Gray code is a form of binary encoding where transitions between consecutive numbers differ by only one bit. This is a useful encoding for reducing hardware data hazards with values that change rapidly and/or connect to slower hardware as inputs. It is also useful for generating inputs for Karnaugh maps in order from left to right or top to bottom.
Create functions to encode a number to and decode a number from Gray code. Display the normal binary representations, Gray code representations, and decoded Gray code values for all 5-bit binary numbers (0-31 inclusive, leading 0’s not necessary).
There are many possible Gray codes. The following encodes what is called “binary reflected Gray code.”
Encoding (MSB is bit 0, b is binary, g is Gray code):
if b[i-1] = 1 g[i] = not b[i] else g[i] = b[i]
Or:
g = b xor (b logically right shifted 1 time)
Decoding (MSB is bit 0, b is binary, g is Gray code):
b[0] = g[0] for other bits: b[i] = g[i] xor b[i-1]
#include <bitset> #include <iostream> #include <string> uint32_t gray_encode(uint32_t b) { return b ^ (b >> 1); } uint32_t gray_decode(uint32_t g) { for (uint32_t bit = 1U << 31; bit > 1; bit >>= 1) { if (g & bit) g ^= bit >> 1; } return g; } std::string to_binary(int value) // utility function { const std::bitset<32> bs(value); const std::string str(bs.to_string()); const size_t pos(str.find('1')); return pos == std::string::npos ? "0" : str.substr(pos); } int main() { std::cout << "Number\tBinary\tGray\tDecoded\n"; for (uint32_t n = 0; n < 32; ++n) { uint32_t g = gray_encode(n); uint32_t b = gray_decode(g); std::cout << n << "\t" << to_binary(n) << "\t" << to_binary(g) << "\t" << b << "\n"; } }
- Output:
Number Binary Gray Decoded 0 0 0 0 1 1 1 1 2 10 11 2 3 11 10 3 4 100 110 4 5 101 111 5 6 110 101 6 7 111 100 7 8 1000 1100 8 9 1001 1101 9 10 1010 1111 10 11 1011 1110 11 12 1100 1010 12 13 1101 1011 13 14 1110 1001 14 15 1111 1000 15 16 10000 11000 16 17 10001 11001 17 18 10010 11011 18 19 10011 11010 19 20 10100 11110 20 21 10101 11111 21 22 10110 11101 22 23 10111 11100 23 24 11000 10100 24 25 11001 10101 25 26 11010 10111 26 27 11011 10110 27 28 11100 10010 28 29 11101 10011 29 30 11110 10001 30 31 11111 10000 31
Content is available under GNU Free Documentation License 1.2.