# C++: Black Scholes Call Option Theta

```// Calculate the Black Scholes European call option Theta
double BS_Call_Option_Theta(double S, double K, double r, double v, double T)
// Parameters: (S = Current Stock Price, K = Strike Price, r = Risk-Free Rate, v = Volatility of Stock Price, T = Time to Maturity)
{  return -(S * Normal_PDF(d_j(1, S, K, r, v, T)) * v)/(2 * sqrt(T)) - r * K * exp(-r * T) * Normal_CDF(d_j(2, S, K, r, v, T)); }
```

```const double Pi = 3.14159265359;

// Standard Normal probability density function
double Normal_PDF(const double & x)
// Normal PDF(x) = exp(-x*x/2)/{sigma * sqrt(2 * Pi) }
{ return (1.0/(double)pow(2 * Pi, 0.5)) * exp(-0.5 * x * x); }
```

```const double Pi = 3.14159265359;

// Standard Normal cumulative distribution function
double Normal_CDF(const double & x)
{
double k = 1.0/(1.0 + 0.2316419 * x);
double k_sum = k * (0.319381530 + k * (-0.356563782 + k * (1.781477937 + k * (-1.821255978 + 1.330274429 * k))));

if (x >= 0.0)
{  return (1.0 - (1.0/(pow(2*Pi,0.5)))*exp(-0.5*x*x) * k_sum); }
else
{  return 1.0 - Normal_CDF(-x); }
}
```