C++: Matrix Exponentiation Operator

Bjarne-stroustrup
 


Most programming languages have a built-in implementation of exponentiation for integers and reals only.

Demonstrate how to implement matrix exponentiation as an operator.

#include <complex>
#include <cmath>
#include <iostream>
using namespace std;

template<int MSize = 3, class T = complex<double> >
class SqMx {
	typedef T Ax[MSize][MSize];
	typedef SqMx<MSize, T> Mx;

private:
	Ax a;
	SqMx() { }

public:
	SqMx(const Ax &_a) { // constructor with pre-defined array
		for (int r = 0; r < MSize; r++)
		for (int c = 0; c < MSize; c++)
		a[r][c] = _a[r][c];
	}

	static Mx identity() {
		Mx m;
		for (int r = 0; r < MSize; r++)
		for (int c = 0; c < MSize; c++)
		m.a[r][c] = (r == c ? 1 : 0);
		return m;
	}

	friend ostream &operator<<(ostream& os, const Mx &p)
	{ // ugly print
		for (int i = 0; i < MSize; i++) {
			for (int j = 0; j < MSize; j++)
			os << p.a[i][j] << ",";
			os << endl;
		}
		return os;
	}

	Mx operator*(const Mx &b) {
		Mx d;
		for (int r = 0; r < MSize; r++)
		for (int c = 0; c < MSize; c++) {
			d.a[r][c] = 0;
			for (int k = 0; k < MSize; k++)
			d.a[r][c] += a[r][k] * b.a[k][c];
		}
		return d;
	}

This is the task part.

// C++ does not have a ** operator, instead, ^ (bitwise Xor) is used.
Mx operator^(int n) {
	if (n < 0)
	throw "Negative exponent not implemented";

	Mx d = identity();
	for (Mx sq = *this; n > 0; sq = sq * sq, n /= 2)
	if (n % 2 != 0)
	d = d * sq;
	return d;
} 


typedef SqMx<> M3;
typedef complex<double> creal;

int main() {
	double q = sqrt(0.5);
	creal array[3][3] =
	{{creal(q,  0), creal(q, 0), creal(0, 0)},
		{creal(0, -q), creal(0, q), creal(0, 0)},
		{creal(0,  0), creal(0, 0), creal(0, 1)}};
	M3 m(array);

	cout << "m ^ 23=" << endl
	<< (m ^ 23) << endl;

	return 0;
}

Output:

m ^ 23=
(0.707107,0),(0,0.707107),(0,0),
(0.707107,0),(0,-0.707107),(0,0),
(0,0),(0,0),(0,-1),

An alternative way would be to implement operator*= and conversion from number (giving multiples of the identity matrix) for the matrix and use the generic code from Exponentiation operator#C++ with support for negative exponents removed (or alternatively, implement matrix inversion as well, implement /= in terms of it, and use the generic code unchanged). Note that the algorithm used there is much faster as well.

SOURCE

Content is available under GNU Free Documentation License 1.2.