analog signal will be 5V/0.05 seconds (100V/sec). In this case the 
converter cannot quite keep up – it can work at full resolution accuracy for analog 
input voltages having slew rates of less than 95V/sec. As you can see, a 0.1 second 
period or 10 Hz signal is around the frequency limit for this converter (and the 
ADC0804!) when digitising a triangle shaped waveform. The triangular waveform 
is the least demanding of all waveforms to digitise, the sine wave being the next 
most demanding. Digitising a sine wave is treated as follows. 

Figure 11-10 Sinusoidal waveform. 
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A sinusoidal changing input voltage is expressed as: 

v (t) = Vp sin t + Vp where Vp is half the peak-to-peak voltage, 
 is the circular frequency (radians/sec)

(  = 2 f, where f is the frequency in Hertz) 

The rate of change of v (t), or its slew rate is: 

 dv/dt = Vpcos t this being a maximum when cos t = 1 
Max slew rate = Vp

= 2 f Vp

 The ADC ‘sees’ the changing input voltage for nearly the whole conversion 
interval, Tc. To use the full-bit accuracy of the converter, this input voltage change 
must be less than ½ a quantisation level (or half a least significant bit, LSB) during 
the conversion interval Tc. Remember that one quantisation level is equal to the 
converter input voltage range divided by the number of quantisation states possible 
for the converter. For an n-bit converter there can be a maximum of 2n states, so 
half a quantisation level can be expressed as: 

 ½ Quantisation Level = ½ (Converter Input Range / 2n)

The maximum slew rate of the analog input voltage to the converter is: 

 Converter max 
input slewrate 

= (Converter Input Range / 2n+1) / Tc

Note: In order to optimise the accuracy and maximum digitising frequency range of 
the converter, scale the maximum analog input voltage up to use the full converter 
input range where possible. 

Equating the input signal slew rate for a sinusoidal signal to the limiting converter 
slew rate creates the expression: 

 Max slew rate 
input voltage 

< Max slew rate 
      ADC 

2 f Vp < (Converter Input Range / 2n+1) / Tc

f < Converter Input Range /  Vp Tc 2n+2

In order to improve the accuracy and allow digitisation of much higher frequency 
signals, a circuit known as a sample and hold is often used, placed between the 
analog input signal and the input to the converter. Since many ADCs do not 
contain an internal sample and hold, external sample and hold devices are often 
used with converters. 

Sample and Hold 
This circuit stores a ‘snapshot’ of the changing analog voltage signal and presents 
an ‘unchanging’ buffered version of the signal to the input of the ADC. The 
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‘Sample Command’ signal from the host controller is connected to the input of the 
sample and hold to synchronise sampling. Sampling and holding takes place in two 
stages explained as follows and shown in Figure 11-11 and Figure 11-12: 

Figure 11-11  Simplified sample and hold circuit. 

Figure 11-12  Sample and hold timing. 

Stage 1 – Sampling Input Signal 

Once the sample command input is activated to ‘Sample’, the analog switch 
closes and the capacitor is charged to the same voltage as the analog input 
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voltage. The time taken for the voltage across the capacitor to ‘reach’ the 
input voltage (within limits) is referred to as the acquisition time.

Stage 2 – Holding Sampled Voltage 

At the end of the sampling period, the ‘Sample Command’ is toggled to the 
‘Hold’ state to store the sampled signal for the ADC input. Unfortunately 
there is a delay in opening the analog switch known as aperture delay. This 
delay causes the output of the sample and hold (S/H) to follow the input 
voltage for the aperture delay time period, creating an error in sampled 
voltage and hence possible errors in the digital code produced by the ADC. 
The ADC conversion commences during the hold period that follows the 
sampling process. 

Ideally the output of the sample and hold (S/H) remains fixed in amplitude over the 
entire ADC conversion interval. In practice the S/H output drops over time 
producing what is known as voltage droop. The droop occurs as charge stored on 
the capacitor is lost during the hold period, drawn into the neighbouring S/H 
circuitry connected to the capacitor, and also lost through the capacitor itself.

Aliasing
When sampling a repetitive waveform, it is possible to produce various sets of data 
values depending on the sample rate as shown in Figure 11-13 to Figure 11-15. 
Considering a sinusoidal waveform; should the sample rate be less than half the 
signal cycle or period, then a waveform similar to that shown in Figure 11-13 will 
be reconstructed from the data values produced by sampling and conversion. The 
reconstructed signal has a different frequency from the original sampled signal and 
is termed an alias signal. Beware: in this case the alias signal has the same 
amplitude and sinusoidal shape as the input signal and can be mistaken to be a 
proper representation of the actual input signal. 

Figure 11-13  Aliased reconstruction – sample rate too low. 

Note: triangular-shaped waveforms will be reconstructed from digitised samples 
made at twice the signal frequency as shown in Figure 11-14. These reconstructed 
waveforms will have different amplitude depending on the position in the cycle 
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when sampling begins. 

Figure 11-14  Digitising sample rate at 2 samples/signal cycle. 

As the sample rate increases, the reconstructed waveform starts to resemble the 
original signal as shown in Figure 11-15. 

Figure 11-15  Digitising sample rate approximately 5 samples/signal cycle. 

Real and Equivalent Time Sampling 
All waveforms shown above have been sampled in real-time, meaning that data 
points are collected and stored sequentially as they are digitised. Repetitive signals 
of high frequency can be sampled and reconstructed using equivalent time 
sampling, where groups of sample sets are stored in memory and then used to 
generate complete waveform reconstruction. The resultant constructed waveform 
represents the originally sampled signal as shown in Figure 11-16. This technique 
is often utilised in digital oscilloscopes. When the user sets the oscilloscope time-
base to sample high-speed repetitive waveforms, equivalent time sampling is used 
to create a pseudo sampling rate much greater than that of the oscilloscope’s 
digitiser.
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Figure 11-16  Equivalent time sampling. 

Equivalent time sampling cannot be applied to the digitisation process when 
working with non-repetitive signals as shown in Figure 11-17. Instead, these 
signals need to be sampled and stored at a sufficiently high rate to provide enough 
detail in the reconstructed signal. Under these conditions many digital 
oscilloscopes are often challenged to provide adequate sampling rate and sufficient 
high-speed memory to store the digitised data. These two factors have a significant 
influence on the price of digital oscilloscopes. 

Figure 11-17 Real-time sampling of a non-repetitive waveform. 
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can develop a software object for the ADC. The principle purpose of an analog-to-
digital converter is to convert an analog voltage applied at its input to an integer bit
number that can be read by the computer.
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1. Start an analog-to-digital conversion. 
2. Wait for the conversion to complete. 
3. Read the converted data. 

Some analog-to-digital converter subsystems have a multiplexed analog input (i.e. 
more than one analog input where only one analog input is switched to the ADC at 
any given time). In such cases the above set of steps must be preceded by a “Select 
Input Channel” operation. The ADC used with our interface board does not have a 
multiplexer to use with multiple analog input channels. Therefore, we will not need 
to incorporate channel selection. 

We must design our object class to have a member function to implement the steps 
listed above. The ADC on the interface board is designed to communicate through 
the parallel port. Therefore, the ParallelPort object forms an ideal base class 
for the new ADC class.

The ADC class needs to have only one private data member to store the digital 
value read from the ADC. Apart from the constructors, the ADC class must have a 
function to carry out the analog-to-digital conversion and store the resulting digital 
value into the private data member. A function is also needed to provide access to 
this private data member. A class definition that encapsulates this data and 
functions is given in Listing 11-1. 

Listing 11-1 The header file for the ADC class – adc.h. 

#ifndef AdcH 
#define AdcH 

#include "pport.h" 

class ADC : public ParallelPort 
{
 private: 
  unsigned char ADCValue; 

 public: 
  ADC(int baseaddress=0x378); 
  unsigned char ADConvert(); 
  unsigned char GetADCValue(); 
};
#endif

The function ADConvert() is the most involved of the three functions and is 
discussed first. We must decide which parts of the parallel port will be used and 
their purpose before before being able to write the C++ statements for this 
function.
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ADC0804

D0VIN

/CS

/START C.

/READ /DATA VALID

D7

Figure 11-18 shows a block diagram of the ADC0804 with its input pins (on the 
left side) and output pins. The pin labels and descriptions are given in Table 11-2. 
These labels are used on the schematic diagram and can also be found near the 
ADC on the interface board. 

Figure 11-18  ADC0804 block diagram. 

Table 11-2 Interface pins of the ADC. 

Pin Label† Input Output Function 
VIN  Analog input voltage 
/CS  Chip select (activates device) 
/START C.  Start a conversion 
/READ  Enable reading the digital data 
/DATA VALID  Indicates conversion complete 
D0-D7 Output digital data bits 

†Pin labels with a prefix of ‘/’ are active low. 

The dots marking the Input and Output columns of Table 11-2 identify each signal 
as an input or an output with reference to the ADC. Now we need to evaluate a 
means of interfacing these signals to the parallel port. 

Operation of signals 
The voltage signal to be converted by the ADC is connected to its analog input pin 
labelled VIN. For testing purposes we can generate a suitable analog input voltage 
for the ADC using either the on-board potentiometer, the thermistor circuit, or the 
DAC operating in unipolar mode (jumper fitted across the header position marked 
LINK1).

The ADC’s input pins are configured as follows. The chip select pin (/CS) must be 
at logic-low for the ADC to operate. The read enable pin (/READ) must be held 
logic-low to enable reading the digital data from the ADC. The chip select signal is 
typically generated by the address decoding circuit of a hardware system that has 
several devices sharing a data bus. The interface board does not share a data bus, so 
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we can permanently activate the above two signals; i.e. connect them directly to 
GND. This reduces the number of signals we need to interface with the parallel 
port.

The computer must control the start conversion signal connected to the start
conversion pin (/START C.). An analog-to-digital conversion is initiated by 
applying an active-low pulse to this pin. We can generate an active-low pulse by 
driving a high-level signal momentarily to a low-level, returning the signal to a 
high state. 

Immediately after the ADC completes its conversion operation, the data valid pin 
(/DATA VALID) will produce a brief low-level pulse. Since this low-level pulse is 
short in duration, it may not be possible to detect it and therefore determine the 
precise moment conversion was completed. Typically, this pulse is latched using 
hardware to ensure that a program will reliably detect the end of conversion. The 
electronic circuitry on the interface board has been kept to a minimum and as such 
does not include a latch circuit. Therefore, our best option is to allow sufficient 
time for the conversion to complete before reading the digital data. In addition, 
using this approach will free us from the need to interface the /DATA VALID 
signal.

Configuration of Port data bits to interface the ADC 
We now need to assign the data bits that will interface the ADC to the parallel port. 
When using the ADC it is possible that the DAC will be used to provide 
programmable input voltages to the ADC. We will assume this to be the case when 
allocating our data bits. The digital input and output requirements for the ADC and 
DAC are shown in Table 11-3. 

Table 11-3  DAC & ADC digital input and output pins. 

DAC  ADC 
Digital Inputs  Digital Inputs Digital Outputs 

D0  /CS D0 
D1  /RD D1 
D2  /START C. D2 
D3   D3 
D4   D4 
D5   D5 
D6   D6 
D7   D7 

   /DATA VALID 
    

Digital Inputs to the DAC: The eight digital input pins to the DAC need to be 
driven by parallel port output signals. Therefore, it makes sense to use output data 
bits (D0 to D7) of the port at address BASE to drive the DAC inputs (D0 to D7).
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Digital Inputs to the ADC: To drive the ADC input pin /START C., we can use 
data bit D0 of the port at address BASE+2. The ADC data bus is configured to an 
active state by connecting /CS and /READ directly to GND using interconnecting 
leads. We can do this because our ADC’s output data is not connected to a shared 
data bus. 

Digital Outputs from the ADC: The software must read eight digital output signals 
from the ADC being sent through the parallel port (/DATA VALID not used). The 
parallel port has five input signals (D3 to D7) available from the port at address 
BASE+1. Note that we have not used port address BASE+2 in input mode as it can 
be unreliable at higher data transfer rates. 

The interface board has been fitted with a four-channel 2-to-1 multiplexer (as 
shown in Figure 11-19) to provide extra capability for transfer of data to the port. If 
we make use of this device, we can transfer eight data bits to the port using only 
four signals. We do this by separating the eight data bits from the ADC into two 
groups of four bits. The first group is selected by the multiplexer and the port then 
reads these four data bits. This is followed by selection of the second group of four 
bits that are then read by the port. Note that we need one output data bit from the 
port to control the multiplexer’s selection operation. Since the eight bits from the 
ADC represent one byte of data, driving the multiplexer’s Select input low will 
select the low nibble (D0 to D3). Conversely, driving the Select input high will 
select the high nibble (D4 to D7). 

Figure 11-19 Complete ADC system using the Multiplexer. 

Now that we know how to read the eight bits of data from the ADC using only four 
transmission signals, we can establish the configuration for the remainder of the 

ADC

D0 D0

D1 D1

D2 D2

D3 D3

D4 D4

D5 D5

D6 D6

D7 D7

BASE+1
Address

D4

D5

D6

D7

Interconnect
Leads

(SW position)
MULTIPLEXER

(MUX)
Select

D3
/DATA VALID 

START C. D0

D1
BASE+2
Address

/READ

VIN

/CS

(not used) 
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parallel port data bits. We can use four input data bits (D4 to D7) of the port at 
address BASE+1 to read the four output signals from the multiplexer that transmits 
the ADC output byte as two nibbles. 

If you should decide to modify the program to detect the narrow output pulse 
/DATA VALID from the ADC, then connect a lead from this pin to data bit D3 of 
the port at BASE+1 and write extra program statements to read its status. 

Digital Input to the Multiplexer: We can drive the Select input of the multiplexer to 
control which nibble at its input pins is switched to its output by using an output 
data bit (D1) of the port at address BASE+2.

A summary of all connections for interfacing the parallel port to the ADC, to the 
DAC, and to the Multiplexer is given in Table 11-4. This table does not provide the 
internal connections needed on the interface board between the ADC and the 
Multiplexer - they are shown in Figure 11-19. 

Table 11-4  Parallel Port interface connections for the DAC, ADC, and MUX. 

BASE Address BASE+1 Address BASE+2 Address 
D0 DAC, D0 D3 (ADC, /DATA VALID) D0 ADC, /START C. 
D1 DAC, D1 D4 MUX, D4 D1 MUX, Select 
D2 DAC, D2 D5 MUX, D5   
D3 DAC, D3 D6 MUX, D6   
D4 DAC, D4 D7 MUX, D7   
D5 DAC, D5    
D6 DAC, D6    
D7 DAC, D7    

Note: 1. ADC inputs /CS and /READ must be connected to GND using interconnect leads. 
 2. ADC output /DATA VALID is not used for our program. 
 3. Set DAC to Unipolar mode by fitting the jumper across header position marked LINK1. 

We are now in a position to define the member function ADConvert(). Listing 
11-2 shows one possible definition of the function. 

Listing 11-2 Member function ADConvert().

unsigned char ADC::ADConvert() 
{
// Declare variables to store nibbles. 
 unsigned char LowNibble, HighNibble; 

// Start conversion pulse. 
 WritePort2(0x01); // set /START C to high 
 WritePort2(0x00); // pull /START C to low 
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 WritePort2(0x01); // set /START C back to high 

// Set Select signal of multiplexer (D1) to logic-high and 
// maintain /START C high. This operation takes more time 
// than the conversion of the ADC, so we do not need to 
// check for signal /DATA VALID. */ 
 WritePort2(0x03); // 0000 0011 

// Conversion finished by this time. 
// Read high nibble and nullify low nibble. 

HighNibble = ReadPort1() & 0xF0; 

// Set Select signal of multiplexer (D1) to logic-low. 
 WritePort2(0x01); // 0000 0001 

// Read low nibble, move data bits across into position 
// and nullify high nibble. 

LowNibble = (ReadPort1() >> 4)  & 0x0F; 

// Form complete byte. 
ADCValue = HighNibble + LowNibble; 

 return ADCValue; 
}

The three statements from  Listing 11-2 shown in bold typeface need explanation. 
Note that when reading the port at address BASE+1, only the bits D4-D7 carry data 
coming from the ADC. The data from the 8-bit ADC is read into the PC using 
these four bits in two stages; first the high nibble (four bits) is read and stored, 
followed by reading and storing the low nibble. Then the high and low nibbles are 
added to obtain the complete 8-bit result (ADCValue).

Figure 11-20 Reading the high nibble and filtering out unwanted bits. 

1  0  1  1  0  0  0  0 
1  1  1  1  0  0  0  0 
1  0  1  1  0  1  0  1 

Actual data Garbage data 

Garbage bits forced to be zero 

Byte read from port at BASE+1

0xF0 used in AND operation

HighNibble Result, garbage bits forced to 0
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We use the inherited member function ReadPort1() to read the high nibble 
through the port at address BASE+1 and then clear all unused bits that contain 
unpredictable (garbage) data (lower four bits) by carrying out an AND operation 
with 0xF0. This operation is shown in Figure 11-20. 

When reading the low nibble, we first read the port and then shift these data bits by 
4 locations to the right to reside in the low nibble of the final data byte. After 
shifting we carry out an AND operation with 0x0F to clear all bits in the high 
nibble that can contain unpredictable data. This is shown in Figure 11-21. 

Figure 11-21 Reading the low nibble and filtering out unwanted bits. 

Now we have an 8-bit number (unsigned char) named LowNibble, which has 
some data in the lower four bits and definitely zeros in the upper four bits. We also 
have an 8-bit number named HighNibble, which has some data in the upper four 
bits and definitely zeros in the lower four bits. Then we add these two bytes 
together to form one complete byte named ADCValue which has all 8 bits 
carrying the data from the analog-to-digital converter. Figure 11-22 shows the 
formation of ADCValue.

Figure 11-22  Add low & high nibbles to form the ADC output. 

The function given in Listing 11-2 can be re-written in a slightly more efficient 
form as given in Listing 11-3. The data member ADCValue has been used to 
combine an operation and eliminate the need for variables LowNibble and 
HighNibble.

Byte read from port at BASE+11  1  0  1  0  1  0  1 

0  0  0  0  1  1  1  1 
?  ?  ?  ?   1  1  0  1 

Wanted data Garbage data bits will drop out during shift operation 

Garbage bits forced to be zero 

0x0F used in AND operation

Result of shift operation

0  0  0  0  1  1  0  1 LowNibble Result, garbage bits forced to 0

Shift to right by 4 positions
Possibility of new

garbage data

New location of wanted data 

1  0  1  1  1  1  0  1 
1  0  1  1  0  0  0  0 
0  0  0  0  1  1  0  1 LowNibble

HighNibble

ADCValue
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Listing 11-3 A more efficient version of ADConvert().

unsigned char ADC::ADConvert() 
{
// Start conversion pulse. 
 WritePort2(0x01); // set /START C to high 
 WritePort2(0x00); // pull /START C to low 
 WritePort2(0x01); // set /START C back to high 

// Set Select signal of multiplexer (D1) to logic-high and 
// maintain /START C high. This operation takes more time 
// than the conversion of the ADC, so we do not need to 
// check for signal /DATA VALID. */ 
 WritePort2(0x03); // 0000 0011 

// Conversion finished by this time. 
// Read high nibble and nullify low nibble. 

ADCValue = ReadPort1() & 0xF0; 

// Set Select signal of multiplexer (D1) to logic-low. 
 WritePort2(0x01); // 0000 0001 

// Read low nibble and assemble the final 8-bit number. 
ADCValue += (ReadPort1() >> 4)  & 0x0F; 

 return ADCValue; 
}

The complete definition of the ADC class must include the definitions of its 
member functions as given in Listing 11-4. The member function 
GetADCValue() provides access to the final 8-bit number ADCValue for 
functions outside the ADC class. 

Listing 11-4 Member function definitions of the ADC class – adc.cpp. 

#include "adc.h" 

ADC::ADC(int baseaddress) : ParallelPort(baseaddress) 
{
 ADCValue = 0; 
}

unsigned char ADC::ADConvert() 
{
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 WritePort2(0x01);  // Start C. pulse 
 WritePort2(0x00); 
 WritePort2(0x01); 

 WritePort2(0x03); // Set Mux to read high nibble. 
 ADCValue = ReadPort1() & 0xF0; 

 WritePort2(0x01); // Set Mux to read low nibble. 
 ADCValue += (ReadPort1() >> 4)  & 0x0F; // Read, combine. 

 return ADCValue; 
}

unsigned char ADC::GetADCValue() 
{
 return ADCValue; 
}

11.6 Measuring Voltage Using the ADC 
Recall that in Chapter 10 we developed a program to measure an analog voltage 
using the VCO. The MeasurePeriod() function in the VCO program returned 
a number representing the pulse period (and hence input voltage) of the VCO. We 
should be able to use the same program with the VCO object replaced by the ADC
object. The function ADConvert()can then generate a number proportional to 
the analog voltage. Note that we have used a DAC object in the VCO program to 
provide an analog voltage. We will keep the same DAC object operating exactly the 
same way to provide the analog input to the ADC (at VIN).

Listing 11-5 shows the main() function from Listing 10-6 reproduced with the 
modifications needed to use it with the ADC.

Listing 11-5 Measuring voltage using the ADC – voltage.cpp.

#include <conio.h> 
#include <bios.h> 

#include "dac.h" 
#include "adc.h" 

void main() 
{
 DAC Dac; 
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ADC Adc; 
 int Quit = 0, key; 

unsigned char DACbyte; 

 clrscr(); 
 Dac.SendData(0); // initialise to zero 

 while(!Quit) 
 { 
  gotoxy(10,10); 

cprintf("The ADC output is: %3u",
        (int) Adc.ADConvert()); 

  if(bioskey(1)!=0) 
  { 

DACbyte = Dac.GetLastOutput(); 
   key = bioskey(0); 
   switch(key) 
   { 
/*Alt-X*/     case 0x2d00 :  
       Quit = 1; 

Dac.SendData(0); // reset to 0 
break;

/*Up Arrow*/ case 0x4800 : 
       if(DACbyte>247) // limit max value 
           DACbyte = 247; 
       Dac.SendData(DACbyte+8); 
       break; 

/*Down Arrow*/ case 0x5000 : 
       if(DACbyte<8) // limit min value 
        DACbyte = 8;
       Dac.SendData(DACbyte-8); 
   } 
  } 
 } 
}

We have made changes to just a few statements in the main function. The keyboard 
controls operate almost identically to the program in Listing 10-6 that used the VCO
object. The difference being the addition of statements to limit the maximum and 
minimum value of the number written to the DAC (0 to 255). 
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Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
dac.cpp
dac.h
adc.cpp
adc.h
voltage.cpp

Listing 10-8 
Listing 10-7 
Listing 10-10 
Listing 10-9 
Listing 11-4 
Listing 11-1 
Listing 11-5 

pport.cpp

dac.cpp

adc.cpp

voltage.cpp

The entire definition of the DAC class must be provided before the compiler can 
compile the main() function given in Listing 11-5. The VCO object is not being 
used. Therefore, its class definition and function definition can be eliminated, 
however, its inclusion will not affect the operation of our program. When 
compiled, linked and run, this program will display an integer value on the screen 
that corresponds to the voltage applied at the VIN input of the ADC. 

The program can be modified slightly to display the analog voltage instead of an 
integer number. The ADC produces an output that is 8 bits wide. These 8 bits can 
represent any value in the range 0–255 both inclusive (which forms 256 numbers). 
The operation of the ADC requires the full-scale range to be quantised (segmented) 
into 256 equal quantum levels. Each quantum then represents the full-scale voltage 
(5V) divided by 256. The ADC’s integer output of 0 corresponds to 0 volts at VIN, 
and its integer output value of i corresponds to an applied voltage of: 

volts

Note that from a C++ program’s point of view, the division operation 5/256 is 
considered as an integer division and the result will be 0. Therefore, when 
including the above expression in the program, it must be typed in as: 
5.0/256.0*i

Now the compiler will treat the division and multiplication operations as floating 
point operations, and a non-zero result will be evaluated for the expression 
5.0/256.0. The statement containing the cprintf() function in Listing 11-5 must 
now be modified to include the above factor as shown below: 
cprintf("The ADC output is: %5.2f (V)", 

5.0/256.0*Adc.ADConvert());

The program will now display the actual voltage applied at the analog input pin of 
the ADC (VIN). The connections that need to be made for this program to operate 
are given in Figure 11-19, Table 11-4 and Table 11-5.
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NOTE

Ensure that the DAC is placed into unipolar mode (0 to +5V output) by fitting the 
jumper across the header in the position marked as LINK1. Then connect the 9V 
battery before connecting the output of the DAC circuit to the ADC input.

Table 11-5 Partial connections for the ADC. 

 ADC0804 (U8)
VDAC (pin 7, U10B) VIN 

GND /READ 
GND /CS 

11.7 Measuring Temperature Using the 
ADC

A program was developed in Chapter 10 to measure temperature using the interface 
board’s thermistor and VCO. That program (Listing 10-12) only requires minor 
changes to measure temperature using the ADC. This new modified program is 
shown in Listing 11-6. Note that in this case we can accurately characterise the 
thermistor circuit response over the full 0 to +5V range since the ADC has very 
good linearity over its entire input range. In comparison, the VCO has similar 
linearity between +2.2V and +2.8V. 

Listing 11-6  Program measures temperature using ADC and thermistor – temp.cpp.

/*****************************************************
This program uses the thermistor circuit on the interface 
board to generate the analog input voltage to the ADC. The 
byte produced by the ADC will be proportional to the applied 
voltage (temperature of the thermistor). 
The program also calibrates the thermistor circuit output 
using upper and lower temperature points. The calibration 
equation will then interpolate a straight line through these 
two points. Once calibrated, the program will be able to 
display actual temperatures. 
*****************************************************/
#include <bios.h> 

11 ANALOG-TO-DIGITAL CONVERSION 359



#include <conio.h> 
#include <iostream.h> 

#include "adc.h" 

void main() 
{

ADC Adc; 
 int Quit=0, HiFlag = 0, LoFlag = 0; 
 int key = 0; 
 float HiTemp, LoTemp, Temp; 
 long int HiCount, LoCount; 

 clrscr(); 

 while(!Quit) 
 { 

Adc.ADConvert();

  gotoxy(10,10); 
  if((HiFlag == 1) && (LoFlag == 1)) 
  { 
     Temp = LoTemp+(HiTemp-LoTemp)* 
    (Adc.GetADCValue()-LoCount)/(HiCount-LoCount);

     cprintf("The temperature is: %6.1f (deg)", Temp); 
  } 
  else 
     cprintf("The ADC Value is: %3u", 

(int)Adc.GetADCValue());

  if(bioskey(1)!=0) 
  { 
   key = bioskey(0); 

   switch(key) 
   { 
    case 0x2d00 : /* Alt-X */ 
     Quit = 1; 
     break; 

    case 0x4800 : /* Up Arrow */ 
     gotoxy(10,5); 
     cout << "Enter Upper Calibration Temp."; 
     cin  >> HiTemp; 
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     HiCount = Adc.GetADCValue();
     HiFlag = 1; 
     break; 

    case 0x5000 : /* Down Arrow */ 
     gotoxy(10,6); 
     cout << "Enter Lower Calibration Temp."; 
     cin  >> LoTemp; 
     LoCount = Adc.GetADCValue();
     LoFlag = 1; 
   } 
  } 
 } 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h
temp.cpp

Listing 10-8
Listing 10-7 
Listing 11-4 
Listing 11-1 
Listing 11-6 

pport.cpp

adc.cpp

temp.cpp

The wiring connections need to be changed slightly for this program to operate. We 
do not use the DAC to provide the analog voltage. Instead we use the thermistor 
circuit to generate a voltage that represents the temperature of the thermistor. The 
output of the thermistor circuit is connected to the ADC analog input (VIN) as 
given in Table 11-6. The remaining connections for the ADC and the MUX are 
shown in Figure 11-19. 

Table 11-6  Thermistor circuit connections to the ADC. 

Thermistor Circuit 
ADC 0804 

(U8)
VTH VIN 

 /READ (to GND)
 /CS (to GND)

It has been rather easy for us to change our program that used the VCO to now 
operate in conjunction with the ADC. We have been careful to be consistent in 
developing our classes so that minimum changes will be needed if they are later 
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modified for new or existing programs. These examples are typical of the ease with 
which object-oriented programs can be maintained and upgraded.

11.8 Summary 
This chapter described the principles of operation and use of an analog-to-digital 
converter. The more popular types of analog-to-digital converters and their various 
methods of conversion have been explained.  This was followed by a discussion of 
the importance of a sample and hold circuit and the effects of aliasing that occurs 
when signals are sampled too slowly. 

We used our now familiar object-oriented approach to develop software for 
interfacing the parallel port of the PC with the ADC. We developed a new object 
class named ADC using an approach consistent with that of Chapter 10 when the 
VCO class was developed. This object-oriented approach has allowed us to 
develop the voltage and temperature measuring programs that used the ADC by 
making minor changes to the programs written for the VCO. 
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12.1 Introduction 
Some of the programs written in this book can be improved to require less memory 
when executing, and also operate faster by using pass by reference and return by 
reference mechanisms. They can also be changed to take advantage of simpler 
statements by using operator overloading and gain access to private member data 
through friend functions.

In this chapter, we will develop a data acquisition program to demonstrate how 
operator overloading can be used to write elegant programs that have the 
advantages outlined above. During data acquisition, signals are converted to data 
using a device such as an analog-to-digital converter. The data is then directly 
processed or written to a data file on a mass storage device such as a hard disk, or 
in some cases, sent to a standard output device such as a screen or printer. 

12.2 Operator Overloading 
When an operator is overloaded, the action carried out by the operator depends on 
the arguments the operator is associated with. For example, the results will be 
different if the division operator ( / ) is used in the following two contexts. One 
operation produces integer division and the other floating-point division: 
5/2;     // the result is 2 
5.0/2.0; // the result is 2.5 

Similarly, the double left arrow operator behaves in two different ways in the 
following two cases: 
int y = 200; 
cout << y; // 200 is sent to the standard output. 
y << 1;    // Shifts bits of y to left by 1 bit-position. 

The action of an operator depends on the type of object it is used with. In the 
expression cout << y, cout is a class object of type ostream and y is an 
object of type int. The << operator takes appropriate action to print the value of y
on the screen. However, both operands are of type integer in y << 1, and the 
action taken by the operator is to shift bits of y by 1 bit-position to the left. 

The operators shown in Table 12-1 cannot be overloaded. 

Table 12-1 Operators that cannot be overloaded. 

. ?: :: .* sizeof 

     



12 DATA ACQUISITION WITH OPERATOR OVERLOADING 

We will demonstrate operator overloading by developing program segments that 
overload the double right arrow (>>) and the double left arrow (<<) operators to 
perform the following tasks: 

1. Carry out an analog-to-digital conversion using an Adc object of type 
ADC, and store the result in the variable named value of type unsigned
char. We want to be able to use a statement of the following form to 
accomplish this. 
Adc >> value; 

2. Carry out an analog-to-digital conversion and send the data directly to the 
standard output device (computer screen) using a statement of the 
following form. The object cout is of type ostream and Adc is again an 
object of type ADC.

cout << Adc; 

Using a statement like this would simplify programming of a data 
acquisition system with an analog-to-digital converter where the results are 
to be viewed onscreen or stored in a file. 

Operators can be overloaded in two different ways by writing a function using 
syntax that is specific to operator overloading: 

1. As a member function of a class. 
2. As a non-member function. 

These two ways of overloading an operator will be discussed in the sections ahead. 
Operators can also operate as unary operators (such as ++ in the case of ++i) or as 
binary operators (such as + in the expression x+y). The unary operators shown in 
Table 12-2 operate on an object of type ObjectX. The binary operators operate on 
two objects; one of type ObjectX, and the other of type ObjectY. In this 
example the operator being overloaded is the @ symbol. 

Table 12-2 Function headings for operator overloading. 

Unary operator as a member function ObjectX::operator@()

Unary operator as a non-member function operator@(ObjectX x) 

Binary operator as a member function ObjectX::operator@(ObjectY y) 

Binary operator as a non-member function operator@(ObjectX x, ObjectY y) 

The operators overloaded as shown above are used as follows. In the case of a 
unary operator, the operand must be to the right of the operator. For example, if x
is an object of type ObjectX, the usage is: 

@x;
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In the case of a binary operator, the first operand must be to the left of the operator 
and the second operand must be to the right of the operator.  If x is an object of 
type ObjectX and y is an object of type ObjectY, then the usage is: 

x @ y; 

The syntax used with the operator is the same if the operator is overloaded as a 
member function or a non-member function. C++ concepts such as pass by value, 
pass by reference and copying objects with the copy constructor need to be 
understood before being able to understand how operators can be overloaded. 
These concepts are explained in the sections ahead. 

12.2.1 Passing Parameters to a Function by Value 
Our previous programs have often employed functions that used parameters. At the 
time of calling the function, these parameters are replaced by copies of the actual 
arguments (the real values used in the calling function). These copies of the 
arguments passed to the function are created as temporary values, used by the 
function, and destroyed when the function exits. As a result, the actual argument 
used when calling the function (in the calling environment) will not be affected by 
any changes the function makes to its copy. 

The passing of parameters to functions can be better understood by considering the 
following example that attempts to add up n integers that start from the number 0: 

#include <iostream.h> 

// NOTE: the result from this function cannot be used! 
void FindSum(int sum, int n) 
{
 for(int j = 0; j < n; j++) 
  sum = sum + j; 
}

void main() 
{
 int Sum = 0; 
 int n = 10; 

 FindSum(Sum,n); // FindSum() is called here 
 cout << "The sum of " << n << " integers is " << Sum  

 << endl; 
}

This program will print the following text on the screen: 
The sum of 10 integers is 0 
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When FindSum() is called it receives a copy of Sum and a copy of n. The copy 
of Sum is changed as expected inside this function. When the function exits, this 
copy is discarded and as a result the sum of ten integers evaluated within the 
function is also discarded.  The outcome is that the variable Sum declared within 
the main() function remains unchanged (i.e. it still has the value 0). 

This manner of passing parameters is known as pass by value, which is actually 
‘pass by a copy’. The two disadvantages when passing parameters by value are; i) 
the time taken, and ii) memory space needed to make a copy. If the passed 
parameter is an object that occupies a large portion of memory, an equal amount of 
extra memory space will be needed to make the copy, and this will take time. 

12.2.2 Passing Parameters to a Function by Reference 
A different way of passing parameters to a function is by reference. Passing 
parameters by reference allows a function to effect changes to a variable being 
used in the calling environment. The program segment given in Section 12.2.1 has 
been reproduced below with an apparently minor change. In this modified 
example, when the function FindSum() changes the value of sum, it actually 
changes the variable Sum that was declared within the main() function – not a 
copy of it. The function directly uses the variable in the calling environment (to 
generate a correct result) rather than working with a copy of it. 

#include <iostream.h> 

void FindSum(int& sum, int n) // Function heading changed
{
 for(int j = 0; j < n; j++) 
  sum = sum + j; 
}

void main() 
{
 int Sum = 0; 
 int n = 10; 

 FindSum(Sum,n); 
 cout << "The sum of " << n << " integers is " << Sum  

 << endl; 
}

This program will print the following line on the screen: 
The sum of 10 integers is 45 

The change in the program is shown in bold typeface. Instead of declaring the first 
parameter sum as an int, it is now declared as reference to int by changing int
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to int&. Therefore, when the function is called, no copy is made, and the function 
carries out changes to the variable in the calling environment, i.e. the variable Sum
declared within the main() function.

Passing parameters by reference is memory efficient and time efficient (no need to 
make a copy). It also allows the function to deliver a result through reference 
parameters and also through return values. The disadvantage is that the passed 
parameters are vulnerable to inadvertent changes carried out by the function.

Use of const with reference parameters 
The keyword const can be added in the parameter declaration to prevent the 
function from making changes to the reference variable. The keyword const can 
also be added to parameters passed by value. In either case, statements within the 
body of the function are not allowed to change the value of the parameter.

Note that in the previous example we cannot use the function heading: 
void FindSum(const int& sum, int n)

for the simple reason that we want to change the value of sum to be able to obtain 
the correct result.

12.2.3 Preferred Ways of Passing Parameters 
Passing parameters by value has the advantage of safeguarding the original values 
of the actual arguments in the calling environment.  However, making a copy 
consumes time and memory.  A more serious subtlety associated with pass by 
value is related to objects in a class hierarchy. This subtlety is demonstrated using 
the following example. 

Consider the simple class hierarchy and the program shown in Listing 12-1. 

Listing 12-1 Adverse effects of passing parameters by value. 

//This program produces WRONG results! 
#include <iostream.h> 

class Base 
{
 private: 
  int BaseClassData; 

 public: 
  Base(int baseclassdata) 
  { 
   BaseClassData = baseclassdata; 
  } 
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 virtual int GetClassData() const // Constant function. 
  { 
   return BaseClassData; 
  } 
};

class Derived : public Base 
{
 private: 
  int DerivedClassData; 

 public: 
  Derived(int derivedclassdata, 
   int baseclassdata): Base(baseclassdata) 
  { 
   DerivedClassData = derivedclassdata; 
  } 

  int GetClassData() const // Constant function. 
  { 
   return DerivedClassData; 
  } 
};

int GetData(const Base baseObject)//Pass by value 
{
 return baseObject.GetClassData(); 
}

void main() 
{
 Base* BasePtr; 
 int ClassData; 

 BasePtr = new Base(100); 
 ClassData = GetData(*BasePtr); 
 cout << "Base class data " << ClassData << endl; 
 delete BasePtr; 

 BasePtr = new Derived(200, 100); 
 ClassData = GetData(*BasePtr); 
 cout << "Derived class data " << ClassData << endl;   
 delete BasePtr; 
}
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Note that for both GetClassData() functions in program Listing 12-1, the 
keyword const is added at the end of the function heading as shown below: 

int GetClassData() const
{

return DerivedClassData; 
}

Such functions are named constant functions. These functions are not allowed to 
modify any of the data members of their class.

Now consider the function GetData():

int GetData(const Base baseObject)  //Pass by value 
{
 return baseObject.GetClassData(); 
}

The parameter baseObject passed to the non-member function GetData(), is 
passed by value as a const object. As such, the object passed must not be 
changed by any statements within the body of the GetData() function. 
Therefore, the statement baseObject.GetClassData() must not make any 
changes to baseObject. This is ensured since the GetClassData() function 
has been specified as a constant function. In the next program, when we pass 
parameters by reference, we will pass them as const objects to prevent the 
function from changing them. This allows us to keep both programs as similar as 
possible and to focus on the behaviour of the two programs in terms of pass by 
reference and pass by value.

The GetData() function is intended to extract the value of the data member that 
belongs to a particular class. The value of data member BaseClassData will be 
returned if baseObject is of type Base, and the value of data member 
DerivedClassData is returned if baseObject is of type Derived.

In this program we call the GetData() function under two different 
circumstances. Consider the first case: 
Base* BasePtr = new Base(100); 
int ClassData = GetData(*BasePtr); 

We would expect the function GetData()to call, from within its body,  the 
member function GetClassData() belonging to the Base class. This should 
and does retrieve the value of member data BaseClassData and assign its value 
of 100 to variable ClassData. Now consider the second case: 

Base* BasePtr = new Derived(200, 100); 
int ClassData = GetData(*BasePtr); 

Once again, we would expect the GetData() function to call, from within its 
body,  the member function GetClassData() belonging to the Derived class. 
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This should set the value of ClassData to 200. However, this will not happen in 
this case. Instead, the program produces an unexpected (error) result by setting 
ClassData to 100. Note: the parameter is passed by de-referencing a pointer. 
Recall that base class pointers can point to derived class objects. Had a pointer not 
been used, we could not pass an object of type Derived as an actual argument for 
a parameter of type Base. If we simply attempted to pass a derived class object to 
take the place of a base class parameter, the compiler would report a type mismatch 
error.

In the second case described above, since the function GetData() is 
programmed to receive its parameter by value, the function will be compiled to get 
a copy of a Base class object rather than a copy of a Derived class object.  Thus, 
the entire derived class object is not visible to the GetData() function – only the 
base class portion (inherited by derivation) is visible. This is a typical situation 
where the object type of the parameter is different from the object type of the 
actual argument. Note that the compiler cannot detect this situation since it occurs 
at run-time. The program in Listing 12-1 demonstrates this faulty behaviour 
producing the following result when it executes: 
Base class data 100 
Derived class data 100 

The data from the Derived class is certainly not 100. The program should have 
stored and then retrieved the data as 200. This problem can be rectified by passing 
the baseObject parameter by reference to the GetData() function. If passed 
by reference, no copy of a base class object will be made. The entire Derived
class object will be accessible to the function GetData(), and the correct result 
of 200 will be produced.  The corrected program is shown in Listing 12-2. 

Listing 12-2 Corrected version of Listing 12-1. 

//This program produces correct results. 
#include <iostream.h> 

class Base 
{
 private: 
  int BaseClassData; 
 public: 
  Base(int baseclassdata) 
  { 
   BaseClassData = baseclassdata; 
  } 

  virtual int GetClassData() const 
  { 
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   return BaseClassData; 
  } 
};

class Derived : public Base 
{
 private: 
  int DerivedClassData; 

 public: 
  Derived(int derivedclassdata, 
    int baseclassdata): Base(baseclassdata) 
  { 
   DerivedClassData = derivedclassdata; 
  } 

  int GetClassData() const 
  { 
   return DerivedClassData; 
  } 
};

int GetData(const Base& baseObject)  //Pass by reference 
{
 return baseObject.GetClassData(); 
}

void main() 
{
 Base* BasePtr; 
 int ClassData;  

 BasePtr = new Base(100); 
 ClassData = GetData(*BasePtr); 
 cout << "Base class data " << ClassData << endl; 
 BasePtr = new Derived(200, 100); 
 ClassData = GetData(*BasePtr); 
 cout << "Derived class data " << ClassData << endl; 
}

You will see the following result when this program executes: 
Base class data 100 
Derived class data 200 
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There is a lesson to be learned from this exercise - whenever class objects are 
passed to a function it is prudent to pass them by reference. As shown in Listing 
12-2, the keyword const can be prefixed to the parameter passed by reference to 
protect the parameter from any inadvertent changes within the function.

12.2.4 The Copy Constructor 
In previous chapters we used default constructors and standard constructors to 
instantiate objects. The copy constructor is a special constructor that is called when 
a copy of an object is created. If the developer does not provide a copy constructor, 
the compiler will generate one by default.  This constructor makes a copy of an 
object by copying member-by-member from one object to the other for three 
situations:

(i) When passing parameters to a function by value, a copy of the object 
must be created.

(ii) When parameters are returned by value, a copy of the object to be 
returned must be made. Again, the same copy constructor will be called 
to make the copy. 

(iii) If an object is declared and initialised using another object passed as a 
parameter, the copy constructor must be called.

The assignment operator can also be used to initialise an object that was created 
previously using the default constructor. In principle, the assignment operator (=)
must carry out the same actions as the copy constructor. If the developer does not 
overload the assignment operator the compiler will do so to suit the class. We will 
defer discussing overloading the assignment operator until operator overloading 
concepts have been described. 

A few examples of object instantiation using various constructors are: 
DCMotor Motor1;    // default constructor used 
DCMotor Motor2(Motor1);  // copy constructor used 
DCMotor Motor3;    // default constructor used 
Motor3 = Motor1;    // assignment operator used  

We will develop an example program that operates with arrays using the 
IntArray object to improve your understanding of the copy constructor. 
Consider the definition of the IntArray class given in Listing 12-3. 

Listing 12-3 Header file intarray.h  shows a class definition for an array of integers. 

#ifndef IntarrayH 
#define IntarrayH 

class IntArray 
{
 private: 
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  int NumInts; 
  int* ArrayPointer; 

 public: 
  IntArray();     // Default constructor 
  IntArray(int numints);  // Constructor 
  ~IntArray();    // Destructor 
  void EnterArray();   // Other member functions 
  void PrintArray(); 
};
#endif

The IntArray class will instantiate an array of integers having a specified 
number of elements. The data member NumInts will store the total number of 
elements in the array and the pointer ArrayPointer will point to the 
dynamically allocated portion of memory containing the array of integers. The 
destructor ~IntArray() will release the dynamically allocated memory. The 
function EnterArray() will prompt the user for array values, receive user input 
via the keyboard, and fill the array. The final function PrintArray() is used to
print the contents of the array on the screen.

The IntArray class’s constructor and its default constructor initialise the 
member data NumInts and ArrayPointer.  If a parameter is passed to the 
constructor, memory for the array will be dynamically allocated as shown in the 
following constructor definitions: 

IntArray::IntArray() // Default constructor 
{
 NumInts = 0; 
 ArrayPointer = NULL; 
}

IntArray::IntArray(int numints) // Constructor 
{
 if(numints <=0) 

{
 NumInts = 0; 
 ArrayPointer = NULL; 
}
else
{
 NumInts = numints; 
 ArrayPointer = new int[NumInts]; 
}

}
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Note that if the value of numints is 0 or negative, NumInts is initialised to 0
and ArrayPointer is initialised to the predefined constant NULL to indicate that 
the pointer is not pointing anywhere. 

Suppose we use the object class IntArray in a main() function to instantiate 
two IntArray objects named A and B. We will then pass the objects A and B by
value to a function named AddArrays() to add the IntArray object A to  the 
IntArray object B as shown in the fragment of code below: 

void AddArrays(IntArray a, IntArray b) // Pass by value
{
 // print the result of summation on-screen 
}

void main() 
{
 IntArray A(5); 
 IntArray B(5); 

 AddArrays(A,B); 
 . 
 . 

.
}

Figure 12-1  Objects A and B copied by the compiler-generated copy constructor. 

When the actual arguments A and B are passed by value to the function 
AddArrays(), copies of A and B must be made. The compiler-generated copy 
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constructor will be called to make these copies; this copy-making process is shown 
graphically in Figure 12-1. 

The compiler-generated copy constructor has created a copy of each data member 
of the original objects. However, it did not make copies of the dynamically 
allocated memory. As a result, the pointer to the original object and the pointer to 
the copied object point to the same portion of memory.

The destructor ~IntArray() is called after the function AddArrays()
executes. The destructor will free the memory used for the temporary copies of A
and B together with the original data objects that were dynamically allocated. This 
outcome is shown in Figure 12-2. 

Figure 12-2 Result of discarding the copies of A and B. 

Figure 12-3 Copies of objects A and B made by a user written copy constructor. 

Now the main() function has lost the original data it had created at the time of 
instantiating the objects A and B. We can overcome the problem created by the 
compiler-generated copy constructor if we write our own copy constructor that not 
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only carries out member-by-member copying, but also makes copies of any 
portions of memory pointed to by pointer data members. Having such a copy 
constructor will change the situation shown in Figure 12-1 to that shown in Figure 
12-3.

Now when the destructor is called to discard the copies, the original data will be 
unaffected and the outcome will be as shown in Figure 12-4. 

Figure 12-4 The original data areas are not destroyed by the destructor. 

The header file intarray.h contains the definition of the copy constructor as 
given in Listing 12-4. 

Listing 12-4 The header file intarray.h with user supplied copy constructor. 

#ifndef IntarrayH 
#define IntarrayH

class IntArray 
{
private:
 int NumInts; 
 int* ArrayPointer; 

public:
 IntArray(); 
 IntArray(int numints); 

IntArray(const IntArray& intArray); 
 ~IntArray(); 
 void EnterArray(); 
 void PrintArray(); 
};
#endif

The heading of the copy constructor is: 

Memory dynamically allocated 
by the constructors 

Object A

NumInts

ArrayPointer

Object B

NumInts

ArrayPointer
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IntArray(const IntArray& intArray); 

Remember that constructors do not have return values. The parameter passed to the 
copy constructor is the same type as the class the copy constructor belongs to and 
must be passed by reference. If it is passed by value, then a copy will be created by 
a call to the copy constructor. To pass a parameter to that copy constructor by 
value, another copy has to be created and so on – an endless sequence of function 
calls. Therefore, the parameter passed to the copy constructor must be passed by 
reference. The keyword const is used to protect the parameter passed by 
reference. Therefore, no changes will be made to the parameter being passed. 

The complete function file is given in Listing 12-5. 

Listing 12-5 The function file intarray.cpp for the IntArray class. 

#include <iostream.h> 
#include "intarray.h" 

IntArray::IntArray()
{
 NumInts = 0; 
 ArrayPointer = NULL; 
}

IntArray::IntArray(int numints) 
{
 if(numints <=0) 
 { 
  NumInts = 0; 
  ArrayPointer = NULL; 
 } 
 else 
 { 
  NumInts = numints; 
  ArrayPointer = new int[NumInts]; 
 } 
}

IntArray::IntArray(const IntArray& intArray) 
{
 NumInts = intArray.NumInts; 
 ArrayPointer = new int[NumInts]; 
 for(int i=0; i < NumInts; i++) 
  *(ArrayPointer+i) = *(intArray.ArrayPointer +i); 
}
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IntArray::~IntArray()
{
 if(ArrayPointer !=NULL) 
 { 
  delete ArrayPointer; 
  ArrayPointer = NULL; 
 } 
}

void IntArray::EnterArray() 
{
 cout << "Enter " << NumInts << " integer values."  
   << endl; 
 for(int i = 0; i < NumInts; i++) 
  cin >> *(ArrayPointer + i); 
}

void IntArray::PrintArray() 
{
 for(int i =0; i < NumInts; i++) 
  cout << *(ArrayPointer + i) << '\t'; 
 cout << endl; 
}

A main() function can be written with an explicit call to the copy constructor and 
an explicit call to the destructor to destroy the object generated by the copy 
constructor. The program copycnst.cpp given in Listing 12-6 demonstrates 
that the call to the destructor does not destroy the original data. 

Listing 12-6  This program tests the user supplied copy constructor - copycnst.cpp. 

#include <iostream.h> 
#include <conio.h> 

#include "intarray.h" 

void main() 
{
 IntArray A(5); 
 A.EnterArray(); 

 cout << "A " ; A.PrintArray(); // Print array A. 
 getch(); 
 IntArray B(A);                 // Call copy constructor. 
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 cout << "B "; B.PrintArray();  // Print array B. 
 B.~IntArray();                 // Destroy array B. 
 // Print array A again, check data is intact. 
 cout << "A "; A.PrintArray(); 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
copycnst.cpp
intarray.cpp
intarray.h

Listing 12-6 
Listing 12-5 
Listing 12-4 

copycnst.cpp
intarray.cpp

12.2.5 Overloading Operators as Member Functions 
In this section we will be overloading the >> operator for the ADC class so that it 
can be used to carry out an analog-to-digital conversion and store the result in a 
variable. To do this the class definition in the header file adc.h must be changed 
to include the member function that overloads the operator. We will follow the 
syntax for function headings shown in Table 12-2 to produce the new header file 
for the ADC class given in Listing 12-7. 

The parameter passed to the operator overloading function has been passed by 
reference. This allows the passed parameter to be changed within the function and 
the parameter in the calling environment will now hold the new value read from the 
ADC when the function exits.

Listing 12-7  Header file adc.h shows operator overloading as a member function. 

#ifndef AdcH 
#define AdcH 
#include "pport.h" 

class ADC : public ParallelPort 
{
 private: 
  unsigned char ADCValue; 

 public: 
  ADC(int baseaddress=0x378); 
  unsigned char ADConvert(); 
  unsigned char GetADCValue(); 

void operator>>(unsigned char& value); 
};
#endif
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The original adc.cpp file from Listing 11-4 is then modified to that given in 
Listing 12-8. 

Listing 12-8  Function file adc.cpp associated with header file in Listing 12-7. 

#include "adc.h" 

ADC::ADC(int baseaddress) : ParallelPort(baseaddress) 
{
 ADCValue = 0; 
}

unsigned char ADC::ADConvert() 
{
 WritePort2(0x01); 
 WritePort2(0x00); 
 WritePort2(0x01); 

 WritePort2(0x03); 
 ADCValue = ReadPort1() & 0xF0; 

 WritePort2(0x01); 
 ADCValue += (ReadPort1() >> 4)  & 0x0F; 

 return ADCValue; 
}

unsigned char ADC::GetADCValue() 
{
 return ADCValue; 
}

void ADC::operator>>(unsigned char& value) 
{
 ADConvert(); 
 value = ADCValue; 
}

Note: although the >> operator needs two arguments, we have passed only one 
parameter. This parameter becomes the operand to the right of the >> operator. The 
operand to the left of the >> operator is the object of type ADC (see the main()
function in Listing 12-9). Furthermore, within the function’s body we have used 
the statements: 
ADConvert();
value = ADCValue; 

rather than the statement: 
value = ADConvert(); 
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We deliberately do this to keep the program (which overloads an operator as a 
member function) as similar as possible to the next program (which overloads an 
operator as a non-member function). The main() function shown in Listing 12-9 
demonstrates use of the overloaded operator as a member function. 

Listing 12-9 main() function file ovld.cpp uses the overloaded operator >>.

#include <bios.h> 
#include <conio.h> 

#include "adc.h" 

void main() 
{
 ADC Adc; 
 int Quit = 0, key; 
 unsigned char Value; 

 clrscr(); 

 while(!Quit) 
 { 
  gotoxy(10,10); 

Adc >> Value; 
  cprintf("The ADC output is %10d\a",(int)Value); 

  if(bioskey(1)!=0) 
  { 
   key = bioskey(0); 

   if(key == 0x2d00) Quit = 1;  // Alt-X key 
  } 
 } 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h
ovld.cpp

Listing 10-8 
Listing 10-7 
Listing 12-8 
Listing 12-7 
Listing 12-9 

pport.cpp

adc.cpp

ovld.cpp
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The operation of this program can be verified with the interface board by 
connecting the potentiometer output to the input of the ADC. 

12.2.6  Overloading Operators as non-member f’ns 
The operator overloading function will now be moved outside the class definition 
as an ordinary function to create the header file adc.h given in Listing 12-10. 

Listing 12-10  File adc.h shows operator overloading as a non-member function. 

#ifndef AdcH 
#define AdcH 

#include "pport.h" 

class ADC : public ParallelPort 
{
 private: 
  unsigned char ADCValue; 

 public: 
  ADC(int baseaddress=0x378); 
  unsigned char ADConvert(); 
  unsigned char GetADCValue(); 
};

// declaration of the non-member function 
void operator>>(ADC adc, unsigned char& value); 
#endif

Listing 12-11 shows the function file associated with the above header file. 

Listing 12-11 Function file adc.cpp associated with the header file in Listing 12-10. 

#include "adc.h" 

ADC::ADC(int baseaddress) : ParallelPort(baseaddress) 
{
 ADCValue = 0; 
}

unsigned char ADC::ADConvert() 
{
 WritePort2(0x01); 
 WritePort2(0x00); 
 WritePort2(0x01); 

 WritePort2(0x03); 
 ADCValue = ReadPort1() & 0xF0; 
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 WritePort2(0x01); 
 ADCValue += (ReadPort1() >> 4)  & 0x0F; 

 return ADCValue; 
}

unsigned char ADC::GetADCValue() 
{
 return ADCValue; 
}

void operator>>(ADC adc, unsigned char& value) 
{
 adc.ADConvert(); 
 value = adc.GetADCValue();  
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h

Listing 10-8 
Listing 10-7 
Listing 12-11 
Listing 12-10 

pport.cpp
adc.cpp
ovld.cpp

ovld.cpp Listing 12-9 

The operator overloading function has now been passed two parameters unlike the 
case described in Section 12.2.5. The first parameter becomes the operand to the 
left of the operator >> and the second parameter becomes the operand to the right. 
Since the function does not belong to any class, the first parameter must be used 
explicitly. We cannot use the following statement in this function because we do 
not have access to the private data member ADCValue:
value = adc.ADCValue; 

Instead, the public member function GetADCValue() must be called. The same 
main() function (Listing 12-9) can now be used provided that its #include
“adc.h” statement includes the header file given in Listing 12-10, and is 
compiled and linked with the function file given in Listing 12-11. 

12.2.7 Friend Functions 
Ordinary non-member functions can be declared as friends of a particular class to 
eliminate the difficulties associated with accessing private data members. In this
case the non-member friend function will have unrestricted access to all data 
members of the class that it is declared in. The friend functions can be viewed as 
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public functions of the class that do not need to be attached (tagged) to the object 
using the membership access operators (i.e . or ->).  Careful use of friend
functions can facilitate some tasks such as input/output streaming we will be 
discussing shortly.  To demonstrate the use of friend functions, we can modify 
the header file given in Listing 12-10 to become that given in Listing 12-12. 

Listing 12-12 Use of friend functions - adc.h. 

#ifndef AdcH 
#define AdcH 

#include "pport.h" 

class ADC : public ParallelPort 
{
 private: 
  unsigned char ADCValue; 

 public: 
  ADC(int baseaddress=0x378); 
  unsigned char ADConvert(); 
  unsigned char GetADCValue(); 

friend void operator>>(ADC adc, unsigned char& value); 
};
#endif

Since the operator overloading function is a friend of the ADC class, it will now 
have access to the private data member ADCValue. Therefore, instead of the line: 

value = adc.GetADCValue(); 

we can now use: 
value = adc.ADCValue; 

This avoids a function call and so speeds up program execution. The associated 
function file is shown in Listing 12-13. 

Listing 12-13 Function file adc.cpp for the header file in Listing 12-12. 

#include "adc.h" 

ADC::ADC(int baseaddress) : ParallelPort(baseaddress) 
{
 ADCValue = 0; 
}

unsigned char ADC::ADConvert() 
{
 WritePort2(0x01); 
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 WritePort2(0x00); 
 WritePort2(0x01); 

 WritePort2(0x03); 
 ADCValue = ReadPort1() & 0xF0; 

 WritePort2(0x01); 
 ADCValue += (ReadPort1() >> 4)  & 0x0F; 

 return ADCValue; 
}

unsigned char ADC::GetADCValue() 
{
 return ADCValue; 
}

void operator>>(ADC adc, unsigned char& value) 
{
 adc.ADConvert(); 

value = adc.ADCValue;
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h
ovld.cpp

Listing 10-8 
Listing 10-7 
Listing 12-13 
Listing 12-12 
Listing 12-9 

pport.cpp

adc.cpp

ovld.cpp

In the previous sections we implemented operator overloading to carry out analog-
to-digital conversion and stored the resulting value in a variable. We overloaded 
the >> operator to accomplish this ‘input’ operation. Next we will overload the <<
operator to output the result of an anlog-to-digital conversion to the screen or to a 
file. Before we do this, we need to have a fundamental understanding of I/O
streams and pass-through objects.

12.2.8 I/O Streams 
I/O streams can be viewed as a sequential transfer of one or more objects between 
two locations. Examples of such transfers could be data generated by the keyboard 
to a program, program data to screen, program data to a file, data from a file to a 
program, etc. C++ software provides a number of object classes and a large variety 
of functions to facilitate input/output streaming of objects. Output streams can be 
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generated by calling the constructor of the ostream class. Similarly, an input 
stream can be generated by calling the constructor of the istream class.

The object classes, ofstream and ifstream are part of the standard C++ 
library and facilitate writing to and reading from various types of objects including 
files. To enable us to use these objects we must include the header file 
fstream.h just as we included the header file iostream.h file for us to use 
the cin and cout objects. 

A simple program that demonstrates file I/O is given in Listing 12-14. 

Listing 12-14 File Input/Output. 

#include <fstream.h> 

main()
{
 int Data; 

 ifstream is("infile.dat"); 
 ofstream os("outfile.dat");  

 while(is) 
 { 
  is >> Data;         // Number from file -> Data 
  if(!is.fail()) 
   os << '\t' << Data; // Data -> file os 
 } 
 os.close(); 
 is.close(); 
 return 0; 
}

The statements: 
ifstream is("infile.dat");   
ofstream os("outfile.dat"); 

call the ifstream() and ofstream() constructors and instantiate the two 
objects named is and os, respectively. Each constructor opens the file whose 
name has been passed as a parameter in the form of a character string. The 
constructors also create their own memory buffer needed to transfer data between 
memory and the respective file. 

Assume that the file infile.dat contains the number data: 

10
20
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30
40
50

Each number needs to be separated by white space (one or more spaces, tab, line 
feed or a carriage return). The variable Data is used to temporarily store the 
number read from infile.dat.

The contents of outfile.dat will be: 

 10 20 30 40 50 

Only data that has been read successfully from infile.dat will then be written 
to the file outfile.dat. The ifstream class has a member function fail()
that is called to determine if an error has occurred when reading data from the file. 
The ifstream object is will evaluate to be 0 when the end of the file has been 
reached and cause the while loop to terminate. 

12.2.9 Pass-through Objects 
Pass-through objects are objects that enter a function as a parameter by reference 
and appear as a return value of the function, also by reference. We will examine 
returning values by reference in a moment. First, let us understand the motivation 
behind the use of pass-through objects. Consider the following three output 
streaming operations where a, b, and c are integer objects: 
cout << a; 
cout << b; 
cout << c: 

These three operations can be combined in one statement as follows: 
cout << a << b << c ; 

Parentheses can be used to show the precedence of output streaming as follows: 
(((cout << a) << b) << c ); 

After streaming the object a out, the remainder of the operation will be: 

(((cout) << b) << c); 

The last statement to be executed is then: 
(cout << c); 

Consider the output streaming of any one of the objects where the overloaded 
operator << receives two arguments, namely cout and an integer object. The 
overloaded operator will return cout as the return value. This is why (cout << 
a) is replaced by cout. Here, cout enters the function as a parameter and then 
appears as the return value. Therefore, cout becomes a pass-through object in the 
operator overloading function for the operator <<. Pass-through objects must 
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maintain their ‘life’ throughout this process and so there is no object copying 
involved. Therefore, the parameter passed must be passed by reference and the 
value returned must also be returned by reference.

Pass-through objects are especially useful in ‘chained’ use of operators or 
functions. Another example is shown below where a, b, and c are integer objects: 

a = b = c = 3; 

Once again, the precedence of operations can be shown using parentheses: 
(a = (b = (c = 3))); 

After the first assignment operation the expression reduces to: 
(a = (b = (c)); 

Therefore, in the operation c = 3, c enters as a parameter and then appears as the 
return value, explaining why c = 3 can be replaced by c.

An analogy from day-to-day life can be used to further explain the use of returning 
values by reference. Consider a situation where you have a string and a set of 
beads.  We want to thread all the beads, one at a time, onto the string. We will 
write a function to receive the string and a bead. The purpose of the function is to 
attach one bead to the string and to return the same string with the beads(s) it 
received.

We specify that a function must return a value by reference by adding & after the 
return value type in the function heading. This is shown in bold typeface in the 
Add_a_Bead function shown below:

String& Add_A_Bead(String& string, Bead bead) 
{

string = string + bead; 
return string; 

}

For the two parameters of the function Add_A_Bead(), parameter string is of 
data type String and bead is of data type Bead. The expression string = 
string + bead represents attaching a bead to the string. You can attach n
beads to the same string by executing this function n times. 

If we did not return the value by reference, each time you execute the function to 
attach a bead, you will get a new copy of the string, with an increasing number of 
beads on each subsequent copy. If you execute such a function n times, you will 
create and discard n copies of the string, the first copy having one bead, the second 
copy having 2 beads etc. until you end up with the last copy having n beads - what 
a waste of time and memory! In addition, you do not have the original string - you 
have a copy. 
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12.2.10 Assignment Operator 
If the developer does not provide an operator overloading function to overload the 
assignment operator, the compiler will generate a default overloaded assignment 
operator. This applies in the same way as for the copy constructor. The assignment 
operator is used to carry out member-by-member assignment from one existing
object to another existing object. The compiler-generated assignment operator has 
the same weakness as the compiler-generated copy constructor; it will not copy any 
portions of memory pointed to by pointer type data members. The developer must 
provide a function to safely overload the assignment operator to overcome this 
deficiency.

The function heading to overload the assignment operator is: 
IntArray& operator=(const IntArray& intarray); 

Note that the parameter is passed in exactly the same way it was passed to the copy 
constructor, however, the return value is a reference to an IntArray object. This 
is necessary to be consistent with the usage of the assignment operator so a chained 
assignment can be carried out like that shown in this simple example: 
int a,b,c; 
a = b = c = 3; 

The object class IntArray and the associated source files described in Section 
12.2.4 are used below to enhance the capabilities of the class by the addition of the 
overloaded assignment operator. The overloaded assignment operator that has been 
added is shown in the header file of Listing 12-15 and the function file of Listing 
12-16.

Listing 12-15 Header file intarray.h with overloaded assignment operator. 

#ifndef IntarrayH 
#define IntarrayH 

class IntArray 
{
private:
 int  NumInts; 
 int* ArrayPointer; 

public:
 IntArray(); 
 IntArray(int numints); 
 IntArray(const IntArray& IntArray); 

IntArray& operator=(const IntArray& intArray); 
 ~IntArray(); 
 void EnterArray(); 
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 void PrintArray(); 
};
#endif

Listing 12-16 Function file intarray.cpp with overloaded assignment operator. 

#include <iostream.h> 
#include "intarray.h" 

IntArray::IntArray()
{
 NumInts = 0; 
 ArrayPointer = NULL; 
}

IntArray::IntArray(int numints) 
{
 if(numints <=0) 
 { 
  NumInts = 0; 
  ArrayPointer = NULL; 
 } 
 else 
 { 
  NumInts = numints; 
  ArrayPointer = new int[NumInts]; 
 } 
}

IntArray::IntArray(const IntArray& intArray) 
{
 NumInts = intArray.NumInts; 
 ArrayPointer = new int[NumInts]; 
 for(int i=0; i < NumInts; i++) 
  *(ArrayPointer+i) = *(intArray.ArrayPointer +i); 
}

IntArray& IntArray::operator=(const IntArray& intArray) 
{
 if(this != &intArray) 
 { 
  if(ArrayPointer != NULL) 
   delete ArrayPointer;// Release any allocated memory 
  NumInts = intArray.NumInts; 
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  ArrayPointer = new int[NumInts]; 
  for(int i = 0; i < NumInts; i++) 
   *(ArrayPointer + i) = *(intArray.ArrayPointer + i); 
 } 
 return *this; 
}

IntArray::~IntArray()
{
 if(ArrayPointer !=NULL) 
 { 
  delete ArrayPointer; 
  ArrayPointer = NULL; 
 } 
}

void IntArray::EnterArray() 
{
 cout << "Enter " << NumInts << " integer values." << endl; 
 for(int i = 0; i < NumInts; i++) 
  cin >> *(ArrayPointer + i); 
}

void IntArray::PrintArray() 
{
 for(int i =0; i < NumInts; i++) 
  cout << *(ArrayPointer + i) << '\t'; 
 cout << endl; 
}

We have used the this pointer that points to the object itself to overload the 
assignment operator. A test is performed inside the if condition to check that the 
object to be copied is the same object. If so, there is no point copying the object. 
Within the true clause of the if statement a test is made to check whether 
ArrayPointer is pointing to any previously allocated memory area. If so the 
delete operator is used to release that memory. If this is not done there will be a 
memory leak; i.e. there will be a portion of memory that is not used and cannot be 
used again because it has not been released. Identical steps are then carried out as 
performed for the copy constructor. Finally, the object itself is returned to facilitate 
the chained use of the assignment operator. This is done by returning the object 
using the result *this (where this is the pointer to the object, and *this is the 
object itself). 

Listing 12-17 shows a program that demonstrates the use of the copy constructor 
and the assignment operator with the IntArray class. 
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Listing 12-17  File asgnopr.cpp shows use of the assignment operator. 

#include <iostream.h> 
#include <conio.h> 

#include "intarray.h" 

void main() 
{
// Call constructor 
 IntArray A(5);  
 A.EnterArray(); 

// Print array A 
 cout << "A " ; A.PrintArray();   
 getch(); 

// Call copy constructor 
 IntArray B(A);  

// Print array B 
 cout << "B "; B.PrintArray();  
 getch(); 

// Call default constructor 
 IntArray C;  

// Use assignment operator 
 C = A;  

// Print array C 
 cout << "C "; C.PrintArray(); 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
asgnopr.cpp
intarray.cpp
intarray.h

Listing 12-17 
Listing 12-16 
Listing 12-15

asgnopr.cpp
intarray.cpp

12.3 Data Acquisition 
In this section, we will combine the concepts we have learned in this chapter to 
create a data acquisition program that uses operator overloading. An analog-to-
digital conversion will be performed by writing a function that overloads the 
operator << in association with an ADC object and an output stream object such as 
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cout. This overloading process will enable us to output the converted value to 
cout. The header file adc.h must be modified to include the new operator 
overloading function. It is possible to write this function without it needing to 
access any private data of the ADC class. We have chosen to write a non-member 
function, and so it does not need to be declared as a friend function. The new 
header file is given in Listing 12-18. 

Listing 12-18  File adc.h overloads the << operator. 

#ifndef AdcH 
#define AdcH 

#include <iostream.h> 
#include "pport.h" 

class ADC : public ParallelPort 
{
 private: 
  unsigned char ADCValue; 

 public: 
  ADC(int baseaddress=0x378); 
  unsigned char ADConvert(); 
  unsigned char GetADCValue(); 
  friend void operator>>(ADC adc, unsigned char& value); 
};

// declaration of the non-member functions 
ostream& operator<<(ostream& os, ADC adc); 
#endif

Observe the similarity of the following function with the Add_A_Bead()
function described earlier in Section 12.2.9: 
ostream& operator<<(ostream& os, ADC adc); 

The operator overloading function operates in a very similar manner, except the 
operator << is now used to call the function. The function file is given in Listing 
12-19.

Listing 12-19 Function file adc.cpp for the header file in Listing 12-18. 

#include <iostream.h> 
#include "adc.h" 

ADC::ADC(int baseaddress) : ParallelPort(baseaddress) 
{
 ADCValue = 0; 

394 12 DATA ACQUISITION WITH OPERATOR OVERLOADING 



}

unsigned char ADC::ADConvert() 
{
 WritePort2(0x01); 
 WritePort2(0x00); 
 WritePort2(0x01); 

 WritePort2(0x03); 
 ADCValue = ReadPort1() & 0xF0; 

 WritePort2(0x01); 
 ADCValue += (ReadPort1() >> 4) & 0x0F; 

 return ADCValue; 
}

unsigned char ADC::GetADCValue() 
{
 return ADCValue; 
}

void operator>>(ADC adc, unsigned char& value) 
{
 adc.ADConvert(); 
 value = adc.ADCValue;  
}

ostream& operator<<(ostream& os, ADC adc) 
{
 os << “ “ << (int)adc.ADConvert(); 

 return os; 
}

The following programming statement demonstrates the elegance of operator 
overloading.
cout << Adc << Adc << Adc; 

Each use of the overloaded operator << with an Adc object will perform an 
analog-to-digital conversion and then send the resulting output value to the 
standard output device. As such we will be able to use the above statement to 
produce three output values to the screen. 

The above statement has the precedence of evaluation as shown by the parentheses 
in the statement below: 
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(((cout << Adc) << Adc) << Adc;) 

The program dataacq.cpp shown in Listing 12-20 contains a main() function 
you can experiment with. This program will carry out three analog-to-digital 
conversions and send the values to the screen every second. Several analog-to-
digital conversion samples can be acquired as a group and averaged to overcome 
the effects of noise on a signal. Note that a significant period of time is consumed 
to print each set of results to the screen, slowing the effective speed of acquisition. 

Listing 12-20 main() function datacq.cpp checks operation of operator <<.

#include <conio.h> 
#include <bios.h> 
#include <dos.h> 

#include "adc.h" 

void main() 
{
 ADC Adc; 
 int Quit = 0; 

 clrscr(); 

 while(!Quit) 
 { 
  cout << endl << Adc << Adc << Adc; 

  if(bioskey(1)!=0) 
   if(bioskey(0) == 0x2d00) Quit = 1; /*Alt-X*/ 
  delay(1000); 
 } 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h
dataacq.cpp

Listing 10-8 
Listing 10-7 
Listing 12-19 
Listing 12-18 
Listing 12-20

pport.cpp

adc.cpp

dataacq.cpp

Operator overloading can be used for a variety of other tasks. For example, we can 
overload the ++ operator in the DCMotor class described in Chapter 8 to enable us 
to increment the Speed by 1 unit of resolution. Similarly, the -- operator can be 
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overloaded in the DCMotor class to decrement the Speed by 1 unit of resolution. 
A segment of sample code that uses such overloaded operators could be:
DCMotor Motor1; 
Motor1++; // increase speed by 1 

Another example would be to overload the << operator in the DAC class so it can 
output the integer value N to the Digital-to-Analog Converter: 

DAC Dac; 
Dac << N; 

12.4 Summary 
There are several methods that can be used to pass parameters into functions and 
return the result from the function. Most functions receive their parameters as a 
copy of the argument given in the calling environment. An alternate means of 
passing parameters is pass by reference. When passing parameters by reference the 
function has access to the actual argument used in the calling environment. This 
saves memory space and also provides an improvement in speed. For reasons such 
as these, pass by reference is generally preferred when passing class objects to 
functions.

Similarly, most functions are written to return values as a copy of the value 
generated within the function. If values are returned by reference, the real object 
within the function is returned rather than a copy of it. This facility can be used 
efficiently in operator overloading, in particular with the chained use of an 
operator.

Friend functions are a special category of functions that have unrestricted access to 
all members of the class they are declared in. Although they are not member 
functions, they have all the privileges of a member function. Friend functions have 
a further advantage over member functions in that they do not need to be tagged to 
an object when being called (using ‘.’ or ‘->’ membership operators). 
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13.1 Introduction 
So far we have not used real-time for tasks that have involved timing. Recall the 
generation of PWM signals from Chapter 8. In these programs we generated time 
delays by executing software loops whose duration was unknown and dependent 
on the computer’s speed. A hardware timer is typically used when time needs to be 
measured accurately. Your PC is equipped with such a timer that can be 
programmed to carry out various timing-related tasks. It operates independently of 
the PC’s processor to ensure uninterrupted and accurate operation, and has spare 
resources for us to use in our own programs. 

In general, the timer subsystem of your PC has three independent timers. More 
modern systems will have five independent timers. We will keep our discussion to 
the most general case, i.e. three timers. There are two principal functions associated 
with timers; timing of an event and counting events. The basic requirement for any 
timer is a clock signal; being a continuous train of pulses with a known and highly 
stable frequency. Having access to a steady clock allows us to write programs that 
can take advantage of real-time operations. 

13.2 PC Timer System 
Central to the timing system of all but the most recent PC’s is the 8254
Programmable Interval Timer containing three timers, named Timer 0, Timer 1 
and Timer 2 as shown in Figure 13-1. The timers can be operated in several 
different modes controlled by gate signal level and the use of a control register 
(explained in section 13.2.2). These modes include single timeout, square wave 
generator and rate generator, discussed in section 13.2.3. They share a common 
clock signal driving their clock inputs, but only Timer 2 has a gate input that is free 
to be controlled through software.

Each of the timers contains a 16-bit counter. A counter can be considered as a 
special memory location in hardware, the value of which is incremented or 
decremented by each incoming clock pulse. In your PC, each clock pulse drives the 
counters down a count value. Typically, the counter’s output signal will change 
state when it reaches zero.

Because all three timers share the same fixed clock signal, they cannot be used for 
event counting. Event counting takes place when a counter/timer is used to count 
external pulses applied to its clock input - often arriving at irregular intervals. 
Regardless of the speed of a PC, its clock frequency will be 1.1932 MHz. This 
enables every PC to maintain a fixed standard for timing. 
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Figure 13-1  PC Timing System - 3 timers (clock input, gate, and output). 

The three timers in your PC have special tasks assigned to them, explained as 
follows.

TIMER 0 
Timer 0 is used to generate the so-called timer interrupt. The timer interrupt will 
regularly trigger the CPU to execute a special routine that updates the system time. 
This action takes place every 54.9 milliseconds. The gate signal of Timer 0 is held 
permanently at logic-HIGH, and therefore is not programmable. Since the clock 
and the gate are not programmable, the only timer variables that can be altered are 
the count value written to the counter and the mode of operation. Timer 0 has an 
output latch register that allows software to read the count value. Furthermore, the 
state of its output signal can be determined (i.e. high or low) by reading Timer 0’s 
status register. 

NOTE

An interrupt is a signal generated by hardware or software that is sent to the CPU 
to request its attention. Depending upon the priority of an interrupt, it will be 
attended to immediately or flagged for later attention. The interrupt generated by 
timer 0 has the highest priority and will be attended to immediately by the CPU. 
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TIMER 1 
Timer 1 is used to generate a periodic signal for driving the hardware that refreshes 
the dynamic RAM (memory). Timer 1 also has its clock and gate signals 
permanently wired. Like Timer 0, it has an output latch register that allows 
software to read the count value. The state of its output signal can be determined by 
reading Timer 1’s status register. 

TIMER 2 
Timer 2 is used to drive the speaker via an AND gate whose other input is 
programmable (see Figure 13-1). Its clock signal is permanently connected, 
although the gate is free to be controlled through software. Timer 2 also has an 
output latch register that allows software to read the count value. Similarly, the 
state of its output signal can be determined by reading Timer 2’s status register.

13.2.1 Configuring the Counters 
As mentioned earlier, all three timers countdown when operating. The number 
loaded into each timer’s counter determines the timing duration. Therefore, writing 
a smaller number to a counter will result in a shorter time interval before it reaches 
zero. A particular counter can be read or written to at any time. 

The counter’s value is constantly changing as it operates and can be read by 
sampling the count value and storing the result. The hardware device that performs 
such a function is known as a latch register. Each timer has an input latch register 
to allow writes to its counter (load it) and also an output latch register to allow its 
counter’s value to be read. This event is also dependent upon the status of the gate 
and the mode of operation. 

A special Control Register is used to provide the facility to select which counter we 
wish to write to or read from, set the mode of operation, set the number format, etc. 
There is one more register in addition to the three Timer registers and the Control 
Register. This register allows access to the output of Timer 2 and the speaker gate 
control signal. 

Timer Ports 

Table 13-1  Port addresses - PC timers and speakers. 

Address Function 
0x40 Timer 0 data latch register (input and output). 
0x41 Timer 1 data latch register. 
0x42 Timer 2 data latch register . 
0x43 Control Register for Timers 0, 1 and 2. 
0x61 Timer 2 output and speaker control. 
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The timers are part of your hardware system. To be able to program the timers, 
software must have access to timer subsystem hardware. This is possible by 
accessing the timer’s ports similar to the way we accessed the parallel port 
hardware using its port addresses. The port addresses associated with the timer and 
speaker system are given in Table 13-1.

Programming the timer starts with programming the Control Register as described 
in the following sections. 

13.2.2 The Control Register 
The Control Register is used to configure a timer.  It can also be used to request the 
counter status or to latch the current count value. The register contains eight bits 
that must be appropriately set to enable the following: 

Select a particular counter. 
Specify the byte(s) used to Read/Load the counter. 
Specify the mode of operation. 
Specify the counting format in binary or BCD.

The configuration of the Control Register is shown in Table 13-2. 

Table 13-2  Configuration of the Control Register (address 0x43). 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
SC1 SC0 RL1 RL0 M2 M1 M0 BCD 

Select Counter 
Read/Load
MSB/LSB Mode Select 

Binary
or BCD 

    

Select Counter 
The counter can be selected by programming Bits 6 (SC0) and 7 (SC1) of the 
Control Register as shown: 

   
SC1 SC0 Counter 

0 0 Counter 0 
0  1 Counter 1 
1  0 Counter 2 
   

Byte(s) used to Read/Load Counters 
Bits 4 (RL0) and 5 (RL1) can be programmed to choose either Least Significant 
Byte (LSB) only, or the Most Significant Byte (MSB) only, or to use both bytes of 
the counter when counting: 
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Operation RL1 RL0 

Counter Latch 0 0 
Read/Load LSB 0 1 
Read/Load MSB 1 0 
Read/Load LSB then MSB 1 1 

For example; if the LSB is to be written to a counter, RL1 and RL0 will need to be 
set at 0 and 1 respectively. The LSB is then loaded into the counter by writing to its 
data register (e.g. 0x40 for Timer 0). 

If the MSB is to be written to a counter, RL1 and RL0 will need to be set to 1 and 0 
respectively. The MSB is then loaded into the counter by writing to its data register 
(e.g. 0x40 for Timer 0). 

If a 16-bit number (two bytes) is to be written to a counter, both RL1 and RL0 will 
need to be set to 1. The 16-bit number will be loaded into the counter by carrying 
out two consecutive write operations to the appropriate data register (e.g. 0x40 for 
Timer 0) by first writing the LSB followed by writing the MSB. 

Counting format (Binary/BCD) 
The mode of counting can be set to binary (typically used) or BCD (Binary Coded 
Decimal) - we don’t explain counting in BCD mode, so set the bit to 0. 

BCD Counting Operation 

0 Binary 
1 Binary Coded Decimal (BCD) 

Timer mode of operation 

Mode Select 
M2 M1 M0 Mode Name 
0 0 0 Mode 0 
0 0 1 Mode 1 
0 1 0 Mode 2 
0 1 1 Mode 3 
1 0 0 Mode 4 
1 0 1 Mode 5 
1 1 0 Mode 2 
1 1 1 Mode 3 
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The Timer’s modes of operation are explained in the next section. They are set 
using the Control Register bits 1, 2 and 3 as shown in the previous table. 

13.2.3 Modes of Operation of the Timers 
There are up to six different modes of timer operation. Timer 0 and Timer 1 have 
their gates hard-wired to a logic-HIGH level. This excludes them from operating in 
some of the modes described below. Timer 2 is the only timer that has a 
controllable gate. As such it can operate in all six modes.

Mode 0: Single Timeout 
In this mode, the counter generates a low-level output signal for the fixed number 
of clock pulses loaded into its data register. Each incoming clock pulse will 
decrement the count value by one count (provided the gate input is high). When the 
count value reaches 0, the output line will change from low to remain high. Note 
that the maximum period is obtained when the decimal number 65,535 is loaded 
into the counter. This period will be approximately 54.9 ms. 

All three counters can be programmed in this mode. To initiate single timeout 
operation, first configure the timer to operate in this mode and then write the count 
value to the data register.  The countdown will begin immediately after writing the 
count data. If the gate signal is held low, counting stops until the gate signal returns 
high. Timers 0 and 1 have their gate signals hard-wired to a logic-HIGH level. This 
is not the case for Timer 2, whose gate input can be controlled by writing to bit 0 of 
the port 0x61. The bits of the port at 0x61 for operating Timer 2 are shown in Table 
13-3.

Table 13-3  Bits at port address 0x61 (control of Timer 2 output & speaker). 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 

X X Timer 2 
OUT X X X Speaker

Gate
Timer 2 
GATE

Mode 1: Re-triggerable one-shot 
This mode is used to generate a low-level pulse following a trigger command from 
the gate (hence only Timer 2 can use this mode). The duration of the pulse is set by 
the count value loaded into the counter. The gate signal is briefly sent from low to 
high and back to low to initiate counting down. As this happens, the counter output 
will drop from a high state to a low state. When the count value has decremented to 
zero, the output will return to a high state. 

Count
Time

Count
Time
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The previously used count value is automatically reloaded into the counter at the 
end of the countdown when the counter reaches zero. Another one-shot period is 
generated when another high pulse is applied to the gate (hence the term ‘re-
triggerable’). The timer can also be re-triggered during the current countdown.  In 
this case, a new countdown will start immediately after the re-trigger.  A new count 
value can also be written to the input latch register during the current countdown; 
this will not affect the current countdown.  The new count value in the input latch 
register will be loaded for the next countdown immediately after the next re-
trigger.

Mode 2: Rate generator 
This mode is used to periodically generate a narrow low-level output pulse. When 
the value that was loaded into the counter reaches 1, the output changes to a low 
state for one clock period. The count value is then automatically reloaded to repeat 
the same process. All three timers can be used in this mode. Counting is stopped 
whenever the gate signal is low (only applies to Timer 2). The rate generator is 
predominantly used to generate hardware interrupts at regular intervals since the 
narrow pulse can be missed when detecting using software means. 

Mode 3: Square wave generator 
This mode produces a continuous square wave output. Everytime the timer’s 
counter reaches zero, the output toggles and the count value is automatically re-
loaded into the counter from its input latch. Note that the gate must be high to 
enable down-counting and the count is decremented by two for each clock pulse. 
All three timers can operate in this mode. Timer 0 generates the timer interrupt 
when configured in this mode. 

Mode 4: Software triggered strobe 
Counting down is initiated when a count value is written to the data register. This 
mode produces a single narrow output pulse for one clock period when the count 
reaches zero (a non-periodic narrow pulse is known as a strobe). The counter will 
remain inactive until at a later time software again writes to the counter. The gate 
must be high at all times to enable operation. 

Mode 5: Hardware triggered strobe 
This mode is identical to Mode 4 except triggering is carried out by hardware 
means. The start of a countdown is triggered by applying a brief high-level pulse to 
the gate. The output will pulse low for one clock period when the count reaches 

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time

Count
Time
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zero. The counter will remain inactive until the next hardware trigger. As for mode 
1, this mode is only possible with Timer 2. 

13.2.4 Read-back Commands 
A timer ‘read-back’ command allows the following data to be read from a counter; 
the count value, status of its output signal, read/load status, configuration mode, 
and count mode. Two very useful ‘read-back’ tasks can be invoked by writing the 
bit patterns described below to the Control Register. 

Task 1 - Multi Counter Latch: 
A counter is latched by taking a ‘snap shot’ of the selected counter’s value and 
transferring that count value to the counter’s output latch register. A command to 
latch one or more counters can be issued by writing the bit pattern shown below to 
the Control Register at address 0x43: 

Control Register at address 0x43. 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

1 1 0 1 CT2 CT1 CT0 0 

Setting of bits CT0, CT1, and CT2 determines which counter(s) will be latched. 
Once latched, a program can read the count value by reading the output latch 
register. Addresses of latch registers are shown in Table 13-1. Two 8-bit reads of 
the output latch register must be carried out to read the 16-bit count value. The low 
byte will be obtained in the first read followed by the high byte in the second read. 

Task 2 - Status of Timers: 
The status information for each timer can be read via the corresponding timer data 
register. The command to report the status is issued by assembling the byte as 
shown following, and writing it to the Control Register (at address 0x43). We 
select the timer(s) by setting their respective control bits CT0, CT1 and CT2 of the 
Control Register to 1. The 8-bit status value is obtained by reading the data register 
of the selected timer (addresses are shown in Table 13-1). The status information is 
interpreted according to Figure 13-2. 

Control Register at address 0x43. 

Bit 7 Bit 6  Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

1 1 1 0 CT2 CT1 CT0 0 
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 7 6 5 4 3 2 1 0 

             Meaning 
        0  Binary counting 
        1  BCD Counting 
     0 0 0   Mode 0 selected 
     0 0 1   Mode 1 selected 
     0 1 0   Mode 2 selected 
     0 1 1   Mode 3 selected 
     1 0 0   Mode 4 selected 
     1 0 1   Mode 5 selected 
   0 0      undefined 
   0 1      Read/Load status – MSB only 
   1 0      Read/Load status – LSB only 
   1 1      Read/Load Status – LSB first, then MSB 
  0        New initial count loading finished 
  1        New initial count loading in progress 
 0         Timer output signal status – LOW 
 1         Timer output signal status – HIGH 
          

Figure 13-2  Description of the returned counter status byte. 

13.3 Programming the Timer 
Programs will be developed in the coming sections that take advantage of the PC 
timer’s accurate timing. We will start by developing an object class for the PC 
timer. Note that although the timer hardware is independent of the parallel port 
hardware, the object classes we created in the preceding chapters can be used with 
the new timer object class developed in this chapter. 

Programs have been developed to accurately measure time periods, measure a 
persons reflexes, and to generate a time-base for an earlier program that displayed 
the VCO output on-screen (see Chapter 10). The final program digitises an 
electrical waveform generated on the interface board, and saves the digitised values 
for later analysis. 

As explained previously, the PC’s three timers are connected to a clock signal 
having a frequency of 1.1932 MHz. Their counters can be loaded with a maximum 
value of 65,535 to produce a maximum time of 54.9 ms per countdown cycle. If we 
are to measure times greater than 54.9 ms, we must monitor and account for the 
number of down-counts. Each countdown of Timer 0 is referred to as a ‘tick’. A 
special region of memory known as BIOS is used to store the number of ticks since 
mid-night. BIOS is the abbreviation for the PC’s Basic Input Output System. It is a 
segment of software that predominantly interacts with hardware devices to carry 
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out low-level tasks. Like many operating systems, the PC’s operating system 
suffers from poor determinism (determinism is the term used to describe the ability 
of software to carry out tasks on time), and other latencies (time delays when 
actioning requests – some generated by hardware). As a result of these latencies, 
the tick count does not always get updated immediately, and so the BIOS tick 
count cannot be used reliably. We need to devise a reliable method to monitor and 
account for the number of tick counts so we can use this value in conjunction with 
the timer count value to measure time periods greater than one full timer 
countdown cycle. We will use Timer 0 for our time reference since it operates in a 
suitable mode. 

13.3.1 Reading Timer 0 Count Value and Ticks 
To read the number of counts corresponding to a given instant in time, we must 
read the timer ticks and also the contents of the Timer 0 counter. Section 13.2.4 
describes how to latch the count value of Timer 0 (a snap shot taken) by issuing a 
read-back command. The latched data can be read later by reading the output 
register of Timer 0. 

Before starting to program the timers, it is important to be aware that we will not 
adhere to the strict practice of structured procedure abstraction (use of functions). 
This will allow us to produce programs that execute fast and provide satisfactory 
accuracy when reading the timer. Additional time would be consumed if we called 
a function within one of the member functions of our PCTimer class.

13.4 The Object Class PCTimer
We will develop a class to provide a means of measuring time and generating time 
delays. To do this the class needs functions that perform the following tasks: 

Set a ‘zero’ time reference (this does not mean clearing the hardware timer 
in the PC). 
Generate a time delay of a specified value. 
Read the current time. 

The definition of the PCTimer class that has the above capabilities is shown in 
Listing 13-1. 

Listing 13-1  The PCTimer class - pctimer.h. 

#ifndef PctimerH 
#define PctimerH 

class PCTimer 
{
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private:
 unsigned int  InitCount; 
 unsigned long TickCount; 
 unsigned int  LastCount; 

public:
 PCTimer(); 
 void ResetTimer(); 
 void Delay(const double& milliseconds); 
 double ReadTimer(); 
 void UpdateTicks(); 
};
#endif

Setting ‘Zero’ Time 
The basic requirement when making use of time is to have a reference of ‘zero’ 
time. The data member InitCount is used to store the count value (remaining 
before the next tick) that corresponds to this ‘zero time’ as shown in Figure 13-4. 
This value of InitCount is established at the time of instantiating the PCTimer
object, and can also be re-established by calling the member function 
ResetTimer().

The ResetTimer() function can be used at any time to create a ‘zero time’ 
reference. It latches and reads Timer 0, then stores the count value into the data 
members InitCount and LastCount. LastCount is to temporarily store the 
timer’s last count value so the other member functions can detect the next tick as 
described in the following text. The number of ticks that have occurred, stored in 
data member TickCount, is then reset to zero. 

Accounting for Timer Ticks 
As explained previously, to determine the exact time that corresponds to any given 
instant, we need to know the number of timer ticks elapsed since the ‘zero’ time 
reference was created using Timer 0. We must monitor each countdown of Timer 0 
to prevent any ticks being missed. The three member functions; Delay(),
ReadTimer(), and UpdateTicks(), all need to track and record the number 
of ticks that take place during their operation. Figure 13-3 shows three different 
scenarios when monitoring timer ticks, explained as follows.

The counter is first read and its count value stored in the member variable 
LastCount. A short time later during execution of the program, the counter is 
read again to test if a tick has passed, and this count value is stored in the variable 
Count. Case (a) shows the two reads of the counter occurring within a countdown 
cycle – no tick has occurred. In this case the variable Count is not greater than the 
variable LastCount. Case (b) shows a new countdown cycle underway when the 
counter is read for the second time. In this case a tick has occurred; Count is 
greater than LastCount. Case (c) shares the same result as case (a) in that 
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Count is not greater than the variable LastCount. When using the same criteria 
to test for a tick as used for case (a), we will make an incorrect evaluation that a 
tick has not occurred because the two reads of the counter in case (c) are made 
more than a full countdown period apart (and Count < LastCount ).

Figure 13-3  Accounting for timer ticks. 

Evaluating Elapsed Time 
At the start of the timing process, the counter is latched, read, and its value is 
stored in the data member InitCount. This value represents ‘zero’ time, and is 
the number of counts remaining before the next tick as shown in Figure 13-4. 

Figure 13-4  Evaluation of the elapsed time.

At the end of the ‘Elapsed Time’ the timer is read again and its value stored in the 
variable Count. The number of timer counts since the last tick can be evaluated by 
subtracting Count from 65,535 (i.e. 65,535 – Count).  The number of tick counts 
within the elapsed time is stored in TickCount. Therefore, the total counts 
corresponding to the elapsed time is: 
TotalCounts = InitCount + (TickCount-1)*65535 + 65535–Count; 

Which can be written as: 

(a)  Tick has not occurred 
       Count is not  LastCount

65,535

LastCount

Count

0 Time
0

(b)  Tick has occurred 
       Count  LastCount

65,535
Count

LastCount

0 Time
0

(c)  Tick is missed 
Read period  1 countdown (54.9 ms)

65,535

Count
LastCount

0 Time
0

Elapsed Time

65,535

0

InitCount, LastCount

0
‘zero time’

Tick occurred 
 (0       65,535)

Tick occurred 
 (0       65,535)

Time

65,535

0
0

Count

Current
Time

Tick occurred 
 (0       65,535)

Tick occurred 
 (0       65,535)
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TotalCounts = InitCount + TickCount*65535 – Count; 

This is then easily converted into a value of time by knowing the frequency of the 
PC’s clock that drives the counter. 

The purpose and operation of the member functions of this class are explained as 
follows.

The PCTimer() function shown in Listing 13-2 is the constructor for the 
PCTimer object class. The constructor allocates space for all data members of the 
class and then takes an initial reading of the timer for the ‘zero time’ reference. 
Obtaining the ‘zero time’ reference is performed within the body of the constructor 
by using the function ResetTimer().

Listing 13-2 The constructor of the PCTimer class. 

PCTimer::PCTimer()
{
 ResetTimer(); 
}

The ReadTimer() function determines the total number of counts since zero 
time until the instant ReadTimer() is called. The total number of counts is 
calculated as described above. Finally, the total count value is converted into a 
value of time in milliseconds and a value of type double is returned. The 
ReadTimer() function does not call another member function to avoid added 
delays. Instead, all the code it needs is placed within its body. 

The Delay() function is used to generate a specified delay that is passed to it as a 
parameter in milliseconds. When called, it reads the timer once to determine the 
start of the delay period, being the current number of counts since zero time. Then 
it adds the number of counts since zero time to the number of counts corresponding 
to the specified delay. The timer is then read repeatedly until the number of counts 
since zero time is equal to the total number of counts evaluated above. At this point 
in time the delay will expire.

The UpdateTicks() function simply performs the task of quickly monitoring 
the tick status during down-counting (faster than the ReadTimer() function). It 
does this using the same method as employed in the other member functions of the 
PCTimer class. For the proper functioning of the PCTimer class, the Update()
function must be called at least once within a countdown, preferably every 40 ms. 
This completes the development of our PCTimer object class. The function file 
pctimer.cpp that contains these functions is given in Listing 13-3.

Listing 13-3 Member functions of the PCTimer class - pctimer.cpp. 

#include <dos.h> 
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#include "pctimer.h" 

PCTimer::PCTimer()
{
 ResetTimer(); 
}

void PCTimer::ResetTimer() 
{
// Latch Timer 0 
 outportb(0x43, 0xD2); 

// Read latched Count 
 LastCount = InitCount = inportb(0x40)+inportb(0x40)*256; 
 TickCount = 0;  // Initialise to zero. 
}

double PCTimer::ReadTimer() 
{
 double Time; 
 unsigned long TotalCounts; 
 unsigned int  Count; 

// Latch Timer 0. 
 outportb(0x43, 0xD2); 

// Read latched Count 
 Count = inportb(0x40) + inportb(0x40)*256; 

 if(Count > LastCount) 
  TickCount++; 

 LastCount = Count; 

 TotalCounts = ((long)InitCount + TickCount*65535L 
     -(long)Count); 
 Time = (TotalCounts/1.1932)/1000.0; 
 return Time;  // In milliseconds. 
// return TotalCounts; 
}

void PCTimer::Delay(const double& milliseconds) 
{
 unsigned int Count; 
 long  StartCount, DelayCount, EndCount, TotalCount; 
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// Latch Timer 0. 
 outportb(0x43, 0xD2); 

// Read latched CountOne. 
 Count = inportb(0x40) + inportb(0x40)*256; 

 if(Count > LastCount) 
  TickCount++; 

 LastCount = Count; 
 StartCount = ((long)InitCount + TickCount*65535L 
     -(long) Count); 
 DelayCount = (long) (milliseconds*1.1932*1000); 
 EndCount = StartCount + DelayCount; 

// Repeat a loop for the duration of the period. 
 do 
 { 
  // Latch Timer 0. 
  outportb(0x43, 0xD2); 

  // Read latched CountOne. 
  Count = inportb(0x40) + inportb(0x40)*256; 

  if(Count > LastCount) 
   TickCount++; 

  LastCount = Count; 
  TotalCount = ((long)InitCount + TickCount*65535L 
      -(long)Count); 
 } 
 while (TotalCount < EndCount); 
}

void PCTimer::UpdateTicks() 
{
 unsigned int Count; 

// Latch Timer 0. 
 outportb(0x43, 0xD2); 

// Read latched Count. 
 Count = inportb(0x40) + inportb(0x40)*256; 
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 if(Count > LastCount) 
  TickCount++; 

 LastCount = Count; 
}

As mentioned previously, it is essential that when using any of the member 
functions of the class that they are called within a countdown cycle. The class will 
function best if the PC’s interrupts are disabled, however, we have chosen to leave 
all interrupts active to avoid unnecessary complexity in our programs. The effect of 
these interrupts may cause small and unforeseen time delays.

For example; An attempt is made to read the timer at a particular instant using the 
ReadTimer() function. If the timer interrupt also occurs at this time, it will force 
the function ReadTimer() to wait until the timer interrupt has been serviced. 
This delay will cause ReadTimer() to return a count value that is greater than 
the instantaneous value when the call to the ReadTimer() function was initiated. 
The effect of interrupts is demonstrated in one of the programs that uses a member 
function of the PCTimer object. 

NOTE

Although updating the tick count is handled automatically by the Delay()
function while it is active, the ReadTimer() and UpdateTicks()
functions will only perform this task at the instant they are called. Therefore, if time 
periods need to be measured, ensure that functions ReadTimer() and
UpdateTicks() are called repetitively within a full timer countdown period 
(54.9 ms) to correctly monitor and update the tick count value. 

13.5 Measurement of Time 
The PCTimer object class will be used to demonstrate the measurement of real-
time. As explained earlier, measurement of time periods can be affected by the
execution of interrupt routines. The following program will allow us to observe the 
delays that can be generated by the various interrupt service routines executing in 
the PC. The disable() function can be called to stop all interrupts (disabling 
most of the PC’s peripherals, including the keyboard). Therefore, make sure that 
the interrupts are disabled for a minimum length of time! Calling the enable()
function re-enables the interrupts and allows the PC’s peripherals to resume 
operation. The program that measures time is shown in Listing 13-4. 
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Listing 13-4  Measurement of time – time.cpp. 

#include <iomanip.h> 
#include <math.h> 
#include <iostream.h> 
#include <conio.h> 
#include <dos.h> 

#include "pctimer.h" 

main()
{
 PCTimer T; 
 double TimeValue[1000]; 
 int i; 

// disable(); 
 for(i = 0; i < 1000; i++) 
 { 
  for(int j = 0; j < 50; j++) 
   sin(j); 
  TimeValue[i] = T.ReadTimer(); 
 } 
 enable(); 

 for(i = 1; i < 1000; i++) 
 { 
  cout << i << '\t'; 
  cout << setprecision(3) << TimeValue[i] << '\t'; 
  cout << setprecision(3) << (TimeValue[i] -   
           TimeValue[i-1])<< '\t'; 
  cout << endl; 

  if( i % 20 == 0) 
  { 
   cout << "Press a key for more ... "; 
   getch(); 
   cout << endl; 
  } 
 } 

 return 0; 
}
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Executable File Generation 
Required Files Listing No. Project File Contents 
pctimer.cpp
pctimer.h
time.cpp

Listing 13-3 
Listing 13-1 
Listing 13-4 

pctimer.cpp
time.cpp

The program measures the time consumed by each iteration of a for loop that 
executes 1000 times. Within this for loop is another for loop that repeatedly 
executes the sin() function 50 times for no real purpose except to waste time. 
You can alter the number of times the sin() function executes to change the time 
spent by each iteration of the external for loop. The ReadTimer() function is 
called within each iteration to read the time and store the time values in an array. 
Note that the UpdateTicks() function does not need to be called since the 
ReadTimer() function monitors and accounts for timer ticks, and importantly, 
the for loop will execute in less than a full countdown period. 

The time value and also the time difference between two consecutive readings of 
the timer are displayed on-screen 20 lines at a time. Interrupts will have the effect 
of adding time delays of varying value to the time taken to perform the 
calculations. Therefore, if interrupts are active (not disabled), calculations will take 
different periods of time, and it is these differences that the program is displaying. 
If the interrupts are disabled, calculation times will be uniform. Therefore, any 
irregularities in the times displayed in the third column will be caused by 
interrupts. You can run the program twice, once with the interrupts disabled and 
then with the interrupts enabled to observe these effects. These results should 
provide some insight into the effect of interrupts when measuring time. 

13.6 Reflex Measurement 
In this section we will use the interface board to measure a person’s hand reflexes. 
A program has been provided that will light up a set of LEDs on the interface board 
after a random time delay. The person under test will react and press the button 
switch on the board in response to the LEDs lighting up. The delay in time from 
the LEDs lighting up and the press of the button switch is a measure of a person’s 
reflexes. Listing 13-5 shows the program that performs the reflex measurement.

Listing 13-5 Reflex measurement – reflex.cpp. 

#include <iomanip.h> 
#include <conio.h> 
#include <iostream.h> 
#include <stdlib.h> 
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#include "pport.h" 
#include "pctimer.h" 

main()
{
 double ReflexTime; 
 ParallelPort PPort; 
 PCTimer T; 

// Turn off LEDs at start. 
 PPort.WritePort0(0);  
// A long beep. 
 cout << "\a\a\a\a\a" ; 

// Time delay of 1.5-5.0 sec. 
 T.Delay(1500+rand()%3500); 

// Light up all 8 LEDs. 
 PPort.WritePort0(255); 

// Reset Timer. 
 T.ResetTimer(); 

// Wait for button press. 
 while((PPort.ReadPort1() & 0x80) == 0) 
  T.UpdateTicks(); 

// Read PC Timer. 
 ReflexTime = T.ReadTimer(); 

// Turn off LEDs. 
 PPort.WritePort0(0); 

 cout << "Your reflex time is "; 
 cout << setprecision(3) << ReflexTime; 
 cout << " ms." << endl; 
 getch(); 

 return 0; 
}
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Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
pctimer.cpp
pctimer.h
reflex.cpp

Listing 10-8 
Listing 10-7 
Listing 13-3 
Listing 13-1 
Listing 13-5 

pport.cpp

pctimer.cpp

reflex.cpp

When this program first executes, it turns off all LEDs and issues a long beep. It 
then generates a random time delay between 1.5 and 5.0 seconds, followed by 
lighting all eight LEDs and initialising the timer to ‘zero time’. The user then reacts 
to the LEDs lighting up by pressing the button switch on the interface board. The 
program detects the button press and calls the ReadTimer() function to read the 
timer and return the time that has elapsed since ‘zero time’. The LEDs are turned 
off and the reflex time is displayed on-screen. 

Connect the interface board’s BASE address outputs to the inputs of the LED 
Driver IC according to Table 13-4. The button switch connects to the BASE+1
input as shown in Table 13-5. 

Table 13-4  LED connections. Table 13-5  Switch connection. 

BASE Address
(Buffer IC, U13) 

ULN2803A Pin No.
(Driver IC, U3) Button Switch 

BASE+1 Address 
(Buffer IC, U6) 

D0 1  OUT D3 
D1 2    
D2 3    
D3 4    
D4 5    
D5 6    
D6 7    
D7 8    

     

13.7 Generating a Time-Base 
In Chapter 10 we developed a program (Listing 10-11) to monitor and display the 
pulse-train from the the interface board’s VCO (voltage-controlled oscillator). The 
horizontal axis of the plot (time) was generated by using software loops and not 
from real-time techniques. In the original program, at every instant the VCO’s 
pulse-train was read, the trace was plotted and the value of i incremented. 
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Therefore, each change in i could be considered as a ‘new reading’. Our real-time 
capabilities can be now used to incorporate an accurate time-base with the graphics 
plot. Listing 13-6 shows a modified version of the original program (changes 
shown in bold typeface) that uses a proper time-base for its horizontal axis. 

In this program the variable i is still used for positioning the trace along the x axis. 
However, its meaning is different, now becoming a time unit of 10 ms. For this 
new arrangement, the main loop in the program plots continuously but only 
increments the value of i every 10 ms. Therefore, plotting along the horizontal 
axis moves by one pixel every 10 ms. This also means that the resolution of the 
plot is 10 ms. That is, if the signal changes in less than a 10 ms period, its change 
cannot be properly represented and may show as a series of vertical lines. This can 
be rectified by re-coding the program to use a smaller value for the delay between 
timer reads to suit the frequency of the incoming signal.

Listing 13-6 Graphical display of pulse-train with a real time-base - timebase.cpp. 

/*****************************************************
The frequency of the pulse-train being output by the 
voltage-controlled oscillator will change as we change 
the analog input voltage to the VCO circuit. The
Potentiometer (POT1) on the interface board generates 
the input voltage to the VCO and the program reads the 
pulse-train being output by the VCO.  This pulse-train 
is graphically displayed on-screen. 
*****************************************************/
#include <graphics.h> 
#include <stdlib.h> 
#include <iostream.h> 
#include <conio.h> 
#include <dos.h> 

#include "vco.h" 
#include "pctimer.h" 

void main() 
{
 VCO Vco; 

PCTimer T; 
 int i=0; // controls plotting in the x range 
 int SignalLevel; 
 int Driver = DETECT, GraphicsMode, ErrorCode; 
 int X, Y; 

// set to graphics mode 
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 initgraph(&Driver, &GraphicsMode, ""); 

// check for error codes 
 ErrorCode = graphresult(); 
 if (ErrorCode != grOk) 
 { 
  cout << "Graphics error:  " 
    << grapherrormsg(ErrorCode) << endl; 
  cout << "Press any key to halt:" <<  endl; 
  getch(); 
  exit(1); 
 } 

 X = getmaxx(); 
 Y = getmaxy(); 
 rectangle(X/4-1, Y/2-76,X*3/4+1,Y/2+76); // border 
 setviewport(X/4, Y/2-75,X/4*3,Y/2+75,1); 

T.ResetTimer();
 while(!kbhit()) 
 { 
  SignalLevel = Vco.SignalLevel(); 

  if(SignalLevel == 0) // low level 
   lineto(i,100); 
  else                 // high level 
   lineto(i,50); 

if(T.ReadTimer() > 10) 
  { 
   T.ResetTimer(); 
   i++; 
  }

  if(i > X/2) // half screen = Viewport width 
  { 
   i = 0; 
   while(Vco.SignalLevel()); // wait for low level 
   while(!Vco.SignalLevel());// wait for high level 
   clearviewport(); 
   moveto(0,50); 

T.ResetTimer();
  } 
 } 
}
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Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
vco.cpp
vco.h
pctimer.cpp
pctimer.h
timebase.cpp

Listing 10-8 
Listing 10-7 
Listing 10-4 
Listing 10-1 
Listing 13-3 
Listing 13-1 
Listing 13-6

pport.cpp

vco.cpp

pctimer.cpp

timebase.cpp

The ‘zero time’ reference is set before starting to plot by calling the function 
ResetTimer(). This function is also used in the following if statement to 
periodically reset the timer every 10 ms:
if(T.ReadTimer() > 10) 
{
 T.ResetTimer();
 i++; 
}

If a 10 ms period has elapsed, the timer is reset to allow the next 10 ms period to be 
measured, and the index i is incremented to allow the next pixel to be plotted. 
Otherwise, i will remain as is and plotting will repeat at the same time position. 

When the trace has reached the edge of the Viewport’s plot region (X/2; half the 
screen width) the program enters an if statement used to setup the screen ready 
for a new trace. Inside this if statement the program resets the value of i to zero, 
and then waits for the incoming VCO signal to switch to a high level by waiting for 
the VCO output to change state from logic-low to logic-high using the following 
combination of statements: 
while(Vco.SignalLevel()); // wait for low level 
while(!Vco.SignalLevel());// wait for high level 

This ensures the plot always starts with the same edge transition on-screen. Once 
the VCO signal has made the required low-to-high level transition, the screen is 
cleared, the cursor repositioned to the left edge, and the timer is reset to a fresh 
‘zero time’ reference. Note: if interrupts are enabled, some of the pulses displayed 
may have wider widths due to time consumed by interrupt service routines.

Just as we used a real-time program to plot a waveform on the screen, we can 
timestamp data in real-time as it is acquired. We will generate a waveform using 
the VCO and Charge/Discharge circuitry on the interface board, digitise its 
analogue output using the ADC, timestamp these values, and store this data in a 
file.
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13.8 Data Acquisition with Timestamp 
The Charge/Discharge circuit on the interface board can be driven by a digital logic 
signal to generate an analog waveform that can be sampled to demonstrate the data 
acquisition process. Each data sample can be accurately time-stamped as it is 
acquired by using the PCTimer object in the data acquisition program.

In this section, one program will perform data acquisition, time-stamp the data as it 
is acquired, and store the data into a disk file for later analysis. A second program 
will retrieve the stored data from the disk file and process the data to determine the 
period of the waveform generated by the Charge/Discharge circuit. 

13.8.1 The Charge/Discharge Circuit 
The Charge/Discharge circuit can be driven from any digital logic signal, including 
one that may be generated by software using an output bit of one of the ports. 
However, this application uses the simple arrangement whereby the VCO drives 
the input of the Charge/Discharge circuit with a periodic signal as shown in Figure 
13-5. The Charge/Discharge circuit has a capacitor that is charged when the VCO 
output becomes low and discharged when the VCO output becomes high. The 
analog signal output from the Charge/Discharge circuit (shown in Figure 13-6) is 
digitised by connecting it to the analog-to-digital converter. The program will 
acquire the digitised signal for more than one period and time-stamp each digitised 
sample. This data is then stored by writing it to a file.

Figure 13-5 Connections for the VCO to drive the Charge/Discharge circuit. 

Figure 13-6 Voltage waveform generated by the Charge/Discharge circuit. 
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13.8.2 Programming Data Acquisition & Timestamp 
In this section we will develop two programs. The first program (named 
TimeStmp.cpp) will sample the signal using the analog-to-digital converter,  
and read the time of sampling. These paired results will then be written to a disk 
file. This program will need to use the ADC class and the PCTimer class. Note: 
the VCO object is not used since the VCO circuit is only used as a signal generator  
to drive the input of the Charge/Discharge circuit. 

The second program (named Period.cpp) will retrieve the stored data from the 
disk file and scan through the data to determine the period (T) of the waveform. It 
does not need to use any of the objects developed previously. 

Program 1 – TimeStmp.cpp 
The steps involved in this program that digitises the signal are: 

1. Reset the timer. 
2. While looping until sufficient time has elapsed (5 seconds suggested): 

- read time and store in an array. 
- read ADC and store in an array. 
- wait for sampling period (10 ms. is suggested) 

3. Write the data to a file. 

The program for timed acquisition of data is given in Listing 13-7. 

Listing 13-7 Program to acquire data with time-stamps – timestmp.cpp. 

#include <iomanip.h> 
#include <iostream.h> 
#include <fstream.h> 
#include <stdlib.h> 
#include <conio.h> 

#include "adc.h" 
#include "pctimer.h" 

void main() 
{
 ADC Adc; 
 PCTimer T; 
 double Time[500]; 
 unsigned char Data[500]; 
 double TempTime; 
 double Duration = 5000; // Acquisition period - 5000 ms. 
 int i = 0; 
 const int SamplingInterval = 10; // Milliseconds 
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 T.ResetTimer(); 
 do 
 { 
  TempTime = T.ReadTimer(); 
  if(TempTime  > i*SamplingInterval) 
  { 
   Data[i] = Adc.ADConvert(); 
   Time[i++] = TempTime; 
  } 
 } 
 while(T.ReadTimer() < Duration); 

// Create, open then write data to disk file. 
 ofstream os("timestmp.dat"); 

 for(int j = 0; j < i; j++) 
 { 
  os << setprecision(3) << Time[j] << '\t'; 
  os << setprecision(3) << (double) Data[j] << endl; 
 } 
 os.close(); // Close file. 
}

Executable File Generation 
Required Files Listing No. Project File Contents 
pport.cpp
pport.h
adc.cpp
adc.h
pctimer.cpp
pctimer.h
timestmp.cpp

Listing 10-8 
Listing 10-7 
Listing 10-4 
Listing 10-1 
Listing 13-3 
Listing 13-1 
Listing 13-7

pport.cpp

adc.cpp

pctimer.cpp

timestmp.cpp

This program uses the ADC class and the PCTimer class. The ADC class is used to 
acquire the data by controlling and reading the analog-to-digital converter. The 
PCTimer class is used to accurately measure the time when the signal was 
sampled by the ADC. The two objects Adc of type ADC and T of type PCTimer
have been instantiated from these two classes. 

We have decided to perform data acquisition for a 5 second duration using a 
sampling interval of 10 ms, generating a total of 500 samples. Two arrays named 
Time and Data have been created to store the respective data, each having 500 
elements, with the variable i used as the array subscript. The variable named 
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Duration is used to store the overall sampling duration, and is set to 5000 
milliseconds (5 seconds). The variable named SamplingInterval is used to 
define the sampling interval and is set to 10 ms. Since the sampling interval is 
constant during this data acquisition process, SamplingInterval is declared as 
const. The identifier TempTime is used to temporarily store the time read by 
reading the PC timer. 

Just prior to entering the do-while loop, the program resets the PCTimer object 
T, thereby establishing ‘zero time’. The loop will execute continuously with data 
read at 10 ms intervals. The if statement compares the current time with the time 
when the next sample must be taken. When the current time becomes greater than 
the time for the next sample, the ADC will be read, its value stored in the array 
Data[], and the time stored in array Time[]. The while loop terminates when 
the time exceeds the value of Duration.

All the data stored in the two arrays is then written to a data file named 
timestmp.dat. The ofstream constructor is called to create the file by 
instantiating the object os of type ostream. The file name timestmp.dat is 
passed as a parameter to the ofstream constructor. The for loop initialises the 
integer identifier j to zero and continues to write the values until the value of the 
subscript j reaches the number of data elements recorded in the do-while loop. 
The file os is then closed by calling the member function close() of the 
ofstream class. When the program has completed its execution, all data will be 
stored as two columns separated by a tab character in the text file 
timestmp.dat. The first column contains time values and the second column 
contains integer values representing the analog voltage output from the 
Charge/Discharge circuit. 

Program 2 – Period.cpp 
The second program retrieves the data from the disk file and stores this data in 
memory. It then processes the data to determine the period of the waveform that 
was sampled. 

The steps involved in the second program are now given: 

1. Read the data file and store the data values in memory. 
2. Loop to find two data points one period apart: 

- search until a data value in the second column is less than the threshold 
(Point O). 

- continue searching until a data value is greater than the threshold; store its 
corresponding time value (Point A). 

- continue searching until a number less than the threshold is found (Point 
B).

- continue searching until a number greater than threshold is found; store its 
corresponding time value (Point C). Then quit the loop. 

3. Calculate the period of the waveform, being the difference between the two 
times (Point C – Point A). 
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The program that performs the above data retrieval and data processing steps is 
shown in Listing 13-8 and does not need to use any of the object classes that have 
developed previously. 

Listing 13-8  Program to determine the period of the output waveform - period.cpp 

#include <iostream.h> 
#include <fstream.h> 

void main() 
{
 double *TimePtr;    // Pointer to Time data 
 double *DataPtr;  // Pointer to ADC data 
 double MaxData = 0;  // Maximum value of ADC data 
 int NumData=0;   // Number of data pairs in file 
 int i =0; 
 int Case = 1;        // Case in initialised to 1 
 int Quit = 0;   // Quit = 0 means do not quit 
 unsigned char Threshold; 
 double TimeA, TimeC; 

//Instantiate ifstream object (is). 
 ifstream is("tmddata.dat"); 

// Read through the file to find the number of
// data pairs and the max value of ADC data. 
 while(is) 
 { 
  is >> *TimePtr >> *DataPtr; 
  if(!is.fail()) 
  { 
   if(*DataPtr > MaxData) 
    MaxData = *DataPtr; 
   NumData++; 
  } 
 } 

// close input stream 
 is.close(); 

// Set Threshold based on MaxData 
 Threshold = MaxData - 5; 

// Alocate memory for Time and ADC data 
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 TimePtr = new double[NumData]; 
 DataPtr = new double[NumData]; 

// Re-open the file so that reading starts from beginning. 
 is.open("tmddata.dat"); 

// Read file and fill allocated memory 
 while(is) 
 { 
  is >> *(TimePtr+i) >> *(DataPtr+i); 
  if(!is.fail()) 
   i++; 
 } 

// scan through all array elements pointed by DataPtr. 
 for(int j = 0; j < i; j++) 
 { 
  switch(Case) 
  { 
   // Search for a Data element less than 
   // the threshold 
   case 1: if(*(DataPtr+j) < Threshold) 
      Case = 2; 
     else 
      break; 

   // Search for a Data element greater than the 
   // threshold. Note the time. 
   case 2: if(*(DataPtr+j) > Threshold) 
     { 
      TimeA = *(TimePtr+j); 
      Case = 3; 
     } 
     else 
      break; 

   // Search for a Data element less than 
   // threshold 
   case 3: if(*(DataPtr+j) < Threshold) 
      Case = 4; 
     else 
      break; 

   // Search for a Data element greater than 
   // threshold. Note the time. Set Quit flag 
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   case 4: if(*(DataPtr+j) > Threshold) 
     { 
      TimeC = *(TimePtr+j); 
      Quit = 1; 
     } 
  } 
  if(Quit) 
   break; 
 } 

// Clean up - deallocate dynamic memory 
 delete TimePtr; 
 delete DataPtr; 

// Display the time difference on the screen. 
 cout << "The VCO signal period is "; 
 cout << TimeC - TimeA; 
 cout << " ms." << endl; 
}

The initial part of this program scans through the data file to determine the number 
of data pairs (time and ADC data) it contains, and stores this value in the variable 
NumData. During this process, the program also determines the maximum value 
of ADC data that was sampled, and stores this value in the variable named 
MaxData. A threshold value (calculated as five ADC units below the value of 
MaxData) is evaluated for use to determine the period of the measured waveform. 
Then the program dynamically allocates memory for time data and ADC data using 
the two pointer variables TimePtr and DataPtr. The data file is then closed and 
opened again so it can be re-read from its beginning to fill the dynamically 
allocated memory with its data.

The second part of the program scans through the data stored in the allocated 
memory, and evaluates the period of the signal as follows. It first searches for an 
element of ADC data (second column) that is below the threshold value. This 
would, for example, represent a point such as ‘O’ shown in Figure 13-6. Starting 
from this element, the program begins scanning the second column of data until an 
element with a value greater than the threshold is first encountered. For example, 
this point would represent a point such as ‘A’ shown in Figure 13-6. At this point 
the corresponding time value from the first column is stored. Scanning then 
continues down the second column of data while searching for an element less than 
the threshold value. Such a point would correspond to point ‘B’ in Figure 13-6. 
Recording of time is not needed for this point. Scanning continues down the second 
data column for the next number that is greater than the threshold value. This will 
correspond to point ‘C’ in Figure 13-6. The time corresponding to this instant is 
stored. The Quit flag will then be set since we no longer need to continue 
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scanning the data. The period of the digitised waveform is then the difference 
between the time at point ‘A’ and ‘C’.

Note that the identifier Case (initially set to 1) is used to control the different 
phases of scanning the data. When the value of Case is 1, the ADC data array is 
first searched for an element pointed to by DataPtr that is less than the threshold. 
Once such an element has been found, the variable Case is set to 2 to commence 
the next phase of scanning. The identifier Quit is used in a logical sense. It is 
initially set to 0, meaning ‘do not quit’. The value of Quit is tested at the end of 
each iteration of the loop and if set, the loop will be terminated by executing the 
break statement. Once the last point (C) has been found, there is no need to 
proceed with scanning, so Quit is set to 1. The time difference representing the 
period of the signal is then calculated and printed on-screen.

13.9 Summary 
In this chapter we learned how the built-in timer of the PC operates and how it can 
be used. The object class PCTimer has been developed with the capability to 
measure very long time periods. It has member functions to mark a time reference, 
accurately read the elapsed time, and also generate specific delays. 

The PCTimer class operates without disabling the PC’s interrupts. As such, the 
interrupt service routines will generate short interruptions that can contribute to 
minor inaccuracies when measuring time. This was demonstrated when one of our 
example programs made repeated measurements of a ‘fixed-time’ event with 
interrupts enabled, and later with interrupts disabled. Other programs were 
presented in this chapter that measured a person’s reflex reaction time, generated a 
waveform plot using an accurate time-base, and used regular and accurate timing to 
digitise the electrical waveform produced by the interface board’s 
Charge/Discharge circuit. 
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Appendix A - Hardware 

Circuit Construction 

Interface Board Bill of Materials 



Circuit Construction 
The interface board contains many different and independent circuit blocks to give 
the reader the option of working with any number of projects in any order. This 
flexibility also allows the reader to combine the board’s various circuit 
elements/blocks to form a wide range of custom projects. All circuit blocks need to 
be powered and most must be able to interface with the PC’s parallel port. To 
satisfy these needs, the interface board has its own power supply circuit block and 
a parallel port interface circuit block. 

The power supply is the first circuit block that should be assembled, tested, and be 
operating properly - should any faults in the power supply be present, then only 
this part of the board will need to be investigated and debugged (assuming the 
interface pcb was properly checked to be functional). Next, the parallel port 
interface circuit block should be assembled, tested, and be operating properly 
before the other circuit blocks on the interface board are constructed (in any order).

IMPORTANT: The interface printed circuit board (pcb) should be checked for 
faults before proceeding to assemble and solder components onto the board. If in 
the very unlikely case the board does have faults, these faults can be detected 
quickly and simply on the unpopulated pcb and easily rectified as explained in the 
next section. The following sections provide instructions for the assembly of 
components, soldering, testing, and debugging of circuits.

Bare Printed Circuit Board 
Visually check the bare printed circuit board (pcb) for any obvious short-circuit 
tracks or open-circuit tracks caused by faulty manufacture or handling. If any faults 
are detected, repair with a sharp blade and/or soldering iron as follows. Breaks in 
tracks can be repaired by scraping the coating from both sides of the break to 
expose the copper surface. Solder a piece of solid wire across the break. Short-
circuits can be removed by cutting between shorted tracks with a sharp blade. 

Test the power supply tracks for short-circuits by measuring the resistance between 
the following power and ground paths using a multimeter: 

+5V and GND. 12Vunreg and GND. 
+9V and GND. - 8V and GND. 

The easiest place to probe each of these paths is at one of the pcb pads connected to 
that power path as shown in Figure A-1. In all cases the resistance should be at 
least several mega-ohms. If not, there is a short-circuit somewhere which needs to 
be detected visually, or by cutting/removing links to break the path up into more 
easily managed segments, and re-measuring with the multi-meter. 
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Figure A-1  Test Power Supply track paths for short-circuits. 

The Assembly Process
Equipment: 1 pair of Cutters/Nippers and 1 pair of small sized long-nose pliers. 

The easiest approach to take when assembling the printed circuit board (pcb) is to 
manage the process in several stages, assembling on a project-by-project basis if 
convenient. This will simplify the testing and any debugging that might be 
necessary. However, if the whole board is to be completely assembled in just one 
stage, then the following guidelines should simplify and speed the process. 

Components should be assembled and soldered flush with the pcb, starting with 
those that are lowest in height before proceeding with taller components. This 
strategy will result in the following order of assembly: 

1. Flat mounting diodes and resistors. 
2. IC sockets/ICs. 
3. LEDs. 
4. Pcb pins. 
5. Capacitors that are small in size. 
6. Vertically mounted resistors. 
7. Terminal blocks and remaining tall components.
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As each component is fitted to the board, bend two of its leads over slightly to 
retain the part. When all components of this category are fitted, flip the board over 
and lay the partially complete assembly flat against the work surface (these 
components should now be in contact with the work surface). This will keep the 
parts positioned flush against the pcb, ready for soldering. 

Note: It is easiest to fit a limited number of components at a time, solder them and 
then trim their leads close to the board surface using cutters, and then repeat these 
steps. This will avoid the situation occuring where a large number of component 
leads restrict access to a joint that needs to be soldered. 

Many components must be correctly oriented when fitted to the board. These 
components include ICs, electrolytic capacitors, LEDs, diodes, and transistors. 
Figure A-2 shows the convention used to mark ICs to denote orientation with 
respect to pin number one. Usually a notch or dot is placed at the end of the IC 
where pin number one is found. 

Figure A-2  Marking of IC orientation and pin numbering (top view). 

When using IC sockets (recommended) make sure the socket is soldered into the 
board with it’s ‘notched’ end corresponding to the IC outline marked on the board. 
The notched end of the socket will provide the marker for correct orientation when 
fitting the IC into its socket. 

Other components have characteristic marking schemes to denote polarity. 
Electrolytic capacitors are marked with either a + or - sign on their body. To 
determine correct LED orientation, look through the transparent coloured body at 
the two terminals as shown in Figure A-3. Typically, the smaller shaped contact is 
the anode and the other contact the cathode. 

Figure A-3  LED polarity. 
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Diodes are marked with a line across the length of their body to represent the 
cathode. Transistors are correctly fitted to the pcb by complying with the pcb 
overlay markings that show appropriate orientation of the transistor bodies. 
Importantly, CMOS devices are sensitive to damage from static electricity and are 
preferably assembled with antistatic precautions in place. 

Note: apply a thin film of heatsink paste to the flat metalised surfaces of the 
transistors and voltage regulators before fitting heatsinks. This will improve the 
transfer of heat to the heatsink. 

The Soldering Process 
Equipment & Materials: Soldering iron (> 15 Watts) and electronics grade solder 
(0.7 mm to 1.0 mm diameter, 60% tin, 40% lead with flux inside). 

Soldering by hand can be described basically as a process where heat is transferred 
to the joint to be soldered, followed by the application of solder that then melts and 
flows into and around the joining materials. The heat source is removed and the 
molten solder solidifies, forming a connection between the component lead and the 
pcb pad. 

Preparation: To ensure successful soldering, the soldering iron tip and the joint 
itself must be clean. Normally the printed circuit board and the component lead 
passing through the board will be sufficiently clean. Unfortunately, the same 
cannot be said for the soldering iron tip. To clean the iron tip, wet a piece of 
‘kitchen’ sponge to be damp but not soaked, and then repeatedly wipe the iron tip 
across the sponge until the tip is in a shiny metallic state. If the iron tip cannot be 
brought to a shiny metallic state, try tinning the soldering iron tip by applying 
solder to it, waiting a short period of time and then wiping it against the sponge. If 
this fails to work, a new soldering iron tip is probably needed. 

Soldering: This process takes place in three steps: 

1. Lightly wet the iron tip with solder (the tip may be sufficiently wet with 
solder from the previous soldering operation). This improves the rate at 
which heat can be transferred from the iron tip to the joint. 

2. Heat the joint with the iron tip for several seconds. 
3. Apply solder sparingly to the heated joint - it will flow to fill the joint if the 

joint was heated sufficiently during step 2. 

Note: When applying solder to the joint in step 3, do not be tempted to apply solder 
to the iron tip in order to melt the solder (this can result in a poorly soldered joint). 
If the joint is heated sufficiently in step 2, solder flows into the joint as required. 
Figure A-4 shows the shape of a correctly soldered joint before and after trimming 
using cutters. 
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Figure A-4  Correctly soldered and trimmed joint (plated through hole). 

Schematic Diagram Conventions 
The following information will help you interpret the schematic circuit diagrams 
when studying the circuit blocks and during times of test and debugging: 

Inputs to circuits are generally drawn on the left side of the component and 
outputs are generally drawn on the right side of the component. 
Logic circuits or circuits having logic inputs and/or outputs sometimes have 
small circles placed on their input or output pins at the border of the circuit 
block. This denotes an active low pin. In the case of an input, a low logic 
level will activate the pin. For the case of an output, the output pin will be at 
a low logic level when in an active state. 
The small dots at the ends of input and output lines are pcb pins. Solid dots 
show connection between signal lines. 
VCC denotes logic circuit +5V.
There are two types of grounds shown on the schematic; horizontally-lined 
triangular shape (digital ground) and hollow triangular shape (analog 
ground). They are connected together on the printed circuit board and will 
both be at 0V. 

Testing and Debugging 
Testing and debugging should take place in a systematic manner to minimise the 
time and effort required. The easiest means of achieving this is to reduce the size or 
scope of the system under test by breaking it into smaller circuit blocks and testing 
them separately in-turn. 

When testing circuit blocks; the input voltages/currents must be set to appropriate 
levels for that block before the outputs are checked. If a fault in circuit function is 
detected, it will usually be caused by factors such as: 

incorrect wiring lead connections. 
incorrect value or type of a component(s). 
incorrect orientation of a component(s). 

Solder Joint 

Board Underside 

Component Side 

PCB

Trimmed Lead 
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poor/inadequate solder joint or wiring connection. 
short-circuit due to solder bridging. 
defective pcb track(s) caused by faulty manufacture, improper handling of the 
pcb (excessive flexing, scoring, etc), and damage from poor repair by the user. 
incorrect power supply voltage to circuit(s). 
damaged component(s). 

The typical steps in circuit test and debugging are: 

1. Check for correct wiring connections. 
2. Check that the correct components are installed in the right position, with 

proper orientation. 
3. Check correct power supply to a circuit.  If the voltage to the circuit is not 

correct:
– Feel the IC to check if the package is unusually warm or hot; indicating 

an overloaded or damaged IC that may need to be replaced. Also, check if 
other components connected to the power supply are also excessively hot. 

– Visually check the tracks and solder joints for any unintended short-
circuits and also for unintended open-circuits or inadequate soldering. If 
necessary, follow this with an electrical continuity test using a multimeter 
as discussed below. 

4. Check that voltages or currents to circuit inputs are set at the correct levels. 
5. Test that circuit outputs are correct for the given state of the inputs – if this is 

not so: 
– The outputs are excessively loaded by; connection to other circuits or 

components on the board, or by short-circuited track(s). 
– The component is faulty and needs to be replaced. 

CONTINUITY TESTS 

Continuity tests are performed to detect short-circuits and open-circuits using a 
multi-meter switched to ‘resistance’ mode. The power to all circuitry MUST be 
TURNED OFF before commencing with continuity tests. 

As mentioned earlier, to simplify testing and debugging, one circuit block should 
be assembled and then tested at a time, before proceeding to build the next circuit 
block. The testing and debugging of these circuit blocks is explained in the 
following text, presented in the order the related projects appear through the book. 

Removing Components 
The following instructions are recommended for removing components from the 
pcb (and not damaging it) with the aid of the most basic hand tools. More elaborate 
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tools are often used if they are available, however, most readers will not have 
access to such equipment. To minimise any likelihood of damage to the pcb, 
components with more than two leads (or pins) are sacrificed during their removal. 
NOTE: the pcb can also be damaged if any pads (or tracks) are subject to the 
application of heat from a soldering iron for excessive periods of time.

Discrete components (resistors, capacitors, etc.) 
If the component has pliable leads, then the simplest method to remove the 
component is to grip one lead using pliers and then heat its solder joint until the 
joint becomes molten. Once this happens, lift the lead completely from the board. 
Perform the same process for the other component lead(s).

If the component has stiff leads that will not allow an individual lead to be lifted 
from the board, the component will need to be sacrificed by snipping each of its 
leads using cutters. 

Integrated Circuits (ICs) 
IC sockets should be used for all positions on the pcb where ICs are to be placed. 
This allows quick and easy fitting and removal of ICs without damage to the board 
or the IC. Should an IC be fitted without using an IC socket, it is recommded that it 
be removed from the board by cutting each of its legs. Then remove each leg in-
turn in a similar method as for individual leads of discrete components. 

Cables and Connection Leads 
Table A-1 shows the components needed for all cabling. These cables are shown in 
Figure A-5 and Figure A-6. We recommended you fabricate only those 
interconnecting leads actually needed for a particular project and purchase the 
D25M to D25M cable as an already manufactured unit. 

Table A-1  Cable Components for all Projects. 

Quantity Component Description 
1 One-to-one D25 Male to D25 Male cable 
50 Pcb pin socket, suit pin 0.9 – 1.0 mm 

(for interconnect cables) 
7 m Hookup wire (for interconnect cables) 
1 m Heatshrink tubing; 2.5 - 3 mm diameter 
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Figure A-5  One-to-one D25 Male to D25 Male cable. 

Interconnect Lead Assembly 
The interconnect leads are used to connect outputs of circuit blocks/elements to 
inputs of circuit blocks/elements. DO NOT at any time connect an output to 
another output - doing so will most likely damage the components involved. Each 
interconnect lead (shown in Figure A-6) you need can be fabricated as follows. 

Solder a pcb pin socket to one end of a 25 cm length of hookup wire. Slide a 15 
mm length (approximate) of heatshrink tube along the wire and onto the socket. 
The tube should be positioned about halfway along the socket (far enough to 
prevent contact between sockets when the sockets are in use connected to adjacent 
pcb pins on the board). Apply heat to the heatshrink tube to shrink it in place. 

Slide a second 15 mm length (approximate) of heatshrink tube onto the other end 
of the wire. Solder this end of the wire to the second pcb pin socket. Position and 
shrink the second heatshrink tube tube as described above.

Figure A-6  PCB interconnecting lead – socket to socket. 

Interconnect Lead Testing 
Test the mechanical strength of each lead’s solder joints by holding a socket in 
each hand and pulling the lead using moderate force.  Should a socket come loose, 
repeat the assembly operation. Electrical continuity can be tested using a 
multimeter set to resistance mode. Resistance between sockets should be 
thousandths of an Ohm at most. 

2 metres

D25 Male D25 Male

25 cm
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Power Supply Circuitry 

Assembly
Fit and solder all the components listed in Table A-2 into their position as marked 
on the pcb overlay and as shown in Figure A-8 and Figure A-9. 

Table A-2  Power Supply - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

2 0.1 F ceramic monolithic capacitor 0.2 inch C2, 3 
2 1 F  16V tantalum electrolytic capacitor 0.2 inch C13, 14 
1 4700 F, 16V electrolytic capacitor RB 0.5 or 

0.35 inch 
C1

1 1K resistor ¼ W  R94 
1 1K8 resistor ¼ W  R52 
3 1N4004 diode  D1, 2, 10 
1 LM7805CT voltage regulator TO-220 U1 
1 LM7809CT voltage regulator TO-220 U2 
1 Power pack; +12V DC, 1A   
3 2 way terminal block 5mm pitch J2, 9, 10 

16 Pcb pin, 0.9 - 1.0 mm diameter   
2 Heatsink 12 C/W  HS1, 2 
2 M3 screw 6-10 mm long (or equiv.)   
2 M3 nut   
2 M3 locking washer   

Testing
Figure A-7 shows the schematic diagram for the power supply, excluding the 
circuitry for generating –8V DC, that is used solely by the DAC and grouped with 
it.  The interface board can be powered by any DC power supply capable of 
providing voltages in the range from 13V to 18V at currents of 1A or greater.  The 
cheapest means of providing this power is by using a 12V DC powerpack with 1A 
capacity.  The powerpack will usually provide voltages above 12V until current 
draw becomes excessive (greater than approximately 1A). 
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Figure A-7  Power Supply Circuit – schematic diagram. 

The input voltage to both the +5V and +9V voltage regulators should be in the 
range +12V to +18V (this upper value depends on the powerpack or DC supply 
used).  If not: 

– Ensure the wiring between the powerpack or DC power supply, and 
terminal block J2 has the correct polarity. 

– Check that diode D10 is fitted with correct polarity. 

The output voltage of the +5V and +9V regulators should be within +4.75V to 
+5.25V and +8.55V to +9.45V respectively, due to their voltage tolerances. If this 
is not the case, check: 

– Tantalum electrolytic capacitors C13, C14, and diodes D1, D2 are fitted 
with correct polarity. 

– Regulators are fitted in the correct orientation as marked on the pcb. 
– Short- and open-circuits on connecting tracks or around solder joints. 
– That load resistors R52 and R94 are fitted. 

NOTE

Eight pcb pins connected to GND and eight pcb pins connected to +5V are located 
adjacent to the power supply’s two-way terminal blocks. These pins have been 
provided to set input logic levels for circuits, and to facilitate testing of circuits. 
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Figure A-8  Power Supply Circuit – component positions. 

Figure A-9  Power Supply Circuit – components fitted. 
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Parallel Port Interface 

Assembly
Fit and solder all the components listed in Table A-3 into their position as marked 
on the pcb overlay and as shown in Figure A-11 and Figure A-12. 

Table A-3  Parallel Port Interface - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

2 0.1 F ceramic monolithic capacitor 0.2 inch C20, 22 
4 470  resistor ¼ W R29, 30, 43, 

44
16 10K resistor ¼ W R78 - 93 
2 74HC245 CMOS IC DIL20 U6, 13 
2 IC socket 20 pin  
1 D25 female right angle connector  J1 

23 Pcb pin, 0.9 - 1.0 mm diameter   

Testing
Figure A-10 shows the schematic diagram for the interface circuitry. The two 
‘Buffer’ ICs are used to protect the parallel port of the PC from damage should 
faults occur on the interface board. 

Note: Ensure that both Buffers are fully disconnected from other devices (including 
the parallel port) prior to testing.

The voltage at the power supply pin of each logic ‘Buffer’ (74HC245, pin 20) 
should be approximately +5V (the same as that output by the +5V voltage 
regulator).  If this is not the case, check: 

– Incorrect IC orientation, faulty IC socket connections, short-circuits, 
open-circuits, a faulty IC, and the +5V internal power supply. 

The input pins that control the direction of data flow and enable the output signals 
must be connected as follows: 

– DIR input (pin 1) must be at +5V, and EN (pin 19) must be at 0V. 

The input data lines to the Buffers have pull-up resistors fitted. This ensures correct 
interfacing to any TTL logic in the parallel port. The resistors also connect any 
unused input pins to a high logic state. Inputs not connected to a logic level can 
cause unpredictable circuit behaviour. These resistors will produce +5V input 
voltages at each pin when the interface cable to the PC is disconnected. The output 
data pins from the Buffers should have corresponding high logic levels. The four 
resistors connected to the D25 connector help protect the BASE+2 interface at the 
parallel port from damage. 
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Figure A-10  Parallel Port Interface Circuit - schematic diagram. 

Disconnect the PC interface cable when testing the following circuitry. Test one 
data input of the Buffer (74HC245, U13) at a time as follows: 

The input data pin (shown as A1, A2, ..., A8) should be at +5V, and therefore, at a 
high logic state. The corresponding output pin (shown as B1, B2, ..., B8) should be 
at the same high logic state. Repeat this test for all other input pins. 

Connect the input data pin (shown as A1, A2, ..., A8) to GND by first grounding 
one end of an interconnecting lead. Touch the other end of the lead to that pin’s 
pull-up resistor lead that is in-line with the pin on the board. The corresponding 
output pin (B1, B2, ..., B8) should be at the same low logic state. Repeat for all 
other input data pins. 

Test one data input of the Buffer (74HC245, U6) at a time as follows: 

Connect one input data pin to GND by first grounding one end of an 
interconnecting lead and connecting the other end to an input pcb pin. The 
corresponding output pin should be at the same low logic state. Repeat for all other 
input data pins. 

Swap the lead connection from GND to +5V and connect the other end to apply 
+5V to an input pcb pin. The corresponding output pin should be at the same high 
logic state. Repeat for all other input data pins. 

If any of the above tests fail, check for: 
– Incorrect IC orientation, short-circuits, open-circuits and a faulty IC. 
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Figure A-11  Parallel Port Interface Circuit - component positions. 

Figure A-12  Parallel Port Interface Circuit - components fitted. 
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LED Driver Circuitry 

Assembly
Fit and solder all the components listed in Table A-4 into their position as marked 
on the pcb overlay and as shown in Figure A-14 and Figure A-15. 

Table A-4  LED Driver Circuitry - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

8 330  resistor ¼ W R1, ..., R10 
(not inclusive) 

8 Red LED 3mm diameter body  LED1-8 
1 ULN2803A transistor array DIL18 U3 
1 IC socket 18 pin  
8 Pcb pin, 0.9 - 1.0 mm diameter   

Testing

Figure A-13  LED Driver Circuit - schematic diagram. 

Figure A-13 shows the schematic diagram of the LED Driver circuitry. This circuit 
block is ideal for testing logic levels of particular signals read or controlled by 
software – especially when writing and debugging a program. The circuit 
comprises one ULN2803A Driver IC along with eight associated resistors and 
LEDs. The IC contains eight separate darlington transistors, each one used to 
switch current through an output pin.  Connecting logic level signals to the Driver 
will turn on and off the respective LEDs to indicate their logic state. 

Note: assemble and test one series connected LED and resistor first – to check the 
correct polarity of the LED. Establishing LED polarity is discussed in the earlier 
section of this appendix titled “The Assembly Process”. 
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The voltage level at the ULN2803A power pin (10) should be +5V. The LED 
terminals furthest from the resistors should also be at +5V. If this is not so, check: 

– Incorrect IC orientation, faulty IC socket connections, short-circuits, 
open-circuits, a faulty IC or LED, and faulty +5V internal power supply. 

The ULN2803A Driver operates as follows: 

3. When a Driver input pin (D0, D1, …, D7) is taken to a high logic level (use 
+5V), the corresponding output pin (Q0, Q1, …, Q7) will be switched 
internally to ground voltage (0V). This will light the corresponding LED as 
current flows from VCC (+5V), through the LED, resistor and the Driver 
output pin to its internal ground. 

4. When a Driver input is driven to a low logic level (use GND), the 
corresponding output pin connection to GND will be broken, interrupting 
current flow through the LED and resistor, extinguishing the LED. 

Should any LED fail to light, check: 
– Incorrect LED polarity, short-circuits, open-circuits and faulty LEDs or 

resistors.
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Figure A-14  LED Driver Circuit – component positions. 

Figure A-15  LED Driver Circuit – components fitted. 
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 APPENDIX A - HARDWARE 

Digital to Analog Converter Circuitry 
The DAC circuitry is shown in Figure A-16 and comprises the DAC itself and a 
DAC Buffer Circuit. 

Assembly
Fit and solder all the components listed in Table A-5 into their position as marked 
on the pcb overlay and as shown in Figure A-17 and Figure A-18. 

Table A-5  Digital to Analog Converter - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint 

PCB
Designator

-8V Supply:   
1 1N4004 diode  D3 
1 2 way terminal block 5 mm pitch J14 
1 9V battery clip   

DAC cct: 
1 10 nF ceramic monolithic capacitor 0.2 inch C16
2 0.1 F ceramic monolithic capacitor 0.2 inch C7, 8 

11 10K resistor ¼ W R39-41, 70-
77

1 20K resistor ¼ W R22 
1 DAC0800 CMOS IC DIL16 U8 
1 IC socket 16 pin  
8 Pcb pin, 0.9 – 1.0 mm diameter   
2 2 pin header 0.1 inch LINK1, 

LINK2
1 Jumper (fit to header LINK1 or LINK2) 0.1 inch  

DAC Buffer cct:   
2 0.1 F ceramic monolithic capacitor 0.2 inch C5, 6 
2 10K resistor ¼ W R26, 27 
1 LM358 IC DIL8 U10 
1 IC socket 8 pin  
1 Pcb pin, 0.9 - 1.0 mm diameter   

449



Testing the DAC Circuit 

Figure A-16  DAC & DAC Buffer Circuit - schematic diagram. 

Note: Ensure that a usable 9V battery is connected to the terminal block J14. 

The voltage level at the DAC (U8) positive power supply pin V+ (13) should be at 
+5V, the DAC negative power supply pin V- (3) should be at approximately –8V.  
If not, check: 

– Incorrect IC orientation, faulty IC socket connections, flat 9V battery, 
short-circuits, open-circuits, faulty DAC IC, and the +5V internal supply. 

When all DAC logic input pins (D0, D1, ..., D7) are unconnected, all logic inputs 
should be pulled up to +5V.  If this is not so, check for: 

– Short-circuits, open-circuits, faulty resistors, and poor solder joints. 

Fit the single Jumper to the Unipolar position, marked as LINK1.  With all DAC 
logic inputs pulled to +5V (input pins unconnected), the output of the DAC (pin 4) 
should be at –5V. Conversely, when all DAC logic inputs are connected to GND 
(0V) the DAC should produce 0V.  If this is not so, check for: 

– Poor lead connections, short-circuits, open-circuits, faulty soldering of 
components, components having incorrect value, and faulty components. 

Fit the jumper to the bipolar position (LINK2). With all DAC logic inputs pulled to 
+5V (input pins unconnected), the DAC output should be at –5V. With all DAC 
logic inputs connected to GND (0V), the DAC output should produce +5V. 

APPENDIX A - HARDWARE 450



Testing the Buffer Circuit 
This circuitry buffers the output voltage generated by the DAC circuitry and inverts 
this voltage about zero volts to bring the DAC output voltage, VDAC, to a positive 
convention (increasing value of the DAC input byte produces an increasing 
voltage, VDAC). 

The voltage level at the op-amp (U10) power supply pins should be +9V (pin 8) 
and approximately –8V (pin 4).  If not, check: 

– Incorrect IC orientation, faulty IC socket connections, +9V internal power 
supply, flat 9V battery, short-circuits, open-circuits, and a faulty LM358 
IC.

With the DAC output at –5V (all DAC logic inputs pulled to +5V), the non-
inverting input of the ‘Buffer’ op-amp (U10, pin 3) should also be –5V.  Likewise 
the inverting input and the output of the ‘Buffer’ op-amp (U10, pin 2 and pin 1 
respectively) should be –5V.  If not, check: 

– Short-circuits, open-circuits, faulty IC socket connections, and a faulty 
LM358 IC. 

The ‘inverter’ op-amp’s non-inverting input pin (U10, pin 5) and the inverting 
input pin (U10, pin 6) should both be at 0V.  The ‘inverter’ op-amp output pin 
(U10, pin 7) should be at +5V.  If not, check: 

– Short-circuits, open-circuits, faulty IC socket connections, incorrect value 
or faulty resistors R26, R27, and a faulty LM358 IC. 
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Figure A-17  DAC & DAC Buffer Circuit – component positions. 

Figure A-18  DAC & DAC Buffer Circuit – components fitted. 

40
46

LM
35

8

LM
35

8

LM
35

8

D
A

C
08

00

A
D

C
08

04
74HC157

74HC245

74HC245

U
LN

28
03

A

40
93

PINS
+5V PINS

DAC Cct 
DAC Buffer Cct

APPENDIX A - HARDWARE 452



Motor Control Circuitry 

Assembly
Fit and solder all the components listed in Table A-6 into their position as marked 
on the pcb overlay and as shown in Figure A-20 and Figure A-21. 

Table A-6  Motor Control Circuitry - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

4 4K7 resistor ¼ W R34, 35, 51, 53
12 10K resistor ¼ W R18-21, 24, 25, 

45-50
8 1N4004 diode  D5-8, 11-14 
4 24V zener diode 1W ZD1, 2, 4, 5 
4 BC547 npn transistor TO-92 Q1, 2, 13, 14 
4 BD649 npn darlington transistor

(or equivalent) 
TO-220 Q5, 6, 15, 16 

4 BD650 pnp darlington transistor
(or equivalent) 

TO-220 Q8, 10, 17, 18 

4 2 way terminal block 5mm pitch J7, 8, 12, 13 
2 4 way terminal block 5 mm pitch J6, 11 
8 Heatsink 20 C/W  HS5-12 
8 Pcb pin, 0.9 – 1.0 mm diameter   
8 M3 screw 6-10 mm long 

(or equivalent) 
8 M3 nut   
8 M3 locking washer   

Testing
Figure A-19 shows the schematic diagram for the motor control circuitry, 
comprising two H-bridge circuits used for driving DC and stepper motors.  Ensure 
wire links are fitted across each two-way terminal block before testing the 
circuitry. Connect an external DC power supply (less than 30V) capable of 
powering the motor(s) (or the +12V DC 1A power pack if suitable) to the four-way 
terminal block connections: Power Supply +ve connects to Vm1 and Vm2, Power 
Supply –ve connects to Vm1 GND and Vm2 GND. 
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Figure A-19  Motor Control Circuit - schematic diagram. 
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The appropriate voltage from the motor power supply should be present at each of 
the respective two-way terminal blocks.  If not, check: 

– Powerpack or external power supply wiring/operation, and wire links are 
fitted across two-way terminal blocks. 

The four ‘transistor switches’ used in each H-bridge operate independently - each 
‘closes’ when its logic input is taken to a high level. Each H-bridge circuit uses two 
types of transistor: 
1. Two identical lower transistor switch circuits, each using a npn darlington 

transistor (e.g. Q5). 
2. Two identical upper transistor switch circuits, each using a npn transistor (e.g. 

Q2) driving a pnp darlington transistor (e.g. Q8).  Without the npn transistor, 
the logic input signal could not drive the pnp darlington transistor, since this 
darlington configuration needs to be controlled by an input voltage capable of 
rising close to the motor supply voltage (Vm1) to turn off the transistor.  The 
npn transistor ‘inverts’ the logic input signal and can switch off at voltages up 
to Vm1.  The ‘inverted’ signal then drives the pnp darlington transistor. 

Test each of the transistor switches in the two H-bridge circuits in-turn.  Fit a 
resistor, say 1K  (1000 ) as a light load in place of an actual motor across the 
four way terminal block contacts marked M1 and M2.

One lower npn darlington transistor and its diagonally opposing upper pnp 
darlington transistor circuitry will be tested at a time, all other logic inputs must
not be connected.  For example, logic input C and logic input B will be switched as 
follows:

When logic input C is wired to +5V (Q5 ON) and logic input B is wired to +5V 
(Q10 ON), the voltage at the four way terminal block contact, M1 should be equal 
to approximately 1V and M2 should be equal to approximately Vm1 minus 1V. 

Repeat this test for the opposite transistor circuits in the H-bridge controlled by 
logic inputs A and D.  This circuit test will give opposite voltages at terminal block 
contacts M1 (Vm1 minus approximately 1V) and M2 (approximately 1V). Should 
any of these tests fail, check: 

– Power supply operation, poor lead connections, missing wire links, short-
circuits, open-circuits, faulty soldering of components, components 
having incorrect value or incorrect orientation, and faulty components. 

Note that the BD649 and BD650 darlington transistors used in the H-bridge (shown 
on the schematic with two arrows) are capable of switching currents up to 8A. 
Other darlington transistors with similar current capacity and matching pin 
configuration can be used. A 24V zener diode in series with a regular diode is 
connected across the BD650 darlington transistors to absorb spikes of back-emf 
generated during switching. The diodes across the BD649 darlington transistors 
limit negative voltages across the transistor to one forward-biased diode drop 
approximately (0.7V). 
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Figure A-20  Motor Driver Circuit – component positions. 

Figure A-21  Motor Driver Circuit – components fitted. 
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Voltage-Controlled Oscillator Circuitry 
The VCO circuit uses the Thermistor circuit for several projects within the main 
text. Therefore, assembling and testing the Thermistor circuit has been included 
with the VCO material. 

Assembly
Fit and solder all the components listed in Table A-7 into their position as marked 
on the pcb overlay and as shown in Figure A-23 and Figure A-24. 

Table A-7  Voltage-Controlled Oscillator - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

VCO cct: 
1 1 F ceramic monolithic capacitor 0.2 inch C18
1 100K resistor ¼ W R11
1 1M resistor ¼ W R13
1 4046  CMOS IC DIL16 U4
1 IC socket 16 pin U4
2 Pcb pin, 0.9 - 1.0 mm diameter U4

Thermistor cct: 
1 0.1 F ceramic monolithic capacitor 0.2 inch C9 
1 100K - 470K resistor (suit thermistor 

- see main text Chapter 10) 
 R31 

1 Thermistor  RT1 

Testing the VCO Circuit 
Figure A-22 shows the circuit diagram for the voltage-controlled oscillator (part of 
the phase lock-loop IC) and the thermistor circuitry. The VCO circuit outputs a 
digital signal having a square waveform at a frequency proportional to the voltage 
applied to its input pin. 

The voltage at the power supply pin of the Phase-Lock Loop IC (U4, pin 16) 
should be equal to approximately +5V, the same as that output by the +5V voltage 
regulator. If not, check: 

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket 
connections, faulty 4046 IC, and the +5V power supply. 
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Figure A-22  VCO & Thermistor Circuit - schematic diagram. 

Connect the VCO’s voltage input pin VIN (9) to GND and connect an interconnect 
lead from the VCO output (pin 4) to one of the 8 LED Driver input pins. This 
should produce a slowly changing signal, evident by a LED flashing on and off. 
Connecting the VCO voltage input pin to +5V should produce an output pulse-train 
having a much higher frequency. If this is not so, check: 

– Short-circuits, open-circuits, incorrect value of associated resistors and 
capacitors, faulty components, incorrect IC orientation, and faulty 
soldering.

Testing the Thermistor Circuit 
This is a simple voltage divider circuit having a capacitor connected across its 
output to GND. The capacitor has been added to reduce the possible effects of any 
high-frequency noise coupled through from the +5V power supply. 

Test for +5V at the end of resistor R31 (furthest from capacitor C9).  If not present, 
check:

– +5V power supply, short-circuits, and open-circuits. 

The thermistor will have a particular resistance at room temperature, producing a 
corresponding output voltage (VTH) from the voltage divider circuit. Hold the 
body of the thermistor between two fingers to warm it (change its resistance) and 
the output voltage should change. If not so, check: 

– Inappropriate value of resistance for R31, faulty soldering of components, 
short-circuits, open-circuits, faulty resistor R31, faulty thermistor, or 
faulty capacitor. 
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Figure A-23  VCO & Thermistor Circuit – component positions. 

Figure A-24  VCO & Thermistor Circuit – components fitted. 
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Analog-to-Digital Converter Circuitry 

Assembly
Fit and solder all components listed in Table A-8 into their position as marked on 
the pcb overlay and as shown in Figure A-26 and Figure A-27. 

Table A-8  Analog-to-Digital Converter - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

1 150 pF ceramic capacitor 0.2 inch C17 
1 0.1 F ceramic monolithic capacitor 0.2 inch C11 
1 100  resistor ¼ W R69 
4 10K resistor ¼ W R9, 15-17 
1 ADC0804 CMOS IC DIL20 U7 
1 IC socket 20 pin  

13 Pcb pin, 0.9 - 1.0 mm diameter   

Testing
Figure A-25 shows the schematic for the Analog-to-Digital Converter (ADC) 
circuitry.

Figure A-25  ADC Circuit - schematic diagram. 
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This circuit uses an ADC0804 IC to sample an analog voltage (0 to +5V) at its 
input pin (VIN) and produce a digital output byte (0 to 255) that represents this 
analog voltage. 

The voltage at the ADC0804 power pin (20) should be +5V.  If not, check: 
– +5V power supply, incorrect IC orientation, short-circuits, open-circuits, 

faulty IC socket connections, and a faulty ADC0804 IC. 

If the IC has +5V present at its power pin as intended, but the IC is HOT, the 
device may be suffering from what is known as CMOS SCR Latch-up. This 
phenomena can occur with some CMOS devices, and has the effect of internally 
short-circuiting the power pin to GND. To overcome this problem, turn the power 
off to the interface board and allow the IC to cool, then re-apply power and check 
for normal cool temperature. 

The three logic inputs to the ADC0804 (/READ, /START C., and /CS) should be 
pulled to +5V by the pull-up resistors R16, R9, and R17.  If not, check: 

– Faulty soldering of components, short-circuits, open-circuits, faulty 
resistors, incorrect IC orientation, and a faulty ADC0804 IC. 

To perform the final test for the ADC, connect the /CS and /READ input pins to 
GND. Connect an interconnecting lead to the /START C. input, at this stage 
leaving the other end of the lead free. 

Connect the ADC digital output pins (D0-D7) to the LED Driver Circuit to visually 
display their logic state. 

Connect the analog input voltage (VIN) to GND. Briefly connect the /START C. 
input to GND to initiate a conversion. The resulting ADC output byte should be 
close to decimal 0, or binary 0000 0000. 

Repeat this test with VIN connected to +5V. The resulting ADC output byte should 
be close to decimal 255, or binary 1111 1111.

Note that the most significant bit of the ADC0804 is DB7 (pin 11). This bit should 
remain high until the input voltage drops below half the input voltage range (2.5V). 

If any of the above tests fail, check: 
– Incorrect IC orientation, faulty soldering of components, short-circuits, 

open-circuits, faulty IC socket connections, and faulty components. 
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Figure A-26  ADC Circuit – component positions. 

Figure A-27  ADC Circuit – components fitted. 
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Miscellaneous Circuitry 

Figure A-28  Miscellaneous Circuits – component positions. 

Figure A-29  Miscellaneous Circuits – components fitted. 
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Multiplexer Circuit 

Assembly
Fit and solder all the components listed in Table A-9 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 

Table A-9  Multiplexer - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

1 0.1 F ceramic monolithic capacitor 0.2 inch C19 
9 10K resistor ¼ W R58-66 
1 74HC157 CMOS IC DIL16 U12 
1 IC socket 16 pin  

13 Pcb pin, 0.9 - 1.0 mm diameter   

Testing

Figure A-30  Multiplexer Circuit - schematic diagram. 

Figure A-30 shows the schematic for the multiplexer circuitry. This circuit splits 
eight bits (or digital signals) into two groups of four bits and allows one group at a 
time to be switched through to its four output pins. In this manner, a stream of 
eight-bit data can be transmitted as a series of two four-bit groups to another 
device, using only four signal transmission signal lines. The disadvantage is the 
doubling of time required to transmit when compared to the use of eight direct 
connections and no multiplexer. 
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The Select input (pin 1) to the multiplexer controls the connection of inputs 1A-4A 
or inputs 1B-4B to the outputs 1Y-4Y respectively. When Select is at a low logic 
level, A’s inputs are switched to the output pins. Conversely when Select is at a 
high logic level, B’s inputs are switched to the output pins. 

The voltage at the power supply pin of the Multiplexer (74HC157, pin 16) should 
be equal to approximately +5V, the same as that output by the +5V voltage 
regulator.  If not, check: 

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket 
connections, and a faulty 74HC157 IC. 

Switch Test I 
Ensure all input pins (and output pins) are disconnected. This places all 
inputs (including Select) in a high state due to their pull-up resistors. This 
will switch the second set of four high-level inputs 1B-4B (inputs D4-D7) to 
their corresponding output pins 1Y-4Y (outputs D4-D7) that should all be in 
a high state. 
Connect the Select input to GND using an interconnect lead (input data pins 
disconnected) as before. This will switch the first set of four high-level inputs 
1A-4A (inputs D0-D3) to their corresponding output pins 1Y-4Y (outputs 
D4-D7) that should all be in a high state.

If either of these tests show bits that are not as stated, then measure the voltages at 
each input data pin (disconnected as before). If voltages are not at +5V, check: 

– Continuity (turn off power) across each resistor to its respective data bit 
(pcb pin). If this value is greater than the 10K resistance specified, then 
check the resistor(s) for open-circuits and faulty solder joints. 

– Incorrect IC orientation, short-circuits, open-circuits, faulty IC socket 
connections, and a faulty 74HC157 IC. 

Switch Test II
Connect all four inputs 1A-4A (inputs D0-D3) to GND using interconnect 
leads. Ensure remaining four inputs 1B-4B (inputs D4-D7) are disconnected 
(pulled to a high state). Connect the Select input to GND using an 
interconnect lead. This will switch the four input bits 1A-4A to their 
corresponding output pins 1Y-4Y (outputs D4-D7). The output bits should all 
be in a low state.  If not, check: 
– Incorrect IC orientation, poor connections, short-circuits, open-circuits, 

faulty IC socket connections, and a faulty 74HC157 IC. 

Connect the Select input to a high state (disconnect the interconnect lead). 
This will switch the other four high-level input bits 1B-4B (inputs D4-D7) to 
their corresponding output pins 1Y-4Y (outputs D4-D7). At this stage the 
output bits should be in a high state. Connect all four inputs 1B-4B (inputs 
D4-D7) to GND using interconnect leads. The output bits should now all be 
in a low state.  If either of these two tests do not comply as stated, check: 
– Incorrect IC orientation, poor connections, short-circuits, open-circuits, 

faulty IC socket connections, and a faulty 74HC157 IC. 
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Adjustable Current Source Circuit 

Assembly
Fit and solder all the components listed in Table A-10 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 

Table A-10  Adjustable Current Source - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

3 0.1 F ceramic monolithic capacitor 0.2 inch C4, 10, 23 
1 3K resistor ¼ W R67 
4 10K resistor ¼ W R28, 55-57 
1 12K resistor ¼ W R68 
1 BD650 pnp darlington transistor (or 

equivalent)
TO-220 Q9 

2 LM358 IC DIL8 U9, 11 
2 IC socket 8 pin  
2 2 way terminal block 5 mm pitch J4, 16 
1 Heatsink 12 C/W  HS4 
2 Pcb pin, 0.9 - 1.0 mm diameter   
1 M3 screw 6-10 mm long 

(or equiv.) 
1 M3 nut   
1 M3 locking washer   

Testing
Figure A-31 shows the schematic for the adjustable current source circuitry. 
Adjustable current sources have many uses such as charging NiCad batteries and 
for electronic test and measurement purposes. This circuitry generates a current 
that is proportional to an input voltage (0 to +5V) such as that produced by VDAC. 
The resistor Rcurr (of appropriate value) is fitted across the terminal block J16 to 
set the range of current level that can be supplied. 

The adjustable current source is implemented using three op-amp stages, each stage 
performing a different operation. The first op-amp circuit (U11B) scales the input 
voltage VDAC by 4/5ths, using a voltage divider circuit formed by resistors R67 
and R68. This means that for a maximum input voltage of +5V, the resistive 
divider will give +4V at its output. Op-amp U11B buffers this voltage for use by 
the second stage of the circuitry (U11A). 

The second stage uses op-amp U11A configured as a non-inverting amplifier, 
amplifying the voltage signal at its +ve (non-inverting) input terminal using a gain 
of two. Note: for a non-inverting amplifier configuration, the gain is equal to 1 + Rf
/R, where Rf is the feedback resistor and R is the grounded resistor. A second 
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voltage divider circuit (that uses resistors R28 and R57) generates the input voltage 
at the non-inverting terminal. When the output from the first stage (U11B, pin 7) is 
+4V, the input voltage at the non-inverting terminal of U11A will be +4.5V. This 
voltage is amplified by two to produce +9V at the output of U11A (pin 1). 

Figure A-31  Adjustable Current Source Circuit - schematic diagram. 

The final stage in the current source circuitry uses op-amp U9A operating as an 
adjustable current source. It takes the output voltage from U11A and drives a pnp 
darlington transistor (Q9) such that the voltage at the emitter of this transistor 
(marked by an arrow and connected to the –ve input terminal) is equal to the 
voltage at the +ve input terminal. Therefore, when the previous stage outputs +9V, 
the voltage at the emitter side of the terminal block J16 will also be at +9V. This 
produces a net voltage of zero across the resistor Rcurr, meaning that no current 
flows through Rcurr, the transistor, and the component fitted across the terminal 
block J4.

When the input voltage (VDAC) to the first stage is 0V, the output of U11B will be 
0V, the output of the second stage will be +5V and the voltage at the emitter side of 
terminal block J16 will also be +5V, producing a maximum voltage across Rcurr 
equal to 4V. The level of current generated by the four volts across Rcurr will 
depend on its resistance value. Select the value of Rcurr to set the maximum 
current range needed. 

This adjustable current source can be used for many purposes, including the three 
following examples: 

i) Virtual Ohmmeter - fit a resistor of correct value (Rcurr) across terminal 
block J16 to generate a corresponding range of current. The resistor to be 
measured is fitted across terminal block J4. A controlled voltage VDAC 
applied to input pin ‘Vin Curr’ will generate a current through the resistor 
being evaluated, to produce a voltage across it. This voltage can be 
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measured using the ADC (or the VCO if its transfer function has been 
measured).

ii) NiCad Battery Charger - fit the battery across terminal block J4 with 
correct polarity and charge with an appropriate level of current for a 
suitable period of time (or until the battery has been charged to the 
required voltage). 

iii) Transistor or Diode tester (plot characteristic curve) - connect the 
component being tested to terminal block J4 with correct polarity. Then 
control the current through the device while measuring the voltage 
generated across it. 

To test this circuit, fit the resistors across each terminal block – try using a 390
resistor for Rcurr and a 470  resistor across terminal block J4. 

First test the voltage at both op-amp power supply pins (U11 and U9, pin 8). The 
voltage should be approximately +12V when using a +12V powerpack or +12V 
power supply. The negative voltage supply pins (U11 and U9, pin 4) should be 
approximately –8V. 

Connect either 0V or +5V as the input voltage Vin Curr (described above using 
VDAC) and move through each stage, testing the input voltage and then the 
corresponding output voltage of that stage. Note that the op-amp +ve and –ve input 
terminals will be at the same voltage (within a few microvolts) if the op-amp is 
functioning properly.

Remembering that effectively zero current passes through the op-amp –ve input 
(and +ve input), the current through Rcurr will flow down and branch into the 
emitter of darlington transistor Q9. Zero volts connected to Vin Curr will generate 
4V across Rcurr (390 ) and produce a current through Rcurr of approximately 
10mA. Nearly all of this current will flow down through terminal block J4 (470 )
to generate slightly less than 4.7V across it. The very small amount of current that 
does not pass through the terminal block (470 ) passes through the emitter of the 
darlington transistor Q9 to the output of op-amp U9A. This current is used to drive 
the emitter voltage to match that voltage present on the op-amp +ve input pin. 

If any faults are detected, check:
– +12V power supply, -8V power supply (9V battery), incorrect IC and 

transistor orientation, incorrect components, faulty soldering, short-
circuits, open-circuits, faulty IC socket connections or faulty components. 

Voltage Buffer Circuit (High Current) 

Assembly
Fit and solder all the components listed in Table A-11 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 
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Table A-11  Voltage Buffer (High Current) - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

1 10K resistor ¼ W R23 
1 BD649 npn darlington transistor (or 

equivalent)
TO-220 Q7 

1 LM358 IC DIL8 U9 
1 IC socket 8 pin  
1 Heatsink 12 C/W  HS3 
2 Pcb pin, 0.9 - 1.0 mm diameter   
1 M3 screw 6-10 mm long 

(or equivalent) 
1 M3 nut   
1 M3 locking washer   

Testing
Figure A-32 shows the schematic for the voltage buffer circuitry. 

Figure A-32  Voltage Buffer Circuit (High Current) - schematic diagram. 

This circuit takes an input voltage signal having low current drive capacity (say a 
few milliamps) and produces a matching output voltage capable of providing up to 
0.5A of current. 

The circuit uses op-amp U9B to drive an npn darlington transistor (Q7) such that 
the emitter (shown with an arrow) voltage matches the input voltage at the +ve 
input terminal.  Resistor R23 is used to generate the feedback voltage and allow 
proper circuit operation.  The op-amp automatically adjusts the drive current to the 
transistor to maintain a constant output voltage as changes in current draw take 
place at the output. 

First test the voltage at both op-amp power supply pins. These voltages should be 
approximately +12V (pin 8) and approximately –8V (pin 4). Connect a resistive 
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load (say a 100  resistor) across the output pin (VADJ) to GND.  With the input 
voltage Vin at 0V, the output voltage VADJ should also be at 0V.  Apply fixed DC 
voltages (up to a maximum of +5V) to the input, Vin.  The output voltage (VADJ) 
should match the input voltage being applied.  The Potentiometer is ideal for 
generating various voltages up to +5V. 

Note: op-amp U9 uses the –8V power supply. Therefore, ensure the components 
listed in Table A-5 that make up the –8V supply are fitted, and a usable 9V battery 
is connected. 

If any faults are detected, check:
– +12V power supply and –8V power supply (9V battery), incorrect IC and 

transistor orientation, faulty soldering, short-circuits, open-circuits, faulty 
IC socket connections, and faulty components. 

Charge/Discharge RC Circuit 

Assembly
Fit and solder all the components listed in Table A-12 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 

Table A-12  Charge/Discharge RC Circuit - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

1 1 F,  16V tantalum electrolitic capacitor 0.2 inch C15 
2 4K7 resistor ¼ W R36, 37 
1 100K resistor ¼ W R12 
1 470K resistor ¼ W R38 
1 BC547 npn transistor TO-92 Q3 
1 BC557 pnp transistor TO-92 Q12 
3 Pcb pin, 0.9 - 1.0 mm diameter   

This circuitry is shown in Figure A-33 and is used to demonstrate the 
charging/discharging characteristics of a resistor/capacitor (RC) circuit. The ADC 
circuit can digitise the output signal produced by this circuit and then a waveform 
can be plotted. 

Charging takes place when the /Charge input signal is activated by driving it from a 
high logic level to a low logic level while the Discharge input signal is kept 
inactive at low logic level. The voltage across capacitor C15 will increase during 
the charging process. The pnp transistor (Q12) controlled by /Charge, conducts 
when its base terminal (connected to R36) voltage drops at least approximately 
0.7V lower than the emitter terminal (shown with an arrow). This allows current to 
flow through charging resistor R12 and charge up capacitor C15 to +5V. 
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Testing

Figure A-33  Charge/Discharge RC Circuit - schematic diagram. 

The npn transistor (Q3) is controlled by Discharge and will only conduct when its 
base terminal is at a voltage at least approximately 0.7V above its emitter terminal 
(connected to GND). 

Discharging occurs when the /Charge input is driven to its inactive state (> 4.3V 
ensuring transistor Q12 will not conduct) and the Discharge input signal is 
activated using a logic-HIGH level.  This causes transistor Q3 to conduct and allow 
charge stored on the capacitor to flow as a current through the discharge resistor 
(R38) and transistor (Q3) to GND. The voltage across the capacitor (C15) will drop 
to zero volts by the end of this process. Note that the discharge resistor (R38) is 
approximately five times the resistance value of the charge resistor (R12), 
producing different charge and discharge time constants (see Figure 13-6). 

First test the voltage at the charge transistor (Q12) emitter pin (connected to the 
thick track on the pcb) - it should be equal to +5V.  If not so, check: 

– +5V power supply, incorrect transistor or capacitor orientation, faulty 
soldering, short-circuits, open-circuits, and faulty components. 

Connect the /Charge and Discharge inputs as described above and observe circuit 
function.  If the output voltages are not as described, check: 

– Incorrect transistor or capacitor orientation, faulty soldering, short-
circuits, open-circuits, and faulty components and/or drive signals used 
for /Charge and Discharge inputs that cannot supply the required voltages. 

LED and Photodiode/Phototransistor Pair Circuit 

Assembly
Fit and solder all the components listed in Table A-13 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 
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Table A-13  LED and Photodiode/Phototransistor Pair - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

1 0.1 F ceramic monolithic capacitor 0.2 inch C21 
2 150  resistor ¼ W R14, 54 
2 LED (red or infrared)  LED9, 10 
1 Photodiode (suit type of LED)  D9 
1 Phototransistor (suit type of LED)  Q11 
1 4093 CMOS IC DIL14 U5 
1 IC socket 14 pin U5 
2 2 way terminal block 5 mm pitch J3, 15 
4 Pcb pin, 0.9 - 1.0 mm diameter   

Testing
Figure A-34 shows the schematic for the circuirtry associated with the LED and 
photodiode/phototransistor pair. These circuits can be used to measure light level, 
as proximity sensors, for optical communication and for detecting rotational and 
linear position/speed. 

Fit appropriate value resistors across terminal blocks J3 and J15 to bias (allow 
desired operation) the photodetectors, being either photodiodes or phototransistors. 
The value of these resistors will need to be determined through repeated trials. 
Note that the phototransistor can be replaced by a second photodiode. Try 
increasing resistor values by powers of ten, starting from 100R. Then fine tune for 
the most suitable value. 

Figure A-34  LED and Photodiode/Phototransistor Pair - schematic diagram. 

First, test the supply voltage VCC (+5V) at all four resistors. If the voltage is not 
correct, check: 

– +5V power supply, faulty soldering, short-circuits, open-circuits and 
faulty components. 

Test the photo-response of the two photo-transceiver pairs by directing the LED 
light sources at the photo-detectors and observing the voltage increase at their pcb 
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pin terminals as the light is blocked. Note that infra-red light is not blocked by 
paper. If these tests fail, check: 

– incorrect LED or photodetector orientation, faulty soldering, short-
circuits, open-circuits and faulty components. 

The NAND gates (NOT AND) are used to produce digital signals from the analog 
voltages generated by the photodetectors. They have in-built hysteresis indicated 
by the symbol inside their outline. This hysteresis prevents the NAND gate output 
fluctuating with small changes of light level. 

Switch Interface, Potentiometer, Diode, Zener Diode 
and Transistor Circuits 

Assembly
Fit and solder all the components listed in Table A-14 into their position as marked 
on the pcb overlay and as shown in Figure A-28 and Figure A-29. 

Table A-14  Switch Interface, Potentiometer, Diode, Zener Diode 
    and Transistor Circuits - Bill of Materials. 

Quantity Component Description 
Lead Spacing
or Footprint Designator

Switch Interface: 
1 2K7 resistor ¼ W R8 
1 SPST normally open keyboard pushbutton 

switch (or equivalent) 
5 mm pitch SW1 

1 Pcb pin, 0.9 - 1.0 mm diameter   
Potentiometer:

1 Knob for potentiometer   
1 1K 16 mm potentiometer 0.2W POT1 
1 Pcb pin, 0.9 - 1.0 mm diameter   
1 Fabricate POT right angle support bracket   

Semiconductor circuits:   
2 1K resistor ¼ W R32, 33 
1 Resistor (test with a range of values, from 

100  to 10K) 
¼ W R42 

1 1N4148 diode  D4 
1 3V3 zener diode 1W ZD3 
1 BC547 npn transistor TO-92 Q4 
6 Pcb pin, 0.9 - 1.0 mm diameter   
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Testing
Figure A-35 shows the schematic for the switch interface, potentiometer, diode, 
zener diode, and transistor circuitry. 

Switch Interface: 
When the switch is open the output will be low. Conversely, when the switch is 
closed the output will be high. 

If the switch interface circuit does not function correctly, check: 
– Faulty soldering, short-circuits, open-circuits, incorrect switch orientation, 

and faulty components. 

Note: This switch circuit will need to be altered if it is to interface with TTL logic 
devices.  TTL logic circuits require much greater current flow in and out of their 
input pins than do CMOS circuits.  Should you use this circuit with TTL devices, 
lower the value of resistor R8 to approximately 330 .

Figure A-35  Switch Interface, Potentiometer, Diode, Zener Diode, 
         and Transistor Circuits - schematic diagram. 

Potentiometer:
Ensure that the wiper terminal of the potentiometer is not connected to another 
circuit.  As the knob of the potentiometer is rotated through its range, the output of 
its wiper terminal should produce voltages ranging from 0V to +5V.
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Semiconductor circuits: 
These circuits are used to observe the electrical characteristics of diodes, zener 
diodes, and bipolar transistors. 

Diode D4 is driven by either an adjustable voltage source or current source while 
the voltage at its anode is measured to observe its basic electrical characteristics. 

Zener diode ZD3 is also driven by an adjustable voltage source or current source 
while the voltage at its anode is measured to observe its basic electrical 
characteristics.

Bipolar npn transistor Q4 is driven by the adjustable current source (0 to 1mA 
using Rcurr at 3K9) while the voltage at its base (B) and collector (C) are measured 
to observe basic electrical characteristics.  It can also be driven by a voltage source 
using a series connected resistor placed between the voltage source and the base 
pin.

Two sockets from an IC socket strip can be used to provide a socket at each end of 
resistor R42. This will ease the process of trialling different values of this resistor. 

Note: the adjustable current source can be controlled using the output of the 
potentiometer POT1 connected to the input of the adjustable current source (Vin 
Curr).
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Interface Board Bill of Materials 

Quantity Component Description 
Lead Spacing
or Footprint 

PCB
Designator

1 150 pF ceramic capacitor 0.2 inch C17 
1 10 nF ceramic monolithic capacitor 0.2 inch C16 

14 0.1 F ceramic monolithic capacitor 0.2 inch C2-11, 19-23 

1 1 F ceramic monolithic capacitor 0.2 inch C18 

3 1 F,  16V tantalum electrolitic capacitor 0.2 inch C13-15 

1 4700 F, 16V electrolytic capacitor RB 0.5 or 
0.35 inch 

C1

1 100  resistor ¼ W R69 

2 150  resistor ¼ W R14, 54 

8 330  resistor ¼ W R1,...,R10 not incl. 

4 470  resistor ¼ W R29, 30, 43, 44 

3 1K resistor ¼ W R32, 33, 94 
1 1K8 resistor ¼ W  R52 
1 2K7 resistor ¼ W R8 
1 3K resistor ¼ W R67 
6 4K7 resistor ¼ W R34-37, 51, 53  

59 10K resistor ¼ W R9, 15-17, 18-21, 23-
28, 39-41, 45-50, 55-
66, 70-93 

1 12K resistor ¼ W R68 
1 20K resistor ¼ W R22 
2 100K resistor ¼ W R11, 12 
1 470K resistor ¼ W R38 
1 1M resistor ¼ W R13 
1 100K to 470K resistor (suit thermistor)  R31 
1 resistor (range of values, say 100  to 10K) ¼ W R42 

1 1K 16 mm potentiometer 0.2W POT1 
1 Knob for potentiometer   
1 Thermistor  RT1 

1 1N4148 diode  D4 
12 1N4004 diode  D1-3,  5-8, 10-14 
1 3V3 zener diode 1W ZD3 
4 24V zener diode 1W ZD1, 2, 4, 5 
8 Red LED 3mm  LED1-8 
2 LED (red or infrared)  LED9, 10 
1 Photodiode (suit type of LED)  D9 
1 Phototransistor (suit type of LED)  Q11 
6 BC547 npn transistor TO-92 Q1-4, 13, 14 
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1 BC557 pnp transistor TO-92 Q12 
5 BD649 npn darlington transistor (or equivalent) TO-220 Q5-7, 15, 16 
5 BD650 pnp darlington transistor (or equivalent) TO-220 Q8-10, 17, 18 

1 4046  CMOS IC DIL16 U4 
1 4093 CMOS IC DIL14 U5 
1 74HC157 CMOS IC DIL16 U12 
2 74HC245 CMOS IC DIL20 U6, 13 
1 DAC0800 CMOS IC DIL16 U8 
3 LM358 IC DIL8 U9, 10, 11 
1 ADC0804 CMOS IC DIL20 U7 
1 LM7805CT TO-220 U1 
1 LM7809CT TO-220 U2 
1 ULN2803A transistor array DIL18 U3 

3 IC socket 20 pin  
1 IC socket 18 pin  
3 IC socket 16 pin  
2 IC socket 14 pin  
3 IC socket 8 pin  
2 2 pin header 0.1 inch LINK1, LINK2 
1 Jumper (across header) 0.1 inch LINK1 or LINK2 

12 2 way terminal block 5mm pitch J2-4, 7-10, 12-16 
2 4 way terminal block 5 mm pitch J6, 11 
1 9V battery clip   
1 SPST normally open keyboard pushbutton switch 

(or similar) 
5 mm pitch SW1 

1 D25 female right angle connector  J1 
1 D25 Male to D25 Male, one to one cable   

50 Pcb pin socket, suit pin 0.9 – 1.0 mm   
111 Pcb pin, 0.9 - 1.0 mm diameter   
7 m Hookup wire (for interconnect cables)   
1m Heatshrink tubing, 2.5 - 3 mm diameter   
4 Heatsink 12 C/W  HS1-4 

8 Heatsink 20 C/W  HS5-12 

1 Heatsink paste   
12 M3 screw 6-10 mm long (or equivalent), nut, 

locking washer 
4 Pcb rubber stick-on feet   
1 Power pack; +12V DC, 1A   
1 Fabricated right angle support bracket (POT)   
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Appendix B - Software 

C++ Keywords 

Operator Precedence 

ASCII Character Set 



C++ Keywords 

asm private 

auto protected 

break public 

case register 

catch return 

char short 

class signed 

const sizeof 

continue static 

default struct 

delete switch 

do template 

double this 

else throw 

enum try 

far typedef 

float union 

for unsigned 

friend virtual 

goto void

if volatile 

inline while 

int

interrupt

long

near

new

operator



 APPENDIX B - SOFTWARE 

Operator Precedence 
The table below shows the precedence of C++ operators. The highest priority is 
given to the operators on the first row and the lowest priority is given to the 
operator in the last row. Operators placed on the same row have the same priority.  
The operators are used from left to right, except for the rows marked with a †.
These rows are used from right to left. For example, a=b; is used from right to 
left. That is, b’s value is assigned to a.

Table B-1 Operator precedence. 

Operators
() [] -> :: . 

! ~ + - ++ -- & * †

sizeof  new  delete †

.* ->* 

* / % 

+ - 

<< >> 

< <= > >= 

== != 

&

^

|

&&

||

?: † 

= *= /= %= += -= &= ^= |= <<= >>= † 

,
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ASCII Character Set 
         

 NUL 
0x00

DLE
0x10

SP
0x20

0
0x30

@
0x40

P
0x50

`
0x60

p
0x70

 SOH 
0x01

CD1
0x11

!
0x21

1
0x31

A
0x41

Q
0x51

a
0x61

q
0X71

 STX 
0x02

DC2
0x12

"
0x22

2
0x32

B
0x42

R
0x52

b
0x62

r
0x72

 ETX 
0x03

DC3
0x13

#
0x23

3
0x33

C
0x43

S
0x53

c
0x63

s
0x73

 EOT 
0x04

DC4
0x14

$
0x24

4
0x34

D
0x44

T
0x54

d
0x64

t
0x74

 ENQ 
0x05

NAK
0x15

%
0x25

5
0x35

E
0x45

U
0x55

e
0x65

u
0x75

 ACK 
0x06

SYN
0x16

&
0x26

6
0x36

F
0x46

V
0x56

f
0x66

v
0x76

 BEL 
0x07

ETB
0x17

'
0x27

7
0x37

G
0x47

W
0x57

g
0x67

w
0x77

 BS 
0x08

CAN
0x18

(
0x28

8
0x38

H
0x48

X
0x58

h
0x68

x
0x78

 HT 
0x09

EM
0x19

)
0x29

9
0x39

I
0x49

Y
0x59

i
0x69

y
0x79

 LF 
0x0A

SUB
0x1A

*
0x2A

:
0x3A

J
0x4A

Z
0x5A

j
0x6A

z
0x7A

 VT 
0x0B

ESC
0x1B

+
0x2B

;
0x3B

K
0x4B

[
0x5B

k
0x6B

{
0x7B

 FF 
0x0C

FS
0x1C

,
0x2C

<
0x3C

L
0x4C

/
0x5C

l
0x6C

|
0x7C

 CR 
0x0D

GS
0x1D

-
0x2D

=
0x3D

M
0x4D

]
0x5D

m
0x6D

}
0x7D

 SO 
0x0E

RS
0x1E

.
0x2E

>
0x3E

N
0x4E

^
0x5E

n
0x6E

~
0x7E

 SI 
0x0F

US
0x1F

/
0x2F

?
0x3F

O
0x4F

_
0x5F

o
0x6F

DEL
0x7F
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Index
- .................................................150 
--.................................................150 

!

! .................................................150 
!=.................................................150 

#

# .....................................................3 
#define.....................................288 
#endif .......................................288 
#ifndef.....................................288 

$

$ ...................................................31 

%

%c ...................................................49 
%d ...................................................49 
%f ...................................................49 
%s ...................................................49 
%X, %x ..........................................49 

&

& .........................161, 163, 186, 368 

(

( .....................................................6 

)

) .....................................................6 

*

* .........................................161, 186 
*/.....................................................7 

.

.exe ............................................300 

.lib ............................................300 

.obj ............................................300 

/

/*.....................................................7 

:

:: ..................................................83 

;

; ...................................................79 

?

?: ................................................155 

\

\n ................................................313 
\r ................................................313 

^

^ ...................................................52 
^= ...................................................55 

{

{ .........................................9, 45, 79 

}

} .........................................9, 45, 79 

~

~ .................................................150 

“

“ “ ..............................................287 

+

+ .................................................150 
++ ................................................150 

<

< .................................................149 
< >................................................287 
<< ....................................................8 
<= ................................................149 

=

== ................................................150 



INDEX

>

> .................................................149 
->.................................................164 
>=.................................................149 

0

0x...................................................31 
0x378............................................32 
0x379............................................32 
0x37A............................................32 

8

8254 .............................................400 

A

abstract objects...............................58 
AbstractMotor class......211, 213 
access attributes .......79, 90, 118, 145 
private...................................79 
protected ......................79, 131 
public .....................................79 

access specifiers ...................122, 133 
private.................................133 
protected ............................133 
public ...................................133 

ADC
dual slope .................................336 
flash..........................................340 
single slope...............................334 
successive approximation ........338 

ADC class......................................348 
ADC0804 .....................................339 
ADConvert() ...........................352 
address decoding..........................349 
aliasing .........................................345 
analog to digital converter...See ADC 
anode..............................................41 
aperture interval ...........................341 
arrays......................................11, 157 

one dimensional .......................158 
subscript ...................................158 
two dimensional .......................159 

B

back-emf ......................................210 
BASE ..............................................29 

base address .............................27, 32 
base class ...............................64, 121 
base_adr.exe ..........................46 
BASE+1 .........................................29 
BASE+2 .........................................29 
bias.................................................43 
bifilar winding .............................205 
binary .............................................30 
binary logic ....................................24 
bioskey()................................257 
bipolar output...............................114 
bit ...................................................26 
block ............................................148 
body .................................................8 
Brake() ....................................214 
break .................................155, 157 
breakdown voltage.........................42 
brushless motor............................199 
buffer ...............................39, 41, 115 
byte ................................................26 

C

calibration ....................................324 
carriage return................................50 
case............................................157 
catch .........................................190 
cathode...........................................41 
central processing unit .........See CPU 
ChangeAddress() ...................93 
char ................................................16 
chip select ....................................349 
chopper drive ...............................209 
class ...........................................62 
class definition .........................62, 79 
class hierarchy ...............................64 
CMOS............................................25 
coding ..........................................274 
comments.........................................7 
commutator ..................................198 
compiler ...........................................3 
compiler directives.....................3, 45 
compound statement ....................148 
conceptual objects..........................58 
conditional expression .................152 
const .........................................368 
constant integer expression..........157 

484
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constructor................................62, 81 
copy....................................81, 373 
default ........................................81 
default ........................................62 

continue ..................................155 
conversion time............................333 
cout ................................................8 
CPU..................................................3 

D

D25F connector..............................26 
DAC

R-2R Ladder.............................111 
summing amplifier ...................110 

DAC0800 .....................................113 
data area .......................................185 
data logging..................................393 
data types .........................................9 

floating point ..............................15 
fundamental................................15 
integral .......................................15 
pointer ........................................15 

DC Motors ...................................198 
DCMotor class...................212, 221 
decimal...........................................30 
declaration......................................89 
define .........................................45 
Delay().....................................412 
delete .......................................186 
delimiters..........................................4 
de-referencing ..............................161 
derived classes .............................121 
destructor..................................62, 82 

default ........................................62 
dielectric absorption.....................336 
digital logic ....................................24 
digital to analog converter...See DAC 
diode.......................................37, 305 
double.............................................16 
do-while ....................................152 
driver ......................................41, 319 
duty cycle .....................................224 
dynamic binding...........................215 
dynamic memory allocation.161, 185 

E

early binding ................................215 

editor ................................................2 
else ............................................152 
encapsulation .................................63 
encoder.........................................201 
endl................................................8 
enum....................................228, 307 
equality operators.........................150 
equivalent time sampling.............346 
event counting..............................400 
exception handling.......................189 
exclusive-OR ......................See XOR 
executable file..................................5 
exit() .......................................323 

F

false clause...................................152 
field width................................50, 98 
filter .........................................53, 55 
float ............................................16 
for statement..............................148 
format specifiers ............................49 
forward voltage..............................42 
Forward()................................214 
free store ................................20, 186 
full-scale error..............................117 
functions

actual arguments to ....................10 
caller of ......................................20 
calling ..................................14, 20 
const .....................................370 
declaration of .......................13, 19 
default arguments to ................219 
definition of ...............................12 
formal arguments to...................10 
friend ...................................384 
in-line.........................................84 
overloading ........................82, 135 
parameters to..............................10 
polymorphic.............................212 
prototype of..........................14, 45 
pure virtual...............................216 
return value of............................10 
syntax of ....................................13 
virtual ................................233 

G

gain error......................................117 
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GetADCValue() ......................356 
getch().................................47, 50 
getmaxx() ................................320 
getmaxy() ................................320 
GetPeriod() ...........................309 
GetSpeed()..............................214 
gotoxy()........................................314 
grapherror().........................323 
grapherrormsg()..................323 
graphresult() ......................323 

H

hardware triggered strobe.............406 
header files .......................................7 
heap ........................................20, 186 
heatsink ..........................................37 
hexadecimal ...................................30 

I

I/O address .....................................27 
I/O stream.......................................10 
I/O streams ...................................386 
IDE.............................................2, 47 
identifiers .............................9, 16, 17 

declaration............................16, 49 
declared and initialised...............17 

if .................................................152 
ifstream ..................................387 
include directory ..............................7 
include files................................7, 32 
include statement .............................7 
incremental expression.................150 
inheritance........................65, 72, 122 

multiple ....................................211 
initgraph() ....................................323 
initializing expression ..................149 
inportb() ..................................47 
input impedance ...........................334 
instantiation........................63, 81, 89 
int .................................................16 
Integrated Development 

Environment..................... See IDE 
integration ....................................335 
interface board 

power supply..............................36 
interface cable ................................29 

interrupts ......................................401 
inversions.......................................50 
inverting input..............................107 
istream ....................................387 

K

kbhit() ....................................178 
keywords..........................................9 

L

late binding ....................65, 213, 215 
least significant bit ............... See LSB 
LED ...............................................41 

characteristic curve ....................42 
LED class....................................176 
library...............................................4 
light emitting diode..............See LED 
line feed .....................................3, 50 
lineto() .........................................323 
linker................................................5 
loader ...............................................5 
logic families .................................25 
logic levels .....................................24 
loop counters................................149 
LSB................................................30 

M

macros..........................................184 
main() .....................................6, 45 
mains supply ..................................36 
make files.....................................299 
MeasurePeriod() .................309 
member data ............................62, 78 
member functions ....................62, 78 
memory leak ................................187 
microstepping ..............................210 
modules........................................283 
monotonic error ...........................334 
most significant bit .............See MSB 
Motor class ........................212, 217 
moveto() ..................................323 
MSB...............................................30 
multiple file program ...................282 
multiplexer...................................334 

N

negative feedback ........................109 
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negative temperature coefficient ..305 
new ..............................................186 
nibble .............................................31 
noise margins .................................24 
non-inverting input.......................107 
non-linearity.................................117 
NULL ............................................188 

O

object class ...............................58, 61 
object code .......................................4 
object file .........................................3 
object oriented programming .........58 
Off()..........................................214 
offset error....................................117 
ofstream ..................................387 
open loop......................................225 
operand...........................................52 
operational amplifier ....................106 
operator(s)

address of .................................161 
bit-wise.......................................52 
indirection ................................161 
overloaded assignment.............390 
overloading ......................380, 383 
scope resolution .......................138 

operators
overloaded assignment...............81 

ostream.....................................387 
outportb()................................44 

P

parallel port ....................................24 
ParallelPort class ............76, 99 
parameter passing 

by reference..............................367 
pass through objects .....................388 
pcb..................................................24 
PCTimer class ............................409 
pointer
this ........................................392 

pointers.........................................160 
arithmetic .................................167 
arrays of ...................................166 
base class..................................234 
class objects .............................163 
constant ....................................164 

declaration ...............................162 
function....................................170 
functions returning...................173 
one dimensional arrays ............164 
scalars ......................................162 
two dimensional arrays ............165 
void........................................173 

polymorphism........................66, 134 
port.................................................24 
positive feedback .........................109 
power-pack ....................................36 
preprocessor.....................................3 
printer port .....................................24 
printf() ............................47, 313 
procedure abstraction...............12, 14 
project file....................................299 
pseudo-code .........................274, 309 
public interface ........................60, 72 
pull-up resistor ...............................39 
pulse frequency modulation.........200 
pulse width modulation......See PWM 
pure virtual functions.....................64 
PWM............................................224 

Q

quadrature ....................................201 
quantisation..................................333 

error .........................................334 
level .........................................343 

quartz crystals ..............................305 

R

ReadPCTimer() ......................412 
ReadPort1() .............................95 
real objects .....................................58 
real time sampling........................346 
rectifier...........................................37 
reflex measurement......................417 
relational operators ......................149 
return .........................................19 
return value ....................................49 

recipient .....................................20 
type ..............................................9 

Reverse()................................214 
RTL..................................................5 
Run-time library...................See RTL 
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S

sample and hold ...................341, 343 
scalar ..............................................11 
schematic diagrams........................28 
segment:offset ..............................258 
sentries .........................................287 
series resistance drive ..................209 
SetSpeed()..............................214 
settling time..................................117 
SignalLevel() ......................308 
signed and unsigned types..............15 
single timeout...............................405 
sink current...........................109, 113 
slew rate .......................................343 
source code.......................................3 
source current...............................109 
source file.........................................3 
speaker .........................................402 
square wave generator..................406 
stack .......................................20, 186 
static binding................................215 
stepper motors 

bipolar ......................................205 
control of..................................208 
dynamic torque.........................210 
full stepping .............................202 
half stepping.............................203 
holding torque ..........................210 
hybrid .......................................202 
permanent magnet ....................202 
pull-in torque............................210 
pull-out torque..........................210 
ramped step rate .......................210 
unipolar ....................................205 
variable reluctance ...................202 

StepperMotor class.......212, 227 
switch .......................................156 
syntax .....................................4, 8, 83 

T

text editors........................................2 
thermistor .............................305, 324 
this ....................................174, 392 
throw..........................................190 
time base generation ....................419 
timer

clock signal ..............................400 
control register .........................407 
count value...............................401 
counter .....................................400 
counting format........................404 
gate signal ................................401 
interrupt ...................................401 
latch register.............................402 
modes of operation ..................403 
port addresses...........................403 
status ........................................407 

Timer 0 ................................401, 402 
Timer 1 ........................................402 
Timer 2 ........................................402 
transformer.....................................36 
transistor transistor logic...... See TTL 
tri-state .........................................339 
true clause ....................................152 
true or false ..................................149 
try ..............................................189 
TTL................................................25 
type casting ..................................188 

U

ULN2803A ....................................41 
unary operators ............................150 
undefined references........................4 
unipolar output.............................114 
unsigned ....................................15 
unsigned char .....................16, 48 
unsigned int .............................16 

V

variable names ...............................16 
VCO.............................................304 
VFC .............................................304 
Viewport.......................................319 
virtual ....................................212 
virtual functions .....65, 134, 212, 233 
virtual ground.......................108, 111 
void..........................................9, 48 
voltage buffer...............................115 
voltage comparator ......................109 
voltage controlled oscillatorSee VCO 
voltage inverter ............................116 
voltage regulator ............................37 
voltage ripple .................................37 
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voltage to frequency converter..... See
VFC

W

while loop...................................151 

WritePort0().....................78, 95 

X

XOR .........................................52, 53 
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